
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

Diversity Management in Intrusion Tolerant Systems

Miguel Garcia Tavares Henriques

MESTRADO EM INFORMÁTICA

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/12428262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

Diversity Management in Intrusion Tolerant Systems

Miguel Garcia Tavares Henriques

DISSERTAÇÃO

Trabalho orientado pelo Prof. Doutor Alysson Neves Bessani
e co-orientado pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

MESTRADO EM INFORMÁTICA

2011

Acknowledgments

First, I would like to thank my advisors, Professor Alysson Bessani and Professor
Nuno Neves. It was in my second year of graduation in a particular lecture from Professor
Nuno that I got interested in security, and later on again during the Security course by
Professor Alysson. At the end of that year, Professor Alysson invited me to join Navi-
gators. Second, I would like to thank to Professor Paulo Sousa for advising me in my
first two years as a junior researcher in Navigators. Without their support and guidance
it would be very difficult to achieve what I have done so far. It is a honor, and also a
responsibility, to work with researchers of such high-quality and I am in their debt for
their teachings and for being my role models.

I would also like to thank the important collaboration of Professors Ilir Gashi and
Rafael Obelheiro, – a great part of this thesis, due to their work and commitment, results
from our joint work. I also thank Ilir for the confidence he passed to me at my first
international conference presentation.

To all my colleagues I encountered during my graduation, MSc, and in the LaSIGE
research group, specially to my friend and colleague Bruno for all the work we have done
together in the graduation and master years, it was a war and we won! To Tiago and João,
my informal advisors and friends, thank you for your wisdom, experience, advise and
time spent with my insecurities.

I must thank my sister, brother and parents for all the patience and unconditional
support. To my uncles and cousins for the motivation, inspiration and for making this
journey possible. To Zé and Dulce for being my second family.

iii

To all the people and “things” that made me who I am.

Resumo

Uma aplicação importante dos protocolos de tolerância a faltas arbitrárias (ou Bizanti-
nas) é a construção de sistemas tolerantes a intrusões, que são capazes de funcionar cor-
rectamente mesmo que alguns dos seus componentes sejam comprometidos. Estes sis-
temas são concretizados através da replicação de componentes e da utilização de protoco-
los capazes de tolerar faltas arbitrárias, quer na rede como num subconjunto de réplicas.
Os protocolos garantem um comportamento correcto ainda que exista uma minoria (nor-
malmente menor do que um terço) de componentes controlados por um adversário ma-
licioso. Para cumprir esta condição os componentes do sistema têm de apresentar inde-
pendência nas falhas. No entanto, quando estamos no contexto da segurança de sistemas,
temos de admitir a possibilidade de ocorrerem ataques simultâneos contra várias réplicas.
Se os vários componentes tiverem as mesmas vulnerabilidades, então podem ser compro-
metidos com um só ataque, o que destrói o propósito de se construir sistemas tolerantes
a intrusões. Com o objectivo de reduzir a probabilidade de existirem vulnerabilidades
comuns pretendemos utilizar diversidade: cada componente usa software distinto que
fornece as mesmas funcionalidades, com a expectativa de que as diferenças vão reduzir o
número de vulnerabilidades semelhantes.

Reconhecemos também que isoladamente a tolerância a faltas arbitrárias tem algumas
limitações uma vez que consideramos faltas maliciosas: uma das limitações mais impor-
tantes é que dado tempo suficiente o adversário pode comprometer f + 1 réplicas, e então
violar a hipótese de que no máximo f componentes podem sofrer uma falta, levando os
recursos do sistema à exaustão.

Uma forma de lidar com esta limitação consiste em renovar periodicamente as réplicas,
uma técnica denominada por Recuperação Proactiva. O propósito das recuperações é
limpar o estado do sistema, reiniciando a replica com código disponı́vel em armazena-
mento apenas com permissões de leitura (ex: CD-ROM) e validar/obter o estado de outro
componente (que seja correcto). Num sistema tolerante a intrusões com recuperação
proactiva o intervalo temporal que o adversário tem para comprometer f + 1 réplicas
passa a ser uma pequena janela de vulnerabilidade, que compreende o tempo de recupe-
ração do sistema todo. Apesar dos benefı́cios que as recuperações periódicas oferecem em
termos de fiabilidade persiste a seguinte dificuldade: as vulnerabilidades exploradas nas
execuções anteriores da replica podem ainda ser exploradas depois da recuperação. Esta

vii

limitação permite facilmente a um atacante criar um script que automaticamente compro-
mete novamente a replica logo a seguir à sua recuperação - pois as vulnerabilidades não
são apagadas mas sim a falta (i.e., o estado incorrecto no componente devido à intrusão).

Com o objectivo de melhorar o sistema introduzimos diversidade nas recuperações,
mais precisamente em componentes off-the-shelf (OTS). Hoje em dia praticamente todo o
software desenvolvido é baseado neste tipo de componentes, como por exemplo sistemas
operativos (SO) e gestores de bases de dados. Isto deve-se principalmente à complexidade
do desenvolvimento destes componentes em conjugação com os benefı́cios relacionados
com o baixo custo1, a instalação rápida e a variedade de opções disponı́veis. No en-
tanto, a maior parte dos componentes OTS não foram desenhados com segurança como
prioridade, o que significa que em todos eles existem vulnerabilidades que podem ser
maliciosamente exploradas.

Por vezes, sistemas supostamente seguros são comprometidos através de uma com-
ponente critica na sua infraestrutura. Por outro lado, dada a quantidade de oferta das
componentes OTS, utilizar diversidade nestes componentes é menos complexo e tem um
menor custo do que desenvolver várias componentes de software diferentes. Um bom
exemplo disto é o caso dos SO: as organizações na verdade preferem um sistema opera-
tivo OTS do que construir o seu próprio SO. Dada a variedade de sistemas operativos
disponı́veis e a criticidade do papel desempenhado por estes em qualquer computador, a
diversidade ao nı́vel dos SO pode ser uma forma razoável de garantir segurança contra
vulnerabilidades comuns com um baixo custo adicional.

O foco nas vulnerabilidades comuns é um aspecto importante deste trabalho. Visto
que a tolerância intrusões é aplicada em sistemas crı́ticos, é seguro afirmar que no sistema
operativo vai ser assegurada a máxima segurança, aplicando todos os patches disponı́veis.
No entanto, mesmo com sistemas actualizados, o sistema pode ser comprometido através
de vulnerabilidades que ainda não foram descobertas pelos programadores (vulnerabili-
dades de dia zero), visto que os patches aparecem normalmente depois da vulnerabilidade
ser anunciada. Se uma vulnerabilidade de dia zero afectar o sistema existe uma janela de
oportunidade para o atacante causar uma intrusão.

A questão principal que tratamos na primeira parte desta tese é: Quais são os ga-
nhos de se aplicar diversidade de SO num sistema tolerante a intrusões replicado? Para
responder a esta questão, recolhemos e seleccionámos dados sobre vulnerabilidades do
NIST National Vulnerability Database (NVD) entre 1994 e 2010 para 11 sistemas opera-
tivos. Os dados do NVD relativamente aos SO são consideráveis, o que nos permite tirar
algumas conclusões. Cada vulnerabilidade presente no NVD contém (entre outras coisas)
informação sobre que produtos são afectados pela vulnerabilidade. Recolhemos estes
dados e verificámos quantas vulnerabilidades afectam mais do que um sistema opera-
tivo. Constatámos que este número é relativamente pequeno para a maior parte de pares

1Alguns destes componentes podem ser de código aberto e gratuitos.

viii

de sistemas operativos. Este estudo foi depois estendido a um número maior de SO,
com conclusões semelhantes para esses conjuntos. Estes resultados sugerem que existem
ganhos de segurança que podem ser alcançados recorrendo à utilização de sistemas opera-
tivos diferentes num sistema replicado.

Como nota de cautela, não pretendemos afirmar que estes resultados são uma prova
final sobre a ausência de vulnerabilidades comuns (embora sejam bastante promissores).
Um dos principais problemas encontrados é que os relatórios focam-se nas vulnerabili-
dades e não em quantas intrusões ou exploits ocorreram para cada vulnerabilidade; isto
faz com que a avaliação, em termos de segurança, seja mais difı́cil.

A segunda parte da tese propõe uma arquitectura que explora a diversidade disponı́vel
nos sistemas operativos juntamente com mecanismos de recuperação proactiva. O ob-
jectivo principal é mudar a configuração das réplicas de forma a alterar o conjunto de
vulnerabilidades após uma recuperação. Desenvolvemos também um algoritmo que se-
lecciona entre os candidatos o melhor sistema operativo para ser usado numa recuperação,
assegurando o maior nı́vel de diversidade possı́vel entre as réplicas que se encontram em
execução.

As contribuições principais deste trabalho podem ser descritas em:

1. Um estudo que consistiu na classificação manual das vulnerabilidades que afec-
tam 11 sistemas operativos em categorias: drivers, kernel, software de sistema e
aplicações; comparação entre pares de sistemas operativos, e construção de conjun-
tos de sistemas operativos para sistemas replicados com foco na diversidade.

2. Uma discussão sobre as limitações e oportunidades oferecidas pelos dados dispo-
nı́veis no NVD para avaliar sistemas seguros e confiáveis;

3. Desenvolvimento de uma arquitectura que combina a diversidade descrita anteri-
ormente com mecanismos de recuperação proactiva, baseada num algoritmo que
oferece a melhor combinação de sistemas operativos para o sistema.

O trabalho descrito na tese resultou nas seguintes publicações:

• M. Garcia, A. Bessani, I. Gashi, N. Neves, R. Obelheiro, ”OS Diversity for Intru-
sion Tolerance: Myth or Reality?”, in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, Hong Kong, June 2011;

• M. Garcia, A. Bessani, N. Neves, ”Diverse OS Rejuvenation for Intrusion Toler-
ance”, Poster paper in Supplement of the IEEE/IFIP International Conference on
Dependable Systems and Networks, Hong Kong, June 2011.

Palavras-chave: Diversidade, Vulnerabilidades, Sistemas Operativos, Tolerância a
Intrusões, Recuperção Proactiva.

ix

Abstract

One of the key benefits of using intrusion-tolerant systems is the possibility of ensur-
ing correct behavior in the presence of attacks and intrusions. These security gains are
directly dependent on the components exhibiting failure diversity. To what extent failure
diversity is observed in practical deployment depends on how diverse are the components
that constitute the system. In this thesis we present a study with operating systems (OS)
vulnerability reports from the NIST National Vulnerability Database. We have analyzed
the vulnerabilities of 11 different OS over a period of roughly 15 years, to check how
many of these vulnerabilities occur in more than one OS. We found this number to be
low for several combinations of OS. Hence, our analysis provides a strong indication that
building a system with diverse OS may be a useful technique to improve its intrusion
tolerance capabilities. However, even with diversity the attacker eventually will find vul-
nerabilities in all OS replicas. To mitigate/eliminate this problem we introduce diverse
proactive recovery on the replicas. Proactive recovery is a technique that periodically re-
juvenates the components of a replicated system. When used in the context of intrusion-
tolerant systems, in which faulty replicas may be under control of some malicious user,
it allows the removal of intrusions from the compromised replicas. We propose that af-
ter each recovery a replica starts to run a different software. The selection of the new
replica configuration is a non-trivial problem, as we will explain, since we would like to
maximize the diversity of the system under the constraint of the available configurations.

Keywords: Diversity, Vulnerabilities, Operating Systems, Intrusion Tolerance, Proactive
Recovery.

xi

Contents

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions and Publications . 3
1.3 Planning . 4
1.4 Document Structure . 4

2 Related Work 5
2.1 Diversity Studies . 5
2.2 Studies Using Vulnerability Reports . 8
2.3 Proactive Recovery . 9
2.4 Diverse Proactive Recovery . 11
2.5 Final Remarks . 12

3 Vulnerability Study 13
3.1 Data Source . 13

3.1.1 Filtering the Data . 17
3.1.2 Distribution of Vulnerabilities by OS Parts 18

3.2 OS Diversity Evolution . 20
3.2.1 Distribution of OS Vulnerabilities 20
3.2.2 Common Vulnerabilities . 23
3.2.3 Selecting the OS for the Replicas 26
3.2.4 Exploring Diversity Across OS Releases 28

3.3 Final Remarks . 29

4 Diverse Proactive Recovery 31
4.1 System Architecture . 31
4.2 Diverse Rejuvenation . 33

4.2.1 Rational for the Solution . 33

xiii

4.2.2 Selection Algorithm . 35
4.3 Evaluation . 37

4.3.1 Experimental Setup . 37
4.3.2 Algorithm Evaluation . 37
4.3.3 Recovery Evaluation . 38

4.4 Final Remarks . 40

5 Conclusion 41
5.1 Summary of Results . 41
5.2 Limitations of the Work . 42

5.2.1 Limitations of NVD and its Implications on the Study 42
5.2.2 DRM Limitations . 44

5.3 Future Work . 44

Bibliography 52

xiv

xvi

List of Figures

3.1 Simplified SQL schema of the database used to store and analyze the
NVD data. 16

3.2 Temporal distribution of vulnerability publication data for four operating
system families. 22

3.3 Several configurations of OS: Debian - only Debian; Set1 is {Win2003,
Solaris, Debian, OpenBSD}; Set2 is {Win2003, Solaris, Debian, NetBSD};
Set3 is {Win2003, Solaris, RedHat, NetBSD}; Set4 is {OpenBSD, NetBSD,
Debian, Redhat}. 27

4.1 Architecture of the rejuvenation system. 32
4.2 The degradation evolution of the algorithm. 38

xvii

List of Tables

3.1 Distribution of OS vulnerabilities in NVD. 18
3.2 Vulnerabilities per OS component class. 20
3.3 Vulnerabilities (1994 to (Sept.) 2010): All - all vulnerabilities; No Ap-

plication - no application vulnerabilities; No App. and No Local - no
application vulnerabilities and only remotely-exploitable vulnerabilities. . 24

3.4 Common vulnerabilities on Isolated Thin Servers. 25
3.5 History/observed period results for Isolated Thin Servers. 26
3.6 Common vulnerabilities between OS releases. 29

4.1 Disk size: 1.02 GB. 39
4.2 Disk size: 2.2 GB. 39
4.3 Disk size: 2.2 GB. 39
4.4 Disk size: 3.3 GB. 39
4.5 Disk size: 10.5 GB. 39

xix

Chapter 1

Introduction

In this chapter we motivate the work of the thesis, and we present the main goals and most
important achievements. In the end of the chapter, we analyze the planning presented
on the preliminary report and the actual task accomplishment, and we also describe the
organization of the rest of the document.

