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Abstract

This paper provides a review of the literature on unit roots and
cointegration in panels where the time dimension (T ), and the cross
section dimension (N) are relatively large. It distinguishes between
the �rst generation tests developed on the assumption of the cross
section independence, and the second generation tests that allow, in a
variety of forms and degrees, the dependence that might prevail across
the di¤erent units in the panel. In the analysis of cointegration the
hypothesis testing and estimation problems are further complicated
by the possibility of cross section cointegration which could arise if
the unit roots in the di¤erent cross section units are due to common
random walk components.
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1 Introduction

Recent advances in time series econometrics and panel data analysis have
focussed attention on unit root and cointegration properties of variables ob-
served over a relatively long span of time across a large number of cross sec-
tion units, such as countries, regions, companies or even households. Such
panel data sets have been used predominately in testing the purchasing power
parity and output convergence, although the panel techniques have also been
adapted more recently to the analysis of business cycle synchronization, house
price convergence, regional migration and household income dynamics. This
paper provides a review of the theoretical literature on testing for unit roots
and cointegration in panels where the time dimension (T ), and the cross sec-
tion dimension (N) are relatively large. In cases where N is large (say over
100) and T small (less than 10) the analysis can proceed only under restric-
tive assumptions such as dynamic homogeneity and/or local cross section
dependence as in spatial autoregressive or moving average models. In cases
where N is small (less than 10) and T is relatively large standard time series
techniques applied to systems of equations, such as the Seemingly Unrelated
Regression Equations (SURE), can be used and the panel aspect of the data
should not pose new technical di¢ culties.
One of the primary reasons behind the application of unit root and coin-

tegration tests to a panel of cross section units was to gain statistical power
and to improve on the poor power of their univariate counterparts. This
was supported by the application of what might be called the �rst genera-
tion panel unit root tests to real exchange rates, output and in�ation. For
example, the augmented Dickey-Fuller test is typically not able to reject the
hypothesis that the real exchange rate is nonstationary. In contrast, panel
unit root tests applied to a collection of industrialized countries generally
�nd that real exchange rates are stationary, thereby lending empirical sup-
port to the purchasing power parity hypothesis (e.g. Coakley and Fuertes
(1997) and Choi (2001)).
Unfortunately, testing the unit root and cointegration hypotheses by us-

ing panel data instead of individual time series involves several additional
complications. First, panel data generally introduce a substantial amount
of unobserved heterogeneity, rendering the parameters of the model cross
section speci�c. Second, in many empirical applications, particularly the
application to the real exchange rates mentioned above, it is inappropriate
to assume that the cross section units are independent. To overcome these
di¢ culties, variants of panel unit root tests are developed that allow for dif-

2



ferent forms of cross sectional dependence.1 Third, the panel test outcomes
are often di¢ cult to interpret if the null of the unit root or cointegration is
rejected. The best that can be concluded is that "a signi�cant fraction of
the cross section units is stationary or cointegrated". The panel tests do not
provide explicit guidance as to the size of this fraction or the identity of the
cross section units that are stationary or cointegrated. Fourth, with unob-
served I(1) (i.e. integrated of order unity) common factors a¤ecting some
or all the variables in the panel, it is also necessary to consider the possi-
bility of cointegration between the variables across the groups (cross section
cointegration) as well as within group cointegration. Finally, the asymptotic
theory is considerably more complicated due to the fact that the sampling
design involves a time as well as a cross section dimension. For example,
applying the usual Dickey-Fuller test to a panel data set introduces a bias
that is not present in the case of a univariate test. Furthermore, a proper
limit theory has to take into account the relationship between the increasing
number of time periods and cross section units (cf. Phillips and Moon 1999).
By comparison to panel unit root tests, the analysis of cointegration in

panels is still at an early stages of its developments. So far the focus of
the panel cointegration literature has been on residual based approaches, al-
though there has been a number of attempts at the development of system
approaches as well. As in the case of panel unit root tests, such tests are
developed based on homogenous and heterogeneous alternatives. The resid-
ual based tests were developed to ward against the "spurious regression"
problem that can also arise in panels when dealing with I(1) variables. Such
tests are appropriate when it is known a priori that at most there can be
only one within group cointegration in the panel. System approaches are
required in more general settings where more than one within group coin-
tegrating relation might be present, and/or there exist unobserved common
I(1) factors.
Having established a cointegration relationship, the long-run parameters

can be estimated e¢ ciently using techniques similar to the ones proposed in
the case of single time series models. Speci�cally, fully-modi�ed OLS pro-
cedures, the dynamic OLS estimator and estimators based on a vector error
correction representation were adopted to panel data structures. Most ap-
proaches employ a homogenous framework, that is, the cointegration vectors
are assumed to be identical for all panel units, whereas the short-run pa-
rameters are panel speci�c. Although such an assumption seems plausible

1In fact the application of the second generation panel unit root tests to real exchange
rates tend to over-turn the earlier test results that assume the cross section units are
independently distributed. See Moon and Perron (2004) and Pesaran (2005).
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for some economic relationships (like the PPP hypothesis mentioned above)
there are other behavioral relationships (like the consumption function or
money demand), where a homogeneous framework seems overly restrictive.
On the other hand, allowing all parameters to be individual speci�c would
substantially reduce the appeal of a panel data study. It is therefore impor-
tant to identify parameters that are likely to be similar across panel units
whilst at the same time allowing for su¢ cient heterogeneity of other para-
meters. This requires the development of appropriate techniques for testing
the homogeneity of a sub-set of parameters across the cross section units.
When N is small relative to T; standard likelihood ratio based statistics can
be used. Groen and Kleibergen (2003) provide an application. Testing for
parameter homogeneity in the case of large panels poses new challenges that
require further research. Some initial attempts are made in Pesaran, Smith
and Im (1996), Phillips and Sul (2003a) and Pesaran and Yamagata (2005).
This paper reviews some recent work in this rapidly developing research

area and thereby updating the earlier excellent surveys of Banerjee (1999),
Baltagi and Kao (2000) and Choi (2004). The remainder of the paper is or-
ganized as follows: Section 2 sets out the basic model for the panel unit root
tests and describes the �rst generation panel unit root tests. Second genera-
tion panel unit root tests are described in Section 3, and a brief account of the
small sample properties of the panel unit root tests is provided in Section
4. General issues surrounding panel cointegration, including the problem
of cross-section cointegration, are discussed in Section 5. Residual-based
and system approaches to testing for cointegration in panels are reviewed in
Sections 6 and 7; and estimation of the cointegration relations in panels is
discussed in Section 8. Panels with unobserved common factors, allowing
for cross-section cointegration, are reviewed in Section 9. Some concluding
remarks are provided in Section 10.

2 First Generation Panel Unit Root Tests

2.1 The Basic Model

Assume that time series fyi0; : : : ; yiTg on the cross section units i = 1; 2; :::; N
are generated for each i by a simple �rst-order autoregressive, AR(1), process

yit = (1� �i)�i + �iyi;t�1 + "it; (1)

where the initial values, yi0, are given, and the errors "it are identically,
independently distributed (i.i.d.) across i and t with E("it) = 0, E("2it) =
�2i < 1 and E("4it) < 1. These processes can also be written equivalently
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as simple Dickey-Fuller (DF) regressions

�yit = ��i�i + �iyi;t�1 + "it ; (2)

where �yit = yit�yi;t�1, �i = �i�1. In further developments of the model it
is also helpful to write (1) or (2) in mean-deviations forms ~yit = �i~yi;t�1+"it,
where ~yit = yit � �i. The corresponding DF regression in ~yit is given by

�~yit = �i~yi;t�1 + "it: (3)

The null hypothesis of interest is

H0 : �1 = � � � = �N = 0; (4)

that is, all time series are independent random walks. We will consider two
alternatives:

H1a : �1 = � � � = �N � � and � < 0

H1b : �1 < 0 ; � � � ; �N0 < 0, N0 � N:

Under H1a it is assumed that the autoregressive parameter is identical for all
cross section units (see, for example, Levin and Lin (1993, LL), and Levin,
Lin and Chu 2002). This is called the homogeneous alternative. H1b assumes
that N0 of the N (0 < N0 � N) panel units are stationary with individual
speci�c autoregressive coe¢ cients. This is referred to as the heterogeneous
alternatives (see, for example, Im, Pesaran and Shin (2003, IPS). For the con-
sistency of the test it is assumed that N0=N ! � > 0 as N !1. Di¤erent
panel testing procedures can be developed depending on which of the two al-
ternatives is being considered. The panel unit root statistics motivated by the
�rst alternative, H1a, pools the observations across the di¤erent cross section
units before forming the �pooled�statistic, whilst the tests developed against
the heterogeneous alternatives, H1b, operates directly on the test statistics
for the individual cross section units using (standardized) simple averages of
the underlying individual statistics or their suitable transformations such as
rejection probabilities. Despite the di¤erences in the way the two tests view
the alternative hypothesis both tests can be consistent against both types of
the alternatives. Also interpretation of the outcomes of both tests is subject
to similar considerations discussed in the introduction. When the null hy-
pothesis is rejected one can only conclude that a signi�cant fraction of the
AR(1) processes in the panel does not contain unit roots.
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2.2 Derivation of the Tests

The various �rst generation panel unit roots proposed in the literature can
be obtained using the pooled log-likelihood function of the individual Dickey-
Fuller regressions given by (2).

`NT (�;�) =
NX
i=1

(
�T
2
log 2��2i �

1

2�2i

TX
t=1

(�yit + �i�i � �iyi;t�1)
2

)
; (5)

where � = (�1; :::; �N)
0; �i = (�i; �

2
i )
0 and � = (�01; :::;�

0
N)

0. In the case of
the homogeneous alternatives, H1a, where �i = �, the maximum likelihood
estimator of � is given by

�̂ (�) =

PN
i=1

PT
t=1 �

�2
i �yit (yi;t�1 � �i)PN

i=1

PT
t=1 �

�2
i (yi;t�1 � �i)

2
: (6)

The nuisance cross-section speci�c parameters �i can be estimated either
under the null or the alternative hypothesis. Under the null hypothesis �i is
unidenti�ed, but as we shall see it is often replaced by yi0, on the implicit
(identifying) assumption that ~yi0 = 0 for all i. For this choice of �i the
e¤ective number of time periods used for estimation of �i is reduced by
one. Under the alternative hypothesis the particular estimates of �i and �

2
i

chosen naturally depend on the nature of the alternatives envisaged. Under
homogeneous alternatives, �i = � < 0, the ML estimates of �i and �

2
i are

given as non-linear functions of �̂. Under heterogeneous alternatives �i and
�2i can be treated as free parameters and estimated separately for each i.
Levin, Lin and Chu (2002) avoid the problems associated with the choice

of the estimators for �i and base their tests on the t-ratio of � in the pooled
�xed-e¤ects regression

�yit = ai + �yi;t�1 + "it; "it v i:i:d:(0; �2i ):

The t-ratio of the FE estimator of � is given by

�� =

NP
i=1

b��2i �y0iM�yi;�1s
NP
i=1

b��2i �y0i;�1M�yi;�1
� (7)

where �yi = (�yi1;�yi2; : : : ;�yiT )
0, yi;�1 = (yi0; yi1; : : : ; yi;T�1)

0, M� =
IT � � T (� 0T� T )�1� 0T ; � T is a T � 1 vector of ones,

�̂2i =
�y0iMi

�yi
T � 2 ; (8)
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M
i
= IT �Xi(X

0
iXi)

�1X0
i, and Xi=(� T ;yi;�1).

