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Abstract

This paper considers forecasts of the distribution of data whose distri-

bution function is possibly time varying. The forecast is achieved via time

varying combinations of experts’ forecasts. We derive theoretical worse case

bounds for general algorithms based on multiplicative updates of the com-

bination weights. The bounds are useful to study the properties of forecast

combinations when data are nonstationary and there is no unique best model.

An application with an empirical study is used to highlight the results in

practice.

Keywords: Expert, Forecast Combination, Multiplicative Update, Non-

asymptotic Bound, On-line Learning, Shifting.

JEL: C53, C14.

1 Introduction

This paper studies forecasts combination that achieve optimal theoretical proper-

ties for online forecasting of distributions (with possibly time varying parameters).

We show that this also covers the case of point predictions for arbitrary loss func-

tions.

The goal is to use sequential strategies (or algorithms) that would allow us to

forecast the distribution of new observations (within a given reference class) almost

as well as if we knew them before hand. To do this, we borrow ideas from the

literature in game theory (e.g. see special issue in Games and Economic Behavior,

Vol. 29, 1999) and computational learning theory (e.g. Vovk, 1990, Cesa-Bianchi

et al., 1997).
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Predictions using forecast combinations are often called predictions with ex-

perts. We are interested algorithms that lead to optimal error bounds for worse

case scenarios. These bounds do not make any assumption on the sequence, we do

not even need to assume that the data are realisations of some sequence of random

variables.

Worse case bounds derived here specialise to the bounds derived by Herbster

and Warmuth (1998) and owe a lot to their presentation and results. An advan-

tage of the present study is that a set of conditions are established so that results

can be derived in general form without the need of deriving them on a case by

case basis. This also allows us to gain a better understanding of the terms that

contribute to the total error of the algorithm. Consequently the algorithms can be

modified accordingly to improve the theoretical bounds. In fact, we state an addi-

tional algorithm that produces combination weights that, unlike the algorithms in

Herbster and Warmuth (1998), do not depend on unknown parameters. Moreover,

the results are derived for forecasting of distributions and not sequences (i.e. point

prediction). As we willll show that this framework is more general.

Probabilistic bounds, which are related to the worse case bounds of this paper,

have been studied by Yang (2004) in the case of forecast combination of point

prediction under the square loss. Both probabilistic bounds and worse case bounds

are of interest, so the two studies are complementary.

The literature on combination of forecasts is broad and an excellent survey is

Timmermann (2004, section 7 for probability forecasts). Several studies have shown

that combination of forecasts can be useful to hedge against structural breaks and

forecasts combinations are often more stable than single forecasts (e.g. Hendry and

Clements, 2004, Stock and Watson, 2004).

A fundamental component of forecast combination is the choice of prediction

function and the combination weights. In particular given a prediction function, it

is customary to derive combination weights using moment estimators. The experts’

combination is chosen to minimise the user’s expected utility over all possible deci-

sions. This requires some stability of the system and assumptions about the data

generating process.

Worse case bounds avoid the use of moment estimators. The combination

weights are based on sequential updating and the problem is cast in a game theoretic

framework. The econometrician needs to pool the experts and do at least as well

as the best expert or combination of experts no matter what data are sampled by

nature. He minimises his loss given that nature’s goal is to sample data to maximise

this loss. In this case, the objective is to do as well as the experts in the reference
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class. Hence, it is not an expected utility problem, but a minimax problem with

respect to the observed cumulated loss. The use of observed cumulated loss has

an appealing interpretation in terms of the falsiability principle as addressed by

Popper and adapted to the statistical framework via the prequential principle of

Dawid (e.g. Dawid, 1984, 1985, 1986). Mutatis mutandis, this approach can be

seen as a variation of the ǫ-robust decision rule of Chamberlain (2000), where the

set of data generating processes is restricted to the empirical measure.

Our main motivation is optimal forecasting of distributions with time varying

parameters, where the parameters are obtained using some linear filters. Linear

filters can be used to define parametric (e.g. regression estimators), semiparametric

and nonparametric estimators. In this case, the choice of filter and the parameters

in the filter is crucial and related to the model selection problem. Ideally, we would

like to combine models to do as well as the best model with hindsight.

We highlight the framework. There is an arbitrary sequence of variables that

are revealed sequentially over time. For example, returns on stock prices. We

are given a distribution indexed in some finite parameter space. At each point in

time we need to issue a value for the parameter that needs to be used in the next

period forecast. For example we may think of a Gaussian distribution with mean

zero and unknown variance that changes over time. Looking at an initial number of

observations, we may select a finite number of models to provide a variance forecast

given past observations. Then we would like to study algorithms that would allow

us to pool the information provided by each model to issue forecasts that are almost

as good as forecasting with hindsight using the best model. We also consider the

case when changes in the reference class are allowed, i.e. one model may perform

better over some period, but being outperformed in other periods. In the case of

miss-specified models this is of fundamental importance. For example, the best

model might change over time, especially when data are nonstationary.

The plan for the paper is as follows. Section 2 introduces background material.

Section 3 states algorithms based on extensions of the exponential update of Vovk

(1990), which is also the algorithm used in Yang (2004), and derives general worse

case bounds. Section 4 provides an illustrative application to distributions with

time varying parameters together with a study of empirical performance. Section 5

shows how to cover the case of point prediction for arbitrary loss functions. Further

remarks can be found in Section 6.
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1.1 Notation

Unless specified otherwise, throughout the paper the following notation is used.

For a set A, B ⊂⊂ A, means that B is a closed set inside A. If A is a set with

countable elements, #A stands for the cardinality of A. Sn stands for the n ∈ N
dimensional unit simplex. N+ := N\ {0} is the set of positive integers, i.e. 1, 2, 3, ....
Suppose I is a set with a countable number of elements, then aI := (ai)i∈I is a

#I dimensional vector. For vectors a and b having same dimension, 〈a, b〉 is their
innner product. Suppose ats is a scalar or vector, for legibility reasons we may write

a (s, t) (i.e. the subscript first, then the superscript).

Suppose X is a random variable. For Pr (X ≤ x) define ∂xPr (X ≤ x) to be the

density function or the mass function of X or the density function plus the atom

at x, depending on the Lebesgue decomposition of the measure corresponding to

X. If to this measure there corresponds a distribution function P , then P (x) =

Pr (X ≤ x) and p (x) := ∂xPr (X ≤ x). Finally, δ (x) is the Dirac delta function,

i.e. δ (0) = 1, 0 otherwise.

2 Background

We face the following sequential problem at time t = 0, ..., T − 1. Suppose (Xt)t∈N
is a sequence of random variables with values in RS, S ≥ 1 and define Ft to be the
sigma algebra generated by (Xs)s≤t . The data generating process is unknown. We

observe realizations of (Xs)s≤t , say x0, .., xt. (Actually, we do not need x0, .., xt to be

realizations of random variables, but for the sake of explanation it is convenient to

treat them as such.) These could be stock market returns from time 0 to t. Then, we

suppose there is a collection of models
{
Pθ(e) : θe ∈ Θe ⊂⊂ Rd(e), d (e) ≥ 1

}
e ∈ E

where E is called the experts’ set. At time t − 1, we are given the experts’ fore-
casts

(
θ̂
t

e

)

e∈E
to be used as parameters in the models

{
Pθ(e) : θe ∈ Θe

}
e∈E

at time

t. We consider these forecasts as exogenous to the econometrician’s decisions.

