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Resumo

Actualmente, equipas de robôs móveis intervêm em diversos contextos e ambientes
onde a intervenção humana é perigosa ou mesmo impossı́vel, podemos mencionar como
exemplo a vigilância de espaços fı́sicos, como zonas militares ou nucleares. Devido à
crescente complexidade inserida nos seus sistemas, esses robôs ficam mais poderosos
mas paradoxalmente mais susceptı́veis a falhas de hardware e software. Além disso,
a incerteza na comunicação wireless pode privá-los temporariamente do seu suporte de
informação remoto. Este tipo de problema pode ser causado pelo alcance limitado do
emissor wireless e pelas zonas de sombra criadas pelo terreno. Por todas essas razões,
desenhar arquitecturas capazes de oferecer mais resiliência para controlo das aplicações,
tornou-se um verdadeiro desafio. Este documento aborda um motor cooperativo e re-
siliente para equipas de robôs que lhes permite partilharem uma vista comum e lidar com
novos eventos de uma forma fiável e resiliente. Este middleware tem como função estab-
elecer a guarda de uma qualquer zona fı́sica e detectar eventos inabituais como os intrusos.
Neste ultimo caso, um robô tem que encontrar uma maneira de bloquear o intruso para
o impedir de fugir. O sistema apoia-se em duas caracterı́sticas chave, a primeira é uma
camada de controlo baseado em dois sub-módulos de controlo, o payload e o wormhole,
a segunda é uma arquitectura baseada em eventos que executam tarefas do payload. Em
relação à camada de controlo, o payload pode ser complexo e acede à informação partil-
hada pelos robôs enquanto que o wormhole é confiável mas apenas utiliza a informação
local. O payload utiliza uma estrutura de dados chamada “promessa” na qual fornece o
deadline correspondente ao momento mais tarde onde deve enviar a próxima promessa.
No caso de receber esta promessa depois do deadline, o wormhole considera que o pay-
load falhou, toma o controlo e executa as tarefas criticas no lugar do payload. Os eventos
são propagados às traves de uma estrutura em forma de alvor, da raiz até as folhas. Cada
folha do alvor é um modulo que pode ser executado e produz eventos. A produção dos
eventos no alvor pode ser assimilado a uma reacção em cadeia. Durante o ciclo dos even-
tos as traves do alvor não são possı́veis, o que permite evitar as reacções não controladas e
garantem assim a estabilidade do sistema. A juntar a essa arquitectura, propomos também
neste documento alguns mecanismos de sincronizações resilientes, para manter uma vista
coerente num mundo ou de navegação para dar ao robô a possibilidade de se mover no
mundo e de encontrar o melhor caminho. Guardar uma vista homogénea do mundo é um
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ponto fundamental que pode não ser fácil em caso de uma reunião de dois grupos. In-
troduzimos três implementações de middleware, uma versão simulada usada para validar
arquitectura e testar a sincronização dos algoritmos num ambiente multi-robô, uma versão
móvel apontada para ser implementado em plataformas de hardware compostas por robôs
móveis reais e finalmente uma versão de posição capaz de comunicar com robôs móveis,
recolher informação e enviar ordens remotas.

Palavras-chave: Middleware, communicação de grupo, robôs móveis, sincronização de
vista
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Abstract

Nowadays, teams of mobile robots are involved in many contexts and environments
where human intervention would be risky or even impossible, we can mention the surveil-
lance of physical areas as military zones or nuclear plants. Due to increasing complexity
in their embedded systems, these robots become more powerful but paradoxically more
susceptible to face a hardware or software failure. What’s more, unreliability in the wire-
less communication could deprive them temporally of their remote information support.
For all these reasons, designing architectures able to offer more resilience to the con-
trol application has become a real challenge. In this document, we present a middleware
architecture for the robots to share a common view and to handle new events in a safe
and resilient way. The system relies on two key features, first a control layer based on
two sub-modules, the payload and the wormhole, and secondly a cycle-proof event-based
architecture used to run critical tasks in the payload. Regarding the control layer, the
payload could be complex and has access to information shared among robots, while the
wormhole is reliable but only uses local information. The wormhole controls the timely
execution of the critical tasks by the payload. In case of timing failure, the wormhole takes
control and runs these tasks in place of the payload. In addition to this architecture, we
propose as well in this document some resilient synchronization mechanisms to maintain
a coherent view of the world when two groups of robots are merging. We introduce three
implementations of the middleware, a simulation version used to validate the architecture
and test the synchronization algorithms in a multi-robot environment, a mobile version
aimed to be ported to hardware platforms composed by real mobile robots and finally a
station version able to communicate with mobiles, collect information and send remote
orders.

Keywords: Middleware, group communication, mobile robot, view synchronization
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Chapter 1

Introduction

Mobile robot teams have the potential to reduce the need of human presence for complex
or repetitive tasks. For most of them, the use of cooperation between robots can enhance
the overall performance of the team. Achieving an efficient cooperation requires the use
of complex algorithms implemented in each robot. This internal complexity in addition
to the interaction issue with the environment makes the robot control system more sensi-
tive to failures. Nowadays, building resilient control systems for mobile robots is a real
challenge.

In this document, we present a middleware architecture for robots in charge of mon-
itoring a physical area. In particular, we focus on some architecture features which im-
prove the system resilience: A control layer based on two sub-modules the payload and
the wormhole which guarantees a timely execution of critical tasks, a event-based archi-
tecture in charge of running the payload tasks and which avoids the event cycles, some
synchronization mechanisms tolerant to communication failures and used to maintain a
common world view for all robots especially during group merging or splitting phases
and finally a dual multi-thread environment (Java and C) which communicates through
JNI.

The project context is a cooperative surveillance application of a given area. The cov-
ered zone is a campus, a plant or any well-defined area. We assume that the world ground
is flat and that each robot follows two-way routes defined in a prior map loaded at the
robot startup. The surveillance aims to detect an accident or an intrusion and build a com-
mon strategy to handle properly the detected event (e.g. blocking the intruder). All robots
run the same version of the middleware and are equipped with sensors, actuators and
wireless devices. These devices can be hard connected to the robot or simulated through
a simulation environment.

In chapter 2, we introduce some existing concepts and mechanisms we used to design
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Chapter 1. Introduction 2

the middleware. In chapter 3, we start by presenting the middleware architecture and more
precisely the control layer based on the wormhole and payload. Chapter 4 addresses the
task and event management and gives a focus on the module tree. In chapter 5, we discuss
some test scenarios and provide a short review of the work. Finally, section 6 concludes
the document.



Chapter 2

Related work and background

Robot group management covers several areas of techniques. In this chapter, we introduce
concepts as the wormhole/payload model or the module-based approach which are key
features of the middleware architecture. In section 2.3, group and view management
highlights the necessity for the robot to maintain an up-to-date view of the world. The
next section presents techniques to enhance the robot ability to navigate in the world.
Finally in section 2.5, we describe some programming mechanisms implemented in the
middleware.

2.1 Wormhole and payload model

In the vehicular domain, designing safety-critical application is essential, the work in
[8], [2] or [10] presents a hybrid (synchronous and asynchronous) control model used in
real-time applications. This model is based on two sub-systems, the payload in charge of
running complex algorithms to figure out the best behaviour of each car to avoid collisions
while the second sub-system, the wormhole is running synchronous and robust algorithms
aimed to check whether the payload timely sends corrections to the car actuators. In case
a timely timing failure is detected, the wormhole can temporally take control of the car.
This technique is applicable to any domain where a safety-critical control is mandatory.

On robots, some critical tasks like the collision avoidance require for the control layer
to timely send commands to the hardware layer. Algorithms used to figure out these com-
mands might not be deterministic and their computation time may vary especially if they
require network communication. The wormhole could check whether these commands are
timely sent by the control layer which assumes the role of payload. If so, the wormhole
will just forward them to the hardware layer. Otherwise, it will assume the robot’s con-
trol by calculating and sending itself these commands. In this latter case, the wormhole
would use a low-level algorithm which only involves local information. The wormhole
will keep the control until the payload starts again to send commands on time. If the
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payload does not regain stability or even no longer sends any command (the payload may
have crashed), the wormhole can restart the whole payload process.

The payload sends the new commands in a structure called the promise. Each promise
includes a deadline which enables the wormhole to control the payload’s timeliness. For
each promise, the payload is expected to send the next command before the current dead-
line is exceeded. The wormhole relies on three modules as shown in figure 2.1: The
Timely Timing Failure Detection (TTFD) monitors the timeliness of the asynchronous
payload process and can activate the Safety task to assume control. The Control task re-
ceives the promise which includes the new command and decides whether this command
can be forwarded to the actuator layer. The TTFD sends as well control updates to the
payload to inform it won back or lost the control. Ideally, the payload should use these
control updates to improve its performance. In particular, it could try to real-time adjust
the priority of some internal processes.

Figure 2.1: Payload and Wormhole layers

2.2 Modules and levels of competence

At the beginning of the 80’s, Rodney A. Brooks [1] developed his subsumption theory
based on levels of competence for robots. A lowest level of competence corresponds to
a basic robot behaviour. The next levels define more complex behaviours but include the
earlier levels of competence. According to Brooks, the key idea is to build a layer-based
control system where each layer corresponds to a level of competence. To improve the
overall competence of the system and move to the next higher level, we must add a new
layer to the existing set.
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Each control layer is composed by asynchronous modules which can be seen as finite
state machines. As depicted in figure 2.2, the module has input and output signals. Each
signal can be modified by a mechanism of suppressor and inhibitor which is based on the
signal coming from another module. Some modules can work in closed loops, and thus
use as input the feedback signal of other modules.

