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Summary v 

 

SUMMARY 

 

B lymphocytes are important players in adaptive immunity and the main targets of 

current vaccination strategies, with the interaction between B and T cells being fundamental to 

generate long-term immunity. B cells also play a key role in linking innate and adaptive immunity 

by expressing receptors that recognize both specific antigens and microbial patterns.  

The general aim of this work was to investigate the interplay between B cells and other 

components of the immune system through the study of B-cell immunodeficiencies, namely 

Common Variable Immunodeficiency (CVID), characterized by impaired antibody production due 

to defective mature B-cell differentiation, and Congenital Agammaglobulinemia, where early B-

cell development is abrogated, commonly resulting in the absence of peripheral B cells. 

We found BAFF-R expression to be reduced in CVID, particularly in patients with low 

memory B cells, and associated with high serum levels of BAFF, while TACI expression was 

significantly increased. BAFF induced BAFF-R down-regulation in vitro, both in healthy individuals 

and CVID patients. However, the degree of modulation in CVID was impaired, suggesting that 

these dynamics are affected, with a possible impact in B-cell homeostasis. 

We also observed that CVID was associated with monocyte activation, irrespective of LPS 

levels, but in direct association with T-cell activation and B-cell imbalances.  

To explore the mechanisms underlying chronic immune activation, we studied the role 

of IL-17, a major pro-inflammatory cytokine implicated in autoimmunity and inflammatory 

conditions, frequently found in CVID. However, no increase in TH17 cells was found and their 

frequency was inversely correlated with markers of germinal centre impairment. TH17 cells were 

severely reduced in Congenital Agammaglobulinemia and directly associated with switched-

memory B cells in healthy subjects. Our data support a link between B-cell differentiation and 

TH17 homeostasis, with implications for the understanding of the pathogenesis of 

inflammatory/autoimmune diseases and the physiology of B-cell depleting therapies. 

 

Keywords: Primary B-cell immunodeficiencies, CVID, Congenital Agammaglobulinemia, B 

cells, BAFF-R, BAFF, Monocyte activation, T-cell activation, TH17 cells, IL-17. 
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Sumário vii 

 

SUMÁRIO 

 

Linfócitos B têm um papel preponderante na imunidade adaptativa e são os principais 

alvos das estratégias de vacinação, sendo a interacção entre linfócitos B e T fundamental para 

desenvolver imunidade a longo prazo. Linfócitos B têm também um papel importante no 

estabelecimento da ponte entre imunidade inata e adaptativa. 

O objectivo principal deste trabalho foi investigar o diálogo entre linfócitos B e outros 

elementos do sistema imunitário, através do estudo da Imunodeficiência Comum Variável 

(IDCV), caracterizada por produção deficiente de anticorpos resultante de defeitos na maturação 

de linfócitos B, e da Agamaglobulinémia Congénita, em que ocorre um bloqueio precoce no 

desenvolvimento de linfócitos B, resultando frequentemente na sua ausência em circulação. 

A expressão de BAFF-R encontrou-se diminuída na IDCV, particularmente em doentes 

que possuíam uma frequência baixa de linfócitos B de memória, associada a níveis séricos de 

BAFF elevados. BAFF induziu diminuição de expressão de BAFF-R in vitro, no entanto de forma 

alterada na IDCV, sugerindo que esta dinâmica está afectada, com possível impacto na 

homeostasia de linfócitos B.  

A IDCV associou-se com activação monocitária, não relacionada com níveis de LPS, mas 

com activaçãode de linfócitos T e alterações de linfócitos B. 

Para explorar os mecanismos subjacentes à activação imunitária crónica, estudámos o 

papel da IL-17, citocina pró-inflamatória envolvida em autoimunidade e manifestações 

inflamatórias, as quais são frequentemente associadas a IDCV. No entanto, não houve aumento 

de linfócitos TH17 e a sua frequência associou-se inversamente com evidências de defeitos de 

centros germinativos. Linfócitos TH17 estavam reduzidos na Agamaglobulinémia Congénita, e em 

indivíduos saudáveis encontravam-se associados com a frequência de linfócitos B de memória 

com switch. Estes resultados mostram que a homeostasia de linfócitos TH17 se associa à 

maturação de linfócitos B, com implicações para a compreensão da patogénese de doenças 

inflamatórias/autoimunes e da fisiologia de terapêuticas depletivas de linfócitos B. 

Palavras-Chave: Imunodeficiências de linfócitos B, IDCV, Agamaglobulinémia Congénita, 

Linfócitos B, BAFF-R, BAFF, Activação monocitária, Activação de linfócitos T, Linfócitos TH17, IL-

17. 
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This introduction will be divided in two main parts. In the first part will be made an 

overview of the development of B lymphocytes, as well as of the role they play in the generation 

of immune responses. In the second part, primary B-cell immunodeficiencies will be addressed, 

with a brief historical overview followed by a description of the major clinical complications 

involved, together with a perspective on the aetiology of the different diseases and a short 

outline of the therapeutic strategies that are currently used in such conditions. 

 

PART I 

B CELLS AT THE CROSSROAD OF IMMUNE RESPONSES 

 

a. ONTOGENY, DEVELOPMENT AND DIFFERENTIATION OF B LYMPHOCYTES 

B lymphocytes are a population of haematopoietic cells that mainly dedicated to the 

production of antibodies. Importantly, current vaccination strategies rely on memory B-cell 

generation and antibody production by B cells. B lymphocytes are thus at the crossroad of 

immune responses. In evolutionary terms, their origin goes back more than 500 million years to 

the adaptive immune system of jawed vertebrates1. The discovery of B cells was essentially 

simultaneous to the discovery of T cells. In the mid-1960s, pioneer work by Max Cooper and 

Robert Good implied that the adaptive immune system was composed of two different 

populations: one that was accountable for the production of antibodies and derived from the 

chicken bursa of Fabricius, and another deriving from the thymus that was required for delayed 

hypersensitivity and graft versus host reactions2,3. This functional characterization was also at 

the basis of the nomenclature used then on: T (thymus-derived) and B (bursa-derived) 

lymphocytes. In mammals, B lymphocytes are bone marrow derived, also suiting the 

classification.  

Earlier stages of B-cell development occur in primary lymphoid organs, such as the foetal 

liver and the bone marrow, and then differentiation proceeds in secondary lymphoid organs, 

such as the spleen and lymph nodes, where B cells achieve functional maturation (Figure 1). 

Haematopoietic stem cells (HSCs) generate lymphoid progenitors that give rise to the earliest 

cell committed to the B-cell lineage, the progenitor B cell or pro-B cell. Proliferation of pro-B 

cells in the bone marrow is accompanied by the sequential rearrangement of the 

immunoglobulin (Ig) heavy chain, originating pre-B cells. The rearranged Ig heavy chain forms, 

together with the surrogate light chains, 5 and VpreB, the pre-B cell receptor (BCR). 
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Figure 1. B-cell development. Outline of the events involved, depicting the bone marrow, antigen-independent phase, 
and the functional maturation in the periphery (adapted from Immunology, by Goldsby et al.

4
). 

 

The progeny of pre-B cells will then proceed with the rearrangement of the Ig light chain, 

developing into immature B cells expressing membrane IgM at their surface, in addition to a 

functional BCR5-7. At this stage, expression of an autoreactive BCR can direct the internalization 

of the self-antigen-BCR complexes and the activation of a pathway of intracellular signals that 

arrests differentiation and initiates a secondary rearrangement of the Ig light chain that will 

replace the original one. This process is called receptor editing and provides the first checkpoint 

on B-cell development for autoreactivity8,9. In addition to receptor editing, B cells with 

autoreactivities can be eliminated by clonal deletion, undergoing apoptosis if they recognize self-

antigens expressed in the bone marrow10,11. Even though IL-7 has been shown to be critically 

involved in murine B-cell development, promoting VDJ rearrangements and inducing 

proliferation and survival of B-cell precursors12, such role for IL-7 in human B-cell development 

remains elusive. Patients with severe combined immunodeficiency (SCID) due to mutations in 

the IL-7 receptor have normal levels of circulating B cells13, arguing against a major role for IL-7 

in this process.  

Following the bone marrow phase of development, immature B cells migrate into 

secondary lymphoid organs to integrate an antigen-dependent phase of maturation in the 

periphery7,14. Immature B cells, also termed transitional B cells, are fundamentally short-lived 

and migrate to the spleen through the bloodstream, where they develop into mature long-lived 

B cells. Upon exiting the bone marrow, transitional B cells acquire expression of markers such as 

IgD or CD21 (also known as complement receptor 2, CR2)14. CD21 is part of the 

CD19/CD81/CD21/CD225 complex, which is associated with signal transduction from the BCR, 

thus playing an important role in the bridging of innate and adaptive responses15. Transitional B 

cells have been mainly characterized in the murine system, where they can be subdivided into 
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T1 and T2 transitional populations. These two populations can be distinguished according to the 

expression of phenotypic markers, such as CD21 and IgD, with T1 cells being IgMbrightCD21-IgD- 

and T2 cells defined IgMbrightCD21brightIgDbright. However, some controversy remains regarding 

whether they are developmentally related or completely independent populations14. 

Transitional B cells have also been described in humans and have been proposed to include two 

populations expressing differential levels of CD21, which would correspond to the T1 and T2 

transitional B-cell populations in the mouse16,17. These two populations are thought to represent 

distinct developmental stages, based on the assessment of B-cell reconstitution following HSC 

transplantation (HSCT)17. A third, more mature, transitional B-cell subset has also been proposed 

in humans, possessing a more transient nature and rapidly differentiating into mature naïve B 

cells18. Importantly, in addition to BCR signalling, transitional T1 and T2 B-cell populations have 

differential requirements for B-cell Activating Factor of the TNF family (BAFF)-mediated survival 

signals, since BAFF-deficient mice present impaired B-cell maturation arrested at the transitional 

T1 stage19, while BAFF-transgenic mice have an accumulation of B cells at the transitional T2 

stage20. It is unclear whether this requirement is also observed for human transitional B cells16,21. 

The transitional B-cell stage is particularly relevant given that it includes a second checkpoint for 

autoreactivity, in the event of an autoreactive B cell escaping the first checkpoint in the bone 

marrow. BCR signalling at this stage induces apoptosis and is thus very important to remove 

autoreactivities22. B cells that recognize autoantigens can also be converted to a state where 

they can no longer respond to BCR engagement, in a process termed clonal anergy or functional 

unresponsiveness23,24. Importantly, human transitional B cells can respond to Toll-like receptor 

(TLR) 9 stimulation by differentiating into IgM-secreting plasma cells (PCs), arguing that 

transitional B cells can actually play an important role in building a rapid immune response 

against bacterial antigens25,26. 

Mature B cells recirculate between the follicles of the spleen and the lymph nodes, 

playing a crucial role in adaptive immune responses (Figure 2). In humans, five major 

populations are described in peripheral B-cell development: the abovementioned transitional B 

cells, naïve B cells that have not yet encountered antigen, germinal centre (GC) B cells that are 

found in peripheral lymphoid organs and are actively involved in ongoing immune responses, 

memory B cells, expressing the memory marker CD27, that are generated through GC reactions 

and survive for long periods of time, and PCs that produce antibodies, being the effector arm of 

the B-cell immune response7. 
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Figure 2. Peripheral B-cell differentiation. Simplified schematic outline, with the main B-cell subsets depicted. MZ: 
marginal zone; smB: switched-memory B cell. 

 

Naïve B cells constitute the major B-cell subset found in the peripheral blood of healthy 

adult individuals27. Full activation of naïve B cells requires BCR cross-linking by antigen 

recognition, together with signals coming from CD40 ligation and cytokine stimulation (to be 

discussed in the next sections) and stimulation by TLR agonists28 (Figure 3). Following activation, 

naïve B cells can either differentiate into short-lived IgM-producing PCs through extrafollicular 

reactions or they can enter B-cell follicles and participate in GC reactions, where they 

differentiate into long-lived memory B cells and PCs29. Memory B cells possess less stringent 

requisites for activation and rapidly produce specific IgG when they re-encounter the antigen, 

while persisting once the antigen is cleared. Surface expression of CD27 is currently accepted as 

the best marker for memory, antigen-experienced B cells27. PCs directly differentiate from 

plasmablasts that migrate from the secondary lymphoid organs to the bone marrow29. They are 

normally not found in the peripheral blood of healthy individuals.  

The main origin of IgM-expressing human memory B cells is the subject of great 

controversy. While some argue that they derive from GC reactions30, others actually propose 

them to be independent of the GC, since they are present in patients with impaired GC 

formation and class-switch recombination (CSR)31-34. In addition, it has also been suggested that 

this population includes B cells that are the circulating counterparts of splenic marginal zone 

(MZ) B cells, which are important in the responses against encapsulated bacteria, and that they 

would undergo somatic hypermutation (SHM) very early during ontogeny35,36. 
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Figure 3. The 3-signal model for naïve B-cell activation. Full activation of naïve B cells requires the integration of BCR 
stimulation (Signal 1), and help provided by T cells (Signal 2), both in the form of co-stimulation and cytokines. BCR 
stimulation drives the up-regulation of TLR expression

37
, which then provides Signal 3 for B-cell activation. 

 

In the mouse, follicular (also termed B2) B-cell differentiation is essentially similar to that 

described above for humans. In addition, two separate lineages of B cells have also been well 

characterized, with features that put them closer to the innate arm of the immune system: B1 B 

cells and the already mentioned MZ B cells38. While MZ B cells share developmental stages with 

B2 B cells39, B1 B cells develop from distinct B-cell progenitors in the foetal liver40. B1 B cells, 

originally identified as a population of CD5+ splenic B cells, are a self-renewing population and 

express germline-encoded antibodies that form the so-called natural antibody repertoire41. The 

terminology derives from the fact that these antibodies are generated in the absence of antigen 

exposure and hence the proximity to a more innate-like function41. B1 B cells are believed to 

play an important role in the suppression of inflammatory responses41,42. Even though human 

equivalents to mouse B1 B cells have been reported over time43-45, these cells are not resident in 

the peritoneal cavity46, unlike mouse B1 B cells. The recent report that the human equivalent to 

murine B1 B cells expresses CD27 and IgM, in addition to CD43, argues that at least some B cells 

that have been previously described as IgM-expressing memory B cells are in fact B1 B cells44. 

MZ B cells are, as the nomenclature indicates, located in the marginal zone of the spleen. They 

represent a distinct, non-circulating, lineage of murine splenic B cells, critical for the first line of 

defence against encapsulated bacteria47. Contrary to what is seen in the mouse, human MZ B 
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cells can recirculate and are thus found both in the spleen and the peripheral blood. In addition 

and as previously mentioned, they express the memory marker CD27 and have been described 

to undergo SHM in the absence of typical immune responses36,47,48. Nevertheless, it has been 

proposed that, similar to what happens in the murine system, MZ B cells are critical for the fast 

protective, T-independent response against encapsulated bacteria47. 

Peripheral B-cell survival and differentiation largely depend on two factors belonging to the 

TNF family, BAFF and A Proliferation Ligand (APRIL), and on their interaction with the receptors 

BAFF Receptor (BAFF-R), Transmembrane Activator and Calcium-modulating Cyclophilin Ligand 

Interactor (TACI), and B-cell Maturation Antigen (BCMA)49. BAFF signalling through BAFF-R is 

particularly relevant for the survival and maturation of peripheral B cells, while APRIL acting 

through BCMA appears to be critical for PC survival in the bone marrow50-53. BAFF-R stimulation 

by BAFF mainly activates the alternative Nuclear Factor-B (NF-B) pathway, mediated by the 

stabilization of the NF-B-inducing kinase (NIK) induced by TNF-receptor associated factor 

(TRAF) 3 degradation, thereby resulting in increased B-cell survival49,54-56. In addition, BAFF 

stimulation of BAFF-R also has an impact in the metabolic fitness of B cells by activating the 

mammalian target of rapamycin complex 1 (mTORC1), in a pathway that sequentially involves 

Phosphoinositide 3-kinase (PI3K) and Akt57,58. The activation of Akt in also critically involved in 

the up-regulation of the anti-apoptotic molecule myeloid cell leukemia sequence 1 (Mcl-1)54,58 

(Figure 4). The integration of the signals delivered through BAFF-R stimulation to these signalling 

pathways thus mediates the effects of BAFF on B-cell survival and metabolic fitness. 

 

 

Figure 4. Simplified schematic representation of BAFF-R-mediated signalling events. 
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b. B CELLS AND THE INNATE IMMUNE SYSTEM 

Whenever a pathogen enters the organism, an immune response needs to take place in 

order to clear it and prevent further damage. Given that failing to control the initial phase of an 

infection can have serious and even life-threatening outcomes, there is the need for immune 

defences that are ready-to-go. The innate immune system has the task of initiating a local 

inflammatory response at the place of pathogen entry, thereby limiting the extent of infection 

until an adaptive immune response is developed. In addition, the innate immune system also has 

a crucial role in the priming of the initial adaptive immune response. B cells have an important 

role in linking cell-intrinsic innate and adaptive immune responses, given the fact that they 

express both an antigen-specific BCR and TLRs59. TLRs are receptors that recognize microbial 

antigens and activate the innate immune system. The integration of signals coming from these 

two pathways thus determines the fine-tuning of the overall B-cell response. 

As previously mentioned, two subsets of B cells have characteristics that places them closer 

to the innate immune system: B1 B cells and MZ B cells. These B-cell subsets are crucially 

involved in T-independent immune responses, where they generate rapid although low-affinity 

antibody production60. Moreover, the BCRs expressed by B1 and MZ B cells are of limited 

diversity and preferentially recognize microbial antigens and self-peptides, and TLR signalling is 

important for their responses. In fact, B1 and MZ B cells show higher responsiveness to TLR 

signals than follicular B cells61,62. TLR stimulation induces the up-regulation of Blimp-1 specifically 

in B1 and MZ B cells, thus driving their differentiation into PCs61. In addition, B1 and MZ B cells 

are highly responsive to BAFF63,64, which is mainly produced by cells of the innate immune 

system, such as dendritic cells, monocytes, macrophages, neutrophils and FDCs, and can also be 

stimulated in response to TLR ligands49. Also, naïve and memory B cells respond differently to 

TLR stimulation, with memory B cells expressing constitutively higher levels of several TLRs37,65. 

This renders memory B cells able to differentiate into PCs through TLR stimulation bypassing the 

need for T-cell help37,66. 

Such innate-like immune responses of B cells are particularly important in the context of 

mucosal tissues. Especially in the intestine, B cells mediate immunity against commensal 

bacteria through the production of IgA by mucosal follicular and extrafollicular reactions67,68. At 

these sites, immune responses are highly dependent on TLR stimulation, as well as on factors 

such as BAFF, APRIL, TGF-, and IL-1069-71. 

TLR stimulation of innate cell types can also have an effect in the modulation of B-cell 

responses. Plasmacytoid dendritic cells (pDCs) were shown to have a better ability to support B-

cell differentiation when compared to myeloid dendritic cells (mDCs)72,73. Interestingly, TLR-
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stimulated mDCs and macrophages may play a suppressive role in controlling the activation of 

autoreactive B cells, through the secretion of IL-6 and soluble CD40L74,75. This suppressive effect 

was specific for autoreactive B cells, since the activation of naïve B cells was not affected in this 

system75. In line with this observation, patients with defects in TLR signalling (i.e., deficiencies in 

Myeloid Differentiation Factor 88 (MyD88), Interleukin-1 Receptor-associated Kinase 4 (IRAK4), 

and UNC93B) have an appearance of autoreactive mature naïve B cells in the peripheral blood76. 

Understanding how B cells translate the different signals around them, coordinating the 

innate and the adaptive immune systems, is of paramount importance, both for the 

development of adequate vaccination protocols and treatments for autoimmune diseases77.  

 

c. THE RELEVANCE OF T-B CELL INTERACTIONS FOR IMMUNE RESPONSES 

The interaction between B cells and T cells is fundamental to generate adaptive immune 

responses. The establishment of long-term humoral immunity, namely in vaccination strategies, 

relies on B cells receiving appropriate help from CD4 T cells in the context of GC reactions, with 

the generation of memory B cells and antibody-producing plasma cells78. It should also be 

appreciated that B cells themselves play a crucial role in the development and maintenance of 

the immune response, in addition to their effector function of antibody production, by acting as 

antigen-presenting cells (APCs), producing cytokines, recruiting and co-stimulating CD4 T cells7.  

 

i. ORGANIZATION OF GERMINAL CENTRES 

GCs are specific structures within B-cell follicles where antigen-driven SHM and CSR 

occur79. The GC reaction starts with the recruitment and expansion of antigen-experienced B 

cells to the B-cell follicles of secondary lymphoid organs, which have as main function bringing 

together APCs and lymphocytes in order to mount immune responses. Whether B cells 

differentiate into plasmablasts in extrafollicular reactions or seed the GC seems to be related to 

BCR primary affinity for the antigen. BCRs with high affinity most likely drive B cells into the 

extrafollicular reaction, whereas moderate or lower affinity will push B cells into the GC80,81. As 

the GC reaction develops, a defined anatomical structure comprising light and dark zones 

becomes apparent (Figure 5). The light zone is mainly occupied by follicular dendritic cell (FDC) 

processes, while lymphocytes are compacted in the dark zone. The chemokine receptors CXCR4 

and CXCR5 are crucial for the positioning of lymphocytes to the dark zone and the light zone. 

CXCL12, the ligand for CXCR4, is more abundant in the dark zone, while CXCL13, the ligand for 

CXCR5, is more abundant in the light zone79,82. GC B cells in the dark zone are called centroblasts 

and express high levels of CXCR4, while GC B cells present in the light zone are termed 
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centrocytes and express high levels of CXCR5. Different events of the GC reaction take place at 

different zones of the GC; SHM occurs in proliferating centroblasts in the GC dark zone, while it 

is in the light zone that interactions between T cells, centrocytes and FDCs happen79,82,83. During 

the GC reaction, B cells clonally expand to ultimately generate a high affinity BCR to the given 

antigen, with the locus of the Ig heavy chain undergoing CSR and its variable regions going 

through SHM. Both of these processes are mainly mediated by an enzyme termed activation-

induced cytidine deaminase (AID)84. 

 

 

Figure 5. Germinal Centre. Schematic representation of the structure of a germinal centre, with dark and light zones 
depicted. Somatic hypermutation occurs in the dark zone, while class-switch recombination is limited to the light 
zone, where B cells interact with follicular helper T cells (TFH) and follicular dendritic cells (FDC) (adapted from Klein 
and Dalla-Favera

84
). 

 

T-cell help is known to be essential to the induction and subsequent organization of GCs. 

This help is attributed to a particular subset of T cells, follicular helper T cells (TFH)85,86, which are 

identified by the expression of the chemokine receptor CXCR5, necessary for their specific 

homing to B-cell follicles and within GCs87-89. In addition to CXCR5 expression, TFH cells are 

characterized by the expression of the co-stimulatory molecules CD40L and ICOS85,86, crucial for 

their function of B-cell help provision (see next section), and the inhibitory receptor 

Programmed Death-1 molecule (PD-1)90. A major function of TFH cells is the production of 

interleukin (IL)-2191, a cytokine involved in B-cell differentiation, survival and function (discussed 



12 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

below). After a long standing debate regarding the functional relationship between other helper 

T-cell populations and TFH cells, they have been described as a separate lineage of helper T 

cells91-93, with its generation being governed by the transcription factor B-cell Lymphoma 6 (Bcl-

6)94-96. In B cells, Bcl-6 expression is restricted to the GC and it suppresses the differentiation into 

plasma cells, by inhibiting the expression of the transcription factor B Lymphocyte-induced 

Maturation Protein-1 (Blimp-1)97,98. In addition, Blimp-1 has also been shown to inhibit TFH cell 

differentiation and function96. Thus, Bcl-6 is crucial for GC development and function, both at the 

B-cell and the T-cell levels95. The lack of adequate T-cell help during the priming of B cells results 

in apoptosis, rather than their differentiation into GC B cells or plasma cells78,99,100. 

Despite the fact that much is known about the attributes of adaptive immune responses, 

the factors that govern the differentiation of memory B cells and their long-term maintenance 

remain largely unknown101.  

 

ii. CO-STIMULATORY MOLECULES 

The functional interaction between T cells and B cells within GCs rely on the expression 

of co-stimulatory molecules, such as CD40-CD40L and the Inducible Co-Stimulator (ICOS) 

molecule102.  

CD40 is a member of the tumour necrosis factor (TNF) receptor family and a co-

stimulatory molecule expressed on B cells that binds CD40L on the surface of activated T cells. 

This interaction activates B cells and, in combination with soluble cytokines, induces production 

of different classes of antibodies103,104. For instance, CD40 stimulation together with IL-4 induces 

preferential isotype switch to IgE105. Humoral responses are impaired in both mice106,107 and 

humans108-113 with defective CD40L function, underpinning the important role of CD40-CD40L 

interactions in GC generation, isotype switching and SHM. Also, blocking CD40-CD40L 

interactions impairs the formation of the GC structure and the proliferation of B cells114-116. 

Importantly, CD40 signals are essential to prevent centrocyte apoptosis99,100. 

ICOS, a member of the CD28 family of T-cell co-stimulatory molecules117, plays a critical 

role in the regulation of humoral immunity. ICOS expression is up-regulated on T cells following 

activation and is expressed at high levels on TFH cells85,86,117. ICOS specifically binds to ICOS ligand 

(ICOSL), constitutively expressed on B cells118. ICOS co-stimulation induces IL-4 and, more 

specifically, IL-10 production by T cells, both of which have an important role in antibody 

production117 (discussed in the next section). Of note, ICOS co-stimulation also induces up-

regulation of CD40L expression117, further enhancing the B-cell helper capacity of the T cell. Both 

ICOS-deficient mice119-122 and human individuals31,123 exhibit profoundly defective isotype class-
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switch, as well as impaired GC formation. Homozygous deletion of the ICOS gene in humans 

leads to a phenotype of Common Variable Immunodeficiency (CVID), with low numbers of B 

cells, low serum antibody concentrations and lack of memory B cells31. It is noteworthy to 

mention that patients with defective ICOS or CD40L show a decreased frequency of circulating 

CXCR5+ CD4 T cells124, which are suggested to be the counterparts of TFH cells found in secondary 

lymphoid organs124,125. Together with the finding of reduced TFH cells in the spleens and lymph 

nodes of ICOS- and ICOSL-deficient mice124,126, this suggests that ICOS is important for the 

development of TFH cells. In line with these observations, ICOS has recently been shown to 

supply a vital signal for the early induction of Bcl6 on T cells, which then induces expression of 

CXCR5, committing cells to the TFH lineage127. 

PD-1 expression by TFH cells also plays a critical role in the GC reaction. GC B cells up-

regulate the expression of the PD-1 ligands Programmed Death-1 molecule Ligand 1 (PD-L1) and 

Programmed Death-1 molecule Ligand 2 (PD-L2). The study of mice deficient for either of the 

molecules involved in this pathway showed that PD-1 expression on T cells and PD-L2 expression 

on B cells is in fact regulating TFH cell and PC numbers128. PD-1 deficiency also resulted in lower 

production of IL-4 and IL-21. It has thus been proposed that PD-1 directs the development of 

long-lived PCs by regulating the survival and selection of B cells in the GC, through its role in the 

function of TFH cells128. 

In addition to the aforementioned molecules, other factors that affect the interaction 

between T and B cells also have an impact in GC development and function101. One of such cases 

is the signaling lymphocytic activation molecule-associated protein (SAP), expressed on T cells, 

whose absence results in defective interaction between TFH and B cells, with a consequent 

inability of TFH cells to sustain GC reactions129.  

 

iii. SOLUBLE FACTORS 

T-cell derived cytokines present during the events of B-cell activation are crucial in the 

modulation of the B-cell response, namely by regulating the CSR process and determining the 

class of antibody that the B cell will produce.  

IL-21 is probably the best example of cytokines involved in the functional interaction 

between T cells and B cells130-132. IL-21 was first described as having a critical role in the 

regulation of antibody production by B cells131,133,134. In addition, the GC requirement for IL-21 

was also found to reflect an intrinsic requisite for TFH maintenance, acting in an autocrine 

fashion132. Nevertheless, IL-21 is in fact a central player in the B helper function provided by TFH 

cells. IL-21 produced by TFH cells acts directly in a B-cell intrinsic fashion to induce Bcl-6 
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expression and thus has a crucial role in the development of GC responses135,136. In the absence 

of IL-21 signalling, GCs are reduced and the production of high-affinity plasma cells is 

impaired135,136. IL-21 production is induced by ICOS stimulation, through the regulation of the 

transcription factor c-Maf137. Paradoxically, IL-21 was also found to promote B-cell apoptosis138. 

This effect is however dependent on the activation signals provided to B cells and may thus 

represent an important role of IL-21 in regulating B-cell homeostasis138,139. 

IL-4, the master cytokine involved in Th2 responses, was originally identified as a B-cell 

stimulating factor140,141. IL-4 was shown to be critical for isotype switch to IgE and IgG1105,142, and 

also to cooperate with IL-21 in regulating isotype switch to different IgG subclasses and IgA131,143. 

Importantly, TFH cells have been shown to produce IL-4 upon immunization with given antigens, 

in particular with helminths144,145. 

IL-2 was initially described as promoting B-cell growth146,147. In addition, it has later been 

demonstrated to participate in the induction of antibody production148-152. However, recent data 

has challenged this view, with IL-2 administration being described to impair influenza-specific GC 

formation, long-term IgG responses and limiting the differentiation of TFH cells153. However, 

other recent reports have identified T-cell derived IL-2 to be critically involved in human PC 

differentiation154,155. If these conflicting data represent an essential functional difference 

between the murine and the human systems is something that needs to be clarified. 

IL-6 is another T-cell derived cytokine with a role in the regulation of B-cell responses156,  

inducing plasma cell differentiation and antibody production152,157,158. Importantly, IL-6 was also 

shown to promote IL-21 production159,160 and to drive the differentiation of T cells with the 

ability to provide B-cell help160. 

