
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

EWA - EVALUATING WEB ACCESSIBILITY

Nádia Raquel Palma Fernandes

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

2011

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

EWA - EVALUATING WEB ACCESSIBILITY

Nádia Raquel Palma Fernandes

DISSERTAÇÃO

Projecto orientado pelo Prof. Doutor Luís Manuel Pinto da Rocha Afonso Carriço

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

2011

Acknowledgements

I would lite to thank who made this project possible, my adviser Prof. Doutor Luis Car-
riço and my informal advisor Rui Lopes. I am grateful to both for guidance and for
encouraging me to do better when necessary.

I thank those who always supported me unconditionally, without wanting anything in
return, and taught me the values and all you can ask of parents. Thanks.

I thank those who had been by my side in these last few years with whom I have great
adventures in college, the eternal group, João and Tiago. We will forever be a group.

To the best friends that I could have, João, Tiago, Tânia, Miguel, Diogo, thank you
for all the support and understanding and for all the good times we had together.

Finally, dear friend thank you and see you soon.

iii

To my family and friends.

Resumo

A Web, como uma plataforma aberta para a produção e consumo de informação, é
usada por vários tipos de pessoas, algumas com determinadas incapacidades. Os sítios
Web devem ser desenvolvidos tendo em conta que a informação deve ser compreendida
por todos, isto é, deve ser acessível. Para analisar se uma determinada página Web é aces-
sível, é necessário inspeccionar as suas tecnologias de front-end (por exemplo: HTML,
CSS, Javascript) esta inspecção pode ser feita de acordo com regras específicas. Um pro-
cesso de avaliação interessante diz respeito à utilização de ferramentas de acessibilidade
que automaticamente inspeccionam uma página Web.

A avaliação automática de acessibilidade pode ocorrer em vários ambientes de exe-
cução e pode ser realizada em HTML original ou transformado. O HTML original é o
documento HTML inicial derivado do pedido HTTP. O HTML transformado resulta da
aplicação das tecnologias de front-end no HTML original, como realizado pelo CSS e
pelo Javascript/Ajax. Isto pode alterar substancialmente a estrutura do conteúdo, apre-
sentação e capacidade de interacção propiciada por uma determinada página Web. Esta
distinção entre as versões do HTML original e transformado de uma página Web é fun-
damental, porque é o HTML transformado que é apresentado e com que os utilizadores
interagem no Web browser.

Os processos existentes de avaliação automática, como os apresentados em [35, 34,
37], normalmente ocorrem no HTML original. Desta forma, as conclusões sobre a qua-
lidade da acessibilidade de uma página Web podem estar erradas ou incompletas. Neste
trabalho realizou-se uma framework de avaliação de acessibilidade Web em diferentes
ambientes, com o objectivo de compreender as suas semelhanças e diferenças a nível de
acessibilidade.

A arquitectura da framework de avaliação consiste em quatro principais componentes:
Execution Environments, QualWeb evaluator, Techniques e Formatters.

O QualWeb evaluator é responsável por realizar a avaliação da acessibilidade na pá-
gina Web usando os recursos fornecidos pelo componente das Techniques, que usa o com-
ponente Formatters para adequar os resultados em formatos de serialização específicos,
tais como relatórios de erros. O QualWeb evaluator pode também ser usado independen-
temente dos vários em diferentes ambientes de execução (Execution Environments).

vii

Os Execution Environments são responsáveis pela transformação do documento HTML
de uma página Web na sua representação equivalente numa árvore HTML DOM.

O componente Techniques contém as técnicas de avaliação do front-end, optando-se
por usar W3C WCAG 2.0 [17], porque é um dos mais importantes padrões de acessibili-
dade.

A arquitectura foi pensada de forma a permitir a serialização dos resultados da avali-
ação em qualquer formato. Assim, as bibliotecas de formatação estão contidas dentro do
componente Formatters. Foi utilizada a serialização EARL [9], porque é um formato pa-
drão para relatórios de acessibilidade. Os resultados obtidos podem ser interpretados por
qualquer ferramenta que use este formato, permitindo comparar os resultados desta ferra-
menta com os de outras. A qualquer altura pode ser adicionado outro tipo de formatação
nos Formatters (por exemplo, relatórios em PDF).

O componente Execution Environments representa os vários ambientes de execução e
foram usados dois tipos: o Command Line e o Browser. O Command Line é o equivalente
ao ambiente de execução normalmente utilizado para realização de testes automáticos, ou
seja, o ambiente que fornece o HTML original. O Browser é o ambiente de exevuçao
onde o HTML usado é o transformado.

A arquitectura foi desenvolvida de forma a ser flexível e modular, sendo possível a
qualquer momento a adição um novo módulo dentro dos componentes principais. Por
exemplo: adição de um novo ambiente de execução, ou outro tipo de técnicas.

Para se conseguir avaliar da mesma forma os ambientes de execução, a implementação
foi realizada na linguagem de programação Javascript, porque é facilmente suportada nos
dois ambientes. Esta implementação permite o estudo comparativo das diferenças da
avaliação da acessibilidade Web em ambos.

Foi também desenvolvida uma bateria de testes para se validar de forma sistemática as
técnicas implementadas nos dois ambientes. Desta forma, os resultados obtidos para cada
técnica foram validados, antes de o avaliador ser utilizado para testes mais complexos.
Garantindo que os resultados obtidos posteriormente estariam correctos.

Finalmente, foi realizado um estudo para se perceber se era realmente mais vantajosa
a realização de avaliações de acessibilidade sobre o documento HTML transformado,
em vez de no original. Foi avaliado um conjunto de páginas Web nos dos ambientes
implementados. Com a comparação dos resultados obtidos nos dois ambientes conclui-se:
que são detectados muito mais elementos no Browser e com isso conseguem-se obter mais
resultados de acessibilidade neste ambiente; e que há uma diferença muito significativa
na estrutura do HTML transformado e original. Pode assim afirmar-se, que há uma mais-
valia significativa na realização deste tipo de avaliação de acessibilidade no Browser.

No entanto, é importante considerar que as páginas Web são frequentemente compos-
tas por templates. Os templates são adoptados para manter a uniformidade de distribuição,
para tentar melhorar a navegação dos sítios Web e para manter objectivos das marcas.

viii

Hoje em dia, o desenvolvimento da Web é muito centrado na utilização de templates
para facilitar a coerência, a implementação e a manutenção de recursos de um sítio Web.
Foi determinado que 40-50% do conteúdo da Web são templates [23]. Apesar desta ampla
utilização de templates, as avaliações de acessibilidade avaliam as páginas como um todo,
não procurando similaridades que se verificam devido à utilização dos templates. Esta
forma de avaliação das páginas com um todo, faz com que os verdadeiros resultados de
acessibilidade fiquem diluídos no meio de um grande número de resultados repetidos.

Contudo, os templates podem ser uma mais-valia para que faz um sítio Web, não sendo
necessário corrigir o mesmo erro várias vezes, basta corrigi-lo uma vez que o próprio
template propaga essa correcção por todo o sítio Web.

Realizou-se por isso um algoritmo de detecção de templates, utilizando como base um
algoritmo de detecção de matching já existente [14]. Este algoritmo detecta similaridades
entre duas árvores HTML DOM.

Para se perceber concretamente as semelhanças nos elementos HTML entre as pá-
ginas Web, efectuou-se um estudo para detecção dos templates em vários sítios Web. O
processo utilizado consistiu nos seguintes passos: 1) detectar os templates entre várias pá-
ginas do mesmo sítio Web; 2) proceder à avaliação das páginas usando o nosso avaliador
definido no inicio do trabalho; e finalmente, 3) separar os ficheiros EARL obtidos em dois
ficheiros, um que continha a parte comum entre duas páginas e outro que continha a parte
especifica, template set e specific set, respectivamente. Desta forma, determinou-se que
aproximadamente 39% dos resultados de acessibilidade foram verificados nos templates.
É uma percentagem bastante elevada de erros que pode ser corrigida de uma só vez.

Com este trabalho foi então realizado: uma análise comparativa dos dois ambientes
de execução; um algoritmo de detecção de templates que permitiu a criação de uma nova
métrica de acessibilidade, que quantifica o trabalho necessário para reparar problemas de
acessibilidade e que pode até ser utilizada como auxiliar de outras métricas; a arquitectura
de um sistema de avaliação que pode ser executado em vários ambientes; um avaliador de
acessibilidade Web baseado em WCAG 2.0, genérico o suficiente para permitir a utiliza-
ção de quaisquer técnicas, formatadores ou ambientes de execução que se pretenda; e uma
bateria de testes que permite a verificação dos resultados de acessibilidade da avaliação,
de acordo com as técnicas escolhidas.

Palavras-chave: Acessibilidade Web, Avaliação Automática, Templates de páginas Web

ix

Abstract

The purpose of this work was to improve the automated Web accessibility evaluation,
considering that: evaluation should target what the end users perceive and interact with;
evaluation results should address accessibility problems in a focused, uncluttered, way;
and results should reflect the quality adequately to the stakeholders.

These considerations had the following goals: analyse the limitations of accessibility
evaluation in two different execution environments; provide additional guidance to the de-
veloper in order to correct accessibility errors, that considers the use of templates in page
development and avoid cluttering the relevant evaluation results; and define evaluation
metrics that reflect more adequately the difficulty to repair Web sites’ problems.

An accessibility evaluator, QualWeb, was implemented and it performs W3C WCAG
2.0 evaluations. Unlike most existing automatic evaluators, this approach performs evalu-
ations on the HTML documents already processed, accessing content as presented to the
user. The evaluator also allows the evaluation on unprocessed HTML documents, as tra-
ditionally done. The framework was designed to be flexible and modular, allowing easy
addition of new components. The serialization chosen was EARL that can be interpreted
by any tool understanding this standard format.