Figure 2.2: Brooks finite state machine

The idea to break down the control layer into various chains of small modules is
powerful. However, it could lead quickly to complex architectures with a huge number of
modules. As the information can circulate in cycles, the challenge is to keep the system
stable and to avoid an out-of-control propagation of signals.

2.3 Group and world view

A group so called team is composed by robots which are part of the same network. They
can communicate with each other and share information. A group is usually identified
by a single id. The figure 2.3a shows two groups of robots with their network range. In
figure 2.3b, the move of robot 4 leads to the union of both groups which become a single
team.

The world view can be seen as the robot memory. The robot keeps information trans-
mitted by its teammates or obtained by its local sources. The view is composed by a list
of objects shared by all teammates.

Robot soccer game is an entertaining and well-known application of robot team co-
operation. Actually, it shows many common points with our project like the need for all
robots to real-time maintain a common view of the world. In the paper [9], the authors
present an approach of view model which was successfully implemented during the 2002
RoboCup Sony competition. Due to some high latency in wireless communication, the
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(a) Two isolated groups (b) Group merging

Figure 2.3: Group merging phase

robot team does not perform any view synchronization. In order to track a dynamic ob-
ject like the ball, each robot combines local information from vision sensors with shared
information sent by team-mates. The robot maintains timestamps and uncertainty values
for each view object, uncertainty is updated when receiving new information and grows
with time.

This type of algorithm could be very efficient in high dynamic environment. However,
it is based on a greedy approach in which each robot takes the most reliable information
it has. Different robots can make different decisions which could become an issue as we
want to build a common strategy for all robots. The other approach relies on a world
view synchronization. The system maintains a shared view identical for all robots. The
synchronization phase is performed when two robot groups are merging.

2.4 Localization and navigation

In the last twenty years, there has been a considerable amount of work to study mobile
robot localization. Researches have been carried out focussing on two problems: com-
puting absolute location using a priori map [7] or building incrementally this map while
exploring the environment [3]. Both approaches most often rely on complex and math-
oriented algorithms based on Kalman filters and maximum likelihood estimation [5]. The
present document does not address this kind of problem and we assume that the robot
is equipped with a localization device based for instance on GPS or RSS technologies.
Given that the robot is able to locate itself in the real world, we have to find the most
appropriate world model and the way to make the robot navigate through this model.
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2.4.1 World model

There are two kinds of world models, either graph or cell decomposition. The second
representation has many variants (adaptive cells, quadtree grid), the most simple is the
regular grid based on a cell division. Each cell is a square representing a single world
item. All cells have the same dimension. This world item can be a path section, a wall
or an obstacle. The main advantage of such a representation is its simplicity and easy
implementation. A world map can be coded in a text file where each character represents
a cell.

For many calculations, a robot must be assigned to a given cell of the world model ac-
cording to its real position in the world, this position is returned by the hardware devices.
If we assume that the robot follows a path, the nearest path cell to the robot’s current po-
sition is used to assign the cell. Since the robot could have drifted away from its path and
given the lack of accuracy of the positioning device, the algorithm can use a maximum
error margin. In figure 2.4a and 2.4b, cell assignment is achieved with respectively a low
and high margin. In figure 2.4c, cell assignment failed due to a too large margin.

(a) Successful assignment (b) Successful assignment (c) Failed assignment

Figure 2.4: Example of robot cell assignments

2.4.2 Wavefront-based algorithm

The way a robot team performs the surveillance of a physical area could obey many rules
in order to maximize the probability of locating an intruder [6]. However, a simple strat-
egy could be to make the robot just wander around the world and make random decisions
to turn left or right at every crossing. But when a robot needs to meet another robot or
block an intruder, some algorithms to calculate the better path are required. Wavefront-
based path algorithms are well-suited for grid representations. In this type of algorithm,
the wave is propagated from the start point towards all directions until get to the goal cell.
The rules are the following:
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1. Label all cells with +∞ for the path sections and -1 for the other ones. Label the
start cell with 0.

2. For every cell adjacent to the current cell, label it with an increment of the current
cell distance if this new value is lower than both current distances of the adjacent
cell and goal cell.

3. Continue the propagation from all cells which were updated during the previous
step. Stop the algorithm when no more cells are updated.

(a) Iteration 3 (b) Iteration 9

(c) Iteration 11 (d) Gradient descent

Figure 2.5: Wavefront-based algorithm
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Figure 2.5a shows an example of wave propagation with 3 iterations. In figure 2.5b,
the descendant wave is stopped because of the distance of the red-circled cell (9). The
propagation terminates in figure 2.5c, the distance of the last updated cells is equal to the
goal distance (11).

Once the goal cell labelled with the best distance, we have to extract the best path
using a gradient descent. First, given label of goal cell as “x”, we find the neighbouring
grid cell labelled “x-1” then we mark it as a waypoint. We continue until get to the
start cell labelled 0. Figure 2.5d shows the final extracted path. In order to decrease the
algorithm convergence time, dual wavefront propagation can be used from both start and
goal locations.

2.5 JNI and multi-thread model

The Java Native Interface (JNI) enables the integration of code written in the Java pro-
gramming language with code written in other languages such as C and C++. As the
reader can find an abundance of basic examples, we will rather focus on the multi-thread
issue which is more difficult to deal with. The figure 2.6 shows the interaction between
Java and C codes. There are two types of functions implementing the JNI mechanisms:
The C native functions called from the Java code and the Java callback methods called
from the C code. Java and C codes use multi-thread environments which have to be com-
patible each other. That’s why the choice of the multi-thread model is essential.

Figure 2.6: JNI architecture
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Running various concurrent threads in the native C library requires to implement mu-
tual exclusion mechanisms to avoid the simultaneous access to common resources. Actu-
ally, there are two different ways to address this issue in a native C code:

• Create some java.lang.Thread objects and use existing JNI mutex functions like
MonitorEnter and MonitorExit to enter and exit from mutual exclusion zones.

• Use native thread creation and synchronization primitives like the Posix thread li-
brary. The mutual exclusion mechanisms are independent from JNI.

The first option is the safest one because we only use a single thread model which
is the Java one. That way, we prevent from any compatibility issue between both thread
models. The problem is that the C code becomes fully dependant of the Java implemen-
tation. Porting this C program to another platform requires to re-write large parts of the
original code.



Chapter 3

Design

We start by a description of two main features of the middleware architecture: The worm-
hole/payload model and the tree-oriented architecture. Then sections 3.2 and 3.3 intro-
duce mechanisms and algorithms to respectively maintain a coherent shared view between
robots and figure out the best path in the world. Finally, the last chapter discusses the
multi-thread model and JVM choices.

3.1 Architecture overview

An architecture overview is depicted in figure 3.1. The left side shows the middleware
layer division. The wormhole and payload are the middleware basic components. The
wormhole is placed in cut-through configuration between the payload and the sensor/ac-
tuator layer and does not have access to the network device. The payload runs all complex
tasks in charge of the robot control. All tasks are triggered by events broadcasted through
a module tree. An example of module tree used in the payload is shown in the right side
of the figure. Each group of modules is dedicated to a specific task: Position update,
navigation or world view management.

3.1.1 Wormhole and payload model

In a first version of the project, a special task (watchdog) was in charge of monitoring the
critical tasks running in the middleware. Each task was supposed to be achieved before a
given deadline, the latter was calculated in the same way for all tasks. The watchdog real-
time monitored a critical task pool. All tasks that timed out were considered as blocked
and were cancelled then restarted by the watchdog. Although this mechanism is pretty
simple, it has many limitations:

• The cancellation success may depend on the task state. This point is particularly
true when using some multi-thread implementations as pthreads. A pthread can
only be cancelled when blocked in a cancellation point.

11
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Figure 3.1: Middleware layer division and module tree

• The watchdog runs concurrently to the other tasks and thus could be affected in the
same way (concurrency issue, computation delay, crash).

• The watchdog just cancels and restarts the task. When restarted, the task may redo
some work and put the system in an incoherent state. Moreover, the task may fail
once again and lead to a cancellation/restart cycle.

For these reasons, the watchdog approach was not suitable. We needed a more robust
and flexible control mechanism which could run in an autonomous way and be placed in
cut-through configuration between the critical task and the hardware layer. That way, this
control module should be able to ignore a critical task result and take control in place of
it which is exactly what the wormhole/payload model does.

Logical flowcharts of the TTFD and Control tasks are given in figure 3.2. The payload
runs in three modes: “active” when it has the control, “disable” when it loses the control
after the latest deadline is exceeded and finally in “test”, when the wormhole receives a
timely promise while the payload is disabled. The test mode is a transition period, the
wormhole keeps the control and waits for the payload to meet the current deadline before
giving him back control.

There are two restart conditions for the payload. After setting it to disable, the TTFD
task will increment a timing failure counter and will wait MAXWAIT milliseconds. If
the failure counter is greater than a prior threshold or if no promise is received within
this waiting period, the TTFD task will restart the payload. The timing failure counter is
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(a) TTFD task (b) Control task

Figure 3.2: Wormhole logical flowchart

reinitialized when the payload wins back control. This counter allows to restart the pay-
load after a given number of failures occurred in a raw but we can imagine more restart
conditions as for instance, a maximum number of failures in a given period of time.