IL-10 has a well recognized role in PC differentiation, especially in humans78,148,157,161,162. 

Along with Tumour Growth Factor (TGF)-, it mediates isotype switch to IgA163, particularly 

important at the mucosal sites. IL-10 seems to be especially relevant in stopping B-cell 

proliferation in the GC and inducing differentiation into PCs164. IL-10 production is enhanced by 

ICOS stimulation117,165,166, which is particularly relevant in the context of TFH cells. Accordingly, 

human TFH cells were found to produce IL-10 in an ICOS-dependent manner167,168, which adds up 

to their function in providing B-cell help. Recent studies also suggest that IL-10 production by B 

cells, the so-called regulatory B-cell population, can be important to modulate T-cell 

responses169,170. 
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PART II 

PRIMARY B-CELL IMMUNODEFICIENCIES 

 

a. HISTORICAL PERSPECTIVE, CLINICAL MANIFESTATIONS, AETIOLOGY AND TREATMENT OF PRIMARY B-CELL 

IMMUNODEFICIENCIES 

Primary B-cell immunodeficiencies include several disorders that have as a common feature 

a defect in antibody. Currently, several classes of primary antibody deficiencies are considered - 

defective early B-cell development in the bone marrow; impairments in CSR, mainly comprising 

Hyper IgM (HIGM) syndromes; isotype or light chain deficiency, including selective IgA 

deficiency; specific antibody deficiency; and CVID. Given the fact that this work will be mainly 

focused on patients affected by defects in early B-cell development and CVID patients, the other 

classes will only be briefly mentioned. 

 

CSR defects, also referred to as HIGM syndromes, are observed in patients with 

recurrent infections that have normal or elevated serum levels of IgM, in the presence of 

reduced IgG, IgA, and IgE. In addition to the CSR defect, SHM can also be affected171. This group 

of genetic defects can be B-cell restricted or it can affect other cell types, such as T cells, 

macrophages or DCs. More than half of the patients with CSR defects present X-linked mutations 

in the gene encoding CD40L108-110,112,113, expressed by activated T cells. In this case, patients 

usually suffer from opportunistic infections and neutropenia, presenting a clinical picture that is 

more severe than the one seen in patients with pure humoral defects171. CD40 deficiency has 

also been identified, although in very rare cases, with a clinical phenotype identical to the CD40L 

deficiency172. In terms of CSR defects that are B-cell restricted, autosomal recessive mutations in 

AID account for the majority of the cases173,174. These patients have a later onset of disease, 

while frequently presenting adenopathies and a high incidence of autoimmunity175. Autosomal 

dominant mutations have also been described in a small number of patients176. In addition, 

autosomal recessive mutations in uracil-DNA glycosylase (UNG), an enzyme responsible for the 

deglycosylation and removal of uracil residues resulting from the action of AID, have also been 

described in very few cases of HIGM patients177. The clinical phenotype is similar to the one 

observed in AID-deficient patients. 

 

X-linked Agammaglobulinemia (XLA) was one of the first immunodeficiencies to be 

described and is often regarded as a prime example.  Back in 1952, Ogden C. Bruton reported a 

case of an 8-year-old male presenting recurrent pneumococcal sepsis with complete absence of 



16 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

the serum gamma globulin fraction, with otherwise normal serum proteins178. These laboratory 

findings led to the use of tailored therapy, through the subcutaneous administration of human 

immune serum globulin, while completely explaining the clinical symptoms. In 1953, Charles A. 

Janeway and colleagues documented the same phenomena (agammaglobulinemia and recurrent 

infections) in an adult individual, in what was the first report of the nowadays termed CVID179. 

While having a similar outline, it was since early recognized that differences existed between the 

two observations. Agammaglobulinemia mainly affected males when presenting during 

childhood, often with an X-linked mode of inheritance, whereas in adults such pattern was not 

evident, with both females and males being equally affected179-184. Later on, it was established 

that patients with XLA presented virtually no circulating B lymphocytes, at the same time as 

adult CVID patients typically had close to normal numbers of B cells185-188. It was not until more 

than 40 years after the original description that the molecular defect underlying XLA was 

unveiled and shown to affect a cytoplasmic tyrosine kinase expressed at all stages of the B-cell 

lineage and in myeloid cells, later termed Bruton’s Tyrosine Kinase, or Btk189,190. Mutations in the 

Btk gene arrest early B-cell development in the bone marrow at the pre-B cell stage191-194, 

frequently, but not always195,196, leading to a complete absence of circulating mature B cells. This 

block in B-cell development results from defective signal transduction by Btk through the pre-

BCR and BCR197,198. 

Regarding clinical manifestations, the most common feature of XLA patients is recurrent 

infections of the respiratory tract that usually start between 3 and 18 months of age199-201. 

Although some problems can arise from viral infections at early ages, they are well dealt with by 

XLA patients once T-cell immunity is developed. The most frequent infectious agents are the 

encapsulated bacteria Streptococcus pneumoniae and Haemophilus influenza, in terms of 

respiratory tract infections, and the protozoan parasite Giardia, in what concerns 

gastrointestinal infections199.  

In addition to the X-linked form of agammaglobulinemia, autosomal recessive forms 

have also been identified, accounting for approximately 15% of the cases of patients suffering 

from early defects in B-cell development202 (Table 1). As happens with patients with XLA, all of 

these patients are characterized by presenting an onset of recurrent infections in the first 5 

years of life, severe hypogammaglobulinemia, remarkably reduced or absent circulating B cells, 

and a block in B-cell development in the bone marrow. 
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Table 1. Genetic defects underlying Congenital Agammaglobulinemia. 

GENETIC DEFECT ASSOCIATED FEATURES REFERENCES 

Btk deficiency 

Severe bacterial infections; 

Absence of circulating B cells; 

Normal numbers of pro-B cells in the bone 

marrow 

173, 176, 177 

 heavy chain deficiency 198 

5 deficiency 200 

Ig deficiency 201 

Ig deficiency 202, 203 

BLNK deficiency 204 

PI3K deficiency 

Severe bacterial infections; 

Absence of circulating B cells; 

Markedly reduced numbers of pro-B cells in 

the bone marrow 

205 

 

Autosomal recessive forms of agammaglobulinemia include mutations in the genes 

encoding for components of the pre-BCR or the BCR, or in the adaptor protein B cell Linker 

Protein (BLNK), which also plays a role in signal transduction from the BCR. Mutations in the  

heavy chain, which defines the IgM isotype and is part of the BCR, were identified to underlie a 

clinical picture similar to XLA203. However, the clinical manifestations found in these patients 

tend to be biased towards a more severe phenotype, with an earlier onset of disease and more 

clinical complications throughout life204. A smaller number of patients have been identified with 

mutations in the genes encoding 5205, Ig206, and Ig207,208, all of which are part of the pre-BCR 

complex. In addition, mutations in BLNK have also been described to give rise to a phenotype 

similar to XLA209. The vast part of the patients presents null mutations that abrogate protein 

function. In clinical terms, these patients are identical to XLA patients, even though they 

normally present an earlier onset of disease. Very recently, it has been described a case of a 

young female with agammaglobulinemia in the absence of circulating B cells that presented a 

mutation in PI3K, resulting in the absence of the p85 subunit210. Interestingly, the absence of 

p85 in the patient results in an early and striking defect in B-cell development in the bone 

marrow, but with a clinical picture restricted to colitis. The block in B-cell development was 

observed at the earliest stage of commitment to the B-cell lineage, earlier to what is seen for 

XLA or patients with other forms of autosomal recessive agammaglobulinemia210. 
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CVID is the most frequent primary immunodeficiency with clinical relevance, with  an 

estimated prevalence of 1:25,000 – 1:50,000 in the European population211. The age of disease 

onset has a bimodal distribution, with some patients being diagnosed during childhood while the 

majority presents in early to mid adulthood. CVID is clinically defined by reduced serum levels of 

IgG and at least another Ig isotype, impaired antibody response to vaccines, and exclusion of 

defined causes of hypogammaglobulinemia212. Nevertheless, CVID patients present highly 

heterogeneous clinical and immunological profiles. In addition to the high frequency of 

respiratory and gastrointestinal tract infections, a myriad of non-infectious complications have 

been reported in more than two-thirds of CVID patients, ranging from chronic lung disease and 

gastrointestinal inflammatory disease, to autoimmune manifestations, granulomatous disease 

and neoplasias211,213,214. Autoimmunity is being increasingly recognized as a serious medical issue 

in CVID patients, affecting more than 20% of the patients215,216. A recent study has reported the 

immunological parameters, clinical complications and mortality statistics from 473 CVID patients 

followed for over 4 decades214. In this report, it was found that CVID patients had a significantly 

shorter survival rate than age- and gender-matched control populations. In addition, this 

reduced survival was significantly associated with age at diagnosis, lower circulating B cells, and 

lower baseline serum levels of IgG and higher levels of IgM. Patients affected by non-infectious 

complications had a significantly higher mortality risk, which was associated with lymphoma, 

liver or lung disease, and gastrointestinal manifestations, but not with other complications214. 

Moreover, an Italian study has concluded that malignancies are the major cause of death in 

adult-onset CVID217. Another study has analysed and divided 334 CVID patients into distinct 

clinical phenotypes, but failed to identify useful predictors213. 

Even though the vast majority of CVID cases are sporadic, familial patterns of inheritance 

are observed in 10 – 20% of the patients, with a family history of autoimmunity or disorders of 

antibody production218,219. In some families, CVID co-exists with IgA deficiency (IgAD). This 

primary immunodeficiency can be selective for IgA or be associated with deficiency in subclasses 

of IgG, and is the most common primary immunodeficiency. However, the majority of IgAD 

patients are asymptomatic and thus the condition is clinically not very relevant220,221. Some IgAD 

patients progress to CVID, suggesting a degree of common genetic aetiology. In this sense, early 

studies identified certain Human Leukocyte Antigen (HLA) haplotypes to be more common in 

both conditions219,222-226. 

According to the latest update on the classification of Primary Immunodeficiency 

Diseases (PIDs)13, CVID, now standing for Common Variable Immunodeficiency Disorders, groups 

all patients with a severe reduction of at least two Ig isotypes with normal or low B-cell numbers 
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of unknown aetiology. In this recent classification, the molecular defects that give rise to a CVID-

like phenotype are now in separate subgroups, namely mutations in ICOS, CD19, CD81, CD20, 

TACI, and BAFF-R13. 

ICOS deficiency was the first genetic defect to be identified in four patients with adult-

onset CVID, in 200331. Patients failed to express ICOS at the surface of activated T cells, due to a 

partial homozygous deletion in the ICOS gene. Five additional patients have been later described 

to present the same homozygous deletion, indicating that all nine patients probably share a 

common founder227. It is interesting to note that this first description of an autosomal recessive 

disorder underlying CVID was related to a T-cell intrinsic defect that affects the cross-talk 

between T and B cells in GCs. In the original report of the first four patients, ICOS-deficient 

patients were described as lacking major non-infectious complications, such as splenomegaly or 

autoimmunity31. However, the subsequent identification of five additional patients, who 

included patients with early-onset disease, showed that ICOS deficiency can present with the full 

clinical spectrum of CVID123. 

Mutations in CD19 were described in 2006, resulting in a phenotype of 

hypogammaglobulinemia compatible with CVID228. There are currently six cases identified, all of 

which present normal numbers of circulating B cells with minimal or no expression of CD19 at 

their surface199,202,228,229. These include both early- and adult-onset CVID-like phenotypes. Given 

that CD19 is part of a complex that is associated with signal transduction from the BCR230,231, 

mutations in CD19 likely hinder antigenic stimulation and hence result in defective humoral 

responses. Accordingly, B cells from CD19-deficient patients showed defective calcium fluxes 

following BCR stimulation. Vaccination responses were also impaired228. Patients with CD19 

deficiency did not present signs of non-infectious complications, including autoimmunity, 

lymphoid proliferation or neoplasias228. 

CD81 deficiency was reported in 2010 in one patient with severe nephropathy and 

hypogammaglobulinemia232. B cells from the patient did not express CD19, but had normal CD19 

alleles. Instead, a homozygous mutation in CD81 was found, leading to a complete absence of 

CD81 expression. Transduction experiments showed that CD81 expression was crucial for CD19 

membrane expression. So, CD81 deficiency leads to a functional phenotype that is similar to 

CD19 deficiency, with impaired responses through BCR stimulation232. 

Also in 2010, CD20 deficiency was described in a young patient with persistent 

hypogammaglobulinemia233. The patient presented normal peripheral B-cell numbers, but a 

severe decrease in the frequency of memory B cells. SHM was defective and even though the 

patient mounted adequate antibody responses after vaccination with recall antigens, responses 
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to pneumococcal polysaccharides (T-independent) were strongly impaired233, suggesting that 

CD20 may play an important role in the development of T-independent responses. 

TACI mutations were originally reported by two independent studies of two different 

cohorts of CVID and IgAD patients234,235. The pattern of inheritance of these mutations seems to 

be rather complex, since simple heterozygous, compound heterozygous and homozygous 

mutations have all been found, involving both autosomal dominant and recessive mechanisms. 

The most common TACI mutations in CVID are the amino-acid substitutions C104R and A181E236-

238. These, together with the amino-acid substitution S144X, have been identified both in 

heterozygosity and homozygosity. The C104R and S144X mutations, when in a homozygous 

state, abrogate APRIL binding, with loss of TACI function, whereas in heterozygosity APRIL 

binding is retained235. The functional relevance of heterozygous mutations is thus elusive. 

However, work has shown that the assembly of wild-type and mutant receptors together, as it 

would be the case when the mutation is present in a heterozygous state, although not having a 

impact on ligand-binding interferes with the downstream signalling from the receptor239. The 

screening of more than 500 CVID patients from different cohorts has shown that TACI variants 

are found in around 8-10% of CVID patients236. However, the mutations are also found in healthy 

individuals, although at a lower frequency, questioning the relevance of these mutations in CVID 

pathogenesis. Nevertheless, presence of a heterozygous mutation was significantly associated 

with antibody deficiency, particularly relevant in the case of the C104R mutation, indicating that 

this mutation increases the risk for CVID and affects the clinical presentation236. It is worth 

noting though that the C104R homozygous mutation has not been found in healthy controls and 

thus seems to be disease-causing. Accordingly, the murine equivalent to the C104R TACI 

mutation, C76R, significantly disrupts B-cell homeostasis, Ig production, and antigen-stimulated 

humoral responses240. In clinical terms, CVID patients with TACI mutations present a higher 

prevalence of autoimmune manifestations and splenomegaly236, in line with the phenotype of 

TACI-deficient mice241,242. 

Two siblings who present a late-onset CVID-like syndrome have been described to lack 

BAFF-R protein expression with consequent severe B-cell lymphopenia243. The clinical 

manifestations in these patients were however mild in comparison to other antibody-deficient 

settings, with no autoimmune nor lymphoproliferative manifestations reported243. Even though 

both patients presented the same homozygous BAFF-R deletion, their clinical presentation 

differed significantly, demonstrating the variable penetrance of this deficiency243. Nevertheless, 

both patients showed a poor response to T-independent antigens, in correlation with reduced 

numbers of MZ B cells, while maintaining adequate responses against T-dependent antigens243. 
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In addition, polymorphic variants of BAFF-R have been described, affecting both CVID patients 

and healthy individuals244. Such variants do not impact upon BAFF-R expression, neither at the 

mRNA level nor at the protein level244, thus questioning the relevance of such alterations.  

Finally, CD21 deficiency was very recently added to the list of monogenic defects 

resulting in a CVID-like phenotype. One adult patient, who presented with a history of recurrent 

infections, normal B-cell numbers but reduced switched-memory B cells, and 

hypogammaglobulinemia, was found to have undetectable expression of CD21 on B cells. 

Sequence analysis revealed a compound heterozygous deleterious mutation in the CD21 gene245. 

Contrary to was is seen in CD19 and CD81 deficiencies, CD21 deficiency did not impair on the 

expression of other components of the signalling complex, which can explain the fact that CD21-

deficient B cells present normal responses to BCR stimulation. Nevertheless, B cells from the 

patient did not bind or respond adequately to C3d-containing immune complexes. The clinical 

phenotype of the patient was not severe, since he was able to mount specific antibody 

responses upon vaccination, although to a lesser degree in the case of polysaccharide 

antigens245. 

Also quite recently, a genome-wide association and gene copy number variation study 

was performed in 363 CVID patients246. This study confirmed the Major Histocompatibility 

Complex (MHC) locus as being associated with CVID, in line with previous observations that were 

done with different technologies219,222-226. The study also uncovered a region that was associated 

with CVID outside of the MHC locus, encompassing several members of the A Disintegrin and 

Metalloproteinase (ADAM) family246, which are zinc metalloproteases involved in several 

biological processes. Importantly, this study confirmed the view of CVID as being a highly 

heterogeneous disease, even at the genetic level.  

 

The aforementioned genetic defects found to underlie CVID, which together represent 

no more than around 10% of the cases, elegantly illustrate the complexity of CVID 

physiopathology. Deficiencies in receptors that are involved in signal transduction through the 

BCR, molecules expressed by T cells that play an important role in B-cell help, and receptors that 

have a major impact on B-cell survival and function, have all been shown to give rise to a CVID 

phenotype, with defective production of antibodies. However, CVID is not merely a deficiency of 

antibody production. Patients are affected by a myriad of clinical complications that are not 

solely explained by a loss of B-cell function in terms of antibody production.  

 

 



22 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

Table 2. Known genetic defects underlying Common Variable Immunodeficiency. 

GENETIC DEFECT ASSOCIATED FEATURES REFERENCES 

CD19 deficiency 

Mild clinical phenotype; 

Normal numbers of circulating B cells 

223, 224 

CD20 deficiency 228 

CD21 deficiency 240 

CD81 deficiency Nephropathy; 

Similar to CD19 deficiency 
227 

ICOS deficiency Variable clinical phenotype; 

Activated T cells fail to express ICOS 
32, 118, 222 

BAFF-R deficiency Late-onset, mild clinical phenotype; 

Severe B-cell lymphopenia 
238 

TACI deficiency 
Complex pattern of inheritance; 

High prevalence of autoimmunity and 

splenomegaly 

229, 230, 231 

 

 

The therapeutic management of CVID patients is mainly focused in reducing the 

morbidity and the mortality that are associated with recurrent infections. IgG replacement 

therapy is the standard treatment for antibody deficiencies ever since the very first case 

reported178, providing patients with the antibodies that they are unable to produce in adequate 

amounts. Even though IgG replacement therapy is highly efficacious in reducing the frequency of 

infections, some patients remain susceptible to recurrent infections and the occurrence of non-

infectious complications is not resolved by the replacement therapy213,247-250. A recent study has 

analyzed the infection outcomes in patients with CVID and XLA in relation to the replacement 

therapy for an extended period of time, showing that XLA patients required significantly higher 

doses to prevent infections251. The same study reported that patients with bronchiectasis 

received higher doses of replacement IgG and that the presence of clinical complications, such as 

enteropathy, cytopenias or lymphoproliferation, resulted in significantly higher levels of IgG 

being administered to CVID patients in order to remain infection-free. They have also shown that 

the infection scores were significantly higher in CVID patients with lymphoproliferation or organ-

specific autoimmunity251. The adequate doses of replacement IgG vary widely from patient to 

patient, a consequence of variable baseline IgG levels and rates of IgG catabolism. It is thus 

necessary to bear in mind that the dose and interval of IgG administration needs to be 

individually tailored to each patient251,252. Interestingly, it has been recently proposed that IgG 
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replacement therapy can induce B-cell proliferation and Ig production in some CVID patients253, 

suggesting that replacement therapy is not a mere passive administration of antibodies but 

rather has an active role in modulating B-cell function. Nevertheless, longitudinal data on the 

impact that IgG replacement therapy has on the immune function of CVID patients is still scarce. 

Even though IgG replacement therapy is highly efficient in decreasing the frequency of 

infectious episodes in antibody-deficient patients, antibiotics are still widely used to eliminate 

on-going infections248,252,254 and also in a prophylactic manner211,252. In addition, IgG replacement 

therapy is not sufficient to treat non-infectious complications that affect CVID patients, namely 

autoimmune and granulomatous disease, for which the use of corticosteroids is often required. 

The treatment of these manifestations remains a challenge, given the potential risk of 

aggravating the underlying immunodeficiency211,252. In this sense, the effectiveness of biological 

therapies with monoclonal antibodies has been documented in several case reports. Infliximab, 

a monoclonal antibody against Tumour Necrosis Factor (TNF)-, has been used in the treatment 

of Inflammatory Bowel Disease (IBD) associated with CVID255,256 and also for caseating 

granulomas, with marked success257. Etanercept, another anti-TNF- monoclonal antibody, has 

also been successfully used in the treatment of refractory cutaneous granulomas258,259. 

Rituximab, a monoclonal antibody directed against CD20 that depletes circulating B cells, has 

been shown to be useful in the treatment of medically refractory autoimmune 

thrombocytopenia purpura260,261 (ITP) and autoimmune haemolytic anemia262,263 (AHA). A recent 

multicentre study has analyzed rituximab treatment for CVID-associated autoimmune 

cytopenias, showing that this can be an extremely effective and relatively safe therapeutic 

strategy262.  

The early observation that IL-2 production by T cells from a subgroup of CVID patients 

was defective and could be corrected by the exogenous provision of IL-2264,265 led to the in vivo 

administration of recombinant IL-2 to CVID patients, which resulted in enhanced T-cell 

proliferative responses to mitogens and antigens, and increased responsiveness of B cells to 

differentiation signals266-270. However, the limited evidence for a beneficial effect of IL-2 on in 

vivo antibody production by B cells from CVID patients made it difficult to ascertain which 

patients would profit from this therapy. It is likely that CVID patients that present with defective 

T-cell function would benefit from IL-2 treatment, but this line of investigation has not been 

pursued252,266. 
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b. B-CELL DISTURBANCES IN COMMON VARIABLE IMMUNODEFICIENCY 

CVID association with intrinsic defects in the B-cell lineage has been recognized early on185 

and extensively documented, including impaired Ig secretion upon several combinations of in 

vitro culture conditions271-274, decreased class-switched B cells and plasma cells in the gut of CVID 

patients275, increased spontaneous B-cell apoptosis276, reduced expression of the co-stimulatory 

molecules CD70, CD86 and CD137277,278, low frequencies of circulating memory CD27+ B 

cells279,280, reduced SHM281, and impaired calcium mobilization following BCR stimulation282,283. 

There has been a long history of attempts to classify CVID patients, a need derived from the 

acknowledgement of the high heterogeneity of the disease. Back in 1982, two classification 

schemes were proposed, one regarding the in vitro induction of IgM responses to sheep 

erythrocytes274, and the other where the distinction was made according to stages of B-cell 

development affected, as assessed by the ability to respond in vitro to Staphylococcus aureus 

Cowan I (SAC) or anti-IgM stimulation273. Later on, another attempt to classify CVID patients was 

made also using a functional assay based on the ability of B cells from CVID patients to produce 

IgM, IgA, and IgG in vitro upon stimulation with SAC plus IL-2 or anti-IgM plus IL-2271. Three 

groups of patients were defined: group A included patients whose lymphocytes fail to produce 

any Ig isotype in vitro; patients in group B produced IgM but no other isotypes; and group C 

patients produced normal amounts of all isotypes in vitro, similarly to healthy individuals, while 

failing to produce adequate amounts of antibodies in vivo271. However, this functional 

classification of CVID patients revealed to be of low prognostic significance and the methodology 

was time-consuming and difficult to standardize, raising the need for more reliable and simple 

procedures. In 2002, the first classification based on flow cytometric phenotypic analysis of 

peripheral blood B-cell subsets from CVID patients was proposed by Warnatz et al., later known 

as the Freiburg classification284. This was also the first work to report a major reduction of 

switched-memory B cells in CVID patients, as it had been previously described in patients with X-

linked HIGM syndrome285. The work also showed that the frequency of switched-memory B cells 

was directly correlated with the ability of B cells to produce IgG in vitro, both in healthy 

individuals and CVID patients284. They thus proposed a classification based on the frequency of 

switched-memory B cells in total peripheral blood lymphocytes (PBLs): group I for patients with < 

0.4% of switched-memory B cells in PBLs; and group II for patients with > 0.4% (and more similar 

to healthy individuals). Group I patients were further subdivided according to the expansion 

(group Ia, > 20% CD21- B cells) or not (group Ib, < 20% CD21- B cells) of what they referred to as 

CD21- “immature” B cells284. Importantly, there was a significant clustering of CVID patients with 

splenomegaly and autoimmune cytopenias in group Ia, supporting the relevance of the 
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classification in defining significant clinical associations284. In 2003, a second scheme of 

classification was proposed by Piqueras et al., later to be known as the Paris classification286. This 

classification was based on memory B-cell defects: patients with normal levels of both switched-

memory and non-switched memory B cells were termed MB2, whereas CVID patients with 

reduced switched-memory B cells but normal frequencies of non-switched memory B cells were 

classified as MB1; patients with defects in both switched and non-switched memory B cells were 

grouped as MB0286. Of note, patients on group MB2 had B- and T-cell phenotypes similar to 

healthy individuals. Patients with complete memory B-cell deficiency (group MB0) had a 

significant higher incidence of granulomatous disease, lymphoproliferation and splenomegaly, 

attesting the usefulness of the proposed classification286. Following studies confirmed this 

association between reduced frequencies of switched-memory B cells and higher incidence of 

clinical manifestations287-289. More recently, a European multicentre trial involving 303 CVID 

patients developed a consensus between the two previously proposed classification schemes290. 

The EUROclass scheme separates patients with virtually absent B cells (< 1% of PBLs), marked 

reduction of switched-memory B cells ( 2%), and expansion of transitional ( 9%) or 

CD21lowCD38low B cells ( 10%) (Figure 6). Significant clinical correlations were found: patients 

with a severe reduction of switched-memory B cells had a higher risk for splenomegaly and 

granulomatous disease; expansion of CD21lowCD38low B cells was associated with splenomegaly; 

and the increase in transitional B cells was connected with adenopathies290.  

 

 

 

Figure 6. The EUROclass classification scheme for Common Variable Immunodeficiency patients, as proposed by 
Wehr et al.

290
. 
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Even though the expansion of CD21low B cells had been previously described to be a 

marker for CVID with autoimmune cytopenias and splenomegaly291, no associations with 

autoimmune phenomena were found in the EUROclass trial290. More recently, distinct 

pathophysiologic backgrounds were identified in CVID through the combined analysis of B-cell 

replication history and SHM status292. In this work, Driessen et al. proposed five different B-cell 

patterns in CVID patients, in addition to those presenting normal peripheral B-cell development: 

(1) impairment in B-cell production, (2) early peripheral B-cell maturation or survival defect, (3) 

defective B-cell activation and proliferation, (4) dysfunctional GC function, and (5) post-GC 

defect (Figure 7)292. With this approach, the authors claim that immunologically homogeneous 

groups of CVID patients can be identified, paving the way for further analysis on the molecular 

defects involved. Defects in the GC reaction and PC development had been previously 

documented in lymph nodes from CVID patients293. Even though PC differentiation was defective 

in all three CVID patients analysed in this report, the developmental stage at which this block 

occurs appears to be variable, once more highlighting the heterogeneity underlying CVID 

physiopathology.  

 

Figure 7. Model of the pathophysiological background of five different B-cell patterns in Common Variable 
Immunodeficiency patients, based on proliferation history and somatic hypermutation levels. Illustration taken 
from Driessen et al.

292
. 
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Additionally, abnormalities in the bone marrow lymphocyte composition have been 

recently described in CVID patients, including absence or very low levels of plasma cells, and a 

partial arrest of early B-cell development in some CVID patients resulting in low peripheral B-cell 

counts294, in line with the observations made by Driessen et al.292. 

In addition to the effort put into finding more appropriate ways of classifying CVID 

patients, several other important observations have been made regarding the B-cell 

compartment of CVID patients. In 2005, Carsetti et al. showed that CVID patients with recurrent 

bacterial pneumonias have very reduced frequencies of IgM+ memory B cells, while patients who 

never had pneumonia present normal frequencies of this population and produced IgM 

antibodies against pneumococcal polysaccharides295. This work illustrated the importance of 

IgM+ memory B cells in the response against encapsulated bacteria and suggests that the 

frequency of this population correlates with different susceptibilities to encapsulated bacterial 

pneumonia in CVID patients. In contrast, the reduction of switched-memory B cells was similar in 

CVID patients who had or not recurrent pneumonias295. IgM+ memory B cells and the ability to 

produce IgM antibodies are very important in CVID patients, since the replacement therapy with 

IgG only provides IgG antibodies and cannot substitute for the function of IgM antibodies. Quite 

recently, it has been shown that the frequency of the population of B cells described as being 

equivalent to the mouse B1 cells, important producers of natural antibodies, is not significantly 

different in CVID patients and healthy individuals, when taking into account the reduction in the 

total memory B-cell pool296. This suggests that CVID patients may be able to maintain, at some 

level, the production of natural antibodies. 

Interestingly, a recent report has shown that the combination of IL-21, IL-4 and anti-

CD40 stimulation in vitro was able to induce CSR in B cells from CVID patients and differentiation 

into PCs. In addition, this combination of stimuli prevented spontaneous B-cell apoptosis, 

suggesting that some defect in IL-21 may be involved in CVID. However, genetic analysis did not 

reveal any mutations in the IL-21 gene of CVID patients, and the expression of both IL-21 and the 

IL-21R was also not impaired297. 

The observation of expanded populations of B cells expressing low levels of CD21 in CVID 

patients284,290,291 has led to intense research regarding the origin and functionality of these cells. 