To verify the correctness of the WCAG techniques implementation, a control test-bed
of HTML documents was implemented, representing the most significant problems that
should be detected. Results of the first experimental study confirmed that there are deep
differences between the HTML DOM trees in the two types of evaluation. This shows
that traditional evaluations do not present results coherent with what is presented to the
users.

It was also implemented a template detection algorithm allowing the adequate detailed
and metric-based reporting of an accessibility evaluation. This form of reporting can be
used by existing tools, which can become more helpful in producing accessible Web sites.
Results from the second experimental study show that template-awareness may simplify
assessment reporting, and approximately 39% of the results are reported at least twice, of
which approximately 38% are errors that can be corrected once.

Keywords: Web Accessibility, Automatic Evaluation, Web page templates

xi

Contents

List of Figures xviii

List of Tables xxi

1 Introduction 1
1.1 Work Context . 1
1.2 Objectives . 2
1.3 Work Plan . 3

1.3.1 Description of the Tasks . 4
1.4 Contributions and Results . 5
1.5 Publications . 6
1.6 Institutional Context . 6
1.7 Document Structure . 7

2 Requirements and Related Work 9
2.1 Web and Browsing . 9

2.1.1 Web Browser Process . 9
2.2 Web Accessibility Evaluation . 11

2.2.1 Accessibility Standards . 12
2.2.2 Validation Corpus . 14
2.2.3 The Evaluated Material . 14

2.3 Using, Ensuring and Developing the Accessible Web 14
2.3.1 Reporting Standards . 15
2.3.2 The Impact of Templates . 15
2.3.3 Metrics . 18

2.4 Existing tools . 20
2.5 Summary and Requirements . 21

3 Evaluation Framework 23
3.1 Architecture . 23
3.2 Execution Environments . 25

3.2.1 Command Line Environment . 28

xiii

3.2.2 Browser Environment . 28
3.3 QualWeb Evaluator . 29

3.3.1 QualWeb Evaluator Client . 30
3.3.2 QualWeb Evaluator Server . 30

3.4 Techniques . 31
3.4.1 WCAG 2.0 . 31

3.5 Formatters . 35
3.5.1 EARL . 35

3.6 Template-based Evaluation . 37
3.6.1 Fast Match algorithm . 38
3.6.2 A Template-Aware Web Accessibility Metric 39

3.7 Implementation details . 40
3.8 Summary . 41

4 Evaluation 43
4.1 Validation of WCAG 2.0 Techniques Implementation 43
4.2 Experimental Study 1 - Web Accessibility Evaluation 45

4.2.1 Setup . 45
4.2.2 Data Acquisition and Processing 46
4.2.3 Results . 47
4.2.4 Discussion . 52
4.2.5 Limitations . 53

4.3 Experimental Study 2 - Templates on Web Accessibility Evaluation . . . 54
4.3.1 Setup . 54
4.3.2 Data Acquisition and Processing 55
4.3.3 Results . 55
4.3.4 A Template-Aware Web Accessibility Metric 55
4.3.5 Discussion . 57
4.3.6 Limitations . 58

4.4 Summary . 58

5 Conclusion 61
5.1 Future Work . 62

A Papers Written 63
A.1 Avaliação Pericial de Barreiras ao Acesso sobre Sítios Web de Entidades

Públicas - Interacçäo 2010 . 63
A.2 On Web Accessibility Evaluation Environments - W4A 2011 66
A.3 An Architecture for Multiple Web accessibility Evaluation Environments

- HCII 2011 . 77

xiv

A.4 The Role of Templates on Web Accessibility Evaluation - Assets 2011 . . 88

Abbreviations 91

Bibliography 96

xv

List of Figures

2.1 Web Browsing Resource Interaction . 10
2.2 Web Page Loading Process . 11
2.3 EARL example . 16
2.4 Template example . 17
2.5 Typical Web page template structure . 17

3.1 Architecture of the Evaluation Framework 24
3.2 QualWeb evaluator sub-modules. 25
3.3 Flowchart of assessment in the Command Line execution environment. . . 26
3.4 Flowchart of the sequence of assessment in the Browser execution envi-

ronment . 27
3.5 Evaluation execution example on Browser 28
3.6 Function to obtain the HTML document of the presented Web page. . . . 29
3.7 Scheme of the array of results. 30
3.8 Scheme of the new representation of the results. 30
3.9 Excerpt from WCAG 2.0 H64 technique 34
3.10 Example of Node-Template module application. 35
3.11 EARL document . 36

4.1 Number of Test Documents per Technique 44
4.2 A HTML test document with an example of the right application of tech-

nique H25. 45
4.3 A HTML test document with an example of the wrong application of

technique H25. 45
4.4 Comparing size in bytes in both execution environments 47
4.5 Comparing size in HTML Elements count in both execution environments 47
4.6 Number of HTML Elements that Passed 48
4.7 Number of HTML Elements that Failed 48
4.8 Number of HTML Elements that had Warnings 48
4.9 Browser vs Command Line per criterion (log-scale on HTML Elements

count) . 49
4.10 Browser vs Command Line for criterion 1.1.1 51

xvii

4.11 Browser vs Command Line for criterion 1.2.3 51
4.12 Browser vs Command Line for criterion 2.4.4 51
4.13 Browser vs Command Line for criterion 3.2.2 51
4.14 Applicability of WCAG 2.0 techniques on one of the evaluated Web pages. 55
4.15 Graphs represent the elements per Web page, on top row left to right the

Web sites are: Google, Público, DN and Wikipedia. In bottom row the
Web site are: Facebook, Amazon and Wordtaps 56

xviii

xx

List of Tables

1.1 Initial Schedule . 4
1.2 Revised Schedule . 4

3.1 Techniques Implemented . 32
3.2 Criteria Considered . 33

4.1 False positives and false negatives in criteria applicability on Command
Line execution environment . 50

4.2 Analysed Web sites . 54

xxi

Chapter 1

Introduction

1.1 Work Context

The Web, as an open platform for information production and consumption, is being
used by all types of people, with miscellaneous capabilities, including those with special
needs. Consequently, Web sites should be designed so that information can be perceived
by everyone, i.e., should be accessible.

The importance of Web accessibility is increasing in the international context, and
especially in the European Union. In Europe, more and more countries have legislation
requiring that public Web sites have to be accessible [21]. In Portugal, the directive that
requires the accessibility of institutional Web sites is the Council of Ministers Resolution
number 155/2007 [31], which uses the technicalities specified in W3C WCAG 1.0 [15].
According to this directive, "the organisation and presentation of information provided by
the Internet sites of public sector should be chosen to allow or facilitate access for citizens
with special needs" [31]. Web accessibility should cover at least the information relevant
to understand the content. WCAG [8, 17] is one of the most used technical standards to
accessibility evaluations.

From the different ways that Web page inspection can be done, an interesting evalu-
ation procedure concerns the usage of accessibility assessment software tools that algo-
rithmically inspect a Web page’s structure and content in an automated way. Considering
the amount of information on the Web, this approach surely has properties not shared by
manual evaluations.

Traditionally, accessibility evaluation software assesses source-documents, i.e., HTML
as produced by IDE or developers. However, often the Web browser transforms those
documents before present them to the user. The result, after the application of CSSs and
JavaScript, for example, can be substantially different from the original. Ultimately, it is
transformed HTML that is presented and interacted by all users within a Web browser.
Consequently, conclusions over the accessibility quality of a Web page based on source
analysis can be incomplete, or, in extreme erroneous. It is therefore important to access

1

Chapter 1. Introduction 2

the transformed HTML documents and understands how deep the differences towards the
original documents are.

Front-end Web development is highly centred on the use of templates to ease im-
plementing and maintaining coherence of Web site structural features. Because of that,
evaluating Web sites could lead to misleading accessibility evaluation results, i.e., the
same errors are repeated over and over obfuscating the final reports. This exacerbates
the repairing problems, when they occur in a template, and dilute the remanding ones
within the numerous reported errors. While managing repairing processes, this may sim-
ply kill the corrective project (too demanding) or difficult the distribution of correction
tasks (several developers correcting the same problem).

With template-aware accessibility evaluation tools, developer teams can better manage
the accessibility repair process and have a more realistic perspective of the actual effort
necessary to do it.

In order to effectively evaluate accessibility considering templates, one should first
assess if the amount of errors found in common elements amongst Web pages is relevant
in respect to the total amount.

The existent Web accessibility metrics that use these reports consider a great amount
of repeated accessibility evaluation results spread across evaluated Web pages, caused
by templates. This way, new metrics have to be created that reveal the real accessibility
quality of the Web pages/sites.

1.2 Objectives

The purpose of this work is to improve the automated Web accessibility evaluation. This
purpose, wide as it can be, is focussed in this thesis in finding the adequate evaluation
target and results to the right stakeholders. Three basic considerations are taken into
account: the evaluation should target what the end users perceive and interact with; the
evaluation results should address accessibility problems in a focused, uncluttered, way;
global results of evaluation should reflect the quality in terms adequate to the stakeholders.

Given this summary, the main goals of this work are:

• discover the limitations of accessibility evaluation in the two different execution
environments, before and after browse processing, by achieving a set of concrete
results and well-grounded assessment of the differences between the two and their
advantages and disadvantages in the accessibility evaluation of Web pages;

• provide additional guidance to the developer and the developers’ team management
in order to correct accessibility errors, that considers the use of templates in page
development and avoid cluttering the relevant evaluation results;

Chapter 1. Introduction 3

• define evaluation metrics that reflect more adequately the difficulty to repair Web
sites’ problems.

For that the following technical objectives are aimed:

• design a flexible and modular architecture for a framework of accessibility evalua-
tion, allowing the addition of new evaluation techniques and different formatters;

• implement a set of WCAG 2.0 techniques [12] that have automatable properties and
which will allow to make the comparative analyses between execution environment;

• implement a serialisation of EARL. This way, it can be interpreted by any tool
understanding this standard format, and it allows the comparison between these
results and others obtained with other evaluation tools;

• adapt and implement a template detection algorithm that allows the adequate de-
tailed and metric-based reporting of a Web site accessibility evaluation;

• implement a framework for Web accessibility evaluation that incorporates the above
technical objectives.