Let’s see now an example of promises exchange between payload and wormhole. In
figure 3.3, a first promise gets to the wormhole with a deadline t1. The second promise
with deadline t2 is sent timely to the wormhole before t1, the payload keeps the control.
At t2, the wormhole has not received yet the next promise so it takes control and sends a
control-off acknowledgement to the payload which is disabled. When the promise with
deadline t3 gets to the wormhole, the latter keeps the control and set the payload to the
test mode. Finally, the wormhole receives the deadline t4 on time, so it gives control back
to the payload and sends it control-on acknowledgement.
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Figure 3.3: First example of control change

Figure 3.4: Second example of control change

In the example 3.4, we assume that the payload crashes after sending the second
promise. At t1, the wormhole which has not received the new promise, takes control.
After MAXWAIT milliseconds, the wormhole considers that the payload is on trouble and
restarts it. The rest is similar to the previous example, the wormhole keeps the control
until the payload fulfils its new promise with the deadline t2.

3.1.2 Tree-oriented architecture

The event-based architecture is well adapted to robot management. It allows to design
a flexible and modular architecture. Indeed, we can create an event type for any robot
feature and dedicate a part of the tree to handle this event. Moreover, robot hardware is
composed by sensors, actuators and communication devices, each one of them can gen-
erate a special event or be triggered by this event. The obstacle event is an example of
event which contains the distance values read from the local sensor.

This architecture is a simplified application of the subsumption theory developed by
Rodney A. Brooks. The payload is composed by modules and groups of modules, all
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gathered in a tree. Each of them is in charge of managing a robot feature. A module can
be seen as a process, with a short computation time, which is started by a single incoming
event and can produce one or more outgoing events. The number of produced events de-
pends on the computation result. All modules could be meshed as a graph and thus make
event cycles possible. In order to avoid hazardous out-of-control cycles inside one robot
or between several robots, we chose a tree-oriented module architecture.

The tree branch is composed by a group module which is the branch’s root and some
child modules (leaf or group) connected under the root. Unlike a leaf module, a group
module does not have any computation stuff. Each module can have one or several par-
ents. A leaf module computation is started if the incoming event can be consumed by
the module. When a leaf module is triggered by a incoming event, the possible outgoing
event is broadcasted from the module’s parent which first broadcasted the incoming event.

Figure 3.5: Propagation of a produced event

This mechanism is illustrated in figure 3.5: Group A is parent of Group C, Leaf 1 and
Leaf 2. Group B is parent of Leaf 1, Leaf 2 and Group D. When the red incoming event
triggers the computation of Leaf 1, the green outgoing event is propagated to Group C and
Leaf 2 but not Group D which is not a son of Group A. Group C will keep on broadcasting
the event to its sons and so on. That way, each event is top-down broadcasted until the
tree leaves. Three types of events can trigger a module execution:

• Hard events: They are signals generated by the robot’s hardware, e.g. the robot’s
clock (beat event) or a distance sensor measure (obstacle event). Such events are
always broadcasted from the tree’s root.

• Local soft events: These events are produced by a module and are broadcasted
through the neighbour branches (modules with same parent) and the sub-branches.
Any module can produce several soft events during the same computation.

• Remote soft events: Instead of being broadcasted locally, they are transmitted
through the wireless network and sent to all other robots. Once delivered to a given
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robot, the event is broadcasted from the same branch as if it would be produced
locally. This mechanism relies on two architecture properties: The module tree
has the same structure for all robots which means that any path in the local tree
matches the same path in a remote tree. Secondly, the path to locate the module
which produced the event in the tree, is stored in the transmitted event. That way,
we cannot have event cycles between robots and the remote soft events meet the
same constraints as the hard and local soft events.

Figure 3.6: Example of event broadcast with two robots

Let’s consider a group of two robots with the same module tree as depicted in figure
3.6. We assume that e1 and e2 are hard events, e3 a local soft event and e4 a remote
soft event. Now, let’s have a look on the started modules (in yellow in the figure) if e1 is
triggered on robot 1:

• Module 1 of Robot 1 (locally triggered by e1)
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• Module 2 of Robot 1 (locally triggered by e1)

• Module 4 of Robot 1 (locally triggered by e3)

• Module 6 of Robot 2 (remotely triggered by e4 with path root.g1.

Although module 3 can consume the e4 event, this module is not started in robots
2 because it cannot be reached from the path root.g1. As a leaf module cannot start a
computation and produce an outgoing event without incoming event, a cycle of event pro-
duction is a chain reaction which always starts with a hard event.

What’s more, this architecture opens the possibility of dynamically enabling or dis-
abling a sub-branch of the module tree. When disabled, events are no longer broadcasted
through this branch. The activation or disactivation can be performed by any computation
module. In our project, each robot has three working modes: Wandering, Searching and
Blocking (an intruder), each mode corresponds to a single branch of the navigation sub-
tree. We use the branch enabling/disabling mechanism to activate the modules associated
to the robot current mode.

3.2 View and group management

Given that robots can move away from each other and go beyond their wireless range, a
group can be split in various sub-groups. The unreliability of the wireless network can
also lead to isolate a single robot if it temporarily loses the Wi-Fi signal. As discussed
in section 2.3, the synchronization of all views in this situation is not mandatory, robots
could keep on exchanging information and acting according to their local knowledge of
the world. But one purpose of the middleware is to provide a cooperative framework to
allow robots to build common strategies. This last point implies for all robots to maintain
a shared view of the world so a synchronization mechanism is necessary to consolidate the
information of each group view especially when two group are merging. This mechanism
involves a leader in each group, which is the robot with the lowest id in the group.

3.2.1 Time synchronization

In order to maintain an up-to-date world view, information requires to be timestamped.
When an object is transmitted through the network, this timestamp is set by the sender
just before the emission. The receiver to make use of the timestamp, must have its internal
clock synchronized with the sender or know the time-lag between its clock and the sender
one.
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As the first solution implies to use dedicated network protocols as NTP to synchronize
all clocks, we chose the second solution. But instead of storing as many time-lags as
teammates, the robot just maintains one time-lag with its leader. The algorithm 1 details
the Object Receiver module involved in the time synchronization phase (line 1). This
module is triggered by an Object event received through the network. If the object comes
from the leader, the algorithm calculates a mean time-lag over a number of rounds (line
9). The greater is the number of rounds and the more accurate is the time-lag calculation.
If the leader has changed since the last iteration, the mean time-lag calculation is re-
initialized (line 5). The readTimestamp function (line 12) is used to read an adjusted
timestamp value. The robot state parameters are as follows:

• myLastLeader: Latest leader id the time synchronization was performed with.

• myRoundNumber: Number of rounds since the time synchronization initialization.

• myLagSum: Consolidated time-lag over myRoundNumber rounds.

Algorithm 1 Time synchronization algorithm

1: upon event <object | type, id, ts> do
2: if type = ”robot” ∧ id = myLeader then
3: delta← DIFFTIME(ts)
4: if id 6= myLastLeader then
5: myLastLeader ← id
6: myLagSum← delta
7: myRoundNumber ← 1
8: else if myRoundNumber < MaxRoundNumber then
9: myLagSum← myLagSum+ delta

10: myRoundNumber ← myRoundNumber + 1

11:
12: function READTIMESTAMP(ts)
13: lag ← myLagSum÷myRoundNumber
14: return ts− lag

The time synchronization algorithm is very simple. However, the time-lag must be
re-calculated at every leader change. As there is no synchronization between teammates,
a robot could have started a calculation with the new leader while another robot would
still use the time-lag of the old leader. During this short period of time, the timestamp
calculated by a robot might be wrong which is not problematic in our case.

3.2.2 World view synchronization

We will now describe in details the synchronization algorithm used to maintain in each
robot a coherent world view when two or more groups are merging. This view is com-



Chapter 3. Design 19

posed by all dynamic objects present in the world. The first part will deal with the algo-
rithm principles and the second part will present some synchronization scenarios.

Algorithm principles

When two groups are merging, the synchronization is performed by exchanging a synchro
event which contains the list of all view objects except for the robots position. This latter
is already exchanged through the hello events so including this information in a synchro
event would be redundant. The synchro event is normally sent by the group leader. The
synchro event reception is not centralized by the leader, each robot from the destination
group, will handle the synchro event and extract the object list. The synchronization phase
ends when all robots have the same leader and group id.

The basic steps below are associated to a faultless synchronization phase. By fault,
we mean any event reception failure due for instance to a temporally Wi-Fi signal loss.
Different fault scenarios will be discussed in the next section. Two synchro events are
exchanged during a faultless synchronization, the first synchro event is always generated
by the group leader with the higher id.

• Step 1: Leader 1 receives a hello event from the group leader 2.

• Step 2: Leader 1 broadcasts a synchro event through the group 2.

• Step 3: Robots from group 2 receive the object list and update their view.

• Step 4: Leader 2 broadcasts a synchro event through the group 1.

• Step 5: Robots from group 1 receive the object list and update their view.

The algorithm 2 gives the modules involved in the synchronization phase. The Hello
Receiver module (line 1) is triggered by an object event which is used by a robot to
broadcast its own position, the module checks out whether this event comes from another
leader. The View Synchronizer module (line 9) is triggered by a synchro event, it extracts
the object list and updates the local world view (line 16). Finally, the Freshness Detector
module (line 22) is triggered by the beat event and removes out-of-date objects from the
robot’s view. The beat is a hard event periodically generated by the system. The robot
state parameters are as follows:

• myId: single robot identifier.

