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Resumo

De acordo com a Organização Mundial de Saúde, o cancro é uma das principais causas de

morte em todo o mundo com certa de 7.6 milhões de mortes em 2008. Excluindo o cancro

de pele não-melanoma foi estimado que cerca de 45% dos pacientes com cancro, se tratados,

podem ser curados. Existem diferentes métodos de tratamento para o cancro sendo a cirurgia,

quimioterapia e radioterapia os tratamentos padrão. A radioterapia possui um importante papel

como método de tratamento do cancro, apresentando uma taxa de cura de cerca de 23% (12%

se utilizada sozinha e 11% quando combinada com cirurgia ou quimioterapia). Atualmente a

técnica de radioterapia dominante, conhecida como "convencional", utiliza fotões. Contudo, o

interesse na utilização de aceleradores de partículas carregadas (considerando apenas partícu-

las com massas iguais ou superiores à do protão) tem vindo a aumentar consideravelmente.

Esse interesse deve-se principalmente ao facto de este tipo de partículas possuir uma curva

de distribuição de dose em profundidade que apresenta um máximo ao qual se dá o nome

de pico de Bragg. Antes do pico de Bragg a deposição de energia é praticamente constante,

sendo que após este, decai bruscamente. Tendo em conta esta distribuição, Wilson propôs o

uso de protões como técnica de alta precisão do tratamento do cancro. A terapia do cancro

com partículas carregadas (protões e iões de carbono) tem vindo a mostrar um grande cresci-

mento, sendo que atualmente já existem cerca de 38 centros no mundo onde esta técnica é

utilizada. Um dos primeiros centros totalmente dedicado ao uso de partículas carregadas no

tratamento do cancro é o Centro Nazionale di Adroterapia Oncologica (CNAO), que se situa

em Itália. Neste centro é utilizada uma técnica de irradiação de tumores denominada de active

scanning technique. Neste método, o tumor é dividido em "fatias" a diferentes profundidades.

Em cada "fatia" é definido um conjunto de pontos que necessitam de ser irradiados de forma

a obter-se, no final, uma distribuição de dose uniforme no tumor. A irradiação de cada "fatia"

pode ser feita utilizando duas técnicas diferentes: o discrete scanning e o quadiscrete scanning.

Na técnica de discrete scanning, o feixe de irradiação é guiado ao longo da "fatia" irradiando os

pontos anteriormente definidos, sendo desligado durante a transição de pontos consecutivos.

Na técnica de quasidiscrete scanning o feixe não é desligado nessas transições, levando à irra-

diação desnecessária das áreas onde não se encontram pontos de irradiação. Esta irradiação

desnecessária, leva à deposição de uma dose extra no tumor, que senão for tida em conta pode

influenciar a distribuição de dose final do tumor. Desta forma, uma optimização do caminho

feito pelo feixe, pode levar a uma diminuição da dose extra. Adicionalmente, em ambas as téc-

nicas (discrete e quasidiscrete scanning) uma optimização do caminho poderá também levar a

uma diminuição do tempo de irradiação e da energia utilizada pelo equipamento. O principal

objetivo desta tese foi estudar o efeito da optimização do caminho feito pelo feixe em planos de

tratamento de pacientes do CNAO. Foram definidos os seguintes objetivos secundários:

• Identificação de possíveis estratégias para resolução do problema proposto através do

estudo da literatura corrente sobre algoritmos de optimização;
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• Implementação e avaliação da performance das estratégias identificadas, utilizando planos

de tratamento de pacientes do CNAO;

• Avaliação do efeito clínico da utilização dos métodos propostos;

• Desenvolvimento de uma ferramenta capaz de optimizar o caminho percorrido pelo feixe,

utilizando os métodos de optimização identificados.

Esta tese encontra-se dividida em cinco capítulos. No primeiro capítulo foram introduzidos al-

guns conceitos sobre terapia do cancro com partículas carregadas e algoritmos de optimização.

No capítulo 2 foi explicada a abordagem tomada para a resolução do problema e quais os méto-

dos utilizados. Os resultados obtidos para os métodos propostos encontram-se no capítulo 3.

Finalmente no capítulo 4 e 5 é apresentada a discussão dos resultados e as conclusões obtidas.

De forma a cumprir os objetivos propostos, foram identificados dois principais algoritmos de op-

timização: Simulated Annealing (SA) e Algoritmos Genéticos (GAs). O SA foi anteriormente

proposto por Pardo e Kang como uma possível solução para o problema identificado. Este

algoritmo é baseado no processo de annealing para formação de cristais. Enquanto que os

algoritmos genéticos baseiam-se no principio da sobrevivência dos mais fortes introduzido por

Darwin. Tal como este principio, os GA podem ser divididos em três partes: seleção, crossover

ou reprodução e mutação. Neste trabalho foram testados diferentes métodos de crossover e

mutação, sendo que o método que ofereceu melhores resultados (uma convergência mais ráp-

ida para uma "boa" solução) foi um algoritmo genético híbrido - Hybrid Genetic Algorithm with

Heuristics (HyGA). O HyGA e o SA foram utilizados para optimização dos caminhos feitos pelo

feixe de irradiação em 10 planos de tratamento de pacientes do CNAO. Em comparação com o

HyGA, o SA apresentou em média, caminhos mais longos para "fatias" com pequenas quanti-

dades de pontos de irradiação e para "fatias" onde estes se encontravam distribuídos de forma

não uniforme. Contudo, os dois algoritmos obtiveram caminhos mais curtos que o sistema de

planeamento do CNAO (CNAO’s TPS). Estes algoritmos também evitaram a presença de inter-

seções nos seus caminhos e a irradiação de áreas onde não existiam pontos de irradiação. De

forma a evitar a irradiação de áreas onde não existem pontos de irradiação, no CNAO é utilizado

um equipamento (o chopper), que deflecte o feixe na zona de extração, evitando a irradiação da

"fatia". No CNAO, o chopper é utilizado quando a distÃ¢ncia entre pontos consecutivos é maior

que 2 cm. Tendo em conta a existência do chopper, o HyGA foi implementado com um método

de clustering. Este método agrupa os pontos de irradiação numa "fatia" em diferentes grupos

(clusters) e optimiza o caminho percorrido pelo feixe em cada grupo de forma independente.

Neste método o chopper foi utilizado quando ocorresse uma transição entre clusters. As impli-

cações clinicas dos métodos propostos (SA e HyGA) foram avaliadas tendo em conta o número

de partículas entregues, o número de partículas desperdiçadas devido ao uso do chopper e o

número de vezes que este foi utilizado. O estudo do número de partículas entregues foi feito

recorrendo a um pencil beam algorithm. Relativamente ao número de partículas entregues,
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o SA e o HyGA, apesar de apresentarem caminhos mais curtos, não reduziram o número de

partículas entregues nos caminhos calculados com o CNAO’s TPS. Contudo, o mesmo não foi

verificado para o HyGA com clustering, que obteve uma redução de cerca de 2%. Uma das

implicações da utilização do chopper é um aumento no número de partículas desperdiçadas

pelo equipamento. O HyGA e o SA obtiveram uma redução média de 86% e 93% no número de

partículas desperdiçadas com o CNAO’s TPS, enquanto que com o HyGA com clustering foi reg-

istado um aumento médio de cerca de 41%. Tendo em conta os resultados obtidos, foi possível

concluir que os algoritmos de optimização propostos poderão ser úteis para duas diferentes fi-

nalidades. A primeira é na redução da energia gasta pelo equipamento. No CNAO, isto pode

ser alcançado utilizando os algoritmos SA e o HyGA, pois irão reduzir o número de partículas

desperdiçadas. Enquanto que para centros onde o chopper não seja utilizado, estes algoritmos

obterão caminhos mais curtos levando a uma redução no funcionamento do equipamento. A

segunda finalidade é na redução na dose extra no paciente, que pode ser reduzida no CNAO

utilizando o HyGA com clustering. Noutros centros esta redução será devida ao encurtamento

dos caminhos percorridos pelo feixe de irradiação. Visto que cada um dos diferentes métodos de

optimização apresenta desvantagens e vantagens, foi desenvolvida uma ferramenta que ofer-

ece a possibilidade do cálculo individual de cada "fatia" utilizando os diferentes algoritmos de

optimização: SA, HyGA, HyGA com clustering e CNAO’s TPS. Em suma, como trabalho futuro

deverá ser estudado o efeito que a dose extra, entregue pelos algoritmos SA e HyGA, terá num

paciente.

Palavras Chave: Optimizaçao dos caminhos, Algoritmos, fatia, pontos de irradiação.
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Abstract

The CNAO (Centro Nazionale di Adroterapia Oncologica) performs charged particle therapy with

an active scanning technique called quasidiscrete scanning. In active scanning the target vol-

ume is divided into isoenergy slices in which a set of irradiation spots is defined. The irradiation

beam is then steered through the slice, delivering the number of particles prescribed to each

spot. The beam is never turned off during the transition between irradiation spots, which leads

to an extra dose of radiation delivered during these transitions. Optimization of the scan path

for each slice is crucial for a reduction in the transit dose. The main aim of this work was to

study the performance and the clinical implications of different optimization algorithms in ten real

treatment plans from CNAO patients. The optimization algorithms used are Simulated Annealing

and Genetic Algorithms. The performances of different genetic algorithm methods were studied,

leading to the selection of the Hybrid Genetic Algorithm with Heuristics (HyGA). The SA and

HyGA produced on average shorter paths than the current CNAO treatment plan system. At

CNAO, in order to reduce the extra dose delivered to the patient, a device is used (the chopper),

that deflects the beam out of the extraction line, when the transition between consecutive spots

is greater than 2cm. To take advantage of this device, a clustering method was implemented

with the HyGA, which assumed that the chopper was used during the transition between clus-

ters. This method was able to reduce by 2% the number of particles delivered with the CNAO

treatment plan system. One of the drawbacks of using the chopper is the high percentage of

particles. The SA and HyGA were able to reduce the particles wasted significantly. However,

they presented an increase of 3% and 5% in the particles delivered with the CNAO treatment

plan system.