The econometrician needs to issue the probability forecast PW,t. When xt is ob-

served, the econometrician suffers a loss R (pW,t) := − ln pW,t (xt) . In particular,
the econometrician will use an algorithm, say W, that will produce a probability

on E at each point in time, say (we,t)e∈E . The forecast pW,t will be a function of
(we,t)e∈E ,

(
θ̂
t

e

)

e∈E
and

{
Pθ(e)

}
e∈E

only. The econometrician’s forecast must satisfy

the following condition, but then it is arbitrary.

Condition 1 For any experts forecasts θ̂E =
(
θ̂e

)

e∈E
, outcome x and wE = (we)e∈E ∈
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S#E , ∃c <∞, η > 0 such that

R
(
pW

(
x|wE , θ̂E

))
≤ −c ln

∑

e∈E

we exp
{
−ηR

(
pθ̂(e) (x)

)}
,

where pW
(
x|wE , θ̂E

)
is the probability forecast based on an arbitrary vector wE in

the unit simplex, experts forecasts θ̂E , and model {pθ} .

Remark 2 In most cases, we can choose c = 1/η, implying in the result below that

cη = 1.

Example 3 The prediction function is a mixture of the experts’ models {pθ} :
pW

(
x|wE , θ̂E

)
=
∑

e∈E wepθ̂(e) (x) . This prediction function is often called the linear

opinion poll (e.g. Genest and Zidek, 1986). In this case, Condition 1 is satisfied

with equality with c = 1/η = 1.

Example 4 Suppose Θe = Θ and Θ is convex. Then, the prediction function is pθ

with parameter θ being the mean of the experts’ forecasts with respect to the mea-

sure wE , i.e. pW
(
x|wE , θ̂E

)
= p

(
x|
〈
wE , θ̂E

〉)
, where p (x|θ) := pθ (x) . In this case,

Condition 1 is satisfied for c = 1/η if ∃η > 0 such that exp
{
−ηR

(
pW

(
x|wE , θ̂E

))}

is concave in θ for any x in the range of the sample observations. Several special

examples when this is true will be provided below.

If Condition 1 is satisfied with c = 1/η = 1, some nice interpretations are also

possible, and will be provided below.

The goal is to find a sequential algorithm, sayW , that allows us to find (we,t)e∈E ,

such that for any aE,t := (ae,t)e∈E ∈ S#E , and any data sequence x1, ..., xT ,

T∑

t=1

R
(
pW

(
xt|wE,t, θ̂

t

E

))
≤

T∑

t=1

(
∑

e∈E

ae,tR
(
p
(
xt|θ̂

t

e

)))

+ error, (1)

where error is usually small, hopefully o (T ) . It may not be possible to achieve

this for arbitrary aE,t ∈ S#E . However, by suitable restrictions, we obtain bounds

that are known in the literature. Suppose aE,t = aE ∈ S#E has all entries zero, but

one of them, i.e. it is one of the edges of the simplex. Since aE is an arbitrary edge

of the simplex, the previous bound implies

T∑

t=1

R
(
pW

(
xt|wE,t, θ̂

t

E

))
≤ min

e∈E

T∑

t=1

R
(
p
(
xt|θ̂

t

e

))
+ error,
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and in this case we have error = O (ln (#E)) (Theorem 9, below). This bound says

that the sequential algorithm used by the econometrician will produce forecasts

as good as the forecasted probability of the best expert, plus a term O (ln (#E)),
i.e. the sequential forecast and the forecast using the best expert with hindsight

produce almost the same error. This last statement makes sense if pW (x|wE , θE)
and p (x|θe) can be nested (in one another or within a larger family of distributions).
This is the case for Examples 3 and 4.

If we expect different models and experts to perform better over different subsets

of x1, ..., xT , then we may consider that it is preferable to have ae,t being dependent

on t. In this case, the bound is relative to the best partition of experts.

2.0.1 Prequential Interpretation

The function −∑T
t=1R (pW,t (xt)) differs from the usual likelihood function, as the

the loglikelihood per observation at time t is constructed using Ft−1 measurable

parameters. This loglikelihood is called the prequential likelihood (Dawid, 1986)

and according to the same literature,
∑T

t=1R (pW,t) is a proper scoring rule; smaller
values are preferred to larger. This approach of model evaluation is consistent with

the Popperian view that the validity of the model should be tested on observables.

There is no need of introducing the concept of probability in this context: we are

not finding an estimator for the maximum of the expected log-likelihood. We are

only trying to minimize the total loss: this is not a probability problem, but a

pattern recognition one (though the two may be related at some level).

3 The Algorithm

This section introduces the multiplicative algorithms that will be used for issuing

the probability forecasts of the econometrician.

We need to find an Ft−1 measurable strategy that produces the weights (w
t
e)e∈E .

This is achieved using multiplicative updating algorithms. These algorithms have

been studied by several authors (e.g. Vovk, 1990, Cesa-Bianchi et al, 1997, Herbster

and Warmuth, 1998, Bousquet and Warmuth, 2002). We need to define transition

functions ut (e, e
′) : E × E → R. These functions are called the share update

functions. The choice of ut is a fundamental ingredient that determines the order

of magnitude of error in the above displays. A precise definition will be given

later. Unless specified othewise, in the remaining of this section, we write θte for

θ̂
t

e, which is an expert’s forecast. The algorithm W is a as follows.
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Set

ve,1 = we,1 := 1/ (#E) , ∀e;
pW = pW

(
x1|we,1, θ1

e

)
;

R (x) := − lnx.

For t = 1, ..., T − 1,
pθ(e,t) = pθ(e,t) (xt) ,

v′e,t = ve,t exp
{
−ηR

(
pθ(e,t)

)}
,

ve,t+1 =
∑

e′∈E v
′
e′,tut+1 (e, e

′) ,

v,t+1 =
∑

e∈E ve,t+1,

we,t+1 = ve,t+1/v,t+1,

pW = pW
(
xt+1|wE,t+1, θ

t+1
E

)
,

R1,...,t+1 = R1,...,t +R (pW ) .

Remark 5 The parameter η is called the learning rate and depends on the pre-

diction function used. For predictions based on model averaging as in Example 3,

η = 1.

Remark 6 For ut+1 (e, e
′) = δ (e− e′) the weight update is the one originally pro-

posed by Vovk (1990) and also considered in Yang (2004).

3.0.2 Bayesian Interpretation

When η = 1, the algorithm has a Bayesian interpretation. Suppose that (Et)t∈N
is a sequence of random variables with values in E, which does not need to be Ft
measurable. Using the notation from the Introduction,

∂x(t) Pr (Xt ≤ xt|Et = e,Ft−1) := exp
{
−R

(
pθ(e,t)

)}
= pθ(e,t) (xt) ,

and

∂x(t) Pr (Xt ≤ xt|E,Ft−1) =
∑

e∈E

we,tpθ(e,t) (xt) .