• myView: view objects including team-mate positions.

• myLeader: current group leader identifier.

• myGroup: current group identifier.
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Algorithm 2 View synchronization algorithm

1: upon event <object | type, id, leader, group> do
2: if type = ”robot” ∧ (leader 6= myLeader ∨ group 6= myGroup) then
3: if id = leader ∧myId = myLeader ∧ id < myId then
4: SYNCHRONIZATION(myLeader, leader)
5: else if id = myLeader then
6: SYNCHRONIZATION(myId, leader)
7: myLeader ← myId

8:
9: upon event <synchro | leader1, leader2, objList> do

10: if myLeader = leader2 then
11: if leader1 < myLeader then
12: myLeader ← leader1

13: if myId = myLeader then
14: SYNCHRONIZATION(myId, leader1)

15: for all obj ∈ objList do
16: trigger <object | obj.type, obj.id, obj.leader, obj.group>
17: if leader1 > leader2 then
18: myGroup← leader1
19: else
20: myGroup← leader2

21:
22: upon event <beat | > do
23: updateRequired← false
24: for all obj ∈ view do
25: if isUptodate(obj) = false then
26: view ← myV iew − {obj}
27: if obj.type = ”robot”∧ (obj.id = myLeader∨obj.id = myGroup) then
28: updateRequired← true

29: if updateRequired = true then
30: updateLeader()

31:
32: procedure SYNCHRONIZATION(leader1, leader2)
33: objList← {}
34: for all obj ∈ myV iew do
35: if obj.type 6= ”robot” then
36: objList← objList+ {obj}
37: trigger <synchro | leader1, leader2, objList>
38:
39: procedure UPDATELEADER

40: myLeader ← myId
41: myGroup← myId
42: for all obj ∈ myV iew do
43: if obj.type = ”robot” ∧ obj.id < myLeader then
44: myLeader ← obj.id

45: if obj.type = ”robot” ∧ obj.id > myGroup then
46: myGroup← obj.id
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Examples of synchronization scenarios

The normal synchronization phase is shown in figure 3.7 while figures 3.8 and 3.9 show
various synchronization scenarios with respectively two and three different groups merg-
ing at the same time. Each group is first composed by two robots. Arrows identify events
(blue for hello and red for synchro events) which are handled by robots for the synchro-
nization phase. Other hello events broadcasted to periodically announce robot positions
are not represented here. Each scenario is given as an example. Therefore, the number of
events exchanged during a scenario could be different according to the order each event
is delivered with. This statement is especially true if the number of groups merging at the
same time is large.

Figure 3.7: Two-group synchronization without failure

In a robot time line, couple of black values correspond respectively to the leader and
group id. The hello event parameters are the source robot, leader and group id. Finally,
the synchro event parameters are the source and destination leader id (leader1 and leader2
in the algorithm 2).

Scenarios 3.8a, 3.8b and 3.8c highlight temporally reception failures which lead the
robot to broadcast extra events to achieve the synchronization. Such failures could be due
to a temporary Wi-Fi signal loss. The extra event phase is initialized by the faulty robot
which receives a hello packet from its leader. This mechanism is implemented at line 5 of
the algorithm 2.

The last scenario 3.9, three groups merging at the same time, is unusual but shows
the algorithm resilience. We can notice that at the end of the first “round”, the robot 3
does not have the same group id than the others (yellow-circled value). The situation gets
stable after the second hello event.
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(a) Reception failure on robot 1

(b) Reception failure on robot 0

(c) Reception failure on robot 3

Figure 3.8: Two-group synchronization with failure

This algorithm is very simple and offers resilience in signal loss situations. Never-
theless in some tricky scenarios, it could require more than one round, i.e. more than
one hello event to stabilize itself. Hello events are periodically generated (according to
the beat signal frequency), so increasing this beat signal frequency to accelerate the syn-
chronization phase could be attractive but may on the other hand overload the wireless
network and what’s more, lead to some algorithm instability if this frequency is greater
than half the mean round trip delay of the wireless network.
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Figure 3.9: Three-group synchronization without failure

3.3 World model and navigation

We choose a simple world representation based on a regular grid (see 2.4.1). The real
world is divided into regular cells, each cell represents a world item (wall, path, robot,
invader). We approximately size the cell to the robot width and assume that an one-cell
path does not allow two robots to pass each other (figure 3.10a). The path has to be
duplicated to allow two robots to pass one another (figure 3.10b). The path is a special
cell used to tag the routes the robots can take in the world. An intruder or any unusual
event like a fire, larger than a cell can be split into various cells (figure 3.10c).

(a) One-cell path (b) Two-cell path (c) Large intruder zone

Figure 3.10: Example of cell divisions cells

Regarding the shortest path algorithm, the wavefront-based mechanism described in
section 2.4.2 is simple and efficient, however it does not take into consideration the pos-
sible obstacles which could block the robot and force it to turn back especially inside
an one-cell path. Table 3.1 classifies the obstacles into four categories. We propose an
improved version of the algorithm in which each obstacle can affect the behaviour of the
propagation wave.
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Obstacle type Behaviour
Intruder Stops the propagation wave
Stopped robot Stops the propagation wave
Robot moving in the same direction as the prop-
agation wave

Lets the propagation wave go

Robot moving in another direction Stops the propagation wave

Table 3.1: Propagation wave behaviours

Let’s consider a world with three robots: R1, R2 and R3. Figure 3.11a shows the path
covered by the propagation wave if R1 has stopped, R2 is going up in the same direction
as the wave and R3 is going left in the opposite direction to the wave. Unlike R1 and R3,
R2 lets the wave go, the shortest path is given in figure 3.11b after a gradient descent.

(a) Iteration 19 (b) Gradient descent

Figure 3.11: Improved wavefront-based algorithm

As robot moves can change quickly, the shortest path algorithm is computed each time
the robot passes through a new cell, until it gets to the goal cell. That way, the shortest
path will be updated in case another robot crosses the path or changes its direction.

Another improvement could be to associate a cost to every path cell. This cost could
be set according to the ground nature (low cost for smooth ground, high cost for rocky
area) and consequently to the robot’s maximum speed on this ground. It could be as
well associated with the distance from a identified danger like a fire. The cost would be
introduced in the shortest path calculation.
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3.4 Multi-thread environment and JVM

As we explained in 2.5, the choice of the multi-thread model is essential. We chose the
pthread library because we wanted the middleware to be as independent as possible from
Java and fully portable to another platform. Regarding the simulation and station versions,
the multi-thread model used in the Java virtual machine (JVM) must be compatible with
the C multi-thread model. Manipulating native threads in the middleware kernel could
lead to deadlocks and crashes if the JVM implementation does not fully support a thread
model that matches the native model.

Although we do not notice any crash with Open JDK which is supplied by default with
many Linux distributions, this JVM version is said not to be compatible with pthreads.
For these reasons, we adopted Sun JDK 6.0 which uses internally pthreads. Moreover this
framework is associated with the Java 3D package used in Simbad.
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Chapter 4

Implementation

The chapter starts with a presentation of the three implementations of the middleware
kernel. For each of them, we will present the interaction between the wormhole and the
other layers. The two next sections deal with the task management respectively in the
wormhole and payload. Section 4.4 focusses on the world view content and the update
context. In the next section, we explore the module tree and detail the communication
and navigation modules. In section 4.6, we describe some of the mechanisms we used
to manage concurrency in both Java and C codes. Finally, in the last section, we address
some programming issues we faced during development.

4.1 Middleware versions

The development of the middleware kernel is a large part of this project. The kernel con-
tains the wormhole and payload modules and all the event-based architecture we defined
previously. The kernel is designed to run in an autonomous way. Three types of interfaces
are defined with the robot environment. For each of them, the kernel uses primitives to
interact with the real or simulated environment.

• The actuators: The kernel can change the speed and heading of the robot.

• The sensors: The kernel can get the absolute Cartesian position of the robot, as
well as its current speed and heading. Moreover, the kernel can read the absolute
Cartesian coordinates of an obstacle situated in front of the robot.

• The network: The kernel can send and receive information through a wireless
device. That way, it can exchange information with all teammates.

In a real environment, installing such interfaces is not a simple thing and may requires
to set up intermediate equipments. In this project, we just assume that the kernel has
access to this information. At this stage, we can now present the three versions of the
middleware, each one involves one or various kernels:

27
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• Simulation: It uses a robot simulation tool called Simbad which allows to easily
create a 3D environment with several robots. A robot can be moved around the
world using simple Java primitives. For each robot, the simulation runs a differ-
ent kernel and simulates the wireless network to exchange information between all
robots.

• Mobile: It runs a single middleware kernel and aims to be installed on a hardware
platform with hard devices (actuators, sensors, network). The mobile can commu-
nicate with others mobiles or stations through the wireless network. This version is
fully autonomous.

• Station: It is similar to the mobile as it uses a single kernel. The station runs on
a fixed PC and can communicate as well with mobiles or other stations. A Java
interface allows to simulate the interaction with the sensors and that way, create
fake intruders. Finally, the station can send and receive control events which allow
it to remotely control mobiles and collect information. This feature will be detailed
further in this chapter.

In simulation and station versions, parts of the code are written in Java. Communica-
tion between Java and C codes is handled with the JNI package (Java Native Interface).
The figure 4.1 depicts the three combinations of kernels.