Keywords : scan path optimization, algorithms, slice, irradiation spots.
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Thesis Overview

According to the World Health Organization, cancer is a leading cause of death worldwide, ac-

counting for 7.6 million deaths in 2008 [Org12]. It has been estimated that about 45% of all

cancer patients can be cured (excluding those suffering from non-melanoma skin cancers). The

standard methods for cancer treatment are surgery, chemotherapy and radiotherapy. Radiother-

apy plays an important role since approximately 23% of all cancer patients are cured with radio-

therapy (12% if used alone and 11% when combine with surgery or chemotherapy). Currently,

the dominant radiotherapy, known as "conventional", uses photon beams[RBE08]. However, in

the recent years, the interest in using accelerated charged particles 1, such as protons and car-

bon ions, has shown a considerable increase [PK11]. This interest can be attributed mainly to

the characteristic depth-dose curve of these particles. It shows a low and nearly flat energy

deposition in the entrance point and it increases with the penetration depth until it reaches a

maximum (Bragg peak ), and then it falls steeply to approximately zero[HKM11]. Confronted with

this depth dose distribution and with the principle that the ideal radiation to treat cancer is the

one that delivers a defined dose distribution within the target volume and none outside it, Wilson

[Wil46] proposed the use of protons for high precision cancer therapy[Goi08].

Charged particle therapy has shown a remarkable growth: nowadays there are about 38 charged

particle centres in the world, and more under construction [Gro12]. The Centro Nazionale di

Adroterapia Oncologica (CNAO) is one of the first centres totally dedicated to charged particle

therapy. In this centre, it is used the active scanning technique to irradiate the tumors. As it will

be further explained in section 1.1.3, in this technique the target volume is divided into isoenergy

slices containing a set of irradiation spots. The irradiation beam is then steered through each

spot to cover the target volume slice by slice. An optimization of the path made by the irradiation

beam (i.e. the scan path) can affect the treatment time, energy consumption and the extra dose

delivered to the patient. This extra dose, depending on the type of active scanning technique,

can be related with the irradiation of the slice during the transition between spots or with the time

lag between the time when the prescribed particles are delivered and the time when the beam

is turned off in each spot [IFT+07]. A reduction in the scan path can be useful to decrease this

extra dose delivered to the patient as well as the treatment time and energy consumption by the

equipment. Therefore, in this thesis it is presented different optimization algorithms and the their

impact on the scan path of real treatment plans from CNAO patients.

The scan path optimization was recently considered by two different studies [KWO07, PDB+09].

The first study was done by Kang et al. [KWO07], where it was developed a method for mini-

mization of the scan path by applying a Fast simulated annealing (FSA) optimization algorithm.

This method was compared with the zigzag algorithm where the spots in each slice are irradiated

line by line in consecutive rows. The developed method showed path lengths about 13%-56%

1In this work, by charged particles one should consider particles that have equal or higher mass than protons.
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shorter than those of a zigzag pattern, leading to an improvement of the order of seconds in the

treatment delivery time. The FSA algorithm also provided better solutions when the target ge-

ometry was irregular (irregular spot distributions in a slice), avoiding irradiation of unnecessary

areas (areas without prescribed dose).

The second study was done by Pardo et al. [PDB+09] and it is similar to the previous one

[KWO07]. However, it was used the classical Simulated Annealing (SA) instead of the FSA

algorithm. The main difference between both algorithms relies in the definition of the survival

probability. In SA a Boltzmann distribution is used while FSA rely on a Cauchy distribution.

Pardo et al. [PDB+09] study was focused on the best choice of operational parameters which

the SA performance depends on. The convergence properties of the algorithm were further

improved by using the next-neighbour algorithm to generate the starting paths. At the end, it

was study the delivery dose distribution and the treatment delivery time using an optimized path.

The performance of the method was also compared with the zigzag algorithm, showing that the

implemented algorithm was able to optimize efficiently the scan path, leading to a better dose

distribution and reduction of the treatment time.

The work here presented was developed at the Computed Aided Radiotherapy Laboratory (CART-

Lab) group, whose main research is related to patient positioning and tumor tracking. This is a

research group inside the TBMLab (Laboratorio diTecnologie Biomediche), which belongs to Po-

litecnico di Milano. CART-Lab has different collaborations with hospitals and foundations, being

the collaboration with the foundation CNAO the most important for this work [lab11]. At the mo-

ment, in CNAO only proton therapy is being performed and therefore, only information about

patients treated with proton therapy was used.

Objectives

The main goal of the present work was to study the performance and the clinical implication of

different optimization algorithms in real treatment plans from CNAO patients.

The secondary goals were:

• Comprehension of the main issues in path optimizations. Analysis of the current literature

in order to identify possible optimization strategies for the problem.

• Implementation of the identified solutions.

• Evaluation of the performance of the implemented algorithms, using real treatment plans

from CNAO patients.

• Study of the clinical implications of using the optimized paths.
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• Development and implementation of a tool able to perform the scan path optimization using

the competitive algorithms previously identified.

Outline

This thesis was divided into 5 chapters. In each chapter it is presented information that was con-

sider relevant for the understanding of the scan path optimization problem and for the achieve-

ment of the proposed goals.

In order to introduce the scan path optimization problem into its context, chapter 1 summarizes

some concepts behind charged particle therapy and optimization algorithms. In chapter 2, it

is explained how the addressed problem is approached and which methods and materials are

used to solve it. The results from the developed work are in chapter 3, whereas in chapter 4 the

discussion of the results is given. Finally, chapter 5 reports the main conclusions to the work and

future works.
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1
Background Information

1.1 Charged Particle Therapy

This chapter offers a brief explanation of why charged particles are used in therapy and which

techniques are used to make this possible.

1.1.1 Brief history

In 1946 Dr. Robert R. Wilson, a physicist who had worked on developing particle accelerators,

suggested the use of protons and heavy ions as a possibility for radiation treatment. His ar-

gument was based on the depth-dose distribution presented by these particles (Fig.1.1) which

could be suitable to treat tumors in humans [Wil46]. However, as shown in Fig.1.1, the Bragg

peak is very narrow and usually not enough to cover most treatment volumes. Therefore, Wilson

also proposed a technique, still used today, for modulation of the beam in depth. He proposed

the use of a range wheel that creates beams with different energies and peak positions. When

superimposed, the beams produce the Spread-Out Bragg Peak (SOBP) which provides an uni-

form dose to the tumor volume (Fig.1.2).

Figure 1.1: Relative depth-dose of monoenergetic charged particle beams. For protons, dashed line, and
12C-ions, the full line. Adapted from [PK11].
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1.1. CHARGED PARTICLE THERAPY

It took less then 10 years for protons to be used to treat cancer patients for the first time

[TLB+58]. However, despite the advantages of heavier ions the theoretical point of view, they

were not well-understood clinically, therefore only in 1974, Joseph R. Castro and associates

started to study therapy with heavier ions aiming to understand its clinical use. Between 1977

and 1992, several clinical experiences using heavy-ions (especially helium, carbon and neon

ions) took place at the Lawrence Berkeley Laboratory, where encouraging results (mainly for

skull base tumors and paraspinal tumors) were achieved [SEJS06]. However, the cost of devel-

oping and delivering heavy ions eventually could not be justified by the relatively limited number

of patients leading to a slow development of charged particle therapy [Lin12].

Nowadays, due to the development of technology (e.g. accelerators and delivering technology),

charged particle therapy with protons and carbon ions has gained again an increasing interest

[KFM+10]. Worldwide there are about 38 therapy units that treat patients with charged particles

(protons and carbon ions) and more than 75000 patients have been treated so far [Gro12].

Figure 1.2: Spread-Out Bragg peak (dashed line) composed by composed a number of Bragg peaks with
different energies. Adapted from [SEJS06].

1.1.2 Rationale of charged particles

The rationale of using charged particles in radiotherapy is related to the physical process of

particle interaction (the physical rationale) and to the reactions (and its consequences) that occur

at a cellular level after an irradiation with a charged particle beam (radiobiological rationale).

1.1.2.1 Physical Rationale

While charged particles travel through matter, they transfer energy to the medium due to atomic

and nuclear interactions. This energy transfer is approximately inversely proportional to the

square of their velocity [Tur07]. As they start slowing down, the probability of interaction in-

creases. As a result of the accumulation of interactions, the particles stop and transfer the rest

of their energy to the medium. This typical energy loss leads to a depth-dose curve with a sharp

increase of dose at a well-defined depth (Bragg Peak ) and a rapid dose falloff beyond that max-

imum (Fig.1.1). By positioning the Bragg Peak in the tumor it is possible to deliver a therapeutic
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1.1. CHARGED PARTICLE THERAPY

dose while sparing the surrounding tissues (Fig.1.3).

Figure 1.3: Treatment plan of a prostate tumor with proton therapy, using proton beams from 2 fields. The
red area depicts the highest dose (around the prostate), followed by yellow, green and blue being the
lowest dose. Adapted from [Onc12].

The depth and magnitude of the Bragg peak in a determined medium is the Bethe-Bloch equation

(equation 1.1), which gives the mean rate of energy loss (or stopping power)[Tur07]

− dE
dx

=
4πk2

0Z2e4n
mc2β2

[
2mc2β2

I(1−β2)
−β

2
]

(1.1)

The variables definition is in table 1.1.

Table 1.1: Quantities relevant for the Bethe-Bloch equation according to [Tur07]

Symbol Definition

k0 8.99×109 Nm2C−2

Z atomic number of the medium
e magnitude of the electron charge
n number of electrons per unit volume in the medium
m electron rest mass
c speed of light in vacuum
β speed of the particle relative to c
I mean excitation energy of the medium

1.1.2.2 Radiobiological Rationale

When interacting with matter, radiation can damage tissues by direct or indirect action (Fig.1.4).

In direct action, the Deoxyribonucleic Acid (DNA) molecules are directly ionized, being therefore

damaged by the ionizing particles[Cre05]. Since DNA is found in almost all the cell and is

responsible for the function that each cell performs, the damaged made in the DNA either kills

the cell or turns it into a different kind [sit12]. In indirect action, the radiation interacts with other

molecules and atoms, mainly water, within the cell producing free radicals that can damage

the DNA cells. However, to make the DNA damage permanent, further reaction with oxygen is

required to prevent the DNA to repair itself [OzR12].
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Figure 1.4: Direct and indirect (via diffusion of free radicals) radiation effects on DNA. Adapted from
[Pag12].

The effect of radiation in oxygenated and hypoxic tumors1 can be modeled through the Oxygen

Enhancement Ratio (OER) concept. The OER of radiation is given by the ratio between the

dose D required to produce a certain biological effect E in the absence of oxygen and the dose

required to produce the same effect in the presence of oxygen[Lin12],

OER =
Dhypoxic

Doxygen
(1.2)

As one can see in Fig.1.5 for Carbon ions, in opposition to X-rays, the survival curves for air

(oxygenated environment) and nitrogen atmosphere (hypoxic environment) do not differ much

(low OER). The reason behind this fact is because Carbon ions are considered to be high-LET

particles.