To verify the correctness of the WCAG implementation, a control test-bed of HTML
documents was implemented, that represents some of the most significant problems that
should be detected by WCAG techniques. That test-bed is being developed as a part of a
large reference corpus that will constitute the W3C standard for WCAG implementations
assessment.

1.3 Work Plan

In the beginning of this work, it was defined a set of the major tasks and it was defined its
schedule. Table 1.1 contains the expected duration (in months) of the major tasks, with
starting date in September and the supposed end date in June. The expected durations
were estimated considering a little more time for each task. This way, a delay in a task
completion does not prejudice other tasks which depend on this one. Besides, some of
these tasks needed to be done sequentially and another task could be done in parallel.

The first six tasks were performed faster than expected, because of that it was decided
to add a few more tasks. In this new schedule (Table 1.2) tasks 2-6 have the real duration.

The revised plan was almost completely accomplish in time, only the last task (task
9) took a little longer than expected (1 month). The reason was the writing of a paper to
ASSETS 2011 and of the proposal for a doctoral scholarship application to FCT.

Chapter 1. Introduction 4

Table 1.1: Initial Schedule
Tasks Expected duration

(months)
1. Related work study 1
2. Design a battery of test cases 1.5
3. Preliminary Report 0.75
4. Design and perform the architecture of evaluation system 1.5
5. Implementation of prototypes 1.25
6. Comparative analysis of test cases 1
7. Writing of the thesis 2

Table 1.2: Revised Schedule
Tasks Revised duration
1. Related work study 1.5
2. Design a battery of test cases 0.75
3. Preliminary Report 0.75
4. Design and perform the architecture of evaluation system 1
5. Implementation of prototypes 0.5
6. Comparative analysis of the test cases 0.5
7. Implementation of a template detection algorithm 1
8. Experimental study 1
9. Writing of the thesis 2

1.3.1 Description of the Tasks

Task 1 - Related Work Study

Study and analysis of the existing work/state of Web accessibility evaluation. It was
performed in the beginning of the work and it was revised in the end to verify if there have
been changes in the state of the art. Besides of the study of Web accessibility evaluation
state of the art (which lasted 0.5 months), it was accumulated the study and analysis of
the Web page template detection.

Task 2 - Design a battery of test cases

Design and perform a battery of test cases for WCAG 2.0 accessibility to different Web
technologies (HTML, CSS, Javascript) to verify the accuracy of the techniques imple-
mented.

Task 3 - Preliminary Report

This task happened after all the related work was performed and it summarizes the state
of the work, the goals and the work that still needed to be done.

Chapter 1. Introduction 5

Task 4 - Design and perform the architecture of evaluation system

It is a very important part of this work and it consisted in the design and development of
the Web accessibility evaluator. This task was done simultaneously with task 2.

Task 5 - Implementation of prototypes

Implementation of two prototypes for WCAG 2.0 evaluation in the following runtime
execution environments: Command Line and Browser.

Task 6 - Comparative analysis of test cases

This task consisted in a comparative analysis of the test cases in different execution envi-
ronments.

Task 7 - Implementation of a template detection algorithm

This algorithm was used to detect Web page templates in the Web pages. This task was
the previous task 7 that skipped to task 9.

Task 8 - Experimental study

This task consisted in test the template detection algorithm in some Web sites and a new
Web accessibility metric was created.

Task 9 - Writing of thesis

The final task which occurred mostly after the experiments and the results are analysed.
However, some chapters were written during the work.

1.4 Contributions and Results

The work performed in the scope of the PEI was:

• a comparative analysis of both execution environments, to conclude the differences
between them and the advantages of perform Web accessibility evaluation in Web
browser context;

• a template detection algorithm which allowed the creation of accessibility metric
that allows the quantification of the necessary work to repair the accessibility prob-
lems;

• an architecture of an evaluation system that allows evaluations in several execution
environments;

Chapter 1. Introduction 6

• a Web accessibility evaluator based on WCAG 2.0 and generic enough to allow the
use of other techniques, formatters or execution environments;

• a test-bed that allows to verify the accessibility results of an evaluation, according
with the WCAG 2.0 techniques.

1.5 Publications

During this work, the following papers were produced:

• a poster was accepted in the conference Interacção 2010, with the title “Avaliação
Pericial de Barreiras ao Acesso sobre Sítios Web de Entidades Públicas”. This paper
details a study of the accessibility barriers found in a public Web site (Appendix
A.1);

• a full paper accepted in the conference W4A 2011 (8th International Cross-Disciplinary
Conference on Web Accessibility). The percentage of acceptance rate was 33%.
The title is “On Web Accessibility Evaluation Environments” and the paper details
an experimental study designed to understand the differences posed by accessibility
evaluation in the Web browser (Appendix A.2). This paper resulted in an invitation
to submit the paper in a Special Edition of the New Review of Hypermedia and
Multimedia (NRHM) Journal, published by Taylor & Francis. That will bring to-
gether some of the best work presented at this year’s W4A conference;

• a full paper accepted in the conference Human Computer Interaction International
2011 (the 6th International Conference on Universal Access in Human-Computer
Interaction), with the title “An Architecture for Multiple Web Accessibility Evalua-
tion Environment”. This paper describes the architecture that was used in this work
(Appendix A.3); and

• a short paper, under evaluation, submitted for poster presentation to the conference
ASSETS 2011 (the 13th International ACM SIGACCESS Conference on Comput-
ers and Accessibility), with the title “The Role of Templates on Web Accessibility
Evaluation”. The paper contains a preliminary study that demonstrates that a sig-
nificant part the accessibility errors found in relevant Web pages occur in templates
(Appendix A.4).

All the papers can be consulted in the appendix section.

1.6 Institutional Context

The master degree project in computer engineering — PEI -– was conducted in the Large-
Scale Informatics Systems Laboratory – LASIGE – of Informatics Department of Faculty

Chapter 1. Introduction 7

of Sciences of the University of Lisbon — FCUL.
FCUL is one of the units that comprise the University of Lisbon. It has available to

the student a set of modern infrastructure in order to give the students all the conditions
for teaching excellence. It has more than 24 units of R&D funded and evaluated by the
Foundation for Science and Technology, and engaged in multiple areas.

The R&D units at FCUL have obtained high rankings in panels of international as-
sessment, continuing the tradition of scientific quality of the school and the increasing
affirmation at the international level. Its funding is provided by FCT, the European Union
or by Research for companies and government agencies.

FCUL is leading national participants in the European Programmes for Research and
Technological Development and it is a partner of international cooperation agreements
established by Portugal with U.S. universities. Besides, it promotes bilateral and multilat-
erals scientific collaboration and the link between research and industry and entrepreneur-
ship.

1.7 Document Structure

This document is organized with the following structure:

• Chapter 2 - Related Work: this chapter details an assessment of the state of the art
in Web accessibility evaluation, presenting what still need to be done in the area;

• Chapter 3 – Evaluation Framework: this chapter explains the approach chosen to
each component of the framework; and details its design and implementation;

• Chapter 4 – Evaluation: this chapter describes how the framework is validated, the
two studies performed, and all the results are presented and discussed;

• Chapter 5 – Conclusion: chapter that closes this report, it contains the conclusions
of the work and the future work that can be done in this area, using what has been
done.

Chapter 2

Requirements and Related Work

This chapter covers the main topics necessary to understand this work, being Web Ac-
cessibility Evaluation (WAE) its main theme. The text begins by describing the basic
concepts of the Web and Web browsing that sustains the arguments of post processing
evaluation. Then, the fundamental concepts of WAE are presented, including an expla-
nation of the most relevant standards. Afterwards, the different usage perspectives were
studied and the roles of templates and metrics were considered on the building of those
perspectives.

In view of the exposed concepts and requirements, the following section analyse the
most relevant existing tools. The chapter ends with a synopsis, pointing the fundamental
technical components that emerge from the requirements.

2.1 Web and Browsing

In the past, the predominant Web technologies were HTML and CSS, which resulted
in “static” Web pages. Today, Web is growing and on top of these technologies, newer
technologies emerge. Javascript is a relevant one, if not the most.

Consequently, the Web is becoming more and more dynamic. User actions and/or
automatically triggered events can alter a Web page’s content. The presented content can
be substantially different from the initially received by the Web browser. Because of that,
it is important to understand how the Web browser works, with all the technologies, which
will be explained in the next section.

The following sections describe the Web browser process and WAE.

2.1.1 Web Browser Process

The dynamics of Web pages centres around a sequence of communication steps between
the Web browser and the Web servers, as depicted in Figure 2.1.

This communication takes the form of request-response interactions, focusing in three
main areas:

9

Chapter 2. Requirements and Related Work 10

Browser Server

Request Web page

Web page

time
Request resources

Resources

...

AJAX Request

Response

Figure 2.1: Web Browsing Resource Interaction

• Web page: this is the main resource that defines the skeleton of the content that will
be presented in the Web browser;

• Resources: these complementary assets include images and other media, style sheets,
and scripts that are explicitly specified in the Web page’s structure (with proper
HTML elements);

• AJAX: these resources are transmitted during or after the browser triggers the load-
ing events for a Web page.

As a consequence, the final outcome presented in the Web browser is a mixture, sup-
ported by the architecture of the Web (request-response nature, of the original Web pages
and Resources) and the Web page loading process within a Web browser (e.g., AJAX). In
the next section these aspects will be detailed.

Architecture of the Web

The architecture of the Web [27] is composed by servers, URIs, and user agents. User
agents (such as Web browsers) communicate with servers to perform a retrieval action
for the resource identified by the URI. A server responds with a message containing a
resource representation. As depicted in Figure 2.1, in the case of Web browsers, a Web
page is represented not just by its HTML content, but also by a set of ancillary resources.
Due to this increased complexity on handling resources and their representation for users,
Web browsers process all the resources through adequate technologies (e.g., executing
script), which results in the transformed HTML document that is presented to users.