The middleware kernel is composed by the wormhole and payload layers. As ex-
plained in section 3.1.1, both layers must be as independent as possible. We implemented
each one as a single Unix process, the pthread library is in charge of the thread concur-
rency management inside a layer. Communication between both wormhole and payload
is handled with UDP sockets. The TCP protocol offers a reliable delivery service but is
inadequate in wireless environments. We will now enter the kernel architecture and see in
details each versions:

4.1.1 Simulation version

Figure 4.2 shows the three simulated JNI interfaces (sensors, actuators and network)
which are connected to the wormhole layer. In reality, only the wormhole kernel should
compose this layer because the actuators is the only required interface. But maintaining
two processes connected with JNI to the Java simulation would not be efficient so the
wormhole sensor and network interfaces are just in charge of forwarding packets to the
payload.

The wormhole layer shares three communication channels with the payload each one
dedicated to a given type of information: Sensor inputs for channel 1, promises and warn-
ing for channel 2 and finally networks events for channel 3. Each channel is handled
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Figure 4.1: Middleware versions

with UDP sockets. Every interface corresponds to a thread listening to a given UDP port.
All ports are dynamically allocated when wormhole and payload are started up. Let’s
remember that the simulation layer will launch as many middleware kernels (wormhole
and payload) as simulated robots. Table 4.1 details the data exchanged through the three
channels.

Finally, we can notice the presence of a bridge between the sensor interface and the
wormhole kernel. As described in section 3.1.1, the wormhole can take control of the
robot through the safety task. This task has to pilot the robot with a basic navigation
algorithm and consequently, needs to get some information from the sensor interface.

4.1.2 Mobile version

The mobile version architecture (see figure 4.3) is quite similar to the simulation. The
simulation layer and JNI mechanism have disappeared and have been replaced by the
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Figure 4.2: Architecture of the simulation version

Channel Direction Description
1 To payload Current robot coordinates and possibly obstacle

coordinates
1 To wormhole Sensor initialization message sent at payload’s

start and after any sensor failure
2 To payload Warning message to inform the payload it won

or lose control
2 To wormhole Promise including the deadline and the speed/-

heading orders
3 To payload Any events sent by the wormhole
3 To wormhole Any events sent by the payload

Table 4.1: Simulation UDP channels

hardware layer. As the wormhole does not access to the network, the wireless interface is
directly connected to the payload. As a consequence, there are only two UDP channels
between wormhole and payload.

4.1.3 Station version

The station version architecture (see figure 4.4) is actually a mix between simulation and
mobile versions. The sensor and actuator interfaces are simulated and connected to a JNI
simulation layer. The Java part contains the implementation of a graphic interface used to
create fake sensor information. The network interface is connected to the payload as for
the mobile version.
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Figure 4.3: Architecture of the mobile version

Figure 4.4: Architecture of the station version

There is a fourth communication channel used to transport control events. These
special events will be further detailed and are exchanged between mobiles and stations.
The station uses control events to send remote orders to mobiles or to receive state ac-
knowledgements from them. Control events transit through the network so they are first
delivered to the payload. The latter uses the control interface to forward these events until
the control manager and the Java interface.
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4.2 Task management in wormhole

As described in 3.1.1, the wormhole main components are the Control, TTFD and Safety
tasks. Each of them corresponds to a concurrent process initialized at the wormhole’s
startup. The logical flowchart 3.2 gives the actions of each task.

4.3 Task and event management in payload

In this section, we will focus on the payload and especially the event production. Below
a list of different types of events and their production context. According to the type, an
event can transport some basic data which can be used by the triggered module.

• Beat (hard event): this event is a pulse with a static frequency (currently 2 Hz).
The pulse thread generates the beat event every 500 ms and broadcast it from the
tree’s root. This event is used by some leaf modules to perform repetitive and
regular tasks.

• Obstacle (hard event): This event is generated as soon as an obstacle is detected
in front of a robot. The event is produced as long as the obstacle is detected and
at the same frequency as the beat event. The event contains the absolute Cartesian
coordinates of the obstacle.

• Object (local and remote soft event): This event is the most important one. As a
local soft event, it is used to update the robot local view. As a remote soft event,
it is regularly sent by a robot to signal its position (hello events). It is used as well
by a robot to broadcast an obstacle position update. The event contains all object
information: coordinates, speed and heading. If the object is a robot, the robot id,
group id and leader id are also included.

• Synchro (remote soft event): It is produced during the synchronization phase be-
tween two groups (see algorithm 2). Each group leader uses it to send the content
of their local view. This content can be seen as a list of concatenated object events.

• Move (local soft event): The communication modules use this event to inform the
navigation modules that the current robot’s route must be recalculated. A world
view update means either that some objects have moved in the world so the current
best route might have been changed, or that a new intruder has been detected so a
new route to get to this intruder must be found.

• Control (hard and remote soft event): It is used by a station to send remote orders
to the mobiles. On the other side, it is used by each mobile to send information (as
view update status) to the station. This special event is a remote one because it can
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be broadcasted through the network but it can also be considered as hard because it
is initially produced by the station graphic interface.

4.3.1 Event handling cycle

Figure 4.5 illustrates the production cycle of events which always starts with a hard event
production. This first event is pushed into the event queue. Then the event dispatcher
process pops it from the event queue and broadcasts it from the root of module tree. Each
leaf module triggered by the event in the tree must execute its associated task. The task
information (module and incoming event) are pushed into the task queue.

Figure 4.5: Event handling cycle

The task dispatcher pops the task from the task queue and assigns it to an available
task process from the pool. This pool is a set of running process in charge of executing
a module task. Each single execution can lead to the production of local and remote soft
events. A local event will be pushed in the event queue but this time, the module’s path in
the tree is also saved in the queue. When this event is handled by the event dispatcher, the
broadcast will start from this path in the tree as explained in section 3.1.2. If a remote soft
event is produced, the process is similar but the event is first sent through the network to
all teammates. When delivered, the event is pushed into the teammate event queue with
the same path information as it would be produced locally. The cycle continues as long
as the queue and task events are not empty.
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4.3.2 Event and task priority

As some events are more important than others, we introduce three levels of priority (high,
normal and low) in the event handling. These priority levels are used in the event and task
queues (see figure 4.6). The event extraction mechanism is very basic: As long as there
are some high priority events, they are popped then the turn of the normal priority and
finally the low priority. This kind of priority management can lead to starvation issues
and should be improved. However, the relative low rate of hard event production (every
500 ms for the beat event) makes a congestion quite improbable.

Figure 4.6: Queue and priority management

The event priority in the event queue is forwarded to the task queue with the same
priority level. At this stage of the middleware development, the event priority is set as
follows:

• High priority: Set for obstacle events

• Low priority: Set for the remote soft events

• Normal priority: Set for the rest of the events

The reader might be surprised that the beat event is not set to high priority because
it is supposed to be produced at regular and accurate intervals. It’s true but the obstacle
event has a higher priority because it could trigger an obstacle avoidance procedure in the
robot. Moreover, the payload is not synchronous and a few milliseconds late in the beat
event production won’t be serious.

4.4 World view

The view contains information transmitted by its teammates or obtained by its own sen-
sors. The view is composed of objects which represent a robot or an intruder. The object
attributes are given in table 4.2.

The certain attribute is quite important and is worth to be detailed. The value of this
attribute changes in the course of time. When true, the object information has a great
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Name Description
Type Object’s nature i.e. Robot or Intruder
Xcoord, Ycoord Object’s Cartesian coordinates in the world
Heading, Speed Object’s heading and speed values (only available for robots)
Certain Boolean indicating whether the information is reliable or not
Ts Timestamp of the latest information update
Id Object’s identifier

Table 4.2: Object attributes

probability to be correct at the view reading moment. When false, the information is no
longer certain but it is still maintained in the view. Actually, when an object is detected
by a robot sensor, the information associated to the object is tagged as certain in the view.
Later, the certain attribute is set to false in the following situation:

1. The current age of the information calculated from the timestamp value is greater
than a given threshold called CERTAINTY MAX AGE.

2. A robot crossed the latest coordinates of the object and did not detect it at this place,
which means most likely that the object has moved.

4.4.1 Robot modes

According to the view content, each robot can run in three different modes:

• Wandering: The world view does not contain any reference to an intruder. The
robot just wanders around the world, making random decisions to turn left or right
at every corner. The robot speed is constant and equal to WANDERING SPEED.

• Searching: The world view contains one or several references to an intruder but no
reference with a certain attribute set to true. The robot will try to locate the intruder
and will figure out random destination points around the intruder’s latest coordi-
nates. The robot speed is constant and equal to SEARCHING SPEED (greater than
WANDERING SPEED).

• Blocking: The world view contains at least one reference to an intruder with a
certain attribute set to true. The robot will try to block the intruder to prevent him
from running away. The robot will calculate the shortest path to get to the intruder
location. The robot speed is constant and equal to BLOCKING SPEED (greater
than SEARCHING SPEED).
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4.4.2 World view update

There are basically two sources for view updates: The robot local sensors and the wireless
network. Each time a robot receives an update, it will add the information into the view if
it is associated to a new object (e.g. a new intruder detection) or it will update the current
view object if the update timestamp is newer than the current one. All update situations
are listed hereafter:

• The robot detects an intruder in front of it. After updating its own view, the robot
will broadcast the update to its teammates through the network.