Rakhmanov et al. made a comprehensive phenotypic and functional analysis of circulating 

CD21low B cells from CVID patients and suggested that these cells show a phenotype that is 

mostly compatible with that of naïve B cells, but they are actually a distinct population of pre-

activated, polyclonal, partially autoreactive cells that are functionally less responsive to BCR 

stimulation and have a preferential enrichment in peripheral tissues298. The fact that CD21low B 
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cells are less responsive to BCR stimulation can be simply explained by the low levels of CD21 

expression, which result in impaired signal transduction from the BCR. The authors 

acknowledged a great similarity of CD21low B cells in CVID and a previously described population 

of tonsillar memory B cells expressing the immunoregulatory molecule FcRH4299, but argued that 

CD21low B cell in CVID are not memory cells in the sense that they lack CSR, SHM, and 

oligoclonality298. Contrary to what was described by Rakhmanov et al., a following study 

reported the existence of two different populations within CD21low B cells according to the 

expression of CD24300. However, the functional relevance of those two different populations has 

not been assessed. Isnardi et al. expanded the knowledge on this B-cell population by 

performing a transcriptome analysis, showing that CD21low B cells up-regulate genes encoding 

molecules likely to inhibit B-cell activation, proliferation, and survival, at the same time that they 

down-regulate genes involved in B-cell activation, supporting the view that these B cells are 

indeed refractory to antigenic stimulation301. Even though CVID patients who present expanded 

populations of CD21low B cells have a higher incidence of autoimmune manifestations, the role of 

these B cells in the development of autoimmunity is still not clear. 

 

CVID patients with known genetic defects sometimes feature distinct impairments on B-

cell phenotype and function. For instance, adult patients with ICOS deficiency present reduced 

frequencies of peripheral B cells, while affected young children do not123. The memory B-cell 

compartment is decreased in all patients, with a severe reduction of switched-memory B cells, 

likely resulting from poor GC formation31,123. Memory IgM+, or MZ, B cells were also found to be 

reduced in the majority of ICOS-deficient patients. However, memory B cells isolated from ICOS-

deficient patients were able to produce all Ig isotypes upon in vitro culture with autologous T 

cells in the presence of SAC and IL-2, demonstrating that these patients do not have a B-cell 

intrinsic defect and that the lack of ICOS:ICOSL interaction can be functionally overcome31. These 

B-cell defects are not exclusive of CVID patients with defective ICOS, but rather typify the 

common CVID phenotype. In the cases where SHM could be analyzed, it was found to be normal 

or slightly reduced123. CD19-deficient patients present normal numbers of circulating B cells, 

with an apparently normal precursor B-cell compartment in the bone marrow228. In addition to 

the lack of CD19 expression, CD21 expression is also reduced. Nevertheless, CD81 and CD225, 

the other members of the signalling complex, were normally expressed at the surface of B 

cells228. The frequencies of both total memory and switched-memory B cells were markedly 

reduced, even though GC formation was normal. In addition, SHM was also comparable to 

normal individuals228. CVID patients with TACI mutations have increased B-cell numbers but 
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decreased immunoglobulin production, contrary to what is observed in the mouse234,235. In 

addition, switched-memory B cells were reduced in these patients236, comparable to other CVID 

phenotypes without TACI mutations. On the contrary, lack of BAFF-R expression in CVID patients 

leads to severe B-cell lymphopenia, with an increase in transitional B cells paralleled by a 

decrease in all mature B-cell populations243. While both IgG and IgM serum levels were severely 

reduced, IgA production was intact in vivo and in vitro, suggesting that BAFF-R signals are 

dispensable for human class-switch to IgA243. All in all, while presenting distinctive alterations at 

the level of the B-cell compartment, CVID patients with known genetic alteration basically show 

the main characteristic defects that are common to all CVID patients. 

 

c. HOW ARE T CELLS AFFECTED BY B-CELL IMMUNODEFICIENCIES 

Given that impaired B-cell function can arise both from B-cell intrinsic defects and lack of 

appropriate B-cell help by T cells, the T-cell compartment has also been extensively studied in 

CVID patients. Early studies reported defects in T-cell activation and proliferation302-306, T-cell 

lymphopenia, particularly of the naïve CD4 T-cell subset307-309, abnormal cytokine 

production265,310-315, impaired expression of CD40L316, of the C-type lectin attractin317, and of the 

adhesion molecule CD62L318, defective TCR signaling315,319-322, perturbed generation of antigen-

specific memory T cells323-325, increased T-cell apoptosis309,326, and oligoclonal expansions of CD8 

T cells327, among others. More recently, it was also described that invariant natural killer T (iNKT) 

cells, a subset of thymically-derived T lymphocytes that have the ability to rapidly produce a 

wide range of cytokines, are markedly decreased in CVID patients, both in terms of frequency 

and absolute numbers in circulation328. In addition, this lost of iNKT cells was more pronounced 

in patients with low switched-memory B cells and no association was found with clinical 

features, arguing that low frequencies of iNKT cells might be contributing to the failure of 

memory B-cell generation328. A different study has however reported that the frequency of 

circulating iNKT cells in CVID patients was similar to healthy subjects, even though iNKT cell 

subsets were skewed and presented an activated phenotype in CVID patients329. Analysis of 

bone marrow biopsies from CVID patients revealed the existence of significantly more diffuse 

and nodular T-cell infiltrates than in healthy subjects, which were correlated with the presence 

of autoimmune cytopenias in CVID patients, but not other clinical manifestations. Nodular T-cell 

infiltrates in the bone marrow were directly correlated with the frequency of circulating memory 

CD45RO+ CD4 T cells294. 

Naïve CD4 T-cell lymphopenia has been linked to defects in thymic function through the 

finding of decreased levels of TCR excision circles (TRECs) on peripheral T cells330,331, an estimate 
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of recent thymic output. In addition, recent thymic emigrants (RTEs), as defined by the 

expression of CD31 on naïve CD4 T cells, were also found to be significantly reduced in CVID 

patients332, in line with the idea of a defective thymic function in these patients. Increased levels 

of circulating IL-7 have been reported in CVID patients333, but these were not related to CD4 T-

cell lymphopenia, contrary to what is found in several clinical settings334-337. Instead, CVID 

patients with high IL-7 levels present increased numbers of CD8 T cells, increased proportion of 

terminally-differentiated T cells and reduced levels of apoptosis333, suggestive of an impairment 

in IL-7-mediated T-cell homeostasis. In 2007, Giovanetti et al. reported an extensive analysis on 

T-cell abnormalities in CVID patients, proposing a new classification scheme based on the 

frequency of naïve CD4 T cells that resulted in a significant association with clinical features, 

such as splenomegaly338. This study showed that naïve CD4 T-cell lymphopenia was accompanied 

by reduced thymic output and contracted CD4 and CD8 TCR repertoires in CVID patients, while 

paralleled by strong T-cell activation, increased T-cell turnover and apoptosis, pointing to a 

perturbed homeostasis of the peripheral T-cell compartment338. Given that the concordance 

between this T-cell based classification scheme and the one based in the frequency of switched-

memory B cells284 was only partial, the authors propose that the function of T cells should also 

be taken into consideration in order to attain a proper classification of CVID patients338. In this 

sense, the DEFI Study Group has made an attempt to develop a classification system based on 

the frequencies of total B cells, switched-memory B cells and naïve CD4 T cells339. With this 

approach, the authors observed that CVID patients with clinical complications such as 

lymphoproliferation and autoimmune cytopenias more frequently present a phenotype with 

major B- and T-cell alterations, while patients presenting with only infections have no significant 

alterations of the B- and T-cell compartments339. Another study has reported that CVID patients 

with expanded CD21low B cells simultaneously present a severe reduction of naïve CD4 T cells 

associated with decreased levels of TRECs, showing a combined defect in B- and T-cell subsets340. 

It had been early on suggested that T cells from CVID patients could exert a suppressive 

effect on B-cell differentiation and antibody production341,342. This idea is however far from the 

current view on regulatory CD4 T cells (Treg). Treg cells are defined by the expression of the 

forkhead box P3 (FOXP3), a transcription factor associated with Treg differentiation343-345, which is 

considered the best available Treg marker, in addition to high levels of CD25. Treg cells have a 

crucial role in maintaining tolerance to self-antigens and preventing autoimmunity, as 

demonstrated both by the mouse and human models of FOXP3 deficiency346-349, in which 

individuals develop fatal autoimmunity. In recent years, Treg cells have been described to be 

reduced in CVID patients350,351 and this reduction has been proposed to be linked to autoimmune 
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manifestations in the patients350,352,353. In addition, the frequency of Treg cells has been shown to 

negatively associate with the expansion of CD21low B cells352,353, further supporting a link with the 

development of autoimmunity. It has also been reported that Treg cells from CVID patients with 

autoimmune manifestations have a lower suppressive capacity, together with lower expression 

of molecules normally related to Treg function354. 

In the first four patients described with ICOS deficiency, apart from the lack of ICOS 

expression, T cells were found to be normal with regard to activation, proliferation, cytokine 

production and subset distribution31. However, subsequent studies have reported impaired IL-10 

and IL-17 production by ICOS-deficient T cells123. Furthermore, it has been shown that circulating 

CXCR5+ CD4 T cells are severely reduced in these patients, reflecting the disturbed generation of 

GCs124. CVID patients with TACI mutations present a normal T-cell compartment, with normal T-

cell subsets and maintained proliferative responses235. This is also the case in BAFF-R-deficient 

patients, who have a normal distribution of T-cell populations234. 

Contrary to what is found in CVID patients, little abnormalities have been described at 

the level of the T-cell compartment of patients with Congenital Agammaglobulinemia. Normal 

mitogenic responses were early on described355,356, together with normal T-cell numbers and 

subsets357. Additionally, XLA patients were shown to possess intact T-cell responses305 as well as 

normal CD4 T-cell helper function358. However, other studies have reported a poor helper 

function in XLA359. It had actually been proposed that T cells from XLA patients were 

phenotypically similar to those found in healthy newborns, suggesting immaturity of the T-cell 

compartment360,361, but this is not likely the case since memory T cells are present in XLA in 

normal proportions, contrary to previous observations362, while adequately responding to recall 

antigens, such as tetanus toxoid323,355. In addition, the development of memory T-cell responses 

to viral infections, such as influenza, has been shown to be normal and to not depend on the 

presence of B cells363. On the other hand, it has been recently reported that naturally acquired T-

cell memory responses to meningococcal antigens are reduced in XLA patients as compared to 

healthy individuals, implicating B cells in the induction and maintenance of T-cell memory to 

given pathogens364.  Antigenic and mitogenic responses in XLA patients have been shown to 

present a predominant TH1 phenotype, contrary to what is found in healthy individuals365. In 

contrast, a different study has shown that both TH1 and TH2 memory-effector and resting T cells 

develop in XLA patients vaccinated against Hepatitis B Virus, suggesting that B cells are not 

absolutely necessary for antigen-specific T-cell memory development, nor do they appear to 

affect the TH1/TH2 balance366. Quite recently, the importance of B cells in CD4 T-cell 

differentiation has been given further support by the finding that, similar to what is observed in 
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ICOS-deficient patients, XLA patients show decreased frequencies of circulating CXCR5+ CD4 T 

cells, together with a reduction in the total memory T-cell pool, suggesting that B cells are crucial 

for the generation of GCs and the development of TFH cells367, of which circulating CXCR5+ CD4 T 

cells are believed to be counterparts125. 

 

Along with the observation that IgG replacement therapy can induce B-cell proliferation 

and Ig production in some CVID patients253, several other reports have suggested that it can also 

have an immunomodulatory role on T-cell function. Long-term administration of IgG 

replacement therapy in CVID patients was shown to significantly reduce the numbers of 

circulating T cells368. Also, administration of intravenous IgG (IVIg) leads to an instant increase in 

the production of IL-2 and TNF- by T cells from CVID patients, but not from individuals with 

XLA369, suggesting a disease-specific pattern of action. In addition, IgG replacement therapy 

appears to have an important anti-proliferative effect on T cells from both CVID and Congenital 

Agammaglobulinemia patients370. It has also been shown to significantly increase the in vivo 

expression of both CD25 and Fas within T cells, with a possible impact on T-cell function371. Of 

note, IVIg has also been shown to inhibit the differentiation of TH17 cells from naïve CD4 T cells 

in vitro, but also their amplification and effector function, suggesting that this can be an 

important mechanism in the beneficial therapeutic effect of IVIg in patients with inflammatory 

or autoimmune diseases372.  

 

d. OTHER IMMUNE COMPARTMENTS AFFECTED IN B-CELL IMMUNODEFICIENCIES 

Apart from the impairments found to affect both B- and T-cell compartments in patients 

with antibody deficiencies, other cellular compartments have been shown to be similarly 

compromised. It has long been recognized that macrophages from CVID patients have a lower 

antigen-presenting capacity373,374, together with a defective interaction between macrophages 

and T cells375. Also, DCs from CVID patients were shown to induce abnormal Ig production by 

healthy B cells, suggesting that an impaired accessory function may play an important role in B-

cell differentiation in CVID376. However, normal antigen presentation has also been reported in 

CVID377,378. Monocyte chronic activation has been proposed, relating to raised levels of serum 

neopterin in both CVID and XLA patients379,380, as well as increased production of reactive oxygen 

species, which was only observed in CVID and not in XLA patients381. It has also been reported 

that monocyte production of IL-6 and TNF- in response to Pneumovax-23 (Pneumococcal 

Vaccine Polyvalent) was impaired in CVID patients, possibly underlying the increased 

susceptibility of these patients to Streptococcus pneumoniae infection382.  
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CVID has been associated with defective in vitro maturation of DCs from monocytes, at 

least in a subset of patients383,384, and with disturbances in the monocyte responses upon 

lypopolysaccharide (LPS) stimulation in vitro385. Additionally, CVID patients were shown to have 

reduced numbers of circulating DCs386,387, with perturbed differentiation and function, namely 

reduced expression levels of the co-stimulatory molecules CD80 and CD86, an impaired ability to 

produce IL-12 upon stimulation388-390, as well as lower antigen-presenting capacity in mixed 

lymphocyte reactions389,390. It has also been recently shown that immediately after 

administration of IVIg there is a reduction of pro-inflammatory CD14+CD16+ monocytes in CVID 

patients, and that TNF- production in response to ex vivo LPS stimulation is also reduced, 

implying that IVIg at replacement doses may in this way play an important anti-inflammatory 

role391. It should be noted however that this effect is transient and numbers of CD14+CD16+ 

monocytes return to baseline 20h after IVIg has been administered391. 

Monocyte-related alterations, namely an increased frequency of CD16-positive 

monocytes392 and decreased numbers of mDCs393 have also been reported in XLA patients. A 

previous study reported a lack of major alterations in monocyte function as assessed in vitro in 

patients with XLA385. The same study showed an up-regulation of Human Leukocyte Antigen D-

related (HLA-DR) within the whole monocyte population in CVID patients385. CD86, a marker of 

monocyte differentiation and acquisition of antigen-presentation properties, has been shown to 

be expressed at reduced levels in monocyte-derived DCs generated in vitro from CVID patients, 

supporting an impaired function as APCs in CVID383,394.  

It has also been shown that TLR7 and TLR9 function is defective in CVID patients395,396. 

pDCs from CVID patients produced markedly less IFN- upon TLR9 stimulation, even though 

TLR9 expression was normal395. Stimulation through these endosomal TLRs resulted in defective 

B-cell proliferation, lack of IL-6 and IL-10 production, defective up-regulation of AID mRNA, low 

isotype switch, and impaired IgG and IgA production in both CD27− naïve and CD27+ memory 

CVID B cells. 

Given that Btk is not only crucial for B-cell development, but is also expressed in cells of 

the myeloid lineage202, including DCs and monocytes, it could be anticipated that these cellular 

compartments would be affected in XLA patients. Btk has been found to interact with TLR8, and 

to TLRs 4, 6 and 9 to a lesser degree. In addition, Btk also interacts with proteins of the TLR 

signalling pathway, suggesting that Btk may be part of the protein complex recruited upon 

signaling397. However, it has been shown that DCs from XLA patients can be fully differentiated 

from monocyte precursors, as well as matured in response to LPS398. In addition, these DCs were 

entirely capable of priming naïve CD4 T cells, arguing against a role for Btk in DC differentiation, 
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maturation and function398. Another study has nevertheless reported that differentiation and 

maturation of DCs from monocytes of XLA patients in the presence of autologous plasma is 

impaired, but it could be restored upon stimulation with CD40L or supplementation with IVIg399. 

It has also been reported that peripheral blood mononuclear cells (PBMCs) from XLA patients 

produce reduced amounts of TNF- when stimulated with LPS in vitro400. A subsequent study has 

contradicted this observation by showing that the early events of LPS signalling in monocytes 

from XLA patients, including TNF- and IL-6 production, are similar to those in healthy 

subjects401. It was later shown that both mDCs and pDCs are present in normal numbers in the 

peripheral blood of XLA patients402. Nevertheless, the same study reported impaired TLR8-

mediated IL-6 and TNF- production in DCs from XLA patients, while phenotypic maturation, 

APC function and responses to TLRs 1/2, 2/6, 3, 4, and 5 were normal, suggesting that defective 

TLR8 signalling can underlie the increased susceptibility of XLA patients to enteroviral 

infections402. Another study has shown that PBMCs from XLA patients produce significantly less 

TNF- and IL-1 than healthy controls when stimulated through TLR2 or TLR4, while IL-6 and IL-

10 production were unaffected403. This was also observed in another report, where it was shown 

that the expression of TLRs is not defective in monocytes and DCs from XLA patients, but 

stimulation through TLRs 2, 4, or 8 elicited significantly less maturation of DCs404. Importantly, 

DC responses to influenza virus were found to be normal in XLA patients, with normal ability to 

produce IFN-363. 

Neutropenia has been reported as a frequent finding at diagnosis in XLA patients, 

although with an unclear etiology405,406. Episodes of neutropenia are usually resolved upon 

starting IgG replacement therapy406. Nevertheless, it has been recently shown that Btk is 

necessary for neutrophil development and function in a mouse model of XLA407. In this work, the 

authors have shown that, despite an increased granulopoiesis, Btk-deficient neutrophils have 

defective maturation and function in an acute inflammatory response407. However, it has been 

shown that Btk-deficiency in XLA patients does not impair essential functional responses of 

neutrophils to TLR stimulation408, suggesting a fundamental difference between the human and 

the mouse model of Btk-deficiency in what regards the myeloid compartment. 

 

Natural Killer (NK) cells, an important arm of the innate immune system, have been 

reported to be severely reduced in both CVID and XLA patients, although with no clear clinical 

relevance409,410. Although decreased, NK cells seem to be fully functional and may thus 

functionally compensate for the low numbers present410. It has been very recently described 

that Btk expression is up-regulated during maturation of murine NK cells, while being involved in 
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TLR3-mediated NK activation411. In this study, XLA patients were reported to have normal NK cell 

numbers, while TLR3-mediated NK activation was decreased, with reduced expression of IFN- 

and killing capacity, implying that Btk is important for NK function411. 

 

 

This overview illustrates how primary B-cell defects can impact in all compartments of 

the immune system. It seems unlikely that these impairments can be solely attributed to a lack 

of B cells, as in the case of XLA patients. Immunological alterations most likely result from the 

interplay of defective B cells and other cells of the immune system, an area of research that 

remains largely unexplored.  
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B lymphocytes are central players of the immune system, mainly recognized by the 

production of antibodies. Moreover, the interaction between B and T cells has a crucial role in 

the generation of adaptive immune responses. B cells are also important in linking innate and 

adaptive immune responses, given the fact that they express receptors that recognize both 

specific antigens and microbial patterns. The integration of signals coming from these pathways 

thus determines the fine-tuning of the overall B-cell response.  

 

The general aim of this work was to study the interplay between B cells and other 

elements of the immune system, for which we have taken advantage of two clinical models of 

primary B-cell immunodeficiencies, CVID and Congenital Agammaglobulinemia. We reason that 

studying these human clinical models will not only extend our knowledge on the function of the 

immune system, but will also provide new tools regarding the treatment and follow-up of these 

patients.  

 

CVID is a primary immunodeficiency defined by impaired antibody production. CVID 

patients have heterogeneous immunological and clinical profiles, and although some cases have 

been associated with monogenic defects affecting CD19, ICOS, and the B-cell-associated 

receptors TACI and BAFF-R, the immunodeficiency is fundamentally considered to be of 

polygenic aetiology. The defects in mature B-cell development that characterize CVID are 

thought to mainly result from impairments in GC organization. Although being a B-cell 

immunodeficiency, CVID is associated with perturbations of the T-cell compartment, namely 

naïve/memory disturbances and increased levels of cellular activation, among others, which are 

reported even in patients under replacement therapy with IgG. Indeed, non-infectious 

complications, such as lymphoproliferation, granulomatous disease and autoimmune 

manifestations, are currently main causes of morbidity and mortality in CVID. The mechanisms 

underlying the chronic immune activation associated with CVID remain largely unclear. 

 

Congenital Agammaglobulinemia is associated with a disruption of early B-cell 

development in the bone marrow that results, in the majority of cases, from mutations in the 

Btk gene, frequently leading to a complete lack of circulating B cells. As expected, these patients 

have a high frequency of respiratory infections. However, they do not have major non-infectious 

complications. We found that despite the absence of B cells, patients with Congenital 



64 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

Agammaglobulinemia do not normally present with major T-cell imbalances, thus providing us 

with an excellent model to study the interaction between the different compartments of the 

immune system, in contrast to CVID patients. 

 

The specific aims of this work were the following: 1) to study the modulation of BAFF-R 

and TACI expression in CVID, in what regards its role in B-cell homeostasis; 2) to investigate a 

putative relationship between B- and T-cell imbalances in CVID and Congenital 

Agammaglobulinemia, namely regarding the autoimmunity-associated CD4 T-cell population 

that produces IL-17, TH17, and the differentiation of mature B cells; and 3) to assess monocyte 

imbalances and their possible relationship with increased microbial translocation in CVID 

patients and with chronic immune activation. Additionally, the CVID patients enrolled in this 

study, which are followed at the Serviço de Imunoalergologia from the Hospital de Santa Maria, 

Lisbon, were characterized and classified according to their B-cell phenotypes, in line with the 

most recent classification of CVID, as proposed by Wehr et al.. 

 

 

I. Modulation of BAFF-R and TACI expression in CVID 

 

Peripheral B-cell survival and differentiation mainly rely on two major factors, BAFF and 

APRIL, and on their interaction with the receptors BAFF-R, TACI, and BCMA. BAFF serum levels 

have been shown to be elevated in numerous clinical settings, such as in autoimmune diseases 

or lymphoid cancers. Both BAFF and APRIL circulating levels have also been shown to be highly 

increased in CVID patients. However, no relationship has been found between high BAFF and 

APRIL levels and clinical manifestations in CVID patients, such as autoimmunity or splenomegaly. 

In addition, mutations in TNFRSF13B and TNFRSF13C, encoding TACI and BAFF-R, respectively, 

have been associated with CVID. 

The first aim of this work was to investigate BAFF-R and TACI expression in CVID. For this 

purpose, the levels of protein expression of BAFF-R and TACI at the surface of B cells were 

compared in cohorts of CVID patients and healthy controls. The in vitro modulation of BAFF-R 

expression by recombinant BAFF, recombinant APRIL, and autologous serum was also assessed. 

Additionally, the levels of mRNA transcripts of TNFRSF13C, encoding BAFF-R, were quantified in 

these conditions, in order to evaluate a possible transcriptional regulation. Finally, longitudinal 

data on BAFF-R expression and serum levels of BAFF were collected, with the purpose of 

determining the impact of the introduction of IgG replacement therapy on these parameters.  
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The results obtained are shown in the chapter 1 of the Results. 

 

II. Relationship between B- and T-cell imbalances in primary B-cell immunodeficiencies 

 

The interaction between T cells and B cells is fundamental to generate adaptive immune 

responses. The establishment of long-term humoral immunity implies that B cells receive 

appropriate help from CD4 T cells in the context of a GC reaction, with the generation of 

memory B cells and antibody-producing plasma cells. T-cell help is known to be essential to the 

induction and subsequent organization of GCs. This help has mainly been attributed to a 

particular subset of T cells termed follicular helper T cells, TFH, which are identified by the 

expression of the chemokine receptor CXCR5, necessary for their specific homing within GCs. 

The lack of adequate T-cell help during the priming of B cells results in apoptosis, rather than 

their differentiation into GC B cells or plasma cells. The functional interaction between T cells 

and B cells rely both on the expression of co-stimulatory molecules, such as CD40-CD40L and 

ICOS molecule, as well as in cytokine production, with the best example being IL-21. These 

pathways have also been implicated in the induction and/or survival of TH17 cells. 

IL-17 is a pro-inflammatory cytokine implicated in autoimmune and inflammatory 

conditions. The development/survival of TH17 cells share critical cues with B-cell differentiation 

and the circulating TFH subset has been shown to be enriched in TH17 cells able to help B-cell 

differentiation, so potentially the homeostasis of the circulating TH17 compartment may be 

related to B-cell differentiation. CVID is frequently associated with autoimmune and 

inflammatory manifestations, and thus it is plausible that IL-17 may play a role in these 

processes. 

As a strategy to understand the contribution of TH17 cells to the mechanisms underlying 

inflammatory manifestations, the frequency of TH17 cells was compared in CVID patients, 

Congenital Agammaglobulinemia patients and healthy individuals. The relationship between 

TH17 cells and parameters of naïve T-cell depletion and T-cell activation was determined, in 

comparison to the populations of CD4 T cells producing other pro-inflammatory cytokines, such 

as IFN- and TNF-. In addition, it was also studied the association of TH17 cells with populations 

of B cells that are commonly impaired in CVID. In Congenital Agammaglobulinemia patients, who 

are expected to have severely impaired GC formation, circulating TFH cells were additionally 

studied. With the aim of better understanding the relationship between cues involved in B-cell 

differentiation and the homeostasis of T-cell populations, serum levels of BAFF, a crucial 

cytokine for B-cell survival and maturation, were quantified in CVID and Congenital 
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Agammaglobulinemia, and their relationship with TH17 cells was investigated. In addition, in 

order to understand if the relationship between TH17 cells and B cells relies on cues involved in 

class-switch to IgA, TH17 cells were measured in patients with selective IgA deficiency, a primary 

B-cell immunodeficiency that is characterized by a strict deficiency in IgA production, with all 

other Ig subclasses normal. To test the possibility of an intrinsic impairment in the ability of CD4 

T cells from Congenital Agammaglobulinemia patients to differentiate into TH17 cells, in vitro 

TH17 differentiation assays were performed and compared to healthy individuals. 

Treg and TH17 cells are believed to possess reciprocal pathways of differentiation. In order to 

determine the relationship between Treg cells and TH17 cells in primary B-cell 

immunodeficiencies, Treg cells were quantified in terms of FOXP3 and CD25 expression in CVID 

patients, and their association with TH17 cells and the abovementioned B- and T-cell subsets was 

analysed. 

The results generated are presented in the chapter 2 of the Results. 

 

III. Monocyte imbalances in primary B-cell immunodeficiencies and their possible 

relationship with increased microbial translocation and chronic immune activation in 

CVID patients. 

T-cell activation and granulomatous manifestations represent main causes of CVID 

morbidity, even in patients under IgG replacement therapy. The mechanisms underlying the 

chronic immune activation associated with CVID remain largely unclear. Another main cause of 

CVID morbidity is gastrointestinal pathology, with or without mal-absorption. The impairment in 

IgA production and other CVID-associated mucosal alterations have been shown to be often 

associated with increased intestinal permeability. Thus, it is plausible that increased levels of 

microbial translocation, particularly of bacterial products such as LPS, with consequent 

monocyte stimulation, may contribute to the chronic immune activation observed in CVID 

patients, as reported for HIV-1 infected individuals. 

To assess this premise, the monocyte compartment was characterized in patients with CVID 

and Congenital Agammaglobulinemia, and compared to healthy controls. The possible 

relationship with increased microbial translocation in CVID patients was evaluated by the 

quantification of plasma LPS, and serum levels of soluble CD14 (sCD14), LPS-binding protein 

(LBP), and anti-LPS antibodies in samples from CVID patients. In addition, to assess the impact of 

IgG replacement therapy on these parameters, monocyte and T-cell subsets were analyzed 

longitudinally in a group of CVID patients, before and after starting IgG replacement therapy. 
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These results are presented in the chapter 3 of the Results. 

  



68 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

In agreement with the Decreto-Lei 388/70, art. 8o, parágrafo 2, the results presented here 

were published or are currently being prepared for publication in the following scientific 

journals: 

 

 

Rita R. Barbosa, Susana L. Silva, Sara P. Silva, Alcinda Campos Melo, M. Conceição Pereira-

Santos, João T. Barata, Ana E. Sousa. Decreased BAFF-R and increased TACI expression on B cells 

are features of Common Variable Immunodeficiency Disorders.  

Manuscript in preparation. 

 

 

Rita R. Barbosa, Sara P. Silva, Susana L. Silva, Alcinda Campos Melo, Elisa Pedro, Manuel P. 

Barbosa, M. Conceição Pereira-Santos, Rui M. M. Victorino, Ana E. Sousa. Primary B-cell 

deficiencies reveal a link between human IL-17-producing CD4 T-cell homeostasis and B-cell 

differentiation. PLoS ONE, 2011;6(8):e22848. 

 

 

Rita R. Barbosa, Sara P. Silva, Susana L. Silva, Rita Tendeiro, Alcinda Campos Melo, Elisa 

Pedro, Manuel P. Barbosa, M. Conceição Pereira Santos, Rui M. M. Victorino, Ana E. Sousa. 

Monocyte activation is a feature of Common Variable Immunodeficiency irrespective of plasma 

lipopolysaccharide levels. Clinical and Experimental Immunology, 2012 Sep;169(3):263-72. 