Chapter 2. Requirements and Related Work 11

Web Page Loading Process

After all resources are successfully delivered to the Web browser, four steps are sequen-
tially executed before users are able to interact with the Web page, as depicted in Fig-
ure 2.2:

Requests Parsing DOM
Ready

DOM
Load

Page
Available

Figure 2.2: Web Page Loading Process

The first step in the Web page loading process, Requests, concerns on getting all re-
sources that compose the Web page. After that, the Web browser parses these resources,
building the HTML DOM tree (i.e., a Document Object Model is a model of how the
various HTML elements in a Web page are related to each other. So the HTML document
is represented as tree, in which each HTML element is a branch or leaf, and has a name
[25, 26].), the “visual layout” using CSS, and constructing the execution plan based on
the existing scripted behaviours. Afterwards, the Web browser triggers two events in se-
quence: DOM Ready and DOM Load. The former is triggered when the HTML DOM tree
is ready, whereas the second is triggered after all resources are ready (e.g., CSS, images,
etc).

Web pages typically attach a set of behaviours to these events. This way, scripts are
executed before the user gets the chance to start interacting. Since the HTML DOM tree
is available for manipulation by these scripts, they can potentiate the addition, removal or
transformation of this tree. Consequently, the Web page presented to the user might be
heavily different from the URI’s resource representation, which is initially transmitted to
the Web browser from the Web server.

2.2 Web Accessibility Evaluation

Web access is nowadays such an important asset that is considered a fundamental right
for everyone. Among the possible users, an extensive group of people, access the Web
through assistive technology (AT), because of their disabilities. These technologies artic-
ulate with Web browsers (or user agents) to convey the Web page content in an adequate
way to each individual. Therefore, it is paramount that Web content is produced in a way
that is compatible with those technologies and adequate to the different disabilities.

To assess and improve that compatibility and adequacy, the first step should be to
evaluate. WAE is, thus, an assessment procedure to analyse how well the Web can be
used by people with different levels of disabilities [24]. Unfortunately, current studies

Chapter 2. Requirements and Related Work 12

show that many Web sites still cannot be accessed in the same conditions, by a large
number of people [24, 31]. This is an important issue, which motivates further work to
be done, in this area. Besides, additional dissemination and adequacy improvement of
the tools and means available to evaluate and report, and later correct, must be done to
improve accessibility quality.

WAE can be performed in two ways: users’ based or experts’ based. The users’ based
evaluation is carried-out by real users; they can verify how well the accessibility solutions
present in the Web sites match their own needs. They provide an important opinion to
discover the accessibility problems and to find their solutions. However, assessment by
users is often subjective. Frequently, when they cannot perform a task that does not
mean they found an accessibility problem, it can be a problem in the AT, Web browser or
other. Therefore, these problems are very difficult to filter, so the majority of them cannot
be generalized. Furthermore, user testing is necessarily limited in scale, thus leaving a
substantial number of problems out.

Experts’ based evaluation can be performed manually or automatically. The first is
focused on the manual inspection of Web pages. Contrarily to the one above, it is per-
formed by experts and it can provide a more in-depth answer to the accessibility quality
of a Web page. Not being a substitute to the users’ based evaluation is a very important
complement. However, it is a time-consuming process too, and it can bring potential bias
in the comparison of the different Web pages’ accessibility quality [24, 31].

The automatic evaluation is performed by software. The expertise is embedded in a
software framework/tool. The evaluation is carried out by the tool without the need of
direct human intervention. The big benefits are scalability and objectivity [31]. How-
ever, it has limitations that direct or user’s evaluations do not have, e.g., the depth and
completeness of analysis. Again, it is a trade-off and often constitutes a complement to
manual evaluations.

Experts’ evaluations rely on knowledge. Especially for the automatic version, the
focus of this work, that knowledge is expressed in a set of guidelines, preferably in a way
that can be automated. Besides, these guidelines should be applied in the rendered or
transformed state of a Web page/site. In the next section, it will be presented the most
relevant accessibility guidelines standards.

2.2.1 Accessibility Standards

WCAG is one of the most used technical standards to accessibility evaluations and to en-
courage creators (e.g., designers, developers) in constructing Web pages according to a
set of best practices. This standard covers a wide range of recommendations for making
Web content more accessible. WCAG 1.0 was published in 1999, and tackled the techni-
cal constraints of the Web as it was. With the evolution of Web standards, such as HTML,
and how developers and designers explore Web technologies as of today, WCAG 1.0 is

Chapter 2. Requirements and Related Work 13

often seen as outdated. Therefore, WCAG 2.0 was created as response to this evolution,
thus, allowing developers and designers to evaluate accessibility concerns in a more re-
alistic setting. If this standard is used, a good level of accessibility can be guaranteed
[24, 31].

WCAG 2.0 contains 12 guidelines chosen to address specific problems of people with
disabilities. These guidelines provide the goals that should be used to make Web content
more accessible. Each guideline has testable success criteria [18]. Some examples of
WCAG 2.0 are [17]: provide text alternatives for any non-text content so that it can be
changed into other forms people need, such as large print, braille, speech, symbols or
simpler language; make all functionality available from a keyboard; provide ways to help
users navigate, find content, and determine where they are; help users avoid and correct
mistakes of input, etc.

The guidelines and success criteria are grouped into four principles, which promote
the foundation for Web accessibility:

1. perceivable - information and user interface components must be apprehended by
users;

2. operable - user interface components and navigation must have easy interaction for
users;

3. understandable - information and the operation interface must be easy to compre-
hended by the users;

4. robust - users must be able to access content using a wide variety of user agents.

These principles have to be accomplished in order that a user with disabilities is able
to use the Web.

To help developers effectively implement the success criteria, WCAG 2.0 techniques
[16] were created. These techniques support the success criteria and describe the basic
practices applicable to any technology or to a specific technology. Consequently, the Web
page accessibility evaluation is ultimately held by technique. The evaluation outcomes by
technique – applicability of the techniques – can be:

• Fail or pass – if the elements (or certain values/characteristics of the elements)
verified by the techniques are in agreement or disagreement with the W3C recom-
mendations for the techniques, respectively; and

• Warning – if it is not possible to identify certain values/characteristic of an element
as right or wrong, according to the e W3C recommendations for the techniques.

Some examples of the techniques for HTML are: providing text and non-text alterna-
tives for object; Combining adjacent image and text links for the same resource; etc.

Chapter 2. Requirements and Related Work 14

2.2.2 Validation Corpus

The accessibility standards can be performed in many different ways and in many pro-
gramming languages. Several implementations of WCAG 1.0 and not so many of 2.0
exist. As in other areas, though, the correctness of the implementation should be assessed
in regards to the interpretation of the guidelines. For that, usually, a corpus of valida-
tion, or a test-bed, is produced and initially humanly validated. That is frequently an
enormous task. Then each implementation of the guidelines is applied on that test-bed to
assess its validity. W3C started the production of that test-bed for WCAG 2.0 (WCAG
2.0 Test Samples Development Task Force (TSD TF) Work Statement) [7], but it is still
an on-going work.

2.2.3 The Evaluated Material

Automatic WAE relies on the application of WCAG 2.0 techniques on the elements of a
Web page in order to assess the quality that it is presented to the end-users. Thus, WCAG
has evolved considering new aspects of technology. It is widely accepted that automatic
WAE tools should adopt the latest WCAG recommendations.

However, one should also question the evaluation target. Traditionally, it has been
the source documents that are returned on the first HTTP request. Yet, nowadays, Web
pages are mostly dynamic. As described above, what is presented to the user is often very
different from what is obtained in that request. Thus, it is paramount that the WAE tools
also evolve on the material that is assessed, targeting the rendered or transformed HTML.

2.3 Using, Ensuring and Developing the Accessible Web

It is important to understand who are the stakeholders to use automatic WAE and for what
purpose. Three types of stakeholders can be identified [30]: final users (i.e., those not
experts exploring the Web), public bodies (i.e., those who oversee the enforcement of
laws concerning the accessibility of Web sites) or developers.

Final users may want to perform an accessibility evaluation before entering a Web
site/page. This way, they assess if it is worth to explore, return later or if they should
look for alternatives. The time spent looking for information on a Web site that does not
provide it adequately can be large and frustrating. Final users can also use WAE tools to
alert the Web site producers to the lack of accessibility or to disseminate to communities
its quality or lack of it.

Public bodies may want to perform an accessibility evaluation to verify if the legis-
lation of Web accessible is being respected. In Portugal, the directive that requires the
accessibility of institutional Web sites is the Council of Ministers Resolution number
155/2007 [31]. European Commission has a new initiative, European i2010 initiative on

Chapter 2. Requirements and Related Work 15

e-Inclusion, which includes a “strategy to improve accessibility to the Information Society
for all potentially disadvantaged groups” [4].

These two types of stakeholders need metrics to understand the level of accessibility.
W3C metrics could be used and sometimes are enforced. Selective metrics, e.g. specific
disability oriented, can also be important for different communities of end users. Public
bodies may also need simple error reporting, to understand the gravity of errors and if
possible the correction effort required.

Developers and developer teams need the results of accessibility evaluations to correct
the Web pages that they developed. Their problem is not as much to understand how
difficult it is to browse the Web page or site, but to grasp the amount of effort they have
to spend in doing it. For that, it would be interesting to have metrics that access the
development effort. Similarly, error reporting should consider the development process,
not only in the complexity of reporting but also on its standardization as a form to make
designers’ teams collaboration more flexible and easy, and for integration in development
tools.

2.3.1 Reporting Standards

EARL [9] is a standard format for support of the evaluation of Web applications. It is
a vocabulary to describe the results of test execution, to facilitate its processing and in-
terpretation by different tools. This way, EARL must be used in accessibility evaluators,
validators or other content checkers. Besides, it is expressed in RDF, which can be ex-
tended easily and be adapted to any domain, as in this case accessibility. Figure 2.3 shows
an example of an EARL excerpt.