Figure 1.5: Cell survival curves of human kidney T1 cells after irradiation with ions or X-rays in air or
nitrogen atmosphere, respectively. Adapted from [Lin12].

1As a tumor grows, it rapidly outgrows its blood supply, leaving normally in large tumors a central cores that lack
in oxygen [Cre05].
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The Linear Energy Transfer (LET) is a measure of the energy that is transferred by an ionizing

particle to the medium where it travels [Lin12]. For high-LET radiation, the DNA damage is mainly

caused by direct action. Whilst for low-LET radiation (like X-rays and protons) about two-thirds of

the damage is caused by indirect action. It is due to this factor that high-LET radiation presents

smaller OER. This reduction in OER and the fact that high-LET particles produce greater damage

to cells than low-LET particles, have become one of the main reasons behind to use high-LET

radiation in cancer therapy [Lin12].

Another important measure used to qualify the radiation damage and its effect in tissues is the

Relative Biological Effectiveness (RBE).

As it is possible to see in Fig.1.5, the fraction of cells surviving a particular dose of photon

(Dphoton) is larger than the fraction of cells surviving the same dose of charged particles (Dparticle)

[HKM11]. This means that charged particles are biologically more effective than photons, being

necessary a lower dose to achieve the same biological effect [SEJS06]. Therefore, a parame-

ter which compares the biological effectiveness of charged particles to photons called RBE was

defined. The RBE can be written as [HKM11]:

RBE =
Dphoton

Dparticle
(1.3)

The RBE depends on the type of particle (underlying LET), cell type and delivered dose. For

proton therapy, the generic RBE of protons is 1.1, however due to the dependency on the afore-

mentioned parameters, this value can vary by about 10% to 20% [PG00]. The dependence on

the various physical and biological properties of RBE for heavy ions (such as carbon) is much

stronger than for protons. They show diverse RBEs as they travel through matter. Under specific

conditions the RBE can be approximated to be only a function of depth (for more information:

article [SEJS06]).

1.1.3 Treatment delivery systems

After the extraction of the beam from a particle accelerator, this is guided to the treatment room

and to the patient using magnets which bend, steer and focus the particle beam. The success

of cancer treatment in radiation therapy is strongly related to the possibility of applying the beam

to the target volume using multiple fields [SEJS06]. The use of a gantry which rotates around

the patient offers this possibility. However, gantries for charged particles are of great size and

weight. A proton gantry weights around 100 tons and has a diameter of 10 meters, whereas an

isocentric gantry for carbon ions has a weight of about 600 tons and a diameter of 13 meters

[Rob12]. The enormous size and weight of a gantry for heavy particles, is one of the reasons

why till 2010 only one heavy-ion center (Heidelberg Ion Therapy Center (HIT)) had a gantry

for cancer treatment [KFM+10] (figure 1.6). Therefore, in heavy-ion centers fixed beam lines

are typically used: vertical beams, 45◦ beam inclination and horizontal beams. Moreover, it is
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possible to move the patient using special treatment chairs [GSI11].

Figure 1.6: Drawing of the heavy ion gantry at HIT including mechanics, beam line components and patient
treatment room. Adapted from [WK08]

The beam produced in the accelerator has a small diameter and small extension of the Bragg

Peak in depth, being necessary to shape the beam in order to be useful for treatment.

Nowadays, in charged particle therapy, there are two methods to shape the beam and thus to

tailor the dose to the target volume: passive scattering and active scanning techniques [KWO07].

1.1.3.1 Passive Scattering

Passive scattering (Fig.1.8) was the first method to be developed and is still broadly used in

charged particle therapy centers. In this technique a ridge filter and/or range shifters are used,

which are responsible to modulate the beam to the desired radiological depth (or SOBP). These

range modulators consist of a number of homogeneous plastic plates of different thickness, that

can be moved into the beam (Fig.1.7).

Figure 1.7: Range modulator wheel combining three range modulation tracks. Adapted from [Pag12].
.

The lateral spread out of the beam to cover homogeneously the whole target can be produced by

interposing scattering material in front of the beam (single scattering and double scattering tech-

niques see [Goi08] for more information). Furthermore, patient and beam-specific collimators are

used to adapt the dose distribution the maximal lateral cross section of the target volume.
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Variations in depth of the distal edge of the target volume are mapped to the dose distribution

by a patient and beam-specific device, the compensator. The distal edge of the dose distribution

can be adapted very precisely to the prescribed target volume, but due to the fixed width of the

SOBP, this shape is transferred to the proximal edge of the dose distribution, resulting in an

unwanted irradiation of proximal normal tissue (Fig.1.8, dark red) [Gro05].

Figure 1.8: Principle of passive scattering (upper part: schematic setup; lower part: variation of lateral and
longitudinal beam profile along. Adapted from setup [Gro05].

Instead of using a scattering system for the lateral spread of the beam, it is possible to use fast,

continuous magnetic deflection (wobbling), that move the beam over a defined area (Fig.1.9)

[SEJS06].

Figure 1.9: Principle of passive shaping with wobbling system. Adapted from [CC09].
.

Whilst passive scattering has proved to be robust, there are some important disadvantages: the

cumbersome use of patient-specific collimators and compensators, the significant beam energy

and intensity losses, the contamination in the beam by fragments, and neutron production in the

scattering material, leading to an unnecessary neutron dose [KWO07].

1.1.3.2 Active Scanning

In active scanning (Fig.1.10) there are two dipole magnets connected in series which steer

the narrow pencil beams in the lateral plane while the range is modulated by controlling the

beam energy [Goi08]. This minimizes the equipment required and automates the treatment
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delivery process by a control system [KWO07]. The target volume is virtually divided into slices

of constant particle range (and energy), the so-called isoenergy slices. Each of these slices is

further divided into single picture elements (pixels or spots). The beam is then steered over each

slice in a way that a precalculated number of particles is deposited to every spot assigned by the

treatment plan [Gro05].

Figure 1.10: Principle of active beam scanning. Adapted form [Gro05].

Active scanning can be divided into two categories: Discrete or spot scan, where the beam

is turned off during the scanning between consecutive spots, and raster or quasidiscrete scan

where instead of turning off the beam between consecutive spots, this is only turned off when a

slice is finished and a new energy is set [KWO07].

In Active Scanning the dose distribution is delivered by placing the Bragg peak in the patient one

location at a time and then one layer at a time by varying the beam energy, thus allowing the use

of Intensity-Modulated Proton Therapy (IMPT). With IMPT the uniform dose distribution over the

target volume is constructed only by the combination of two or more treatment fields (different

irradiation angles). Each individual field can deliver a highly inhomogeneous dose distribution to

the target, but when combined lead to a uniform dose over the target [Pag12].

1.1.4 The CNAO facility

The Centro Nazionale di Adroterapia Oncologica (National Centre for Oncological Hadronther-

apy), better known as CNAO, is a synchrotron-based oncological treatment center which uses

charged particles with the quasidiscrete scanning delivery technique [GAA+08]. It is the first

hospital in Italy (and sixth in the world after United States of America, Germany and Japan)

specifically dedicated to cancer treatment using heavy-ions [Wik11a].

The idea of an Italian hadrontherapy center dates back to 1991 when professor Ugo Amaldi

made the first proposal [AT91]. In 1992 the TERA foundation [TER11] (TErapia con Radiazioni

Androniche, which in English means Therapy with hadronic particles) was created, a non-profit

foundation whose main purpose is the introduction of the most recent techniques to treat cancer

in Italy and Europe. Later in 1994, the TERA foundation was recognised by the Italian Ministry
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of Health [Pul08].

In 1996, Organisation Européenne pour la Recherche Nucléaire (CERN) [CER11], med-austron

and TERA started the Proton Ion Medical Machine Study (PIMMS) in collaboration with Gesellschaft

für Schwerionenforschung (GSI) and Onkologie-2000 which joined later the study group. This

study lasted approximately four years and its aim was to design an accelerator (synchotron) and

the beam lines of a proton and carbon ion hadron therapy center, without any financial and/or

space limitation [Ama01].

In 1997, on the basis of the ongoing work of PIMMS, the TERA foundation proposed the con-

struction of the CNAO in Italy, based on the PIMMS system, but less expensive. In 2001, with

the financial law, the Italian Ministry of Health created a non-profit organization, named CNAO

foundation, to build and subsequently run the National center for Hadrontherapy [Pul08].

The CNAO is located in Pavia and its inauguration took place in 15th of February, 2010. However,

the first patient was only treated in September 2011 with protons [Pic11]. Other patients have

been treated so far and the CNAO has commenced enrolling patients into clinical protocols

approved by the Ministry of Health for the use of proton beams. Currently, CNAO plans to

activate new clinical protocols and implement a new phase of treatment using carbon ions2. By

the end of 2012 it is envsion that the clinical trial phase is over, leading to the next phase of the

Centre’s operation that will treat about 3000 patients per year, expand the clinical indications and

conduct clinical radiobiological and technology research activities [CNA12].

The CNAO has three treatment rooms equipped with horizontal fixed beam outlets; one of them

houses an additional beam line from above (vertical). Siemens Healthcare supplied the treat-

ment planning program, the syngo PT Planning for scanned protons and carbon ions in 2009

[Hea11].

A collaboration with the CNAO center allows access to patient treatment plans which can be

used for testing the optimization algorithms.

1.1.5 Dose Calculation: Pencil Beam Algorithm

As already stated, at CNAO it is used an active scanning technique to irradiate the target volume.

In active scanning many (up to tens of thousands) narrow particle beams are used for irradiation

[G1́1]. A simple method that has been broadly used in proton therapy for dose calculation is the

Pencil Beam (PB) algorithm.

Different PB algorithms have been considered [HGB+96, SFA05] in radiotherapy, however they

all rely on the same principle. In a PB algorithm the total dose delivered to an irradiated area

is the sum of the dose given to each irradiated spot plus the dose contribution of each pencil

beam used for irradiating the adjacent spots. A pencil beam irradiating a spot p1 can contribute

2Currently, only proton therapy is being done
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to the dose of an adjacent spot p2. The reason behind this is mainly because charged particles

while traversing a medium suffer elastic scattering due to the interactions with the electric field

of atoms [Att91]. This scattering leads to a spatial distribution of the pencil beam that can be

approximated to a Gaussian distribution (Fig.1.11)[Pag12].

Figure 1.11: Representation of the lateral distribution of charged particles when traversing a medium. For
small-angle scatter, the distribution is approximately Gaussian.