 

 

 



 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

RESULTS 

 

 

 

 

 

 

 

 



 

 



Chapter 3 – Results 
3.1. Modulation of BAFF-R and TACI expression in CVID 

71 

 

 

 

 

3.1 – MODULATION OF BAFF-R AND TACI EXPRESSION IN 

COMMON VARIABLE IMMUNODEFICIENCY 

 

 

 

 

including 

 

Decreased BAFF-R and increased TACI expression on B cells are features of Common Variable 

Immunodeficiency Disorders 

Rita R. Barbosa1, Susana L. Silva1,2, Sara P. Silva1,2, Alcinda Campos Melo1, M. Conceição Pereira-

Santos1, João T. Barata3, Ana E. Sousa1 

1Unidade de Imunologia Clínica, and 3Unidade de Biologia do Cancro, Instituto de Medicina 

Molecular, Faculdade de Medicina, Universidade de Lisboa, 2Hospital de Santa Maria, Centro 

Hospitalar Lisboa Norte, Lisboa, Portugal 

 

Manuscript in preparation 

  



72 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

  



Chapter 3 – Results 
3.1. Modulation of BAFF-R and TACI expression in CVID 

73 

 

Abstract 

 

Peripheral B-cell survival and differentiation critically depend on the interaction of B-cell 

activating factor receptor (BAFF-R) and transmembrane activator and calcium modulator and 

cyclophilin ligand interactor (TACI) with their ligands, BAFF and a proliferation-inducing ligand 

(APRIL). We hypothesize that disruption of these pathways plays a role in Common Variable 

Immunodeficiency Disorders (CVID), which are defined by defects in mature B-cell function with 

impaired antibody production. We found that BAFF-R expression was significantly reduced in all 

B-cell subsets in CVID, both at the protein and the mRNA levels, particularly in patients with very 

low memory B-cell frequencies. Conversely, TACI expression was increased in CVID patients, 

especially in the memory B-cell compartment. Relevant polymorphisms in the genes encoding 

these receptors were excluded in the studied CVID patients, given that monogenic defects have 

been described in rare cases. Reduced BAFF-R and increased TACI expression were both directly 

associated with high BAFF serum levels, but not APRIL, even though being a ligand for TACI. 

Using an in vitro culture approach, we observed that recombinant BAFF, as well as autologous 

serum, induced down-modulation of BAFF-R protein expression, both in healthy individuals and 

CVID patients. However, the degree of modulation seemed to be impaired in CVID patients, 

suggesting that these dynamics are affected. In addition, BAFF did not seem to regulate BAFF-R 

expression at the transcriptional level in this in vitro model. Understanding the mechanisms 

involved in the modulation of BAFF-R expression by its ligand BAFF will be crucial to clarify the 

role of BAFF-R dysregulation in CVID pathogenesis, in particular, and in B-cell biology, in general. 
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Introduction 

 

Peripheral B-cell survival and differentiation mainly rely on two major factors, BAFF (B-

cell activating factor of the TNF family; BLyS/TALL-1/THANK/zTNF4) and APRIL (a proliferation 

ligand), and on their interaction with the receptors BAFF-R (BAFF receptor; BR3), TACI 

(Transmembrane Activator and CAML Interactor), and BCMA (B-cell maturation antigen)1. BAFF-

R is expressed by all peripheral B cells and is critical for their survival and maturation. TACI is 

mainly expressed on memory peripheral B cells and it is suggested to act as a negative regulator 

of B-cell development. BCMA is expressed on memory B cells in secondary lymphoid organs but 

its highest levels are found in plasma cells1. BAFF-R only binds BAFF, whereas TACI and BCMA 

can bind both BAFF and APRIL, and BCMA binds APRIL with a 10-fold higher affinity than BAFF1. 

BAFF and APRIL are primarily produced by neutrophils, monocytes, macrophages and 

dendritic cells. They are also produced by non-hematopoietic cells at local niches to promote 

survival and function of B cells and plasma cells1. T cells may also produce BAFF2,3. In addition, 

BAFF and APRIL can be produced by lymphoid tumour cells to promote survival in an autocrine 

fashion1,4-6. It has been shown in the mouse that two distinct pools of BAFF actually exist: a 

constitutive pool that is produced by radiation-resistant cells and controls the size of the 

peripheral B cell pool; and a cytokine-induced pool that acts at sites of inflammation7,8. 

BAFF transgenic mice present B-cell hyperplasia and autoimmune manifestations that 

resemble systemic lupus erythematosus (SLE) and Sjögren’s syndrome9-11, pointing out the 

immunoregulatory potential of the BAFF system on B cells. BAFF serum levels have been shown 

to be elevated in numerous clinical settings, such as in autoimmune diseases, or lymphoid 

cancers. BAFF can also be increased during inflammation and infection, possibly modulated by 

type I interferons1. BAFF-deficient animals have a similar phenotype to A/WySnJ mice, which 

have a mutant BAFF-R gene, and to BAFF-R-null mice, all of which present severe mature B-cell 

lymphopenia12-15. In agreement, both BAFF-deficient and BAFF-R-deficient mice show abnormal 

germinal centre (GC) development and progression16. TACI-deficient mice, on the contrary, show 

a marked expansion of B cells that includes almost all mature peripheral B cell populations, 

splenomegaly and over-production of immunoglobulins17,18, suggesting a negative regulatory 

role for TACI in B-cell homeostasis. Nevertheless, TACI-deficient mice also present defective T-

independent type 2 responses in vivo, indicating a positive outcome of TACI stimulation18,19. 

APRIL-deficient mice have normal B and T-cell development, but impaired class-switching to 

IgA20. APRIL-transgenic mice, on the other hand, develop B-cell neoplasias as they age21 and 

present increased T-cell survival22. 
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Common Variable Immunodeficiency (CVID) is the most prevalent symptomatic primary 

immunodeficiency. Patients present a heterogeneous immunological and clinical profile, and 

although some cases have been associated with monogenic defects, the disease is largely 

considered to be of polygenic etiology23. Importantly, some of the referred monogenic defects 

include polymorphisms in the coding genes for BAFF-R and TACI24-27. Humans lacking TACI 

expression have a CVID clinical phenotype, with increased B-cell numbers but decreased 

immunoglobulin production, contrary to what is observed in the mouse24,27. Nevertheless, the 

murine equivalent to the C104R TACI mutation, C76R, significantly disrupts B-cell homeostasis, 

immunoglobulin production, and antigen-stimulated humoral responses28. Two siblings who 

present an adult-onset CVID-like syndrome have been described to lack BAFF-R protein 

expression with consequent severe B-cell lymphopenia26. The clinical manifestations in these 

patients were however mild in comparison to other antibody-deficient settings26. In addition, 

polymorphic variants of BAFF-R have been described, affecting both CVID patients and healthy 

individuals. Such variants do not impact in BAFF-R expression, neither at the mRNA level nor at 

the protein level25. However, ligand-binding capacity has not been evaluated in these subjects25. 

  Little is known about the expression of these receptors in CVID patients and how it is 

related to disease pathogenesis. Both BAFF and APRIL circulating levels have been shown to be 

highly increased in CVID patients29-32. However, no relationship has been found between high 

BAFF and APRIL levels and clinical manifestations in CVID patients, such as autoimmunity or 

splenomegaly30,31. 

The aim of this work was to study BAFF-R and TACI expression in CVID patients, and its 

relationship to BAFF and APRIL serum levels. In this study, we show that BAFF-R and TACI 

expression is altered in CVID patients, likely contributing to disease pathogenesis. 
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Materials and Methods 

 

Cohorts 

The study involved 33 patients with CVID and 19 healthy individuals. All subjects gave written 

informed consent for blood sampling and processing. The study was approved by the Ethical 

Board of the Faculty of Medicine of Lisbon. CVID patients were diagnosed according to the 

European Society for Immunodeficiency criteria (www.esid.org), namely IgG levels at least 2 

standard deviations below the mean for age and a decrease of at least one of the IgM or IgA 

isotypes, impaired Ab response to vaccines, absent/low isohemagglutinins, and exclusion of 

defined causes of hypogammaglobulinemia. 27 out of 29 CVID patients were under long-term 

IgG replacement therapy, adjusted to guarantee pre-infusion Ig levels above 650mg/dL. The two 

other CVID patients not receiving IgG had levels of total serum IgG of 227 and 473 mg/dL. 4 CVID 

patients were enrolled in a longitudinal study prior to and after starting IgG replacement 

therapy. The collection of the blood samples was always performed immediately before the 

immunoglobulin infusions in the patients under intravenous administration. 5 CVID patients 

were under subcutaneous IgG administration. 

 

Cell culture 

Fresh peripheral blood mononuclear cells (PBMCs) were isolated through Ficoll-Hypaque density 

gradient (Amersham Pharmacia Biotech), and cultured in RPMI1640 medium (Gibco-Invitrogen) 

supplemented with 10% (vol/vol) human AB serum (Sigma-Aldrich), 100 U/ml penicillin/100 

g/ml streptomycin and 2 mM glutamine (Gibco-Invitrogen). 

 

Cell stimulation and treatment 

Recombinant human BAFF and recombinant human APRIL (PeproTech) were used at 

concentrations of 100ng/mL, unless otherwise indicated. Serum from healthy donors or CVID 

patients was added at a final concentration of 10% (vol/vol) for medium supplementation, 

where indicated. 

 

B cell purification 

B lymphocytes were purified from PBMCs by negative selection (STEMCELL Technologies). The 

purity of isolated CD19+ B cells was routinely over 95%. 
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Cell staining, flow cytometric analysis and monoclonal Ab (mAb) used in flow cytometry 

Phenotypic analysis was performed in whole blood samples, after staining with mAb for 20 

minutes and red blood cells lysis using BD FACS Lysing Solution (BD Biosciences). Cultured 

PBMCs were stained for surface markers, followed by fixation with 2% formaldehyde. Samples 

were acquired on a FACSCalibur flow cytometer (BD Biosciences) and data analysed using 

CellQuest (BD Biosciences) and FlowJo (Tree Star Inc.) softwares. Results are presented as a 

proportion of total lymphocytes or of a given cell population. The following anti-human mAb 

were used, with clone and the directly conjugated fluorochrome specified in brackets: CD3 

(UCHT1; V500), CD11c (B-ly6; APC), CD38 (HB7; PE), IgD (IA6-2; PE), IgM (G20-127; APC), HLA-DR 

(L243; PerCP-Cy5-5), from BD Biosciences; CD3 (OKT3; PerCP-Cy5.5), CD8 (RPA-T8; FITC, PE and 

APC), CD14 (61D3; Efluor 450), CD16 (eBioCB16; FITC), CD19 (HIB19; PerCP-Cy5.5, PE-Cy7 and 

APC efluor 780), CD123 (6H6; PE-Cy7), CD23 (EBVCS2; APC), CD27 (O323; FITC, PE, and APC), 

CD38 (HB7; PE), CD56 (MEM188; FITC), BAFFR (8A7; FITC and PE), TACI (11H3; PE) from 

eBiosciences; CD4 (S3.5; PE) from Caltag; CD21 (BL13; FITC) from IO Test, Beckman Coulter; 

BAFFR (11C1; Alexa Fluor 647) from Biolegend. 

 

Quantification of serum levels of BAFF and APRIL 

Serum concentrations of BAFF and APRIL were quantified by Enzyme Linked Immunosorbent 

Assay (ELISA) using the BAFF Immunoassay Kit (R&D Systems) and the human APRIL ELISA (IBL 

International), respectively, according to the manufacturer's instructions. Samples were assayed 

in duplicate. 

 

Isolation of mRNA and quantitative RT-PCR 

mRNA was extracted using either the AllPrep DNA/RNA Micro Kit or the RNeasy Kit (both from 

Qiagen), according to cell numbers, following the manufacturer’s instructions. Single-stranded 

cDNA was produced by reverse transcription of 50ng of mRNA with the Superscript III First-

Strand Synthesis System and oligo (dT) (Invitrogen). The concentration of mRNA was measured 

for normalization of all amounts used for reverse transcription. Power SYBR Green PCR Master 

Mix (Applied Biosystems) and Applied Biosystems 7500 Fast (Applied Biosystem) were used for 

quantitative RT-PCR. Samples were amplified in duplicate for 40 cycles and target gene 

expression was normalized to the expression of GAPDH (encoding Glyceraldehyde 3-phosphate 

dehydrogenase). Primer pairs for quantitative RT-PCR were as follows: 5’-

GGTGGTCTCCTCTGACTTCAACA-3’ and 5’-GTTGCTGTAGCCAAATTCGTTGT-3’ for GAPDH and 

QuantiTect Primer Assay for TNFRSF13C (Qiagen). 
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Statistical analysis 

Statistical analyses were performed using GraphPad Prism version 5.0 (GraphPad Software Inc.). 

Two group comparisons were performed using Mann-Whitney test. Analysis of dependent 

samples was performed using Wilcoxon matched-pairs signed rank test. Spearman’s coefficient 

was used to determine the significance of the correlation between two variables. Results are 

expressed as meanSEM, and P-values <0.05 were considered to be significant. 
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Results 

 

Reduced ex vivo BAFF-R expression and increased TACI expression were associated with high 

serum levels of BAFF in CVID patients 

The first aim of this work was to evaluate the expression of BAFF-R and TACI on B cells 

from CVID patients, and to study its relationship with BAFF and APRIL serum levels.  

BAFF-R expression was uniformly reduced on B cells from CVID patients as compared to 

healthy individuals, and this was observed for both naïve and memory B cells (Figure 1A).  

In order to evaluate if decreased BAFF-R protein expression on B cells from CVID patients 

was a result of decreased gene expression, we assessed the mRNA levels of the TNFRSF13C 

gene, which encodes for BAFF-R, in purified B cells from CVID patients. Given the fact that we 

observed differential BAFF-R expression on memory and naïve B cells, and in order to be better 

able to overcome the possible impact of the imbalances of memory B-cell development in CVID 

patients, we selected to include in this study 3 CVID patients with frequencies of memory B cells 

within the normal range (“mem+”) and 3 CVID patients with very low memory B-cell frequencies 

(“mem-“), as well as 6 healthy controls. As expected, these selected CVID patients had lower 

BAFF-R protein expression than healthy individuals (Figure 1B). In addition, “mem-“ CVID 

patients clearly expressed less BAFF-R on their B cells as compared to “mem+” CVID patients, 

who presented BAFF-R protein levels similar to healthy controls (Figure 1B). The same trend was 

observed in relation to TNFRSF13C mRNA levels, although not as striking (Figure 1C). 

Nevertheless, BAFF-R protein levels were directly associated with the levels of TNFRSF13C mRNA 

(Figure 1D), suggesting that the events of gene and protein expression are not uncoupled in CVID 

patients. 

Importantly, when CVID were stratified according to clinical manifestations, such as 

autoimmunity, splenomegaly, adenopathies, lymphoid proliferation, or chronic diarrhoea, we 

observed that BAFF-R protein expression was uniformly decreased in all subgroups of patients, 

irrespective of clinical complications. 

On the other hand TACI expression was significantly increased on B cells from CVID 

patients, both in the naïve and memory subsets (Figure 2A). In addition, TACI levels were 

significantly increased in CVID patients with splenomegaly, as compared to those that do not 

present this clinical manifestation, when CVID patients were stratified according to clinical 

complications (Figure 2B). 
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Figure 1. B-cell expression of BAFF-R was decreased in CVID patients, irrespective of clinical phenotype. Mean 
fluorescence intensity (MFI) of BAFF-R (A) in CVID patients and healthy individuals, within total B cells and within naïve 
and memory B-cell subsets. Analysis of healthy subjects and of CVID patients further divided into two subgroups, 
namely “mem+” for patients presenting more than 25% memory B cells and “mem-“ for patients having less than 7% 
memory B cells, in relation to: (B) the mean fluorescence intensity (MFI) of BAFF-R expression within total B cells, and 
(C) mRNA transcripts for TNFRSF13C, encoding BAFF-R, assessed in purified B cells. (D) Correlation between BAFF-R 
protein expression and TNFRSF13C mRNA levels. (E) Stratification by clinical complications in CVID patients of B-cell 
expression of BAFF-R. Each dot represents one individual. Bars indicate mean. P values are shown. 

 

A negative association between BAFF-R expression and BAFF serum levels was observed 

in both CVID patients and healthy individuals (Figure 3A, left panel), that was not observed for 

APRIL (Figure 3A, right panel). On the other hand, TACI expression on memory B cells was 

directly associated with BAFF serum levels in CVID patients, but not in healthy individuals (Figure 

3B, left panel). No relationship was found with the serum levels of APRIL, which is the other 

described ligand for TACI (Figure 3B, right panel).  
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Figure 2. TACI expression was increased in CVID, particularly in patients with splenomegaly. Mean fluorescence 
intensity (MFI) of TACI (A) in CVID patients and healthy individuals, within total B cells and within naïve and memory B-
cell subsets. (B) Stratification by clinical complications in CVID patients of B-cell expression of TACI. Each dot 
represents one individual. Bars indicate mean. P values are shown. 

 

 

Figure 3. High serum levels of BAFF were associated with reduced BAFF-R expression and increased TACI in CVID. 
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Our data showing BAFF-R down-regulation in the presence of high levels of BAFF may be 

particularly relevant in CVID patients, given the increased serum levels of these cytokines that 

we and others have reported in CVID 29,30,32. Of note, high serum levels of both BAFF and APRIL 

were observed in CVID patients, irrespective of clinical manifestations, such as autoimmunity, 

splenomegaly, lymphoproliferation, adenopathies, or chronic diarrhoea (Figure 3C and 3D). 

Furthermore, our results raise the possibility that the increased serum BAFF levels may play a 

role in TACI up-regulation in CVID patients. 

 

BAFF-R protein expression was modulated upon culture in the presence of BAFF 

In order to further investigate how BAFF modulates the expression of its receptor BAFF-

R, we cultured PBMCs from the selected CVID patients and healthy controls mentioned above in 

the presence of BAFF or in medium alone, as well as in the presence of APRIL as a negative 

control, for different time points. In terms of BAFF-R protein expression, we observed that B cells 

cultured in the presence of BAFF strongly down-regulate its receptor relative to ex vivo 

expression levels, in contrast to B cells cultured in medium alone or APRIL, which gain some 

BAFF-R expression. Of note, BAFF also induces down-regulation of BAFF-R expression in CVID 

patients (Figure 4A). However, BAFF-R down-regulation by BAFF on B cells from CVID patients 

was not as striking as in healthy individuals, which could be related to the fact that B cells from 

CVID patients already express lower levels of BAFF-R ex vivo (Figure 4A). It is also possible that 

these dynamics of modulation of BAFF-R expression by BAFF are impaired in CVID patients. In 

line with this view was the fact even though B cells from CVID patients recovered some BAFF-R 

expression when they are cultured for 24h in the absence of BAFF, the levels attained were 

always lower than those observed in healthy individuals (Figure 4B). 

Next, we asked whether the down-regulation of BAFF-R expression could have an impact 

in TNFRSF13C transcription and in order to do this we quantified its mRNA levels in the different 

culture conditions previously described. TNFRSF13C transcripts did not change significantly upon 

culture, in either of the time-points assessed (Figure 4C), suggesting that BAFF is not modulating 

the expression of BAFF-R at the transcriptional level. 

 
 
 
Figure 3. (cont.) (A) Correlation between BAFF serum levels and the mean fluorescence intensity (MFI) of BAFF-R or 
TACI (left and right panels, respectively). (B) Correlation between APRIL serum levels and the MFI of BAFF-R or TACI 
(left and right panels, respectively). Stratification by clinical complications in CVID patients of BAFF (C) and APRIL (D) 
serum levels. Each dot represents one individual. Bars indicate mean. P values and Spearman’s correlation coefficients 
are shown. 
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Figure 4. BAFF-R protein expression was modulated upon culture in the presence of BAFF. (A) Fold change in the 
mean fluorescence intensity (MFI) of BAFF-R expression on B cells upon culture in the presence of either medium 
alone, BAFF or APRIL, for 4h and 24h relative to ex vivo levels, in a group of 6 CVID patients and 6 healthy individuals. 
(B) Comparison between the MFI of BAFF-R expression on B cells from healthy individuals and CVID patients, either ex 
vivo or after 24h of culture in medium alone. (C) mRNA transcripts of TNFRSF13C in cells cultured as described in A. 
Levels of TNFRSF13C expression were normalized to the relative proportion of CD19

+
 B cells present in culture. (D) 

Fold change in the MFI of BAFF-R expression on B cells upon culture in the presence of either medium alone, BAFF or 
APRIL, for 4h, 24h, 48h, 72h, and 96h, relative to ex vivo levels. Shown are the results of 3 independent experiments of 
healthy subjects. (E) Fold change in the MFI of BAFF-R expression on B cells upon short-term stimulation with either 
BAFF or APRIL. Cells were cultured for 5, 15, 30 minutes, 1 hour or 24h. After 24h of culture, cells were washed and re-
plated in medium alone for the indicated period of time. Shown are the results of 2 independent experiments of 
healthy subjects. Bars indicate mean±SEM. Each dot represents one individual. * indicates P value <0.05 relative to 
healthy individuals. 

 

Further in vitro studies in healthy individuals showed that recombinant BAFF induced 

down-regulation of BAFF-R as early as after 4h of culture, and that this effect was sustained up 

to 96h of culture, but not increased, suggesting that the maximal response to BAFF in terms of 
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BAFF-R modulation is attained very early (Figure 4D). In order to assess the possibility of BAFF 

inducing BAFF-R internalization, we performed short-term cultures with BAFF, from 5 minutes 

up to 1h. Our results showed that BAFF-R expression is down-modulated as early as after 5 

minutes of culture with BAFF (Figure 4E), suggesting that internalization might be occurring. 

Additionally, removal of BAFF from cultures resulted in BAFF-R time-dependent up-regulation. 

Next, we asked whether serum from CVID patients with high BAFF levels would be able 

to recapitulate the results obtained with recombinant BAFF, i.e., if cultures in the presence of 

autologous serum would induce per se down-regulation of BAFF-R protein expression. B cells 

from CVID patients cultured with autologous serum expressed lower levels of BAFF-R than those 

of healthy controls, consistent with the increased amount of BAFF found in the serum (Figure 

5A). In addition, this down-regulation was greater in “mem-“ than in “mem+” CVID patients, who 

behaved similarly to healthy individuals (Figure 5A). BAFF-R protein down-regulation was 

proportional to the level of BAFF found in the serum, as shown in Figure 5B. High concentrations 

of BAFF in the serum from CVID patients are thus able to recapitulate the modulation of BAFF-R 

expression driven by the addition of recombinant BAFF to the culture. 

 

 

Figure 5. Autologous serum from CVID patients was able to recapitulate the effects of recombinant BAFF in culture. 
(A) Fold change in BAFF-R MFI expression on B cells cultured in the presence of autologous serum relative to levels 
expressed on B cells cultured in medium alone.  CVID patients were divided into two subgroups: “mem+” for patients 
presenting more than 25% memory B cells; and “mem-“ for patients having less than 7% memory B cells. BAFF serum 
levels (mean±SEM) for each group of individuals is indicated below the bars. (B) Correlation between BAFF-R MFI 
expression within total B cells cultured in the presence of autologous serum and the amount of BAFF found in the 
serum, in CVID patients and healthy controls. Bars indicate mean±SEM. Each dot represents one individual. 
Spearman’s correlation coefficients are shown. 

 

Overall, we show that BAFF directly modulates BAFF-R expression both in healthy 

subjects and CVID patients. 
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BAFF-R expression and BAFF serum levels did not change significantly upon starting IgG 

replacement therapy in CVID patients 

CVID patients receive IgG replacement therapy, aiming to restore antibody levels that 

the patients are not able to produce. BAFF serum levels can change in a variety of settings29,33, 

and we hypothesized they may be modulated by the IgG treatment and the control of infections. 

We thus asked whether the introduction of IgG replacement therapy is able to correct the 

disturbances in BAFF-R and TACI expression in CVID patients. For this purpose, we performed a 

longitudinal assessment of serum BAFF levels and BAFF-R protein expression in a group of 4 CVID 

patients, prior to starting IgG replacement therapy and up to 12 months after commencing it. 

Even though inter-individual variability was high, we found that BAFF serum levels were 

remarkably stable over the time-period analyzed (Figure 6A) and that BAFF-R protein levels did 

not change significantly over time with IgG replacement therapy (Figure 6B). It is important to 

note that the major B-cell subsets that are considered in CVID, such as the frequency of memory 

B cells, switched-memory B cells, CD21lowCD38low B cells, transitional B cells and plasmablasts, 

remain virtually unchanged over the time-period analyzed following the introduction of IgG 

replacement therapy (Supplemental Figure 2A-F).  

 

Figure 6. BAFF-R expression and BAFF serum levels did not significantly change upon starting IgG replacement 
therapy. Time-course analysis of BAFF serum levels (A) and of the mean fluorescence intensity (MFI) of BAFF-R 
expression on B cells (B) in 4 CVID patients prior to and after starting IgG replacement therapy. (C) Correlation 
between MFI of BAFF-R expression within total B cells and BAFF serum levels found in the different time-points of the 
4 CVID patients. Each dot represents one individual. Spearman’s correlation coefficients are shown. 
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In addition, and in agreement with our previous observations, BAFF-R protein expression 

was inversely associated with the serum levels of BAFF when all time-points and all individuals 

were considered (Figure 6C). Thus, the relationship between BAFF serum levels and BAFF-R 

protein expression also seems to be independent of therapy and of the associated control of 

infectious events in CVID patients. 

Altogether, our data suggest that increased serum BAFF and reduced BAFF-R expression 

levels are features of CVID that are not modulated by IgG replacement therapy. 
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Discussion 

 

In this study, we showed that BAFF-R and TACI expression were altered in CVID patients, 

likely contributing to disease pathogenesis. We found that BAFF-R expression was significantly 

reduced in all B-cell subsets from CVID patients, both at the protein and the mRNA levels, 

particularly in patients with very low frequencies of memory B cells. In contrast, TACI expression 

was increased in CVID patients, especially in the memory B-cell compartment. Relevant 

polymorphisms in the genes encoding these BAFF-R and TACI were excluded in the studied CVID 

patients, given that monogenic defects have been described in rare cases (Supplemental Tables 

1 and 2). Reduced BAFF-R and increased TACI expression were both directly associated with high 

BAFF serum levels, but not APRIL. Using an in vitro culture approach, we observed that 

recombinant BAFF, as well as autologous serum, induced down-modulation of BAFF-R protein 

expression, both in healthy individuals and CVID patients. However, the degree of modulation 

seemed to be impaired in CVID patients, suggesting that these dynamics are affected. In 

addition, BAFF did not seem to regulate BAFF-R expression at the transcriptional level in this in 

vitro model. We also observed that BAFF-R expression and BAFF serum levels were rather stable 

over time in CVID patients starting IgG replacement therapy. 

Since the identification of APRIL34 and BAFF35,36 as members of the TNF family with B-cell 

stimulating capacities, and the subsequent discovery of their three receptors, BCMA, TACI37,38, 

and BAFF-R13,14, much knowledge has been gained regarding the specificities of receptor-ligand 

interactions, signalling pathways involved and biological functions1. It has been shown that BCR 

signals39,40 and TLR stimulation41,42 can increase the expression of BAFF receptors, BAFF-R and 

TACI. However, little is known about the modulation of receptor expression in response to the 

ligands themselves, particularly in humans. The negative correlation that we observed between 

BAFF serum levels and BAFF-R expression on B cells, not only in CVID patients, but also in healthy 

individuals, support the view that BAFF can actually modulate the levels of BAFF-R in a 

physiological context. It has been previously reported that high BAFF levels are associated with 

low BAFF-R expression on B cells from SLE and Sjögren’s syndrome patients, and that low BAFF-R 

expression is linked to disease activity43. The same study has also shown that the low levels of 

BAFF-R expression in Sjögren’s syndrome patients were not due to transcriptional modulation, 

since BAFF-R mRNA levels were not reduced in those patients43, in agreement with the data we 

obtained in CVID patients. Our in vitro studies showed that recombinant BAFF induced down-

regulation of BAFF-R as early as 4h of culture. This effect was sustained at later time-points, but 

not increased, suggesting that the maximal response to BAFF in terms of BAFF-R modulation is 
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achieved early on. It is possible that BAFF-R may be internalized upon BAFF binding, a process 

that was demonstrated to occur in other settings, such as in the response of T cells to IL-7, 

where the IL-7R is internalized upon binding of IL-744. This is particularly interesting as BAFF 

effects on B cells share great similarities to those of IL-7 on T cells. The possible internalization of 

BAFF-R has been discussed in the past in the contexts of SLE and Sjögren’s syndrome, even 

though hypothesis has not been formally assessed43,45. We observed BAFF-R down-regulation as 

early as after 5 minutes of stimulation with BAFF. Moreover, removal of BAFF from cultures 

resulted in BAFF-R time-dependent up-regulation. These observations suggest a dynamic 

mechanism by which BAFF is modulating BAFF-R expression, and not simply a matter of receptor 

occupancy, as it has been proposed to be underlying the low levels of BAFF-R detection on the 

surface of B cells from patients with SLE45. A component of receptor occupancy does seem to 

exist in the modulation of BAFF-R expression by BAFF, but only at high concentrations 

(>10ng/mL) and not at the levels of BAFF found in circulation in either CVID patients or healthy 

individuals (Supplemental Figure 3). However, receptor occupancy does not explain by itself the 

modulation of BAFF-R expression that we reported, even with higher concentrations of BAFF 

(Supplemental Figure 3). 

Another possibility that can be responsible for the down-regulation of BAFF-R upon BAFF 

binding is that BAFF-R is being cleaved and shed into the extracellular space. This is a rather 

interesting possibility, since it would prevent BAFF from acting on its target B cells. BAFF-R 

shedding could then act as a buffer in situations where excess BAFF is present. This mechanism 

has been described to occur for TNF receptors and to be critical for the regulation of TNF activity 

in vivo46. Although BAFF-R shedding has also been discussed in the past43,45, it has not been 

formally evaluated. TACI has been detected in a soluble form, particularly in the serum of CVID 

patients24,30, indicating that some cleavage from the cell surface can occur. Nevertheless, the 

biological relevance of this phenomenon remains elusive.  