The construction of a test against H1b is less clear because the alternative
consists of a set of inequality conditions. Im, Pesaran and Shin (1995, 2003)
suggest the mean of the individual speci�c t-statistics2

�� =
1

N

NX
i=1

� i ; (9)

where

� i =
�y0iM�yi;�1

�̂i
�
y0i;�1M�yi;�1

�1=2 ; (10)

is the Dickey-Fuller t-statistic of cross section unit i.3 LM versions of the
t-ratios of � and �i, that are analytically more tractable, can also be used
which are given by

~�� =

NP
i=1

~��2i �y
0
iM�yi;�1s

NP
i=1

~��2i
�
y0i;�1M�yi;�1

� ; (11)

and

~� i =
�y0iM�yi;�1

~�i
�
y0i;�1M�yi;�1

�1=2 ; (12)

where ~�2i = (T � 1)�1�y0iM��yi: It is easily established that the panel unit
root tests based on �� and ~�� in the case of the pooled versions, and those

based on �� and ~� = N�1
NP
i=1

~� i, in the case of their mean group versions are

asymptotically equivalent.

2.3 Null Distribution of the Tests

To establish the distribution of ~�� and ~� , we �rst note that under �i = 0,
�yi = �ivi = �i(vi1; vi2; :::; viT )

0, where vi v (0; IT ) and yi;�1 can be written
2Andrews (1998) has considered optimal tests in such situations. His directed Wald

statistic that gives a high weights to alternatives close to the null (i.e. the parameter c
in Andrews (1998) tends to zero) is equivalent to the mean of the individual speci�c test
statistics.

3The mean of other unit-root test statistics may be used as well. For example, Smith
et al. (2004) suggest to use the mean of the weighted symmetric test statistic proposed
for single time series by Park and Fuller (1995) and Fuller (1996, Section 10.1.3), or the
Max-ADF test proposed by Leybourne (1995) based on the maximum of the original and
the time reversed Dickey-Fuller test statistics.
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as
yi;�1 = yi0� T + �isi;�1; (13)

where yi0 is a given initial value (�xed or random), si;�1 = (si0; si1; : : : ; si;T�1)
0 ;

with sit =
Pt

j=1 vij, t = 1; 2; :::; T; and si0 = 0. Using these results in (11)
and (12) we have

~�� =

NP
i=1

�p
T�1v0iM� si;�1
v0iM�vi

�
s

NP
i=1

�
s0i;�1M� si;�1
v0iM�vi

� ; (14)

~� = N�1
NX
i=1

p
T � 1v0iM�si;�1

(v0iM�vi)
1=2 �s0i;�1M�si;�1

�1=2 :
It is clear that under the null hypothesis both test statistics are free of nui-
sance parameters and their critical values can be tabulated for all combi-
nations of N and T assuming, for example, that "it (or vit) are normally
distributed. Therefore, in the case where the errors, "it, are serially uncor-
related an exact sample panel unit root test can be developed using either
of the test statistics and no adjustments to the test statistics are needed.
The main di¤erence between the two tests lies in the way information on
individual units are combined and their relative small sample performance
would naturally depends on the nature of the alternative hypothesis being
considered.
Asymptotic null distributions of the tests can also be derived depending

on whether (T;N)!1, sequentially, or when both N and T !1, jointly.
To derive the asymptotic distributions we need to work with the standardized
versions of the test statistics

ZLL =
�� � E (��)p
V ar (��)

; (15)

and

ZIPS =

p
N [�� � E(� i)]p
V ar(� i)

; (16)

assuming that T is su¢ ciently large such that the second order moments of
� i and �� exist. The conditions under which � i has a second order moment
are discussed in IPS and it is shown that when the underlying errors are
normally distributed the second order moments exist for T > 5. For non-
normal distributions the existence of the moments can be ensured by basing
the IPS test on suitably truncated versions of the individual t-ratios. (see
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Pesaran (2005) for further details). The exact �rst and second order moments
of � i and ~� i for di¤erent values of T are given in IPS (2003, Table 1). Using
these results it is also possible to generalize the IPS test for unbalanced
panels. Suppose the number of time periods available on the ith cross section
unit is Ti, the standardized IPS statistics will now be given by

ZIPS =

p
N
h
�� �N�1PN

i=1E(� iTi)
i

q
N�1PN

i=1 V ar(� iTi)
; (17)

where E(� iTi) and V ar(� iTi) are, respectively, the exact mean and variance
of the DF statistics based on Ti observations. IPS show that for all �nite
Ti > 6, ZIPS

d! N (0; 1) as N !1. Similar results follow for the LL test.
To establish the asymptotic distribution of the panel unit root tests in

the case of T !1, we �rst note that for each i

� i
d! �i =

R 1
0
fWi(a)dfWi(a)R 1
0
fWi(a)2da

;

where fWi(a) is a demeaned Brownian motion de�ned as fWi(a) = Wi(a) �R 1
0
Wi(a)da and W1(a); : : : ;WN(a) are independent standard Brownian mo-

tions. The existence of the moments of �i are established in Nabeya (1999)
who also provides numerical values for the �rst six moments of the DF distrib-
ution for the three standard speci�cations; namely models with and without
intercepts and linear trends. Therefore, since the individual Dickey-Fuller
statistics � 1; : : : ; �N are independent, it follows that �1; �2; :::�N are also in-
dependent with �nite moments. Hence, by standard central limit theorems
we have

ZIPS
d���!

T!1

p
N [�� � E(�i)]p
V ar(�i)

d���!
N!1

N (0; 1);

where �� = N�1PN
i=1 �i. Similarly,

ZLL =
�� � E(��)p
V ar(��)

d������!
(T;N)!1

N (0; 1):

To simplify the exposition the above asymptotic results are derived using
a sequential limit theory, where T ! 1 is followed by N ! 1. However,
Phillips and Moon (1999) show that sequential convergence does not imply
joint convergence so that in some situations the sequential limit theory may
break down. In the case of models with serially uncorrelated errors, IPS
(2003) show that the t-bar test is in fact valid for N and T ! 1 jointly.
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Also as we shall see it is conjectured that the IPS test is valid for the case of
serially correlated errors as N and T !1 so long as N=T ! k where k is a
�nite non-zero constant.
Maddala and Wu (1999) and Choi (2001) independently suggested a test

against the heterogenous alternative H1b that is based on the p-values of the
individual statistic as originally suggested by Fisher (1932). Let �i denote
the p-value of the individual speci�c unit-root test applied to cross-section
unit i. The combined test statistic is

� = �2
NX
i=1

log(�i): (18)

Another possibility would be to use the inverse normal test de�ned by

ZINV =
1p
N

NX
i=1

��1 (�i) ; (19)

where �(�) denotes the cdf of the standard normal distribution. An impor-
tant advantage of this approach is that it is possible to allow for di¤erent
speci�cations (such as di¤erent deterministic terms and lag orders) for each
panel unit.
Under the null hypothesis � is �2 distributed with 2N degrees of freedom.

For large N the transformed statistic

��� = � 1p
N

NX
i=1

[log(�i) + 1]; (20)

is shown to have a standard normal limiting null distribution as T;N !1,
sequentially.

2.4 Asymptotic Power of the Tests

It is interesting to compare the asymptotic power of the test statistics against
the sequence of local alternatives

H` : �i;NT = 1�
ci

T
p
N
: (21)

Following Breitung (2000) and Moon, Perron and Phillips (2003) the asymp-

totic distribution under H` is obtained as Zj
d! N (��c �j; 1), j = LL; IPS,

where �c = limN!1N
�1PN

i=1 ci and

�1 =

s
E

�Z 1

0

fWi(a)2da

�
; �2 =

E

�qR 1
0
fWi(a)2da

�
p
V ar(� i)

:
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It is interesting to note that the local power of both test statistics depend
on the mean �c. Accordingly, the test statistics do not exploit the deviations
from the mean value of the autoregressive parameter.
Moon, Perron and Phillips (2003) derive the most powerful test statistic

against the local alternative (21). Assume that we (randomly) choose the
sequence c�1; : : : ; c

�
N instead of the unknown values c1; : : : ; cN . The point op-

timal test statistic is constructed using the (local-to-unity) pseudo di¤erences

�c�i
yit = yit � (1� c�i =T

p
N)yi;t�1 for t = 1; : : : ; T:

For the model without individual constants and homogeneous variances the
point optimal test results in the statistic

VNT =
1b�2
 

NX
i=1

TX
t=1

(�c�i
yit)

2 � (�yit)2
!
� 1
2
�2 ;

where E(c�i )
2 = �2. Under the sequence of local alternatives (21) Moon et

al. (2003, Theorem 7) derive the limiting distribution as

VNT
d! N

�
�E(cic�i ); 2�2

�
:

The upper bound of the local power is achieved with ci = c�i , that is, if
the local alternatives used to construct the test coincide with the actual
alternative. Unfortunately, in practice it seems extremely unlikely that one
could select values of c�i that are perfectly correlated with the true values, ci.
If, on the other hand, the variates c�i are independent of ci, then the power
is smaller than the power of a test using identical values c�i = c� for all i.
This suggests that if there is no information about variation of ci, then a test
cannot be improved by taking into account a possible heterogeneity of the
alternative.