Therefore, the algorithm implies that the distribution of Et is characterised by the

following quantities

Pr (Et = e|Ft−1) = we,t,

Pr (Et = e|Ft) ∝ Pr (Et = e|Ft−1) ∂x(t) Pr (Xt ≤ xt|Et = e,Ft−1) ∝ v′e,t

Pr (Et+1 = et+1|Et = et,Ft) ∝ ut+1 (et+1, et) ,
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though this last display would be valid only under specific restrictions on ut+1, and

Pr (Et+1 = e|Ft) =
∑

e∈E

Pr (Et = e|Ft) Pr (Et+1 = et+1|Et = et|Ft)

∝ ve,t+1 ∝ we,t+1.

This last step is the share update and it is independent of the prediction scheme

chosen by the econometrician.

Several prediction functions have been considered in the literature on forecasts

of distributions combining experts (e.g. Genest and Zidek, 1986, see also Tim-

mermann, 2004). The prediction function needs to satisfy Condition 1. Hence,

prediction functions often found to be preferable (e.g. the logarithmic opinion

poll) may not be adequate in the present context. The prediction function from

Example 3 is usually multimodal and dispersed, but it always satisfies Condition

1 with c = 1/η = 1, admitting the above Bayesian interpretation.

3.0.3 Differences from a Bayesian Prediction

Notice that in a Bayesian framework, e would be usually associated to a model

depending on an unknown parameter. We can notice that the Bayes predictor

assuming Et = e is

θtB(e) := argmin
θ
E [R (p (Xt|θ)) |Et = e,Ft−1] .

The experts’ forecast θ̂
t

e does not need to be equal to θtB(e). Then,

θtB := min
e∈E

∑

e′∈E

Pr (Et = e′|Ft−1)E
[
R
(
p
(
Xt|θtB(e)

))
|Et = e′,Ft−1

]
(2)

is the Bayes choice of θt. Alternatively, we can average over the models and

θtBA := min
θ

∑

e∈E

Pr (Et = e|Ft−1)E [R (p (Xt, θ)) |Et = e,Ft−1] (3)

is the Bayes average choice of θt. We notice the following two differences. First,

(3) delivers a value for θ, and not the whole model. However, we can identify the

whole model as the mixture of densities using the optimal parameter. Second, the

criterion function for (2) and (3) is derived using expectation of the risk in terms

of the conditioning model. The criterion function of the sequential algorithm is the

prequential log-likelihood and no expectation is taken.
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3.1 Properties of the Algorithm

We introduce the following.

Condition 7
∑

e∈E v
′
e,t ≥

∑
e∈E ve,t+1.

Remark 8 Condition 7 put a restriction on ut+1 (et+1, et) saying that

∑

e∈E

ve,t+1 =
∑

e∈E

(
∑

e′∈E

v′e′,tut+1 (e, e
′)

)

≤
∑

e∈E

v′e,t.

The most simple example is given by ut+1 (e, e
′) = 1/ (#E), or ut+1 (e, e

′) = δ (e− e′),

where δ is the Dirac delta function (i.e. δ (0) = 1, zero elsewhere). This condition

is satisfied with equality if (ut+1 (e, e
′))(e,e′)∈E×E is a doubly stochastic matrix (i.e.

a Markov transition matrix).

Theorem 9 Under Conditions 1 and 7,

R1,...,T (pW ) ≤ cηR1,...,T

(
pθ(e)

)
− c ln

(
T∏

t=1

ut+1 (e, e)

)

− c ln ve,1

Remark 10 The bound shows that we need

− ln
(

T∏

t=1

ut+1 (e, e)

)

− ln ve,1

to be as small as possible. This can be achieved by choosing ve,1 as in the algorithm,

i.e. ve,1 = 1/ (#E) , and ut+1 (e, e
′) = δ (e− e′). If we restrict aE,t in (1) to be on

one of the edges of the simplex, then ve,1 = 1/ (#E) , and ut+1 (e, e
′) = δ (e− e′)

are optimal choices.

To state the next result we introduce some extra notation.

Notation 11 We divide the segment IT = (1, ..., T ) into K+1 subsegments, IT (k) =

(tk, ..., tk+1 − 1) that are mutually exclusive and exhaustive, IT =
⋃K
k=0 IT (k). Ac-

cording to this notation, t0 = 1, and #IT (k) = tk+1 − tk. Define ek ∈ E.

Theorem 12 Under Conditions 1 and 7,

R1,...,t (pW ) ≤ cη
K∑

k=0

Rt(k),...,t(k+1)−1

(
pθ(e(k))

)
+ c ln (#E)

−c
K∑

k=1

ln ut(k) (ek, ek−1)− c
K∑

k=0

t(k+1)−2∑

s=t(k)

ln (us+1 (ek, ek)) .
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Remark 13 The additional terms

−
K∑

k=1

ln ut(k) (ek, ek−1)−
K∑

k=0

t(k+1)−2∑

s=t(k)

ln (us+1 (ek, ek))

account for the arbitrary K partition. For the sake of explanation, suppose ut+1 (e, e
′)

were the transition probability of going from e′ to e at time t+1. Comparing The-

orems 9 and 12, we have

−
T∑

t=1

ln (ut+1 (e, e)) ≥ −
K∑

k=0

t(k+1)−2∑

s=t(k)

ln (us+1 (ek, ek))

if the probability of keeping the same expert is the same across experts. However,

in Theorem 12 we also have the extra term

−
K∑

k=1

ln ut(k) (ek, ek−1) ,

which accounts for shifting from expert ek−1 to expert ek at time tk. To minimise

the bound we need to redistribute transition probabilities. It is clear that we should

put little weight to transition from and to experts that are likely to provide bad

performance. Unfortunately, this cannot be done without knowledge of who are

the best performing experts. Herbster and Warmuth, 1998, provide two specific

choices of ut+1 (e, e
′) depending on a parameter that depends on K, the number

of shifts only (the Fixed Share and Variable Share algorithms). Bousquet, 2003,

provides a Bayesian algorithm that put some prior in the parameter of the Fixed

Share algorithm in order to update this parameter sequentially.

3.2 Algorithm to Learn the Share Update

Suppose that ut+1 (e, e
′|λ) , λ ∈ Λ is a class of share updates. Suppose we choose

finite number of these updates functions with parameter λl l ∈ L. We can extend
the previous algorithm to the case where we want to find the best λl. For simplicity,

but with abuse of notation, ut+1 (e, e
′|l) := ut+1 (e, e

′|λl) .
The following algorithm, WL, depends on a constant κ > 0 which will be

defined later. The algorithm is a as follows.

Set

ve,1 = we,1 := 1/ (#E) , ∀e;
υl,1 = ωl,1 := 1/ (#L) , ∀l;
pθ(e,t) = pθ(e,t) (xt) ;

10



pW = pW
(
x1|we,1θ1

e

)
;

R (x) := − lnx.