It will be important to determine if lower BAFF-R expression on B cells from CVID 

patients render them less responsive to BAFF signals, as proposed in the case of SLE45. A 

previous study has shown that BAFF induces proliferative and antibody-secreting responses in B 

cells from some CVID patients47. However, the same study claimed that the expression of 

receptors for BAFF was not altered in those CVID patients47. 

The basis of elevated serum levels of BAFF in CVID patients is a question that remains 

unclear. It has been recently proposed that steady-state soluble BAFF levels are determined by 

the size of the B-cell pool and the availability of BAFF receptors, although the actual expression 

of these BAFF receptors has not been formally addressed31. It had already been shown in the 
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mouse that two distinct pools of BAFF actually exist: a constitutive pool that is produced by 

radiation-resistant cells and controls the size of the peripheral B cell pool; and a cytokine-

induced pool that will act at sites of inflammation7,8. We and others have shown that the highest 

serum BAFF levels are found in individuals lacking B cells, as exemplified by Congenital 

Agammaglobulinemia patients29,31,32, supporting a relevance of target availability in the 

regulation of serum BAFF levels. We could also confirm that BAFF serum levels were inversely 

correlated with both the percentage and total circulating numbers of B cells (data not shown), as 

reported by Kreuzaler and coleagues31. Several studies have investigated whether high BAFF or 

APRIL levels could be related to polymorphisms in the coding genes for these cytokines48,49. BAFF 

polymorphisms have been studied in CVID patients, but no mutations were found49. One 

polymorphism in the human APRIL gene has been found to be associated with SLE, even though 

it is also found in the healthy population and no functional assessment of this polymorphism has 

been made48. Thus, it seems unlikely that the high levels of BAFF and APRIL observed in 

autoimmune diseases and in CVID are a consequence of genetic alterations in the coding genes 

for these factors. 

The description of BAFF-transgenic mice as presenting with autoimmune manifestations 

that include autoantibody production, proteinuria and Ig deposition in the kidneys10,11 led to 

intense research about the role of BAFF in human autoimmune diseases, such as SLE, Sjögren’s 

syndrome or rheumatoid arthritis. Several reports have shown that BAFF levels are increased in 

these conditions43,50-56, but its association with disease activity is controversial. Some works 

found a direct association between high levels of BAFF and autoantibody production and disease 

stage50-53, while others did not43,55. APRIL levels have also been described to be increased in SLE 

and to be associated with autoimmune features57. Our CVID cohort has a high prevalence of 

autoimmune manifestations, as previously reported32,58. Nevertheless, despite the increased 

circulating levels of BAFF and APRIL observed in CVID patients, as previously reported29-32, we did 

not find any relationship between serum BAFF or APRIL levels and the clinical manifestations 

that CVID patients presented, namely autoimmunity, lymphoid proliferation or splenomegaly. 

Our work showed that B-cell homeostasis is likely impaired in CVID, given that 

expression of BAFF-R is significantly reduced, while TACI expression is increased in CVID patients, 

both of which in direct correlation with high serum levels of BAFF. These data raise the 

possibility of BAFF-depleting therapies being envisaged in the treatment of CVID. Understanding 

the mechanisms involved in the modulation of BAFF-R expression by its ligand BAFF will be 

crucial to clarify the role of BAFF-R dysregulation in CVID pathogenesis, in particular, and in B-

cell biology, in general. 
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Supplemental Figure 1. BAFF-R expression within peripheral blood populations. Given that cultures with BAFF were 
performed using total PBMCs and not purified B cells, the expression of BAFF-R by other cell populations was 
assessed, at the protein level. BAFF-R expression assessed by flow cytometry in B cells, monocytes, T cells, NK cells, 
plasmacytoid dendritic cells (pDCs) and basophils. Gating strategy for each population is shown, within a manually set 
lymphocyte+monocyte gate. One of two representative experiments is shown.  
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Supplemental Figure 2. B-cell populations in CVID patients before and up to 12 months after starting IgG 
replacement therapy. Frequencies of total B cells within lymphocytes (A), memory B cells (CD27

+
, B), switched-

memory B cells (CD27
+
IgD

-
, C), CD21

low
CD38

low
 B cells (D), transitional B cells (CD38

hi
IgM

hi
, E), and plasmablasts 

(CD38
hi

IgM
-
, F), in four CVID patients before (time 0) and after starting IgG replacement therapy. 
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Supplemental Figure 3. Down-regulation of BAFF-R expression upon BAFF binding appeared to occur independently 
of receptor occupancy. To analyze receptor occupancy by BAFF on BAFF-R expression, peripheral blood mononuclear 
cells were incubated for 30 minutes with increasing amounts of BAFF, either at 4ºC or 37ºC, and BAFF-R expression 
was subsequently determined and compared. Receptor occupancy is observed at 4ºC, while the observations at 37ºC 
reflect both receptor occupancy and modulation of BAFF-R expression. The grey bar represents the range of BAFF 
serum levels found in healthy individuals, while the dashed lines indicate the range of BAFF serum levels in CVID 
patients. 
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Supplemental Table 1. Analysis of sequence variants in the BAFF-R gene in the cohort of CVID patients studied. 
Work done in collaboration with Professor Lennart Hammarström (Department of Laboratory Medicine, Karolinska 
Institut, Stockholm, Sweden). 

 EXON 1 EXON 2 INTRON 1 INTRON 2 EXON 3 

CVID #001* none none none none none 

CVID #002 none none none none none 

CVID #003 none none none none none 

CVID #004 none G64V(191G/T;192C/T)het none none none 

CVID #005 none G64V(191G/T;192C/T)het none none none 

CVID #006 P21R(het) none IVS2+72G/C(het) IVS2-33T/C(het) none 

CVID #007 P21R(het) none IVS2+72G/C(het) IVS2-33T/C(hom) none 

CVID #008* none none none none none 

CVID #009 P21R(het) none none IVS2-33T/C(het) none 

CVID #010 none G64V(191G/T;192C/T)het none none none 

CVID #011 none none none none none 

CVID #012 none none none none none 

CVID #013 none none none none none 

CVID #014 none none none none none 

CVID #015 none none none none none 

CVID #016* none none none none none 

CVID #017 none none none none none 

CVID #018 P21R(het) none IVS2+72G/C(het) IVS2-33T/C(het) none 

CVID #019 none G64V(191G/T;192C/T)hom none none none 

CVID #020* none none none none none 

CVID #021 none none none none none 

CVID #022 none none none none none 

CVID #023 none none none none none 

CVID #024 P21R(het) none IVS2+72G/C(hom) IVS2-33T/C(hom) none 

CVID #025* none none none none none 

CVID #026* none none none none none 

CVID #027 none none none none none 

CVID #028 P21R(het) none none IVS2-33T/C(het) none 

CVID #029 P21R(het) none none IVS2-33T/C(het) none 

* patients selected for the study of TNFRSF13C quantification and cultures with BAFF                                                 het= 
heterozygous; hom= homozygous 
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Supplemental Table 2. Analysis of sequence variants in the TACI gene in the cohort of CVID patients studied. Work 
done in collaboration with Professor Lennart Hammarström (Department of Laboratory Medicine, Karolinska Institut, 
Stockholm, Sweden). 

 
EXON 

1 
EXON 2 EXON 3 INTRON 3 EXON 4 INTRON 4 EXON 5 3’ UTR 

CVID 
#001 

none T27T(hom) none none none none none none 

CVID 
#002 

none T27T(hom) none none none none none none 

CVID 
#003 

none T27T(hom) none none none none none none 

CVID 
#004 

none T27T(het) none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(hom) 

CVID 
#005 

none T27T(het) none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(het) 

CVID 
#006 

none T27T(hom) none none none none 
c.980-
982del 

none 

CVID 
#007 

none T27T(hom) none none none none none none 

CVID 
#008 

none T27T(hom) none none none none none none 

CVID 
#009 

none T27T(hom) none IVS3+25A>C(het) A181E(het) IVS4-84G>C(het) S277S(het) 
G or A 
(het) 

CVID 
#010 

none T27T(het) none IVS3+25A>C(hom) none IVS4+60T>C(het) 
S277S(hom) 
P251L(het) 

G or A 
(hom) 

CVID 
#011 

none T27T(hom) none none none none none none 

CVID 
#012 

none T27T(het) none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(hom) 

CVID 
#013 

none T27T(het) none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(het) 

CVID 
#014 

none T27T(hom) none none none none S277S(het) 
G or A 
(het) 

CVID 
#015 

none T27T(hom) none none none none none none 

CVID 
#016 

none T27T(hom) none none none none none none 

CVID 
#017 

none none none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(het) 

CVID 
#018 

none T27T(hom) none IVS3+25A>C(het) none none S277S(het) 
G or A 
(het) 

CVID 
#019 

none T27T(hom) none none none none none none 

CVID 
#020 

none T27T(het) none IVS3+25A>C(het) none none S277S(het) 
G or A 
(hom) 

CVID 
#021 

none T27T(hom) none none none none none none 

CVID 
#022 

none T27T(het) P97P(het) IVS3+25A>C(hom) none IVS4+60T>C(het) S277S(hom) 
G or A 
(het) 
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CVID 
#023 

none T27T(het) none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(het) 

CVID 
#024 

none T27T(het) none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(het) 

CVID 
#025 

none T27T(het) none IVS3+25A>C(hom) none IVS4+60T>C(het) 
S277S(hom) 
P251L(het) 

G or A 
(hom) 

CVID 
#026 

none T27T(het) none IVS3+25A>C(het) none IVS4+60T>C(het) S277S(het) 
G or A 
(het) 

CVID 
#027 

none T27T(hom) none none none none none none 

CVID 
#028 

none T27T(het) none none none none none none 

CVID 
#029 

none T27T(het) none none none none none none 

het= heterozygous; hom= homozygous 
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Abstract 

 

IL-17 is a pro-inflammatory cytokine implicated in autoimmune and inflammatory 

conditions. The development/survival of IL-17-producing CD4 T cells (TH17) share critical cues 

with B-cell differentiation and the circulating follicular T helper subset was recently shown to be 

enriched in TH17 cells able to help B-cell differentiation. We investigated a putative link between 

TH17-cell homeostasis and B cells by studying the TH17-cell compartment in primary B-cell 

immunodeficiencies. Common Variable Immunodeficiency Disorders (CVID), defined by defects 

in B-cell differentiation into plasma and memory B cells, are frequently associated with 

autoimmune and inflammatory manifestations but we found no relationship between these and 

TH17-cell frequency. In fact, CVID patients showed a decrease in TH17-cell frequency in parallel 

with the expansion of activated non-differentiated B cells (CD21lowCD38low). Moreover, 

Congenital Agammaglobulinemia patients, lacking B cells due to impaired early B-cell 

development, had a severe reduction of circulating TH17 cells. Finally, we found a direct 

correlation in healthy individuals between circulating TH17-cell frequency and both switched-

memory B cells and serum BAFF levels, a crucial cytokine for B-cell survival. Overall, our data 

support a relationship between TH17-cell homeostasis and B-cell maturation, with implications 

for the understanding of the pathogenesis of inflammatory/autoimmune diseases and the 

physiology of B-cell depleting therapies. 
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Introduction 

 

CD4 T cells with the ability to produce the pro-inflammatory cytokine interleukin (IL)-17, 

designated TH171-3, act as co-ordinators of the innate and adaptive immune responses to 

bacteria and fungi, in particular Candida albicans4, and have been implicated in several 

autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, systemic lupus 

erythematosus, psoriasis and Crohn’s disease5. Common Variable Immunodeficiency Disorders 

(CVID) are defined by impaired antibody production and frequently associate with autoimmune 

and inflammatory manifestations6-9. It is thus plausible that IL-17 may play a role in these 

processes.  

The defects in mature B-cell development that characterize CVID mainly result in 

impaired organization of germinal centres (GC)10, specialized structures within follicles where 

antigen-driven somatic hypermutation and class switch recombination occur, and thus the main 

source of switched-memory B cells and plasma cells11. Several molecular cues that are essential 

for B-cell differentiation in GCs are also required or may contribute to the induction and/or 

survival of TH17 cells. IL-6, a major factor for the differentiation of naive CD4 T cells into TH17 

cells3, also plays a key role in B-cell proliferation and antibody secretion12. IL-21 was first 

described as having a critical role in the regulation of antibody production by B cells13,14, and was 

later shown to be involved in TH17-cell differentiation15,16. Furthermore, IL-21 is abundantly 

produced by TH17 cells and plays an important autocrine role in their differentiation and 

maintenance4. Several co-stimulatory molecules have also been shown to play roles in both Th17 

induction and/or survival as well as in B-cell differentiation into plasma and memory B cells, 

namely ICOS and CD40L17-22. T-cell help is known to be fundamental to the induction and 

subsequent organization of GCs, enabling an adequate generation of plasma and memory B 

cells. This help is a characteristic of a particular subset of T cells, follicular helper T cells (TFH), 

identifiable by the expression of the chemokine receptor CXCR5, which is essential for their 

specific homing to follicles in lymphoid tissues, and by the production of IL-2123. Although TFH 

cells reside mainly within follicles and GCs, a population of circulating TFH cells has been 

consistently observed in humans24,25. This circulating TFH subset has been recently demonstrated 

to be a counterpart for TFH cells found in GCs26, and to be enriched not only in TH2 but also in 

TH17 cells that are able to help B-cell differentiation26. 

We hypothesized that the homeostasis of the circulating TH17 compartment may be 

related to B-cell differentiation. Confirming such a relationship would have major clinical 

implications, given the increasing use of B-cell depleting therapies in many autoimmune and 
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lymphoproliferative diseases. As a strategy to investigate the contribution of B cells to the TH17 

subset, we studied this population in CVID patients as well as in patients lacking B cells due to 

Congenital Agammaglobulinemia. This latter condition is associated with impaired early B-cell 

development in the bone marrow as a result, in the majority of cases, of mutations in the 

Bruton’s tyrosine kinase gene, usually leading to a complete lack of circulating B cells27. The 

evaluation of these primary B-cell deficiencies combined with the study of healthy individuals 

supports a link between the homeostasis of the circulating TH17-cell pool and B-cell 

differentiation. 
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Materials and Methods 

 

Ethics Statement 

All subjects gave written informed consent for blood sampling and processing. The study was 

approved by the Ethical Board of the Faculty of Medicine of Lisbon. 

 

Participants 

The study involved 30 healthy individuals, 31 patients with CVID, and 6 patients with Congenital 

Agammaglobulinemia. The clinical-epidemiological data of the three groups are summarized in 

Table 1. CVID patients were diagnosed according to the European Society for Immunodeficiency 

criteria (www.esid.org), namely decreased serum IgG as well as IgM and/or IgA levels at least 2 

SD below the mean for age, impaired antibody response to vaccines, absent/low 

isohemagglutinins, and exclusion of defined causes of hypogammaglobulinemia. The 31 CVID 

patients were not related, with the exception of two homozygous twins. All the patients with 

Congenital Agammaglobulinemia had less than 1% B cells within total peripheral lymphocytes.  

29 CVID and all Congenital Agammaglobulinemia patients were under IgG replacement therapy, 

adjusted to guarantee pre-infusion Ig levels above 650mg/dL. The two CVID patients not 

receiving IgG had levels of total serum IgG of 227 and 473 mg/dL.  

 

Monoclonal antibodies used in flow cytometry 

The following anti-human monoclonal antibodies were used, with clone and the directly 

conjugated fluorochrome specified in brackets: CD3 (SK7; peridinin chlorophyll protein (PerCP)),  

CD4 (SK3; PerCP), CD8 (SK1; PerCP and allophycocyanin (APC)-Cy7; RPA-T8; APC), CCR6 (11A9; 

phycoerythrin (PE)), CD38 (HB7; PE), CD45RA (L48; PE-Cy7), IgD (IA6-2; PE), IgM (G20-127; APC), 

HLA-DR (L243; fluorescein isothiocyanate (FITC)), IFN- (4S.B3; FITC), IL-2 (MQ1-17H12; PE), IL-4 

(MP4-25D2; PE), from BD Biosciences, San Jose, CA; CD3 (UCHT1; APC-eFluor780), CD4 (RPA-T4, 

FITC, PerCP-Cy5.5 and PE-Cy7), CD8 (RPA-T8; FITC and PE), CD19 (HIB19; PerCP-Cy5.5 and PE-

Cy7), CD27 (O323; FITC, PE, APC and PE-Cy7), CD45RO (UCHL1; PE), CD69 (FN50; FITC), CD45RA 

(HI100; FITC and APC), IL-17A (eBio64DEC17; PerCP-Cy5.5 and Alexa Fluor 647), TNF- (MAb11; 

PE), from eBiosciences, San Diego, CA; CD4 (S3.5; PE) from Caltag, Buckingham, UK; CCR7 

(150503; FITC), CXCR5 (51505.111; PE), from R&D Systems, Minneapolis, MN; CD21 (BL13; FITC) 

from IO Test, Beckman Coulter, Brea, CA.  
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Table 1. Clinical and epidemiological data of the cohorts studied 

 
Healthy CVID 

Congenital 

Agammaglobulinemiaa 

Number (male/female) 30 (9/21)d 31 (11/20) 6 (6/0) 

Age (yrs.) 4115d 
4013 245 

Clinical manifestationsb,c  

Autoimmune disease n.a. 17/31 (55%) 0 

Adenopathies n.a. 10/31 (32%) 0 

Lymphoid proliferation n.a. 18/20e (86%) 0 

Granulomas  n.a. 3/20e (15%) 0 

Chronic diarrhoea n.a. 15/31 (48%) 0 

Splenomegaly n.a. 16/31 (52%) 0 

IgG replacement therapyc  

intravenous n.a. 24/31 (77%) 6 (100%) 

subcutaneous n.a. 5/31 (16%) 0 

Length of IgG therapy (yrs.) n.a. 76 159 

n.a. not applicable, CVID: Common Variable Immunodeficiency Disorders 
a
 Genetic defects in the Btk gene were 

identified in 4 of the congenital agammaglobulinemia patients, namely IVS17-1GC, R288Q, IVS8-2AG,  and Y375X 

mutations; in the other 2 patients, Btk mutations have been excluded and other genes are currently being evaluated.
 b

 

Diagnostic criteria: Autoimmune disease - clinical data, given the impairment in Ab production; Adenopathies - lymph 

node larger than 1cm diameter in 2 or more lymphatic chains in clinical and/or imaging exams; Lymphoid proliferation 

and Granulomas - diffuse lymphocytic infiltrates or granulomas on gastrointestinal, lymph node or pulmonary 

biopsies; Splenomegaly - longitudinal spleen diameter superior to 15cm (computed tomography or ultrasonography). 
c
 

Percentage within total cohort evaluated in brackets. 
d
 15/30 healthy subjects were included in detailed 

immunological studies (10 female; age 39±11 years). 
e
 Total number of individuals with biopsies. 

 

 

Cell staining and flow cytometric analysis 

Phenotypic analysis was performed in whole blood samples collected immediately before IgG 

administration, after staining with monoclonal antibodies and red blood cells lysis using BD FACS 

Lysing Solution (BD Biosciences). Samples were acquired on a FACSCalibur or on a FACSCanto 

flow cytometer (BD Biosciences). A minimum of 100,000 lymphocytes were acquired per sample. 

Data were analysed using CellQuest Software (BD Biosciences) and FlowJo Software (Tree Star 

Inc., Ashland, OR). Total cell numbers were calculated by multiplying the percentage of each 

population within total lymphocytes by the peripheral blood lymphocyte count obtained at the 

clinical laboratory on the day of sampling. 
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Analysis of cytokine production 

Freshly isolated peripheral blood mononuclear cells (PBMC) by Ficoll-Hypaque density gradient 

(Amersham Pharmacia Biotech, Uppsala, Sweden) were assessed for cytokine production at the 

single-cell level, as previously described28. Briefly, after a 4-hour culture with phorbol myristate 

acetate (PMA) (50ng/mL, Sigma-Aldrich) plus ionomycin (500ng/mL; Calbiochem, Merck 

Biosciences, Nottingham, U.K.), in the presence of brefeldin A (10g/mL; Sigma-Aldrich), PBMC 

were surface stained and then fixed (2% formaldehyde; Sigma-Aldrich, St Louis, MO), 

permeabilized (phosphate buffered saline/1% bovine serum albumin/0.5% saponin) (Sigma-

Aldrich)  and stained intracellularly with monoclonal antibodies against IL-2, IL-4, IFN-, TNF- 

and IL-17. Flow cytometric analysis was subsequently performed as described above.  

 

Quantification of serum levels of BAFF 

Serum concentrations of BAFF (BlyS/TNFSF13B; B-cell activating factor) were quantified by 

Enzyme Linked Immunosorbent Assay (ELISA) using the BAFF Immunoassay Kit (R&D Systems), 

according to the manufacturer's instructions. 

 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism version 5.0 (GraphPad Software Inc, 

SD). Two group comparisons were performed using Mann-Whitney test. Spearman’s coefficient 

was used to determine the significance of the correlation between two variables. Results are 

expressed as meanSEM, and P-values <0.05 were considered to be significant. 
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Results 

 

TH17 cells in patients with CVID  

We evaluated, for the first time, the frequency of circulating TH17 cells in CVID. Our CVID 

cohort (Table 1) featured the characteristic impairment of GC organization and generation of B-

cell memory, demonstrated by the striking decrease in the frequency of switched-memory B 

cells, accumulation of CD38hiIgMhi transitional B cells, and expansion of CD21lowCD38low B cells, a 

population believed to be related to continuous B-cell activation in the presence of impaired GC 

function29,30 (Supplemental Figure S1A and S1B). No association was observed between the 

frequency of TH17 cells and transitional B cells, a pre-GC B-cell population (Figure 1A).  In 

contrast, we found a statistically significant negative correlation between TH17 cells and 

CD21lowCD38low B cells, in CVID patients (Figure 1A), 

 

Figure 1. TH17 cells in patients with CVID. (A) Correlation between TH17 frequency and frequency of switched-
memory B cells (left), transitional B cells (middle) or CD21

low
 B cells (right), in CVID patients. Switched-memory B cells 

were defined as CD27
+
 IgD

-
 cells,  transitional B cells as CD38

high
 IgM

high
 cells and CD21

low
 B cells were defined as 

CD21
low

 CD38
low

 cells within gated B cells (CD19
+
) after surface staining of whole blood samples. IL-17 expression was 

assessed at the single-cell level by intracellular staining following short-term stimulation of PBMC with PMA and 
ionomycin.  (B) TH17 frequency in CVID individuals stratified according to their clinical manifestations, namely 
autoimmunity, lymphoid proliferation, splenomegaly, and adenopathies.  (C)  TH17 frequency in healthy controls and 
CVID patients grouped according to EUROclass. (D) Correlations between frequencies of activated CD4 T cells, defined 
by concurrent expression of HLA-DR and CD38, and of TH17 cells in CVID and healthy individuals. Each symbol 
represents one individual. Bars represent mean. Data were compared using Mann-Whitney test, and P values are 
shown. Correlation significance was assessed using Spearman coefficient test, and r and P values are shown. 
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suggesting a decline in the frequency of circulating TH17 cells that matched the B-cell 

disturbances indicative of GC disruption. The fact that we did not observe a relationship with the 

frequency of switched-memory B cells is likely related to the heterogeneity of blocks in GC 

differentiation that CVID patients present10. Our CVID cohort presented an unusually high 

proportion of autoimmune and lymphoproliferative manifestations (Table 1), possibly related to 

a reference bias associated with an immunology department in a central hospital. We next 

assessed whether these inflammatory and autoimmune manifestations could be related to an 

expansion of TH17 cells, as reported in other autoimmune settings5. We found no increase in the 

frequency of TH17 cells in CVID patients with autoimmunity (Figure 1B), even when CVID patients 

were split according to the type of autoimmune manifestation, namely autoimmune cytopenias 

and organ specific autoimmunity (data not shown). In contrast, the CD21lowCD38low B-cell subset 

was significantly expanded in the subgroup of CVID patients with autoimmunity (Supporting 

Information, Figure S1C).  

CVID patients have been classified according to the previously mentioned B-cell sub-

populations9. The stratification of our CVID cohort according to the EUROclass classification9 

revealed that a statistically significant decrease in TH17 frequency was restricted to the group 

with less than 2% switched-memory B cells and more than 10% CD21lowCD38low B cells (Figure 

1C), in agreement with the above results.  

Several T-cell imbalances were also observed in the CVID cohort, as previously 

reported31, namely an expansion of effector-memory T cells, increased production of the pro-

inflammatory cytokines interferon (IFN)- and tumour necrosis factor (TNF)-, and up-regulation 

of activation markers within both CD4 and CD8 T cells (Supplemental Figure S2). Of note, the 

frequency of TH17 cells was found to negatively correlate with CD4 T-cell activation in CVID 

patients (Figure 1D), with no relationship with naïve/memory T-cell imbalances (correlation with 

the frequency of naïve cells within CD4 T cells, r=0.3065, P=.1058). In contrast, the frequency of 

IFN--producing cells was found to negatively correlate with naïve CD4 T cells (r=-0.8199, 

P<.0001) and positively with the levels of CD4 T-cell activation in CVID patients (r=0.6098, 

P=.0003). Similar relationships were observed with the expression levels of activation markers 

within the CD8 T-cell subset (data not shown). We also investigated whether the increased 

production of IFN- observed in CVID patients had an impact on the concomitant production of 

this cytokine by TH17 cells. We found no significant differences in the proportion of IFN-+ cells 

within the IL-17-producing CD4 subset as compared to healthy subjects (22.55%±2.34% in CVID 

and 14.45%±1.70% in healthy, P=.0567) and no relationship between the frequencies of IFN-- 

and IL-17-producing CD4 T cells (r=-0.2504, P=.1821). Moreover, in contrast to IFN--producing 
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CD4 T cells, no association was found between the frequency of IL-17+IFN-+ CD4 T cells and the 

naïve/memory imbalances (P>.1500).  

In conclusion, no association between TH17 cells and autoimmune manifestations or 

production of other pro-inflammatory cytokines was observed in CVID patients. The levels of 

TH17 cells were apparently more directly related to B-cell differentiation than to T-cell 

disturbances, showing a negative correlation with the pathological expansion of a B-cell 

population associated with impaired GC function (CD21lowCD38low B cells) in CVID. 

 

Decreased frequency of TH17 cells in individuals without B cells 

In order to further investigate the relationship between B cells and the IL-17-producing 

CD4 subset, we evaluated this population in individuals with Congenital Agammaglobulinemia, 

who lack mature B cells due to genetic defects impairing early B-cell development27 (Table 1).  A 

marked reduction in the frequency of TH17 cells was found in these patients (Figure 2A and 2B). 

 

 

Figure 2. Decreased frequency of TH17 cells in individuals lacking B cells. (A) Representative dot-plots of the analysis 

of IFN- and IL-17 production by CD4 T cells, determined by intracellular staining, for a healthy individual (left), a CVID 
patient (middle) and a Congenital Agammaglobulinemia (Agamma) patient (right). Numbers inside dot-plots represent 
the proportion of cells expressing the markers. (B) Frequency of TH17 cells (left) and CXCR5

+
 CD4 T cells (right) in 

healthy individuals and Congenital Agammaglobulinemia patients (Agamma). Each symbol represents one individual. 
Bars represent mean. Data were compared using Mann-Whitney test, and P values are shown. 

In spite of the reduced TH17 frequency, these patients do not exhibit a major increase in 

the frequency of infections with Candida albicans, which may be related to the preservation of 

innate sources of IL-17, such as  T cells, natural killer T cells or myeloid cells.  
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Of note, these individuals featured neither significant naïve T-cell imbalances, nor major 

alterations in the levels of T-cell activation nor frequencies of IFN--, TNF--, IL-2- or IL-4-

producing cells, as compared to healthy subjects (Supplemental Figure S2).  

Importantly, a significant reduction of circulating TFH cells was found in these patients 

(Figure 2B), likely related to decreased GC generation in the context of Congenital 

Agammaglobulinemia, as recently reported32. A decrease in this circulating CD4 T-cell population 

has also been described in the context of human ICOS-deficiency, a situation in which the 

generation of GCs is known to be severely perturbed33. 

In conclusion, we report here a major reduction in the TH17-cell pool in patients lacking B 

cells. 

 

Direct correlation between the frequency of circulating TH17 cells and switched-memory B cells in 

healthy individuals 

Our findings suggesting a relationship between the homeostasis of the circulating TH17 

compartment and B-cell disturbances led us to investigate this putative relationship in healthy 

individuals. We found a direct correlation between the frequency of CD4 T cells able to produce 

IL-17 and the frequency of B cells exhibiting a switched-memory phenotype in these individuals 

(Figure 3). This relationship was also observed when absolute numbers of the circulating 

populations were considered (r=0.4565, P=.0249). 

 

 

Figure 3. Direct correlation between the frequencies of circulating TH17 cells and switched-memory B cells in 
healthy individuals. Correlation between the frequencies of switched-memory (CD27

+
IgD

-
) B cells and TH17 cells in 

healthy individuals. Each symbol represents one healthy individual. Correlation significance was assessed using 
Spearman coefficient test, and r and P values are shown. 

In addition, healthy individuals exhibited a negative correlation between the frequency 

of TH17 cells and the serum levels of B-cell activating factor (BAFF) (Figure 4A), a critical cytokine 

for B-cell differentiation and survival34. In contrast, we did not observe any relationship between 
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BAFF serum levels and the production of other pro-inflammatory cytokines, such as IFN- and 

TNF-, or IL-4 (data not shown), thus highlighting the specificity of the link to TH17 cells. These 

results are in conformity with our previous observation of a relationship between IL-17 

production by CD4 T cells and B-cell maturation in the context of primary B-cell deficiencies. 