2.5 Heterogeneous Trends

To allow for more general mean functions we consider the model:

yit = �
0
idit + ~yit ; (22)

where dit represents the deterministics and �~yit = �i~yi;t�1 + "it. For the
model with a constant mean we let dit = 1 and the model with individual
speci�c time trends dit is given by dit = (1; t)0. Furthermore, structural
breaks in the mean function can be accommodated by including (possibly
individual speci�c) dummy variables in the vector dit. The parameter vector
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�i is assumed to be unknown and has to be estimated. For the Dickey-Fuller
test statistic the mean function is estimated under the alternative, that is,
for the model with a time trend �̂

0
idit results from a regression of yit on a

constant and t (t = 1; 2; : : : ; T ). Alternatively, the mean function can also
be estimated under the null hypothesis (cf. Schmidt and Phillips, 1992) or
under a local alternative (Elliott et al., 1996).
Including deterministic terms may have an important e¤ect on the as-

ymptotic properties of the test. Let �b~yt and b~yi;t�1 denote estimates for
�~yit = �yit�E(�yit) and ~yi;t�1 = yi;t�1�E(yi;t�1). In general, running the
regression

�b~yit = �b~yi;t�1 + eit
does not render a t-statistic with a standard normal limiting distribution
due to the fact that b~yi;t�1 is correlated with eit. For example, if dit is an
individual speci�c constant such that b~yi;t�1 = yit� T�1(yi0+ � � �+ yi;T�1) we
obtain under the null hypothesis

lim
T!1

1

T
E

(
TX
t=1

eitb~yi;t�1
)
= ��2i =2 :

It follows that the t-statistic of � = 0 tends to �1 as N or T tends to
in�nity.
To correct for the bias, Levin et al. (2002) suggested using the correction

terms

aT (�̂) = E

 
1

�2iT

TX
t=1

�b~yitb~yi;t�1
!

(23)

b2T (�̂) =

V ar

�
T�1

TP
t=1

�b~yitb~yi;t�1�
�2iE

�
T�1

TP
t=1

b~y2i;t�1� (24)

where � = (�̂
0
1; �̂

0
2; ::::; �̂

0
N)

0, and �̂i is the estimator of the coe¢ cients of
the deterministics, dit, in the OLS regression of yit on dit. The corrected,
standardized statitic is given by

ZLL(�̂) =

�
NP
i=1

TP
t=1

�b~yitb~yi;t�1=b�2i��NTaT (�̂)
bT (�̂)

s
NP
i=1

TP
t=1

b~y2i;t�1=b�2i
:
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Levin et al. (2002) present simulated values of aT (�̂) and bT (�̂) for models
with constants, time trends and various values of T . A problem is, however,
that for unbalanced data sets no correction terms are tabulated.
Alternatively, the test statistic may be corrected such that the adjusted

t-statistic
Z�LL(�̂) = [ZLL(�̂)� a�T (�̂)]=b�T (�̂)

is asymptotically standard normal. Harris and Tzavalis (1999) derive the
small sample values of a�T (�̂) and b

�
T (�̂) for T �xed and N !1. Therefore,

their test statistic can be applied for small values of T and large values of N .
An alternative approach is to avoid the bias �and hence the correction

terms �by using alternative estimates of the deterministic terms. Breitung
and Meyer (1994) suggest using the initial value yi0 as an estimator of the
constant term. As argued by Schmidt and Phillips (1992), the initial value is
the best estimate of the constant given the null hypothesis is true. Using this
approach the regression equation for a model with a constant term becomes

�yit = �
�(yi;t�1 � yi0) + vit :

Under the null hypothesis, the pooled t-statistic ofH0 : �
� = 0 has a standard

normal limit distribution.
For a model with a linear time trend a minimal invariant statistic is

obtained by the transformation (cf. Ploberger and Phillips 2002)

x�it = yit � yi0 �
t

T
(yiT � yi0) :

In this transformation subtracting yi0 eliminates the constant and (yiT �
yi0)=T = (�yi1 + � � �+�yiT )=T is an estimate of the slope of the individual
trend function.
To correct for the mean of �yit a Helmert transformation can be used

�y�it = st

�
�yit �

1

T � t(�yi;t+1 + � � �+�yiT )
�
; t = 1; : : : ; T � 1

where s2t = (T � t)=(T � t + 1) (cf. Arellano, 2003, p. 17). Using these
transformations the regression equation becomes

�y�it = �
�x�i;t�1 + vit : (25)

It is not di¢ cult to verify that under the null hypothesis E(�y�itx
�
i;t�1) = 0

and, thus, the t-statistic for �� = 0 is asymptotically standard normally
distributed (cf. Breitung, 2000).
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The test against heterogeneous alternatives H1b can be easily adjusted
for individual speci�c deterministic terms such as linear trends or seasonal
dummies. This can be done by computing IPS statistics, de�ned by (16) and
(17) for the balanced and unbalanced panels, using Dickey-Fuller t-statistics
based on DF regressions including the deterministics �0idit, where dit = 1 in
the case of a constant term, dit = (1; t)

0 in the case of models with a linear
time trend and so on. The mean and variance corrections should, however, be
computed to match the nature of the deterministics. Under a general setting
IPS (2003) have shown that the ZIPS statistic converges in distribution to a
standard normal variate as N; T !1, jointly.
In a straightforward manner it is possible to include dummy variables in

the vector dit that accommodate structural breaks in the mean function (see,
e.g., Murray and Papell, 2002; Tzavalis, 2002; Carrion-I-Sevestre, Del Barrio
and Lopez-Bazo, 2004; Breitung and Candelon, 2005; Im, Lee and Tieslau,
2005).

2.6 Short-run Dynamics

If it is assumed that the error in the autoregression (1) is a serially correlated
stationary process, the short-run dynamics of the errors can be accounted for
by including lagged di¤erences

�yit = �
0
idit + �iyi;t�1 + 
i1�yi;t�1 + � � �+ 
i;pi�yi;t�pi + "it : (26)

For example, the IPS statistics (16) and (17) developed for balanced and
unbalanced panels can now be constructed using the ADF(pi) statistics based
on the above regressions. As noted in IPS (2003), small sample properties
of the test can be much improved if the standardization of the IPS statistic
is carried out using the simulated means and variances of � i(pi), the t-ratio
of �i computed based on ADF(pi) regressions. This is likely to yield better
approximations, since E [� i(pi)], for example, makes use of the information
contained in pi while E [� i(0)] = E(� i) does not. Therefore, in the serially
correlated case IPS propose the following standardized t-bar statistic

ZIPS =

p
N
n
�� � 1

N

PN
i=1E [� i(pi)]

o
q

1
N

PN
i=1 V ar [� i(pi)]

d������!
(T;N)!1

N (0; 1): (27)

The value of E [� i(p)] and V ar [� i(p)] simulated for di¤erent values of T and
p, are provided in Table 3 of IPS. These simulated moments also allow the
IPS panel unit root test to be applied to unbalanced panels with serially
correlated errors.
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For tests against the homogenous alternatives, �1 = � � � = �N = � < 0,
Levin et al. (2002) suggest removing all individual speci�c parameters within
a �rst step regression such that eit (vi;t�1) are the residuals from a regression
of�yit (yi;t�1) on�yi;t�1; : : : ;�yi;t�pi and dit. In the second step the common
parameter � is estimated from a pooled regression

(eit=b�i) = �(vi;t�1=b�i) + �it ;
where b�2i is the estimated variance of eit. Unfortunately, the �rst step regres-
sions are not su¢ cient to remove the e¤ect of the short-run dynamics on the
null distribution of the test. Speci�cally,

lim
T!1

E

"
1

T � p

TX
t=p+1

eitvi;t�1=�
2
i

#
=

��i
�i
a1(�̂) ;

where �2i is the long-run variance and a1(�̂) denotes the limit of the correc-
tion term given in (23). Levin et al. (2002) propose a nonparametric (kernel
based) estimator for ��2i

�s2i =
1

T

"
TX
t=1

�b~y2it + 2 KX
l=1

�
K + 1� l
K + 1

� TX
t=l+1

�b~yit�b~yi;t�l
!#

; (28)

where �b~yit denotes the demeaned di¤erence and K denotes the truncation
lag. As noted by Phillips and Ouliaris (1990), in a time series context the
estimator of the long-run variance based on di¤erences is inappropriate since
under the stationary alternative �s2i

p! 0 and, thus, using this estimator yields
an inconsistent test. In contrast, in the case of panels the use of �s2i improves
the power of the test, since with �s2i

p! 0 the correction term drops out and
the test statistic tends to �1.
It is possible to avoid the use of a kernel based estimator of the long-run

variance by using an alternative approach suggested by Breitung and Das
(2005a). Under the null hypothesis we have


i(L)�yit = �
0
idit + "it ;

where 
i(L) = 1 � 
i1L � � � � � 
i;piLp and L is the lag operator. It fol-
lows that egt = 
i(L)[yit � E(yit)] is a random walk with uncorrelated incre-
ments. Therefore, the serial correlation can be removed by replacing yit by
the pre-whitened variable ŷit = b
i(L)yit, where b
i(L) is an estimator of the
lag polynomial obtained from the least-square regression

�yit = �
0
idit + 
i1�yi;t�1 + � � �+ 
i;pi�yi;t�pi + "it : (29)
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This approach may also be used for modifying the �unbiased statistic�based
on the t-statistic of �� = 0 in (25). The resulting t-statistic has a standard
normal limiting distribution as T !1 is followed by N !1.
Pedroni and Vogelsang (2005) have proposed a test statistic that avoids

the speci�cation of the short-run dynamics by using an autoregressive approx-
imation. Their test statistic is based on the pooled variance ratio statistic

ZwNT =
Tci(0)

Nbs2i ;
where ci(`) = T�1

PT
t=`+1

b~yitb~yi;t�`, b~yit = yit� �̂0idit and bs2i is the untruncated
Bartlett kernel estimator de�ned as bs2i = PT+1

`=�T+1(1 � j`j=T )ci(`). As has
been shown by Kiefer and Vogelsang (2002) and Breitung (2002), the limiting
distribution of such �nonparametric�statistics does not depend on nuisance
parameters involved by the short run dynamics of the processes. Accordingly,
no adjustment for short-run dynamics is necessary.