1.1 Motivation

One important application of Byzantine fault-tolerant protocols is to build intrusion-
tolerant systems, which are able to keep functioning correctly even if some of their parts
are compromised. Such protocols guarantee correct behavior in spite of arbitrary faults
provided that a minority (usually less than one third [30]) of the components are faulty
(for an overview of the area see [63]). To respect this condition, system components
need to exhibit failure diversity. However, when security is considered, the possibility of
simultaneous attacks against several components cannot be dismissed. If multiple compo-
nents exhibit the same vulnerabilities, they can be compromised by a single attack, which
defeats the whole purpose of building an intrusion-tolerant system in the first place. To
reduce the probability of common faults, diversity can be employed: each component uses
different software to perform the same functions, with the expectation that the differences
will reduce the occurrence of common vulnerabilities. This is an orthogonal aspect that
affects all works on Byzantine fault-tolerant replication (e.g., [1, 8, 11, 13, 41, 56, 67]).

We also recognize in BFT replication alone some limitations once malicious faults
are considered: One of the most important limitations is that given sufficient time, an
adversary might be able to compromise f +1 replicas and then break the assumption that
at most f replicas are faulty, exhausting the resources of the system [60].

A way to deal with this limitation is to employ periodic rejuvenations of replicas
[11, 58, 60], a technique commonly called proactive recovery (PR). The rationale of these
rejuvenations is to clean the state of the system, which is performed typically in the fol-
lowing way: reboot the machine with code from a read-only storage (e.g., a CD-ROM)

1

Chapter 1. Introduction 2

and validate/fetch the service state from other (correct) replicas. An intrusion-tolerant
system with proactive recovery decreases the time an adversary has to compromise f + 1

replicas from the complete system lifetime to a small window of vulnerability comprising
approximately the period to rejuvenate the whole system.

Although periodic rejuvenations bring benefits in terms of reliability [23] it has a the
following problem: the vulnerabilities exploited on previous incarnations of the replica
may still be exploitable after the recovery. This limitation makes it very easy for a smart
adversary to create a script to automatically compromise the replica again just after the
rejuvenation.

In order to address this problem, we introduce diversity on the rejuvenations, more
precisely on the off-the-shelf (OTS) components that most software systems built today
rely on, such as operating systems and database management systems. This common
usage is mostly due to the sheer complexity of such components, coupled with benefits
such as the perceived lower costs from their use (some of the components may be open-
source and/or freely available), faster deployment and the multitude of available options.
Most OTS software, however, have not been designed with security as their top priority,
which means that they all have their share of security flaws that can be exploited. At
times, supposedly secure systems are compromised not due to vulnerabilities in applica-
tion software but in a more surreptitious manner, by compromising some other component
in their software infrastructure (e.g., the operating system). On the other hand, given the
ready availability of OTS software, leveraging OTS components to implement diversity is
less complex and more cost-effective than actually developing variants of software. One
of the prime examples is the operating system (OS): realistically, people will resort to an
OTS operating system rather than build their own. Given the variety of operating systems
available and the critical role played by the OS in any system, diversity at the OS level can
be a reasonable way of providing good security against common vulnerabilities at little
extra cost.

The focus on common vulnerabilities is an important distinctive of this thesis. Since
intrusion tolerance is usually applied to critical systems, it is safe to assume that maximum
care will be exercised in protecting system components, including applying all security
patches available. However, even an up-to-date system can be compromised through an
undisclosed vulnerability (using a zero-day exploit), since patches usually only appear af-
ter a vulnerability has been publicized. If such a vulnerability affects several components,
there is a window of opportunity for compromising many or all of them at the same time.

The main question we address in this thesis is: What are the gains of applying OS
diversity on a replicated intrusion-tolerant system? To answer this question, we have
collected vulnerability data from the NIST National Vulnerability Database (NVD) [44]
reported in the period between 1994 and 2010 for 11 operating systems. We focus our
study on operating systems for several reasons: they offer a good opportunity for diversity,

Chapter 1. Introduction 3

many intrusions exploit OS vulnerabilities, and the number of OS-related vulnerability re-
ports in the NVD is sufficiently large to give meaningful results. Each vulnerability report
in the NVD database contains (amongst other things) information about which products
are affected by the vulnerability. We collected this data and checked how many vulnera-
bilities affect more than one operating system. We found this number to be relatively low
for most of the operating systems pairs. This study was then extended to a greater number
of OS, with similar conclusions for selected sets. These results suggest that security gains
may be achieved if diverse operating systems are employed in replicated systems.

In the second part of this thesis we propose an architecture to exploit the opportunistic
diversity available from OTS components such as operating systems, database manage-
ment systems, virtual machines and cryptographic libraries. The main objective is to
change the configuration of a replica in order to modify its vulnerability set after the
recovery. In particular, we extend the PRRW (Proactive-Reactive Recovery Wormhole)
architecture [58] with a configuration selector able to choose system configurations for
recovering replicas preserving some expected fault independence between them.

1.2 Contributions and Publications

The main contributions of this thesis can be summarized as:

1. A hand-made classification of the vulnerabilities that affect 11 operating systems
in drivers, kernel, system software and applications, over a period of approximately
15 years.

2. A study of how many common vulnerabilities appear for several pairs of operating
systems divided in four families (BSD, Solaris, Linux and Windows) that capture
different users preferences. That study shows that for several pairs of OS there
was a very small number of common flaws over the considered period. This result
gives evidence that with an appropriate selection of OS running on the replicas of an
intrusion tolerant system, it is possible to avoid shared vulnerabilities. The practical
implications of this conclusion can be significant because it demonstrates that there
can be security gains by employing diversity.

3. Design an architecture that uses proactive recovery mechanisms, introducing di-
versity on rejuvenations. The diversity is generated with an algorithm that selects
the configurations to minimize the number of common vulnerabilities across the
running replicas.

Chapter 1. Introduction 4

From the described work resulted two papers:

• M. Garcia, A. Bessani, I. Gashi, N. Neves, R. Obelheiro, “OS Diversity for Intru-
sion Tolerance: Myth or Reality?”, in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, Hong Kong, June 2011;

• M. Garcia, A. Bessani, N. Neves, “Diverse OS Rejuvenation for Intrusion Toler-
ance”, Poster paper in Supplement of the IEEE/IFIP International Conference on
Dependable Systems and Networks, Hong Kong, June 2011.

1.3 Planning

In this section we made an analysis of the planning presented in the preliminary report and
the actual task accomplishment. There was some deviations from the original planning
due to the papers listed in the previous section, it is important to notice that, at the first
planning was only supposed to write one paper, but we end up writing another paper
to a poster submission in the same conference. There was also a delay on writing the
dissertation. These delays total had a cost of two additional months of work.

1.4 Document Structure

In Chapter 2 we make an overview of several related works in different topics such as: the
different approaches on diversity in computer systems, studies using vulnerability reports,
proactive recovery and diverse proactive recovery. In Chapter 3 we present a study based
on vulnerability reports, where we describe the data source and the data filtering, and
then analyze the data in different ways. In the Chapter 4 we design an architecture for
a replicated system using diverse rejuvenation. We also provide an algorithm to select
the diverse components to use in the system based on the data analyzed in the previous
chapter, and we also describe an evaluation of this algorithm. The thesis is concluded in
the Chapter 5, where we make an overview of the work done, summarizing the overall
contributions and the limitations.

Chapter 2

Related Work

This chapter presents the most relevant related work to the research area addressed in the
thesis, which includes the following subjects: diversity applied to increase the dependabil-
ity and security of the system, studies about vulnerability reports and proactive-reactive
recovery mechanisms (including some Byzantine fault tolerant protocols).

2.1 Diversity Studies

Design diversity is a classical mechanism for fault tolerance, and it was first introduced
in the 1970s [49]. N-version programming is a technique for creating diverse software
components, which was also proposed in those early years [7]. The main idea behind this
technique is to use n different implementations of the same component, programmed by
n different teams, ideally using distinct languages and methodologies. The objective is to
achieve fault tolerance, assuming that designs and implementations developed indepen-
dently will exhibit failure diversity. The authors described a practical experiment, where
they hired 30 programmers to develop a program in PL/11, from three different specifica-
tions: PDL, OBJ and English (natural language). Some of the results of the study were
the following: of the 30 programmers only 18 delivered the work, and from the 18 pro-
grams seven were based on OBJ, five in PDL and six in English; a set of 100 valid input
transactions was made to test the programs, and 11 of the 18 programs aborted due to
these inputs. Therefore, as the authors referred, it is a difficult process to go from differ-
ent specifications to different implementations, and consequently it is hard to create the n
versions of the same program. They also claimed that using different programmers does
not avoid that each person makes the same mistakes, causing the same flaws.

Liburd [31] discusses if whether or not N-version programming has enough depend-
ability gains to warrant the time, additional human resources and costs. In his thesis, he
developed a N-version program voter, SAVE, and he concluded that N-version program-
ing added dependability to a system. Knight and Leveson found that the assumption of

1Programming Language One (PL/1) is an IBM programing language developed in 1960.

5

Chapter 2. Related Work 6

independence of failures in N-version programs failed statistically [27]. In this paper, they
made a practical experiment with students to develop different software, resulting on 27
different programs. Each of these programs was then subjected to one million randomly-
generated test cases. The 27 programs ranged in length from 327 to 1004 lines of code.
They concluded, using a probabilistic model to evaluate fault independence, that the re-
sults indicated that the model had to be rejected with 99% confidence level. This paper
was very controversial, even with the all reservations made on the conclusions, such that
the results mainly apply to their experiment. In 1990 they published another paper [26],
to respond to all criticism made on the previous work.

In the late 80’s Joseph and Avizienis [25] proposed the usage of N-version program-
ming to identify computer viruses. They recognized that Program Flow Monitors (PFM)
have some limitations. A PFM is used to monitor the concurrent system-level error de-
tection, while comparing the dynamic characteristics of the program behavior with the
expected behavior. Then they proposed some extensions to circumvent the limitations.
Their solution protects the program in run-time, enables the detection of physical derived
errors and certain design faults. The PFM extension is also virus proof become its com-
ponents are hardwired or ROM based. On the evaluation, as a potential alternative to
formal verification, they proposed a 3 version C-language compiler. The compiler gener-
ates 3 program outputs, and it is expected that a virus would not infect all three versions
simultaneously. Then all the 3 versions are executed concurrently. Periodically they run a
consensus on the intermediate and final results to check for the local state, on the tempo-
rary output and on the actions that manipulate files. As long as the majority produce the
correct result, the design faults on the other versions are detected and masked. This thesis
work, however, does not focus so much on generating diversity to detect the presence of
viruses but on using diverse components.

Later, Forrest and colleagues applied notions from biologic systems to computer se-
curity and argued that diversity is an important natural mechanism to reduce the effects
of attacks [17, 22]. The authors suggested some mechanisms to provide diversity that
are similar to N-version programing, like: add or delete non functional code, introduce
some functions that are not used but that will make the binary different; re-ordering code,
depending on the compiler this can be more simple or difficult to achieve; and memory
layout, to change layout by randomization or padding techniques.

In [42], Nagy et al. made a study on N-version programing to detect zero day vulner-
abilities. They implemented a simple auction site using three different replicated server
programs running on a virtual machine environment: Debian Linux with Apache, PHP
and MySQL; Solaris 9 with Tomcat, JSP and Postgres; and Windows 2000 with IIS, ASP
and MS SQL. Each query is logged on the backend of each server. When a mismatch be-
tween the backend server outputs occurs, they mark the response assuming that something
went wrong. The results from their work shows that N-version programing can be used

Chapter 2. Related Work 7

to provide detection of zero day vulnerabilities but also to enhance the intrusion tolerance
of the system.

Taxonomies of diversity techniques for improving security have been introduced in
[15, 45]. Deswarte recognizes several types of diversity: at the level of users or operators,
in the human-computer interfaces, at the application software level, at the execution level
and at the hardware and operating system level. Obelheiro et al. presented two interesting
definitions: Axis of diversity, in one system we can vary several components such as
applications, operating system, hardware, OTS software, etc; and Degree of diversity, the
number of choices available for a specific axis of diversity. They stated the important
role of the OS in any system and also the cost of using OS diversity due to different
setups and deployment. In this thesis, we take a particular focus on OS diversity, and
make an empirical evaluation to support the vulnerability independence claim. This sort
of evaluation is mostly lacking in the previous studies.

An experimental study on the benefits of adopting diversity of SQL database servers
is presented by Gashi et al. in [21]. The authors analyzed bug reports for four database
servers and verified which products were affected by each reported bug (the focus of
their study was on overall dependability, not specifically on security). They found a few
cases of a single bug affecting more than one server, and that there were no coincident
failures in more than two of the servers. Their conclusion is that diversity of off-the-shelf
database servers is an effective mean of improving system reliability. They found some
limitations on the work, called by the authors as “dialect-specific” – for example, if the
bug that is being explored relies on a specific operand/semantic of the SQL language that
one database manager brand offers, it is impossible to verify those bugs in other providers
that do not implement/offer this operand. Also, due to this same reason, it is more difficult
to employ application diversity, because of the semantic and operational differences. This
results in a replicated solution that limits the services available to the lowest common
denominator. Some of the limitations of our data set (see Section 5.2.1) prevent us from
making the same type of study with NVD data.

Given the criticality of operating systems, there are many papers that study the dis-
tribution of bugs and vulnerabilities in OS code. Miller et al. [37, 38] analyzed how
commands and services in different UNIX variants dealt with random input and found
out that between 25% and 50% of them (depending on the study) would crash or hang.
Chou et al. [12] used compiler extensions to perform static analysis of the Linux and
OpenBSD kernels. Their study shows that device drivers exhibit more flaws than the rest
of the kernel, and that some types of bugs in the Linux kernel take an average of 1.8 years
before being fixed.

Ozment and Schechter [48] studied how OpenBSD security evolved over time, using
data from OpenBSD security advisories and the project’s source code repository. They
conclude that many vulnerabilities are still found in legacy code, that bugs in security-

Chapter 2. Related Work 8

related code are more likely to cause vulnerabilities, and that the rate of vulnerability
reports for OpenBSD is decreasing over time. There are also some interesting numbers
in the paper, such that after 7 years 61% of the lines of code are still the same between
version 2.3 and 3.7 (14 versions released between them). We discuss these numbers in
Section 3.2.1.

Anbalagan and Vouk [5] analyzed vulnerabilities in Bugzilla and Fedora Linux and
found out that 34% of the vulnerabilities are exploited before being disclosed. The au-
thors distinguish two vulnerability types, one called “voluntary exploited” and the other
“unvoluntary exploited”. On average they claim that 24% of the vulnerabilities are from
“voluntary” type. They also pointed, from a universe of 43710 vulnerabilities (retrieved
from OSVDB2), that only 3.4% of the voluntary exploits are immediately disclosed af-
ter being discovered, 0.1% are exploited and disclosed after a certain period, and 0.2%
are exploited after disclosure but before the fix patch. Although none of these papers
attempted to analyze the occurrence of common vulnerabilities across different OS, the
numbers are interesting and complement our conclusions.