However, accessibility results can be presented in a complex way to developers since
they are not accessibility experts, e.g., big reports or tools that they cannot understand. If
the report is self-evident, obvious and self-explanatory to the developers, then they will
understand them without problems [28].

There is a large number of automatic tools that generate a different instance for the
same type of problem. These instances lead to many repetitions of the same problem in the
report. Hence, a simplified list with the type of problem and one or two examples of the
actual error is enough so that the designers/developer can fix it without major difficulties.

Consequently, the Web Accessibility Evaluation has to use EARL to deliver evaluation
results, because it is the recommended format to present Web Accessibility Evaluation
results. Besides, these reports should be simplified to facilitate developers’ work.

2.3.2 The Impact of Templates

Templates are usually generated using authoring/publishing tools or by programs that
build HTML pages to publish content (Figure 2.4). Some examples are: navigation side-

Chapter 2. Requirements and Related Work 16

< r d f :RDF
xmlns : e a r l =" h t t p : / / www. w3 . org / ns / e a r l #"
xmlns : r d f =" h t t p : / / www. w3 . org /1999/02 /22− r d f−syn t ax−ns #"
xml : ba se =" h t t p : / / www. example . o rg / e a r l / r e p o r t #" >

< e a r l : A s s e r t i o n r d f : ID=" a s s 3 ">
< e a r l : r e s u l t r d f : r e s o u r c e ="# e r r o r 3 " / >
< e a r l : t e s t r d f : r e s o u r c e = " . . . / xhtml1− s t r i c t . d t d " / >
< e a r l : s u b j e c t r d f : r e s o u r c e = " . . . / r e s o u r c e / i n d e x . h tml " / >
< e a r l : a s s e r t e d B y r d f : r e s o u r c e ="# a s s e r t o r 0 1 " / >

</ e a r l : A s s e r t i o n >

< e a r l : A s s e r t i o n r d f : ID=" a s s 1 ">
< e a r l : r e s u l t r d f : r e s o u r c e ="# e r r o r 1 " / >
< e a r l : t e s t r d f : r e s o u r c e = " . . . / xhtml1− s t r i c t . d t d " / >
< e a r l : s u b j e c t r d f : r e s o u r c e = " . . . / r e s o u r c e / i n d e x . h tml " / >
< e a r l : a s s e r t e d B y r d f : r e s o u r c e ="# a s s e r t o r 0 1 " / >

</ e a r l : A s s e r t i o n >

< e a r l : A s s e r t i o n r d f : ID=" a s s 2 ">
< e a r l : r e s u l t r d f : r e s o u r c e ="# e r r o r 2 " / >
< e a r l : t e s t r d f : r e s o u r c e = " . . . / xhtml1− s t r i c t . d t d " / >
< e a r l : s u b j e c t r d f : r e s o u r c e = " . . . / r e s o u r c e / i n d e x . h tml " / >
< e a r l : a s s e r t e d B y r d f : r e s o u r c e ="# a s s e r t o r 0 1 " / >

</ e a r l : A s s e r t i o n >

<−− . . . −−>

</ r d f : RDF>

Figure 2.3: EARL example

Chapter 2. Requirements and Related Work 17

bars, corporate logos in a specific location, headers or menus, locations, contact informa-
tion, ads, and footers [23].

<?php
i n c l u d e (‘ ‘ head . php ’ ’) ;
i n c l u d e (‘ ‘ menu . php ’ ’) ;

/ / page s p e c i f i c code goes h e r e

i n c l u d e (‘ ‘ f o o t e r . php ’ ’) ;
?>

Figure 2.4: Template example

In addition to facilitate Web page construction, templates can also increase the reuse
of the Web page code and improve its structure. They maintain the uniformity of layout
(Figure 2.5), try to enhance navigation of Web sites and maintain branding goals [36].

Figure 2.5: Typical Web page template structure

Templates are highly used in the modern Web development, to ease the implementing
and maintaining coherence of Web site navigational and presentational features. It has
been determined that 40-50% of the Web content is template content [23]. Hence, this
mechanism is of high profusion throughout the Web.

Considering templates, automatic WAEs, as they are commonly done, could provide
misleading results to developers, i.e., the same errors are repeated over and over obfus-
cating the final reports. This exacerbates the repairing problems when they occur in a
template and dilute the remaining ones, within the numerous reported errors. While man-
aging repairing processes, this may simply kill the corrective project (because it appears

Chapter 2. Requirements and Related Work 18

as too demanding) or complicate the distribution of correction tasks (several developers
fixing the same problem). With template-aware WAE tools, developer teams can better
manage the accessibility repair process and have a more realistic perspective of the actual
effort necessary to do it.

Solutions, like doing evaluation in the original template and sources, yields heavily
distorted results and are not reasonable alternatives. First, they assess documents that
are rather different from the ones presented to users. Elements are often combined in
the rendered pages and errors emerge from that combination. Secondly, and reinforcing
the previous, templates are frequently incomplete documents, sometimes improper for
automatic evaluation.

Template detection

Template detection is often used in the fields of Information Retrieval and Web page
Clustering. Towards information retrieval, template detection and removal increase preci-
sion [11] can positively impact performance and resource usage in processes of analysis
of HTML pages [36]. Regarding Web page Clustering, templates could help in cluster
structurally similar Web pages [13].

Search logs were used to find paths in the DOM trees that mark out important parts of
pages [13]. These paths are identified by analysis of the Web site, using search data for
popular pages to infer good paths.

Pagelets are also used to perform template detection. These are a self-contained log-
ical part within a page that has a defined topic or functionality [11]. A page can contain
one or more pagelets, depending on the number of topics and functionalities.

Although most of these works are not at the level of accessibility, it was already men-
tioned the importance of considering Web page templates in accessibility issues [29]. It
was suggested the inclusion of accessibility on the design, using accessible content tem-
plates, to preserve accessibility [32]. Besides, template detection was used to detect some
usability problems in an early stage [10]. However, this last work does not explore the
specific issue of accessibility or the impact of the construction of accessible Web pages.

In conclusion, template detection can be a big advantage in simplifying accessibility
reports and in the error repair. However, until now they have not been used for this
purpose.

2.3.3 Metrics

To verify where and why a Web page is not accessible, it is important to analyse the
HTML structure of the Web page. This analysis brings the possibility of measuring quan-
titatively the level of accessibility of a Web page. Further, metrics facilitate understanding,
observation of experimental studies results and assessment of the results obtained.

Chapter 2. Requirements and Related Work 19

The accessibility levels used by final users and public bodies are based in a WCAG
2.0 metric that use the results of the success criteria. There are five requirements that have
to be accomplished in order for the content to be classified as conforming to WCAG 2.0
[19]. They are:

• conformance level: there are three levels of conformance – A (the minimum level of
conformance), AA and AAA. The higher levels of conformance include the lower
ones;

• full pages: conformance level is for the Web page as a whole, no part of a Web page
can be excluded;

• complete processes: a Web page is part of a sequence of Web pages that need to be
visited in order to accomplish an activity. All Web pages involved have to conform
at the specified level or better;

• only accessibility-supported ways of using technologies: “Only accessibility-supported
ways of using technologies are relied upon to satisfy the success criteria. Any infor-
mation or functionality that is provided in a way that is not accessibility supported
is also available in a way that is accessibility supported” [19];

• non-interference: technologies not accessibility supported can be used, if all the
information is also available using technologies that are accessibility supported and
as long as the non-accessibility-supported material does not interfere.

Several studies were conducted on quantifying Web accessibility in different ways.
Some examples are:

• UWEM [35] defined a accessibility metric that result in a accessibility value for
each Web page, using the failure rate for each Web page;

• all rates setted – optimistic rate and conservative rate and strict rate – were com-
puted for checkpoint and aggregated into a final score of accessibility quality of a
Web page [31];

• WAQM [37] computes the failure rate for each tested Web page and the average of
the results for each Web page (considering the page weight in the site) is the final
result.

Whereas these metrics provide different perspectives of the accessibility quality, none
of them directly addresses the developers’ effort in a way that relates with the common
development process. Templates, as seen, are a fundamental part of this process and
should be taken into account.

Chapter 2. Requirements and Related Work 20

2.4 Existing tools

Web Accessibility Initiative (WAI) publishes a large list of Web Accessibility Evaluation
Tools 1. Some examples of those tools are:

• A-Checker[2] a free on-line accessibility checker that tests Web pages for confor-
mance to WCAG 1.0 guidelines;

• aDesigner[6] a disability simulator of visual disabilities – low vision and blind
people – that checks elements that may not be well properly used for people with
these disabilities and it also checks accessibility WCAG 1.0 guidelines;

• A-Prompt[1] a free accessibility evaluator and repair tool that uses WCAG 1.0.

However, none of these tools uses WCAG 2.0 and most implementations of automatic
evaluations do not consider the changes in the HTML document. Since experts’ and
users’ evaluation are performed in the Web browser on the rendered state of the Web
page, they do not suffer with these changes. To solve this problem, the accessibility
evaluation should be applied to new execution environment, i.e., in the Web browser
context - Browser execution environment. Consequently, evaluation can be performed
a priori or a posteriori, i.e., before or after of the processing that happens in the Web
browser, respectively.

The importance of the Web browser context in the evaluation results is starting to be
considered and is already used in four tools [21]:

• Foxability[3] an accessibility analyzing extension for Firefox, that uses WCAG 1.0;

• Mozilla/Firefox Accessibility Extension[21] an extension of Firefox that uses WCAG
1.0 and perform report generation;

• WAVE Firefox toolbar[5] is a Web Accessibility Evaluation Tool that provides a
mechanism for running WAVE reports directly within Firefox, using WCAG 1.0,
but it does not perform reporting;

• Hera-FXX Firefox extension [21] semi-automatic tool to perform accessibility eval-
uation, using WCAG 1.0.