• The robot does not detect an intruder which is supposed to be in front of it. After
updating its own view, the robot will broadcast the update to its teammates through
the network.

• The robot receives an object update through the network coming from a teammate.

• The robot receives a set of object updates coming from the leader of another group
(synchro packets) which has just merged with the robot’s group.

• The age of an object is greater than a given threshold. The information is updated
or removed from the view.

An object is removed from the view if its age is greater than ROBOT MAX AGE for a
robot or ROBOT MAX AGE for an intruder. Both thresholds are different because a robot
is supposed to broadcast regularly its position via the hello packets. The non reception
of these packets must lead quickly to remove the robot from the view. This robot is not
part any longer of the group because it faced a communication issue or passed the group
Wi-Fi range.

4.5 Module tree architecture

The whole module tree is depicted in figure 4.7, it can be divided into four subsets of
modules, each of them represents a branch of the tree:

• Communication: This subset includes all modules connected with positioning and
management of the world view.

• Self-coordination: This part deals with all processes necessary to manage the robot
in an autonomous way: mainly the collision avoidance and navigation processes.

• Multi-robot coordination: These modules are in charge of planning actions in-
volving a common strategy between teammates.
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• Remote control: This single module handles the communication between mobile
and station versions and allows the station to send remote requests to the mobiles.

Actually, the multi-robot coordination subset is empty. These features have not been
implemented yet. A good example is the current procedure to block a detected invader.
With the self-coordination modules, the robot finds out the nearest entrance point to get
to the invader then it calculates the shortest path and moves to the destination point. With
a multi-cooperation, the team could run a “consensus” algorithm in order to split up and
cover all available entrances. We will now detail the three sub-branches left:

4.5.1 Communication modules

The communication modules are gathered in figure 4.8. First of all, we can notice that
the navigation group is connected to the communication branch. That way, the navigation
modules can receive the events produced by the branch. The following modules compose
the communication group:

Position freshness detector

As it consumes the beat event, this module is run at regular intervals. The current robot
coordinates, speed and heading are regularly sent to the payload and timestamped when
delivered. The position freshness detector checks whether this information is up-to-date
or in other words the information age is greater or not than POSITION MAX AGE. If so,
the module sets the robot’s state to LOST. A lost state makes the robot freeze.

Hello sender

This event consumes as well the beat event and sends at regular intervals its position
(coordinates, speed and heading) to all teammates through a remote object event. This
event will be consumed by the teammate view updater module. This latter will be further
described.

Obstacle analyser

The obstacle event is produced by the sensor interface in presence of an obstacle in front
of the robot. The analyser module first ensures the robot is not lost and the obstacle
coordinates does not correspond to a wall position. This last verification is made on the
basis of the local world map. If both verifications are OK, the module produces a local
object event with a object type set to unknown which means the robot does not know the
obstacle’s nature yet.
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Figure 4.7: Middleware module tree
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Figure 4.8: Communication modules

View updater

It’s the most complex communication module because it must handle every type of object
event (remote or local) and update the robot world view. Figure 4.9 gives the module
logical flowchart. The reader can refer to the time and view synchronization definitions
(see algorithms 1 and 2).

Both creation and update procedures make some tests to decide whether it is necessary
to broadcast this received object to the teammates (by producing a remote object event). It
could happen for example that the received object would be older than the matched view
object so the module will broadcast the view object once again. In both creation or update,
the two last actions are the robot mode verification and the move event production. The
mode verification procedure checks whether the current robot’s mode must be updated.
For instance, the robot was wandering and detected a new intruder so the mode must be
updated to blocking. Finally, the move event must be produced to force the navigation to
recalculate the current robot route.

View synchronizer

This module handles the incoming synchro event which is involved in the view synchro-
nization phase. Among all actions, this module will extract the list of objects embedded
in the synchro event and for each of them, produce a local object event. For more details,
the reader could refer again to the view synchronization definition (see algorithm 2).
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Figure 4.9: Updater module flowchart

View freshness detector

Like the position freshness detector, this module is executed at regular interval and scans
to object view. As explained in 4.4.2, the module can remove an out-of-date object or
change the CERTAIN attribute (e.g. if the object should be in front of the robot but it
is not detected). Finally, the module terminates by the two same actions performed in
section 4.5.1: The robot mode verification and the move event production.

4.5.2 Self-coordination modules

This branch houses the navigation modules as shown in figure 4.10. Each sub-branch:
Wandering, Blocking, Searching is a reference to the robot current mode. Actually, only
one of the three branches is enabled at the same time. When a communication module
wants to update the current mode, it disables the old mode branch and enables the new
one. The advantage is that an event is not broadcasted through a disabled branch, so only
the modules corresponding to the current robot mode are visited.
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Figure 4.10: Navigation modules

Obstacle avoidance

The role of this module is to force the robot to freeze if there is a risk to collide with the
obstacle. The module first calculates the angle between its own heading and the obstacle
heading. If the angle is lower than π/2, the module sends new speed and heading orders
to the actuators (through the promise structure) to freeze the robot.

The obstacle avoidance module could also produce a move event to force the navi-
gation modules to recalculate the robot route and thus avoid the obstacle but all of this
would introduce an additional delay before sending the new order to the actuators.

Wandering group

The wandering group as the two other groups, is composed by two modules. The move
module calculates the best path to get to the destination point and saves the coordinates
of the next cell in the path. The pilot module compares the robot current position with the
next-cell position. If the next cell is not reached yet, it adjusts the robot heading value to
properly head the cell (see figure 4.11). If it is reached, the pilot module runs a best path
calculation as the move module does and saves a new next-cell position.

Regarding the wandering mode, there is no destination point because the robot makes
random decisions to turn right or left at every corner, the next-cell position is calculated
according to the random decision.
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Figure 4.11: Robot heading adjustment

Blocking group

In blocking mode, the destination point is the coordinates of the nearest entrance point to
get to the invader location. The mechanism is similar to the wandering navigation. The
best path calculation uses the shortest path algorithm described in section 3.3.

Searching group

In searching mode, we are no longer sure that the invader is still at its latest position. So
the robot calculates some random destination points around this latest position. Like in
blocking mode, the shortest path algorithm is involved to figure out the best path.

4.5.3 Remote control module

The control event is used to exchange control information between mobiles and stations.
Three subtypes of control events are already implemented but we can imagine to create
more according to the needs.

• Info request: The station requests the world view content of all mobiles.

• Info message: The mobile can reply to the previous request with this message, the
world view content is transmitted in the form of a text string. The mobile can also
use this subtype to send any message to the station.

• Quit request: As mobiles version run without interaction with humans. This event
can be use by a station to make all mobiles versions terminate.

4.6 Thread concurrency

We have thread concurrency in both Java and C codes. Even if Java is just dedicated to the
simulation and graphic interface, we have to protect the code against concurrent access
problems. To that purpose, we use synchronized methods and wait/notify protocol. We are
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aware that other protocols can provide improved support for concurrency as the package
java.util.concurrent but the Java native concurrency mechanism was adequate given the
project’s requirements.

In C code, we use standard mutex and race conditions protocols defined in the pthread
library. All pthreads are created as JOINABLE which allows the main pthread to wait for
their termination using the pthread join function. To manage race conditions, we use the
classic primitives: pthread cond wait, pthread cond timedwait, pthread cond signal and
pthread cond broadcast. pthread cond timedwait is an alternative timed condition which
stays blocked until the wait time given in parameter is exceeded or an incoming signal is
received. This condition is very useful to easily build timer functions because unlike the
sleep primitive, it can be stopped at any time.

Conditions are usually used to wait for an incoming event. The signalled pthread will
handle the event and perform a given task. Below an example of pthread waiting for an
incoming event. The event is stored into the events queue, the active flag is true as long
as the robot is active.

while (ctx->active) {

// Enter mutex zone
pthread_mutex_lock(&ctx->mutex);

// Wait for event
while (ctx->active && queue_isempty(&ctx->events))

pthread_cond_wait(&ctx->cond_disp, &ctx->mutex);

if (ctx->active) {
// Handle the event
...

}

// Exit mutex zone
pthread_mutex_unlock(&ctx->mutex);

}

Below another example with a timer function using the pthread cond timedwait prim-
itive. We can notice that unlike the previous function, the mutex zone starts and ends
outside the while loop. That way, we ensure that the function is always in a waiting state
when it releases the lock. This point is important when another function which enters the
mutex, tries to stop the timer.

// Enter mutex zone
pthread_mutex_lock(&ctx->mutex)

while (ctx->active) {

// Initialize time
ts.tv_sec = ctx->payload_deadline.tv_sec;
ts.tv_nsec = ctx->payload_deadline.tv_usec * 1000;

// Wait for timeout or timer disarming
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int res = pthread_cond_timedwait(&ctx->cond_timer, &ctx->mutex, &ts);

if (ctx->active == true)
if (res == ETIMEDOUT) {
// Timeout exceeded
...

}
else {
// Timer stopped
...

}
}

Regarding the module tasks, they are run by processes from the task pool in mutual
exclusion zones. That means that these executions are not performed concurrently. In
order to introduce real concurrency, we have to distinguish in each module task which
code has to run in mutex. These tasks have a short computation time and most part of
their code access to shared resources so making this distinction for a large part of these
modules is difficult and could be inefficient. However, full concurrency is necessary to
maintain the performance of the middleware and must be achieved in the future versions.
The next implemented modules which will part of the cooperation sub-branch might be
less dependant of shared resources.