2.7 Other Approaches to Panel Unit Root Testing

An important problem of combining Dickey-Fuller type statistics in a panel
unit root test is that they involve a nonstandard limiting distribution. If
the panel unit root statistic is based on a standard normally distributed test
statistic zi, then N�1=2PN

i=1 zi has a standard normal limiting distribution
even for a �nite N . In this case no correction terms need to be tabulated to
account for the mean and the variance of the test statistic.
Chang (2002) proposes a nonlinear instrumental variable (IV) approach,

where the transformed variable

wi;t�1 = yi;t�1e
�cijyi;t�1j

is used as an instrument for estimating �i in the regression�yit = �iyi;t�1+"it
(which may also include deterministic terms and lagged di¤erences). Since
wi;t�1 tends to zero as yi;t�1 tends to �1 the trending behavior of the non-
stationary variable yi;t�1 is eliminated. Using the results of Chang, Park and
Phillips (2001), Chang (2002) showed that the Wald test of � = 0 based on
the nonlinear IV estimator possesses a standard normal limiting distribution.
Another important property of the test is that the nonlinear transformation
also takes account of possible contemporaneous dependence among the cross
section units. Accordingly, Chang�s panel unit root test is also robust against
cross-section dependence.
It should be noted that wi;t�1 2 [�(cie)�1; (cie)�1] with a maximum (min-

imum) at yi;t�1 = 1=ci (yi;t�1 = �1=ci). Therefore, the choice of the para-
meter ci is crucial for the properties of the test. First, the parameter should
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be proportional to inverse of the standard deviations of �yit. Furthermore,
in her simulation experiments Chang (2002) seems to have calibrated the
values of ci according to the sample sizes. However, as emphasized by Im
and Pesaran (2003) the asymptotic theory for this test is based on the fact
that ci is a constant.
An alternative approach to obtain an asymptotically standard normal test

statistic is to adjust the given samples in all cross-sections so that they all
have sums of squares y2i1 + � � �+ y2iki = �

2
i cT

2 + hi, where hi
p! 0 as T !1.

In other words, the panel data set becomes an unbalanced panel with ki
time periods in the i�th unit. Chang calls this setting the �equi-squared sum
contour�, whereas the traditional framework is called the �equi-sample-size
contour�. The nice feature of this approach is that it yields asymptotically
standard normal test statistics. An important drawback is, however, that
a large number of observations may be discarded by applying this contour
which may result in a severe loss of power.
Hassler, Demetrescu and Tarcolea (2004) have suggested to use the LM

statistic for a fractional unit root as an asymptotically normally distributed
test statistic. This test statistic is uniformly most powerful against fractional
alternatives of the form (1�L)dyit = "it with d < 1. Although usually panel
unit root tests are used to decide whether the series are I(1) or I(0), it can be
argued that fractional unit root tests also have a good (albeit not optimal)
power against the I(0) alternative (e.g. Robinson, 1994).
As in the time series case it is possible to test the null hypothesis that the

series are stationary against the alternative that (at least some of) the series
are nonstationary. The test suggested by Tanaka (1990) and Kwiatkowski et
al. (1992) is designed to test the hypothesis H�

0 : �i = 0 in the model

yit = �
0
idit + �irit + uit ; t = 1; : : : ; T; (30)

where �rit is white noise with unit variance and uit is stationary. The cross-
section speci�c KPSS statistic is

�i =
1

T 2��2T;i

TX
t=1

bS2it ;
where ��2T;i denotes a consistent estimator of the long-run variance of �yit andbSit =Pt

`=1

�
yi` � �̂

0
idi`

�
is the partial sum of the residuals from a regression

of yit on the deterministic terms (a constant or a linear time trend). The
individual test statistics can be combined as in the test suggested by IPS
(2003) yielding

�� = N�1=2
PN

i=1 [�i � E(�i)]p
V ar(�i)

;
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where asymptotic values of E(�i) and V ar(�i) are derived in Hadri (2000)
and values for �nite T and N !1 are presented Hadri and Larsson (2005).
The test of Harris, Leybourne and McCabe (2004) is based on the sta-

tionarity statistic
Zi(k) =

p
T bci(k)=b!zi(k);

where bci(k) denotes the usual estimator of the covariance at lag k of cross
section unit i and b!2zi(k) is an estimator of the long-run variance of zkit =
(yit � �̂

0
idit)(yi;t�k � �̂

0
idi;t�k). The intuition behind this test statistic is that

for a stationary and ergodic time series we have E[bci(k)] ! 0 as k ! 1.
Since b!2z is a consistent estimator for the variance of bci(k) it follows that Zi(k)
converges to a standard normally distributed random variable as k !1 and
k=
p
T ! � <1.

3 Second Generation Panel Unit Root Tests:
Allowing for Cross Section Correlations4

So far we have assumed that the time series fyitgTt=0 are independent across i.
However, in many macroeconomic applications using country or regional data
it is found that the time series are contemporaneously correlated. Prominent
examples are the analysis of purchasing power parity and output conver-
gence.5 The literature on modelling of cross section dependence in large
panels is still developing and in what follows we provide an overview of some
of the recent contributions.
Cross section dependence can arise due to a variety of factors, such as

omitted observed common factors, spatial spill over e¤ects, unobserved com-
mon factors, or general residual interdependence that could remain even when
all the observed and unobserved common e¤ects are taken into account. Ab-
stracting from common observed e¤ects and residual serial correlation a gen-
eral speci�cation for cross sectional error dependence can be written as

�yit = ��i�i + �iyi;t�1 + uit;

where
uit = 


0
ift + �it; (31)

4A survey of the second generation panel unit root tests is also provided by Hurlin and
Mignon (2004).

5See, for example, O�Connell (1998) and Phillips and Sul (2003b). Tests for cross
section independence of errors with applications to output growth equations are considered
in Pesaran (2004a).
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or
ut = �f t + �t; (32)

ut = (u1t; u2t; :::; uNt)
0, ft is an m � 1 vector of serially uncorrelated un-

observed common factors, and �t = (�1t; �2t; :::; �Nt)
0 is an N � 1 vector of

serially uncorrelated errors with mean zero and the positive de�nite covari-
ance matrix 
�, and � is an N � m matrix of factor loadings de�ned by
� = (
1;
2; :::;
N)

0. 6 Without loss of generality the covariance matrix of ft
is set to Im, and it is assumed that ft and �t are independently distributed.
If 
1 = � � � = 
N , then �t = 
 0ft is a conventional �time e¤ect�that can be
removed by subtracting the cross section means from the data. In general it
is assumed that 
i, the factor loading for the i

th cross section unit, di¤ers
across i and represents draws from a given distribution.
Under the above assumptions and conditional on 
i, i = 1; 2; :::; N , the

covariance matrix of the composite errors, ut, is given by 
 = ��0 + 
�.
It is clear that without further restrictions the matrices � and 
� are not
separately identi�ed. The properties of 
 also crucially depend on the rela-
tive eigenvalues of ��0 and 
�, and their limits as N !1. Accordingly two
cases of cross-section dependence can be distinguished: (i) Weak dependence.
In this case it is assumed that the eigenvalues of 
 are bounded as N !1.
This assumption rules out the presence of unobserved common factors, but
allows the cross section units to be, for example, spatially correlated with
a �nite number of �neighbors�. (ii) Strong dependence. In this case some
eigenvalues of 
 are O(N), which arises when there are unobserved common
factors. When N is �xed as T ! 1 both sources of dependence could be
present. But for N ! 1 (and particularly when N > T ) it seems only
sensible to consider cases where rank(�) = m � 1 and 
� is a diagonal
matrix.
A simple example of panel data models with weak cross section depen-

dence is given by 264�y1t...
�yNt

375 =
264a1...
aN

375+ �
264y1;t�1...
yN;t�1

375+
264u1t...
uNt

375 (33)

or
�yt = a+ �yt�1 + ut; (34)

where ai = ���i and�yt, yt�1, a and ut areN�1 vectors. The cross-section
correlation is represented by a non-diagonal matrix


 = E(utu
0
t); for all t;

6The case where ft and/or �it might be serially correlated will be considered below.
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with bounded eigenvalues. For the model without constants Breitung and
Das (2005a) showed that the regression t-statistic of � = 0 in (34) is asymp-
totically distributed as N (0; v
) where

v
 = lim
N!1

tr(
2=N)

(tr
=N)2
: (35)

Note that tr(
) and tr(
2) are O(N) and, thus, v
 converges to a constant
that can be shown to be larger than one. This explains why the test ignoring
the cross-correlation of the errors has a positive size bias.
Since (34) can be seen as a seemingly unrelated regression system, O�Connell

(1998) suggests to estimate the system by using a GLS estimator (see also
Flores, et al., 1999). Let b
 = T�1

PT
t=1 butbu0t denote the sample covariance

matrix of the residual vector. The GLS t-statistic is given by

tgls(N) =

TP
t=1

�ey0t b
�1eyt�1s
TP
t=1

ey0t�1 b
�1eyt�1
;

where eyt is the vector of demeaned variables. Harvey and Bates (2003) derive
the limiting distribution of tgls(N) for a �xed N and as T !1, and tabulate
its asymptotic distribution for various values of N . Breitung and Das (2005a)
show that if eyt = yt � y0 is used to demean the variables and T ! 1 is
followed by N ! 1, then the GLS t-statistic possesses a standard normal
limiting distribution.
The GLS approach cannot be used if T < N as in this case the estimated

covariance matrix b
 is singular. Furthermore, Monte Carlo simulations sug-
gest that for reasonable size properties of the GLS test, T must be substan-
tially larger than N (e.g. Breitung and Das, 2005a). Maddala and Wu (1999)
and Chang (2004) have suggested a bootstrap procedure that improves the
size properties of the GLS test.
An alternative approach based on �panel corrected standard errors�(PCSE)

is considered by Jönsson (2005) and Breitung and Das (2005a). In the model
with weak dependence, the variance of the OLS estimator b� is consistently
estimated by

dvar(b�) =
TP
t=1

ey0t�1 b
eyt�1�
TP
t=1

ey0t�1eyt�1�2 :
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If T ! 1 is followed by N ! 1 the robust t statistic trob = b�=qdvar(b�) is
asymptotically standard normally distributed (Breitung and Das, 2005a).
If it is assumed that the cross correlation is due to common factors then

the largest eigenvalue of the error covariance matrix, 
; is Op(N) and the
robust PCSE approach breaks down. Speci�cally, Breitung and Das (2005b)
showed that in this case trob is distributed as the ordinary Dickey-Fuller test
applied to the �rst principal component.
In the case of a single unobserved common factor, Pesaran (2005) has sug-

gested a simple modi�cation of the usual test procedure. Let �yt = N�1PN
i=1 yit

and ��yt = N�1PN
i=1�yit = �yt � �yt�1. The cross section augmented Dickey-

Fuller (CADF) test is based on the following regression

�yit = ai + �iyi;t�1 + bi�yt�1 + ci��yt + eit :