For t = 1, ..., T − 1,
pθ(e,t) = pθ(e,t) (xt) ,

v′e,l,t = ve,l,t exp
{
−ηR

(
pθ(e,t)

)}
,

ve,l,t+1 =
∑

e′∈E v
′
e′,l,tut+1 (e, e

′|l) ,
v,l,t+1 =

∑
e∈E ve,l,t+1,

we,l,t+1 = ve,l,t+1/v,l,t+1,

pW (l) = pW
(
xt+1|wE,l,t+1θ

t+1
E

)
,

υl,t+1 = υl,t exp
{
−κR

(
pW (l)

)}
,

υ,t+1 =
∑

e∈E υe,l,t+1,

ωl,t+1 = υl,t+1/υ,t+1,

pWL = pWL

(
xt+1|ωL,t+1, wE,L,t+1, θ

t+1
E

)
,

R1,...,t+1 = R1,...,t +R (pWL) .

We need to extend Condition 1.

Condition 14 For any experts’ forecast θ̂E =
(
θ̂e

)

e∈E
, outcome x, and weights wE =

(we)e∈E ∈ S#E , and ωL = (ωl)l∈L ∈ S#L, ∃b <∞, κ > 0 such that

R
(
pWL

(
x|, ωL, wE , θ̂E

))
≤ −b ln

∑

l∈L

ωl exp
{
−κR

(
pW (l)

(
x|wE , θ̂E

))}
,

where pW (l)

(
x|wE , θ̂E

)
is the econometrician’s forecast using algorithm W and share

update ut+1 (e, e
′|l).

Remark 15 Notice that if the forecast is through mixtures, then,

pWL =
∑

l∈L

υl,tpW (l)

and Condition 14 holds automatically with b = 1/κ = 1.

Theorem 16 Under Conditions 1, 7, and 14, ∀e, l,K

R1,...,t (pWL) ≤ (bκcη)
K∑

k=0

Rt(k),...,t(k+1)−1

(
pθ(e(k))

)
+ bc ln (#E) + b ln (#L)

−bc
K∑

k=1

ln ut(k) (ek, ek−1|l)− bc
K∑

k=0

t(k+1)−2∑

s=t(k)

ln us+1 (ek, ek|l) .
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Corollary 17 Under Conditions 1, 7, and 14, ∀K

R1,...,t (pW ) ≤ (bκcη)
K∑

k=0

Rt(k),...,t(k+1)−1

(
pθ(e(k))

)
+ bc ln (#E) + b ln (#L)

+ (bc)min
e∈E
l∈L



−
K∑

k=1

ln ut(k) (ek, ek−1|l)−
K∑

k=0

t(k+1)−2∑

s=t(k)

ln us+1 (ek, ek|l)



 .

Remark 18 Theorem 16 says that increasing the bound by b ln (#L) we can learn

the minimising λl l ∈ L. In this case, to bound

−
K∑

k=1

ln ut(k) (ek, ek−1|l)−
K∑

k=0

t(k+1)−2∑

s=t(k)

ln us+1 (ek, ek|l) ,

we need to choose a specific family ut+1 (e, e
′|λ) λ ∈ Λ and a finite collection of

(λl)l∈L over which to minimise.

Remark 19 As for Theorem 12, we can choose a prediction function (e.g. the one

of Example 3) such that κ = η = 1 and b = c = 1. More generally, the prediction

functions considered in the examples of this paper are such that κb = 1 and ηc = 1.

However, the results cover possibly more general cases.

3.3 Some Choices for the Share Update

The bound of Theorem 16 says that the algorithm WL leads to an efficient choice

of expert and parameter λl for ut+1 (e, e
′|λ) . However, to find an explicit bound we

need to spicery the class of functions. There are several choices, and here three are

presented.

3.3.1 Fixed Share

Following Remark 13, we can choose the transition share update for keeping the

same expert to be independent of the expert and obtain the Fixed Share update of

Herbster and Warmuth (1998),

ut+1 (e, e
′|λ) = (1− λ) δ (e− e′) +

λ

#E − 1 [1− δ (e− e′)] , (4)

where λ ∈ Λ = [0, 1] . From Remark 8, we see that (4) satisfies Condition 7. We

can set λl = l/L, l = 0, ..., L, L ∈ N, so that #L = L. To get a bound for this

update, we need the following.

12



Lemma 20
K∑

k=1

ln ut(k) (ek, ek−1|λ) = K ln

(
λ

#E − 1

)

K∑

k=0

t(k+1)−2∑

s=t(k)

ln us+1 (ek, ek|λ) = (T −K − 1) ln (1− λ) .

Applying Theorem 16, together with this lemma, we have the following.

Corollary 21 Under the Conditions of Theorem 16, using the Fixed Share update

(4), and λl = l/L, l = 0, ..., L, L ∈ N,

R1,...,t (pW ) ≤ (bκcη)
K∑

k=0

Rt(k),...,t(k+1)−1

(
pθ(e(k))

)
+ bc ln (#E) + b ln (#L)

+ (bc)min
l∈L

(
−K ln

(
l/L

#E − 1

)
− (T −K − 1) ln (1− l/L)

)
.

3.3.2 Variable Share

Alternatively, we can choose the transition share update for keeping the same

expert to depend on the expert ( e.g. the Variable Share update of Herbster and

Warmuth, 1998). Here we propose the following new update,

ut+1 (e, e
′|λ) = [1− λ (1− β (e′, t))] δ (e− e′) + λβ (e′, t) [1− δ (e− e′)] , (5)

where β (e, t) ∈ S#E and λ ∈ [0, 1] .

Example 22 Suppose β (e, t) := pθ(e,t)/
∑

e∈E pθ(e,t). Then, the probability of switch-

ing expert is affected by the performance in the last trial.

Example 23 Suppose rh (e, t) is the ranking of expert e in the interval [t− h, t]

relative to the other experts over the same time span. The ranking can be based on

the median of
(
R
(
pθ(e,s)

))
s∈{t−h,...,t}

. Then,

β (e, t) := [rh (e, t)]
−1 /

∑

e∈E

[rh (e, t)]
−1

(e.g. Timmermann, 2004, and references therein). In this case, the switching prob-

ability depends on the performance over [t− h, t] and not just on the last trial.

Moreover, ranking is less sensitive against outliers, hence this could be a robust

rule to use.

13



Since
∑

e∈E β (e, t) = 1 it is easy to see that (5) satisfies Condition 7. The

interpretation of (5) in terms of transition probabilities helps our intuition. In this

case, the probability of changing state from et to et+1 is a function of β (et, t) ,

hence it depends on the original state et. For (4), this probability is independent

of the original state.

To get a bound for this update, we need the following.

Lemma 24 Suppose ut+1 (e, e
′|λ) is as in (5). Then,

K∑

k=1

ln ut(k) (ek, ek−1|λ) = K lnλ+
K∑

k=1

ln (1− β (ek−1, tk − 1)) ,

and

K∑

k=0

t(k+1)−2∑

s=t(k)

ln us+1 (ek, ek|λ) ≥ (T −K − 1) ln (1− λ) ∨
K∑

k=0

t(k+1)−2∑

s=t(k)

ln (β (e (k) , s)) ,

with strict inequality if (λ, β (e, s)) ∈ (0, 1)2 ∀e, s.

Corollary 25 If β (e, t) < (1− 1/#E) ∀t, e then

−
K∑

k=1

ln ut(k) (ek, ek−1|l)

is strictly smaller for (5) than for (4); if β (e, s) < (1− λ) then

−
K∑

k=0

t(k+1)−2∑

s=t(k)

ln us+1 (ek, ek|λ)

is smaller for (5) than for (4), otherwise they are equal.