4.7 Programming issues

This section describes some features on the code which raised some issues during the
development. We will focus in particular on the JNI implementation with an C multi-
thread environment with requires a careful code:

4.7.1 JNI Callback references

With JNI, when a native function is called from the Java code, two parameters are passed
to the function: the JNI environment reference and the JNI object reference. Both param-
eters must be reused in the C code to run a callback method. Given that a native pthread
must be able to invoke a callback method at any time, we must deal with two issues:

1. The JNI environment reference (JNIEnv) is only valid within the pthread which was
created for the native function invocation. A new native pthread will be associated
with a new JNIEnv reference. So we must find out and keep this new reference at
the pthread creation.

2. There are three types of JNI object references (jobject): local, global and weak. The
local reference is created at the native function invocation and is automatically freed
once the native function returns. On the other hand, global and weak references
remain valid until they are freed by the programmer. In order for any native pthread
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to call a callback method, we need to use global references (weak ones are not
suitable in this case).

Let’s consider two native functions: engine start and engine stop which are called
respectively when starting and stopping a middleware kernel. The object global reference
is created in engine start then freed in engine stop. During the middleware lifetime, the
object reference is stored in the kernel context.

JNIEXPORT void JNICALL
Java_Robot_engine_1start(JNIEnv *env, jobject obj, jint id) {

// Save VM pointer for callback
(*env)->GetJavaVM(env, &jvm);

// Create an object's global reference
jobject global = (*env)->NewGlobalRef(env, obj);

}

JNIEXPORT void JNICALL
Java_Robot_engine_1stop(JNIEnv *env, jobject obj, jint id) {

// Deleting the global reference
(*env)->DeleteGlobalRef(env, global);

}

In engine start, the GetJavaVM function is used to store a JVM reference which will
be needful later to retrieve the JEnv reference. Let’s consider now the code of a native
pthread, the latter is attached to the JVM and the JEnv reference is initialized. Before
terminating, the pthread is detached from the JVM:

void *engine_pthread(...) {
JNIEnv *env = NULL;

// Obtain JNI environment pointer
(*jvm)->AttachCurrentThread(jvm, (void**)&env, NULL);

// Main loop
while (...) {

...
}

// Detach the thread from the VM
(*jvm)->DetachCurrentThread(jvm);

pthread_exit(NULL);
}

Finally, below the code of a C function invocating a callback method. The function
retrieves the JEnv reference. In the engine pthread function, we chose not to store it in
the kernel context as the global object reference. When a pthread is already attached, the
AttachCurrentThread just returns the JEnv reference.

void engine_callback(...) {
JNIEnv *env = NULL;

// Obtain JNI environment pointer
(*jvm)->AttachCurrentThread(jvm, (void**)&env, NULL);
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// Get the object's class (Robot.class)
jclass class = (*env)->GetObjectClass(env, global);

// Get the display method identifier
jmethodID mid = (*env)->GetMethodID(env, class, "callback", ...);

// Call the display java method
(*env)->CallVoidMethod(env, global, mid, ...);

}

The three types of native function invocation are shown in figure 4.12.

Figure 4.12: Native function invocations

4.7.2 Avoiding deadlocks between Java and C

Since the middleware was developed both in Java and C for the simulation and station
versions, handling concurrency in both parts at the same time requires to be vigilant. In
order to prevent various tasks from accessing simultaneously to common resources, we
use classic mutual exclusion zones and race conditions. This resource management is
separately performed in Java and C codes. As there is no exclusion mechanism common
to both parts, there is a risk of global deadlock as depicted in figure 4.13.

Let’s see an instance, we assume that a kernel function invokes in a mutex zone a
callback method in charge to broadcast a message. This callback method which simulates
the broadcast mechanism, will just send unicast messages to all teammates including the
message source robot. So the method will invoke a native function to deliver the first
message. This function won’t handle the message because the robot is the sender but in
a first version of the program, the native function checked that this message had not been
received yet and broadcasted it again, calling the initial kernel function which was still
blocked in the mutex zone which led to a deadlock. Even if the second broadcast was not
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Figure 4.13: Deadlock risk between C and Java

necessary, a such deadlock was not supposed to happen.

In order to avoid such risks, we decided to ban all series of callback and native in-
vocations from the same thread. In the case of the broadcast for example, sending and
deliver actions are performed in two different threads which communicate by a wait/notify
mechanism.

4.7.3 Memory alignment

Mobile version of the middleware aims to be running of ARM chips while station version
runs on PC computers. Message exchange between payloads of both versions is handled
with UDP sockets. As native mechanisms of data serialization do not exist in C, we
should have ensured that all message fields were transmitted and extracted properly on
each platform which required to check the data endianness for example. In a first version
version of the program, we saved time by transmitting a message structure as a single bit
field which led to an incorrect extraction of some message fields. The problem due to a
different memory management between ARM and PC platforms, was fixed with a manual
serialization of all message fields.
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Chapter 5

Results and review

In this chapter, we propose two parts. First, a description of some relevant tests we car-
ried out to validate the middleware architecture and the synchronization algorithms and
secondly a short work review composed by a list of questions/responses. In this latter
section, we tried to highlight the middleware limitations and propose enhancements.

5.1 Tests and results

We discuss four scenarios, three of them use the simulation version. The last scenario
involves the mobile and station version in their startup phase.

5.1.1 Blocking movements

The purpose is to test the navigation algorithms in blocking mode, i.e. when an intruder
is detected and stays frozen in front of a robot. The scenario involves five robots and one
intruder. All robot paths are one-cell wide so robots cannot pass each other. The figure
5.1 shows the final Simbad screen at the end of the simulation. We will now explain what
happened.

The blue robot first detects the intruder, the other four robots are located on the right
side of the screen. Before the detection, all robots are in wandering mode. When the
invader is detected, all modes are set to blocking and all robots try to get to an entrance
point close to the intruder.

The blue robot which has detected the intruder is already on the south entrance point
and stays fixed. The four other robots will eventually choose the north entrance point
because the south is closed by the blue robot. As the four robots move in the same direc-
tion as the wave propagation (shortest path algorithm), none of them are considered as an
obstacle so the robots keep moving.

49
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Figure 5.1: Example of blocking movements

When the yellow robot gets first to the north entrance point, it freezes. As soon as the
orange, green and pink robots recalculate the best path, they consider now both blue and
yellow robots as obstacle. There are no path left to get to an entrance point so the orange,
green and pink robot freeze and stay fixed.

Conclusion: The green and pink robots stay far the invader while they had the oppor-
tunity to move closer. This is a drawback of the current navigation algorithm which could
disappear if the paths would be two-cell wide. This latter case is closer to reality.

5.1.2 Payload killing

In this scenario, we want to test the wormhole’s behaviour on control. So we modify a
little part of the simulation code to prevent the wormhole from reloading the payload in
case of crash. Then we kill the payload process. A robot and an invader are involved in
the simulation, the robot is moving towards the invader in blocking mode.

When the wormhole assumes the control and a destination point is set, the wormhole
tries to get to this destination point with a very basic algorithm. Indeed, the wormhole
chooses the nearest next cell to the destination point, no matter if the path starting from
the next cell might be a dead end. As the robot was separated from the destination point
with many walls, the robot was quickly unable to continue and stayed blocked in the dead
end.

Conclusion: The wormhole navigation algorithm is deliberately very simple and lim-
ited because the wormhole cannot run a task with an indeterministic computation time
which is the case of the wavefront-based algorithm. The wormhole is not designed to
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assume control during a long period of time. in a “normal” situation, the payload is sup-
posed to quickly wormhole stability or to be restarted.

5.1.3 System stress

This scenario is designed to measure the performance of the payload task management
when the system is stressed, i.e. when many events concurrently arrive to the event and
task dispatchers. Then we perform the following actions:

1. We modify the structure of the queue to save the maximum queue size.

2. We size the pool task to a great number of running processes.

3. We create a simulation world with a great number of robots.

4. We stress the simulation with some event-consuming actions.

Test results: Pool size = 20. Robot number = 8. Stressing actions = consecutive view
synchronizations. Maximum task queue size = 7/8.

Conclusion: The poor maximum size of the task queue may be explained by the low
frequency of the beat event production (500 ms). Maybe a congestion situation could
be reached with many more robots but we are limited by the simulation requirements.
After the test, we set the task pool size to ten. This size is currently the same in the three
middleware versions.

5.1.4 Time synchronization

This short scenario is used between a mobile version running on the ARM chip and a
station version running on a PC. Both versions communicate through the network. We
introduce a 0.5 sec lag between both system clocks and we start the payloads.

The station payload can be started before or after the mobile payload, the results are
similar. Each time, the view synchronization phase (which is automatically performed
because each robot is considered as a group) requires some extra objects events to con-
verge. This behaviour is explained in section 3.2.1. The payload receives an object event
with a timestamp older than its own view object so the payload broadcasts again it own
object considering that the first broadcast failed for any reasons.

Conclusion: This behaviour is normal and not prejudicial for the robot as the syn-
chronization phase just lasts a little more time.
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5.2 Work review

Below some criticisms we could find against the current implementation and some an-
swers we could provide:

• Question: The middleware architecture is based on a wormhole approach. This
wormhole is supposed to meet timeliness requirements for critical task process-
ing which required in theory to be synchronous. But the middleware including the
wormhole is implemented on an Unix platform which does not meet any real-time
requirements.
Response: In a context of robot teams, the frequency to send promises to the
wormhole is quite low (every 500 ms). So although the wormhole is not fully
synchronous, this implementation allowed us to test and validate the global middle-
ware architecture. The next step is to port the wormhole into a separated hardware
device as the robot FPGA.