In this regression the additional variables ��yt and �yt�1 are
p
N -consistent

estimators for the rescaled factors �
ft and �

Pt�1

j=0 fj, where �
 = N
�1PN

i=1 
i.
Pesaran (2005) showed that the distribution of the regression t-statistic for
�i = 0 is free of nuisance parameters. To test the unit root hypothesis in
a heterogenous panel the average of the N individual CADF t-statistics (or
suitably truncated version of them) can be used. Coakley et al. (2005) apply
the CADF test to real exchange rates of 15 OECD countries.
A similar approach was proposed by Moon and Perron (2004) and Phillips

and Sul (2003a). The test of Moon and Perron (2004) is based on a prin-
cipal components estimator of m < N common factors f1t; : : : ; fmt in (31).
The number of common factors can be consistently determined by using the
information criteria suggested by Bai and Ng (2002). Let bVm = [bv1; : : : ; bvm]
denote the matrix of m orthonormal eigenvectors associated with m largest
eigenvalues of 
. The vector of common factors are estimated asbft = [ bf1t; : : : ; bfmt]0 = bV0

m�yt :

As shown by Bai and Ng (2002), the principal component estimator bft yields
a consistent estimator of the factor space as min(N; T ) ! 1. Thus, the
elements of the vector�

IN � bVm
bV0
m

�
�yt � QbVm�yt; (36)

are consistent estimates of the idiosyncratic components �it as N ! 1.
Therefore, by assuming that �it is i.i.d., the pooled regression t-statistic

t�MP =

TP
t=1

�ey0tQbVmeyt�1s
TP
t=1

ey0t�1QbVmeyt�1
:
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has a standard normal limiting distribution as (N; T !1) and lim infN;T!1
logN= log T ! 0 (cf. Moon and Perron 2004).
As argued by Banerjee, Marcellino and Osbat (2005) panel unit root tests

may be severely biased if the panel units are cross-cointegrated, namely if
under the null hypothesis (of unit roots) one or more linear combinations
of yt are stationary. This needs to be distinguished from the case where
the errors are cross correlated without necessarily involving cointegration
across the cross section units. Under the former two or more cross section
units must share at least one common stochastic trend. Such a situation is
likely to occur if the PPP hypothesis is examined (cf. Lyhagen, 2000 and
Banerjee et al. 2005). The tests proposed by Moon and Perron (2004) and
Pesaran (2005) are not appropriate if yt contains common stochastic trends
and their use could lead to misleading conclusions. For example, in the
presence of cross-section cointegration the common trends are identi�ed as
common factors and by performing the transformation (36) these common
factors are removed from the data. If the remaining idiosyncratic component
is stationary, the test tends to indicate that the time series are stationary,
although all panel units are nonstationary.
To overcome this di¢ culty Bai and Ng (2004a) have suggested a general

approach for analyzing the common factors and idiosyncratic components
separately. Whereas the tests of Moon and Perron (2004) and Pesaran (2005)
assume that only the idiosyncractic components have unit roots, the test
procedure of Bai and Ng (2004a) allows for the possibility of unit roots in
idiosyncratic and/or the common stochastic components and attempts to
ascertain the unit root properties of both components from the data. For
example, if the idiosyncratic processes are independent random walks, there
will be no cointegration among the panel units. Nevertheless it is possible to
determine the number of common trends and to estimate them consistently as
N and T tends to in�nity (see also Bai 2004). However, testing for unit roots
in the common components are likely to require particularly large panels;
with the power of the test only favourably a¤ected when T is increased.
The common factors are estimated by principal components and coin-

tegration tests are used to determine the number of common trends. Fur-
thermore, panel unit root tests are applied to the idiosyncratic components.
The null hypothesis that the time series have a unit root is rejected if either
the test of the common factors or the test for the idiosyncratic component
cannot reject the null hypothesis of nonstationary components. A similar
test procedure based on KPSS test statistics are proposed by Bai and Ng
(2004b).7

7An alternative factor extraction method is suggested by Kapetanios (2005) who also
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To allow for short-run and long-run (cross-cointegration) dependencies,
Chang and Song (2005) suggest a nonlinear instrument variable test proce-
dure. As the nonlinear instruments suggested by Chang (2002) are invalid
in the case of cross-cointegration panel speci�c instruments based on the
Hermit function of di¤erent order are used as nonlinear instruments. Chang
and Song (2005) showed that the t-statistic computed from the nonlinear IV
statistic are asymptotically standard normally distributed and, therefore, a
panel unit statistics against the heterogeneous alternative H1b can be con-
structed that has an standard normal limiting distribution.
Choi and Chue (2004) employ a subsampling procedure to obtain tests

that are robust against a wide range of cross-section dependence such as
weak and strong correlation as well as cross-cointegration. To this end the
sample is grouped into a number of overlapping blocks of b time periods.
Using all (T � b+1) possible overlapping blocks, the critical value of the test
is estimated by the respective quantile of the empirical distribution of the
(T � b+ 1) test statistics computed. The advantage of this approach is that
the null distribution of the test statistic may depend on unknown nuisance
parameters. Whenever the test statistics converge in distribution to some
limiting null distribution as T ! 1 and N �xed, the subsample critical
values converge in probability to the true critical values. Using Monte Carlo
simulations Choi and Chue (2004) demonstrate that the size of the subsample
test is indeed very robust against various forms of cross-section dependence.

4 Finite Sample Properties of Panel Unit Root
Tests

It has become standard to distinguish �rst generation panel unit root tests
that are based on the assumption of independent cross section units and
second generation tests that allow for some kind of cross-section dependence.
Maddala and Wu (1999) compared several �rst generation tests. For the
heterogeneous alternative under consideration they found that in most cases
the Fisher test (18) performs similar or slightly better than the IPS statistic
with respect to size and power. The Levin and Lin statistic (in the version
of the 1993 paper) performs substantially worse. Similar results are obtained
by Choi (2001). Madsen (2003) derived the local power function against
homogeneous alternatives under di¤erent detrending procedures. Her Monte

provides detailed Monte Carlo results on the small sample performance of panel unit root
tests based on a number of alternative estimates of the unobserved common factors. He
shows that the factor-based panel unit root tests tend to perform rather poorly when the
unobserved common factor is serially correlated.
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Carlo simulations support the theoretical �ndings that the test based on
estimating the mean under the null hypothesis (i.e. the initial observation
is subtracted from the time series) outperforms tests based on alternative
demeaning procedures. Similar �ndings are obtained by Bond et al. (2002).
Hlouskova and Wagner (2005) compare a large number of �rst generation

panel unit root tests applied to processes with MA(1) errors. Not surpris-
ingly, all tests are severely biased as the root of the MA process approaches
unity. Overall, the tests of Levin et al. (2002) and Breitung (2000) have
the smallest size distortions. These tests also perform best against the ho-
mogenous alternative, where the autoregressive coe¢ cient is the same for all
panel units. Of course this is not surprising as these tests are optimal under
homogeneous alternatives. Furthermore, it turns out that the stationarity
tests of Hadri (2000) perform very poorly in small samples. This may be due
to the fact that asymptotic values for the mean and variances of the KPSS
statistics are used, whereas Levin et al. (2002) and IPS (2003) provide values
for small T as well.
The relative performance of several second generation tests have been

studied by Gutierrez (2003), and Gengenbach, Palm and Urbain (2004),
where the cross-section dependence is assumed to follow a factor structure.
The results very much depend on the underlying model. The simulations
carried out by Gengenbach, Palm and Urbain (2004) show that in general,
the mean CADF test has better size properties than the test of Moon and
Perron (2004), which tends to be conservative in small samples. However
the latter test appears to have more power against stationary idiosyncratic
components. Since these tests remove the common factors, they will even-
tually indicate stationary time series in cases where the series are actually
nonstationary due to a common stochastic trend. The results of Gengenbach
et al. (2004) also suggest that the approach of Bai and Ng (2004a) is able to
cope with this possibility although the power of the unit test applied to the
nonstationary component is not very high.
In general, the application of factor models in the case of weak correla-

tion does not yield valid test procedures. Alternative unit root tests that
allow for weak cross section dependence are considered in Breitung and Das
(2005a). They found that the GLS t-statistic may have a severe size bias if T
is only slightly larger than N . In these cases Chang�s (2004) bootstrap pro-
cedure is able to improve the size properties substantially. The robust OLS
t-statistic performs slightly worse but outperforms the nonlinear IV test of
Chang (2002). However, Monte Carlo simulations recently carried out by
Baltagi, Bresson and Pirotte (2005) show that there can be considerable size
distortions even in panel unit root tests that allow for weak dependence. In-
terestingly enough Pesaran�s test, which is not designed for weak cross section
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dependence, tends to be the most robust to spatial type dependence.

5 Panel Cointegration: General Considera-
tions

The estimation of long-run relationships has been the focus of extensive re-
search in time series econometrics. In the case of variables on a single cross
section unit the existence and the nature of long-run relations are investigated
using cointegration techniques developed by Engle and Granger (1987), Jo-
hansen (1991,1995) and Phillips (1991). In this literature residual-based and
system approaches to cointegration are advanced. In this section we review
the panel counter part of this literature. But before considering the problem
of cointegration in a panel a brief overview of the cointegration literature
would be helpful.
Consider the ni time series variables zit = (zi1t; zi2t; : : : ; zinit)

0 observed
on the ith cross section unit over the period t = 1; 2; :::; T , and suppose that
for each i

zijt � I(1); j = 1; 2; : : : :; ni:

Then zit is said to form one or more cointegrating relations if there are linear
combinations of zijt�s for j = 1; 2; :::; ni that are I (0) i.e. if there exists an
ni � ri matrix (ri � 1) such that

�0i
ri � ni

zit
ni � 1

= �it
ri � 1

� I (0) :

ri denotes the number of cointegrating (or long-run) relations. The residual-
based tests are appropriate when ri = 1, and zit can be partitioned such that
zit = (yit;x