 

 

Figure 4. Negative correlation between the frequency of TH17 cells and serum BAFF levels in healthy subjects. (A) 
Correlation between the frequency of TH17 cells and serum levels of the cytokine BAFF, as determined by ELISA, in 
healthy individuals. (B) Analyses of the serum levels of BAFF in healthy individuals, CVID and Congenital 
Agammaglobulinemia patients. Each symbol represents one individual. Data were compared using Mann-Whitney 
test, and P values are shown. (C) The same correlation described in (A) for CVID patients and Congenital 
Agammaglobulinemia patients. Each symbol represents one individual. Correlation significance was determined using 
Spearman coefficient test, and r and P values are shown. 

 

It has recently been demonstrated in mice that local BAFF-gene targeting in dendritic 

cells suppressed both the generation of plasma cells and TH17 cells35, suggesting that BAFF 

promotes TH17-cell proliferation and expansion, possibly through the modulation of the cytokine 

milieu. However, providing our finding of a negative association between BAFF and IL-17 we 

hypothesize that BAFF effects may be indirectly mediated by the B-cell subset. In order to 

further investigate this possibility we quantified serum BAFF levels in the CVID and Congenital 

Agammaglobulinemia cohorts. In agreement with recent reports36,37, serum BAFF levels were 

significantly increased in CVID patients, and were even higher in Congenital 

Agammaglobulinemia, reaching statistical significance in comparison to both healthy individuals 

and to CVID patients (Figure 4B). However, no correlation was found between BAFF serum levels 
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and the frequency of TH17 cells in CVID and Congenital Agammaglobulinemia patients (Figure 

4C). Notably, in the absence of B cells as illustrated by Congenital Agammaglobulinemia patients, 

very high levels of BAFF may be associated with very low frequencies of TH17 cells (Figure 4C), 

not supporting a direct role of BAFF in the induction/survival of TH17 cells. Overall, our data 

suggest that the association between IL-17-producing CD4 T cells and BAFF is likely related to its 

effects on B cells. 
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Discussion 

 

We report here an association between the frequencies of TH17 cells and switched-

memory B cells in healthy individuals, and a marked reduction of this CD4 subset in patients with 

congenital absence of peripheral B cells. Additionally, in patients with primary defects in mature 

B-cell differentiation, the frequency of TH17 cells was inversely correlated with markers of GC 

impairment, further supporting the link between B cells and the differentiation or maintenance 

of TH17 cells.  

Our data generated in human B-cell deficiencies suggest, for the first time, that B cells 

play a role in the homeostasis of the TH17 subset. On the other hand, several previous reports 

have implicated IL-17 in B-cell differentiation and function. A recent report38 suggested that IL-

17 and possibly TH17 cells can contribute to GC function in general. This work using BXD2 mice, 

which develop spontaneous erosive arthritis associated with auto-antibody production, showed 

that the enhanced somatic hypermutation and class-switch recombination found in these 

animals resulted from the direct action of IL-17 on B cells, leading to increased frequency and 

duration of GCs38. Recent data from human studies also suggest that TH17 cells may contribute 

to the generation of ectopic GCs within kidney allografts through the production of IL-2139, 

further establishing a link between IL-17 and B-cell function. Importantly, IL-17 alone has been 

described to promote human B-cell survival and to synergize with BAFF to induce B-cell 

proliferation and differentiation into antibody-secreting plasma cells40. Recent reports have, in 

this sense, established a direct impact of IL-17 on B cells38,40, with respect to proliferation, 

survival and antibody production, and have shown that TH17 cells can act as B-cell helpers41. Our 

observation of markedly reduced levels of TH17 cells in the absence of other major T-cell 

imbalances in patients with congenital absence of B cells suggests an important contribution of B 

cells to the homeostasis of TH17 cells. Although the number of patients with this rare 

immunodeficiency under follow-up is small, the remarkable consistency of the results generated 

in these patients strengthens our finding of a reduced TH17 compartment in Congenital 

Agammaglobulinemia. Such a relationship was further supported by the negative correlation 

between TH17 frequency and the expansion of the CD21lowCD38low B-cell subset in CVID patients, 

a pathological B-cell population resulting from altered B-cell activation associated with defects in 

GC function29,30.  

Our results raise the possibility of a follicular contribution to the maintenance of the 

TH17-cell subset, a notion further supported by a recent report26. We were able to reveal a 

fraction of TH17 cells expressing both CXCR5 and CCR7, in addition to CCR6, likely having the 
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potential to home to follicles (data not shown). This is particularly relevant given the fact that 

circulating TFH cells were reported to be enriched in TH17 cells that are able to help B-cell 

differentiation26. We have studied this population in patients without peripheral B cells due to 

early defects in B-cell development, which, as described in ICOS-deficient patients33,42, are 

expected to have reduced generation of GCs. We found the circulating CXCR5+ CD4 T-cell 

population to be significantly diminished in these patients, as compared to healthy subjects, in 

agreement with a recent report32, further supporting the notion of circulating TFH cells being 

counterparts of the follicular helper T cells found in GCs. Our results suggest that the impairment 

in GC generation may underlie the reduced frequencies of both TFH and TH17 cells. 

Contrary to what we observed in Congenital Agammaglobulinemia, CVID patients presented with 

several T-cell imbalances31, namely an increase in the production of the pro-inflammatory 

cytokines IFN- and TNF-, in direct correlation with the up-regulation of activation markers. We 

found that the TH17-cell population decreased concurrently with the hyper-activated state, 

suggesting that a different mechanism is involved in its regulation in CVID patients. Furthermore, 

a significant proportion of our CVID cohort featured autoimmune manifestations and some 

patients exhibited inflammatory processes that shared similarities with the pathology of Crohn’s 

disease, a condition in which TH17 cells have been implicated5,43. However, in contrast to Crohn’s 

disease, it has been shown that CVID patients with symptomatic gut inflammation exhibit a 

reduced ability to produce IL-17 and IL-23 by the lamina propria mononuclear cells, in spite of 

increased IL-12 and IFN- secretion43. Importantly, we found no increase in the frequency of CD4 

T cells able to produce IL-17 in CVID patients presenting with autoimmune disease, either with 

autoimmune cytopenia or other autoimmune disorders. In fact, an inverse correlation was found 

with the expansion of the CD21lowCD38low B-cell subset that has been implicated in 

autoimmunity. These findings are particularly relevant given that our cohort presents an 

exceptionally high prevalence of autoimmune manifestations. 

A recent report suggested that the commercial immunoglobulin (Ig) used in intravenous 

therapy has the ability to inhibit the differentiation, amplification and function of human TH17 

cells in vitro44. However, such an effect is unlikely to account for the observations described 

here, since both Congenital Agammaglobulinemia and CVID patients undergo replacement 

therapy with Ig (Table 1). 

The development and homeostasis of TH17 cells and memory B cells share several 

determinants. Tumour growth factor (TGF)- has a unique role in driving IgA isotype switching, 

which is the major Ig type produced at mucosal sites45, and is also critical for TH17-cell 

differentiation15,16.  Both IgA and IL-17-producing CD4 T cells have an important function in the 
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modulation of gut flora and mucosal immunity45. It is thus plausible that the link between IL-17 

production and B-cell function could mainly lie in the isotype switch to IgA, a notion further 

supported by the fact that patients with Congenital Agammaglobulinemia or CVID have impaired 

IgA production. This possibility led us to investigate the frequency of circulating TH17 cells in 

patients with selective IgA deficiency. However, no imbalances in this CD4 subset were found in 

patients with undetectable serum levels of IgA as compared to healthy individuals (data not 

shown), suggesting that the link between B cells and IL-17 production is not dependent of the 

development of IgA-producing cells. It is unlikely that a unique molecule or pathway determine 

the impact of B cells in the homeostasis of the TH17 subset, being more plausible that several 

mechanisms are involved, either through direct interactions or through the influence of factors 

modulated by B cells. 

BAFF is a crucial survival factor for peripheral B cells. As expected from previous reports, 

both CVID and Congenital Agammaglobulinemia patients presented highly increased serum 

levels of this cytokine36,37. Although increased BAFF production by cells of the innate immune 

system, such as neutrophils, macrophages, monocytes and dendritic cells, could be enhanced in 

these patients, contributing to these increased levels, it is more likely that they resulted from 

reduced consumption of BAFF due to the decreased number of target cells in both conditions. 

This latter hypothesis is supported by the fact that B-cell depletion upon rituximab treatment, a 

monoclonal antibody targeting CD20, results in significantly increased levels of BAFF that return 

to baseline levels upon B-cell re-population46. Thus, high BAFF levels may be considered a 

measure of B-cell dysfunction and, in this sense, the negative correlation we report in healthy 

individuals between the frequency of TH17 cells and the serum levels of BAFF further 

strengthens the link between IL-17 production and B-cell maturation. 

B cell-depleting therapies have been increasingly used in various clinical settings, 

including pathologies where IL-17 has been implicated46-48. Additionally, BAFF-targeting 

therapies offer a promising approach for autoimmune/inflammatory disorders46,48. Our data 

raise the possibility that these treatments may have an impact on TH17 cells and, in this way, 

influence the clinical outcome mediated by these therapeutic strategies. In line with these 

observations, a very recent report has shown that rituximab treatment selectively reduces the 

TH17-cell response in rheumatoid arthritis patients49. Nevertheless, such an inhibition does not 

seem to lead to an increased frequency of mucocutaneous candidiasis in rituximab-treated 

patients49, an infection associated with TH17 deficiency. 

In conclusion, our data show, for the first time, that the induction/proliferation/survival 

of TH17 cells is related to B-cell function. These results provide support for a link between TH17 
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and B cells that is relevant for the understanding of the pathogenesis of 

inflammatory/autoimmune diseases as well as the mechanisms underlying the effects of 

therapeutic strategies targeting B cells. 
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Supplemental Data 

 

 

 

Supplemental Figure 1. B-cell disturbances in CVID patients. (A) Representative plots of the flow cytometry analysis 
of switched-memory B cells (top), CD21

low
CD38

low
 B cells (middle) and transitional B cells (bottom), in healthy 

individuals (left panels) and CVID patients (right panels). Numbers represent the percentage of the given population 
within CD19

+
 cells. (B) Comparison of the frequencies of these B-cell subsets in CVID and in healthy individuals. (C) 

Frequency of CD21
low

CD38
low

 within B cells in healthy controls and CVID individuals stratified according to their clinical 
manifestations, namely autoimmunity, lymphoid proliferation, splenomegaly, and adenopathies.  Each symbol 
represents one individual. Bars represent mean. Data were compared using Mann-Whitney test, and P values are 
shown. 
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Supplemental Figure 2. T-cell disturbances in CVID and Congenital Agammaglobulinemia patients. Analysis of: (A) 
frequency and absolute numbers of naïve (CD45RA

+
CD27

+
) within CD4 T cells; (B) frequency and absolute numbers of 

naïve (CD45RA
+
CD27

+
) and terminally-differentiated (CD45RA

+
CD27

-
) within CD8 T cells; (C) frequency of activated 

(HLA-DR
+
CD38

+
) within CD4 T cells and CD8 T cells; and (D) frequencies of IFN--, TNF--, IL-4-, and IL-2-producing CD4 

T cells assessed at the single-cell level by intracellular staining following short-term PBMC stimulation with PMA and 

ionomycin. Bars represent meanSEM. Data were compared using Mann-Whitney test, and P values are shown. 
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3.2 – SUPPLEMENT A 

EVALUATION OF THE FREQUENCY OF TH17 CELLS IN PATIENTS WITH 

SELECTIVE IgA DEFICIENCY 

 

 

As mentioned previously, the development and homeostasis of TH17 cells and B-

differentiation share several molecular factors. Both patients with Congenital 

Agammaglobulinemia or CVID have impaired IgA production. TGF- has a crucial role in B-cell 

function by driving IgA isotype switching, which is the major Ig type produced at mucosal sites1. 

TGF- is also critical for TH17-cell differentiation2,3. Given that both IgA and TH17 cells have an 

important function in the modulation of gut flora and mucosal immunity1, it is thus reasonable 

to speculate that the link between IL-17 production and B-cell function that we described could 

primarily lie in the isotype switch to IgA. This reasoning led us to investigate the frequency of 

circulating TH17 cells in patients with selective IgA deficiency (sIgAD). We have used strict criteria 

to define selective IgA deficiency, including undetectable serum levels of IgA, and we evaluated 

the frequency of circulating CD4 T cells able to produce IL-17, using the protocols described in 

Chapter 3.2.  

 

 

Figure 1. Frequency of TH17 cells in patients with selective IgA deficiency (sIgAD). Comparison of the frequency of IL-
17-producing CD4 T cells between healthy individuals (filled circles) and sIgAD patients (grey triangles), as determined 
by intracellular staining at the single-cell level. Each symbol represents one individual. Bars represent the mean value. 
Data were compared using the Mann-Whitney test, and p values are shown. 
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We found no difference between patients with sIgAD and healthy individuals in what 

concerns the frequency of IL-17-producing CD4 T cells (Figure 1). Our data thus suggest that the 

relation between B cells and IL-17 production is not dependent on the isotype switch to IgA.  
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3.2 – SUPPLEMENT B 

DIFFERENTIATION OF TH17 CELLS FROM NAÏVE CD4 T CELLS FROM 

CONGENITAL AGAMMAGLOBULINEMIA PATIENTS 

 

 

Our observation of markedly reduced frequencies of IL-17-producing CD4 T cells in 

patients with Congenital Agammaglobulinemia (see Chapter 3.2), who lack circulating B cells, has 

led us to question whether TH17 differentiation was affected in these patients. 

In order to assess this possibility, we have optimized an in vitro TH17 differentiation 

protocol using isolated naive CD4 T cells from Congenital Agammaglobulinemia patients with 

defined mutations in the Btk gene (X-Linked Agammaglobulinemia patients).  

Human TH17 differentiation was first described to depend on IL-23 and IL-11 or IL-1 

and IL-62. In these reports, both TGF- and IL-12 were shown to inhibit TH17 differentiation2. 

However, later on it has been shown that TGF- is actually required for TH17 differentiation, 

although at very low levels, while it can have an inhibitory effect when present at higher 

concentrations3. We have chosen to employ a protocol4 that combines the use of special culture 

medium (IMDM - Iscove’s modified Dulbecco’s medium), in the presence or absence of low 

concentrations of TGF- (0.5ng/mL), and a cytokine mix composed of IL-6, IL-1 and IL-23, in the 

presence of blocking antibodies against IFN- and IL-4, to help prevent potential TH1 and TH2 

polarization, respectively. Naive CD45RA+CD45RO- CD4 T cells were isolated using an EasySep 

magnetic kit and cultured for 5 days with -CD3 and -CD28 antibodies to provide TCR and co-

stimulation, and IL-2, in the described conditions. Five healthy controls and four XLA patients 

were studied in parallel. 

Figure 1A illustrates the variability of TH17 polarization between individuals and different 

experiments after five days of culture. Nevertheless, TH17 polarization was always more effective 

in the condition where TGF- was not added to the culture medium (“cytokine mix”).  
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Figure 1. TH17 differentiation in naïve CD4 T cells from Congenital Agammaglobulinemia patients. (A) Flow 

cytometry plots representing IL-17 and IFN- expression in naïve CD4 T cells cultured for five days in different 

conditions: medium alone (“medium”), -CD3/CD28 plus IL-2 (“IL-2”), -CD3/CD28 plus IL-2 and cytokine cocktail for 

TH17 differentiation in the presence (“cytokine mix+TGF-”) or not (“cytokine mix”) of TGF-. Shown are the different 
pairs of healthy (Healthy) and Congenital Agammaglobulinemia (Agamma) individuals studied in parallel. (B and C) 

Frequency of IFN-
+
 (B) and IL-17

+
 (C) cells recovered from each culture condition, as described in (A). Healthy 

individuals are shown as filled circles and Congenital Agammaglobulinemia patients as grey squares. Each symbol 
represents one individual. Bars represent mean value. Data were compared using the Mann-Whitney test, and p 
values are shown. (D) Comparison between healthy individuals and Congenital Agammaglobulinemia patients studied 

in parallel, in what concerns IFN- (left panel) and IL-17 (right panel) expression. 

 

TH17 polarization appeared to be defective in XLA patients, while TH1 polarization was 

normal (Figure 1A-D).  

Even though our results are highly preliminary and need to be further confirmed, they 

suggest that the reduced ex vivo frequency of TH17 cells found in Congenital 

Agammaglobulinemia patients can be directly related to a lower cell-specific ability to 

differentiate into the TH17 pathway.  
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Methods 

 

In vitro differentiation of TH17 cells 

Naive (CD45RA+CD45RO-) CD4 T cells were isolated through magnetic negative selection using a 

kit from EasySep (StemCell Technologies). Cells were cultured in IMDM (Iscove’s modified 

Dulbecco’s medium) (Gibco, Invitrogen) supplemented with 5% fetal bovine serum (Gibco, 

Invitrogen), 1% Pen/Strep (Gibco, Invitrogen), and 1% non-essential aminoacids (Gibco, 

Invitrogen). Different culture conditions were assessed: medium alone; immobilized -CD3 

(1ug/mL; Ebioscience) and -CD28 (2.5ug/mL; Ebioscience) plus IL-2 (10U/mL; obtained through 

the National Institutes of Health (NIH)/AIDS Research and Reference Program, Division of AIDS, 

National Institute of Allergy and Infectious Diseases, NIH [IL-2] from Hoffman-La Roche); -

CD3/CD28 plus IL-2 in the presence of a Th17 cytokine differentiation cocktail [IL-6 (30ng/mL), IL-

1 (10ng/mL), IL-23 (10ng/mL); -IFN- (5ug/mL), -IL-4 (5ug/mL); all from Ebioscience], in the 

presence or not of TGF- (0.5ng/mL; Peprotech). Cells were cultured for five days at a 

concentration of 5x105/mL. Following the culture period, cells were assessed for cytokine 

production at the single-cell level, as previously described5. Briefly, after a 4-hour culture with 

phorbol myristate acetate (PMA) (50ng/mL, Sigma-Aldrich) plus ionomycin (500ng/mL; 

Calbiochem, Merck Biosciences), in the presence of brefeldin A (10g/mL; Sigma-Aldrich), cells 

were surface stained and then fixed (2% formaldehyde; Sigma-Aldrich), permeabilized 

(phosphate buffered saline/1% bovine serum albumin/0.5% saponin) (Sigma-Aldrich)  and 

stained intracellularly with monoclonal antibodies against IL-4, IFN-, and IL-17. Flow cytometric 

analysis was subsequently performed. Samples were acquired on a FACSCalibur (BD Biosciences) 

and data were analysed using FlowJo Software (Tree Star Inc.). 

  



Chapter 3 – Results 
3.2. Supplement B – Differentiation of TH17 cells in Congenital Agammaglobulinemia patients 

133 

 

References 

 

1. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 
17-producing helper T cells. Nat Immunol. 2007;8:950-957. 

2. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not 
transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T 
helper cells. Nat Immunol. 2007;8:942-949. 

3. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming 
growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9:641-649. 

4. Veldhoen M, Hirota K, Christensen J, O'Garra A, Stockinger B. Natural agonists for aryl hydrocarbon 
receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med. 
2009;206:43-49. 

5. Sousa AE, Chaves AF, Loureiro A, Victorino RM. Comparison of the frequency of interleukin (IL)-2-, 
interferon-gamma-, and IL-4-producing T cells in 2 diseases, human immunodeficiency virus types 1 and 2, 
with distinct clinical outcomes. J Infect Dis. 2001;184:552-559. 
 

 
 
  



134 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 – Results 
3.2. Supplement C – Regulatory T cells in CVID 

135 

 

 

 

 

 

3.2 – SUPPLEMENT C 

REGULATORY T CELLS IN COMMON VARIABLE IMMUNODEFICIENCY 

 

 

Treg and TH17 cells are believed to possess reciprocal pathways of differentiation1. 

Several reports have described a decrease in the frequency of Treg cells in of CVID patients2,3 and 

a link to autoimmunity has been proposed4,5. However, important questions prevail, namely 

concerning how these alterations are related to the TH17 compartment. It was thus our aim to 

determine the relationship between Treg cells and TH17 cells in CVID patients, for which purpose 

Treg cells were quantified in terms of FOXP3 and CD25 expression and characterized for the 

expression of naïve/memory markers and markers of Treg-associated function.  

 

Regulatory T cells in Common Variable Immunodeficiency 

We analysed the population of Treg cells in our cohort of CVID patients, using both FOXP3 

and CD25 expression to identify these cells. CD25, the alpha-chain of the IL-2 receptor, is up-

regulated upon TCR stimulation and is constitutively expressed at high levels by Treg cells6-10. It 

can also be up-regulated upon stimulation with c cytokines11-13. Expression of the FOXP3, a 

transcription factor associated with Treg differentiation14-16, is currently considered the best 

available Treg marker. However, it has also been shown that it may be up-regulated upon T-cell 

activation17,18.  

We observed that the frequency of FOXP3+ cells within CD4 T cells shows a trend to be 

increased in CVID patients as compared to healthy individuals (Figure 1B and 1C). However, 

CD25 expression was significantly decreased in CVID patients, both in terms of total CD25+ within 

CD4 T cells as well as CD25bright CD4 T cells (Figure 1A, 1D and 1E, respectively). Of note, this 

reduction of CD25 expression does not seem to have an impact on the frequency of 

FOXP3+CD25+ CD4 T cells, since it was similar between CVID patients and healthy individuals 

(Figure 1F). This decrease in CD25 expression was not apparently related to a decrease in the 

ability to produce IL-2 since the proportion of IL-2-producing cells was relatively preserved (see 

Chapter 3.2, Supplemental Figure 2).  
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Importantly, we observed an expansion of FOXP3+CD25- CD4 T cells in CVID patients 

(Figure 1G). This population has been shown to be also expanded in the context of SLE19,20. 

However, its function remains elusive21, with reports showing that FOXP3+CD25- CD4 T cells are 

phenotypically and functionally similar to Treg cells and thus would represent dysfunctional Treg
22, 

while others concluded that this population most likely represents previously activated 

conventional T cells, since they are able to produce considerable amounts of cytokines, contrary 

to true Treg cells23.  

 

 

Figure 1. CVID was associated with decreased CD25 expression, while FOXP3 expression was maintained. (A and B) 
Representative flow cytometric plots of CD25 and FOXP3 expression in a healthy individual and a CVID patient. (C to 
G) Frequency of different regulatory T-cell populations, as defined by FOXP3 and/or CD25 expression, in healthy 
controls (filled circles) and CVID patients (open squares). Frequency of FOXP3

+
 (C), CD25

+
 (D), CD25

bright
 (E), 

FOXP3
+
CD25

+
 (F) and FOXP3

+
CD25

-
 (G) within CD4 T cells. Each symbol represents one individual. Bars represent the 

mean value. Data were compared using the Mann-Whitney test, and p values are shown. 

 

Nevertheless, the expansion of FOXP3+CD25- CD4 T cells has been associated with disease 

activity and severity and also with the titres of autoantibodies in SLE patients20,22, suggesting that 
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this population can actually have a role in disease pathogenesis. It is still unknown where these 

cells originate from. Studies have shown that CD25- cells can give rise to CD25+ cells that are 

similar to recently isolated Treg cells, upon homeostatic proliferation24, and it has been further 

suggested that FOXP3+CD25- cells constitute a peripheral reservoir of differentiated Treg cells that 

can be recruited to the CD25+ pool upon homeostatic expansion25. In addition, studies in mice 

have described an accumulation of a FOXP3+ population within CD4+CD25- T cells with 

suppressive capacity in aged mice, but not in young animals26. In this sense, it has been 

proposed that the increased FOXP3+CD25- CD4 T-cell population in SLE patients constitutes a 

pool of cells that, under the conditions where autoimmune responses are reactivated, can be 

recruited to expand the Treg population by gaining CD25 expression27. 

 

Given the apparent dissociation between FOXP3 and CD25 expression in CVID patients, 

we chose to analyse separately the expression of the two Treg markers. We then analysed the 

expression of FOXP3 and CD25 in naïve (CD45RA+) and memory (CD45RA-) CD4 T cells (Figure 2).  

 

Figure 2. Regulatory T cells in relation to naïve and memory T-cell subsets. Distribution of Treg cells as defined by 
either CD25

bright
 (A) or FOXP3

+
 (B) expression within naïve (CD45RA

+
) and memory (CD45RA

-
) CD4 T-cell populations. 

Healthy individuals are represented in black and CVID patients in white bars. Bars represent meanSEM. Analysis of 
dependent samples was performed using Wilcoxon matched-pairs signed rank test. (C and D) Quality of Treg cells in 
terms of the expression of naive cell markers (CD45RA

+
). Healthy individuals are shown as filled circles and CVID 

patients as open squares. Each symbol represents one individual. Bars represent the mean value. Data were compared 
using the Mann-Whitney test, and p values are shown. 
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We found that the frequency of CD25bright cells within naïve CD4 T cells is very small and 

similar in both healthy individuals and CVID patients (Figure 2A). In the memory CD4 T-cell 

population, we observed that the frequency of CD25bright cells is significantly decreased in CVID 

patients as compared to healthy individuals, reflecting the overall loss of CD25 expression we 

observed in CVID patients (Figure 1A, 1D and 1E). We also found that the frequency of FOXP3+ 

cells within naïve CD4 T cells is significantly increased in CVID patients, while the frequency in 

memory CD4 T cells was similar in CVID patients and healthy individuals (Figure 2B). 

Interestingly, when comparing the two subpopulations within the same cohort, we found that 

memory CD4 T cells have a higher frequency of FOXP3+ cells than naïve CD4 T cells in healthy 

individuals, but in CVID patients the frequencies are similar. Again, there seems to be a 

dissociation between FOXP3 and CD25 expression even within the naïve and memory CD4 T-cell 

compartments. Conversely, we analysed the frequency of naïve cells within the Treg populations. 

The CD4+CD25bright population includes less than 20% of naïve cells, and this percentage is similar 

in healthy individuals and CVID patients (Figure 2C). Of note, the CD4+FOXP3+ population 

includes a significantly lower percentage of naïve cells in CVID patients as compared to healthy 

individuals (Figure 2D). It should be noted that CVID patients have significantly lower frequencies 

of naïve CD4 T cells (as shown in Chapter 3.2). 

 

CD39 is an ectoenzyme that degrades adenosine triphosphate (ATP) to adenosine 

monophosphate (AMP) and has been suggested as an important mechanism of Treg-mediated 

suppression of inflammatory responses28. The frequency of CD25+CD39+ within CD4 T cells was 

significantly reduced in CVID patients (Figure 3A), probably reflecting the fact that CD25 

expression, as a whole, is prominently diminished in these patients. Supporting this view is the 

fact that the frequency of FOXP3+CD39+ within CD4 T cells was similar in healthy individuals and 

CVID patients (Figure 3B). To overcome the issue of total CD25 or FOXP3 expression, we 

analysed the expression of CD39 within the differently defined Treg populations. 

We observed that CD39 expression in CVID patients and healthy individuals was not 

significantly different, both in the FOXP3+ CD4 T-cell population as well as in the CD25bright subset 

(Figure 3C and 3D, respectively). It is worth mentioning that the CD25bright CD4 T-cell population 

comprised a higher amount of CD39+ cells, which may suggest that high levels of CD25 

expression may be a more suitable marker to define Treg cells than FOXP3 expression, as it has 

actually been proposed in the context of SLE29. 

 



Chapter 3 – Results 
3.2. Supplement C – Regulatory T cells in CVID 

139 

 

 

Figure 3. Expression of the ectoenzyme CD39 in regulatory T cells. Frequency of CD25
+
CD39

+
 (A) and FOXP3

+
CD39

+
 

(B) cells within CD4 T cells. Expression of CD39 within CD25
bright

 (C) and FOXP3
+
 (D) populations. Healthy individuals 

are shown as filled circles and CVID patients as open squares. Each symbol represents one individual. Bars represent 
the mean value. Data were compared using the Mann-Whitney test, and p values are shown. 

 

Relationship between regulatory T cells and T-cell imbalances  

Increased levels of T-cell immune activation are a hallmark of the immunodeficient state 

observed in HIV-infected patients and are considered to be a good surrogate marker of disease 

progression30. It has been reported that the frequency of Treg cells positively associates with the 

levels of T-cell activation in HIV infection31,32, possibly reflecting a self-regulatory mechanism to 

counterbalance the immune activation. Since our CVID cohort also presents increased levels of 

T-cell immune activation, we sought to determine if this was associated with the frequency of 

different subsets of Treg cells and their functional potential. We found no association between 

the levels of CD4 T-cell activation and the frequency of either CD25bright or FOXP3+ CD4 T cells in 

CVID patients (Figure 4A and 4B, respectively). However, CD4 T-cell activation was inversely 

correlated with the total frequency of CD25-expressing CD4 T cells (Figure 4C). In order to better 

understand whether FOXP3+CD25- CD4 T cells can be related to T-cell activation, we analysed the 

relationship between the frequency of either FOXP3+CD25+ or FOXP3+CD25- CD4 T-cell 

populations and the levels of T-cell activation. We observed that the frequency of the 

FOXP3+CD25+ population was negatively associated with CD4 T-cell activation, in CVID patients 

(Figure 4D), while the frequency of FOXP3+CD25- CD4 T cells was directly associated with T-cell 

activation (Figure 4E), further suggesting that the expression of FOXP3 in the CD25- population 

may be directly related to events of immune activation. As previously mentioned, CVID patients 

also have naïve/memory T cell imbalances, namely a loss of naïve CD45RA+ T cells with a 

consequent accumulation of memory CD45RA-CD45RO+ T cells and increased levels of T-cell 

activation (see Chapter 3.2)33.  
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Figure 4. Relationship between regulatory T-cell subsets and T-cell activation in CVID. Correlations between the 
frequencies of activated CD4 T cells as defined as HLA-DR

+
CD38

+
 and CD25 and/or FOXP3-expressing regulatory T-cell 

subsets, in healthy individuals (filled circles) and CVID patients (open squares). Correlation between activated CD4 T 
cells and CD25

bright
 (A), FOXP3

+
 (B), total CD25

+
 (C), FOXP3

+
CD25

+
 (D) and FOXP3

+
CD25

-
 (E) within CD4 T cells. Each 

symbol represents one individual. Correlation significance was determined using the Spearman coefficient test, and r 
and p values are shown. 