Therefore, the dose of each pencil beam to a point/spot p, can be stated as follows [Pag12]:

D(p) =
W

2πσ2 exp

(
−

r2
p

2σ2

)
D∞(p) (1.4)

where W is the dosimetric weight of the pencil beam (physically proportional to the number of

protons in the pencil beam), D∞(p) is the depth dose contribution in p (given by the depth-dose

curve, Fig.1.1), rp is the distance from the pencil beam axis to p and σ is the spread of the pencil

beam at depth p.

The depth-dose distribution D∞ can be obtained by experimental data [HGB+96] or by precalcu-

lated [SA07] curves generated by Monte Carlo (MC) methods.

MC algorithms are the most accurate methods of simulating particle interactions within a medium.

In a MC method, individual particles are tracked (one by one, step by step) as they penetrate

through the patient and interact with the material through which they pass. The likelihood of

an interaction (selection of which interaction the particle must suffer), and its consequences, is

randomly sampled from one or more probability distributions [G1́1, Pag12].

The complete dosimetric study could be developed by a MC method, which had already proved

to be more accurate than a PB algorithm [PJP+08]. However, the implementation of a MC

algorithm can not be trivial and in order to obtain sufficient statistical accuracy for useful dose

distributions (depth and lateral) in practical situations, tens of millions of particles usually must

be traced. Such calculations can take hours or even days to process [G1́1, PJP+08].
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1.2 Optimization Algorithms

1.2.1 The Travelling Salesman Problem

The scan path optimization problem can be viewed as a Travelling Salesman Problem (TSP).

The travelling salesman problem is combinatorial optimization that was first formulated as a

mathematical problem in 1930 and is one of the most intensively studied problems in optimization

[Wik12b]. The classical formulation of the TSP can be denoted as follows:

Given a set of N cities and the travel cost (or distance) between each possible pair of cities, the

task of the TSP is to find the best possible way of visiting all the cities exactly once and returning

to the origin city while trying to minimize the travel cost (or travel distance).

The total number of possible routes covering all cities is given by (N−1)!/2, which makes the

search for the exact solution impractical [Dav10]. Therefore, different optimization algorithms

have been proposed in order to solve it satisfactorily.

As it will be later explained in section 2.1, in the scan path optimization the irradiation spots in

each slice can be treated as the cities that must be visited by the irradiation beam. However, in

this case it is not necessary to return to the initial spot. To solve this optimization problem it was

considered different optimization algorithms that will be explained below.

1.2.2 Simulated annealing

The SA is an heuristic algorithm, which guarantees the convergence to a near-optimal solution

in a reasonable time. The SA algorithm also has the ability to avoid trapping in local minima. The

name and principle of SA come from annealing in metallurgy. It is a technique involving heating

and controlled cooling of a material to increase the size of its crystals and reduce their defects.

[Wik11c]. At high temperatures, the atoms become unstuck from their initial positions (a local

minimum of the internal energy) and move freely with respect to one another through states of

higher energy. With a decrease in the temperature, the thermal mobility is lost, therefore it is

important to assure a slow cooling, which gives to the atoms more changes of finding configura-

tions with lower internal energy than the initial one, forming a crystal. This crystal is the state of

minimum energy for this system [PTVF07].

In an optimization problem, the objective function, is the equivalent of the internal energy, which

needs to be minimized. A control parameter T needs to be defined and it will play the role of

the temperature. The algorithm starts from a possible solution (possible path), where at a fixed

temperature, random perturbations lead to a new path (rearrangement of the atoms, in the an-

nealing process). If this new path corresponds to a lower value of the objective function it is

accepted, while if it results in a higher value, this new path is accepted with a probability depend-

ing on the control parameter, T (usually, the probability is according a Boltzmann distribution).
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After a pre-defined number of cycles, or if the number of accepted paths/solutions (number of

successes) reaches a pre-defined value, the control parameter, T , is decreased and the later

process is repeated, where the initial solution is now set to the path configuration obtained before

[PTVF07, PDB+09].

1.2.3 Genetic Algorithms

Genetic Algorithm (GA) was first introduced by John Holland for the formal investigation of mech-

anisms of natural adaptation [Hol75]. Nowadays, GAs are routinely used to generate useful solu-

tions to optimization and search problems [Wik11b]. GAs are based on the principle of "Survival

of the fittest", introduced by Charles Darwin [Dar59]. According to this principle, in nature the

fitness is related to the ability of an individual to survive and reproduce. Nevertheless, there is a

small probability of survival of the less fitted. The GAs can be described as a process with the

following steps:

• Encoding;

• Selection;

• Crossover;

• Mutation;

1.2.3.1 Encoding

The first step when using a genetic algorithm is to create the initial population which contains

the individuals that will lead to the future generations. Each individual is a possible solution for

the optimization problem. The encoding is related to the way each individual is represented.

This process is one of the most difficult aspect of solving a problem using genetic algorithms.

In the crossover process, a non appropriate representation of the individuals/solutions will lead

to impossible configurations. There are different ways to represent each individual/solution in

the population, however for the present work it will be only considering the path representation

[Bry00] (section 2.1.1 in chapter 2).

1.2.3.2 Selection

Selection consists in selecting the individuals of the present generation (or population) that will

participate in the next operations: crossover and mutation [ADA08]. The selection is done taking

into account the fitness value, which is given by the optimization function.

1.2.3.3 Crossover

After two individuals being selected from the population (hereafter, called the parents), they may

or may not, exchange exchange partial structures randomly selected to produce two new individ-
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uals/offspring [ADA08]. This exchange is called crossover process and can happen according to

a certain probability - crossover probability.

1.2.3.4 Mutation

Mutation occurs after crossover and as in nature it exchanges alleles/spots randomly [ADA08].

It is used in order to avoid the optimization process being trapped in a local optimum. Due to

the randomness of the process, it is normal that occasionally some paths will be near a local

optimum but and none near the global optimum. Therefore, it is introduced the possibility of

mutation for the possible solutions. The mutation is random process that occurs according to a

certain probability -mutation probability. It allows a larger diversity in the solutions avoiding the

local optimum trap [Bry00].

1.2.4 Nearest neighbour and 2-opt algorithms

The Nearest Neighbor algorithm (NN-algorithm) is one of the oldest and most intuitive optimiza-

tion algorithm that was first introduced by Rosenkrantz et al. [Goe11]. In the context of the TSP

problem the NN-algorithm can be described as follows:

Given a starting city, according to this algorithm the next city to be visited is the one that has a

smaller travel cost (or the closest one). This procedure is repeated till all the cities were visited.

The NN-algorithm is a greedy algorithm. A greedy algorithm tries to solve a problem by making

the locally optimal choice at each stage with the hope of finding a global optimum. However, a

sequence of optimal single-step actions may not lead to a global optimal solution. For instance,

different starting points may lead to different solutions and none be the optimal solution [Goe11].

The 2-opt algorithm was first proposed by Croes [Wik12a] to solve the travelling salesman prob-

lem. It is a local search algorithm, which tries to improve a route by applying local changes, until

a solution deemed optimal is found. In piratical terms, the main idea of this method is to take

a route with intersections (route that crosses over itself) and reorder it so that it does not have

intersections (Fig.1.12).

Figure 1.12: The 2opt method.
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2
Methods and Materials

In this chapter the methods and materials used in this study will be described. All the data used

was obtained from real treatment plans of CNAO’s patients.

2.1 Scan path optimization

The optimization of the scan path of a 3D target volume can be approached as a variation of the

travelling salesman problem (see chapter 1.2.1 in page 11). A complete 3D scanning sequence

is just the sum of all 2D scanning maps (energy slices) over all beam angles. Thus, the 3D

scan path optimization problem can be naturally subdivided in a sequence of independent 2D

TSPs, which is much faster to solve and simple. The scan path for each slice is optimized

independently from the other slices. In this way, the 3D path optimization is reduced to two

dimensions. Considering one slice with N irradiation spots, the position of each irradiation spot

is given by the Cartesian coordinates (xi,yi), with i = 1,2....N (e.g. Fig.2.1). The distance

between each two spots is given by:

d =
√
(xi− xi+1)2 +(yi− yi+1)2 (2.1)

Therefore, the total path length ( f ) is given by:

f =
N−1

∑
i=1

√
(xi− xi+1)2 +(yi− yi+1)2 (2.2)

This equation is the objective function to be minimized.

2.1.1 Encoding

The encoding process is related to the way possible solutions are represented. For the applied

methods it was used the path representation, where the irradiation spots are numbered i =

1,2, ...N, being N the number of spots per slice [LKM+99]. Therefore, a possible scan path is a
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2.1. SCAN PATH OPTIMIZATION

Figure 2.1: Scheme of a spot distribution.

permutation (with no repetition) of N values. Each value corresponds to a irradiation spot, which

in turn is represented by the Cartesian coordinates (xi,yi).

2.1.2 Simulated Annealing

The implementation of this algorithm, as well as the selection of the operational parameters,

were based in the study developed by Pardo [PDB+09]. The implemented pseudo-code is in

Fig.2.2

For a given slice with N irradiation spots,

1. Generate a starting path P0;

2. Start the decreasing temperature loop, with a T = T0;

(a) Start the random perturbation loop;

i. Obtain a new path P by performing a random arrangement in P0;

ii. Compute ∆ = f (P)− f (P0) (equation 2.2);

iii. If ∆≤ 0, set P0 = P and the number of success is increased by one;

iv. Else, choose a random number r ∈ [0,1]. If r < e−∆/T , set P0 = P and

the number of success is increased by one;

(b) End of the random perturbation loop, if the number of iterations is over or if

the number of allowed success is reached.

(c) Decrease the temperature according to equation 2.3;

3. End of the decreasing temperature loop if the number of iterations is reached.

Figure 2.2: SA pseudo-code.
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The decrease in temperature in each iteration (i) is given by:

T = aiT0; (2.3)

where a = 0.9 and T0 = 0.5 according to Pardo study[PDB+09].

In the decreasing temperature loop it was considered 1000 iterations, while for the random per-

turbation loop, 100×N iterations and 10×N success were considered. As path rearrangement

it was used two possible path configurations, each one with a 50% probability of being selected.

The two path rearrangements were the following:

1. A path segment of size n is removed from the path and replaced with the same segment

in reverse order.

2. A path of size n is removed and then replaced between two other spots, randomly chosen.

n is a random integer from 4 to N;

According to recent studies [GGKL05, PDB+09], the convergence of an optimization algorithm

can be faster if the initial solutions are already "good" solution. Therefore, to create the starting

path it was considered the NN-algorithm (section 1.2.4).

In the present work, the algorithm was implemented using C++ language.

2.1.3 Genetic Algorithms

It was implemented a standard GA to solve the scan path optimization. The implemented

pseudo-code can is shown in Fig.2.3.