• Question: The view synchronization algorithm runs in the payload which is not
synchronous by definition. What’s more, the synchronization phase relies on the
hello packet broadcast and may require various ”rounds” to be completed. During
this period, a robot does not know whether its view is synchronized or not with its
teammates.
Response: The view synchronization algorithm is not said to be synchronous. Dur-
ing the convergence phase, world views can be different inside the group and some
robots may take incoherent decisions with regard to the group strategy but as soon
as the synchronization is completed, the robot will update its strategy.

• Question: The synchronization algorithm offers resilience to the system but the
whole process to exchange messages is based on unreliable broadcasting through
the teammates. There’s no verification that a message is really delivered to the
teammates.
Response: The message sending process simulates a real broadcast network. Actu-
ally, this process relies on unicast messages. A possible improvement would be to
set up an ad-hoc Wi-Fi network with native and reliable broadcast protocols.

• Question: The middleware kernel has been developed in a multi-thread environ-
ment but some threads as the module tasks do not run concurrently.
Response: The module tasks have a short computation time and most part of their
code access to shared resources. The concurrency introduction will be possible with
the implementation of new modules less dependant to these resources.

• Question: The middleware is expected to offer an cooperative framework for a
team of robots but the module tree does not include any cooperation modules.
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Response: Building such a cooperative middleware required first to make available
some basic mechanisms as the communication channels, the world shared view or
the navigation algorithms. This first part is now achieved and makes possible the
implementation of cooperation higher-level modules in future versions.



Chapter 5. Results and review 54



Chapter 6

Conclusion

In this document, we presented a middleware architecture which aims to offer more re-
silience to groups of mobile robots in charge of the surveillance of physical areas. This
architecture relies on a control layer composed by the wormhole and the payload, an
event-based structure for the payload task execution, some synchronization mechanisms
tolerant to communication failures and finally a multi-thread environment common to
Java and C.

Through the description of these features, we discussed how this architecture could
guarantee the timely execution of the critical tasks and maintain a shared world view
common for all teammates. On the other hand, we considered as well the current limita-
tions of this architecture and the way we could improve it and overtake its limitations. The
formal definition of the wormhole is a good example, the model is supposed to be fully
synchronous and run on a real-time platform which is not the current situation. However,
the porting of the middleware to hardware platforms and FPGA’s would be a great im-
provement even if it would require to rewrite a large part of the current code.

The middleware module tree offers a flexible and simple way to add new modules i.e.
new functionalities. In particular future improvements could lead to create cooperation
modules which are missing in this implementation. The challenge will be to implement
real common strategies to solve problems and one day, dynamically update the module
tree by adding, moving or deleting modules. This latter point could allow the robot to
acquire intelligence and share it through the team.
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Appendix A

User and developper guide

In this chapter, we’ll give basic requirements to install, modify or compile the middleware
code. We’ll start with the environment requirements and continue afterwards with the
Eclipse configuration for a dual compilation (Java + C).

A.1 Linux vs Windows

All versions of the middleware were developped and tested on Linux platforms (Ubuntu
10.04 32bits). Porting these versions on Windows is possible but requires to find a pthreads
implemention for this platform. Basically, there are three different solutions:

• Use a Pthread library for Windows as Pthead Win32.

• Use a Linux-like environment as Cygwin and compile sources with internal tools.

• Use a Virtual Machine as WMware and install Linux as emulated environment.

All documentation given in this chapter is intented to an Ubuntu user.

A.2 Sun JDK and Java 3d installation

As explained in chapter 3.4, we chose Sun JDK 6.0 because it fully supports the pthread
model implemented in the middleware. Below the commands on Ubuntu platform to
install Sun JDK 6.0 and set it up as the default JVM:

sudo apt-get install sun-java6-jdk
sudo update-java-alternatives -s java-6-sun

In order to run the Simbad simulation tool, the user must install a version of Java 3d.
The software can be found on the site java.sun.com. These files must be installed into the
Sun JDK file structure.
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A.3 Eclipse’s configuration

Eclipse supports JNI and allows to work on both C and Java files in the same time. Any
modification in C files leads to an automatic rebuild of the C library which is very con-
fortable. We will give hereafter the main steps to configure Eclipse to run the simulation
version of the middleware. All screenshots come from the version 3.2 with CDT plug-in.

Step 1: Go to Window → Preferences → InstalledJREs then add new JRE. In
the JRE home directory, browse the directory which Sun JDK 6 is installed in (/usr/lib/jvm/java-
6-sun/jre in our system). Finally set this new JRE as the default one.

Figure A.1: JRE setup in Eclipse

Step 2: Create a Java project: File→ New → Project. You can start creating your
own Java classes as normally. Then you have to modify the current project to include
the C perspective and allow makefile-based compilation: File → New → Other then
“Convert to a C/C++ Make Project”. Choose the Java project and the C option as de-
picted on figure A.2.

Step 3: Create your own makefile and save it in the project’s directory. Considering
that libfile is the native library’s name, the makefile can have the following structure:

CC = gcc
OBJS = file1.o file2.o ...
CFLAGS = -std=c99 -Wall
LFLAGS = -lpthread -lm

all : libfile.so

libfile.so : $(OBJS)
gcc --shared $(OBJS) $(LFLAGS) -o libfile.so
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Figure A.2: Conversion to C Make Project

interface.h : package/Interface.class
javah -o interface.h -jni package.Interface

interface.o : interface.c interface.h define.h
$(CC) $(CFLAGS) -c $<

%.o : %.c define.h
$(CC) $(CFLAGS) -c $<

clean :
rm interface.h *.o

Interface.java contains the C native function signatures. We can have as many inter-
face files as necessary. For each one, the creation of a native method header using javah,
is required. interface.c must contain the implementation of the C native functions whose
signatures are defined in Interface.java. define.h is a common header file and package the
name of the single Java package. Finally, we can note that we forced the C99 version of
the C compiler.

Step 4: Set up the native library path: Project → Properties → JavaBuildPath

(see figure A.3). As we use the Simbad library, the user can take the opportunity in the
same menu to set up the path of the external JAR files (see figure A.4).

Step 5: Check out that the auto build option is enabled in the Project→ Properties→
CMakeProjectmenu (see figure A.5).

Step 6 (optional): In order to have a more friendly environment, the user can create a
filter in the left navigation window to only see the source Java and C files (see figure A.6).
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Figure A.3: Native library path

Figure A.4: External JAR library path

A.4 Middleware execution

This section gives the way to manually start each version of the middleware. For each of
them, we’ll describe the configuration files and required parameters.

Simulation version start

The simulation class execution starts the Simbad interface and all robot kernels (wormhole
and payload). Below the start command:

export LD_LIBRARY_PATH=<project's-directory-path>
java engine.Simulation
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Figure A.5: Auto-build option selection

Figure A.6: Filter creation

There’s no required parameter. The only configuration files are both maps files (see
figure A.7). The local map is loaded by each robot kernel and gives a text representation
of walls and robot paths. The global map is used by the simulation part to get all robot
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and invader positions. The wall and path positions must be the same as the local map.

Figure A.7: Global and local world maps

Meaning of each text character: ’*’ for a wall position, ’.’ for a path position, ’R’ for
a robot position (for global map) and ’I’ for an invader position (for global map). The ’R’
or ’I’ characters must be located on a robot path. As a design constraint, any path position
must be one character apart from the map bounds and the wall positions.

Mobile version start

This version must be started on each robot hardware. Once started, the wormhole will run
internally the payload process. Below the start command:

wormhole <id> <file1> <file2>

Meaning of each parameters: id for the robot’s identifier, file1 for the map file name
and file2 for the host file name. The host file contains a text list with all robot ip addresses.
The first parameter is the robot’s identifier, the second one the ip address and the third one
the UDP listening port. This file must be the same for all robots, the robot’s identifier
given in the wormhole command must be part of the host file identifiers. As various UDP
port numbers are assigned by the system from the listening port value, the port numbers
must not be continuous. Below an example of host file content:

0 10.10.5.45 5000
1 10.10.5.123 5100
2 10.10.5.234 5200
3 10.10.5.45 5300
5 10.10.5.123 5400
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As for the simulation version, the local map file must be present in the project’s di-
rectory. We could imagine that some groups of robots cover different parts of the world,
consequently paths defined in the each map file can be different.

Station version start

This version must be run on a fixed station, the latter will communicate with all other
mobile robots and fixed stations already running. Below the start command:

export LD_LIBRARY_PATH=<project's-directory-path>
java engine.Station <id> <file1> <file2>

The parameters are the same as for a mobile execution: id for the robot’s identifier,
file1 for the map file name and file2 for the host file name.





Glossary

FPGA Field-Programmable Gate Array

GPS Global Positioning System

JDK Java Development Kit (Sun framework)
JNI Java Native Interface
JVM Java Virtual Machine

Mutex Mutual Exclusion

NTP Network Time Protocol

RSS Received Signal Strength

TCP Transmission Control Protocol
TTFD Timely Timing Failure Detection

UDP User Datagram Protocol

Wi-Fi Wireless Fidelity (by analogy with Hi-Fi)
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