These tools focus only on use WCAG 1.0, which has been obsoleted by its latest 2.0
incarnation and they are embedded as extensions, becoming more limited in terms of their
application. Because, they cannot be used outside the Web browser.

During the course of this work, Hera-FFX was updated [22] and its new version uses
WCAG 2.0, but, this is only a semi-automatic tool and it cannot be used outside the Web

1WAI - Complete List of Web Accessibility Evaluation Tools: http://www.w3.org/WAI/ER/
tools/complete

http://www.w3.org/WAI/ER/tools/complete
http://www.w3.org/WAI/ER/tools/complete

Chapter 2. Requirements and Related Work 21

browser. Consequently, it does not allow comparison of evaluations of different execution
environments. Up to this point, no work that focuses on the differences between results
in different execution environments has been found. To perform correct comparisons, it
must be guaranteed that tests are implemented in different execution environments in the
same way, by reducing implementation bias.

2.5 Summary and Requirements

This chapter provided an overview of the main topics of WAEs, how they are necessary
and their results. This way, it is possible to understand: the WAE standard used and why
it was chosen, as the evaluation can be performed and under what circumstances, and the
kind of problems that the developer has to solve, to repair accessibility errors. Besides,
there were described the general problems of the existent WAE tools that performed the
evaluation, showing the necessity of a new toll that performs this evaluation using more
recent guidelines and in the rendered or transformed state of a Web page.

This chapter allowed understanding the state of the art and what still needs to be done
in this area. This way, some important requirements are:

1. an automatic accessibility evaluator, which uses WCAG 2.0, has a test-bed to its
validation and is able to perform the evaluation in the static and transformed HTML
in a fair way to compare them;

2. a reporting mechanism with EARL, taking templates into account and accompanied
by a fair development metric.

Chapter 3

Evaluation Framework

This chapter contains the specification of the accessibility evaluation framework. It presents
its architecture, describing the several components needed, explains all the necessary de-
sign decisions, relatively to the components of the architecture, and detailed the imple-
mentation details and problems.

3.1 Architecture

In this work, two main execution environments were emphasized: Command Line, and
Browser. In the Command Line execution environment, evaluation is performed on the
HTML document that is transmitted initially in an HTTP response, whereas in the Browser
execution environment, evaluation is targeted at the transformed version of the HTML
document. To better grasp the differences between these execution environments, some
requirements for the architecture of the evaluation framework were defined:

1. must be modular and flexible, allowing the addition of new components quickly
and easily at any-time, without compromise the functionalities of the others com-
ponents;

2. must allow a proven equivalence in both execution environments, so they can be
compared fairly.

These requirements should be considered in the design of the framework’s architec-
ture. The architecture (depicted in Figure 3.1) is composed by four major components:
the QualWeb Evaluator, Execution Environments, Techniques and Formatters.

The QualWeb Evaluator can be used to perform Web accessibility evaluations inde-
pendently to the Execution Environment chosen. Because, the object of evaluation is a
HTML DOM tree, which can be obtained at any moment.

To perform the evaluation QualWeb uses the features provided by the Techniques com-
ponent. It uses the Formatters component to tailor the results into specific serialisation
formats, such as EARL reporting [9], since EARL is a standard format for accessibility

23

Chapter 3. Evaluation Framework 24

WCAG
2.0

EARL

Execution Environments

Techniques

Command Line

QualWeb
Evaluator

… …

Formatters

Browser

Libraries
Server

Figure 3.1: Architecture of the Evaluation Framework

reporting. This way, it can be interpreted by any tool that understands this format, and
even allow comparing the results with other tools.

The Execution Environments component is responsible for the transformation of the
Web page interpretation (HTML document) in an equivalent DOM representation. Ac-
cording with the state of the processing determined by the Execution Environments, i.e.,
if the Web page has already been processed or not.

The QualWeb Evaluator is composed by two components (Figure 3.2): QualWeb
Client and QualWeb Server. The first one executes the evaluation on the data received
from the Execution Environments, using the Techniques module. The second one is a Web
server that receives evaluation results without the final serialization and serializes them,
using the Formatter module, and, at the end, stores the final reports.

Finally, Libraries Server stores the libraries needed by the Execution Environments.
Especially the libraries that have to be injected in the Browser’s environment.

Chapter 3. Evaluation Framework 25

Techniques Formatters

QualWeb Evaluator

QualWeb Client

QualWeb Server

Figure 3.2: QualWeb evaluator sub-modules.

3.2 Execution Environments

To perform each assessment, both execution environments have different requirements
and a different sequence of steps/actions. Figures 3.3 and 3.4 show the sequence in the
Command Line and Browser execution environments, respectively. Consequently, the
way of obtaining the HTML document has to be appropriated to the execution environ-
ment.

It was important to consider that some Web pages do automatic redirection for other
URL, which can cause errors if the script used does not capture the HTML document for
the redirected Web page. To mitigate this problem, it was used CURL 1, which is a com-
mand line tool that transfers data with URL syntax. With this toll the HTML document
of the redirected Web page was obtained.

After the parsing of the HTML document into a HTML DOM tree, the lowerCase
module was used. This module was developed in this work and it converts all the elements
of a HTML DOM tree into lower case letters. This is done to prevent the occurrence of
any possible error/problem during the search, which is case sensitive, since most Web
sites contain a mixture of lower case and capital letters in its elements. Sequentially, the
HTML DOM tree can be used by QualWeb evaluator and processed by the Techniques
module, without problems.

Additionally, another module was necessary to determine the number of elements of
a HTML DOM tree, and it is called counter module.

In the next section will be described the specific implementation of each execution
environments.

1CURL: http://curl.haxx.se/

http://curl.haxx.se/

Chapter 3. Evaluation Framework 26

The Command Line
receives the Web page

URL

The Web page is
requested

HTML DOM tree obtained

Page
Found?

Error Message

No

Yes

Results are formatted using the EARL
module and stored in the QualWeb

evaluator (server).

Evaluation, using QualWeb evaluator
(client) that uses the Techniques module.

Figure 3.3: Flowchart of assessment in the Command Line execution environment.

Chapter 3. Evaluation Framework 27

Evaluation is triggered in the Browser

Injection of the libraries
needed by QualWeb

Evaluator (server)

HTML DOM tree obtained

Page
Found?

Results are formatted using the EARL
module and stored in the QualWeb

evaluator (server).

No

Yes

The Web page presented is
requested

Error Message

Evaluation, using QualWeb Evaluator
(client) that uses the Techniques module.

Figure 3.4: Flowchart of the sequence of assessment in the Browser execution environ-
ment

Chapter 3. Evaluation Framework 28

3.2.1 Command Line Environment

The sequence of execution and implementation of the evaluation process in this execution
environment is the following:

1. a user provides the URL of a Web page;

2. the HTML document of the Web page is obtained, using a HTTP GET request;

3. if the HTML document is obtained, it is parsed in HTML DOM tree, using the
HTML Parser module, and unified by the lowerCase;

4. all the libraries/modules needed (e.g., Counter module, WCAG 2.0 module, Qual-
Web evaluator module) are available and the evaluation is performed on the HTML
DOM tree, using QualWeb evaluator;

5. the evaluation results are sent to the QualWeb evaluator Server; and

6. the EARL serialization is performed and the data is stored.

3.2.2 Browser Environment

The sequence of execution and implementation of the evaluation process in this environ-
ment is the following:

1. a user triggers the evaluation in the Web browser, using a bookmarklet (Figure 3.5)
(i.e., a line of Javascript stored on the URL of a bookmark, to trigger the execu-
tion of the evaluation within the Web browser). When the user activates the book-
marklet, these commands are run. To implement this browser-server execution and
communication mechanism, the following modules were used:

(a) Bootstrap, to import several of the required base modules. This way, only
one line of Javascript, which executes a bootstrap file that imports all the li-
braries/modules needed, has to be written. This was necessary, because the
code stored in the bookmarklet has a limited number of characters (that de-
pends on the Web browser used); and

(b) LAB.js, to inject all the evaluation modules into the browser’s DOM context.

Figure 3.5: Evaluation execution example on Browser

Chapter 3. Evaluation Framework 29

2. the bookmarklet injects the required modules, contained in the Libraries Server, to:
obtain the HTML DOM tree of the current Web page, using the Node-HTMLParser;
execute the evaluation, using the WCAG 2.0 module and QualWeb evaluator mod-
ule); and to count the elements, using the Counter module;

3. the evaluation is performed on the HTML DOM tree;

4. after the evaluation is performed, to allow the results to be accessed outside the
Browser, a form with a propriety visible with the value false, is injected into the
Web page. That form contains an element textarea that is filled with the evaluation
results;

5. the results are sent to the QualWeb evaluator Server, using a HTTP POST of the
form; and

6. the EARL serialization is performed and data is stored.

To obtain the HTML document of a Web page in the Browser, the following methods
were considered:

• document.Head.innerHTML + document.Body.innerHTML to obtain the head and
the body of the page. However, this method could not obtain the entire HTML
document;

• document.documentElement.innerHTML to obtain all the HTML of the Web page.
However, it had the same result as the previous method;

• finally, the function presented in Figure 3.6, which was able to capture all the
HTML document of the Web page, including the HTML element (i.e., HTML tag).

v a r outerHTML = f u n c t i o n (node) {
r e t u r n node . outerHTML | |
new XMLSer i a l i z e r () . s e r i a l i z e T o S t r i n g (node) ;

}

Figure 3.6: Function to obtain the HTML document of the presented Web page.

3.3 QualWeb Evaluator

The QualWeb evaluator is divided in two sub-modules. Because of that, the implemen-
tation of this component will be explained separately in QualWeb evaluator Client and
QualWeb evaluator Server.

Chapter 3. Evaluation Framework 30

3.3.1 QualWeb Evaluator Client

The QualWeb evaluator Client receives the HTML DOM tree of a Web page from an exe-
cution environment. Sequentially, it performs the WAE, using all the techniques available
in the Techniques component chosen. This way, an array of results is created (i.e., an
array of objects that contains all the accessibility results from HTML DOM tree). Each
element of the array is composed by the position of the element evaluated in the HTML
DOM tree, the technique used to evaluate the element and the result of its evaluation
(Figure 3.7).