0
it)
0 with no cointegration amongst the ki�1 (ki = ni�1) variables,

xit. The system cointegration approaches are much more generally applica-
ble and allow for ri > 1 and do not require any particular partitioning of
the variables in zit.8 Another main di¤erence between the two approaches is
the way the stationary component of �it is treated in the analysis. Most of
the residual-based techniques employ non-parametric (spectral density) pro-
cedures to model the residual serial correlation in the error correction terms,
�it, whilst vector autoregressions (VAR) are utilized in the development of
system approaches.
In panel data models the analysis of cointegration is further complicated

by heterogeneity, unbalanced panels, cross section dependence, cross unit
8System approaches to cointegration analysis that allow for weakly exogenous (or long-

run forcing) variables has been considered in Pesaran, Shin and Smith (2000).
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cointegration and the N and T asymptotics. But in cases where ni and N
are small such that �Ni=1ni is less than 10, and T is relatively large (T > 100),
as noted by Banerjee, Marcellino and Osbat (2004), many of these problems
can be avoided by applying the system cointegration techniques to the pooled
vector, zt = (z01t; z

0
2t; :::; z

0
Nt)

0. In this setting cointegration will be de�ned by
the relationships �0zt that could contain cointegration between variables from
di¤erent cross section units as well as cointegration amongst the di¤erent
variables speci�c to a particular cross section unit. This framework can also
deal with residual cross section dependence since it allows for a general error
covariance matrix that covers all the variables in the panel.
Despite its attractive theoretical features, the �full�system approach to

panel cointegration is not feasible even in the case of panels with moderate
values of N and ni. See Section 9 below for further details. In practice,
cross section cointegration can be accommodated using common factors as
in the work of Bai and Ng (2004), Pesaran (2004b), Pesaran, Schuermann
andWeiner (2004, PSW) and its subsequent developments in Dees, di Mauro,
Pesaran and Smith (2005, DdPS). Bai and Ng (2004a) consider the simple
case where ni = 1 but allow N and T to be large. But their set up can
be readily generalized so that cointegration within each cross section unit as
well as across the units can be considered. Following DdPS suppose that9

zit = �iddt + �if ft + �it; (37)

for i = 1; :::; N ; t = 1; 2; :::; T , and to simplify the exposition assume that
ni = n, where as before dt is the s � 1 vector of deterministics (1; t) or
observed common factors such as oil prices, ft is a m � 1 vector of unob-
served common factors, �id and �if are n� s and n�m associated unknown
coe¢ cient matrices, �it is an n� 1 vector of error terms.
Unit root and cointegration properties of zit, i = 1; 2; :::; N , can be ana-

lyzed by allowing the common factors, ft, and/or the country-speci�c factors,
�it, to have unit roots. To see this suppose

�ft = � (L)�t, �t s IID (0; Im) ; (38)

��it = 	i (L)vit; vit s IID (0; In) ; (39)

where L is the lag operator and

� (L) =

1X
`=0

�`
m�m

L`, 	i (L) =

1X
`=0

	i`
n�n
L`: (40)

9DdPS also allow for common observed macro factors (such as oil prices), but they are
not included to simplify the exposition.
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The coe¢ cient matrices, �` and 	i`, i = 1; 2; :::; N , are absolute summable,
so that V ar (�ft) and V ar (��it) are bounded and positive de�nite, and
[	i (L)]

�1 exists. In particular we require that

jj
1X
`=0

	i`	
0
i`jj � K <1; (41)

where K is a �xed constant.
Using the familiar decomposition

� (L) = � (1) + (1� L)�� (L) , and 	i (L) = 	i (1) + (1� L)	�
i (L) ;

the common stochastic trend representations of (38) and (39) can now be
written as

ft = f0 +� (1) st +�
� (L) (�t � �0) ;

and
�it = �i0 +	i (1) sit +	

�
i (L) (vit � vi0) ;

where

st =
tX
j=1

�j and sit =
tX
j=1

vij:

Using the above results in (37) now yields

zit = ai + �iddt + �if� (1) st +	i (1) sit

+�if�
� (L)�t +	

�
i (L)vit;

where10

ai = �if [f0 ��� (L)�0] + �i0 �	�
i (L)vi0:

In this representation � (1) st and 	i (1) sit can be viewed as common global
and individual-speci�c stochastic trends, respectively; whilst �� (L)�t and
	�
i (L)vit are the common and individual-speci�c stationary components.

From this result it is clear that, in general, it will not be possible to simul-
taneously eliminate the two types of the common stochastic trends (global
and individual-speci�c) in zit.
Speci�c cases of interest where it would be possible for zit to form a coin-

tegrating vector are when � (1) = 0 or 	i (1) = 0. Under the former panel
cointegration exists if 	i (1) is rank de�cient. The number of cointegrating
relations could di¤er across i and is given by ri = n�Rank [	i (1)]. Note that

10In usual case where dt is speci�ed to include an intercept, 1, ai can be absorbed into
the deterministics.
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even in this case zit can be cross-sectionally correlated through the common
stationary components, �� (L)�t. Under 	i (1) = 0 for all i with � (1) 6= 0,
we will have panel cointegration if there exists n � ri matrices �i such that
�0i�if� (1) = 0. Notice that this does not require � (1) to be rank de�cient.
Turning to the case where � (1) and 	i (1) are both non-zero, panel

cointegration could still exist but must involve both zit and ft. But since ft
is unobserved it must be replaced by a suitable estimate. The global VAR
(GVAR) approach of Pesaran et al. (2004) and Dees et al. (2005) implements
this idea by replacing ft with the (weighted) cross section averages of zit. To
see how this can be justi�ed �rst di¤erencing (37) and using (39) note that

[	i (L)]
�1 (1� L) (zit � �iddt � �if ft) = vit:

Using the approximation

(1� L) [	i (L)]
�1 t

pX
`=0

�i`L
` = �i (L; p) ;

we obtain the following approximate VAR(p) model

�i (L; p) (zit � �iddt � �if ft) t vit. (42)

When the common factors, ft, are observed the model for the ith cross-section
unit decouples from the rest of the units and can be estimated using the
econometric techniques developed in Pesaran, Shin and Smith (2000) with ft
treated as weakly exogenous. But in general where the common factors are
unobserved appropriate proxies for the common factors can be used. There
are two possible approaches, one could either use the principal components
of the observables, zit, or alternatively following Pesaran (2004b) ft can be
approximated in terms of �zt = N�1�Ni=1zit, the cross section averages of
the observables. To see how this procedure could be justi�ed in the present
context, average the individual equations given by (37) over i to obtain

�zt = ��ddt + ��f ft + ��t; (43)

where ��d = N�1�Ni=1�id, ��f = N�1�Ni=1�if , and ��t = N�1�Ni=1�it. Also,
note from (39) that

��t � ��t�1 = N�1
NX
j=1

	j (L)vjt: (44)

But using results in Pesaran (2004b), for each t and as N ! 1 we have
��t � ��t�1

q:m:! 0; and hence ��t
q:m:! ��, where �� is a time-invariant random
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variable. Using this result in (43) and assuming that the n � m average
factor loading coe¢ cient matrix, ��f , has full column rank (with n � m) we
obtain

ft
q:m:!

�
��
0

f
��f

��1
��f
�
�zt � ��ddt � ��

�
;

which justi�es using the observable vector fdt;�ztg as proxies for the unob-
served common factors.
The various contributions to the panel cointegration literature will now

be reviewed in the context of the above general set up. First generation
literature on panel cointegration tends to ignore the possible e¤ects of global
unobserved common factors, or attempts to account for them either by cross-
section de-meaning or by using observable common e¤ects such as oil prices
or U.S. output. This literature also focusses on residual based approaches
where it is often assumed that there exists at most one cointegrating relation
in the individual speci�c models. Notable contributions to this strand of the
literature include Kao (1999), Pedroni (1999, 2001, 2004), and more recently
Westerlund (2005a). System approaches to panel cointegration that allow for
more than one cointegrating relations include the work of Larsson, Lyhagen
and Lothgren (2001), Groen and Kleibergen (2003) and Breitung (2005) who
generalized the likelihood approach introduced in Pesaran, Shin and Smith
(1999). Like the second generation panel unit root tests, recent contributions
to the analysis of panel cointegration have also emphasized the importance of
allowing for cross section dependence which, as we have noted above, could
be due to the presence of common stationary or non-stationary components
or both. The importance of allowing for the latter has been emphasized
in Banerjee, Marcellino and Osbat (2004) through the use of Monte Carlo
experiments in the case of panels where N is very small, at most 8 in their
analysis. But to date a general approach that is capable of addressing all the
various issues involved does not exist if N is relatively large.
We now consider in some further detail the main contributions, beginning

with a brief discussion of the spurious regression problem in panels.

6 Residual-Based Approaches to Panel Coin-
tegration

Under this approach zit is partitioned as zit = (yit;x
0
it)
0 and the following

regressions
yit = �

0
idit + x

0
it� + uit; i = 1; 2; :::; N; (45)

are considered, where as before �0idit represent the deterministics and the k�1
vector of regressors, xit, are assumed to be I(1) and not cointegrated. How-
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ever, the innovations in �xit, denoted by "it = �xit � E(�xit), are allowed
to be correlated with uit. Residual-based approaches to panel cointegration
focus on testing for unit roots in OLS or panel estimates of uit.

6.1 Spurious regression

Let wit = (uit; "
0
it)
0 and assume that the conditions for the functional central

limit theorem are satis�ed such that

1p
T

[�T ]X
t=1

wit
d! �

1=2
i Wi(�);

whereWi is a (k + 1)� 1 vector of standard Brownian motions,
d! denotes

weak convergence on D[0; 1] and

�i =

�
�2i;u �i;u"
�0i;u" �i;""

�
:

Kao (1999) showed that in the homogeneous case with �i = �, i = 1; : : : ; N ,
and abstracting from the deterministics, the OLS estimator b� converges in
probability to the limit ��1"" �"u, where it is assumed that wit is i.i.d. across
i. In the heterogeneous case �"" and �"u are replaced by the means �"" =
N�1PN

i=1�i;"" and �"u = N�1PN
i=1 �i;"u, respectively (cf. Pedroni 2000).

In contrast, the OLS estimator of � fails to converge within a pure time
series framework (cf. Phillips 1987). On the other hand, if xit and yit are
independent random walks, then the t-statistics for the hypothesis that one
component of � is zero is Op(T 1=2) and, therefore, the t-statistic has similar
properties as in the time series case. As demonstrated by Entorf (1997) and
Kao (1999), the tendency for spuriously indicating a relationship among yit
and xit may even be stronger in panel data regressions as in the pure time
series case. Therefore, it is important to test whether the errors in a panel
data regression like (45) are stationary.