A comparison of the robustness of 15 different POSIX-based operating systems is
presented in [28]. This study was based on fault injection: combinations of valid and
invalid parameters were supplied to often-used system calls and C library functions, and
the effects of this on reliability (e.g., system crash, process hang/crash, wrong or no er-
ror code returned) was observed. The authors found out some commonalities among the
studied systems, especially with respect to the common mode failures of C library func-
tions. However, from the available data it is impossible to conclude whether there were
specific bugs that affected more than one system (the work only shows how many failures
were observed for each system call in several degrees of severity). Still, their evidence
indicates that, from a reliability standpoint, using different operating systems reduces the
number of common failure modes.

2.2 Studies Using Vulnerability Reports

Some vulnerability discovery models, which attempted to forecast the amount of vul-
nerabilities found in software, have been proposed [3, 6, 52]. Alhazmi and Malayia [4]
investigate how well these models fit with vulnerability data from the NVD, and conclude
that the vulnerability discovery process follows the same S-shaped curve of “traditional”
software reliability growth models3 [35]. This conclusion is disputed in [55], where it
is claimed that the number of vulnerabilities disclosed in the NVD grows linearly with
time (this contrast might be due to methodological differences). These studies cross-
validate our idea of using the NVD as a source of vulnerability data. However, they are

2http://osvdb.org/
3These models measure all the defects found in a system, and not only those affecting security.

Chapter 2. Related Work 9

more concerned in modeling how many vulnerabilities are found in specific software over
its lifetime [4] and if there are significant differences between open- and closed-source
software [55]. Our focus is on assessing the degree of independence between different
operating systems.

Littlewood and colleagues [33] survey a number of issues in software diversity mod-
eling, presenting models for assessing the reliability of systems that adopt diversity. The
discussed models aim to provide a measure of the reliability of a system as a function of
the demands presented to the system and how these demands influence the correctness of
the behavior of the system. These parameters are, for the most part, expressed as proba-
bility distributions. Some of these ideas have later been extended to the security domain
as well [34]. They show that, although diversity does not provide complete failure in-
dependence (since design faults are correlated to some extent), it is an effective means
of increasing overall system reliability. They also discuss a number of caveats regarding
software diversity modeling. It would be desirable to use these models in our context, but
this is currently unfeasible, since we lack sufficiently detailed data (operational profiles
and vulnerability exploitation rates) to apply them.

2.3 Proactive Recovery

Software rejuvenation was proposed in the 90’s by Huang et al [23, 24]. The initial
motivation was to reset the state of a server, in a client-server communication model,
taking advantage of the idle time of the server to clean the state. Huang and colleagues
developed NT-Swift [23], a software component that can be attached to Windows NT to
improve the dependability capabilities. NT-Swift has a component that can be installed
on clients and servers. If NT-Swift detects a failure it restarts the application or even,
if necessary, restarts the machine This approach has a limitation, the downtime of the
service.

Castro and Liskov [10] presented PBFT, an algorithm for state machine replication
that offers safety if b(n − 1)/3c out of a total of n replicas are faulty. The service may
be unable to reply during a denial-of-service attack, but it guarantees that the client will
receive replies when the attack ends. PBFT uses symmetric cryptography to reduce the
time consumption, and it needs only one message round trip to execute read-only oper-
ations, and two message rounds to execute read-write operations. PBFT also referred to
diversity as an enhancement of the system, although the authors do not present results to
testify that. Later on, the same authors presented BFT-PR, a new algorithm that enhances
the availability of the system by employing Proactive Recovery (PR) [11]. Additional
assumptions require trusted physical components, for hardware cryptography and watch-
dogs timers, such that they are impossible to compromise. To ensure that no more than
one replica recovers at the same time, the authors define a formula: Tv = 2Tk + Tr, in

Chapter 2. Related Work 10

which Tv is the window of vulnerability (the amount of time that an adversary has to
compromise more than f replicas), Tk is the maximum key refreshment period and Tr
is the maximum time between a replica fails and recovers. To evaluate this algorithm,
they developed a BFT version of NFS implemented in Linux with Ext2fs. They present
some interesting results, with the Andrew100 and Andrew500 benchmarks4, showing that
a recovery takes 42.59 and 143.68 seconds respectively.

Sousa et al. proposed a new approach to intrusion tolerant systems [58] that periodi-
cally rejuvenates the replicas, to remove the effects of malicious attacks/faults. The basic
idea is to perform rejuvenations sufficiently often, in order to make the attackers unable
to compromise enough replicas to bring the whole system down. The system fails only if
f + 1 replicas are compromised between rejuvenations. One of the contributions of this
work is the proactive-reactive recovery. If one replica is faulty it can disturb the behavior
of the other n-1 replicas, and there is nothing that a correct replica can do to avoid this.
With proactive-reactive recovery the rejuvenation process can be accelerated by detecting
the faulty replicas and forcing them to recover, without sacrificing periodic rejuvenations.
The technique can only be implemented with some synchrony [60], due to the recovery
trigger clocks. To overcome this limitation the authors proposed an hybrid system model:
the payload is a any-synchrony subsystem, and the wormhole is a synchronous subsystem.

In this work, Sousa and colleagues also made an experiment with a CIS (CRUTIAL
Information Switch). The CIS is a distributed firewall [9] in which at most f replicas
can suffer Byzantine failures in a given recovery period, and also at most k replicas can
recover at same time. In this experiment, each wormhole subsystem is connected through
a dedicated and secure control channel to the payload subsystem. A wormhole has a
high precision clock to synchronize the payload recoveries. There is also a point-to-
point timed reliable channel connecting to the other wormholes. The authors named this
architecture as Proactive-Reactive Recovery Wormhole. It offers a service that can be
called by the payload whenever there is a suspicion (or detection) of incorrect behavior by
the other replicas. The interface to this service is through the two functions: W suspect(j)
for crash suspicions, since it is impossible to know if a replica really crashed or if is
only slow; and W detect(j) if the BFT protocols running on the payload replicas detected
incorrect messages from some replica. If f + 1 replicas detected j as faulty the recovery
of j occurs immediately. If f + 1 replicas suspect j as faulty, the recovery must be
coordinated with periodic recoveries to guarantee a minimum of replicas to ensure system
availability. The quorum of f +1 is needed, in terms of suspicions or detections, to avoid
recoveries triggered by faulty replicas. In order to schedule recoveries without harming
the availability of the whole system, Sousa et al. designed an algorithm that runs in the
wormhole part [58]. The algorithm is based on temporal slots that are allocated based
on two variables, TP the maximum time interval between consecutive recoveries, and TD

4http://www.usenix.org/event/usenix01/full papers/kroeger/kroeger html/node12.html

Chapter 2. Related Work 11

defines the worst case scenario of execution of a recovery.
The authors made an experiment to evaluate the CIS where they used 1.7 GB Fedora

OS images and the Xen virtualization solution [66]. They setup the system as n = 4 ,
f = 1 and k = 1 , and run three experiments: Recovery Performance, the maximum time
to complete a recovery was 146 seconds; Latency and throughput under a DoS attack from
the WAN, was found that there is no throughput loss with a reasonably loaded network;
Throughput under a DoS attack from a compromised replica, wich shows that proactive-
reactive recovery provides a much better solution than proactive recovery alone.

2.4 Diverse Proactive Recovery
Sousa et al. stated the need for diversity in time (i.e., changing replicas on recoveries)
[59]. Their work also suggested possible sources of diversity, however, no method for
the selection of the new configurations was proposed, and neither concrete results were
presented.

Rodrigues et al. [53] proposed BASE, a PBFT protocol extension, that uses off-the-
shelf service components. This allows the utilization of different implementations to
provide the same service, with the expectation of reducing the probability of common
failures. BASE defines an abstract state to be shared among the replicas. The authors
claim that with abstraction is possible to hide the distinct implementations of the services,
exploiting opportunistic N-version programing with off-the-shelf software. This also en-
hances the PBFT because, in the original version, it cannot tolerate deterministic software
errors that make all the replicas fail with the same input. The authors made an experiment
with a file-system storage, similar to NFS, using off-the-shelf products. The replicated
file-system uses proactive recovery, and in each recovery a replica requests the abstract
state from the correct replicas and converts the abstract state to a concrete state. Due to
the abstraction functions, each replica can run distinct software since it provides the same
service. In the experiment diversity was employed: n clients and one server replica runs
Linux, the other server replicas run OpenBSD 2.8, Solaris 8 and FreeBSD 4.0. Each OS
has its own NFS implementation. There is one point that we must highlight in the ex-
periment, the authors were optimistic and had an imprecise approach for estimating the
reboot times as 30 seconds (during proactive recovery), which is a very low number for an
OS recovery. A recovery was started every 80 seconds in a round-robin discipline, and in
the best case it took 6 minutes with Andrew100, and in the worst case, it took 17 minutes
with Andrew500 benchmark. This means that the system will work correctly as long as
less than 1

3
of the replicas fail in 6 or 17 minutes - the vulnerability window. They also

present a comparison between heterogeneous replicas and the measuring of the compu-
tation elapsed time: OpenBSD takes 1599.1 seconds, Solaris 1009.2 seconds, FreeBSD
848.4 seconds and Linux 338.3 seconds. In our work we are not interested so much in the
values but in the relative differences between them.

Chapter 2. Related Work 12

Distler et al. [16, 51] identified several issues that make virtualization useful for proac-
tive recovery, such as the isolation between application domains and the privileged system
domains, which allows the creation of an hybrid fault model system: periodic recoveries
can be triggered by a service in the privileged domain, which makes the replacement of the
application domain, reducing the downtime of the recovery. Additionally, it can be used
to efficiently make state transfer between replicas, and could be employed to simplify the
usage of diversity on replicas. In those two articles the authors describe the VM-FIT pro-
totype, which is a replicated system that uses virtual machines to make an hybrid model
with proactive recovery. In the second work they introduced diversity on replicas. The
authors used the Xen virtualization solution, and on Dom0 (privileged) they run Ubuntu
and on DomU used Debian, NetBSD and OpenSolaris, based on the intuition that diver-
sity could improve security. VM-FIT achieved some interesting results, although it could
not assure continuous availability because the service had to be suspended for 3 seconds
in each recovery.

In a recent work, Roeder and Scheinder [54] propose the use proactive obfuscation,
whereby each replica is periodically restarted using a clean generated diverse binary. The
authors implemented two prototypes: 1) a distributed firewall based on pf5 (packet fil-
ter) in OpenBSD; and 2) a distributed storage service. Proactive obfuscation employs
semantics-preserving program transformations, and it can be used in: reordering and stack
padding, system call reordering, instruction set randomization, heap and data randomiza-
tion (e.g., a buffer overflow attack depends on stack layout, and therefore using entropy on
the stack will crash the program and not allowing the attacker to take control). Although
it is not clear how they perform the obfuscations, because it is a non-trivial problem, there
are several requirements that have to be satisfied such as the semantic must be the same in
every obfuscated replica. It is also hard to measure the resulting fault independence and
how can one estimate the number of different obfuscated versions that can be generated.
In any case, there is a technical limitation in this line of research: it seems very hard to
transform (re-compile) a code that is not open (e.g., Windows operating systems). This
work does not evaluate possible options and neither considers changing OTS components
on a recovery, and thus can be seen as a technique for improving diversity of the same
software component, being thus complementary to what we are proposing here.

2.5 Final Remarks

This section makes an overview of some of the most relevant research in different areas
related to our work. Some of the research has direct contributions to the thesis, but there
is no previous work that evaluated the OS diversity based on vulnerability reports.

5http://www.openbsd.org/faq/pf/filter.html

Chapter 3

Vulnerability Study

This chapter explains the methodology adopted in our study, with a particular focus on
how the data set (i.e., the operating system (OS) vulnerabilities) was selected and on
how the data was filtered and processed. The chapter includes an analysis on several
aspects of the data, such as: vulnerability distribution by OS part, temporal distribution
of vulnerabilities, comparison between pairs of OS, selection of sets from 4 different OS,
and a comparison between pairs of OS releases. In the end of the chapter we summarize
the results. Parts of this chapter appeared in [19].

3.1 Data Source

The OS vulnerability data was obtained from a public database, namely from the National
Vulnerability Database (NVD) [44]. NVD uses the Common Vulnerability Enumeration
(CVE) definition of vulnerability [14], which is presented below.

Definition 1 (CVE Vulnerability) An information security “vulnerability” is a mistake
in software that can be directly used by a hacker to gain access to a system or network.

CVE considers a mistake a vulnerability if it allows an attacker to use it to violate a
reasonable security policy for that system (this excludes entirely “open” security policies
in which all users are trusted, or where there is no consideration of risk to the system).

For CVE, a vulnerability is a state in a computing system (or set of systems) that
either:

• allows an attacker to execute commands as another user;

• allows an attacker to access data that is contrary to the specified access restrictions
for that data

• allows an attacker to pose as another entity

• allows an attacker to conduct a denial of service

13

Chapter 3. Vulnerability Study 14

NVD aggregates vulnerability reports from more than 70 security companies, forums,
advisory groups and organizations1, being thus the most complete vulnerability database
on the web. All data is made available as XML files containing the reported vulnerabilities
on a given period, called data feeds. We analyze feeds from 2002 to 2010. The 2002 feed
includes information about vulnerabilities that were reported between 1994 and 20022.

Each NVD data feed contains a list of reported vulnerabilities sorted by its date of
publication on a given period. For each vulnerability, called entry in the NVD parlance,
interesting information is provided such as an unique name for the entry, in the format
CVE-YEAR-NUMBER (line 1 of Listing 3.1); the list of products (with version numbers)
affected by the vulnerability (lines 3-6 of Listing 3.1); the date of the vulnerability pub-
lication (line 10 of Listing 3.1); the CVSS score3 (see Section 4.2.1), that is calculated4

based on the security attributes; the security attribute(s) that are affected when the vulner-
ability is exploited on a system (lines 17-23 and line 26 of Listing 3.1) and the description
of the vulnerability (lines 29 of Listing 3.1). An entry contains other fields, which were
not represented in Listing 3.1 to simplify the presentation.

We developed a Java program that collects, parses the XML data feeds and inserts the
processed data into an SQL database, deployed with a custom schema to do the aggrega-
tion of vulnerabilities by affected products and versions.