The fitness function is given by equation 2.2. Shorter the path length, higher is its fitness value.

For the selection process it was considered a linear rank-based roulette method, which sorts the

population according to their fitness rank. The fitness rank (equation 2.4) of each member in the

population is calculated taking into account their fitness value (equation 2.2) and a controlling

parameter - the Selective Pressure (SP). The SP values is responsible for controlling the bias-

ness and can be a value between 1 and 2. The pseudo-code of the rank-based roulette is shown

in Fig.2.4.

Fitness_Rank(Pos) = 2−SP+2× (SP−1)× Pos−1
N−1

(2.4)
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For a given slice with N irradiation spots,

1. Generate a starting population P0, that contains Npop possible paths;

2. Set the number of iterations (Nit ) to zero.

(a) Compute the fitness function of each individual in P0 (equation 2.2);

(b) Select two individuals from P0 taking into account their fitness value.

(c) If a random number is lower then the crossover probability Pc

i. Crossover the two selected individuals, which will lead to two new off-

springs;

ii. If a random number (between 0 and 1) is lower then the mutation prob-

ability Pm, mutate both offsprings;

iii. Replace in P0, the two less fitted individuals by the two offsprings;

(d) Repeat the process until Nit equals the stopping criteria.

Figure 2.3: GA pseudo-code.

For a population with N possible paths:

1. Order the paths in the population taking into account their fitness value (equation

2.2). To the least fitted assign the first position (Pos = 1), while to the fittest the

last, Pos = N;

2. Calculate the ranking of each path (equation 2.4) and normalize the ranking

values to its cumulative sum;

3. Sum the ranking values of each path, according to the previous established or-

der, till the sum exceeds a random number between zero and one;

4. The path in which the summing process stopped is the one selected for

crossover;

5. Repeat as many times necessary.

Figure 2.4: Rank-based roulette.

For crossover three different methods were tested: Partially Mapped Crossover (PMX), Order

Crossover (OX) and Cycle Crossover (CX).

Order Crossover (OX) This method was proposed by Davis [Dav85]. The offspring is built by

choosing a subsequence of a tour from one parent and preserving the relative order of the

other parent. An example of how this crossover method works is shown in Fig.2.5a.
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Cycle Crossover (CX) This method was first proposed by Oliver [OSH87], where the offsprings

are build in such a way that each spot (and its position) comes from one of the parents.

In Fig.2.5b it is shown an example of how this algorithm works. The algorithm starts from

copping into the offspring 1 the first position of parent 1. Then it checks which spot is in

the first position in parent 2 and search it in parent 1 and once again copy it into offspring

1. This process continues till the offspring is complete or a repetition is found (red dashed

arrow). In the later case, the empty positions in the offspring 1 are filled with the spots in

parent 2 that were not used. For the second offspring it is followed the same method but

the starting spot is from parent 2.

Partially Mapped Crossover (PMX) This method was proposed by Goldberg and Lingle [GL85].

In this method an offspring is built by choosing a subsequence of a tour from one parent

and preserving the order and position of as many spots as possible from the other parent.

As in the OX method, two random cut points are used to define the subsequence that will

be copied. The sub-tours in each parent are called mapping sections, because they will

give a map that will be used to legalize the offspring (red arrows). An example of this

method is in Fig.2.5c.

As in the SA methods, the initial population was created using a NN-algorithm. The GA algorithm

was applied using Matlab®.
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1	   2	   3	   4	   5	   6	   7	   8	   9	  

4	   5	   2	   1	   8	   7	   6	   9	   3	  

Parent 1 

Offspring 1 

Parent 2 

Parent 1 

Offspring 2 

Parent 2 

2	   1	   8	   4	   5	   6	   7	   9	   3	  

Select a sub-tour 

4	   5	   2	   1	   8	   7	   6	   9	   3	  

3	   4	   5	   1	   8	   7	   6	   9	   2	  

1	   2	   3	   4	   5	   6	   7	   8	   9	  

Select a sub-tour 

(a) Order Crossover method.

1	   2	   3	   4	   5	   6	   7	   8	   9	  

4	   1	   2	   8	   7	   6	   9	   3	   5	  

1	   2	   3	   4	   5	   6	   7	   8	   9	  

4	   1	   2	   8	   7	   6	   9	   3	   5	  

4	   1	   2	   8	   5	   6	   7	   3	   9	  

1 2 3 4 5 

6 7 8 9 

1 2 3 4 5 

6 7 8 9 

Parent 1 

Offspring 1 

Parent 2 

Parent 1 

Offspring 2 

Parent 2 

1	   2	   3	   4	   7	   6	   9	   8	   5	  

(b) Cycle Crossover method.

1	   2	   3	   4	   5	   6	   7	   8	   9	  

1	   3	   4	   5	   8	   2	   7	   6	   9	  

Parent 1 

Offspring 1 

Parent 2 

Parent 1 

Offspring 2 

Parent 2 

1	   3	   8	   4	   5	   6	   7	   2	   9	  

Select a sub-tour 

1	   3	   4	   5	   8	   2	   7	   6	   9	  

1	   6	   3	   5	   8	   2	   7	   4	   9	  

1	   2	   3	   4	   5	   6	   7	   8	   9	  

Select a sub-tour 

5	   8	   2	   7	  

4	   5	   6	   7	  

Mapping Relation 

4 5 8 
6 2 

7 7 

(c) Partially Crossover method.

Figure 2.5: Different Crossover methods. The sub-tours are randomly selected.
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2.1.4 Hybrid Genetic Algorithm

The objective of using a hybrid algorithm is to combine the best characteristics of different algo-

rithms. In order to speed up the convergence of the GA it was implemented two hybrid methods:

The Genetic Algorithm with Greedy Sub-tour Mutation (GSTM) and the Hybrid Genetic Algorithm

with Heuristics (HyGA).

2.1.4.1 Genetic Algorithm with Greedy Sub-tour Mutation

This hybrid algorithm uses the genetic algorithm described in Fig.2.3 with a greedy mutation

method - GSTM. This method was proposed by Albayrak and Allahverdi [AA11], and tries to

improve the path every time there is the mutation process. Its pseudo-code is described in

Fig.2.6 to Fig.2.9 while in table 2.1 shows the definition of the used variables.

For each offspring:

1. Select randomly a sub-tour;

2. If Rnd ≤ PRC

(a) Subtract the sub-tour from the offspring (Fig.2.7b);

(b) Reconnect the sub-tour to the offspring in such a way that the total path

length is minimal (Fig.2.7c);

3. Else

(a) If Rnd ≤ PCP

i. Perform the random distortion algorithm (Fig.2.9);

(b) Else

i. Select one neighbour (NLR1 and NLR2) from each neighbour list

(Fig.2.8a);

ii. Invert the path (Fig.2.11b) making NLR1 and NLR2 being connected

with R1 and R2 respectively (Fig.2.8b and 2.8c);

Figure 2.6: GSTM pseudo-code. Adapted from [AA11].
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Table 2.1: Variables that are relevant for the GSTM algorithm [AA11].

Symbol Definition Value

Rnd Random number [0,1]
PRC Reconnection probability 0.5
PCP Correction and perturbation probability 0.8
PL Linear probability 0.2
R1 First spot of the sub-tour -
R2 Last spot of the sub-tour -

NLR1 Spot from the neighbour list of R1 -
NLR2 Spot from the neighbour list of R2 -

(a) Original Path. (b) Removal of a random sub-
tour.

(c) Reconnection with the path
in a way the total path length is
minimal.

Figure 2.7: Greedy reconnection. Adapted from [AA11].

Set w = R1;

1. If Rnd ≤ PL

(a) Select randomly a spot from the sub-tour and set the w position of the

offspring to this value;

2. Else

(a) Set w position of the offspring to the last spot of the sub-tour;

3. Remove the spots from the sub-tour that were already selected and set w =

w+1;

4. Repeat the process while there are spots in the sub-tour.

Figure 2.9: Random distortion algorithm.

The method was implemented in Matlab®.
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(a) Neighbour list of R1 (dashed
blue circumference) and R2
(dashed red circumference).
Neighbourhood’s size = 7.

(b) Reconnection by the
inversion method of NLR1
with R1.

(c) Reconnection by the
inversion method of NLR2
with R2.

Figure 2.8: Sub-tour inversion and neighbour list. Adapted from [AA11].
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2.1.4.2 Hybrid Genetic Algorithm with Heuristics

The HyGA was proposed by Sengoku and Yoshihara [SI93] and combines a genetic algorithm

with a 2opt method. The pseudo-code of this algorithm is described in Fig.2.10. For crossover

it was consider the Greedy Subtour Crossover (GSX) method which was also proposed by Sen-

goku and Yoshihara [SI93] (Fig.2.12).

The mutation was done by using the the 2opt method (section 1.2.4) that improves a path by

detecting and undoing the intersections found (Fig.2.11). An intersection can be identified when

Wi+rW i+r+1 +WiW i+1 >Wi+rW i +Wi+r+1W i+1 is satisfied.

The algorithm was implemented in Matlab®.

For a given slice with N irradiation spots,

1. Generate a starting population P0, that contains Npop possible paths;

2. Elimination of Npop× pe% paths from the population taking into account their

fitness value (i.e. the path length given by equation 2.2). The new population P

has Npop× pe% less possible solutions than P0.

(a) The paths are sorted according to their path length;

(b) The path length of adjoining paths is compared. If the difference is less than

ε (a small positive real number), the preceding path is eliminated while the

number of eliminated paths is less than Npop× pe%. If the total number of

eliminated paths is lower than Npop× pe%, then the paths with the lowest

path length are eliminated till the total number of eliminated paths reaches

Npop× pe%.

3. Npop× pe% solutions are selected from P for Crossover. The resultant Npop×
pe% offsprings are added to the population P, which will now have Npop individ-

uals.

4. Npop× pi% solutions are selected from P for Mutation. The best solution (lower

path length) is always selected from P.

5. Set P to P0 and go to step 2. Repeat till the total number of iterations is reached.

Figure 2.10: HyGA pseudo-code. Adapted from [SI93].
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(a) Intersection. (b) Non-intersection.

Figure 2.11: Inversion method. W represents the spot and the subscript represents the path order:
1,2..., i, i+ 1...i+ r− 1, i+ r, i+ r + 1....N. Using the inversion method [CH06], the path is modified
to 1,2..., i, i+ r, i+ r−1...i+1, i+ r+1....N.