6.2 Tests of Panel Cointegration

As in the pure time series framework, the variables in a regression function
can be tested against cointegration by applying unit roots tests of the sort
suggested in the previous sections to the residuals of the estimated regression.
Unfortunately, panel unit root tests cannot be applied to the residuals in
(45) if xit is (long-run) endogenous, that is, if �"u 6= 0. Letting T ! 1 be
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followed by N ! 1, Kao (1999) show that the limiting distribution of the
DF t-statistic applied to the residuals of a pooled OLS regression of (45) is

(t� �
p
N �K)=�K

d! N (0; 1); (46)

where the values of �K and �K depend on the kind of deterministics included
in the regression, the contemporaneous covariance matrix E(witw0

it) and the
long-run covariance matrix �i. Kao (1999) proposed adjusting t� by using
consistent estimates of �K and �K , where he assumes that the nuisance pa-
rameters are the same for all panel units (homogenous short-run dynamics).
Pedroni (2004) suggest two di¤erent test statistics for the models with

heterogeneous cointegration vectors. Let buit = yit � �̂0idit � b�0ixit denote the
OLS residual of the cointegration regression. Pedroni considers two di¤erent
classes of test statistics: (i) the �panel statistic�that is equivalent to the unit
root statistic against homogeneous alternatives and (ii) the �Group Mean
statistic�that is analogous to the panel unit root tests against heterogeneous
alternatives. The two versions of the t statistic are de�ned as

panel ZPt =

 
~�2NT

NX
i=1

TX
t=1

û2i;t�1

!�1=2 NX
i=1

TX
t=1

ûi;t�1ûit � T
NX
i=1

�̂i

!

group-mean eZPt = NX
i=1

 
�̂2ie

TX
t=1

û2i;t�1

!�1=2 TX
t=1

ûi;t�1ûit � T �̂i

!

where �̂i is a consistent estimator of the one-sided long run variance �i =P1
j=1E(eitei;t�j), eit = uit � �iui;t�1, �i = E(uitui;t�1)=E(u2i;t�1), �̂

2
ie denotes

the estimated variance of eit and ~�2NT = N�1PN
i=1 �̂

2
ie. Pedroni presents

values of �p; �
2
p and ~�p; ~�

2
p such that (ZPt��p

p
N)=�p and ( eZPt� ~�ppN)=~�p

have standard normal limiting distributions under the null hypothesis.
Other residual-based panel cointegration tests include the recent contri-

bution of Westerlund (2005a) that are based on variance ratio statistics and
do not require corrections for the residual serial correlations.

7 Tests for Multiple Cointegration

It is also possible to adapt Johansen�s (1995) multivariate test based on
a VAR representation of the variables. Let �i(r) denote the cross-section
speci�c likelihood-ratio (�trace�) statistic of the hypothesis that there are
(at most) r stationary linear combinations in the cointegrated VAR system
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given by zit = (yit;x0it)
0. Following the unit root test proposed in IPS (2003),

Larsson et al. (2001) suggested the standardized LR-bar statistic

e�(r) = 1p
N

NX
i=1

�i(r)� E[�i(r)]p
V ar[�i(r)]

;

to test the null hypothesis that r = 0 against the alternative that at most
r = r0 � 1. Using a sequential limit theory it can be shown that e�(r) is
asymptotically standard normally distributed. Asymptotic values of E[�i(r)]
and V ar[�i(r)] are tabulated in Larsson et al. (2001) for the model without
deterministic terms and Breitung (2005) for models with a constant and a
linear time trend. Unlike the residual-based tests, the LR-bar test allows for
the possibility of multiple cointegration relations in the panel.
It is also possible to test the null hypothesis that the errors of the coin-

tegration regression are stationary. That is, under the null hypothesis it
is assumed that yit;xit are cointegrated with cointegration rank r = 1. Mc-
Coskey and Kao (1998) suggest a panel version of Shin�s (1994) cointegration
test based on the residuals of a fully modi�ed OLS regression. Westerlund
(2005b) suggests a related test procedure based on the CUSUM statistic.

8 Estimation of Cointegrating Relations in
Panels

8.1 Single Equation Estimators

First, we consider a single-equation framework where it is assumed that yit
and the k� 1 vector of regressors xit are I(1) with at most one cointegrating
relations amongst them, namely that there exists a linear relationship of the
form (45) such that the error uit is stationary. As before it is assumed that
zit = (yit;x

0
it)
0 is i.i.d. across i, and the regressors, xit; are not cointegrated.

We do not explicitly consider deterministic terms like individual speci�c con-
stants or trends as the asymptotic theory applies to mean- or trend-adjusted
variables as well.
It is assumed that the vector of coe¢ cients, �, is the same for all cross-

section units, that is, a homogeneous cointegration relationship is assumed.
Alternatively, it may be assumed that the cointegration parameters are cross
section speci�c (heterogenous cointegration).
By applying a sequential limit theory it can be shown that the OLS es-

timator of � is T
p
N consistent and, therefore, the time series dimension
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is more informative on the long-run coe¢ cients than the cross-section di-
mension. Furthermore, is important to notice that �as in the time series
framework � the OLS estimator is consistent but ine¢ cient in the model
with endogenous regressors.
Pedroni (1995) and Phillips and Moon (1999, p. 1085) proposed a �fully-

modi�ed OLS� (FM-OLS) approach to obtain an asymptotically e¢ cient
estimator for homogenous cointegration vectors. This estimator adjusts for
the e¤ects of endogenous regressors and short-run dynamics of the errors (cf.
Phillips and Hansen 1990). To correct for the e¤ect of (long-run) endogeneity
of the regressors, the dependent variable is adjusted for the part of the error
that is correlated with the regressor

y+it = yit � �0i;"u��1
i;""�xit: (47)

A second correction is necessary when computing the OLS estimator

b�FM =

"
NX
i=1

TX
t=1

xitx
0
it

#�1 " NX
i=1

TX
t=1

(xity
+
it � �i;"u)

#
; (48)

where

�i;"u = E

 1X
j=0

"i;t�juit

!
:

The nuisance parameters can be estimated consistently using familiar non-
parametric procedures.
An alternative approach is the �Dynamic OLS�(DOLS) estimator sug-

gested by Saikkonen (1991). This estimator is based on the error decompo-
sition

uit =
1X

k=�1


 0k�xi;t+k + vit ; (49)

where vit is orthogonal to all leads and lags of �xit. Inserting (49) in the
regression (45) yields

yit = �
0xit +

1X
k=�1


 0k�xi;t+k + vit : (50)

In practice the in�nite sums are truncated at some small numbers of leads and
lags (cf. Kao and Chiang 2000, Mark and Sul 2003). Westerlund (2005c)
considers data dependent choices of the truncation lags. Kao and Chiang
(2000) show that in the homogeneous case with �i = � and individual
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speci�c intercepts the limiting distribution of the DOLS estimator b�DOLS is
given by

T
p
N(b�DOLS � �) d! N (0; 6�2uj"��1

"" );

where
�2uj" = �

2
u � �0"u��1"" �"u:

Furthermore, the FM-OLS estimator possesses the same asymptotic distri-
bution as the DOLS estimator. In the heterogeneous case �"" and �2uj" are

replaced by �"" = N�1PN
i=1�i;"" and �2uj" = N�1PN

i=1 �
2
i;uj", respectively

(cf. Phillips and Moon 1999). Again, the matrix �i can be estimated con-
sistently (for T !1) by using a nonparametric approach.
In many applications the number of time periods is smaller than 20 and,

therefore, the kernel based estimators of the nuisance parameters may per-
form poorly in such small samples. Pesaran, Shin and Smith (1999) adapted
a parametric model to estimate the cointegration vector based on the error
correction format

�yit = �iyi;t�1 + 

0
ixit + vit ; (51)

where for simplicity of exposition we have abstracted from deterministics and
lagged changes in yit and xit.11. It is assumed that the long-run parameters
are identical across the cross section units, i.e., �i = �
i=�i = � for i =
1; : : : ; N . Economic theory often predicts the same cointegration relation(s)
across the cross section units, although is often silent on the magnitude of
short-run dynamics, �i, across i. For example, the long-run relationships
predicted by the PPP, the uncovered interest parity, or the Fisher equation
are the same across countries, although the speed of convergence to these
long-run relations could di¤er markedly over countries due to di¤erences in
economic and political institutions.12 For further discussions see, for example,
Pesaran (1997).
Letting � it(�) = yi;t�1 � �0xit, the model is rewritten as

�yit = �i� it(�) + vit : (52)

Pesaran et al. (1999) have suggested an ML estimation method based on the
concentrated likelihood function

Lc(�) = c�
NX
i=1

T

2
log jb�2i;v(�)j ; (53)

11Since there are no restrictions on the additional variables they can be concentrated
out from the likelihood function by replacing �yit, yi;t�1 and xit by residuals ob-
tained from regressions on the deterministic terms and lagged di¤erences of the variables,
�zi;t�1;�zi;t�2, ...
12The problem of testing the slope homogeneity hypothesis in panels is reviewed in Hsiao

and Pesaran (2005).
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where c is a constant, and

b�2i;v(�) =
1

T

TX
t=1

evit(�)2;
evit(�) = �yit �

0BB@
TP
t=1

�yit� it(�)

TP
t=1

� it(�)
2

1CCA � it(�):
Pesaran et al. (1999) suggested a Gauss-Newton algorithm to maximize
(53). The means of the error correction coe¢ cients are estimated by the
simple average of the individual coe¢ cients (or the ML estimates) of �i,
i = 1; : : : ; N . This estimator is called the pooled mean group estimator.