Data selection

Despite the large amount of information about each vulnerability available in NVD, for
the purposes of this study, we are only interested in the name, publication date, CVSS
score, summary (description), type of exploit (local or remote) and the list of affected
configurations. We have collected vulnerabilities reported for 64 Common Platform
Enumerations (CPEs) [39]. Each one of these describes a system, i.e., a stack of soft-
ware/hardware components in which the vulnerability may be exploited. These CPEs
were filtered, resulting in the following information that was stored in our database:

• Part: NVD separates this in Hardware, Operating System and Application. For the
purpose of this study we choose only enumerations marked as Operating System;

• Product: The product name of the platform;

• Vendor: Name of the supplier or vendor of the product platform.
1See the complete list at http://cve.mitre.org/compatible/alerts_

announcements.html.
2This chapter performs an analysis on the data feed that contained vulnerabilities until September 30th

2010. For the next chapter, this database had to be updated with the feeds until February 2011, in order to
validate the algorithm described in Section 4.2.2 with the most recent OS releases.

3The Common Vulnerability Scoring System (CVSS) score provides an indication of the impact of a
vulnerability in a system, and it takes into consideration aspects like ease of exploitation and the impact on
the integrity/confidentiality/availability [36].

4See the equation here: http://www.first.org/cvss/cvss-guide.html

http://cve.mitre.org/compatible/alerts_announcements.html
http://cve.mitre.org/compatible/alerts_announcements.html

Chapter 3. Vulnerability Study 15

Listing 3.1: NVD XML feed entry example

1 <e n t r y i d =”CVE−2005−0004”>
2 <v u l n : v u l n e r a b l e−c o n f i g u r a t i o n i d =” h t t p : / / nvd . n i s t . gov ”>
3 <cpe− l a n g : f a c t −r e f name=” c p e : / o : d e b i a n : d e b i a n l i n u x : 3 . 0 : : a l p h a ” />
4 <cpe− l a n g : f a c t −r e f name=” c p e : / o : r e d h a t : f e d o r a c o r e : c o r e 1 . 0 ” />
5 <cpe− l a n g : f a c t −r e f name=” c p e : / o : r e d h a t : l i n u x : 7 . 3 : : i 3 8 6 ” />
6 <cpe− l a n g : f a c t −r e f name=” c p e : / o : r e d h a t : l i n u x : 9 . 0 : : i 3 8 6 ” />
7 < / v u l n : v u l n e r a b l e−c o n f i g u r a t i o n>
8 <v u l n : c v e−i d>CVE−2005−0004< / v u l n : c v e−i d>
9 <v u l n : p u b l i s h e d−d a t e t i m e>

10 2005−04−14 T00 :00 :00 .000−04 : 0 0
11 < / v u l n : p u b l i s h e d−d a t e t i m e>
12 <v u l n : l a s t −modi f i ed−d a t e t i m e>
13 2008−09−10 T15 :34 :44 .570−04 : 0 0
14 < / v u l n : l a s t −modi f i ed−d a t e t i m e>
15 <v u l n : c v s s>
16 <c v s s : s c o r e>4 . 6< / c v s s : s c o r e>
17 <c v s s : a c c e s s−v e c t o r>LOCAL< / c v s s : a c c e s s−v e c t o r>
18 <c v s s : a c c e s s−c o m p l e x i t y>LOW< / c v s s : a c c e s s−c o m p l e x i t y>
19 <c v s s : a u t h e n t i c a t i o n>NONE< / c v s s : a u t h e n t i c a t i o n>
20 <c v s s : c o n f i d e n t i a l i t y −im pa c t>PARTIAL< / c v s s : c o n f i d e n t i a l i t y −im pa c t>
21 <c v s s : i n t e g r i t y −im pa c t>PARTIAL< / c v s s : i n t e g r i t y −im pa c t>
22 < c v s s : a v a i l a b i l i t y −im pa c t>PARTIAL< / c v s s : a v a i l a b i l i t y −im pa c t>
23 <c v s s : s o u r c e>h t t p : / / nvd . n i s t . gov< / c v s s : s o u r c e>
24 < / v u l n : c v s s>
25 <v u l n : s e c u r i t y −p r o t e c t i o n>
26 ALLOWS USER ACCESS
27 < / v u l n : s e c u r i t y −p r o t e c t i o n>
28 <vuln :summary>
29 The m y s q l a c c e s s s c r i p t i n MySQL 4 . 0 . 2 3 and e a r l i e r [. . .] a t t a c k on

t e m p o r a r y f i l e s .
30 < / vu ln :summary>
31 < / e n t r y>

Those 64 CPEs were, by manual analysis5, clustered in 11 OS distributions: OpenBSD,
NetBSD, FreeBSD, OpenSolaris, Solaris, Debian, Ubuntu, RedHat6, Windows 2000, Win-
dows 2003 and Windows 2008. These distributions cover the mostly used server OS
products of the families: BSD, Solaris, Linux and Windows.

5To do the analysis we developed a php program that query the database, the response is a form that
provide the information needed to classify the vulnerability. Then the program updates the vulnerability
state.

6RedHat comprises the “old” Red Hat Linux (discontinued in 2003) and the more recent Red Hat En-
terprise Linux (RHEL).

Chapter 3. Vulnerability Study 16

Figure 3.1: Simplified SQL schema of the database used to store and analyze the NVD
data.

The schema of the resulting database is displayed in Figure 3.1. The tables with prefix
cvss7, vulnerability type and security protection are employed to optimize the database.
The most important tables are:

• cvss access vector: stores how the vulnerability is exploited: Local (local access),
Adjacent Network (domain access) and Network (the attacker does not need to be
on the local network or local access to exploit the vulnerability);

• cvss access complexity: stores the complexity required to exploit the vulnerability,
divided in three basic values: High, Medium and Low.

• cvss authentication: stores the number of times that the attacker must authenticate
to exploit the vulnerability: Multiple, Single and None;

7http://www.first.org/cvss/cvss-guide.html

Chapter 3. Vulnerability Study 17

• cvss confidentiality impact: stores the description impact on confidentiality: None,
Partial and Complete. Confidentiality refers to limiting information access and dis-
closure to only authorized users;

• cvss integrity impact: stores the description impact on integrity: None, Partial and
Complete. Integrity refers to the trustworthiness and guaranteed veracity of infor-
mation;

• cvss availability impact: stores the description impact on availability: None, Par-
tial and Complete. Availability refers to the accessibility of information resources;

• security protection: stores what kind of access the attacker gains after the exploit:
Admin access, User access and Other access;

• vulnerability: stores some information about a vulnerability (name, publication
date, etc.);

• vulnerability type: stores the vulnerability type assigned by us (see Section 3.1.2);

• os: stores the operating systems platforms of interest in this study;

• os vuln: stores the relationship between vulnerabilities and operating systems, and
their affected versions.

The use of an SQL database brings at least three benefits when compared with ana-
lyzing the data directly from the XML feeds. First, it allows us to enrich the data set by
hand, for example, by assigning to each vulnerability information regarding its type (see
Section 3.1.2), and also by associating release times and family names to each affected
OS distribution. Second, it allows us to modify the CVE fields to correct problems. For
example, one of the problems with NVD is that the same product is registered with dis-
tinct names for different entries. For example, (“debian linux”, “debian”) and (“linux”,
“debian”) are two (product,vendor) pairs we have found for the Debian Linux distribu-
tion. This same problem was observed previously by other users of NVD data feeds [46].
Finally, an SQL database is much more convenient to work with than parsing the feeds on
demand.

3.1.1 Filtering the Data

From the more than 44000 vulnerabilities published by NVD at the time of the study,
we selected 2120 vulnerabilities. These vulnerabilities are the ones classified as OS-level
vulnerabilities (“/o” on its CPE) for the operating systems under consideration.

When manually inspecting the data set, we discovered and removed vulnerabilities
that contained tags in their descriptions such as Unknown and Unspecified. These cor-
respond to vulnerabilities for which NVD does not know exactly where they occur or

Chapter 3. Vulnerability Study 18

why they exist (however, they are usually included in the NVD database because they
were mentioned in some patch released by a vendor). We also found few vulnerabilities
flagged as **DISPUTED**, meaning that product vendors disagree with the vulnerabil-
ity existence. Due to the uncertainty that surrounds these vulnerabilities, we decided to
exclude them from the study. Table 3.1 shows the distribution of these vulnerabilities on
the analyzed OS, together with the total number of valid vulnerabilities.

OS Valid Unknown Unspecified Disputed
OpenBSD 142 1 1 1
NetBSD 126 0 1 2
FreeBSD 258 0 0 2
OpenSolaris 31 0 40 0
Solaris 400 39 109 0
Debian 201 3 1 0
Ubuntu 87 2 1 0
RedHat 369 12 8 1
Win2000 481 7 27 5
Win2003 343 4 30 3
Win2008 118 0 3 0
distinct vuln. 1887 60 165 8

Table 3.1: Distribution of OS vulnerabilities in NVD.

An important observation about Table 3.1 is that the columns do not add up to the
number of distinct vulnerabilities (last row of the table) because some vulnerabilities are
shared among OS. Notice that about 60% of the removed vulnerabilities affected Solaris
and OpenSolaris. Moreover, these two systems are the only ones that have more than 10%
of its vulnerabilities removed: Solaris has 71 vulnerabilities and 56.3% of them are “in-
valid”; OpenSolaris has 548 vulnerabilities and 27.7% are “invalid”; OpenBSD, NetBSD,
FreeBSD and Debian have only 2.1%, 2.3%, 0.8% and 2.0% respectively of invalid vul-
nerabilities. This result for the last set of OS might point to a better community support.
We should remark that this manual filtering was necessary to increase the confidence that
only valid vulnerabilities were used in the study.

3.1.2 Distribution of Vulnerabilities by OS Parts

For NVD, an operating system is not only the kernel, but the complete product that is
distributed for installation. Therefore an operating system product is composed by the
kernel, several drivers, optional modules, system software and applications. So, besides
knowing how many vulnerabilities affect different operating system products, it is also
important to understand what part or module of these systems is compromised by the

Chapter 3. Vulnerability Study 19

vulnerability. Since NVD does not provide any information other than the vulnerability
description, we inspected manually each of the 1887 entries and classified them in one of
four categories: Driver, Kernel, System Software and Application. The rationale for this
classification is the following:

• Kernel: vulnerabilities that affect the TCP/IP stack and other network protocols
whose implementation is OS-dependent, file systems, process and task manage-
ment, core libraries and vulnerabilities derived from processors architectures;

• Driver: vulnerabilities that affect drivers for wireless/wired network cards, video/-
graphic cards, web cams, audio cards, Universal Plug and Play devices, etc;

• System Software: vulnerabilities that affect the majority of the software that is
necessary to provide common operating system functionalities such as login, shells
and basic daemons. We account just for software that comes by default with the dis-
tribution (although sometimes it is possible to uninstall these components without
affecting the main OS operation);

• Application: vulnerabilities in software products that come with the operating sys-
tem but that are not needed for basic operations, and in some cases require spe-
cific installation: database management systems, messenger clients, text editors and
processors, web/email/FTP clients and servers, music/video players, programming
languages (compilers and virtual machines), antivirus, Kerberos/LDAP software,
games, etc.

The classification above facilitates the analyses of which parts of the operating sys-
tems may suffer most from common vulnerabilities, which would influence the architec-
tural decisions of how one designs a diverse system.

Chapter 3. Vulnerability Study 20

3.2 OS Diversity Evolution

This section presents the results of the study. In particular, it presents an overall analysis
of the counts of vulnerabilities for each OS component class, and shows how many vulner-
abilities affect each OS pair. The section also provides empirical evidence to demonstrate
that there are security gains in using diverse OS when deploying an intrusion-tolerant
system.

3.2.1 Distribution of OS Vulnerabilities

This section presents two vulnerabilities distributions, a distribution based on the classifi-
cation described in the last section, and a temporal distribution for the four OS families.

Vulnerability classification

The descriptions of 1887 vulnerabilities were examined, and then they were assigned to
one of the OS component classes presented in the previous section. Table 3.2 summarizes
the result of this analysis.

OS Driver Kernel Sys. Soft. App. Total
OpenBSD 2 75 33 32 142
NetBSD 9 59 32 26 126
FreeBSD 4 147 54 53 258
OpenSolaris 0 15 9 7 31
Solaris 2 156 114 128 400
Debian 1 24 34 142 201
Ubuntu 2 22 8 55 87
RedHat 5 89 93 182 369
Windows 2000 3 143 132 203 481
Windows 2003 1 95 71 176 343
Windows 2008 0 42 14 62 118
% Total 1.4% 35.5% 23.2% 39.9%

Table 3.2: Vulnerabilities per OS component class.

The table shows that with the exception of Drivers, all OS distributions have a rea-
sonable number of vulnerabilities in each class. In the BSD and Solaris OS families,
vulnerabilities appear in higher numbers in the Kernel part, while in the Linux and Win-
dows families, the Applications vulnerabilities are more prevalent. This can be explained
by noticing that Windows and Linux distributions usually contain a larger set of pre-
installed applications, when compared to more stripped down products like BSD family
OS. Therefore, there is a tendency to include more applications in platforms based on
these OS, causing more vulnerabilities of this type to appear in the statistics.

Chapter 3. Vulnerability Study 21

The last row of the table presents the percentage of each class on the total data set.
One can observe that most vulnerabilities occur in the Application and Kernel compo-
nents, which is then followed by the System Software group of utility programs. It is
interesting to notice that Drivers account for a very small percentage of the published OS
vulnerabilities. This observation seems to contradict previous studies showing that drivers
are the main contributor of crashes [18], and it is somewhat surprising given that drivers
usually account for a large percentage of the OS code [12]. One, however, should keep
in mind that crash-inducing bugs do not necessarily translate into vulnerabilities, since
they might not be exploitable by an adversary (e.g., because the conditions to activate the
fault might be extremely hard to force). On the other hand, large and complex codes are
a typical breeding ground for programming flaws, and we may experience a rise in driver
vulnerabilities in the future.

Temporal distribution of the vulnerabilities

Figure 3.2 presents the number of vulnerabilities announced per OS for each year, while
organizing in separate graphs the OS families. The figure also includes the dates of some
of the major releases of the OS. Certain OS like Windows 2008 and Ubuntu have several
years with zero vulnerabilities because their first distribution is relatively recent.

The graphs lead to some interesting observations. First, it is possible to notice a strong
correlation among the peaks and valleys of both the Windows and Linux families, and
somewhat to a lesser extent in the BSD family. This could mean that some vulnerabilities
might be shared across the family members (see next section for a better discussion).
Second, some OS families have less vulnerabilities being reported in the recent past (last
5 years) when compared with the more distant past. This is true both for the BSD and
Linux families, which could indicate that the systems are becoming more stable, but also
that the employed development process imposes stronger requirements on the quality of
the software.