Remark 26 By Corollary 25, if we restrict β (e, t) < (1− 1/#E) , there is an

improvement in the bound of Theorem 16 if we use (5) instead of (4). The second

part of Corollary 25 requires knowledge of λ. Fortunately, even without knowledge

of λ, only restricting β (e, t) < (1− 1/#E) , the bound in Theorem 16 cannot be

worse than the one obtained by using (4).

Mixing Past Another choice for ut+1 (e, e
′|λ) is given by taking averages of past

weights over the same expert. In this case,

ut+1 (e, e
′|λ) = [λt − βt] δ (e− e′) ,

14



where λ = (λ0, ..., λt) ∈ St, βt =
(
v′e,t
)−1∑t−1

s=0 λsv
′
e,s and v′e,s is the intermediate

weight for expert e at time s. This essentially leads to the algorithm in Bousquet

and Warmuth (2002). The bound for this updating scheme can be obtained from

our previous results with no extra effort. For the sake of brevity, details are left to

the reader.

4 Illustration: Choosing the Right Linear Filter

Consider the family of distributions
{
Pθ, θ ∈ Θ ⊂⊂ Rd, d ≥ 1

}
. For the sake of

simple explanation restrict d = 1. Suppose there is some function g : R→ R such

that θt = E (g (Xt) |Ft−1) . This is often the case. For example, the exponential

family model satisfies this (e.g. Normal distribution, Poisson, Bernoulli). Then,

suppose g (Xt) admits the semimartingale representation

g (Xt) = ft + vtεt, (6)

where ft and vt are Ft−1 measurable and Eεt = 0, Eε2
t = 1. Hence, θt = ft (by

reparametrisation of the marginal distributions, this covers the case g′
(
θt
)
= ft, for

some function g′). The parameter estimation is equivalent to estimation of the Ft−1

measurable trend in g (Xt) . We can estimate or at least approximate θt by θ̂
t
=

∑
s<tw (s, t) g (xs) , where (w (s, t))0≤s<t∈N+ is a linear filter possibly depending on

(Xs)s<t so that (w (s, t))0≤s<t∈N+ is Ft−1 measurable. This framework encompasses

many different methods like averages, moving averages, exponential smoothing,

kernel smoothing and linear projections. In the case of linear projections, the

whole filter is given by the projection matrix.

The case where we suppose that there is a function g : R × Θ → R such that

E (g (Xt, θt) |Ft−1) = 0, can be covered similarly via linear approximation (e.g.

Sancetta and Nikandrova, 2005, and Polzehl and Spokoiny, 2004, for an application

to GARCH). The K > 1 dimensional case is dealt similarly either by defining

a vector of estimating equations or by direct solution if the parameter defining

equation admits an explicit solution as a function of Xt. Reparametrisation may

be used to simplify the estimation and to imply different dynamics.

In these cases, the crucial step is the choice of (w (s, t))0≤s<t∈N+ . Different

experts that use different filters can be combined in order to obtain a probability

forecast. The following empirical example pursue this route.
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4.1 Empirical Example

We use the Gaussian distribution with time varying mean and variance as an

empirical illustration of forecasts’ combination using experts for the log-returns of

the S&P500 index. The period chosen is 02/Jan/1970-04/Mar/2005, which will

lead to 8600 predictions considering a start up period of about 200 observations.

The Gaussian distribution may not be a good choice to model assets returns.

However, this is irrelevant to the purpose of illustrating the theoretical results of

the previous section. Given this choice, the parameters to be estimated are the

mean µt = E (X|Ft−1) and the variance σ2
t = E (X2|Ft−1) . We suppose that the

experts give us forecasts for these parameters.

The experts estimate the parameters as follows. Let ⌊x⌋ be the integer part of
x ∈ R, and Gn : R→ Z be a function such that

Gn (x) :={ 2−n ⌊x2n⌋ , if |x| < n

n (x/ |x|) , if |x| ≥ n
.

Define xt−1
t−l := xt−l, ..., xt−1. With abuse of notation

Gn

(
xt−1
t−l

)
:= [Gn (xt−l) , ..., Gn (xt−1)] .

We define the following linear filters

w (s, t) ={ I{Gn(xt−1t−l )=Gn(x
s−1

s−l )}
(#{0≤s<t:Gn(xt−1t−l )=Gn(x

s−1

s−l )}) , if #
{
0 ≤ s < t : Gn

(
xt−1
t−l

)
= Gn

(
xs−1
s−l

)}
> 0

1/t otherwise

and

w′ (s, t) = (1− h)ht−sI (s < t) .

The first filter leads to the regression on l past values binned using Gn, while the

second leads to exponential smoothing. The first filter has been used by Yakowitz

et al. (1999) to construct strongly consistent forecasts of stationary and ergodic

time series and by Györfi and Lugosi (2002) in the context of experts’ forecasting.

The second is commonly employed for trend estimation of time series data and

may be justified as optimal filter in a mean square error sense for random walk

plus noise dynamics.

Using the arguments from the previous subsection, with g (x) = x, (x− µ̂t)
2

and f̂t = µ̂t, σ̂
2
t , µ̂

′
t, σ̂

2′
t ,

µ̂t (h1) =
∑

s<t

(1− h1)h
t−s
1 xs

σ̂2
t (h2, h1) =

∑

s<t

(1− h2)h
t−s
2 (xs − µ̂t (h1))

2
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and

µ̂′t (l, n) =

∑
{s<t:Gn(xt−1t−l )=Gn(x

s−1

s−l )} xs
#
{
0 ≤ s < t : Gn

(
xt−1
t−l

)
= Gn

(
xs−1
s−l

)}

σ̂2′
t (l, n) =

∑
{s<t:Gn(xt−1t−l )=Gn(x

s−1

s−l )} (xs − µ̂t (n, l))
2

#
{
0 ≤ s < t : Gn

(
xt−1
t−l

)
= Gn

(
xs−1
s−l

)} .

We use two sets of experts in terms of the forecasts
(
µ̂t (h1) , σ̂

2
t (h2, h1)

)
with

hi = 5, 10, 20, 40, 80, 160 (i = 1, 2) and
(
µ̂′t (l, n) , σ̂

2′
t (l, n)

)
l = 1, 2, 4, 8, 16, 32,

n = 0, 1, 2, 3, 4. This means that for the exponential smoothing estimators we

take all the possible combinations of mean and variance estimators based on h

in the given grid of values. For the regression estimators of mean and variance

we keep the same order of autoregression but use different binwidth. This leads

to a total number of 66 experts some of which are redundant (e.g. for n = 0,

µ̂t (l, n) = µ̂t (l
′, n), ∀l, l′).

We compute the following algorithms. Algorithm W is computed for the no

share update (i.e. ut+1 (e, e
′) = δ (e− e′)) and the fixed share and the variable

share with β as in Example 22 and different values of λ. Algorithm WL is

also computed for the fixed and variable share update. In particular we choose

λ = 1/8, 2/8, ..., 7/8. We also computed the variable share update with β (e, t) <

(1− 1/#E) as discussed in Remark 26, but the constraint was never binding.
The prediction function used is the mixture of distributions, as in Example 3,

so that η = 1/c = 1. Five of the 66 experts incurred an infinite loss at some point.