8.2 System Estimators

The single equation estimators have several drawbacks that can be avoided by
using a system approach. First, these estimators assume that all regressors
are I(1) and not cointegrated. If there are more than one cointegration
relationships, then the matrix �"" is singular and the asymptotic results are
no longer valid. Second, the cointegration relationship has to be normalized
such that the variable yit enters with unit coe¢ cient. As has been argued by
Boswijk (1995), this normalization is problematical if the original coe¢ cient
of the variable yit tends to zero.
In the case of short panels with T �xed and N large, Binder, Hsiao and

Pesaran (2005) consider estimation and inference in panel vector autoregres-
sions (PVARs) with homogeneous slopes where (i) the individual e¤ects are
either random or �xed, (ii) the time-series properties of the model variables
are unknown a priori and may feature unit roots and cointegrating relations.
Generalized Method of Moments (GMM) and Quasi Maximum Likelihood
(QML) estimators are obtained and compared in terms of their asymptotic
and �nite sample properties. It is shown that the asymptotic variances of
the GMM estimators that are based on levels as well as �rst-di¤erences of
the model variables depend on the variance of the individual e¤ects; whereas
by construction the �xed e¤ects QML estimator is not subject to this prob-
lem. Monte Carlo evidence is provided showing that the �xed e¤ects QML
estimator tends to outperform the various GMM estimators in �nite sam-
ple under both normal and non-normal errors. The paper also shows how
the �xed e¤ects QML estimator can be successfully used for unit root and
cointegration tests in short panels.
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In the case of panels with large N and T , Larsson and Lyhagen (1999),
Groen and Kleibergen (2003) and Breitung (2005) consider the vector error
correction model (VECM) for the k + 1 dimensional vector zit = (yit;x

0
it)
0

given by
�zit = �i�

0
izi;t�1 +wit; (54)

where wit = (uit; "0it)
0 and once again we leave out deterministic terms and

lagged di¤erences. To be consistent with the approaches considered above,
we con�ne ourselves to the case of homogenous cointegration, that is, we
let �i = � for i = 1; : : : ; N . Larsson and Lyhagen (1999) propose a ML
estimator, whereas the estimator of Groen and Kleibergen (2003) is based
on a nonlinear GMM approach.
It is well known that the ML estimator of the cointegration parameters

for a single series may behave poorly in small samples. Phillips (1994) has
shown that the �nite sample moments of the estimator do not exist. Using
Monte Carlo simulations Hansen, Kim and Mittnik (1998) and Brüggemann
and Lütkepohl (2004) found that the ML estimator may produce implau-
sible estimates far away from the true parameter values. Furthermore the
asymptotic �2 distribution of the likelihood ratio test for restrictions on the
cointegration parameters may be poor guide for small sample inference (e.g.
Gredenho¤ and Jacobson, 2001).
To overcome these problems, Breitung (2005) proposed a computation-

ally convenient two-step estimator, which is adopted from Ahn and Reinsel
(1990). This estimator is based on the fact that the Fisher information is
block-diagonal with respect to the short and long-run parameters. Accord-
ingly, an asymptotically e¢ cient estimator can be constructed by estimating
the short- and long-run parameters in separate steps. Suppose that the n�r
matrix of cointegrating vectors is �normalized�as � = (Ir;B)

0, where Ir is
the identity matrix of order r and B is the (n � r) � r matrix of unknown
coe¢ cients.13 Then � is exactly identi�ed and the Gaussian ML estimator
of B is equivalent to the OLS estimator of B in

z�it = Bz
(2)
i;t�1 + vit ;

where z(2)it is the r � 1 vector de�ned by zit = [z
(1)
it

0
; z
(2)
it

0
]0, and

z�it = (�
0
i�

�1
i �i)

�1�0i�
�1
i �zit � z

(1)
i;t�1:

13The analysis can be readily modi�ed to take account of other types of exact identifying
restrictions on � that might be more appropriate from the view-point of long-run economic
theory. See Pesaran and Shin (2002) for a general discussion of identi�cation and testing
of cointegrating relations in the context of a single cross section units.
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The matrices �i and �i can be replaced by
p
T -consistent estimates without

a¤ecting the limiting distribution. Accordingly, these matrices can be esti-
mated for each panel unit separately, e.g., by using Johansen�s (1991) ML
estimator. To obtain the same normalization as in (??) the estimator for �i
is multiplied with the r � r upper block of the ML estimator of �.
Breitung (2005) showed that the limiting distribution of the OLS esti-

mator of B is asymptotically normal. Therefore, tests of restrictions on the
cointegration parameters have the standard limiting distributions (i.e. a �2

distribution for the usual Wald tests).
Some Monte Carlo experiments were performed by Breitung (2005) to

compare the small sample properties of the two-step estimator with the FM-
OLS and DOLS estimators. The results suggest that the latter two tests
may be severely biased in small samples, whereas the bias of the two-step
estimator is relatively small. Furthermore, the standard errors (and hence
the size properties of the t-statistics) of the two-step procedure are more
reliable than the ones of the semi-parametric estimation procedures.

9 Cross-section Dependence and the Global
VAR

As pointed out earlier an important limitation of the econometric approaches
discussed so far is that they assume that all cross-section units are indepen-
dent. In many applications based on multi-country data sets this assumption
is clearly unrealistic. To accommodate cross-dependence among panel units
Mark, Ogaki and Sul (2004) and Moon and Perron (2005) proposed a Dy-
namic Seemingly Unrelated Regression (DSUR) estimator. Their approach is
based on a GLS estimator of the dynamic representation (50) when there ex-
ists a single cointegrating relation between yit and xit, and does not allow for
the possibility of cross unit cointegration. Let hit(p) =

�
�x0i;t�p; : : : ;�x

0
i;t+p

�0
and hpt =

�
h0p1t; : : : ;h

0
pNt

�0
. To correct for endogeneity of the regressors, �rst

yit and xit are regressed on hpt. Let ~yit and ~xit denote the resulting regression
residuals. Furthermore, de�ne ~yt = (~y1t; : : : ; ~yNt)

0 and eXt = (~x1t; : : : ; ~xNt)
0.

The DSUR estimator of the (homogeneous) cointegration vector is

b�dsur =
 

T�pX
t=p+1

eX0
t�

�1
uu
eXt

!
T�pX
t=p+1

eX0
t�

�1
uu~yt (55)
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where �uu denotes the long-run covariance matrix of ut = (u1t; : : : ; uNt)
0,

namely

�uu = lim
T!1

1

T
E

" 
TX
t=1

ut

! 
TX
t=1

u0t

!#
;

for a �xed N . This matrix is estimated by using an autoregressive represen-
tation of ut. See also (49).
An alternative approach is suggested by Breitung (2005), where a SUR

procedure is applied in the second step of the two-step estimator. Bai and
Kao (2004) consider a factor structure of the errors as in (31). They proposed
a two-step FMOLS procedure, where in the common factors are estimated
from the residuals of an initial FMOLS estimation. The endogeneity correc-
tion at the second stage is

ŷ+it = yit � (
 0i b�i;f� + b�i;"�)b��1
i;"�xit ;

where b�i;f� denotes the estimated long-run covariance matrix for ft; �it andb�i;"� is the estimated long-run covariance matrix of the idiosyncratic errors
�it and the innovations "it. The two-step FMOLS estimator results as

b�2FM =

 
NX
i=1

TX
t=1

xitx
0
it

!�1 " NX
i=1

 
TX
t=1

xitŷ
+
it � T (b�i;"f 
̂i + b�i;"�)

!#

where b�i;"f and b�i;"� are the respective one-sided long-run covariance matri-
ces.
A common feature of these approaches is that cross-section dependence

can be represented by a contemporaneous correlation of the errors, and do not
allow for the possibility of cross unit cointegration. In many applications it
is more realistic to allow for some form of dynamic cross-section dependence.
A general model to accommodate cross-section cointegration and dynamic
links between panel units is the panel VECM model considered by Groen
and Kleibergen (2003) and Larsson and Lyhagen (1999). As in Section 5, let
zit denote a n-dimensional vector of times series on the ith cross section unit.
Consider the nN � 1 vector zt = (z01t; : : : ; z0Nt)

0 of all available time series in
the panel data set. The VECM representation of this time series vector is

�zt = �zt�1 + �1�zt�1 + � � �+ �p�zt�p + ut : (56)

For cointegrated systems rank(�) < nN . It is obvious that such systems
typically involve a large number of parameters as the number of parameters
increases with N2. Therefore, to obtain reliable estimates of the parameters
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T must be considerably larger than N . In many macroeconomic applications,
however, the number of time periods is roughly as large as the number of
cross-section units. Therefore, a simple structure must be imposed on the
matrices �;�1; : : : ;�p that yields a reasonable approximation to the under-
lying dynamic system.
The Global VAR (GVAR) introduced by Pesaran, Schuermann andWeiner

(2004) and further developed in Dees et al. (2005) can be seen as a theory
guided reduction of the general dynamic model given by (37), (38) and (39).
In the context of this set up the individual cross section models in the GVAR
can be approximated by the V ARZ�(pi; pi) in zit and z�it:

14

�i (L; pi) (zit � �iddt � �ifz�it) = vit. (57)

for i = 1; 2; :::; N , where dt are the observed common e¤ects (such as inter-
cepts, time trends or oil prices), and z�it is de�ned by

z�it =
NX
j=1

wijzjt.

The weights, wij, j = 1; 2; :::; N must satisfy the following conditions

wii = 0,
NX
j=1

wij = 1, and
NX
j=1

w2ij ! 0, as N !1;

and could be time varying. Typical examples of such weights are wij =
1=(N � 1), for i 6= j, trade weights or other measures of economic distance
between the cross section units. The estimation of (57) can proceed by
treating the cross section averages as weakly exogenous I(1) variables us-
ing standard time series cointegration techniques developed, for example, in
Pesaran , Shin and Smith (2000). The assumption that z�it are weakly ex-
ogenous I(1), or long-run forcing, for zit, can be tested. For further details
see Pesaran, Schuermann and Weiner (2004). It turns out that this is a rea-
sonable assumption for all countries except for the U.S. where most of the
variables should be treated as endogenous.

10 Concluding Remarks

As this review shows the literature on panel unit roots and cointegration has
been expanding very rapidly; in part responding to the complex nature of

14VARZ* represents a VAR model augmented with z�it as weakly exogenous variables.
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the interactions and dependencies that generally exist over time and across
the individual units in the panel. Observations on �rms, industries, regions
and countries tend to be cross correlated as well as serially dependent. The
problem of cross section dependence is particularly di¢ cult to deal with
since it could arise for a variety of reasons; spatial spill over e¤ects, common
unobserved shocks, social interactions or a combination of these factors. Pa-
rameter heterogeneity and deterministics also pose additional di¢ culties and
how they are treated under the null and the alternative hypothesis can a¤ect
the outcome of the empirical analysis.
Initially, the panel unit root and cointegration tests were developed as-

suming that the errors of the individual equations are cross sectionally inde-
pendent. These, referred to as the �rst generation tests, continue to form an
important part of the literature, providing a theoretical basis for the more
recent (second generation) developments that attempt to take account of the
residual cross section dependence in panels in the case of panels where the
time dimension and the cross section dimension are both relatively large. In
the analysis of cointegration the hypothesis testing and estimation problems
are also further complicated by the possibility of cross section cointegration.
These and other issues are currently the subject of extensive research.
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