 

In order to bypass the impact of such imbalances in the frequency of Treg cells, we 

analysed the frequencies of these cells within the CD45RA+ and the CD45RA- CD4 T cell subsets 

and then studied their relationships with the levels of CD4 T cell activation. We observed that, 

within the naïve CD45RA+ subset, there were no relationship between the frequency of either 

CD25bright or FOXP3+ within CD4 T cells and the levels of CD4 T cell activation (Figure 5A, left and 

right panel, respectively). However, within the memory CD45RA- subset, the frequency of 

FOXP3+ CD4 T cells was negatively associated with the levels of CD4 T-cell activation in CVID 

patients (Figure 5B).  
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Figure 5. Relationship between naïve and memory regulatory T-cell subsets and T-cell activation in CVID. 
Correlations between the frequencies of activated CD4 T cells as defined as HLA-DR

+
CD38

+
 and the distribution of 

regulatory T cells as defined by either CD25
bright

 (left panels) or FOXP3
+
 (right panels) expression within naive 

(CD45RA
+
) (A) and memory (CD45RA

-
) (B) CD4 T-cell populations. Each symbol represents one individual. Correlation 

significance was determined using the Spearman coefficient test, and r and p values are shown. 

 

Interestingly, we observed that the frequency of CD25bright cells within CD4 T cells was 

directly associated with the frequency of naïve CD4 T cells, in CVID patients (Figure 6A).  

 

Figure 6. The frequency of regulatory T cells was directly associated with the frequency of naïve T cells in CVID. 
Correlations between the frequencies of naive CD4 T cells as defined as CD45RA

+
CD27

+
 and CD25bright (A), 

FOXP3
+
CD25

+
 (B), and FOXP3

+
CD25

-
 (C) CD4 T-cell populations, in healthy individuals (filled circles) and CVID patients 

(open squares). Each symbol represents one individual. Correlation significance was determined using the Spearman 
coefficient test, and r and p values are shown. 
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No relationship was found between the frequency of naïve CD4 T cells and that of FOXP3+ cells 

within CD4 T cells. However, the frequency of FOXP3+CD25+ CD4 T cells was also directly 

associated with the frequency of naïve CD4 T cells, in CVID patients (Figure 6B), while no 

relationship was found for the frequency of Foxp3+CD25- CD4 T cells (Figure 6C). 

 

Regulatory T cells and their relationship to IL-17-producing CD4 T cells 

As previously mentioned, Treg and TH17 cells are thought to have reciprocal pathways of 

differentiation1, and although human peripheral blood and lymphoid tissue have been shown to 

contain CD4+FOXP3+ T cells that express CCR6 and have the capacity to produce IL-17 upon 

activation34, we observed very low frequencies of FOXP3+IL-17+ cells within circulating CD4 T cells 

(Figure 7A). We found that the frequency of FOXP3+ cells within CD4 T cells was directly 

associated with TH17 cells in CVID patients (Figure 7B).  

 

 

Figure 7. Direct association between the frequency of IL-17-producing CD4 T cells and regulatory T cells in CVID. (A) 
Representative plots of the analysis of FOXP3 and CCR6, and FOXP3 and IL-17 expression on CD4 T cells, for a healthy 
individual. In order to analyse concomitant expression of FOXP3 and IL-17, PBMC were intracellular stained after 
short-term stimulation with PMA and ionomycin, using the FOXP3 Staining Set. The right panel shows the expression 

of FOXP3 and CCR6 within IL-17
+
 CD4 T cells. The frequency of FOXP3

+
IL-17

+
 cells within CD4 T cells (0.06%0.04%, 

n=6) represented around 8% of the total IL-17
+
 CD4 T-cell population (7.89%2.50%, n=6) in a subgroup of healthy 

subjects assessed. Correlations between the frequencies of IL-17-producing CD4 T cells and FOXP3
+
 (B) and CD25

+
 (C) 

CD4 T cells, in healthy individuals (filled circles) and CVID patients (open squares). Each symbol represents one 
individual. Correlation significance was determined using the Spearman coefficient test, and r and p values are shown.   
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We also documented a direct correlation with CD25 expression in CVID (Figure 7C), in clear 

contrast with the negative correlation found between IL-17 production and markers classically 

up-regulated in clinical settings associated with T-cell activation (see Chapter 3.2). 

 

Regulatory T cells and their relationship to pro-inflammatory cytokine production by CD4 T cells 

Given the results obtained for IL-17 production, we sought to analyse the association 

between the different Treg subsets and the CD4 T-cell populations that produce other pro-

inflammatory cytokines, such as IFN- or TNF-. 

We found that both the frequencies of IFN--producing CD4 T cells (Figure 8A) and TNF-

-producing CD4 T cells (Figure 8B) were inversely correlated with the frequency of Treg cells in 

CVID patients, defined either as FOXP3+CD25+ CD4 T cells or as CD25bright CD4 T cells. The loss of 

Treg cells was directly associated to expansions of CD4 T-cell populations that produce the pro-

inflammatory cytokines IFN- and TNF-, in contrast to what was found for the production of IL-

17. 

 

 

Figure 8. Expansion of T-cell populations producing pro-inflammatory cytokines was directly associated with loss of 
regulatory T cells in CVID. Correlations between the frequencies of regulatory T (Treg) cells and CD4 T-cell populations 

producing the pro-inflammatory cytokines IFN- and TNF-, in healthy individuals (filled circles) and CVID patients 

(open squares). (A) Association between FOXP3
+
CD25

+
 and IFN--producing CD4 T cells. (B) Correlation between the 

frequency of CD25
bright

 and TNF--producing CD4 T cells. Each symbol represents one individual. Correlation 
significance was determined using the Spearman coefficient test, and r and p values are shown. 

 

Regulatory T cells and clinical manifestations in CVID patients 

We have found that the frequency of FOXP3+ cells within CD4+ T cells was increased in 

CVID patients as compared to healthy controls. Subsequently, we sought to investigate whether 

this increase was associated with particular clinical manifestations, namely autoimmune 

disorders, chronic diarrhea, splenomegaly, lymphoid proliferation and adenopathies. When we 
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stratified the CVID patients according to these manifestations, no particular pattern was found in 

what concerns the frequency of FOXP3+ cells within CD4+ T cells (Figure 9A).  

 

Figure 9. Association of regulatory T-cell imbalances with clinical manifestations in CVID patients. Stratification of 
different regulatory T (Treg) cell populations in CVID patients, according to the occurrence or not of the following 
clinical manifestations: autoimmunity, splenomegaly, adenopathies, lymphoid proliferation, and chronic diarrhea. 
Frequencies of FOXP3

+
 (A), CD25

bright
 (B), FOXP3

+
CD25

+
 (C), and FOXP3

+
CD25

-
 (D) CD4 T-cell populations are shown. (E) 

Mean fluorescence intensity (MFI) of FOXP3 expression within CD4
+
FOXP3

+
 cells. Healthy individuals are shown as 

filled circles and CVID patients as squares with two different shades of grey. Each symbol represents one individual. 
Bars represent the mean value. Data were compared using the Mann-Whitney test, and p values are shown. 
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While we had observed that the frequency of CD25bright within CD4+ T cells was decreased in total 

CVID patients when compared to healthy individuals, the stratification upon clinical 

manifestations showed that CVID patients with autoimmune disorders, splenomegaly, 

adenopathies, or lymphoid proliferation, exhibited the same decrease in the frequencies of 

CD25bright CD4 T cells when compared to healthy individuals, at the levels observed in CVID 

patients without these clinical complications (Figure 9B). No differences have been found in the 

frequency of FOXP3+CD25+ cells within CD4 T cells between total CVID patients and healthy 

controls. However, when we stratified the patients according to clinical manifestations we 

verified that patients with splenomegaly showed significantly decreased frequencies of this 

population as compared to patients without splenomegaly, as well as to healthy individuals 

(Figure 9C). On the other hand, while total CVID patients showed an increased frequency of 

FOXP3+CD25- cells within CD4+ T cells, the stratification of these patients demonstrated that all 

patients that presented with the clinical manifestations mentioned above had significantly 

higher frequencies of FOXP3+CD25- CD4 T cells as compared to healthy individuals (Figure 9D). It 

is worth mentioning that the expansion of this population was not significant when compared to 

CVID patients that did not present the clinical manifestations, showing that the increased 

frequency of FOXP3+CD25- CD4 T cells was common to the majority of CVID patients. Even 

though we found no difference between healthy subjects and CVID patients in what concerns 

the levels of FOXP3 expression within CD4+FOXP3+ cells, when CVID patients were stratified 

according to clinical complications the picture was quite different. In agreement with the data 

reported by Yu et al.35, CVID patients with autoimmunity have significantly lower levels of FOXP3 

expression than healthy controls (Figure 9E). In addition, CVID patients with lymphoid 

proliferation and chronic diarrhea also present a reduction in FOXP3 expression on FOXP3+ cells 

(Figure 9E). This suggests that in a particular subset of CVID patients Treg function may actually be 

decreased and associated with phenomena of loss of T-cell balance. 

 

Relationship between regulatory T cells and B-cell imbalances in CVID patients 

The CD21lowCD38low B-cell population is thought to be an activated B-cell population that 

fails to further differentiate. This population frequently accumulates in CVID patients. Of note, 

Treg frequency, particularly the FOXP3+CD25+ CD4 T cell population, inversely correlated with the 

frequency of CD21lowCD38low B cells in CVID patients (Figure 10), in agreement with a previous 

report4. This suggests a possible link between the size of the Treg subset and GC disturbances. 

The expansion of CD21lowCD38low B cells, which has been shown to be associated with 

autoimmunity36,37, is associated with a lower frequency of Treg cells, suggesting that a loss of Treg 
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cells may actually be underlying autoimmune phenomena in CVID patients. It has been described 

that the frequency of Treg is significantly decreased in CVID patients with autoimmune 

manifestations as compared with patients without autoimmunity4,5, but we did not find such 

clinical correlation in our cohort (Figure 9).  

 

 

Figure 10. Expansion of the CD21
low

CD38
low

 B-cell population correlated with loss of regulatory T cells in CVID. 
Correlation between the frequencies of FOXP3

+
CD25

+
 CD4 T cells and CD21

low
CD38

low
 B cells, in healthy individuals 

(filled circles) and CVID patients (open squares). Each symbol represents one individual. Correlation significance was 
determined using the Spearman coefficient test, and r and p values are shown. 

 

 

Concluding Remarks 

 

 We found that CVID patients present a reduction in the frequency of Treg cells in what 

regards the expression of CD25, while FOXP3 expression appeared to be maintained. We also 

showed that in CVID patients the frequencies of Treg cells and TH17 cells were directly associated. 

In addition, Treg frequency was also inversely associated with the frequency of CD21lowCD38low B 

cells. These data support the view that the impairment of the GCs found in CVID may have an 

impact in both Treg and TH17 populations.  

It will be important to study the basis of this apparent dissociation between C25 and 

FOXP3 expression and to clarify whether there is a true loss of regulatory function in these CVID 

patients, with a possible association with autoimmunity, as previously suggested35. This would 

imply that the maintenance of FOXP3 expression might be related to T-cell activation.  
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Methods 

 

Cell staining and flow cytometric analysis 

PBMCs isolated from heparinized blood, immediately after venipuncture, by Ficoll-Hypaque 

density gradient (Amersham Pharmacia Biotech), were stained for surface markers, followed by 

intracellular staining for FOXP3 using the FOXP3 Staining Set (eBiosciences) according to the 

manufacturer’s instructions. A mean of 150.000 PBMCs was analysed. Samples were acquired on 

a FACSCalibur (BD Biosciences) and data analysed using FlowJo Software (Tree Star Inc.). Results 

are presented as a proportion of a given cell population. 
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Abstract 

 

Common Variable Immunodeficiency Disorders (CVID), the most frequent cause of 

symptomatic primary immunodeficiency, are defined by impaired antibody production. 

Notwithstanding, T-cell activation and granulomatous manifestations represent main causes of 

CVID morbidity even in patients under immunoglobulin G (IgG) replacement therapy. 

Additionally, gut pathology is a frequent feature of CVID. Here, we investigated monocyte 

imbalances and their possible relationship with increased microbial translocation in CVID 

patients. 

Monocyte subsets were defined according to CD14 and CD16 expression levels and 

evaluated in terms of HLA-DR, CD86 and PD-L1 expression by flow cytometry, in parallel with the 

quantification of plasma Lipopolysaccharide (LPS), and serum levels of soluble CD14 (sCD14), 

LPS-binding protein (LBP), and anti-LPS antibodies. 

CVID patients (n=31) featured significantly increased levels of serum sCD14 and an 

expansion of CD14brightCD16+ monocytes in direct correlation with T-cell and B-cell activation, the 

latter illustrated by the frequency of CD21lowCD38low subset. Such alterations were not observed 

in patients lacking B cells due to Congenital Agammaglobulinemia (n=4). Moreover, we found no 

significant increase in circulating LPS or LBP levels in CVID patients, together with a relative 

preservation of serum anti-LPS antibodies, in agreement with their presence in commercial IgG 

preparations.  

In conclusion, CVID was associated with monocyte imbalances that directly correlated 

with T-cell activation markers and with B-cell imbalances, without an association with plasma 

LPS levels. The heightened monocyte activated state observed in CVID may represent an 

important target for complementary therapeutic strategies. 
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Introduction  

 

Common Variable Immunodeficiency Disorders (CVID) represent the most frequent 

cause of symptomatic primary immunodeficiency1. CVID are defined by quantitative and 

qualitative reduction in antibody production due to heterogeneous defects in mature B cells1,2. 

Besides imbalances in B-cell subsets, CVID are frequently associated with persistent T-cell 

activation and loss of naive T cells, which are reported even in patients under replacement 

therapy with immunoglobulin G (IgG)1-4. Indeed, non-infectious complications, such as 

lymphoproliferation and granulomatous disease, are currently main causes of morbidity and 

mortality in CVID1,2. The mechanisms underlying the chronic immune activation associated with 

CVID remain largely unclear. Another main cause of CVID morbidity is gastrointestinal pathology, 

with or without mal-absorption1,2. The impairment in IgA production and other CVID-associated 

mucosal alterations have been shown to be often associated with increased intestinal 

permeability5. Thus, it is plausible that increased levels of microbial translocation, particularly of 

bacterial products such as Lipopolysaccharide (LPS), with consequent monocyte stimulation, may 

contribute to the chronic immune activation observed in CVID patients, as reported for HIV-1 

infected individuals6.  

Monocytes are important orchestrators of the immune system, linking innate and 

adaptive immune responses. Blood monocytes have the ability to migrate into tissues, where 

they can differentiate and give rise to distinct functional cell types, such as macrophages and 

dendritic cells (DCs)7. They have long been recognized as the main promoters of inflammatory 

responses to pathogens and to be involved in many inflammatory diseases7.  Recent studies 

have called attention to their suppressive and regulatory functions, suggesting that monocytes 

play a central role in the modulation of immune responses, particularly in the context of chronic 

immune activation8. These data point to the heterogeneity of monocyte subsets, with distinct 

functions and phenotypes9-11. Recently, an effort was made in putting forward a consensus 

nomenclature that proposed three main monocyte subsets defined according to the expression 

levels of CD14 and CD16, as follows: classical CD14brightCD16- monocytes, the most abundant 

monocyte population found in peripheral blood; intermediate CD14brightCD16+, and non-classical 

CD14dimCD16+ subsets12. The intermediate CD14brightCD16+ monocyte subset has been 

consistently shown to expand in many pro-inflammatory clinical settings12,13, and particularly in 

association with HIV infection14,15.   

CVID has been associated with defective in vitro maturation of DCs from monocytes, at 

least in a subset of patients16,17, and with disturbances in the monocyte responses upon LPS 
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stimulation in vitro18. Additionally, CVID patients were shown to have  reduced numbers of 

circulating DCs19,20, with perturbed differentiation and function, namely reduced expression 

levels of the co-stimulatory molecules CD86 and CD80, an impaired ability to produce IL-12 upon 

stimulation21-23, as well as lower antigen presenting capacity in mixed lymphocyte reactions22,23.  

Monocyte-related alterations, namely an increased frequency of CD16-positive 

monocytes24 and decreased numbers of myeloid DCs25 have also been reported in patients 

lacking B cells due to blockade in early B-cell development in the bone marrow due to genetic 

defects in Bruton’s tyrosine kinase (Btk) leading to Congenital Agammaglobulinemia26. 

Nevertheless, we and others have shown that, in contrast to CVID, Congenital 

Agammaglobulinemia is not associated with a significant increase in T-cell activation 

markers3,18,27. 

Here, we investigated the monocyte compartment in patients with CVID and provide 

evidence that CVID was associated with increased markers of monocyte activation in direct 

correlation with the expansion of activated T-cell subsets, irrespectively of plasma LPS levels. 

Monocytes may thus be important contributors to the inflammatory milieu that leads to T-cell 

activation, lymphoproliferative manifestations, and granuloma formation associated with 

CVID1,28. 
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Material and Methods 

 

Cohort characterization 

The study involved 31 patients with CVID, diagnosed according to the European Society for 

Immunodeficiencies criteria (www.esid.org), namely IgG and IgA and/or IgM levels at least two 

standard deviations below the mean for age, impaired antibody response to vaccines, 

absent/low isohemagglutinins, and exclusion of defined causes of hypogammaglobulinemia. 

Patients with Congenital Agammaglobulinemia, presenting less than 1% B cells within total 

peripheral lymphocytes (n=4), were also included. These cohorts have been previously 

described3. The clinical and epidemiological characterization of these cohorts is summarized in 

Table 1. 29 CVID and all Congenital Agammaglobulinemia patients were under IgG replacement 

therapy, adjusted to maintain pre-infusion Ig levels above 650 mg/dL. The two CVID patients not 

receiving IgG featured levels of total serum IgG of 227 and 473 mg/dL. All patients were free 

from symptomatic infections at the time of sample collection, and the collection of the blood 

samples was always performed immediately before the immunoglobulin infusions in the patients 

under intravenous administration. 4 CVID patients were under steroid therapy at the time of the 

study. 15 healthy individuals were studied in parallel. All subjects gave written informed consent 

for blood sampling and processing. The study was approved by the Ethical Boards of the 

Faculdade de Medicina da Universidade de Lisboa and of the Hospital de Santa Maria, and 

performed in accordance with the 1964 Declaration of Helsinki and its later amendments. 

 

Cell staining and flow cytometric analysis 

Phenotypic analysis was performed using whole blood samples collected immediately before IgG 

administration. After staining with monoclonal antibodies and red blood cells lysis using BD FACS 

Lysing Solution (BD Biosciences), samples were acquired on a FACSCalibur flow cytometer (BD 

Biosciences). The following anti-human monoclonal antibodies were used, with the clone and 

the respective directly-conjugated fluorochrome specified in brackets: CD16 (3G8; FITC), CD3 

(SK7; PerCP), CD4 (SK3; PerCP), CD8 (SK1; PerCP), CD8 (RPA-T8; APC), CD38 (HB7; PE), CD45RA 

(L48; PE-Cy7), CD86 (FUN-1; PE), IgD (IA6-2; PE), IgM (G20-127; APC), HLA-DR (L243; FITC and 

PerCP), IFN- (4S.B3; FITC), from BD Biosciences; CD4 (RPA-T4, FITC, and PerCP-Cy5.5), CD8 (RPA-

T8; FITC and PE), CD14 (61D3; PE-Cy7 and APC), CD19 (HIB19; PerCP-Cy5.5 and PE-Cy7), CD27 

(O323; FITC, PE, and APC), CD45RA (HI100; FITC and APC), PD-L1 (MIH1; APC), TNF- (MAb11; 

PE), from eBiosciences; CD21 (BL13; FITC) from IO Test, Beckman Coulter.   



Chapter 3 – Results 
3.3. Monocyte imbalances in primary B-cell immunodeficiencies and their possible relationship with 

increased microbial translocation and chronic immune activation in CVID patients 

157 

 

 
Table 1. Clinical and epidemiological data of the studied cohorts 

  
Healthy CVID 

Congenital 
Agammaglobulinemiaa 

Number (male/female) 15 (5/10) 31 (11/20) 4 (4/0) 
Age (yrs.) 3911 4013 265 

Clinical manifestationsb,c    
Autoimmune disease n.a. 17/31 (55%) 0 
Adenopathies n.a. 10/31 (32%) 0 
Lymphoid proliferation n.a. 18/20d (86%) 0 
Granulomas  n.a. 3/20d (15%) 0 
Chronic diarrhoea n.a. 15/31 (48%) 0 
Splenomegaly n.a. 16/31 (52%) 0 

EUROclass classification     
smB+21norm  n.a. 5/29 (17%) n.a. 
smB+21lo  n.a. 9/29  (31%) n.a. 
smB-21norm  n.a. 6/29 (21%) n.a. 
smB-21lo  n.a. 9/29 (31%) n.a. 
smB-Trnorm  n.a. 9/29 (31%) n.a. 
smB-Trhi  n.a. 6/29 (21%) n.a. 

IgG replacement therapyc    
intravenous n.a. 24/31 (77%) 4 (100%) 
subcutaneous n.a. 5/31 (16%) 0 

Length of IgG therapy 
(yrs.) 

n.a. 76 1611 

n.a. not applicable, CVID: Common Variable Immunodeficiency 
a
 Two of the congenital 

agammaglobulinemia patients had a known genetic defect in the Btk gene, namely one had the 

IVS17-1GC mutation and the other presented with the R288Q mutation; in the other two 
patients, mutations in the Btk gene have been excluded and evaluation of autosomal recessive 
forms is ongoing.

 b
 Diagnostic criteria: Autoimmune disease - clinical data, given the impairment in 

Ab production; Bronchiectasis - computed tomography; Splenomegaly - longitudinal spleen 
diameter superior to 15cm (computed tomography or ultrasonography); Adenopathies - lymph 
node larger than 1cm diameter in 2 or more lymphatic chains in clinical and/or imaging exams; 
Lymphoid proliferation and Granulomas - diffuse lymphocytic infiltrates or granulomas on 
gastrointestinal, lymph node or pulmonary biopsies. 

c
 Percentage within total cohort evaluated in 

brackets. 
d
 Total number of individuals with biopsies.

  
 

Data were analysed using CellQuest (BD Biosciences) and FlowJo (Tree Star Inc.) softwares. 

Lymphocyte and monocyte subsets were defined within manually set lymphogate/monogate. 

Results were expressed as percentage of cells that stained positive for a given marker, or as its 

mean fluorescence intensity (MFI) within the defined population. Total cell numbers were 

calculated by multiplying the percentage of each population within total 

lymphocytes/monocytes by the peripheral blood lymphocyte/monocyte count obtained at the 

clinical laboratory on the day of sampling. 
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Analysis of cytokine production 

Cytokine production was assessed at the single-cell level, as previously described3. Briefly, 

freshly isolated peripheral blood mononuclear cells cultured in the presence of Brefeldin A 

(10µg/mL; Sigma-Aldrich), for 4h at 37 ºC with 5% CO2, were stimulated with Lipopolysaccharide 

(LPS; 100 ng/ml; Sigma-Aldrich) for assessing TNF-α production by monocytes or with Phorbol 

Myristate Acetate (50ng/mL, Sigma-Aldrich) and Ionomycin (500ng/mL; Calbiochem, Merck 

Biosciences) for assessing the lymphocyte production of IFN-γ.  

  

Quantification of soluble CD14 (sCD14), LBP, LPS and IgG EndoCAb 

The human EndoCAb® Assay Kit and the ELISA Kit for Endoblock Lipopolysaccharide Binding 

Protein (LBP, HyCult Biotechnology) were used to quantify the serum concentrations of IgG 

EndoCAb and LBP, respectively. Serum sCD14 levels were quantified by ELISA using the human 

sCD14 Quantikine (R&D Systems). Plasma LPS levels were quantified using the Limulus 

Amebocyte Assay (Cambrex); plasma samples were diluted and pre-treated as previously 

described6. All samples were assayed in duplicate, according to the manufacturer’s instructions.  

 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism 5.0 (GraphPad Software). Two group 

comparisons were performed using Mann-Whitney test. Spearman’s coefficient was used to 

determine the significance of the correlation between two variables. Results are expressed as 

meanSEM, and P-values <0.05 were considered to be significant. 
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Results 

 

CVID was associated with monocyte activation  

The monocyte compartment was investigated in a previously described cohort of 31 

patients with CVID (Table 1)3.  

CVID patients showed significantly higher levels of sCD14 than healthy subjects (Figure 

1a), suggesting significant levels of monocyte activation6,29. 

 

 

Figure 1. Monocyte activation markers in CVID and Congenital Agammaglobulinemia. (A) Serum levels of soluble 
CD14 (sCD14). Each dot represents one individual, with bars indicating mean values. Open circles refer to healthy 
individuals, solid circles to CVID patients, and grey squares to Congenital Agammaglobulinemia (Agamma) patients. (B) 
Illustrative flow cytometric analysis of monocyte subsets according to CD14 and CD16 expression levels in 
representative CVID (right panel) and healthy (left panel) individuals. (C) Frequency and absolute counts of monocyte 
subsets as defined in (B). (D) Mean fluorescence intensity (MFI) of HLA-DR, CD86 and PD-L1 within total monocytes. 
Healthy individuals are represented in open, CVID patients in solid, and Congenital Agammaglobulinemia patients in 
grey bars. Bars indicate mean±SEM. P values of statistically significant differences are shown. 
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Monocyte subsets were defined by flow cytometric whole blood analysis through the 

differential expression of CD14 and CD16, as illustrated in Figure 1b. Although the number of 

total circulating monocytes in CVID patients was similar to age-matched healthy individuals 

(493.335.81 cells/uL in controls vs. 504.740.25 cells/uL in CVID patients; p=0.9810), we found 

a significant increase in both the frequency and absolute numbers of CD14brightCD16+ monocytes 

in CVID patients, in comparison with controls (Figure 1c), a subset associated with inflammatory 

settings11-15,30.  

In agreement with a state of monocyte activation in CVID patients, the levels of 

expression of HLA-DR within total monocytes were significantly higher than in controls (Figure 

1d), mainly due to increased levels of HLA-DR within the expanded CD14brightCD16+ monocyte 

subset (MFI in healthy individuals 133.011.34 vs. 187.213.28 in CVID patients; p=0.0052). 

Conversely, no significant alterations in the expression levels of the co-stimulatory molecule 

CD86 were found in CVID patients (Figure 1d).  

We found no increase in the expression levels of PD-L1 on monocytes in CVID patients, 

as compared to healthy subjects (Figure 1d), suggesting that this inhibitory pathway was 

probably not significantly induced in CVID, despite the evidence for immune activation.  

We also investigated the monocyte compartment in a group of patients with Congenital 

Agammaglobulinemia (Table 1), that we have previously described3, who lack circulating B cells 

due to defects in early B-cell development, and found no significant increase in serum sCD14 or 

in the frequency of CD14brightCD16+ monocytes in these patients (Figure 1a and 1c).  

Btk deficiency, a main cause of Congenital Agammaglobulinemia, has been shown to be 

associated with an increased frequency of CD16-expressing monocytes24, but no distinction was 

made, at that time, between CD14brigthCD16+ and CD14dimCD16+ subsets, which are believed to 

possess distinct functional properties30. We found that the increase in CD16 was restricted to 

CD14dimCD16+ monocytes (Figure 1c). This subset was significantly expanded in patients with 

Congenital Agammaglobulinemia, both in terms of frequency and absolute counts, in relation to 

both healthy individuals and CVID patients (Figure 1c).  

Although the results should be cautiously interpreted given the small number of patients 

with Congenital Agammaglobulinemia evaluated, our data showed that, in contrast to CVID, 

there was no expansion of the CD14brightCD16+ subset and no increase in sCD14 levels.  

Overall, we provided evidence for significant levels of monocyte activation being a 

feature of CVID. 
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Monocyte activation was unrelated to plasma LPS levels in CVID 

Our findings of no up-regulation of markers of monocyte activation in patients lacking B 

cells raise the possibility that factors other than defective mucosal IgA production, and the 

possible related increase in microbial translocation, are contributing to the CVID-associated 

monocyte activation.  

CVID patients showed low to undetectable levels of plasma LPS, a bacterial product that 

increases in the peripheral blood as a result of microbial translocation in the gut (Figure 2a). 

Moreover, CVID patients with gastrointestinal manifestations, such as chronic diarrhea or 

evidence of mal-absorption, did not feature higher levels of plasma LPS than healthy controls 

(Figure 2a). 

 

 

Figure 2. Plasma LPS levels and related molecules in CVID. (A) Plasma LPS levels. (B) Serum LBP levels. (C) Anti-LPS 
antibodies (left) and its ratio relative to total IgG (right). Each dot represents one individual: healthy individuals are 
represented in open circles, CVID patients in solid circles. Bars indicate mean. P values of statistically significant 
differences are shown. 

We also confirmed that monocytes from CVID patients were not impaired in their ability 

to produce TNF-α upon in vitro LPS stimulation (percentage of monocytes expressing TNF-α: 

55.75±3.56 in 26 CVID patients and 65.96±4.24 in 8 healthy controls; p=0.2820), as previously 

reported18.  These data showing that monocytes from CVID patients were not refractory to 
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additional LPS stimulation in vitro further suggest a lack of previous exposure to increased 

plasma LPS. 