Table I gives summary statistics for the prequential loglikelihood of the worse expert

with finite loss function (expert 57: µ̂t (4, 3) , σ̂
2
t (4, 3)), the best expert (expert 24:

µ̂t (160), σ̂
2
t (40, 160)), the best experts’ partition, the W algorithm using the no

share update, and the WL algorithm using the fixed share update and the variable

share update. Clearly, the best expert partition cannot be achieved. However,

algorithm W does achieve the best expert bound.

Algorithm WL improves on the best expert bound without assuming a specific

value of λ. This algorithm also reduces the variability of the loss almost to the

level of variability achieved by the best experts’ partition. A close look at the

predictions can reveal that the performance of algorithm WL started to improve

on algorithm W from the big crash of October 1987. As shown in Figure I, before

then, the difference was marginal. Hence, algorithmWL may help to hedge against

nonstationary behaviour as the crash of October 1987.

Table II reports some details about the last weights for algorithm W using no

share update and the share updates for different values of λ together with the

17



weights assigned by algorithm WL to the different values of λ. Algorithm W with

no share update learnt that expert 24 was the best one. AlgorithmWL algorithms

keep a positive weight for all experts, as no experts in both updates receives less

than 0.3% of the weight, but no expert receives more than 3.3% of the weight.

This is expected, as Algorithm WL allows for the best expert to change overtime,

and the worse expert could be the next best performing expert. Moreover, both

updates favour a infrequent change in the best expert.

Figure III plots the cumulative loss over the last 600 observations for the best

expert and the no share update, and the fixed share and variable share updates

using algorithm WL. Figure IV shows the results for the last 600 observations

using algorithm W with fixed share update and different values of λ.

Table I. Summary of Experts’ Performance.
Min. 1st Qu. Median Mean St.Dev. 3rd Qu. Max. Tot. Loss

Expert 57 -1.1632 0.8363 1.0264 1.9741 11.5071 1.5437 706.4390 16977.10
Expert 24 -0.0585 0.7192 1.0616 1.3054 1.5363 1.5336 86.8573 11226.73
Best Experts' Partition -2.1915 0.3907 0.7182 0.8112 0.8048 1.1247 23.8878 6976.02
No Share Update -0.1008 0.7192 1.0644 1.3059 1.5368 1.5347 86.8573 11230.92
Fixed Share Update -0.1950 0.7920 1.0497 1.2938 0.9455 1.5030 27.2893 11126.50
Variable Share Update -0.1451 0.7916 1.0497 1.2937 0.9471 1.4999 27.5577 11125.45
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Figure I. Total Loglikelihood for Algorithms Comparison.
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Table II. Experts’ Weights.

Weight 1 for Expert 24, 0 for all Others

Lambda 0.143 0.286 0.429 0.571 0.714 0.857
Min Expert Weight 0.003 0.006 0.008 0.010 0.012 0.013
Max Expert Weight 0.034 0.022 0.019 0.017 0.017 0.016
Lambda Weight 0.000 0.000 0.000 0.000 0.012 0.988

Lambda 0.143 0.286 0.429 0.571 0.714 0.857
Min Expert Weight 0.003 0.006 0.008 0.010 0.012 0.013
Max Expert Weight 0.033 0.022 0.019 0.017 0.017 0.016
Lambda Weight 0.000 0.000 0.000 0.000 0.036 0.963

Variable Share 

Fixed Share

No Share Update
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Figure II. Total Loglikelihood for Best Expert, No Share,

Fixed Share and Variable Share over the Last 600 Observations
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Figure III. Loglikelihood for Fixed Share for Different Values of λ.
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5 Prediction of Individual Sequences

By a suitable choice of the family of distributions, forecast of distributions allows

for forecast of individual sequences using the prediction function of Example 4.

Example 27 Define

pW

(
x|wE , θ̂E

)
=

1√
π
exp

{
−
∣∣∣x−

〈
wE , θ̂E

〉∣∣∣
2
}
,

which is the Gaussian density with mean
〈
wE , θ̂E

〉
and variance 1/2. Then the loss

function is

R
(
pW

(
x|wE , θ̂E

))
=
∣∣∣x−

〈
wE , θ̂E

〉∣∣∣
2

+ (1/2) lnπ.

Since our results do not require pW
(
x|wE , θ̂E

)
to integrate to one, the term (1/2) lnπ

can be dropped and R
(
pW

(
x|wE , θ̂E

))
is exactly the square loss.
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Example 28 Define

pW
(
x|wE , θ̂E

)
= a exp

{
−
[
exp

{
a
(
x−

〈
wE , θ̂E

〉)}
− a

(
x−

〈
wE , θ̂E

〉)]}
,

which is a scale location change of the Gumbel density. Then,

R
(
pW

(
x|wE , θ̂E

))
= exp

{
a
(
x−

〈
wE , θ̂E

〉)}
− a

(
x−

〈
wE , θ̂E

〉)
+ ln (a)

and replacing the irrelevant additive constant ln (a) with −1, R
(
pW

(
x|wE , θ̂E

))

becomes LinEx loss function with parameter a.

Example 29 Define

pW

(
x|wE , θ̂E

)
= exp

{
−
∣∣∣x−

〈
wE , θ̂E

〉∣∣∣
}
,

which is the double exponential density. Then

R
(
pW

(
x|wE , θ̂E

))
=
∣∣∣x−

〈
wE , θ̂E

〉∣∣∣ ,

which is the absolute loss function.

For a loss function ϕ (y) , we do not need exp {−ϕ (y)} to be a density, what is
required is that Conditions 1 and 14 are satisfied. If the predictions are obtained

by parameters’ averaging it is enough to check that Condition 1 is satisfied for

some c and η. In this case, all the bounds derived above apply to the prediction of

individual sequences with κ = η and b = c.

Lemma 30 Set c = 1/η and suppose pW

(
x|wE , θ̂E

)
:= exp

{
−ϕ

(
x−

〈
wE , θ̂E

〉)}
,

where ϕ (y) is a loss function. Suppose the sample of observations and their predic-

tions are bounded. Then, Condition 1 is satisfied if for any finite absolute constant

B we can find an η ∈ (0,∞) such that exp {−ηϕ (y)} is concave for |y| ≤ B.

Remark 31 The condition that the sample observations are bounded implies that

over the sample period we can find a constant large enough such that all the ob-

servations will be smaller in absolute values. It is rare to find applications were

we observe data taking values equal to infinity. This is true for financial returns,

as the exchange rules define a priori limits on the maximum and minimum price

changes within a day. As discussed in Györfi and Lugosi (2002), if B is unknown,

we can fix B to a large value, and if one of the observations happens to be larger,

we just reset B according to the new maximum value. Rerunning the algorithm

with the new corresponding choice of η makes sure that the bounds hold. Clearly,

we could impose tail assumptions and truncate. But in the above bounds we are

not even assuming that the segment x1, ..., xt is a realisation of some sequence of

random variables, so this would not appear natural.
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Example 32 Suppose ϕ (y) = y2. Then, Condition 1 is satisfied with η = 1/ (2B2) .