Finally, it is also important to compare the vulnerability dates and the year of the first
OS release. NVD classifies vulnerabilities when they are first discovered, and then lists
the OS that might be compromised by their exploitation. Therefore, it was possible to find
Windows 2000 in seven entries earlier than 1999, sharing vulnerabilities with Windows
NT. This confirms that Windows 2000 was built with some of the code of Windows NT,
but apparently it seems that this code was not fixed from all already known vulnerabilities.
We found three cases in other OS versions where a vulnerability was reported much earlier
than the corresponding release. After examining the NVD entry, we were able to exclude
them as errors in the database, and therefore, they are not shown in the graphs.

Chapter 3. Vulnerability Study 22

 0

 20

 40

 60

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010

Solaris
OpenSol#

 o
f
v
u
ln

e
ra

b
ili

ti
e
s

OpenSol

2008.05

Solaris

7 8 10

(a) Solaris family.

 0

 20

 40

 60

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010

FreeBSD
NetBSD
OpenBSD

#
 o

f
v
u
ln

e
ra

b
ili

ti
e
s

OpenBSD

 1.2 3.1 3.5

NetBSD

3.0.1

FreeBSD

3.0 4.0 5.0 6.0 7.0 8.0

(b) BSD family.

 0

 20

 40

 60

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

Win2008

Win2003

Win2000

#
 o

f
v
u
ln

e
ra

b
il
it
ie

s

Win2000

2000

Win2003

2003 SP1

Win2008

2008 SP1

(c) Windows server family.

 0

 20

 40

 60

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

Debian

Ubuntu

Redhat

#
 o

f
v
u
ln

e
ra

b
il
it
ie

s

Redhat

6.0 7 3 4 5.4

Debian

 1.1 2.1 2.2 3.1 5.0

Ubuntu

 4.10 5.0 9.04

(d) Linux family.

Figure 3.2: Temporal distribution of vulnerability publication data for four operating sys-
tem families.

Chapter 3. Vulnerability Study 23

3.2.2 Common Vulnerabilities

Table 3.3 shows the common vulnerabilities that were found in every combination of OS
pairs over the period of 1994 to (Sept) 2010. The columns with v(A) and v(B) show the
total number of vulnerabilities collected for OS A and B respectively, whereas v(AB) is
the count of vulnerabilities that affect both the A and B systems. Three filters were ap-
plied to the data set: All corresponds to all vulnerabilities, representing the raw data; No
Applications removes from the data set the vulnerabilities classified as Applications (see
Section 3.1.2); No Applications and No Local: same as the previous filter but only con-
siders remotely exploitable vulnerabilities (vulnerabilities with “Network” or “Adjacent
Network” values in their CVSS ACCESS VECTOR field). The aim of the first filter is
to characterize a platform with a reasonable number of installed applications (called a
Fat Server). The second filter captures only the fundamental OS vulnerabilities, and it
basically corresponds to a server platform that, to decrease security risks, is stripped of
all applications with the exception of the offered single service (called a Thin Server).
The third filter represents a similar configuration, but where the machine is physically
protected from illegal access and therefore it can only be remotely attacked (called an
Isolated Thin Server).

The number of shared vulnerabilities between two OS is substantially reduced when
compared to the overall set of vulnerabilities. Even considering a Fat Server configura-
tion, it is possible to find out OS pairs that do not have common flaws (e.g., NetBSD-
Ubuntu). As expected, OS from the same family are affected by more common vulner-
abilities due to the software components and applications that are reused (e.g., Debian-
RedHat or Windows2000-Windows2003). The use of an Isolated Thin Server, when com-
pared with a Fat Server, has a strong impact on the security of the platform because it
decreases the number of common vulnerabilities by 56% on average. This means that a
significant portion of common vulnerabilities are local (i.e., cannot be exploited remotely)
or come from applications that are available on both operating systems.

Table 3.4 shows which part of the OS is affected by common vulnerabilities in an
Isolated Thin Server configuration, considering only the OS pairs with non-zero common
vulnerabilities. The fact that there are many common Kernel and System Software vulner-
abilities between Windows 2000 and 2003 indicates that the latter inherits considerable
parts of the OS from its predecessor. This same trend is also observed between Windows
2008 and Windows 2003/Windows 2000, although to a less extent. Interestingly, no sin-
gle vulnerable driver is present in all products, which can be explained by the very few
faulty drivers that are reported.

The second family of OS with more common vulnerabilities is BSD, which also re-
utilizes several components of the operating system. A somewhat surprising result is
the fact that most Linux distributions have much less common vulnerabilities than we
anticipated. We inspected manually the vulnerabilities in order to find an explanation, and

Chapter 3. Vulnerability Study 24

Operating Systems All No Applications No App. and No Local
Pairs (A-B) v(A) v(B) v(AB) v(A) v(B) v(AB) v(A) v(B) v(AB)

OpenBSD-NetBSD 142 126 40 110 100 32 60 41 16
OpenBSD-FreeBSD 258 53 205 48 87 32
OpenBSD-OpenSolaris 31 1 24 1 6 0
OpenBSD-Solaris 400 12 272 10 103 6
OpenBSD-Debian 201 2 59 2 25 0
OpenBSD-Ubuntu 87 3 32 1 10 0
OpenBSD-RedHat 369 10 187 5 58 4
OpenBSD-Windows2000 481 3 278 3 178 3
OpenBSD-Windows2003 343 2 167 2 109 2
OpenBSD-Windows2008 118 1 56 1 26 1
NetBSD-FreeBSD 126 258 49 100 205 39 41 87 24
NetBSD-OpenSolaris 31 0 24 0 6 0
NetBSD-Solaris 400 15 272 12 103 8
Netbsd-Debian 201 3 59 2 25 2
NetBSD-Ubuntu 87 0 32 0 10 0
NetBSD-RedHat 369 7 187 4 58 2
NetBSD-Windows2000 481 3 278 3 178 3
NetBSD-Windows2003 343 1 167 1 109 1
NetBSD-Windows2008 118 1 56 1 26 1
FreeBSD-OpenSolaris 258 31 0 205 24 0 87 6 0
FreeBSD-Solaris 400 21 272 15 103 8
FreeBSD-Debian 201 7 59 4 25 1
FreeBSD-Ubuntu 87 3 32 3 10 0
FreeBSD-RedHat 369 20 187 13 58 5
FreeBSD-Windows2000 481 4 278 4 178 4
FreeBSD-Windows2003 343 2 167 2 109 2
FreeBSD-Windows2008 118 1 56 1 26 1
OpenSolaris-Solaris 31 400 27 24 272 22 6 103 6
OpenSolaris-Debian 201 1 59 1 25 0
OpenSolaris-Ubuntu 87 1 32 1 10 0
OpenSolaris-RedHat 369 1 187 1 58 0
OpenSolaris-Windows2000 481 0 278 0 178 0
OpenSolaris-Windows2003 343 0 167 0 109 0
OpenSolaris-Windows2008 118 0 56 0 26 0
Solaris-Debian 400 201 4 272 59 4 103 25 2
Solaris-Ubuntu 87 2 32 2 10 0
Solaris-RedHat 369 13 187 8 58 4
Solaris-Windows2000 481 9 278 3 178 3
Solaris-Windows2003 343 7 167 1 109 1
Solaris-Windows2008 118 0 56 0 26 0
Debian-Ubuntu 201 87 12 59 32 6 25 10 2
Debian-RedHat 369 61 187 26 58 11
Debian-Windows2000 481 1 278 1 178 1
Debian-Windows2003 343 0 167 0 109 0
Debian-Windows2008 118 0 56 0 26 0
Ubuntu-RedHat 87 369 25 32 187 8 10 58 1
Ubuntu-Windows2000 481 1 278 1 178 1
Ubuntu-Windows2003 343 0 167 0 109 0
Ubuntu-Windows2008 118 0 56 0 26 0
RedHat-Windows2000 369 481 2 187 278 1 58 178 1
RedHat-Windows2003 343 1 167 0 109 0
RedHat-Windows2008 118 0 56 0 26 0
Windows2000-Windows2003 481 343 253 278 167 116 178 109 81
Windows2000-Windows2008 118 70 56 27 26 14
Windows2003-Windows2008 343 118 95 167 56 39 109 26 18

Table 3.3: Vulnerabilities (1994 to (Sept.) 2010): All - all vulnerabilities; No Application
- no application vulnerabilities; No App. and No Local - no application vulnerabilities
and only remotely-exploitable vulnerabilities.

Chapter 3. Vulnerability Study 25

we discovered that Linux distributions customize both their kernels and system software,
and thus the vulnerabilities are less common. Another interesting point about OS from
the Linux family is that they have an almost negligible number of driver vulnerabilities
(see Table 3.2), and none of them appears in more than one OS.

OS Pairs Driver Kernel System Software Total
Win2000-Win2003 0 40 41 81
OpenBSD-FreeBSD 1 14 17 32
NetBSD-FreeBSD 2 13 9 24
Win2003-Win2008 0 10 8 18
OpenBSD-NetBSD 1 8 7 16
Win2000-Win2008 0 8 6 14
Debian-RedHat 0 5 6 11
FreeBSD-Solaris 0 5 3 8
NetBSD-Solaris 0 4 4 8
OpenBSD-Solaris 0 5 1 6
OpenSolaris-Solaris 0 3 3 6
FreeBSD-RedHat 0 1 4 5
FreeBSD-Win2000 1 3 0 4
OpenBSD-RedHat 0 1 3 4
Solaris-RedHat 0 3 1 4
NetBSD-Win2000 1 2 0 3
OpenBSD-Win2000 0 3 0 3
Solaris-Win2000 0 3 0 3
Solaris-Debian 0 1 1 2
OpenBSD-Win2003 0 2 0 2
FreeBSD-Win2003 0 2 0 2
Debian-Ubuntu 0 0 2 2
NetBSD-Debian 0 0 2 2
NetBSD-RedHat 0 0 2 2
NetBSD-Win2003 0 1 0 1
NetBSD-Win2008 0 1 0 1
OpenBSD-Win2008 0 1 0 1
FreeBSD-Win2008 0 1 0 1
Solaris-Win2003 0 1 0 1
FreeBSD-Debian 0 0 1 1
Debian-Win2000 0 0 1 1
Ubuntu-RedHat 0 0 1 1
Ubuntu-Win2000 0 0 1 1
RedHat-Win2000 0 0 1 1

Table 3.4: Common vulnerabilities on Isolated Thin Servers.

We extended the study of common vulnerabilities to higher numbers of OS. When we
created combinations of three OS, we found that there are still 285 vulnerabilities that
could compromise the systems (in general these three systems are from the same family).

Chapter 3. Vulnerability Study 26

This number is reduced to 102 and 9 vulnerabilities, respectively, in groups of four and
five OS. There are only two vulnerabilities shared by six OS (with identifiers CVE-2008-
1447 and CVE-2007-5365), and one vulnerability that appears in nine OS (with identifier
CVE-2008-4609). The first two cases correspond to protocols that are implemented in a
similar manner in various systems, namely DNS and DHCP, and the last one to a well-
known denial of service problem in the TCP design.

3.2.3 Selecting the OS for the Replicas

Recall that when building an intrusion-tolerant replicated system, one would like to pick a
group of OS for the servers that share a minimum number of vulnerabilities (ideally zero).
This selection ensures that the adversary spends more effort and time to break the system,
since he or she has to compromise each replica separately8. Typical intrusion-tolerant
systems require at least 3f + 1 replicas to tolerate f faults (e.g., [8, 11, 41]), and in some
specific services they might only need 2f + 1 or more replicas (e.g., [13, 67]).

OpenBSD NetBSD FreeBSD Solaris Debian RedHat Win2000 Win2003
OpenBSD 9 25 6 0 4 2 1

19
94

-2
00

5

NetBSD 7 15 8 2 2 2 0
FreeBSD 7 9 8 1 5 3 1
Solaris 0 0 0 2 3 3 1
Debian 0 0 0 0 10 0 0
RedHat 0 0 0 1 1 0 0
Win2000 1 1 1 0 1 1 35
Win2003 1 1 1 0 0 0 46

2006-2010

Table 3.5: History/observed period results for Isolated Thin Servers.

The results from the previous section give a strong indication that it should be possible
to choose groups of OS with few common vulnerabilities over long intervals of time.
However, we would like to understand if the data from the NVD database is effective at
suggesting these groups of OS. To address this point, we divided the data in two subsets:
the history period comprising the data from the interval 1994 to 2005 (2/3 of the valid
vulnerabilities), and the observed period for the years between 2006 and 2010 (1/3 of the
valid vulnerabilities). The objective is to employ the history period to pick groups of OS to
deploy in an hypothetical intrusion-tolerant system (e.g., BFS [11] or DepSpace [8]), and
then use the data on the observed period to verify if the number of shared vulnerabilities
is as small as expected. Table 3.5 presents the result of the analysis for groups of Isolated
Thin Servers. The experiment does not consider Ubuntu, OpenSolaris and Windows 2008
due to the lack of meaningful data during the history period. In the table, values above the
diagonal line and to the right correspond to common vulnerabilities in pairs of OS during

8This is valid under the assumption that the cost to compromise each OS is non-negligible and approxi-
mately the same.

Chapter 3. Vulnerability Study 27

the history period. Values to the left and below the diagonal line represent the observed
period results.

For the base case consider that one wants to tolerate a single intrusion, i.e., f = 1, in
a set of four identical (non-diverse) replicas (e.g., because one wants to keep administra-
tive tasks simple). The best strategy for this scenario would be to pick the OS with the
least vulnerabilities during the history period. Debian would be the best choice because
it only had 16 vulnerabilities that could be remotely exploited either in the drivers, kernel
or system programs. Over the observed period, this system would have 9 shared vulner-
abilities (i.e., the ones that were reported for Debian between 2006 and 2010) that could
compromise the four replicas of the hypothetical system (see Figure 3.3).

 0

 10

 20

 30

D
ebian

Set1
Set2

Set3
Set4

#
 o

f
v
u

ln
e

ra
b

ili
ti
e

s

History
Observed

16

9
11 12

26

9

1 1 2 2

Figure 3.3: Several configurations of OS: Debian - only Debian; Set1 is {Win2003,
Solaris, Debian, OpenBSD}; Set2 is {Win2003, Solaris, Debian, NetBSD}; Set3 is
{Win2003, Solaris, RedHat, NetBSD}; Set4 is {OpenBSD, NetBSD, Debian, Redhat}.

If one had chosen to employ the “most diverse” operating system group based on
what was reported on the history period, then the selected OS would be Set1 of Figure
3.3, which is composed by {Windows 2003, Solaris, Debian and OpenBSD}. During the
observed period, this set would only have one vulnerability affecting two of the replicas
– OpenBSD and Windows 2003. Alternatively, if we had chosen the second “most di-
verse” configuration, where NetBSD would substitute OpenBSD, then one would add 3
extra common vulnerabilities during the history period. However, during the observed
period, one would still only have a single common vulnerability (between OpenBSD and
Windows 2003). Therefore, in both configurations of the intrusion-tolerant system, the
number of common vulnerabilities would be extremely small, and lower than in the base
case.