We measured the levels of LPS-binding protein (LBP), a molecule that binds circulating 

LPS29, and found them to be similar in healthy individuals and CVID patients (Figure 2b), further 

suggesting that the degree of microbial translocation was not substantial.  

Another important pathway contributing to LPS clearance from circulation involves 

antibodies against the LPS core oligosaccharide (endotoxin core antibodies - EndoCAb)6. It is 

possible that IgG replacement therapy provides adequate amounts of EndoCAb levels, restoring 

the humoral response to LPS that patients are likely unable to mount.  

We measured EndoCAb IgG levels in 5 IgG lots administered to the patients (2 lots of 

intravenous Octagam 5%, 2 lots of subcutaneous Vivaglobin 16%, and 1 lot of subcutaneous 

Gammanorm 16,5%) and found these antibodies to be present in significant amounts (values 

between 120 GMU (IgG median units)/mL and 250 GMU/mL). Additionally, the amount of 

EndoCAb IgG within total IgG was similar in the serum of CVID patients and healthy individuals, 

even though total serum IgG was significantly lower in CVID patients than in controls (Figure 2c). 

All patients assessed were under IgG replacement therapy, with the exception of one, who still 

presented detectable amounts of EndoCAb IgG (29,78 GMU/mL; total IgG 473 mg/dL and 

EndoCAb IgG within total IgG 6,13 GMU/mg). 

Thus, given the reduced plasma LPS and the unaltered serum LBP levels that we 

documented in CVID patients, IgG replacement therapy might be sufficient to limit the levels of 

LPS in peripheral blood. These results are against a major role of the gut-associated microbial 

translocation to the documented monocyte activation. 

In summary, the alterations observed in the monocyte populations from CVID patients 

seemed to be unrelated to plasma LPS levels. 

 

Monocyte activation was directly associated with T-cell disturbances in CVID patients 

We reported above that, in contrast to CVID, patients with Congenital 

Agammaglobulinemia had no increase in markers associated with monocyte activation.  Our 

results are particularly interesting since we had previously reported the lack of T-cell activation 

and significant T-cell imbalances in these patients with Congenital Agammaglobulinemia3. 

Accordingly, in CVID patients the expansion of CD14brightCD16+ monocytes was directly 

associated with T-cell activation, and inversely correlated with the frequency of naive CD4 T cells 

(Figure 3).  The expansion of this population in CVID patients was also associated with the 

frequency of IFN--producing CD4 T cells (Figure 3), another measure of T-cell activation that we 



Chapter 3 – Results 
3.3. Monocyte imbalances in primary B-cell immunodeficiencies and their possible relationship with 

increased microbial translocation and chronic immune activation in CVID patients 

163 

 

have previously shown to be significantly increased in this CVID cohort in comparison to healthy 

individuals3. 

 

 

Figure 3. Relationship between markers of monocyte and T-cell activation in CVID. Correlation between the 
frequency of CD14

bright
CD16

+
 monocytes and the frequency of naive (CD45RA

+
CD27

+
, left panel), activated (HLA-

DR
+
CD38

+
, middle panel), or IFN--producing cells (right panel) within CD4 T cells in CVID patients (solid circles) and in 

healthy individuals (open circles). Each dot represents one individual. Spearman’s correlation coefficients are shown. 

Importantly, as described above, we found no significant up-regulation of the inhibitory 

molecule PD-L1 in CVID patients as compared to healthy subjects, both within whole monocytes 

(Figure 1d) and in the three monocyte subsets (data not shown). We further investigated a 

possible association between PD-L1 levels in monocytes and T-cell imbalances and found that 

PD-L1 levels within the expanded CD14brightCD16+ monocyte subset increased in direct 

correlation with CD4 T-cell activation (r=0.6056, p=0.0003), and the loss of naive CD4 T cells (r=-

0.5202, p=0.0038) in CVID patients. Nevertheless, PD-L1 up-regulation in the CD14brightCD16+ 

monocyte subset of CVID patients was apparently not as marked as that observed in other 

persistent inflammatory settings, like HIV-1 infection31-33, suggesting an impairment of the PD-L1 

pathway in CVID, possibly translating into a reduced ability to control immune activation. This is 

particularly relevant given the fact that the PD-1/PD-L1 pathway is involved in peripheral 

tolerance and autoimmunity34 and that the expansion of CD14brigthCD16+ monocytes was 

significantly higher in CVID patients with autoimmune disease (p=0.0328). Of note, this 

expansion was not more marked in CVID patients with granuloma or lymphoproliferation 

(p>0.05). Additionally, significant correlations were also observed between the expression levels 

of the co-stimulatory molecule CD86 within CD14brightCD16+ monocytes and T-cell imbalances 

(r=0.3706, p=0.0402 with CD4 T-cell activation; r=-0.4300, p=0.0199 with the frequency of naive 

CD4 T cells) in CVID patients, reinforcing the relevance of addressing the regulation of co-

stimulatory and inhibitory pathways in future CVID studies. 



164 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

Altogether, our data showed that monocyte activation in CVID was directly associated 

with markers of T-cell activation. 

 

CVID patients grouped according to the EuroClass classification featured distinct monocyte 

imbalances 

B-cell imbalances have been used as an attempt to classify CVID patients into more 

homogeneous subgroups. The EuroClass classification has thus been proposed based in three 

main B-cell abnormalities observed in CVID: the reduction in switched-memory B cells, and the 

expansions of either transitional or CD21lowCD38low B cells35. When our cohort was stratified 

according to the EuroClass, we found no differences regarding CD86 expression within 

CD14brightCD16+ monocytes among the different subgroups (p>0.1900). However, PD-L1 

expression within this subset was significantly higher in patients with reduced switched-memory 

B cells and expansion of transitional B cells (smB-Trhi) as compared to those that did not present 

that expansion (smB-Trnorm) (Figure 4a). 

 

 

Figure 4. Markers of monocyte activation in CVID grouped according to the EuroClass classification. (A) Mean 
fluorescence intensity (MFI) of PD-L1 within CD14

bright
CD16

+
 monocytes. Healthy individuals are represented in open 

and CVID patients in solid bars. (B) Frequency of CD14
bright

CD16
+
 monocytes. Bars indicate mean±SEM. P values of 

statistically significant differences are shown. (C) Correlation between the frequency of CD14
bright

CD16
+
 monocytes 

and the frequency of CD21
low

CD38
low

 B cells in CVID patients (solid circles) and in healthy individuals (open circles). 
Each dot represents one individual. Spearman’s correlation coefficients are shown. 
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In addition, we also found that the expansion of CD14brightCD16+ monocytes was 

particularly relevant in patients that did not have reduced switched-memory B cells but had 

expanded CD21lowCD38low B cells (smB+21lo) as compared to patients that did not (smB+21norm) 

(Figure 4b). In agreement, the frequency of CD14brightCD16+ monocytes was directly associated 

with the frequency of CD21lowCD38low B cells in CVID patients (Figure 4c). 

In conclusion, we showed that monocyte imbalances were particularly marked in CVID 

patients lacking switched-memory B cells and/or having an abnormal expansion of the 

CD21lowCD38low B cells. 
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Discussion  

 

We showed here that CVID is associated with increased serum levels of sCD14 and an 

expansion of CD14brightCD16+ monocytes, in direct correlation with T-cell and B-cell imbalances. 

Moreover, monocyte hyper-activation occurred irrespective of plasma LPS levels, suggesting that 

monocytes may represent important targets for therapies complementary to IgG replacement 

aiming to control the granulomatous and lymphoproliferative manifestations in CVID.  

Such monocyte activation markers were not observed in patients lacking peripheral B 

cells due to Congenital Agammaglobulinemia who, notably, also did not present major T-cell 

imbalances. Although the number of patients with Congenital Agammaglobulinemia was small, 

our results are in agreement with a previous study that also reported a lack of major alterations 

in monocyte function as assessed in vitro in patients with X-linked Agammaglobulinemia18. 

CD14 shedding from the membrane of monocytes is generally accepted as a marker of 

monocyte activation, with levels of sCD14 being increased in inflammatory and autoimmune 

diseases, in the context of acute inflammation and sepsis, as well as in HIV-infected patients6,29. 

CD14brightCD16+ monocytes have been shown to have a high inflammatory potential, based on 

transcriptome analysis11,30, and to be expanded in inflammatory conditions12,13, being associated 

with disease progression in chronic HIV-1 infection14,15.  

We showed that the expression of HLA-DR within total monocytes was significantly 

higher in CVID than in controls, compatible with a state of monocyte activation. This is in 

agreement with the study of Cambronero et al, which showed an up-regulation of HLA-DR within 

the whole monocyte population in CVID patients18. It is worth to note that this increase was 

mainly due to the expression of HLA-DR within the expanded CD14brightCD16+ monocyte subset, 

supporting its enhanced inflammatory capacity. On the other hand, expression levels of the co-

stimulatory molecule CD86 were similar in CVID patients and in healthy individuals. CD86, a 

marker of monocyte differentiation and acquisition of antigen-presentation properties, has been 

shown to be expressed at reduced levels in monocyte-derived DCs generated in vitro, supporting 

an impaired function as antigen-presenting cells in CVID16,36.  

Monocytes may also up-regulate inhibitory molecules, which are thought to play an 

important role in the regulation of immune responses and in limiting immunopathology. PD-L1 

(B7-H1) binds programmed death-1 molecule (PD-1), an inhibitory receptor expressed on many 

cells, particularly activated T and B lymphocytes, establishing a pathway of central relevance in 

inflammatory states31,32. Both PD-L1 and PD-1 can be up-regulated upon activation, with PD-1 

expression on T cells having been associated with functional exhaustion in the context of chronic 
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viral infection, due to persistent antigen exposure37-39. Of note, PD-L1 expression has been 

shown to be up-regulated on monocytes from HIV-infected patients31,32. We found that 

monocyte activation in CVID was not accompanied by significant up-regulation of the inhibitory 

molecule PD-L1, which may favor the deleterious impact of activated monocytes.  

In addition, we showed that monocyte imbalances were unrelated to plasma LPS levels 

in CVID patients, who appear to have a relatively good preservation of the pathways involved in 

LPS clearance, including anti-LPS antibodies provided by the IgG replacement therapy, and 

normal levels of LBP. Serum LBP quickly binds LPS molecules in circulation29. LBP levels have 

been shown to increase in sepsis associated with LPS-containing microorganisms (Gram-negative 

bacteria) and in HIV infection6,29, in which case a direct correlation with the degree of microbial 

translocation, estimated by plasma LPS levels, has been reported14. Furthermore, both LPS and 

LBP levels are increased in inflammatory bowel disease, in correlation with disease activity, and 

recover to normal levels following treatment40. The fact that LBP levels were similar in healthy 

individuals and CVID patients, and that there was no increase in plasma LPS, further suggests 

that the degree of microbial translocation was not significant. Thus, our data raise the possibility 

that IgG replacement therapy may provide sufficient antibodies against LPS to control the 

putative increase in microbial translocation. Longitudinal studies assessing patients prior to and 

after commencing replacement therapy with IgG will be of great relevance to understand its 

potential role in regulating microbial translocation, which may have implications in other clinical 

settings, such as HIV/AIDS. 

Additionally, we show that the expansion of CD14brightCD16+ monocytes was particularly 

relevant in CVID patients with autoimmunity and that the frequency of this monocyte population 

was directly correlated with the frequency of CD21lowCD38low B cells. The expansion of this B-cell 

subset has also been associated with autoimmunity in CVID35, supporting a role for 

CD14brightCD16+ monocytes in the course of the disease. We should point out that our CVID 

cohort presents an unusually high frequency of autoimmune manifestations, probably related to 

a reference bias associated with an immunology department in a central hospital. 

Although several studies have acknowledged the relevance of immune activation in CVID 

pathophysiology, little is known about what drives and sustains it, whether it is related to the 

increased frequency of infections, or to altered response to pathogens. Our data are in 

agreement with a possible multi-factorial event impacting on several compartments of the 

immune system. Irrespective of the monocyte alterations that we describe contributing to the 

inflammatory process itself or being a marker of underlying inflammation, our finding of major 
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monocyte imbalances in particular subgroups of CVID patients may help in defining new lines of 

investigation.  

In conclusion, our data show that CVID was associated with monocyte alterations that 

directly correlated with T-cell activation markers and with B-cell imbalances, without a 

relationship to plasma LPS levels, supporting a potential clinical relevance of therapeutic 

strategies targeting monocytes to control the inflammatory manifestations in CVID patients. 
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3.3 – SUPPLEMENT A 

LONGITUDINAL STUDY OF COMMON VARIABLE IMMUNODEFICIENCY 

PATIENTS PRIOT TO AND AFTER STARTING IgG REPLACEMENT 

THERAPY 

 

 

Our results concerning monocyte activation in CVID patients suggested that IgG 

replacement therapy could actually play a role in modulating microbial translocation and 

consequently influence the obtained results. In addition, virtually all published data on CVID 

immune imbalances relates to patients that are under IgG replacement therapy1-4. Therefore, it 

is very important to perform longitudinal studies in order to assess the possible modulation of 

different immunological parameters in CVID patients upon starting IgG replacement therapy. 

With this aim, four CVID patients were followed for a period of 12 months after starting IgG 

replacement therapy. 

 

We found that the inter-subject variability was high at day 0 in all subjects studied. In 

relation to the monocyte imbalances that we reported in this chapter 3.3, we observed that the 

frequency of CD14brightCD16+ monocytes, which we found to be increased in treated CVID 

patients, tended to decrease with the introduction of IgG replacement therapy (Figure 1B). 

Scattered variations were also noted in CD14brightCD16- and CD14dimCD16+ monocyte populations 

(Figure 1A and 1C). However, it does not seem to have an impact on the expression of HLA-DR by 

total monocytes (Figure 1D), suggesting that IgG replacement therapy may have an overall 

limited effect on monocyte activation as measured by these parameters. 

 

In addition to being used as replacement therapy for B-cell immunodeficient patients, 

intravenous IgG therapy is also used for the treatment of inflammatory and autoimmune 
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diseases, where it has been shown to play an anti-inflammatory role by decreasing immune 

activation, among others5. Even though this effect has been shown to occur with much higher 

doses of intravenous IgG therapy than the ones that are given as replacement therapy to CVID 

patients, we aimed to understand if IgG replacement therapy could have an effect on overall T-

cell activation and the naive/memory T-cell imbalances that are usually associated with CVID6,7. 

 

 

 

Figure 1. Monocyte populations and HLA-DR expression on monocytes in CVID patients, before and up to 12 months 

after starting IgG replacement therapy. (A to C) Frequencies of CD14
bright

CD16
-
 (A), CD14

bright
CD16

+
 (B), and 

CD14
dim

CD16
+
 monocytes (C) and (D) HLA-DR mean fluorescence intensity (MFI) of expression within total monocytes, 

in four CVID patients before (time 0) and after starting IgG replacement therapy. 
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We observed that the levels of T-cell activation were unchanged over time, both in CD4 

and CD8 T cells (Figure 2A and 2B, respectively). In addition, the frequency of naive T cells, both 

within CD4 and CD8 T cells, was remarkably stable, regardless of the inter-subject variability 

(Figure 2C and 2D, respectively). Also, the frequency of terminally-differentiated CD8 T cells 

(CD45RA+CD27-), which is significantly increased in CVID patients6,7 (see Chapter 3.2 of results), is 

very regular over time in the different CVID patients (Figure 2E). Importantly, the frequency of 

circulating CXCR5+ CD4 T cells, which we have found to be severely reduced in patients with 

Congenital Agammaglobulinemia6, was remarkably constant (Figure 2F) and significantly 

increased in CVID patients, as compared to healthy individuals (Figure 2G). This raises the 

hypothesis that, contrary to what happens with Congenital Agammaglobulinemia patients, who 

have severely impaired GC formation, CVID patients present a significant increase in the 

circulating population of follicular CXCR5+ CD4 T cells, possibly related to the impaired function 

of GCs and their hypercellularity8. These results are particularly interesting given the recent 

results on TACI-deficient mice showing that these animals have expanded populations of TFH cells 

and GC B cells, when immunized with T-dependent antigens9. AS previously mentioned, TACI 

deficiency is reported to be associated with 10% of CVID cases10. 

 

 

Concluding Remarks 

 

Overall, our data on the longitudinal assessment of CVID patients starting IgG 

replacement therapy suggests that the introduction of therapy was not associated with major 

immune alterations, and that the immune imbalances were stable and likely related to the 

clinical course of CVID patients. 
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Figure 2. T-cell populations in CVID patients before and up to 12 months after starting IgG replacement therapy. 

Frequencies of activated (HLA-DR
+
CD38

+
) CD4 (A) and CD8 (B) T cells, naive (CD45RA

+
CD27

+
) CD4 (C) and CD8 (D) T 

cells, terminally-differentiated (CD45RA
+
CD27

-
) CD8 T cells (E), and CXCR5

+
 CD4 T cells (F), ), in four CVID patients 

before (time 0) and after starting IgG replacement therapy. (G) Circulating CXCR5
+
 CD4 T cells in healthy individuals 

(filled circles) and CVID patients (open squares). Each symbol represents one individual. Bars represent the mean 

value. Data were compared using the Mann-Whitney test, and p values are shown. 
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The overall aim of this work was to study two clinical settings of primary B-cell 

immunodeficiencies, CVID and Congenital Agammaglobulinemia, in order to better understand 

the impact of B-cell dysfunction on the immune system. Ultimately, the study of these human 

clinical models was aimed not only to expand our knowledge on the function of the immune 

system as a whole, but also to help provide better tools to treat these patients.  

 

In summary, we found that ex vivo BAFF-R expression was reduced in CVID patients, 

particularly in those that present very low frequencies of memory B cells. In contrast, TACI 

expression was significantly increased. Both the decrease in BAFF-R expression and the increase 

in TACI were directly associated with high serum levels of BAFF found in the patients. In vitro 

studies showed that BAFF induced BAFF-R down-regulation, both in healthy individuals and in 

CVID patients. However, the degree of this modulation was impaired in CVID patients, 

suggesting that these dynamics are affected, with a possible impact in B-cell homeostasis. We 

also observed that CVID was associated with monocyte activation unrelated to plasma LPS 

levels, but in direct association with T-cell activation and B-cell imbalances. The search to 

understand the mechanisms underlying the increase in inflammatory manifestations observed in 

CVID patients led us to study the contribution of IL-17, a major pro-inflammatory cytokine 

implicated in autoimmunity and inflammatory conditions. However, no increase in TH17 cells was 

found in CVID and their frequency was inversely correlated with markers of GC dysfunction. TH17 

cells were severely reduced in Congenital Agammaglobulinemia and directly associated with 

switched-memory B cells in healthy subjects, which raises important questions regarding the 

impact of B-cell depleting therapies on this population. 

 

In section 1 of the chapter of Results, we showed that BAFF-R and TACI expression were 

altered in CVID patients, likely contributing to disease pathogenesis. It will be extremely useful 

to understand whether altered receptor expression translates into altered ligand-binding and 

consequently to perturbed ligand responsiveness. This can be achieved by studying BAFF-binding 

capacity in B cells from CVID patients with different levels of BAFF-R expression. We have also 

hypothesized that BAFF can modulate the levels of BAFF-R in a physiological context. Our data 

showing that BAFF-R expression decreases following 5 minutes of stimulation with BAFF is 

suggestive that BAFF-R is being internalized, but further experiments are necessary in order to 



182 B cells at the crossroad of immune responses: 
insights from primary B-cell immunodeficiencies 

 

better evaluate this point, namely through the use of inhibitors of endocytosis. It will also be 

important to understand, in case internalization occurs, what is the fate of internalized BAFF-R. 

Whether it is a target for degradation or it recycles back to the cell membrane may have 

different biological significances and outcomes. This is particularly relevant given the fact that 

we found high BAFF serum levels in CVID patients, together with low BAFF-R expression on B 

cells. A scenario where BAFF ligation is targeting BAFF-R to degradation could explain our 

observations and imply that B cells from CVID patients are consequently less responsive to BAFF 

stimulation. However, a previous report has suggested, although through a distinct experimental 

approach, that this may not be the case1. Another possibility that can be responsible for the 

down-regulation of BAFF-R upon BAFF binding is that BAFF-R is being cleaved and shed into the 

extracellular space. This is a rather interesting possibility, since it would prevent BAFF from 

acting on its target B cells. BAFF-R shedding could then act as a buffer in situations where excess 

BAFF is present. This mechanism has been described to occur for TNF receptors and to be critical 

for the regulation of TNF activity in vivo2. Our results have thus revealed a new possibility in 

which BAFF regulates the levels of its receptor, BAFF-R. Understanding the mechanisms involved 

in this modulation will be particularly relevant to discern whether BAFF-depleting therapies3 may 

have a place in the treatment of CVID. In the case of applying such therapies in CVID patients, 

the main aim would not probably be the total depletion of circulating BAFF but rather the 

elimination of the excess BAFF, in order to allow B cells to regain a normal response to this 

homeostatic cytokine. In this sense, BAFF-depleting therapies would have to be tailored to each 

patient. 

 

In section 2 of the chapter of Results, we reported that the frequencies of TH17 cells and 

switched-memory B cells are directly associated in healthy subjects, and that Congenital 

Agammaglobulinemia patients, who lack peripheral B cells, have a severe reduction of this CD4 

T-cell population. In addition, in CVID patients, who present primary defects in mature B-cell 

differentiation, the frequency of TH17 cells was inversely correlated with markers of GC 

dysfunction, suggesting that B cells play a role in the homeostasis of the TH17 subset. These 

results raise important questions in what concerns the use of B-cell depleting therapies in clinical 

contexts where TH17 have a pathological role, and the beneficial impact that these therapies can 

by affecting this population. Concerning our findings of markedly reduced frequencies of IL-17-

producing CD4 T cells in patients with Congenital Agammaglobulinemia, it will be of greater 

importance to understand whether this is due to intrinsic T-cell defects or to a lack of adequate 

interactions in vivo. Our preliminary data on the assessment of the ability of naïve CD4 T cells 
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from Congenital Agammaglobulinemia patients to differentiate under TH17-polarizing conditions 

suggest that there is actually a cell-specific defect, but this point needs further evaluation. In the 

case this cell-specific defect is confirmed, it will be important to understand which phase of TH17 

differentiation is affected: induction, amplification or survival. Given that each of these phases 

has different molecular requirements, identifying which one is affected would shed light into the 

molecular mechanism underlying the differentiation defect. However, the recent data showing 

that B-cell depletion with rituximab in rheumatoid arthritis patients specifically inhibits the TH17 

response, without affecting other T-cell subsets4, appear to be against the view of Congenital 

Agammaglobulinemia patients having a cell-intrinsic defect in TH17 differentiation, and rather 

suggest that B cells themselves are involved in the development of TH17 responses. 

Nevertheless, we can also hypothesize that the fact that CD4 T cells from Congenital 

Agammaglobulinemia have not been exposed to interaction with B cells makes them less prone 

to develop into the TH17 population. 

 

Regarding the data we have generated on Treg cells, we show that the frequencies of Treg 

cells and TH17 cells are directly associated in CVID patients. These data support the view that the 

impairment of the GCs found in CVID may have an impact in both populations. In addition, we 

report dissociation between FOXP3 and CD25 expression in CVID patients, with severely 

impaired expression of CD25 in the presence of normal frequencies of FOXP3+ CD4 T cells. It will 

be important to clarify the putative Treg disturbances in CVID 5-8. In what concerns our data, we 

can hypothesize that Treg cells are reduced, in which case expression of FOXP3 is mainly related 

to activation. However, the fact that we found no difference in the MFI of FOXP3 expression 

would be against this view, since high levels of FOXP3 expression are regarded as a good 

estimate of Treg function9. Nevertheless, the fact that CVID patients with autoimmunity, 

lymphoid proliferation or chronic diarrhoea present a significant decrease in FOXP3 MFI may be 

pointing to a true decrease of Treg cells, at least in some groups of CVID patients. We can also put 

forward a different picture where Treg cells are not reduced in CVID, but their suppressive 

function is affected by the loss of CD25 expression. The expansion of FOXP3+CD25- CD4 T cells, 

which has also been described in SLE with conflicting data regarding their suppressive function10-

14, seems to be in favour of this hypothesis. A third situation can also be envisaged, in which Treg 

cells are not reduced in CVID and there is also no loss of suppressive function. This would mean 

that the low levels of CD25 expression would not impact on Treg function and would be likely 

related to either lack of appropriate stimulation in vivo or to an intrinsic defect to respond to, for 

instance, TCR stimulation or c cytokines.  
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Finally, in section 3 of the chapter of Results, we showed that CVID, contrary to 

Congenital Agammaglobulinemia, was associated with monocyte imbalances that directly 

correlated with T-cell activation markers and with B-cell imbalances, without an association with 

plasma LPS levels. A very recent report has corroborated our data, also showing that CVID 

patients present increased serum levels of sCD14 in direct correlation with T-cell activation, in 

the absence of increased levels of LPS15. We thus describe monocyte activation as being a 

feature of CVID, and hypothesize that a possible modulation of microbial translocation may be 

taking place by the action of the IgG replacement therapy. To properly evaluate this possibility, it 

will be crucial to assess the levels of LPS, LBP, sCD14 and anti-LPS antibodies, together with 

other more suitable indicators of microbial translocation, such as bacterial 16S ribosomal DNA, 

in the group of CVID patients that are being followed longitudinally prior to and after 

commencing IgG replacement therapy. Only through the study of these patients we will be able 

to ascertain whether IgG replacement therapy has a role in these processes. However, this 

seems to be an unlikely possibility, given the fact that we found a limited impact of IgG 

replacement therapy in parameters related to monocyte and T-cell activation in our longitudinal 

follow-up of CVID patients starting therapy, together with little impact on B- and T-cell 

compartments. It does seem that the immune imbalances that CVID patients present are stable 

and likely related to the clinical course of the disease, with little influence from the IgG 

replacement therapy. 

 

The schematic diagram shown in Figure 1 summarizes the immune system disturbances 

that we observed in primary B-cell immunodeficiencies. In Congenital Agammaglobulinemia 

patients, who lack B cells, we do not observe major alterations in the monocyte compartment, 

while the impairments in T cells appear to be restricted to a reduction in the levels of circulating 

TH17 and TFH cells. In contrast, in CVID patients, who have B cells that are dysfunctional, both 

lymphoid and myeloid compartments are affected. CVID patients present both monocyte and T-

cell activation, in direct association with B-cell imbalances. In addition, our preliminary data also 

suggest that CVID patients have increased frequencies of circulating TFH cells, underpinning the 

role of disturbed GC function in CVID pathogenesis. 
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Figure 1. Simplified schematic representation of the disturbances of the immune system associated with primary B-
cell immunodeficiencies. (A) Interaction between T cells, B cells and antigen-presenting cells (APC) in the normally-
functioning immune system. (B) In the absence of B cells, as exemplified by Congenital Agammaglobulinemia patients, 
no major alterations are seen in the monocyte (APC) compartment, and imbalances at the level of T cells appear to be 
confined to a reduction in circulating TH17 cells and TFH cells. (C) When B cells are present but dysfunctional, as in the 
case of CVID patients, monocyte activation is observed, in direct association with T-cell activation and with the 
expansion of pathogenic CD21

low
CD38

low
 B cells. 

 

Additionally, while patients with Congenital Agammaglobulinemia have clinical 

manifestations that are mostly related to the increased susceptibility to infections derived from 

the absence of B cells and antibody production, CVID patients have a much more complex 

clinical picture, with a high prevalence of autoimmunity and lymphoproliferation16. These clinical 

manifestations are sometimes difficult to treat and consequently there is a need for improved 

therapeutic strategies.  

Given the plethora of clinical complications and immune alterations present in CVID 

patients17, it can be argued that allogeneic haematopoietic stem cell transplantation (HSCT) 

might actually be considered a curative strategy. By wiping out the old compromised immune 

system and replacing it with a new one, normal immunity in CVID patients might be restored. 

HSCT has been reported as a treatment for CVID patients in the case of malignancy, for which 

patients are at a high risk16. Quite recently, the outcome of HSCT performed in four CVID 

patients, either for malignancy or for severe CVID with imminent organ failure, has been 
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reported, with promising results18. Even though only one of the four treated CVID patients has 

been clinically “cured”, resolving all CVID-related complications, including Ig production, in 

addition to the lymphoma for which the patient received allogeneic HSCT, the proof of principle 

has been made18. HSCT can thus be envisioned as a curative approach, even if great care must be 

taken when selecting patients and donors for this procedure. HSCT implies the use of 

conditioning, even if at low doses. In addition, graft-versus-host disease is always a risk19. 

Consequently, only patients with severe clinical manifestations that are refractory to 

conventional treatments should be considered, but it should also be bore in mind that once 

serious organ damage has occurred, HSCT has very little potential to revert the situation. Given 

the great improvements that have been made in HSCT, both in terms of conditioning and the 

treatment of complications arising from transplantation, HSCT may be considered a true option 

in the treatment of CVID in the near future. Nevertheless, HSCT should only be regarded in a 

limited number of cases, and so the need for therapeutic strategies that may target the 

complexity of immune defects present in CVID still prevails.  

 

 

In conclusion, we have shown that both B-cell intrinsic and extrinsic defects are 

underlying the pathogenesis of CVID. B-cell homeostasis is likely impaired, given that expression 

of BAFF-R is significantly reduced, while TACI expression is increased in CVID patients, both of 

which in direct correlation with high serum levels of BAFF. These data raise the possibility of 

BAFF-depleting therapies being envisaged in the treatment of CVID. In addition, we have 

reported that the homeostasis of the TH17 population is related to B-cell maturation, illustrated 

by the severe reduction of TH17 cells in patients with Congenital Agammaglobulinemia, with 

implications for the role of B-cell depleting therapies in this population. Finally, the finding of 

increased levels of monocyte activation in CVID patients that are directly associated with T-cell 

activation points out the need to design therapeutic strategies that target immune activation, in 

order to achieve better treatments for non-infectious complications. 
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