1. Select a random spot, t = 6, and copy it into the offspring;

2. Identify the position where t = 6 is placed in each parent: x1 and x2. Set x1 =

x1−1 and x2 = x2 +1;

3. Place the spot in position x1 on the left side of the spots already in the offspring.

Do the same with x2 but place it on the right side;

4. Repeat this process while the offspring’s size is not the same of its parents or if

one of the selected spots is already in the offspring.

5. If the offspring still does not have the same size as its parents, add randomly the

rest of the "unpicked" spots.

1	   2	   3	   4	   5	   6	   7	   8	   9	  

Parents 

4	   5	   2	   1	   8	   7	   6	   9	   3	  
4	   5	   6	   9	   3	  

Offspring 

Pick up spots from the parents alternately  
Add the  rest of the spots 

in a random order 

3 8 1 7 2 

Figure 2.12: Greedy Sub-tour Crossover. Adapted from [SI93]

2.2 Clinical Cases

The data used to assess the performance of the optimization algorithms was obtained from

treatment plans of real patients at CNAO. The Treatment Plan System (TPS) used in CNAO is the

syngo PT Planning, manufacture by Siemens AG, Healthcare Sector, Oncology Care Systems.

In each Treatment Plan (TP) it is possible to obtain information about the number of slices, the

scanning path and spot distribution in each slice, the number of particles prescribed to each spot
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and the beam Full-Width-Half-Maximum (FWHM), intensity and energy.

As already mentioned, in quasidiscrete scanning, the beam is not turned off during the irradiation

of each slice. However, clinically at CNAO when the distance between two consecutive spots is

greater than 2cm, a device called chopper is used. The chopper deflects the beam out of the

extraction line, avoiding irradiation of the tumor during this transition. The beam is still steered

between the two consecutive spots (without delivering particles), contributing for the total path

length.

The possibility of using the chopper during irradiation was taken into account in the particle

distribution study. The use of chopper was consider in two different situations:

• During the transition between two consecutive spots when their distance was greater than

2cm

• During the transition from one cluster to other.

The first situation is the same situation considered at CNAO. For the second situation it was

implemented the clustering algorithm bwlabel from Matlab®.

The bwlabel is an image processing function that receives as input a binary image and returns

a matrix containing labels of the connected objects (clusters) in the input [Mat12]. The labelling

starts from picking a pixel bi j = 1 and assign a label to this pixel and its neighbours. Then, the

neighbours of these neighbours are also labelled (except those that have already been labelled),

and so on. When this process terminates, other pixel that has not been labelled yet is selected

and the labelling process repeated (with a different label) until all the bi j = 1 pixels in the image

are labelled.

The spot distribution in each slice was converted into a binary image with a pixel size that is

given by the distance between the two closets spots (e.g. Fig.2.13).

2.3 Clinical Implications

The effect of the scan path optimization was accessed by studying the effect on the number of

particle delivered in each TP. To do this study it was necessary to define a set of several param-

eters: the beam intensity (I in particless−1), beam speed, FWHM, spot distribution, scan path

and number of particles (Np) delivered to each spot. The CNAO’s TPS provides all these infor-

mations, except the beam speed which was assumed to be constant during all the irradiation,

with a value of 20ms−1 1.

For each treatment plan, four different optimizations were considered, one with the original scan-

ning path (provided by CNAO’s TPS) and the ones obtained with SA, HyGA and HyGA with

1The maximum scan speed allowed by the equipment at CNAO is 20ms−1
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Figure 2.13: Cluster representation. On the left the spot distribution of one slice, each color represents one different
cluster; on the right the respective image with a pixel size of 3mm×3mm.

clustering.

The effect of the different optimization algorithms in the particles distribution was studied by

considering a simple Pencil Beam Algorithm (section 1.1.5) and a water environment.

2.3.1 Coordinates system

Each slice was represented by a Cartesian grid (x−y plane) positioned perpendicular along the

beam axis (z− axis) (Fig.2.14a). The scan path of each slice was sampled and added to each

2D image matrix (Fig.2.14b). To each pixel corresponding to an irradiation spot it was assigned

the correspondent value of prescribed particles. To each pixel corresponding to the transition

between irradiation spots (the scanning path), the number of particles delivered was calculated

by using the approximation 2.5. ∆Q is the distance between the center of two consecutive pixels,

which was considered to be 1mm.

NP =
I×∆Q

v×10−3 (2.5)

2.3.2 Pencil Beam Algorithm

By using the pencil beam algorithm, the dose delivered to each pixel can be calculated by using

equation 1.4 in section 1.1.5. This equation can be divided into two terms: one representing

the lateral dose contribution (Gaussian distribution) and the other related to the depth dose

contribution.

Depth Dose Distribution In each treatment plan for a determined irradiation field there are Ns

slices. Each slice is irradiated with a pencil beam whose energy is defined by the depth at each

slice is. To each pencil beam with a different energy is associated a depth-dose curve (Fig.2.15).
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(a) On the left the image of the spot distribution on the
right.

(b) On the left the image of the scan path on the right.

Figure 2.14: Spot distribution and path matrix.

Considering a slice i, the irradiation of the N− i posterior slices 2 contributes to the dose distribu-

tion of the 1st ,2nd...ith slices. This dose contribution from each posterior slice is determined by

the depth-dose curve of each pencil beam, the scanning path and spot distribution of each pos-

terior slice. The depth-dose curves in water were obtained by Monte Carlo simulation [Cas12].

Figure 2.15: Depth-Dose Distribution profiles.

Lateral Dose Distribution As previously mentioned, the lateral dose distribution of a proton

beam can be approximated to a Gaussian distribution. The standard deviation,σ, is calculated

by using equation 2.6:

2slices irradiated with higher energies
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σ =
FWHM
2
√

2ln2
(2.6)

For every pixel of interest it was defined a polar grid (perpendicular to the z− axis) with radius

of 3σ [HGB+96]. This polar grid contained the lateral weights/contribution of the pencil beams

irradiating each pixel - Gaussian matrix. The total lateral dose distribution of each slice was

obtained by convolving the Gaussian matrix with each 2-D image matrix containing the irradiation

spots and scanning path of each slice.

Figure 2.16: On the left the normalized Gaussian distribution for a FWHM = 2, on the center the polar grid
[G1́1] and on the right the 2D matrix with the weights of the polar grid - Gaussian matrix.
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3
Results

All the data processing was done with Matlab® and using information from ten different treatment

plans of CNAO’s patients. Due to the large number of data (≥ 3000 scan paths), only some

results obtained for individual slices and the average values were selected to be shown. In

appendix A, it is shown the results obtained in each individual treatment plan.

3.1 Genetic Algorithms Performance

In order to access the performance of each GA algorithm with different crossover (CX, OX, PMX)

and mutation (random swap and GSTM) methods and the HyGA (section 2.1.3), it was calculated

the scan path of two different slices. The evolution of the path length with the number of iterations

is shown in Fig.3.1 and Fig.3.2.

The parameters considered in the simulations are in table 2.1 (section 2.1.4.1) and table 3.1.

The population size, Npop (Fig.2.3 and 2.10) was set to 30 individuals for slices with more than

30 irradiation spots, while for slices having lower or equal than 30 irradiation spots was set to the

number of irradiation spots in the current slice.

For the GSTM method, the neighbourhood’s size in the GSTM method (Fig.2.6 and 2.8a in sec-

tion 2.1.4.1) was set to 2 when the number of irradiation spots in a slice was lower than 15 and to

5 when the number of spots was equal or higher than 15. The sub-tours were randomly selected

with a random size between 2 and
√

N (with N being the number of irradiation spots). The ε

parameter in the HyGA (Fig.2.10) was set to the minimum distance between two consecutive

spots in a scan path.

Fig.3.1a and Fig.3.2a show the spot distribution of the considered slices. The swap mutation

method was tested with a CX crossover method (figures 3.1b and Fig.3.2b) against the GSTM

with a CX crossover (figures 3.1c and 3.2c). The performance of the different crossover meth-

ods (CX, PMX and OX) was studied considering the GSTM method (figures 3.1c,3.1d,3.1e and

figures 3.2c,3.2d,3.2e). In Fig.3.1f and Fig.3.2f it is shown the convergence (or evolution of the
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path length with the number of iterations) of the HyGA method.

Table 3.1: Variables that are relevant for the GA.

Symbol Definition Value

Pc Crossover probability 0.9
Pm Mutation probability 0.2
Pi Percentage of improvements 20%
Pe Percentage of eliminations 30%
Nit Number of iterations 50000
SP Selective pressure 1.2
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(f) HyGA

Figure 3.1: Convergence of GA using different crossover and mutation methods. Data show the average
value and the standard deviation (error bar) of 10 runs. The slice contains 109 irradiation spots.
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Figure 3.2: Convergence of GA using different crossover and mutation methods. Data show the average
value and the standard deviation (error bar) of 10 runs. The slice contains 56 irradiation spots.
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3.2 Scan Path Optimizations

From Fig. 3.3 to Fig. 3.6 if is shown different scan paths of four different slices. The optimization

of the scan paths was performed using the SA (section 1.2.2), the HyGA (section 2.1.4.2) and the

CNAO’s TPS. The optimization parameters were the same as described in section 3.1, except the

number of iterations, Nit , for the HyGA, which was set to 100. These slices were selected from

all the data because they showed different spot patterns. The spot pattern can be considered

uniform or non-uniform. A non-uniform slice contains more than one cluster of spots. The

clusters of these slices are represented by different colors in the (d) figure of each one of the

examples. The clusters were calculated using the clustering method proposed in section 2.2.

This clustering method was coupled with the HyGA, performing independently the scan path

optimization of each cluster, not taking into account their connection.

Fig. 3.7 and Fig. 3.8, show the average path length improvement as a function of the number of

spots and clusters that can be found in the 10 treatment plans. Positive improvements (values

above the line) represent a path X% shorter than the CNAO’s TPS. While negative improvements

(values under the line) represent path lengths X% longer than the CNAO’s TPS. X% is the value

given by the y−axis.

In table 3.2, it is shown the average path length travelled by the irradiation beam in a complete

treatment plan and the relative difference between the path length of each one of the proposed

optimization algorithms and the CNAO’s TPS. The negative relative differences represent that

the proposed methods (SA, HyGA and HyGA with clustering) obtained an average path length

shorter than the CNAO’s TPS.

The improvement (positive or negative) in the irradiation time can be considered the same as the

path length improvement. For this it is necessary to consider a constant beam’s speed and that

no repainting of a slice is performed.