The results also point out that one can deploy an intrusion-tolerant system with few
common vulnerabilities, which is based only on Linux distributions and BSD flavors (Set4
in Figure 3.3). Since these four OS can be managed in a relatively similar way, this type
of configuration can be extremely useful for organizations that need to operate with tight

Chapter 3. Vulnerability Study 28

budgets – for instance, it would not be necessary to hire personnel that knows how to
administer Solaris or Windows machines.

Table 3.5 shows that it is possible to build a set of six operating systems with few vul-
nerabilities: two from the BSD family (OpenBSD and NetBSD), one from the Windows
family (Windows 2003), the two Linux (Debian and RedHat) and Solaris. By adding one
extra operating system, either FreeBSD or OpenSolaris (which only had 6 common vul-
nerabilities with Solaris in the observed period), we would have seven options available,
making it possible to deploy diverse systems up to f = 2 and f = 3, for 3f+1 and 2f+1

replicas, respectively.

3.2.4 Exploring Diversity Across OS Releases

The results from the previous section are encouraging if one wants to build systems ca-
pable of tolerating a few intrusions, since it is possible to select OS for the replicas with
a small collection of common vulnerabilities. It is hard, however, to support critical ser-
vices that need to remain correct with higher numbers of compromised replicas or to use
some Byzantine fault-tolerant algorithms that trade performance by extra replicas (e.g.,
[1, 56]).

The number of available operating systems is limited, and consequently, one rapidly
runs out of different OS (e.g., it is necessary 13 distinct OS to tolerate f = 4 in a 3f +

1 system). On the other hand, our experiments are relatively pessimistic in the sense
that they are based in long periods of time and no distinctions are made between OS
releases. Newer releases of an OS can contain important code changes, and therefore,
current vulnerabilities may not appear in previous versions. As a result, if we consider
(OS, release) pairs, one may increase the number of different systems that do not share
vulnerabilities.

As mentioned in Chapter 2, Ozment and Schechter [48] made a study on OpenBSD
code sharing. They observed that after 7 years only 61% of the code remained the same
(between the two versions of OpenBSD 2.3 and OpenBSD 3.7). At first glance, this
observations support the idea that even with different releases of one OS, it is possible to
achieve diversity. Crossing these results with Figure 3.2(b) and the distribution dates of
the two releases (respectively, 19th May 1998 and 18th May 2005), one can understand
that 61% of the shared code should not create important problems. This part of the code
was revised along seven years and was already patched, and therefore, it should contain
less vulnerabilities.

This provides a good indication that exploring diversity across OS releases might offer
a potential security gains. We looked for security advisories (or trackers) available in the
various OS websites to determine if they correlate the vulnerabilities patched in each
release with the information in NVD. This correlation was found in a meaningful way

Chapter 3. Vulnerability Study 29

in four of the OS under study: NetBSD9, Debian10, Ubuntu11, and RedHat12. From all
combinations of pairs of these OS in an Isolated Thin Server configuration, the pair with
highest number of common vulnerabilities is Debian-RedHat (see Tables 3.3 and 3.4).
Table 3.6 presents the number of common vulnerabilities for three releases of Debian and
RedHat, spread along the following years: Debian2.1, 1999; Debian3.0, 2002; Debian4.0,
2007; RedHat6.2*, 200013; RedHat4.0, 2005; RedHat5.0, 2007. One can observe that
even though Debian-RedHat shared a total eleven vulnerabilities, the (OS, release) pairs
are mostly without common flaws, both in the case of the same OS but distinct releases
(left side of the table) and between different operating systems (right side of the table).
These same kind of benefits were also reported in a previous work related with non-
security bugs for database management systems [21].

OS Versions Total OS Versions Total
Debian2.1-Debian3.0 0 Debian3.0-RedHat6.2* 0
Debian2.1-Debian4.0 0 Debian3.0-RedHat4.0 0
Debian3.0-Debian4.0 1 Debian3.0-RedHat5.0 0
RedHat6.2*-RedHat4.0 0 Debian4.0-RedHat6.2* 0
RedHat6.2*-RedHat5.0 0 Debian4.0-RedHat4.0 1
RedHat4.0-RedHat5.0 1 Debian4.0-RedHat5.0 1

Debian2.1-RedHat6.2* 0
Debian2.1-RedHat4.0 0
Debian2.1-RedHat5.0 0

Table 3.6: Common vulnerabilities between OS releases.

3.3 Final Remarks

The main goal of Vulnerability study presented in this chapter was to understand if the
data available in on-line databases provides sufficient information to determine if diversity
across operating systems ensures vulnerability independence. To made this study, we used
the National Vulnerability Database as a source of the data, and then we selected and
filtered some of the information available on the whole data set. Various types of analysis
were performed on the resulting data set. We found that there is a strong suggestion of
vulnerability independence across different operating systems.

The main findings of the study can be summarized as:

9http://www.netbsd.org/support/security/release.html
10http://security-tracker.debian.org/tracker/
11http://people.canonical.com/ ubuntu-security/cve/
12https://www.redhat.com/security/data/cve/
13As a cautious note, RedHat had change the version naming, that is why RedHat 6.2 was released in

2000 and RedHat 4.0 appears only after.

Chapter 3. Vulnerability Study 30

1. The number of common vulnerabilities on the studied OS pairs was reduced by 56%
on average if the application and locally-exploitable vulnerabilities are removed;

2. More than 50% of the 55 OS pairs that were studied have at most one non-application,
remotely exploitable common vulnerability;

3. The top-3 diverse setups for a four-replica system (tolerating a single failure in typi-
cal intrusion-tolerant systems) are: {Windows 2003, Solaris, Debian and OpenBSD},
{Windows 2003, Solaris, Debian and NetBSD} and {Windows 2003, Solaris, Red-
Hat and NetBSD};

4. A preliminary analysis of the diversity among different versions of Debian and
RedHat distributions suggests that there are possible setups with the same OS that
have a disjoint set of vulnerabilities.

5. There are two vulnerabilities from 2007 and 2008 that affect six OS, and one vul-
nerability from 2008 that affected nine OS;

6. Driver vulnerabilities accounts only for a very small set (less than 1.5%) of all
reported OS vulnerabilities.

In the next chapter we will use these results to propose a replicated system architecture
that uses diverse rejuvenation, to select distinct operating system during the life-time of
the system. We will also describe an algorithm that maximizes the diversity on the replicas
based on the data analyzed on this chapter.

Chapter 4

Diverse Proactive Recovery

This chapter proposes a replicated system that takes advantage of the results presented
in Chapter 3 to build proactive-recovery mechanisms. First we give an overview of in-
trusion tolerance and present the system architecture. Then, we describe and evaluate an
algorithm to select OS configurations in a diverse replicated system. Parts of this chapter
appeared in [20].

4.1 System Architecture

As discussed in previous chapters, an intrusion-tolerant (IT) system is typically composed
by n replicated servers 0, ..., n − 1, that implement a given service, for example, a file
system or a database. Users contact the replicas following the rules of the service –
they send requests to one or all servers, and then select one of the returned responses
(see below the line part of Figure 4.1). Servers keep their state consistent by running a
replication protocol that is able to tolerate Byzantine failures. The system maintains a
correct behavior even if there is an undetermined number of malicious users and/or if an
attacker controls up to f replicas (usually with n ≥ 3f + 1).

The aim of the diversity rejuvenation service is to ensure that this last invariant con-
tinues to be valid throughout the lifetime of the system. It basically employs two mecha-
nisms. First, replicas run diverse software to guarantee that vulnerabilities are not shared.
If this is true, then the adversary would need to spend a considerable time to compro-
mise each replica, since previously found exploits cannot be re-used to create intrusions
in further servers. Second, periodically each replica is rejuvenated with a new diverse
software, removing the effects of some prior intrusion, and therefore making the adver-
sary start over. In order to ensure the availability of the IT service, rejuvenations occur in
a round-robin fashion every T time units (i.e., at time (t0 + kT) starts the rejuvenation of
replica i, with i = (k mod n) and t0 is the instant when the system was initialized [58]).

The architecture of the rejuvenation service is depicted in the part above the line of
Figure 4.1. Virtualization is used to divide each replica in two logical components, where

31

Chapter 4. Diverse Proactive Recovery 32

Figure 4.1: Architecture of the rejuvenation system.

the server software is run in a separate virtual machine and the diversity rejuvenation
module (DRM) is executed in the trusted part of a virtual machine1. This setup provides
an acceptable level of protection for the DRM because the hypervisor is isolated from the
virtual machines. Therefore, if an adversary manages to exploit a vulnerability in the OS
supporting the server execution, he or she will not be able to propagate the intrusion to
the hypervisor and affect the correctness of the DRM.

Replica rejuvenation can be performed in an effective manner by carrying out the
following steps:

• DRM starts a new virtual machine with a diverse OS configuration stored in the
local cache. This virtual machine runs in parallel with the current server replica.

• A new server is initiated in the virtual machine by running the necessary setup
operations, which might include contacting the other server replicas to obtain an
updated state of the IT service.

• The virtual machine of the current server is shutdown and discarded, and the new
server takes the place of the old one.

• DRM runs a selection algorithm (see next section) to find out which OS configura-
tion should be run after in the next rejuvenation.

1For example, Domain 0 in Xen [66].

Chapter 4. Diverse Proactive Recovery 33

• DRM fetches from the configuration repository the chosen OS configuration and
stores it in the cache. This occurs in the background, while the server is processing
the user requests.

An OS configuration basically contains the OS, plus other auxiliary programs, and a
server. These configurations are stored in a virtual machine image (i.e., a file) that can be
loaded by the virtualization solution. System administrators typically create these config-
urations, which should only contain fully patched software without any known vulnera-
bilities, and save them in a secure repository. The access to this repository is protected
by employing a separate LAN (as represented in the figure) or by using cryptographic
mechanisms to safeguard the communications.

4.2 Diverse Rejuvenation

In this section we present a solution for the problem of selecting diverse configurations. To
our knowledge, this problem has been mainly overlooked in the past, and it corresponds to
the decision of which configuration should be run in a replica, given the already running
configurations and a suitable set of candidate diverse configurations. To simplify the
discussion and make it well grounded on the available results about diverse configurations,
we describe the technique using diverse operating systems. However it can be easily
extended to deal with configurations composed by a stack of software components.

4.2.1 Rational for the Solution

Intuitively, the selection algorithm should pick from the available alternatives the best
OS configuration, in the sense that it should not have common vulnerabilities with the
already running replicas. This would considerably delay the adversary to compromise
more than f replicas2. This solution however suffers from one difficulty – given two
fully patched configurations, one does not know if they share some vulnerability (which
might be discovered in the future). Therefore, when designing the selection algorithm,
we should attempt to fulfill the following prepositions:

P1 The new selected OS configuration does not share vulnerabilities with the configura-
tions already executing in the other replicas.

P2 Given the group of configurations currently running, the adversary can not predict the
configurations that will be selected in the future.

2Notice that we are working under the assumption that finding and exploiting new (or zero-day) vulner-
abilities in mature software takes some time.

Chapter 4. Diverse Proactive Recovery 34

P3 All diverse OS configurations available in the configuration repository3 for selection
are picked by the algorithm with a reasonable probability.

P4 The algorithm is executed individually by each DRM of the replicas.

As explained, P1 cannot be ensured with absolute certainty. However, the study de-
scribed in the previous chapter shows a strong empirical evidence for: 1) it is possible to
find OS pairs that have had no (or only a few) common vulnerabilities in the past; and
2) if OS pairs share few vulnerabilities in the past, then with high probability no (or very
few) common vulnerabilities are found in the future. For each OS version pair we can
obtain the list of shared vulnerabilities and the CVSS score of each vulnerability.

Therefore, by combining this data we can calculate a rough criteria for deciding if
two OS configurations share vulnerabilities: score(OSA,OSB) =

∑
v∈VA,B

CVSSscorev,
where v ∈ VA,B is the set of past common vulnerabilities of OSA and OSB, and CVSSscorev

is the score of a vulnerability v
Preposition P2 is necessary to address the following attack – to increase the available

time to find vulnerabilities, the adversary predicts a system configuration that will be used
some time from now (e.g., in a month); then, he or she starts to attack the corresponding
OS versions, so that when this configuration is eventually installed, more than f replicas
can be corrupted in a small amount of time. Since we only have a limited number of
OS configurations, our aim should be to make the prediction as hard as possible. This
means that selecting an OS configuration from the available ones should entail some level
of randomness, even if this implies choosing a system configuration that has a somewhat
higher score among some of the executing replicas.

Some OS pairs share much less vulnerabilities than others, and therefore, there is the
risk that some of the available OS configurations are never selected. To address this prob-
lem, the algorithm should enforce P3. The last preposition is useful because it simplifies
the implementation, since this allows the DRM to determine which OS configurations
are (and will be) used in replicas without having to communicate. This requires that the
algorithm executes in a deterministic way (after some potential initial random setup step).

3The repository has a subset of all available configurations containing the operating systems that match
some performance or dependability criteria.

Chapter 4. Diverse Proactive Recovery 35

4.2.2 Selection Algorithm

Algorithm 2 is executed individually by each replica DRM, and it provides a solution to
the diversity selection problem fulfilling the above four prepositions. When the system is
initialized, every DRM receives an equal random seed value and a copy of table OSTable

containing a description of the OS configurations stored at the repository. Among other
things, this table has for each OS configuration pair the score of vulnerability (as dis-
cussed above). The system administrator also indicates in a VUL SCORE configuration
variable, what he or she considers as an acceptable maximal score value between any two
OS configurations that are run in the system (sometimes the algorithm may need to select
configurations higher than this value if there are no alternatives).

The algorithm starts by doing some global initializations (Lines 1-3). The number of
rejuvenations rejCount is set to−1 to indicate that no rejuvenation has occurred, and the
local random number generator is initialized with the global seed . OSconf contains the
current OS configuration that is used at each replica (numbered between 0 and n−1), and
it is started with some undefined value ∗.

As explained in Section 4.1, using a round robin policy, at every t time unit, one of the
replicas is rejuvenated with a new OS configuration. Function findNextConfiguration()

is called to determine which OS configuration should be used in that replica. It is also
called n times during the system startup, to find out the initial configuration of each
replica. The function begins by incrementing the rejuvenation count and by determining
which replica will be rejuvenated (Lines 13 and 14). Then, it calls initSelectCandidate(),
which randomly finds the index on the OSTable of the first candidate OS configuration
(size(OSTable) gives the number of elements of the table) and sets the score level score
as VUL SCORE (Lines 4-6). Next, function findNextConfiguration() enters in a loop,
where it picks a new candidate OS configuration (Line 19), and then checks if this can-
didate has few shared vulnerabilities with the already running replicas (i.e., the score
between any pair of the candidate and running replicas should be less than score) (Lines
16-28). This procedure prevents the selection of the same OS configuration that is cur-
rently running, if OSTable is setup in such a way that getScore(OSA,OSA) = ∞ (Line
21) for any configuration OSA. In the first n executions of getScore(OSConf [j], cand)

the value of OSConf [j] can be ∗. In this case, the getScore() function should return 0,
which causes cand to be an acceptable candidate.