To see this, differentiate exp {−ηϕ (y)} twice with respect to y, equate to zero to

find the inflection points ±1/√η2. Using the fact that y ∈ [−B,B] we get the

required value for η.

Example 33 Suppose ϕ (y) = exp {ay} − ay − 1. Then, Condition 1 is satisfied

for η = exp {aB} / (exp {aB} − 1)2 for y ∈ [−B,B] .

The absolute norm ϕ (y) = |y| does not satisfy the condition of Lemma 30.
However, in this case, we use the following more general result that applies to all

convex loss functions and sample sequences that only take bounded values.

Lemma 34 Define

pW

(
x|wE , θ̂E

)
= exp

{
−ϕ

(
x−

〈
wE , θ̂E

〉)}
,

and

pθ̂(e) (x) = exp
{
−ϕ

(
x− θ̂e

)}
,

where ϕ (y) is a convex function. Then, for
∣∣∣x−

〈
wE , θ̂E

〉∣∣∣ ≤ B <∞

R
(
pW

(
x|wE , θ̂E

))
≤ −η−1 ln

∑

e∈E

we exp
{
−ηR

(
pθ̂(e) (x)

)}
+ ηϕ (2B)2 /8.

Remark 35 The extra term ηϕ (2B)2 /8 will result in an additional error equal to

Tηϕ (2B)2 /8 in the bounds of the Theorems. By choice of η = O
(
T−1/2

)
the loss

reduces to O
(
T 1/2

)
.

6 Final Remarks

The bounds of this paper can be partially adapted to the case of an uncountable

number of experts if the class of experts satisfies suitable entropy conditions (Cesa-

Bianchi and Lugosi, 1999, for details). The uncountable case covers situations in

which we average using a continuous mixing distribution instead of a finite number

of weights for the forecast combination.

The algorithms considered enjoy some optimal theoretical properties. How-

ever, there could be other algorithms that lead to equivalent theoretical results or

improve on the present ones. This will be the subject of future research.
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We did not discuss how to choose our experts. We could clearly use a large

number of them without any preliminary analysis. This was the case of our illus-

trative example, where few of them were known to be redundant. As shown in the

Theorems, the error only grows logarithmically in the number of experts. Never-

theless, it is preferable to choose them carefully following some reasonable criterion.

The role of sufficiency in forecast may play at the initial stage a fundamental role

(see Timmermann, 2004).

In forecast combination, empirical evidence seems to suggest that it can be

advantageous to trim the weights, setting very low weights equal to zero. Algorithm

W with no share update does effectively set the weights of the worse performing

experts equal to zero is run over long enough series. In general, if we dastard a

fixed percentage of the worse models reducing the number of experts we track, then

there is a gain if we are sure that the discarded models will never perform well. If

we want to be able to resume these models, i.e. we still track these experts, then

trimming can be carried out at the prediction stage leaving the weight updates

unchanged. In this case, we need to check that Condition 1 is satisfied, which is

the case if the reduced weights are not redistributed to the remaining weights. This

may lead to problems as the weights that are kept would not add to one. If the

weights are redistributed, we cannot be certainty that the worse performing expert

suddenly becomes the best. The empirical example showed that this might be the

case. To avoid such cases in deriving theoretical bounds, probabilistic assumptions

need to be made and worse case bounds substituted by probabilistic bounds as in

Yang (2004).

A Proofs

A.1 Theorems 9 and 12

The proof is based on the following Lemmata.

Lemma 36 Under Condition 1,

R (pW,t) ≤ −c ln
(∑

e∈E v
′
e,t

v,t

)
.
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Proof. By Condition 1,

R (pW,t) ≤ −c ln
(
∑

e∈E

we,t exp
{
−ηR

(
pθ̂(e,t)

)})

= −c ln





∑
e∈E ve,t exp

{
−ηR

(
pθ̂(e,t)

)}

v,t





= −c ln
(∑

e∈E v
′
e,t

v,t

)
.

Lemma 37 Under Condition 7,

T∑

t=1

ln

(∑
e∈E v

′
e,t

v,t

)
≥ ln ve,T+1

for any e ∈ E. If also Condition 1 holds, this implies

R1,...,t (pW ) ≤ −c ln ve,t+1

Proof. Using Condition 7,

T∑

t=1

ln

∑
e∈E v

′
e,t

v,t
≥

T∑

t=1

ln
v,t+1

v,t

= ln
v,T+1

v,1
= ln v,T+1 ≥ ln ve,T+1,

by definition of v,1 in the penultimate step and because for non-negative scalars a

and b, a+ b ≥ a∨ b in the last step. Using this inequality in Lemma 36, the second

inequality follows.

Lemma 38 Under Condition 7,

ve,t+1 ≥ ut+1 (e, e) ve,t exp
{
−ηR

(
pθ(e,t)

)}
,

ve,t+1 ≥ v′e′,tut+1 (e, e
′) ,

and ∀t′ ≤ t

ve,t+1 ≥
(

t∏

s=t′

us+1 (e, e)

)

exp
{
−ηRt′,...,t

(
pθ(e)

)}
ve,t′,

v′e,t+1 ≥
(

t∏

s=t′

us+1 (e, e)

)

exp
{
−ηRt′,...,t+1

(
pθ(e)

)}
ve,t′.
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Proof. By definition of the algorithm,

ve,t+1 =
∑

e′∈E

v′e′,tut+1 (e, e
′)

≥ v′e,tut+1 (e, e) = ut+1 (e, e) ve,t exp
{
−ηR

(
pθ(e,t)

)}
,

which proves the first inequality of the Lemma. The second inequality of the

Lemma follows similarly from the first equality in the above display. Using the

first inequality of the Lemma iteratively, gives the third inequality of the Lemma,

ve,t+1 ≥
(

t∏

s=t′

us+1 (e, e) exp
{
−ηR

(
pθ(e,s)

)}
)

ve,t′

and noting that

exp
{
ηR

(
pθ(e,t+1)

)}
v′e,t+1 = ve,t+1,

the fourth inequality of the Lemma follows.

Proof of Theorem 9. Lemmata 37 and 38 imply that

R1,...,T (pW ) ≤ −c ln ve,T+1 ≤ −c ln
((

T∏

t=1

ut+1 (e, e)

)

ve,1 exp
{
−ηR1,...,T

(
pθ(e)

)}
)

≤ cηR1,...,T

(
pθ(e)

)
− c ln

(
T∏

t=1

ut+1 (e, e)

)

− c ln ve,1

Proof of Theorem 12. Consider the following telescoping product

ve(K),T+1 = ve(0),t(0)

v′e(0),t(1)−1

ve(0),t(0)

K∏

k=1

(
ve(k),t(k)

v′e(k−1),t(k)−1

v′e(k),t(k+1)−1

ve(k),t(k)

)
ve(K),T+1

v′e(K),t(K+1)−1

. (7)

From Lemma 38,

ve,t+1

ve,t
≥ ut+1 (e, e) exp

{
−ηR

(
pθ(e,t)

)}
,

ve,t+1

v′e′,t
≥ ut+1 (e, e

′) ,

and ∀t′ ≤ t

v′e,t+1

ve,t′
≥
(

t∏

s=t′

us+1 (e, e)

)

exp
{
−ηRt′,...,t+1

(
pθ(e)

)}
.