Figure 3.7: Scheme of the array of results.

Besides, a metadata object needed to be introduced into the results, to support the
specification of the elements count and a timestamp. The elements count indicate the total
number of elements in a Web page, because some elements do not have applicability and
they do not present any accessibility result/outcome. The timestamp states the specific
time when the evaluation was performed, to allow the comparison of evaluation times.
Consequently, final results are represented by joining the array of results shown in Figure
3.7 with the metadata, as shown in Figure 3.8.

Figure 3.8: Scheme of the new representation of the results.

After the execution of the Web Accessibility Evaluation, the results are serialized,
using a type of Formatters component.

3.3.2 QualWeb Evaluator Server

The QualWeb evaluator Server has two functions: (1) it allows access to certain libraries
required in the Browser’s execution environment, and (2) it receives the evaluation results,

Chapter 3. Evaluation Framework 31

and performs the serialization. For the first task, it was used the Node-Static module and,
for the second task, it was used the Node-Router module.

When the results are received, all the headers from the HTTP POST were removed.
The results were transformed in the EARL serialisation format, using the EARL module,
and subsequently stored in this component (QualWeb evaluator Server).

3.4 Techniques

In this component, it is possible to select what techniques/technique to use.

For each technique, the HTML DOM tree of the Web page is traverse until needed, to
verify if the critical elements of the HTML DOM tree considered in the technique were in
accordance with the specific techniques recommendations. The search for elements, with
potential problems, is done in the most efficient way. Consequently, it does not examine
the unnecessary elements, the elements that could not have the critical problems that are
being searched.

Finally, depending on the results of that accordance, a specific value of outcome is
assigned for the element, and for each of these results a new element is added to the array
of the results.

3.4.1 WCAG 2.0

There is a total of 54 HTML WCAG 2.0 Techniques, but only 18 HTML techniques
were implemented. Table 3.1 presents the chosen techniques and their descriptions. The
techniques take into account the criteria showed in Table 3.2.

Other techniques were not chosen, because most of them require a complex process-
ing of semantics, sound, video, and other media, which was not an objective of this thesis.
In fact, to the best of our knowledge, there is no Web accessibility evaluator that even ad-
dresses the issue and the known media processing techniques are not accurate enough to
offer unambiguous classifications. Therefore, if techniques that need this kind of process-
ing were chosen, using the existent media processing tools, they could lead to incorrect
results.

Figure 3.9 shows an excerpt from WCAG 2.0 H64 technique. It can be observed a
search in the HTML DOM tree of frames or iframes elements, to determine whether or
not they have a title.

Chapter 3. Evaluation Framework 32

Table 3.1: Techniques Implemented

Techniques Description
H2 Combining adjacent image and text links for the same re-

source
H25 Providing a title using the title element
H30 Providing link text that describes the purpose of a link for

anchor elements
H32 Providing submit buttons
H33 Supplementing link text with the title attribute
H36 Using alt attributes on images used as submit buttons
H37 Using alt attributes on img elements
H44 Using label elements to associate text labels with form con-

trols
H46 Using noembed with embed
H53 Using the body of the object element
H57 Using language attributes on the html element
H64 Using the title attribute of the frame and iframe elements
H65 Using the title attribute to identify form controls when the

label element cannot be used
H67 Using null alt text and no title attribute on img elements for

images that AT should ignore
H71 Providing a description for groups of form controls using

fieldset and legend elements
H76 Using meta refresh to create an instant client-side redirect
H89 Using the title attribute to provide context-sensitive help
H93 Ensuring that id attributes are unique on a Web page

Chapter 3. Evaluation Framework 33

Table 3.2: Criteria Considered
Criterion Description
1.1.1 Non-text Content that is presented to the user has a text al-

ternative, except for pre-defined situations
1.2.3 Audio Description or Media Alternative content is provided

for synchronized media, except when the media is a media
alternative for text and is clearly labelled as such

1.2.8 Media Alternative is provided for all pre-recorded synchro-
nized media and for all pre-recorded video-only media

1.3.1 Info and Relationships conveyed through presentation can
be determined or are available in text

2.4.1 A mechanism is available to bypass blocks of content that
are repeated on multiple Web pages

2.4.2 Web pages have titles that describe topic or purpose
2.4.4 Link Purpose can be determined from the link text alone or

from the link text together with its determined link context,
except where the purpose of the link would be ambiguous
to users in general

2.4.9 Link Purpose can be identified from link text alone, except
where the purpose of the link would be ambiguous to users
in general

3.1.1 Language of Page can be determined
3.2.2 Changing the setting of any user interface component does

not automatically cause a change of context unless the user
has been advised of the behaviour before using the compo-
nent

3.2.5 Changes on request of user
3.3.2 Labels or instructions are provided when content requires

user input
3.3.5 Help is available
4.1.1 Elements have complete start and end tags, elements are

nested according to their specifications, elements do not
contain duplicate attributes, and any IDs are unique, except
where the specifications allow these features

4.1.2 For all user interface components, the name and role can be
determined; and values that can be set by the user can be set

Chapter 3. Evaluation Framework 34

f u n c t i o n i n s p e c t (DOMList)
{

i f (t y p e o f DOMList == " u n d e f i n e d " | | DOMList . l e n g t h == 0)
r e t u r n ;

f o r (v a r i = 0 ; i < DOMList . l e n g t h ; i ++)
{

p o s i t i o n ++;
i f (DOMList [i] [" t y p e "] == " t a g " && (DOMList [i] [" name "]
== " f rame " | | DOMList [i] [" name "] == " i f r a m e "))
{

i f (DOMList [i] [" a t t r i b s "] [" t i t l e "] != " " &&
DOMList [i] [" a t t r i b s "] [" t i t l e "] != " u n d e f i n e d ")
{

addElement (p o s i t i o n , ’ warning ’ , " ") ;
}
e l s e

addElement (p o s i t i o n , ’ f a i l e d ’ , " ") ;
}
i n s p e c t (DOMList [i] [" c h i l d r e n "]) ;

}
}

Figure 3.9: Excerpt from WCAG 2.0 H64 technique

Chapter 3. Evaluation Framework 35

3.5 Formatters

This component receives the final results, which are used to produced its chosen serial-
ization, according with the type of Formatters selected. The Formatter used will serve as
the basis for generating CSV reports that will allow statistical analysis of the results.

In the case of this work, as mentioned before, EARL serialization was chosen and it
will be detailed in the next sub-section.

3.5.1 EARL

For this type of reports generation, schemes/templates of the reports were defined, using
the Node-Template module. These schemes/templates contain the generic information
needed for reporting. The more specific content will be generated by applying the evalu-
ation results to those schemes/templates to construct the EARL reports.

Figure 3.10 shows a simple example of the use of the Node-Template module. The
example shows the creation of a Test Mode XML class that describes how a test was
carried out for the assertion with number index (that refers to one of the results), in this
case the test was automatic.

v a r t e s t m =
’< e a r l : A s s e r t i o n r d f : a b o u t ="# a s s e r t i o n <%=i n d e x %>">’+
’< e a r l : mode r d f : r e s o u r c e = " . . . / e a r l # a u t o m a t i c " / > ’+
’ </ e a r l : A s s e r t i o n > ’ ;

v a r temp = t e m p l a t e . c r e a t e (t e s t m) ;

e a r l += temp ({ i n d e x : i n d e x }) ;

Figure 3.10: Example of Node-Template module application.

EARL’s original specification does not support the introduction of new data. For that
reason, it had to be extended, to include another small set of elements, introduced as
metadata (mention in section 3.3.1). For that, a metadata XML class was defined to add
extra information when needed. In this case, the metadata class supports the specification
of element count, and timestamp. However, other elements can be added, if necessary.
Because of the metadata class, the results received by any Formatter module have to con-
tain the information necessary to fill these fields. Figure 3.11 shows an EARL document
example in RDF/N32 format.

Relatively to the CSV reports generation, a EARL-Parser module was used to parse
the EARL, and CSV module was used to allow a better inspection and statistical analysis
with off-the-shelf spreadsheet software. Due to the extensiveness of EARL reports that

2RDF/N3:RDF/N3:http://www.w3.org/DesignIssues/Notation3

RDF/N3: http://www.w3.org/DesignIssues/Notation3

Chapter 3. Evaluation Framework 36

<#QualWeb> d c t : d e s c r i p t i o n " "@en ;
d c t : h a s V e r s i o n " 0 . 1 " ;
d c t : l o c a t i o n " h t t p : / / qualweb . d i . f c . u l . p t / " ;
d c t : t i t l e " The QualWeb WCAG 2 . 0 e v a l u a t o r "@en ;
a e a r l : S o f t w a r e .

< a s s e r t i o n 1 > dc : d a t e "1291630729208" ;
a e a r l : A s s e r t i o n ;
e a r l : a s s e r t e d B y < a s s e r t o r > ;
e a r l : mode e a r l : a u t o m a t i c ;
e a r l : r e s u l t < r e s u l t 1 > ;
e a r l : s u b j e c t < h t t p : / / ameblo . j p / > ;
e a r l : t e s t < h t t p : / / www. w3 . org / TR /WCAG20−TECHS / H25#H25 > .

< h t t p : / / ameblo . j p / > d c t : d e s c r i p t i o n " "@en ;
d c t : t i t l e " The QualWeb WCAG 2 . 0 e v a l u a t o r "@en ;
qw : e l emen tCoun t " 3 8 1 " ;
a qw : metada ta ,
e a r l : T e s t S u b j e c t .

< h t t p : / / www. w3 . org / TR /WCAG20−TECHS / H25> d c t : h a s P a r t
< h t t p : / / www. w3 . org / TR /WCAG20−TECHS / H25#H25− t e s t s / > ;

d c t : i s P a r t O f < h t t p : / / www. w3 . org / TR /WCAG20−TECHS/ > ;
d c t : t i t l e "H25"@en ;
a e a r l : T e s t C a s e .