The reader should notice that the algorithm is designed in such a way that is always
possible to find a new candidate OS configuration. First, it tries all available candidate
configurations that are different from the ones currently running (Line 21 and function
selectCandidate()) for a given score level score. If no configuration is found acceptable,
then it increases the score by an α constant (Line 9) and the whole process is repeated.

Chapter 4. Diverse Proactive Recovery 36

Algorithm 2: A diversity selector algorithm
Initialization:
rejCount = −1;1

OSConf = (∗, ∗, ∗, ..., ∗);2

initRandom(seed);3

initSelectCandidate():
firstC = getRandom() mod size(OSTable);4

nextC = 0;5

score = V UL SCORE;6

selectCandidate():
cand = getOSTable((firstC + nextC) mod size(OSTable));7

if ((nextC > 0) and (nextC mod size(OSTable) = 0)) then8

score = score+ α;9

end10

nextC = nextC + 1;11

return cand;12

findNextConfiguration():
rejCount = rejCount+ 1;13

i = rejCount mod n;14

initSelectCandidate();15

while (true) do16

done = false;17

j = 0;18

cand = selectCandidate();19

repeat20

if (getScore(OSCon[j], cand) > score) then21

done = true;22

end23

j = j + 1;24

until ((¬done) and (j < n)) ;25

if (¬done) then26

OSConf [i] = cand;27

return cand;28

end29

end30

Chapter 4. Diverse Proactive Recovery 37

4.3 Evaluation

This section presents some experimental results with an implementation of the diverse
proactive recovery system. From the four different OS families, 15 distributions4 were
deployed and configured in a virtual machine environment, in this case VirtualBox5. Due
to drivers or aging limitations we could not install more OS.

The experiments can be divided in two independent evaluations: algorithm evaluation,
where we analyse the diverse selection algorithm; and an experimental measurement of
the duration of the recovery process for different operating systems.

4.3.1 Experimental Setup

In the first evaluation, we implemented the diversity selector algorithm in Java and them
evaluated its capabilities for creating diverse OS sets. This implementation uses as in-
put a table derived from the database designed and enriched from the NVD data set, as
described in the previous chapter.

The second evaluation has as objective the measurement of the interval of time that
it takes to rejuvenate an OS configuration. The following steps had to be performed
to carry out these experiments: First, it was necessary to prepare the virtual machines
environment, which in our case was based on VirtualBox. Next, a maximum number
of OS was downloaded from the official repositories, and then they were installed as
guest OS in distinct virtual machines. This task ended up being time consuming due
to the several differences between some of the OS, which required for instance specific
configurations to make them run in our network environment. Second, it was necessary to
develop two programs to control the experiment and take measurements. One, host, that
ran in the virtual machine host (or hypervisor), and the other, vm, that ran in the virtual
machine guest. This program was written in the C language and the vm part had to be
ported to all OS versions.

The experiments were carried out in a Dell Optilex 755 with a Intel Core Due CPU
2.83 Ghz and 3.2 Gb memory RAM. Since the prototype runs in a virtual machine en-
vironment, each virtual machine had their own specifications: 1 CPU and 512 MB of
memory, and the disk size varies due to the installed OS requirements.

4.3.2 Algorithm Evaluation

In this first experiment we intend to understand how the diversity selection algorithm de-
grades, i.e, for how long can it provide diversity sets while at the same time minimizing
repeating the sets. This experiment uses 15 different OS configurations. With a simple

4Windows 2003; Redhat 4.5; Debian 4.0, 5.0 and 6.0; OpenBSD 4.6, 4.7 and 4.8; FreeBSD 7.2, 7.3,
7.4, 8.0 and 8.1; Solaris 10 and Solaris 11 Express.

5http://www.virtualbox.org/

Chapter 4. Diverse Proactive Recovery 38

combination calculation, these configurations allow for 1365 different possible sets (with-
out repeating and the order is not important). Notice, however, that these combinations
can only be used if one changes in each recovery the whole set of OS configurations in all
replicas. In our case, the system managing the diversity needs to modify a single OS per
recovery, which has an impact on the numbers.

In the evaluation, we run the selection algorithm 20 times for each number of rounds,
beginning with 100. This means that function findNextConfiguration() is executed 100
times, to generate different OS sequences with 20 different initial seeds. Figure 4.2 shows
the results of the algorithm execution. As an example, the first column of the graph has
the following meaning: when the algorithm is run 100 times there are in average 14 sets
of 4 replicas that are repeated.

����

����

����

����

����

���	

���

����

	��

����

����

����

����

���

����

	���

�����

��������	
���
�����
������

��
���������

�� �� �� ��� ��� ��
 ��� ��� �	� �
�
����

�

����

����

��� ��� ��� ��� ��� ���
�� ��� 	�� ���� ���� ���� ���� ���� ����
��� ���� 	��� ����� �������

Figure 4.2: The degradation evolution of the algorithm.

When the algorithm executes 700 rounds, the occurrence of repeating sets is always
approximately half of the rounds. From 700 to 10000 rounds, the repeating sets starts
to get closer to the number of executed rounds. This result is expected since we have a
limited number of combinations without having to re-use a previously selected set.

Taking this into account, there is a trade-off between the life-time duration of a system
and the security gains from using diversity. For short periods of time more diversity
can be offered by the selector algorithm. For longer periods of execution, the algorithm
is required to repeat some sets, and therefore, the system becomes more vulnerable to
attacks, under the assumption that with longer runtimes the attacker has more time to
discovery zero-day vulnerabilities. For example looking at the 600 rounds value on the x-
axis and considering that each replica recovers once per hour, we can maintain the system
with only 267 repeated sets for 25 days.

4.3.3 Recovery Evaluation

In this experiment we intend to evaluate the time (in seconds) spent in recoveries, which
are composed of two tasks: disk copy and OS boot. As in previous works [51, 59], virtual

Chapter 4. Diverse Proactive Recovery 39

machines were used to create the trusted and untrusted execution environments (see Fig-
ure 4.1). A program was developed to measure the time of cloning a disk and the booting
time, and then the program was ported to all OS running on the virtual machines. The
first task, cloning a disk, uses the VBoxManager6 function to copy disks. This function
allows one to clone a virtual hard drive that can be loaded in a new instance of a virtual
machine with a distinct unique identifier (UUID).

The second task, the booting time, corresponds to the duration between the virtual
machine start instant and the boot level where the ported program executes. This varies
from OS to OS, for example Linux OS has six init levels, each one has a specific function.
In our case the program is run at the fifth level with the /etc/rc.d scripts. When the program
starts to execute, it sends an UDP message to the host to inform that the reboot was
completed. Then, the host starts a new experiment by deleting the current virtual machine
and loading a new one, and so on until, in this particular experiment, 20 recoveries are
executed.

Tables 4.1, 4.2, 4.3, 4.4 and 4.5 present the measurements for Debian-5.0, FreeBSD-
7.3, Windows 2003, Solaris 11 Express and Redhat-5.6. We choose one operating system
from each family because it seems reasonable to assume that there are not so many dif-
ferences on the booting time of the similar OS.

Debian-5.0
Clone Boot

mean 21.80s 31.90s
stddev 0.50s 1.38s
max 22.64s 34.24s
min 20.92s 29.87s

Table 4.1: Disk size: 1.02 GB.

FreeBSD-7.3
Clone Boot

mean 96.036s 41.14s
stddev 2.24s 0.70s
max 100.58s 41.83s
min 92.52s 38.73s

Table 4.2: Disk size: 2.2 GB.

RedHat-5.6
Clone Boot

mean 98.36s 109.87s
stddev 3.31s 21.18s
max 94.77s 150.58s
min 20.52s 88.39s

Table 4.3: Disk size: 2.2 GB.

Solaris 11 Express
Clone Boot

mean 134.67 111.88
stddev 1.59s 6.04s
max 138.32s 124.68s
min 132.46s 104.22s

Table 4.4: Disk size: 3.3 GB.

Windows2003
Clone Boot

mean 427.94s 46.15s
stddev 1.38s 0.38s
max 430.41s 47.39s
min 424.37s 45.25s

Table 4.5: Disk size: 10.5 GB.
6http://www.virtualbox.org/manual/ch08.html

Chapter 4. Diverse Proactive Recovery 40

The results show that, as expected, the time to clone an operating system image is
directly dependent of its size. Besides that, one can see that Solaris and Redhat takes
more than twice the time to boot than Windows, FreeBSD and Debian.

4.4 Final Remarks

In this chapter we presented an intrusion-tolerant replicated system architecture that uses
operating system diversity on rejuvenations. To guarantee the maximum diversity across
the replicas we made an algorithm that selects the best operating systems for the n replicas
among the pool of available configurations. This algorithm uses the data that we analyzed
in the previous chapter. The chapter also provided an evaluation of the algorithm, together
with experiments on the amount of time that it takes to rejuvenate an operating system.

Chapter 5

Conclusion

This chapter makes a discussion of the whole work to summarize the contributions of the
thesis. Then, we present some of the limitations of NVD and how they might have influ-
enced the results of Chapter 3. Next we describe the limitations of the diverse recovery
architecture. We complete the thesis by proposing few ideas for the future work.

5.1 Summary of Results

One way to decrease the probability of common vulnerabilities on the replicas of intrusion-
tolerant systems is by using diverse OTS software components. In this thesis we analyzed
the likelihood of common vulnerabilities on an important class of OTS components used
in intrusion-tolerant systems: operating systems. We analyzed more than 15 years of
vulnerability reports from NVD totaling 1887 vulnerabilities of eleven operating system
distributions. The results suggest a substantial security gain by using diverse operating
systems for intrusion tolerance. Of course, our analysis has several limitations. Some of
these limitations are discussed in detail in the next section, and we explain what addi-
tional data, analysis and clarifications may be needed to increase our confidence about
the claims on the benefits of diversity. Despite these limitations, we argue that on aver-
age our estimates may be seen as conservative as we analyzed aggregated vulnerabilities
across releases – hence common vulnerabilities could be smaller in a “specific set” of
diverse OS releases. A better analysis would be obtained if the NVD vulnerability reports
were combined with the exploit reports (including exploit counts), and even better if they
also had indications about the users’ usage profile. However, vendors are often wary of
sharing such detailed dependability and security information with their customers. There
are partial exploit reports available from other sites (e.g., [46]), but they are incomplete
and a significant amount of manual analysis is required to match the vulnerabilities with
exploits for each operating system.

The thesis also presents a system that adds proactive recovery to a diverse replicated
system, by introducing diversity in OS configurations after each rejuvenation. The ar-

41

Chapter 5. Conclusion 42

chitecture can be briefly described as a n replica system in which each node has a DRM
(Diverse Recovery Module) and a server that provides a service to the users (e.g., firewall
or a database). When one DRMi needs to rejuvenate some serveri, it gets from a secure
OS repository a new and different OS image to load on the serveri. We have created an
algorithm to maximize the diversity on each rejuvenation given a set of n running replicas,
increasing the difficulty for the adversary to exploit f+1 out-of n replicas, which would
compromise the system availability. This algorithm uses random selection to avoid adver-
sary predictions about the next OS to be deployed, but it runs deterministically on each
replica to avoid the communication between DRMs.

5.2 Limitations of the Work

In this section we present some of the limitations of the developed work.

5.2.1 Limitations of NVD and its Implications on the Study

The numbers we have presented in Chapter 3 are intriguing and point to a potential for
serious security gains from assembling an intrusion-tolerant system using different oper-
ating systems, but they are not a definitive evidence. Even though the NVD is arguably
the most complete and referenced database for security vulnerabilities and it is regularly
updated with contributions from several sources, there are several uncertainties that re-
main about the data, which limit the claims we can make about the benefits of diversity to
increase security. Ozment [47] points out some problems with the NVD (chronological
inconsistency, inclusion, separation of events and documentation); for our purposes, the
first two and the last one are the most relevant. “Chronological inconsistency” means that
the NVD data has inherent inaccuracies about the dates when vulnerabilities were discov-
ered and when the vulnerable code was released, which not only complicates reasoning
about the lifetime of vulnerabilities but also affects the versions that are vulnerable (for
instance, sometimes obsolete versions of a product are vulnerable but are not listed in the
NVD as such). “Inclusion” refers to the fact that not all vulnerabilities are included in
the NVD, only those with a CVE number; as CVE and NVD have gained traction, this
has become less of an issue. Finally, there is little documentation about the NVD, and,
in the past, the meaning of some fields has occasionally changed without prior notice,
which might make comparisons less meaningful. In what follows, we will discuss some
other limitations and the implications that they have on the claims we can make about the
benefits of diversity:

1. The NVD does not provide “reproducible scripts” or exploits – probably wisely –
which would allow one to check whether the vulnerability can be exploited. There-
fore, relying solely on the data available in the NVD, it is not possible to confirm

Chapter 5. Conclusion 43

that a reported vulnerability is actually exploitable.
Implication: The lack of exploitability information makes it harder to adequately
assess the risk posed by a vulnerability. Caution forces us to consider that all vul-
nerabilities are exploitable, and must be remediated in due time, a strategy that has
obvious implications both in terms of cost and in terms of complexity of manage-
ment.

2. When a vulnerability is reported for more than one operating system, it is not clear
whether the reporter has checked that it has been confirmed to exist in the OS, or it
is just an indication that the vulnerability may exist in each of the operating systems
listed.
Implication: The implications of the previous item apply here as well. Additionally,
we have the implication that we cannot claim with certainty whether our estimates
of the benefits of diversity, given earlier in the thesis, are conservative or optimistic.
If a vulnerability has been reported for operating systems A and B but in fact only
exists in A, then our estimates are conservative. On the other hand, if the vulner-
ability has been reported for operating systems A and B only, but in fact it exists
additionally in operating systems C and D, then our estimates are optimistic.