Now by definition,

ve(0),t(0) = 1/ (#E) ,

26



from Lemma 38,
ve(k),t(k)

v′e(k−1),t(k)−1

≥ ut(k) (ek, ek−1) ,

v′e(k),t(k+1)−1

ve(k),t(k)
≥




t(k+1)−2∏

s=t(k)

us+1 (ek, ek)



 exp
{
−ηRt(k),...,t(k+1)−1

(
pθ(e(k))

)}
,

and since there is no share update on the final trial

ve(K),T+1

v′e(K),t(K+1)−1

= 1.

Substituting everything in (7),

ve(K),T+1

≥ (#E)−1




t(1)−2∏

s=t(0)

us+1 (e0, e0)



 exp
{
−ηRt(0),...,t(1)−1

(
pθ(e(0))

)}

×
K∏

k=1



ut(k) (ek, ek−1)




t(k+1)−2∏

s=t(k)

us+1 (ek, ek)



 exp
{
−ηRt(k),...,t(k+1)−1

(
pθ(e(k))

)}




= (#E)−1




t(1)−2∏

s=t(0)

us+1 (e0, e0)




K∏

k=1



ut(k) (ek, ek−1)




t(k+1)−2∏

s=t(k)

us+1 (ek, ek)









×
K∏

k=0

exp
{
−ηRt(k),...,t(k+1)−1

(
pθ(e(k))

)}
.

Taking natural log,

ln ve(K),T+1

≥ − ln (#E) + ln




t(1)−2∏

s=t(0)

us+1 (e0, e0)





+ ln
K∏

k=1



ut(k) (ek, ek−1)




t(k+1)−2∏

s=t(k)

us+1 (ek, ek)







− η
K∑

k=0

Rt(k),...,t(k+1)−1

(
pθ(e(k))

)

= − ln (#E) +
t(1)−2∑

s=t(0)

ln (us+1 (e0, e0))

+
K∑

k=1



ln ut(k) (ek, ek−1) +

t(k+1)−2∑

s=t(k)

ln (us+1 (ek, ek))



− η
K∑

k=0

Rt(k),...,t(k+1)−1

(
pθ(e(k))

)
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= − ln (#E) +
K∑

k=1

ln ut(k) (ek, ek−1) +
K∑

k=0

t(k+1)−2∑

s=t(k)

ln (us+1 (ek, ek))

−η
K∑

k=0

Rt(k),...,t(k+1)−1

(
pθ(e(k))

)
.

Using Lemmata 36 and 37 the result follows.

A.2 Theorem 16

The proof is based on the following Lemmata.

Lemma 39 Under Condition 14,

R (pWL,t) ≤ −b ln
(
υ,t+1

υ,t

)
.

Proof. By Condition 14,

R (pWL,t) ≤ −b ln
(
∑

l∈L

ωl,t exp
{
−κR

(
pW (l)

)}
)

= −b ln
(∑

l∈L υl,t exp
{
−κR

(
pW (l)

)}
∑

l∈L υl,t

)

≤ −b ln
(
υ,t+1

υ,t

)
.

Lemma 40 If Condition 14 holds

R1,...,T (pWL) ≤ −b ln (υl,T+1) .

Proof. Use Lemma 39, sum over t, the sum telescopes and υ,1 = 1.

Lemma 41

υl,t+1 = υl,1 exp

{

−κ
t∑

s=1

R
(
pW (l,s)

)
}

Proof. By iteration of

υl,t+1 = υl,t exp
{
−κR

(
pW (l,t)

)}
.

Lemma 42 Under Condition 14,

R1,...,T (pWL) ≤ −b ln (υl,1) + bκR1,...,T

(
pW (l)

)
.

Proof. By Lemmata 40 and 41.

Proof of Theorem 16. Use Lemma 42 and apply Theorem 12.
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A.3 Lemmata 20, 24, 30 and 34

Proof of Lemma 20. The first equality is immediate. The second follows noting

that there are T observations, hence T − 1 share updates. Since K of them are

breaks, T −K − 1 must be the remaining, and the second equality follows.
Proof of Lemma 24. By direct calculation, and the fact that (β (e, t))e∈E ∈

S#E ∀t,

K∑

k=1

ln ut(k) (ek, ek−1|λ) =
K∑

k=1

ln




∑

e�=ek−1

λβ (e, tk − 1)



 =
K∑

k=1

lnλ (1− β (ek−1, tk − 1))

= K lnλ+
K∑

k=1

ln (1− β (ek−1, tk − 1)) .

Notice that for (a, b) ∈ [0, 1]2 ,

ln (1− ab) ≥ ln (1− a ∧ b) = ln (1− a) ∨ ln (1− b) ,

with strict inequality if (a, b) ∈ (0, 1)2 . Therefore,
K∑

k=0

t(k+1)−2∑

s=t(k)

ln us+1 (ek, ek|λ) =
K∑

k=0

t(k+1)−2∑

s=t(k)

ln (1− λ (1− β (e (k) , s)))

≥ (T −K − 1) ln (1− λ) ∨
K∑

k=0

t(k+1)−2∑

s=t(k)

ln (β (e (k) , s)) .

Proof of Lemma 30. We need to check that

R
(
pW

(
x|wE , θ̂E

))
≤ −η−1 ln

∑

e∈E

we exp
{
−ηϕ

(
x−

〈
wE , θ̂E

〉)}

holds. The segment of observations x1, ..., xT and their forecasts take finite values,

hence set
∣∣∣x−

〈
wE , θ̂E

〉∣∣∣ ≤ B < ∞. By the conditions of the Lemma, we can

choose η such that

exp
{
−ηϕ

(
x−

〈
wE , θ̂E

〉)}
≥
∑

e∈E

exp
{
−ηϕ

(
x− θ̂e

)}

for
∣∣∣x−

〈
wE , θ̂E

〉∣∣∣ ≤ B. Taking natural log and multiplying by −η−1,

ϕ
(
x−

〈
wE , θ̂E

〉)
≤ −η−1 ln

∑

e∈E

exp
{
−ηϕ

(
x− θ̂e

)}
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and the result follows.

Proof of Lemma 34. From Hoeffding bound for the moment generating

function of bounded random variables (Hoeffding, 1963, eq. 4.16) and convexity of

ϕ,

∑

e∈E

we exp
{
−ηϕ

(
x− θ̂e

)}
≤ exp

{

−η
∑

e∈E

weϕ
(
x− θ̂e

)}

+ exp
{
η2ϕ (2B)2 /8

}

≤ exp
{
−ηϕ

(
x−

〈
wE , θ̂E

〉)}
+ exp

{
η2ϕ (2B)2 /8

}
,

which implies

R
(
pW

(
x|wE , θ̂E

))

= ϕ
(
x−

〈
wE , θ̂E

〉)
≤ −η−1 ln

∑

e∈E

we exp
{
−ηϕ

(
x− θ̂e

)}
+ ηϕ (2B)2 /8.
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