The individual results obtained from the optimization of each treatment plan can be viewed in

appendix A.1, Fig. A.1 to Fig.A.10.
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(a) CNAO’s TPS (b) HyGA scan path, Nit = 100

(c) SA scan path
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(d) HyGA with clustering, 6 clusters

Figure 3.3: Scan paths obtained with different optimization algorithms. The total path length is in mm..
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(a) CNAO’s TPS (b) HyGA scan path, Nit = 100

(c) SA scan path (d) HyGA with clustering, 1 cluster

Figure 3.4: Scan paths obtained with different optimization algorithms. The total path length is in mm..
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(a) CNAO’s TPS (b) HyGA scan path, Nit = 100

(c) SA scan path
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(d) HyGA with clustering, 5 cluster

Figure 3.5: Scanning paths obtained with different optimization algorithms. The total path length is in mm.
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(a) CNAO’s TPS (b) HyGA scan path, Nit = 100

(c) SA scan path
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(d) HyGA with clustering, 10 cluster

Figure 3.6: Scanning paths obtained with different optimization algorithms. The total path length is in mm.
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Figure 3.7: Average path length improvement as a function of the number of spots. The error bars are the standard
deviation. For a given algorithm, a positive improvement value represents a shorter path than the CNAO’s TPS.
While a negative value represents a longer path.

Table 3.2: Average path length travelled in a complete TP. The relative difference is between the value obtained with
the proposed methods and the value obtained with the CNAO’s TPS. A negative relative difference value represents
the perceptual reduction in the path length obtained with the CNAO’s TPS.

Algorithm Average path length Relative difference (%)

CNAO’s TPS 2.98E+04 -
Simulated Annealing 2.77E+04 -7.09

HyGA 2.74E+04 -8.05
HyGA with Clustering 2.93E+04 -1.84
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Figure 3.8: Average path length improvement as a function of the number of clusters. The error bars are the
standard deviation. For a given algorithm, a positive improvement value represents a shorter path than the CNAO’s
TPS. While a negative value represents a longer path.
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3.3 Clinical Implications

In this section it is presented the relevant results that measure the clinical implications of using

the different optimization algorithms: SA, HyGA, HyGA with clustering and CNAO’s TPS.

The quantitative effect of the scan path on the particle distribution was study in 3D, because

the beam associated with a given spot does not only contribute to the dose of that slice but also

delivers a dose to the more proximal slices. However, a 2D representation is useful to understand

the effect of a specific scan path on the particle distribution in the slice. This effect can be

viewed in Fig.3.9 and Fig.3.10 where it is shown the relative difference between the reference

distribution of particles, evaluated assuming that no particles were delivered between irradiation

spots, and those obtained with the CNAO’s TPS, HyGA, SA and HyGA with clustering algorithms

(i.e. the particles delivered during the path transition). The distributions were evaluated on a grid

with 1mm× 1mm pixel size. Each one of the distributions was obtained considering the use of

chopper for spot transitions greater than 2cm for the CNAO’s TPS, SA and HyGA. While for the

HyGA the cluster was used during the transition between clusters.

Table 3.3 shows the average number of particles wasted due to the use of chopper. The particles

wasted were calculated taking into account the beam intensity and the distance travelled by the

beam while the chopper was being used. Table 3.4 shows the average number of particles

delivered in a treatment plan, during the transition between irradiation spots. The number of

particles delivered to each irradiation spot was not taken into account since was the same for

all the optimization methods. Table 3.5 contains the average number of times the chopper was

used for each one of the optimization methods.

The individual results about the number of particles wasted and delivered for each treatment

plan can be viewed in appendix A.2.
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Figure 3.9: Relative relative difference of particle distribution for the slice in Fig.3.3, using different opti-
mization algorithms. (a) is the normalized particle distribution of the slice, considering that no particles are
delivered during the spot transitions. The other sub-figures are the relative differences using the different
optimization methods.(c) has 10% more particles than (b) in the path; (d) has 20% more particles than
(b) in the path and (e) has 37% less particles than (b) in the path.
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Figure 3.10: Relative relative difference of particle distribution for the slice in Fig.3.6, using different opti-
mization algorithms. (a) is the normalized particle distribution of the slice, considering that no particles are
delivered during the spot transitions. The other sub-figures are the relative differences using the different
optimization methods. (c) has 37% more particles than (b) in the path; (d) has 34% more particles than
(b) in the path and (e) has 10% less particles than (b) in the path.
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Table 3.3: Average particles wasted (Pwasted) due to the use of chopper, in a complete TP. The relative difference
is between the value obtained with proposed methods and the value obtained with the CNAO’s TPS. A negative
relative difference value represents the perceptual reduction in the number of particles wasted with the CNAO’s
TPS.

Algorithm Average Pwasted Relative difference (%)

Treatment Plan System 1.39E+08 -
Simulated Annealing 1.88E+07 -86.49

HyGA 9.08E+06 -93.46
HyGA with Clustering 1.96E+08 40.95

Table 3.4: Average particles delivered (PDelivered) during the transition between irradiation spots, in a complete
TP. The relative difference is between the value obtained with the proposed methods and the value obtained with
CNAO’s TPS. A negative relative difference value represents the perceptual reduction in the number of particles
delivered with the CNAO’s TPS.

Algorithm Average PDelivered Relative difference (%)

CNAO’s TPS 6.86E+13 -
Simulated Annealing 7.07E+13 3.00

HyGA 7.24E+13 5.49
HyGA with Clustering 6.75E+13 -1.61

Table 3.5: Average number of times the chopper is used (Nchopper), in a complete TP. The relative difference is
between the value obtained with proposed methods and the value obtained with CNAO’s TPS. A negative relative
difference value represents the perceptual reduction in number of times the chopper is used with the CNAO’s TPS.

Algorithm Average Nchopper Relative difference (%)

CNAO’s TPS 81 -
Simulated Annealing 18 -77.79

HyGA 10 -87.22
HyGA with Clustering 200 148.64
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3.4 Optimization tool

It was developed an optimization tool using Matlab® (Fig.3.11) that is able to read the treatment

plan information and perform the scan path optimization of each slice.

The scan path optimization can be made using the CNAO’s TPS, the SA, the HyGA and the

HyGA with clustering. In Fig.3.11, it is shown the layout of the developed tool. This tool allows

the possibility to select and compare the two scan paths obtained with two different optimization

methods. This comparison considers the total path length in a given slice, the total number of

particles wasted due to the use of chopper and the number of times it is used and the simulation

time (Fig.3.12).
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Figure 3.11: Layout of the optimization tool. Optimization tool that is able to read the patient’s treatment plan infor-
mation. The tool shows the different energy slices and offers the possibility to select which optimization algorithm
should be used to calculate the scan path. Currently in the left subplot it is shown the spot pattern in a slice, while
in the right subplot it is shown the path optimization with the CNAO’s TPS.

Figure 3.12: Optimization tool: information that is displayed about the scan path optimizations.
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Discussion

4.1 Genetic Algorithms Performance

Section 3.1 shows the evolution of the path length as a function of the number of iterations, for

the methods proposed in section 2.1.3. These results were obtained by calculating the scan path

of two different slices, one with 109 spots and one cluster and other with 56 irradiation spots and

5 clusters.

For the first slice, (Fig.3.1) only the HyGA method converged (Fig.3.1f) to a possible solution.

For the other methods the number of iterations considered was not enough for a convergence

to a solution. In the second case (Fig.3.2) the OX with GSTM and the HyGA converged to a

solution. However, the HyGA achieved the same solutions in less iterations, i.e. it presented a

faster convergence.

Analysing figures 3.1b and 3.1c and figures 3.2b and 3.2c, where the swap mutation method

was tested against the GSTM method, one can notice that the hybrid method offered the fastest

convergence and best solutions than the swap mutation method.

The reason behind the fact that the hybrid methods (HyGA and the GA with GSTM) offered a

faster convergence and better solutions is because during each iterations the algorithms try to

improve the path.

Given these results the HyGA was selected for comparison with the other optimization methods

(the SA and the CNAO’s TPS).

4.2 Scan Path Optimizations

Analysing the total path length of each slice in section 3.2 (Fig.3.3 to Fig.3.6), it is possible to

observe that both the HyGA and SA were able to produce scan paths shorter than the CNAO’s

TPS (form 0.6% to 27 %). This path length improvement is more pronounce in figures 3.3,3.5

and 3.6 than in Fig.3.4. Examining these paths and the results shown in Fig.3.8, one can observe
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that the path length reduction is more significant when the optimization is performed for slices

with several clusters of spots. Also, by Fig.3.4 one can observe that the optimization of the scan

path for slices with an uniform and compact distribution (smaller number of clusters) yields little

or no benefit from the CNAO’s TPS.

Examining figures 3.3, 3.5 and 3.6, it is possible to notice that the HyGA and the SA avoid

crossings in the path and the irradiation of "holes" (vacancies in the spot pattern). Since in

quasidiscrete scanning the beam is never turned off, the presence of crossings in the path may

lead to the creation of hot spots. Moreover, in the case of organs at risk where the vacancies in

the spot pattern are located, it may be important to ensure that the beam is either turned off or

that the path is optimized to avoid these regions and crossings in the path. Therefore, at CNAO

it is used the chopper, which as previously mentioned, is a device that avoids the irradiation of a

slice when the transition between two consecutive spots is greater than 2cm.

In order to take advantage of the utilization of the chopper, it was implemented a clustering

algorithm (section 2.2) with the HyGA. By using the clustering algorithm the spot pattern was

divided into clusters and the path optimization of each cluster was made independently. The

connection between clusters was not optimized, which led to longer scan paths, crossings and

irradiation of "holes" in figures 3.3,3.5 and 3.6. However, these is not relevant in terms of dose

delivered to the patient because the chopper will be used between the cluster transitions.

Figures 3.7 and Fig.3.8 show the average path improvement in ten treatment plans, as a function

of the number of spots and the number of clusters, respectively. As previously mention, positive

values represent an improvement in the path length. As one can notice, the SA method does

not offer shorter paths for slices with lower number of spots (≈≤ 40), while for larger number

of spots (≈≥ 150) in a slice is the method that offers the best results (Fig.3.7 and Fig.A.1 to

Fig.A.10). For the HyGA the opposite is verified. The reason behind this fact is maybe because

the SA’s parameters were set to values that according to Pardo, et al.[PDB+09] were calculated

to take full advantage of the algorithm. The selection of the HyGA’s parameters was not properly

study.

Table 3.2 shows the average path length travelled per treatment plan and the relative difference

between the CNAO’s TPS and each one of the optimization algorithms. On average, all optimiza-

tion methods, SA, HyGA and HyGA with clustering, were able to improve the total path length

(7%,8% and 2% respectively). However, this improvement was not very significant due to the

fact that in a 3-D model there are different types of slices, with uniform and non-uniform spot

patterns. If one considers individual slices the improvement can go to more than 30% (Fig.A.1

and Fig.A.8 in appendix A).