3. Although more than 70 organizations (including many important OS vendors) use
CVE to identify vulnerabilities, it is not clear if all products are equally represented
in the NVD. Another related issue is that the vulnerability reporting process is
inherently biased, both in timing and in coverage, although not necessarily in an
intentional manner. For instance, when a new class of vulnerabilities is discov-
ered or disseminated, there is often a surge of new reports involving this class, as
it has happened with format string bugs [43] and integer overflows [2]. Finally,
not all targets are given the same attention by vulnerability researchers. Software
with smaller user bases tend to attract less scrutiny than popular ones, vulnerabil-
ities with higher impact usually receive more attention, and there is even the case
when specific vendors are targeted for some reason. As an example, when Oracle
claimed their database was “unbreakable” only to have several vulnerabilities dis-
closed within 24 hours [32], and the rise in exploitation of Adobe software in the
last 15–20 months [29].
Implication: With any analysis of bug or vulnerability reports from an open database,
there is uncertainty about how many of the vulnerabilities are actually reported.
This fraction is certainly less than 100%. If all vulnerabilities had the same prob-
ability of being reported, the ratio between our predicted vulnerability counts for
AB (mAB – those that affect both products A and B) and A or B (mA or mB –
those that affect only one of the products) would still be the ratio mAB/mA or
mAB/mB respectively. But, in fact, we do not know whether the vulnerabilities

Chapter 5. Conclusion 44

of some operating systems are less likely to be reported in NVD than others (or
conversely). It is not clear if the vulnerabilities of some operating systems are re-
ported to the vendors only (or some other vulnerability database) and do not appear
in NVD. This again has implications about the claims that we can make about the
benefits of diversity, as data entries may be missing which overestimate the benefits
of diversity for some products.

5.2.2 DRM Limitations

The ideas outlined in Chapter 4 comprise the current solution to solve a long lasting
problem of diversity configuration on an intrusion-tolerant system. Although we believe
the configuration selector can solve the problem of changing the vulnerability set of a
distributed system during its execution time, our approach still has a number of limitations
that have to be addressed:

1. At startup we must have all virtual machine images with the different OS config-
urations already created. This complicates the deployment and update of system
software. In particular, it may be difficult or costly to manage and apply patches on
this large base of installed software.

2. The OSTable construction is based on results from empirical studies such as [19,
21], which do not prove that the software does not have common vulnerabili-
ties/bugs, but gives some evidence pointing in this direction. However, given the
inherent complexity of these studies, defining such table for components not yet
analyzed may be a complex and error-prone task.

3. Defining V UL SCORE and α is still an open problem highly dependent of results
of the OSTable.

5.3 Future Work

The work developed during the thesis is a first step towards the design and development
of diverse intrusion tolerant systems. The main idea is to build a system that will offer
some already well known and accepted solutions, such as BFT protocols, state transfer
and replica rejuvenation, and then the novel contribution will be an implementation that
integrates different levels of diversity. At the end we expect to make a practical evaluation
that proves that this architecture is better than a non-diverse solution.

Below, there are ideas for the future work:

• Study and analyze some recent resource-efficient replication models and verify if
the DRM architecture can be integrated on them [65].

Chapter 5. Conclusion 45

• Integrate the architecture presented in the Chapter 4 with the BFT-Smart library1.

• Make a deeper analysis on diversity among different releases of the same OS.

• Explore other opportunistic diversity possibilities besides different OS configura-
tions. For example, we would like to experiment memory layout randomization
and code obfuscation to increase heterogeneity across the replicas and explore other
taxonomies of diversity within the OS [45].

• Further research is needed on how to do automatic patching in the stored OS con-
figurations [64].

1http://code.google.com/p/bft-smart/

Bibliography

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie. Fault-scalable
Byzantine fault-tolerant services. In Proceedings of the ACM Symposium on Oper-
ating Systems Principles, 2005.

[2] D. Ahmad. The rising threat of vulnerabilities due to integer errors. IEEE Security
& Privacy, 1(4), 2003.

[3] O. Alhazmi and Y. Malayia. Quantitative vulnerability assessment of systems soft-
ware. In Proceedings of the Annual Reliability and Maintainability Symposium,
2005.

[4] O. Alhazmi and Y. Malayia. Application of vulnerability discovery models to major
operating systems. IEEE Transactions on Reliability, 57(1), 2008.

[5] P. Anbalagan and M. Vouk. Towards a unifying approach in understanding secu-
rity problems. In Proceedings of the IEEE International Symposium on Software
Reliability Engineering, 2009.

[6] R. Anderson. Security in open versus closed systems—the dance of Boltzmann,
Coase and Moore. In Conference on Open Source Software: Economics, Law and
Policy, 2002.

[7] A. Avizienis and L. Chen. On the implementation of N-version programming for
software fault tolerance during execution. In Proceedings of the IEEE Computer
Software and Applications Conference, 1977.

[8] A. Bessani, E. Alchieri, M. Correia, and J. Fraga. DepSpace: a Byzantine fault-
tolerant coordination service. In Proceedings of the ACM European Conference on
Computer Systems, 2008.

[9] A. Bessani, P. Sousa, M. Correia, N. Neves, and P. Verissı́mo. The CRUTIAL way
of critical infrastructure protection. IEEE Security & Privacy, 6(6), 2008.

[10] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proceedings of the
the USENIX Symposium on Operating Systems Design and Implementation, 1999.

47

Bibliography 48

[11] M. Castro and B. Liskov. Practical Byzantine fault-tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4), 2002.

[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of oper-
ating systems errors. In Proceedings of the ACM Symposium on Operating Systems
Principles, 2001.

[13] M. Correia, N. Neves, and P. Verı́ssimo. How to tolerate half less one Byzantine
nodes in practical distributed systems. In Proceedings of the IEEE Symposium on
Reliable Distributed Systems, 2004.

[14] CVE terminology. http://cve.mitre.org/about/terminology.

html.

[15] Y. Deswarte, K. Kanoun, and J. Laprie. Diversity against accidental and deliber-
ate faults. In Computer Security, Dependability, and Assurance: From Needs to
Solutions, 1998.

[16] T. Distler, R. Kapitza, and H. Reiser. Efficient state transfer for hypervisor-
based proactive recovery. In Proceedings of the Workshop on Recent Advances on
Intrusion-Tolerant Systems, 2008.

[17] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. In
Proceedings of the Workshop on Hot Topics in Operating Systems, 1997.

[18] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows XP kernel crash analysis.
In Proceedings of the Large Installation System Administration Conference, 2006.

[19] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. OS diversity for
intrusion tolerance: Myth or reality? In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, 2011.

[20] M. Garcia, A. Bessani, and N. Neves. Diverse os rejuvenation for intrusion toler-
ance. Poster in the IEEE/IFIP International Conference on Dependable Systems and
Networks, 2011.

[21] I. Gashi, P. Popov, and L. Strigini. Fault tolerance via diversity for off-the-shelf
products: A study with SQL database servers. IEEE Transactions on Dependable
and Secure Computing, 4(4), 2007.

[22] S. Hofmeyr and S. Forrest. Architecture for an artificial immune system. Evolution-
ary Computation, 8(4), 2000.

http://cve.mitre.org/about/terminology.html
http://cve.mitre.org/about/terminology.html

Bibliography 49

[23] Y. Huang and C. Kintala. Software implemented fault tolerance: Technologies and
experience. In Proceedings of the IEEE Proceedings of International Symposium on
Fault-Tolerant Computing, 1993.

[24] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software rejuvenation: analysis,
module and applications. In Proceedings of the IEEE Proceedings of International
Symposium on Fault-Tolerant Computing, 1995.

[25] M. Joseph and A. Avizienis. A fault-tolerant approach to computer viruses. In IEEE
Security & Privacy, 1988.

[26] J. Knight and N. Leveson. An experimental evaluation of the assumption of inde-
pendence in multiversion programming. IEEE Transactions Software Engineering,
12, 1986.

[27] J. Knight and N. Leveson. A reply to the criticisms of the Knight & Leveson exper-
iment. ACM SIGSOFT Software Engineering Notes, 15, 1990.

[28] P. Koopman and J. DeVale. Comparing the robustness of POSIX operating sys-
tems. In Proceedings of the IEEE Proceedings of International Symposium on Fault-
Tolerant Computing, 1999.

[29] McAfee Labs. 2010 threat predictions. Whitepaper, 2009. Available
from http://www.mcafee.com/us/local_content/white_papers/

7985rpt_labs_threat_predict_1209_v2.pdf.

[30] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programing Languages and Systems, 4(3), 1982.

[31] Liburd and S. Denise. An n-version electronic voting system. Master’s thesis, Mas-
sachusetts Institute of Technology, 2004.

[32] D. Litchfield. Hackproofing Oracle Application Server. Whitepaper, NGSSoftware
Insight, 2002.

[33] B. Littlewood, P. Popov, and L. Strigini. Modeling software design diversity: A
review. ACM Computing Surveys, 33(2), 2001.

[34] B. Littlewood and L. Strigini. Redundancy and diversity in security. In Proceedings
of the European Symposium on Research in Computer Security. 2004.

[35] M. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-Hill, 1995.

[36] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system.
IEEE Security & Privacy, 4(6), 2006.

http://www.mcafee.com/us/local_content/white_papers/7985rpt_labs_threat_predict_1209_v2.pdf
http://www.mcafee.com/us/local_content/white_papers/7985rpt_labs_threat_predict_1209_v2.pdf

Bibliography 50

[37] B. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX
utilities. Communications of the ACM, 33(12), 1990.

[38] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl.
Fuzz revisited: A re-examination of the reliability of UNIX utilities and services.
CS-TR 1995–1268, University of Wisconsin-Madison, 1995.

[39] MITRE. Common platform enumeration. http://cpe.mitre.org/.

[40] H. Moniz, N. Neves, M. Correia, and P. Verı́ssimo. Randomized intrusion-tolerant
asynchronous services. In Proceedings of the IEEE/IFIP International Conference
on Dependable Systems and Networks, 2006.

[41] H. Moniz, N. Neves, M. Correia, and P. Verissı́mo. RITAS: Services for randomized
intrusion tolerance. IEEE Transactions on Dependable and Secure Computing, 8(1),
2011.

[42] L. Nagy, R. Ford, and W. Allen. N-version programming for the detection of zero-
day exploits. CS 06–04, Florida Institute Technologies, 2006.

[43] T. Newsham. Format string attacks. Technical report, Guardent, Inc.,
2000. Available from http://www.thenewsh.com/˜newsham/

format-string-attacks.pdf.

[44] National Vulnerability Database. http://nvd.nist.gov/.

[45] R. Obelheiro, A. Bessani, L. Lung, and M. Correia. How practical are intrusion-
tolerant distributed systems? DI/FCUL TR 06–15, Department of Informatics, Uni-
versity of Lisbon, 2006.

[46] S. Özkan. CVE details website. http://www.cvedetails.com/.

[47] A. Ozment. Vulnerability Discovery & Software Security. PhD thesis, University of
Cambridge, 2007.

[48] A. Ozment and S. Schechter. Milk or wine: Does software security improve with
age? In Proceedings of the USENIX Security Symposium, 2006.

[49] B. Randell. System structure for software fault tolerance. IEEE Transactions on
Software Engineering, 1(2), 1975.

[50] B. Randell. System structure for software fault tolerance. ACM Special Interest
Group on Programming Languages Notices, 10(6), 1975.

[51] H. Reiser and R. Kapitza. Fault and intrusion tolerance on the basis of virtual ma-
chines. In Tagungsband des 1. Fachgesprch Virtualisierung, 2008.

http://cpe.mitre.org/
http://www.thenewsh.com/~newsham/format-string-attacks.pdf
http://www.thenewsh.com/~newsham/format-string-attacks.pdf
http://nvd.nist.gov/
http://www.cvedetails.com/

Bibliography 51

[52] E. Rescorla. Is finding security holes a good idea? IEEE Security & Privacy, 3(1),
2005.

[53] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction to improve fault
tolerance. In Proceedings of the ACM Symposium on Operating Systems Principles,
2001.

[54] T. Roeder and F. Schneider. Proactive obfuscation. ACM Transactions on Computer
Systems, 28(2), 2010.

[55] G. Schryen. Security of open source and closed source software: An empirical
comparison of published vulnerabilities. In Proceedings of the ACM Americas Con-
ference on Information Systems, 2009.

[56] M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri. Scrooge: Reducing
the costs of fast Byzantine replication in presence of unresponsive replicas. In Pro-
ceedings of the IEEE/IFIP International Conference on Dependable Systems and
Networks, 2010.

[57] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissı́mo. Resilient intrusion tol-
erance through proactive and reactive recovery. In Proceedings of the IEEE Pacific
Rim International Symposium on Dependable Computing, 2007.

[58] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissı́mo. Highly available
intrusion-tolerant services with proactive-reactive recovery. Proceedings of the
IEEE Transactions on Parallel and Distributed Systems, 21(4), 2010.

[59] P. Sousa, A. Bessani, and R. Obelheiro. The FOREVER service for fault/intrusion
removal. In Proceedings of the Workshop on Recent Advances on Intrusion-Tolerant
Systems, 2008.

[60] P. Sousa, N. Neves, and P. Verissı́mo. How resilient are distributed f fault/intrusion-
tolerant systems? In Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks, 2005.

[61] P. Sousa, N. Neves, and P. Verı́ssimo. Proactive resilience through architectural
hybridization. In Proceedings of the ACM Symposium on Applied Computing, 2006.

[62] P. Sousa, N. Neves, and P. Verissı́mo. Hidden problems of asynchronous proactive
recovery. In Proceedings of the Workshop on Hot Topics in System Dependability,
2007.

[63] P. Verissı́mo, N. Neves, and M. Correia. Intrusion-tolerant architectures: Concepts
and design. In Architecting Dependable Systems, volume 2677 of LNCS. Springer,
2003.

Bibliography 52

[64] M. Vojnovic and A. Ganesh. On the effectiveness of automatic patching. In Pro-
ceedings of the ACM Workshop on Rapid Malcode, 2005.

[65] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet. ZZ and the art
of practical BFT execution. In Proceedings of the ACM European Conference on
Computer Systems, 2011.

[66] Xen. http://www.xen.org/, 2011.

[67] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement
form execution for Byzantine fault tolerant services. In Proceedings of the ACM
Symposium on Operating Systems Principles, 2003.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions and Publications
	Planning
	Document Structure

	Related Work
	Diversity Studies
	Studies Using Vulnerability Reports
	Proactive Recovery
	Diverse Proactive Recovery
	Final Remarks

	Vulnerability Study
	Data Source
	Filtering the Data
	Distribution of Vulnerabilities by OS Parts

	OS Diversity Evolution
	Distribution of OS Vulnerabilities
	Common Vulnerabilities
	Selecting the OS for the Replicas
	Exploring Diversity Across OS Releases

	Final Remarks

	Diverse Proactive Recovery
	System Architecture
	Diverse Rejuvenation
	Rational for the Solution
	Selection Algorithm

	Evaluation
	Experimental Setup
	Algorithm Evaluation
	Recovery Evaluation

	Final Remarks

	Conclusion
	Summary of Results
	Limitations of the Work
	Limitations of NVD and its Implications on the Study
	DRM Limitations

	Future Work

	Bibliography