The reduction in the irradiation time, not considering repainting and considering that the use of

the chopper does not influences the irradiation time, is the same as the path length reduction. For

instance, for the average path lengths in table 3.2 (not considering the time spent in changing
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the energy and the stops in each irradiation spots for delivering the prescribed particles) the

scanning time is 0.68, 0.63, 0.62 and 0.67 seconds (for 20ms−2 beam speed) for the CNAO’s

TPS, SA, HyGA and HyGA with clustering respectively. The improvement would be in the order

of some milliseconds which would not be detected by the patient, making not relevant the study

of the treatment time improvement.

The simulation time was also not taken into account due to the fact that different programming

languages were used (C++ and Matlab®). However, the HyGA clustering algorithm offers the

advantage of parallel simulations (independent optimization of the clusters).

4.3 Clinical Implications

In Fig.3.9 and Fig.3.10) it is shown the relative difference between the reference distribution

and the those obtained with the CNAO’s TPS, SA, HyGA and HyGA algorithms. As it is visible

in these figures, the HyGA with clustering presented a smaller irradiation area than the other

methods. This is due to the fact that between cluster transitions the chopper was used, avoiding

the irradiation of "holes" in a slice.

Table 3.4 shows that, on average, only the HyGA has led to less particles delivered in the scan

path than the CNAO’s TPS (about 2% less). However, the number of particles wasted in the

chopper was, on average, about 41% higher than the CNAO’s TPS (table 3.3).

For the SA and HyGA, the number of particles wasted with the CNAO’s TPS was reduced in

about 86% and 93%. However, the number of particles delivered in the scan path was about 3%

and 5% higher. The number of particles delivered in the path with the HyGA was higher than for

the SA because, as it is possible to see in figures 3.3,3.5 and 3.6, this algorithm tries to minimize

longer transitions between irradiation spots, reducing the number of times the chopper is used

(table 3.5).

The number of times the chopper was used (table 3.5) and the particles wasted due to its utiliza-

tion (table 3.3) can be used as a measure of the energy spent by the treatment plan equipment,

because it makes the accelerator to produce a higher number of particles (due to longer scan

paths) and not delivering them.

4.4 Final Discussions

To sum up, given the previous results, each one of the optimization algorithms (CNAO’s TPS,

SA, HyGA and HyGA with clustering) presented advantages and disadvantages. Considering

the path optimization, in the case of uniform patterns (1 cluster) and/or high number of spots

in a slice (on average ≥ 200 spots), the SA was able to improve the path length, while for
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non-uniform distributions this was better accomplished by the HyGA. Considering the clinical

implications of the optimization algorithms, the SA and HyGA showed to be the most energy

efficient, since the number of particles wasted was considerably decrease. However, the CNAO’s

TPS and the HyGA with clustering were the methods that showed an lower amount of delivered

particles unnecessary to the patient. Taking into account these results, the developed tool was

implemented considering all these optimization algorithms (SA, HyGA, HyGA with clustering and

CNAO’s TPS), allowing the selection of which algorithm is used.

The path optimization should be more relevant for facilities where the quasidiscrete scanning

without chopper is used. This is due to the fact that in this situations the number of particles

delivered to the patient is proportional to the path length, making essential an optimization algo-

rithm that provides shorter paths and avoid irradiation of "holes" in a slice. Taking into account

these conditions the SA and HyGA would present an advantage because they were able to

obtain shorter paths.
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5
Conclusion

In active scanning path optimization is crucial to reduce the treatment time, the energy used by

the treatment equipment and the dose delivered between the irradiation spots (extra dose). We

sought to study the effect of different optimization algorithms on the scan path and their implica-

tions in a clinical environment. The optimization algorithms used were Simulated Annealing (SA)

and Genetic Algorithms.

The performance of different genetic algorithm methods were studied, leading to the selection of

the Hybrid Genetic Algorithm with Heuristics (HyGA).

When compared with the HyGA, the SA presented longer paths for slices with non-uniform pat-

terns and with a lower amount of irradiation spots. However, both algorithms showed that shorter

paths were obtained than the ones calculated with the current CNAO treatment plan system

(CNAO’s TPS). This improvement was more pronounced for slices with non-uniform spot pat-

terns.

In order to reduce the extra dose, CNAO uses a device called the chopper, which deflects the

beam out of the extraction line when the distance between two consecutive irradiation spots

is greater than 2cm. Access to the chopper has led to the development of the a HyGA with

clustering. This algorithm took into consideration that the chopper was used every time there

was a transition between clusters. This method was able to reduce, on average, the number of

particles delivered with the CNAO’s TPS by 2%.

One drawback of using the chopper is an increase in the number of particles wasted by the

equipment. The SA and HyGA method were able to reduce, on average, the number of particles

wasted by the CNAO’s TPS by 86% and 93%, respectively. However, both these algorithms

showed an increase of 3% and 5% in the number of particles delivered, compared to the CNAO’s

TPS.

Given these results, one can conclude that the proposed optimization algorithms can be useful

for two different aims.

The first aim is the reduction in the energy spent by the treatment equipment. At CNAO, this
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can be achieved by using the SA and HyGA methods, which significantly reduce the number of

particles wasted due to the chopper’s utilization. For a facility with quaisdiscrete scanning and

without a chopper, the SA and HyGA provide shorter irradiation paths, saving energy from the

magnets.

The second aim is the reduction in the dose delivered to the patient (which is related with the

number of particles delivered). For the CNAO facility, this reduction can be achieved by using

the HyGA method with clustering that, in some situations, offers a reduction of 13% (TableA.6)

from the CNAO’s TPS.

For future work, from a mathematical point of view the optimization parameters (such as crossover

and mutation probability) should be studied in order to improve the performance of the optimiza-

tion algorithms. From a clinical point of view, a study that evaluates the relevance of the dose

delivered to the patient of the extra 3% and 5% particles delivered with the SA and HyGA can

be performed.

To conclude, as mentioned, more work can be developed in this project. However, the proposed

aims were fulfilled.
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A
Appendix

A.1 Scan Path Optimizations

In this section it is shown the path length improvement as a function of the number of spots and

clusters that can be found in each treatment plan. Positive improvements (values above the line)

represent a path X% shorter than the CNAO’s TPS. While negative improvements (values under

the line) represent path lengths X % longer than the CNAO’s TPS. X % is the value given by the

y−axis.
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Figure A.1: Path length improvement, TP1. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.2: Path length improvement, TP2. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.3: Path length improvement, TP3. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.4: Path length improvement, TP4. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.5: Path length improvement, TP5. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.6: Path length improvement, TP6. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.7: Path length improvement, TP7. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.8: Path length improvement, TP8. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.9: Path length improvement, TP9. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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Figure A.10: Path length improvement, TP10. The improvement is shown as a function of the number of irradiation
spots (left) and clusters (right) in a treatment plan.
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A.2 Clinical Implications

In this section it is shown the number of particles wasted, due to the use of chopper, and the

number of particles delivered in each one of treatment plan that were considered for this study.

The relative difference value in the tables is between the value obtained with the proposed meth-

ods and the value obtained with CNAO’s TPS. A negative relative difference value represents

the perceptual reduction in the number of particles delivered/wasted with the CNAO’s TPS.

Table A.1: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP1.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 7.11E+08 - 6.78E+14 -
Simulated Annealing 1.00E+08 -85.9 6.99E+14 3.0

HyGA 4.03E+07 -94.3 7.16E+14 5.5
HyGA with clustering 1.06E+09 49.0 6.68E+14 -1.6

Table A.2: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP2.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 1.51E+07 - 1.50E+11 -
Simulated Annealing 1.28E+06 -91.6 1.58E+11 5.2

HyGA 1.64E+06 -89.2 1.60E+11 6.6
HyGA with clustering 1.57E+07 3.9 1.55E+11 3.0

Table A.3: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP3.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 1.25E+08 - 1.36E+12 -
Simulated Annealing 6.41E+06 -99.1 1.44E+12 6.5

HyGA 2.33E+06 -99.7 1.39E+12 2.3
HyGA with clustering 1.68E+08 -76.3 1.27E+12 -6.4
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Table A.4: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP4.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 7.50E+07 - 7.54E+11 -
Simulated Annealing 0.00E+00 -100.0 7.81E+11 3.5

HyGA 0.00E+00 -100.0 7.55E+11 0.1
HyGA with clustering 4.63E+07 -93.5 6.91E+11 -8.4

Table A.5: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP5.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 1.35E+08 - 8.31E+11 -
Simulated Annealing 1.11E+07 -98.4 9.10E+11 9.6

HyGA 4.32E+06 -99.4 8.78E+11 5.7
HyGA with clustering 1.79E+08 -74.8 8.14E+11 -2.1

Table A.6: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP6.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 5.83E+07 - 3.46E+11 -
Simulated Annealing 7.92E+06 -98.9 3.65E+11 5.5

HyGA 2.46E+06 -99.7 3.45E+11 -0.3
HyGA with clustering 6.68E+07 -90.6 2.99E+11 -13.4

Table A.7: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP7.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 9.56E+07 - 1.35E+12 -
Simulated Annealing 4.59E+07 -93.5 1.48E+12 9.1

HyGA 2.53E+07 -96.4 1.42E+12 5.0
HyGA with clustering 1.58E+08 -77.8 1.31E+12 -3.0

Table A.8: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP8.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 1.32E+08 - 4.77E+11 -
Simulated Annealing 7.34E+06 -99.0 5.56E+11 16.6

HyGA 6.27E+06 -99.1 5.29E+11 10.8
HyGA with clustering 1.84E+08 -74.1 4.66E+11 -2.30

Table A.9: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP9.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 9.16E+06 - 1.07E+12 -
Simulated Annealing 1.94E+06 -99.7 1.10E+12 3.1

HyGA 2.95E+06 -99.6 1.08E+12 1.4
HyGA with clustering 2.17E+07 -96.9 1.07E+12 -0.1
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Table A.10: Particles delivered (PDelivered) and particles wasted (Pwasted) in TP10.

Algorithm PDelivered Relative difference (%) PDelivered Relative difference (%)

CNAO’s TPS 3.32E+07 - 1.19E+12 -
Simulated Annealing 5.73E+06 -99.2 1.22E+12 2.6

HyGA 5.30E+06 -99.3 1.22E+12 2.0
HyGA with clustering 5.83E+07 -91.8 1.19E+12 -0.3
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