<QualWeb> d c t : d e s c r i p t i o n " "@en ;
d c t : h a s V e r s i o n " 0 . 1 " ;
d c t : t i t l e " The QualWeb WCAG 2 . 0 e v a l u a t o r "@en ;
a e a r l : S o f t w a r e ;
f o a f : homepage qw : .

< r e s u l t 1 > d c t : d e s c r i p t i o n " d e s c r i p t i o n "^^ r d f : XMLLiteral ;
d c t : t i t l e " Markup V a l i d "@en ;
a e a r l : T e s t R e s u l t ;
e a r l : i n f o " i n f o "^^ r d f : XMLLiteral ;
e a r l : outcome e a r l : p a s s e d ;
e a r l : p o i n t e r <1 >.

Figure 3.11: EARL document

Chapter 3. Evaluation Framework 37

can be generated by the evaluator (sometimes with thousands of lines), the EARL-CSV
transformation had to be performed using a SAX parser. Because, generic DOM parsers
would be significantly slower and they would cause a significant memory consumption.

3.6 Template-based Evaluation

It is important to perform correct reporting, taking into account that the same accessibility
errors can be repeated many times in the Web sites/pages, as previous mentioned. Because
of that, it is necessary to perform a template-based evaluation.

This evaluation can be performed in the Web page source or after the Web page pro-
cessing, i.e., a priori or a posteriori. However, in the first approach two accessibility
evaluations and two distinct periods of correction would be necessary, because some ac-
cessibility problems could be introduced by the Web page processing. Consequently, it
was decided to perform the template-based evaluation into the transformed HTML (final
stage of the page).

The Fast Match algorithm [14] (detailed in the next sub-section) was selected to per-
form Web page template detection. Because of its applicability and adequacy to search
similarities between two node trees. However, the Web pages are transformed in their
representation in a HTML DOM tree, so that the similarities can be detected by the Fast
Match algorithm, allowing the identification of the common elements between two Web
pages.

Another advantage of this algorithm is its execution time. This is important, because
Web sites can have many Web pages, which can be represented with large trees. Conse-
quently, the algorithm has to be fast.

The application of this algorithm to a Web site or between Web sites will result in a
precise enough measure of the components that are part of a template, or should probably
be part of one.

Before the algorithm is executed, two other functions have to be use: 1) a function
that assures that every element has a unique identifier, creating a new one if a element has
none, or replacing it in case there is any repeated; and 2) a function that parses the HTML
DOM tree making the correspondences between the unique identifier of an element and
its element number. The first one is necessary, because the Fast Mast algorithm generates
pars of commons elements, using their identifiers. The second one is necessary to simplify
how to find an element that has a match in a HTML DOM tree, i.e., the element can be
directly accessed.

Finally, the execution of the Fast Match and the detection of the Web page templates
detected will lead to the division of the accessibility evaluation results in two sets: tem-
plate set and specific set. The first set contains the evaluation of the common parts be-
tween two Web pages. The second set contains the evaluation of different HTML elements

Chapter 3. Evaluation Framework 38

of the Web pages, i.e., part of the specific structure of a Web page. This division will allow
a faster access to the type of accessibility evaluation results desired.

3.6.1 Fast Match algorithm

It is proposed the use of this algorithm to identify common elements amongst the HTML
DOM trees. Although this algorithm will only provide an approximation of the template
elements used in its construction, it will offer a reasonable estimate for initial assessment.
On the other hand, it will also raise the developers’ awareness to other common elements,
not contained in templates that could be addressed in the corrective processes and that
should be added to the templates to improve the process of code reuse.

To detect a template that is present in all the Web site pages considered, the matches
obtained for each Web page have to be compared. However, in this work, the template
detection technique developed can only be used in two Web pages to detect templates.
Because, the objective is to verify if template detection is really advantageous to accessi-
bility proposes. Consequently, if this happens, this algorithm will be upgraded in order to
compare all the Web pages of a site.

The Fast Match algorithm required of the definition of a few variables: a label, which
is an HTML element name, a value that is a data text of the nodes, and a unique identifier
that represent a HTML element. To check whether or not two elements match, it was nec-
essary to define a compare function. This function is based on the Levenshtein Distance
[33], which measures the amount of difference between two values.

Another two thresholds, for the Fast Match algorithm, were defined: t and f. These are
needed to control the range of valid results of two functions used in the algorithm. The
first one – t – is the ratio of equal descendent elements between two elements for these to
be considered equals. The second one – f – is the maximum value that limits the compare
function’s result. Some tests were performed to define reliable thresholds values, i.e., it
was applied the compare function and the ratio of equal descendants between two nodes
and observe the frequency of the results to define the thresholds. However, the frequency
analysis was inconclusive and, because of that, several values have to be tried, within the
ranges of f (between 0 an 1) and t (bigger or equal than 0.5). The observations yielded
t = 0.5 and f = 0.5 as optimal values for HTML DOM trees.

For the tests carried out, to determine and adjust these valued, 7 Web sites were used.
The selection rationale was to select well-known and representative Web sites from the
Alexa Top 100 Web sites3 – Google,Wikipedia, Facebook and Amazon –, two modern
online Portuguese newspapers – DN and Público – and the WordTaps. WordTaps uses
WordPress, which is a well-known blogging and Web site platform.

To perform the matches, new fields were inserted to mark the elements as matched.
This way, in the beginning, all the elements should be marked as unmatched (matched

3Alexa Top 100: http://www.alexa.com/topsites

Chapter 3. Evaluation Framework 39

= 0) and when a match is found the elements should be marked as matched (matched =
1). Consequently, if an element has a match, the algorithm does not try to find it another
match.

The algorithm [14] receives two HTML DOM trees, T1 and T2, uses two auxiliary
arrays S1 and S2 to store data, and is executed as follows:

1. a match’s array is created, M;

2. For each leaf with a label l do

(a) all the content in S1 and S2 is deleted;

(b) determine all of the nodes with label l, for T1 and stores that in S1

(c) determine all of the nodes with label l, for T2 and stores that in S2

(d) Longest Common Subsequence (LCS) between S1 and S2 is performed.
LCS(S1, S2) = (x1, y1)...(xn, yn); and x1...xn is a subsequence of S1; y1...yn
is a subsequence of S2; and equal(xi, yi) is true for 1 ≤ i ≤ k, and

i. for leaf nodes: equal(xi, yi) is true, l(x) = l(y) and compare(value(x), value(y)) ≤
f

ii. for other nodes: if the ratio of equal descendent elements between two
elements ≥ t

(e) all the LCS pairs are added into M, and the nodes are marked as matched;

(f) for each unmatched node x ∈ S1, if there is an unmatched node y ∈ S1, such
that equal(x, y). They should be added into M, and marked as matched

3. the steps 2-2f should be repeated for each internal node label l

Finally, after all the parameters and functions were defined, the matches obtained with
the algorithm were compared and verified with the same matches conceived manually.
This was important, to assure that the results obtained were correct.

3.6.2 A Template-Aware Web Accessibility Metric

The Template-based Evaluation for each Web page of a Web site allows to set a new
metric of accessibly, taking into account the applicability in Web page templates and in
the specific part of a Web page. Using the applicability results for each page it can be
composed the applicability for the entire Web site. The metric defined was:

α(pi) =

{
αt

αs(pi)
(3.1)

Chapter 3. Evaluation Framework 40

Equation (3.1) indicates the applicability of a Web page – α(pi) – , containing the
absolute value or percentage of nodes in the template applicability – αt – and the absolute
value or percentage of nodes in specific applicability – αs(Pi).

α(S) =

{
αt

αs(pi),∀ pi ∈ S
(3.2)

Equation (3.2) indicates the applicability of a Web site – α(S) – and it contains the
template applicability – αt – as the first one, and the absolute value or percentage of nodes
in specific applicability – αs(pi),∀ pi ∈ S – for each page of the Web site.

Based on the quantity of templates used, presented in the metric, it is a more correct
measure of the effort to the error reparation. This applicability metric can be used by
other accessibility metrics, improving and making them more real and helpful.

In the next sub-section, it will be detailed some implementation details.

3.7 Implementation details

In order to compare the proposed execution environments, the same implementation for
the accessibility evaluation had to be used. Given that, one of the execution environments
is the Web browser, creating a restriction on using Javascript as the implementation lan-
guage. Thus, to develop the Command Line version of the evaluation process, it was used
Node.js4, an event I/O framework based on the V8 Javascript engine5.

In addition to standard Node.js modules, several other ancillary modules were used6,
including:

• Node-Static allows serving static files into the Browser execution environment;

• Node-Router supports the development of dynamic behaviours, which was used to
implement the retrieval and processing of evaluation result;

• Node-Template allows using pre-defined templates for each XML classe that com-
pose the EARL files;

• Libxmljs parses EARL reports using a SAX parser,

• Node-HTMLParser provides support for building HTML DOM trees in Browser
execution environment, and

• HTML-Parser provides support for building HTML DOM trees in Command Line
execution environment.

4Node.js: http://nodejs.org
5V8 Javascript engine: http://code.google.com/p/v8/
6GitHub modules: https://github.com/ry/node/wiki/modules

http://nodejs.org
http://code.google.com/p/v8/
https://github.com/ry/node/wiki/modules

Chapter 3. Evaluation Framework 41

Besides these, a set of modules/libraries were implemented, for the evaluation frame-
work, including:

• Qualweb Evaluator module, which performs the accessibility evaluation with the
implemented techniques;

• WCAG 2.0 Techniques module, which contains all the guidelines and criteria imple-
mented;

• EARL module, which allows for the creation of EARL documents with the defined
templates;

• EARL-Parser, which parse EARL files using the Libxmljs library; and

• CSV module, to recreate a comma-separated-values (CSV) counterpart from a given
EARL report;

• Template-detection module, which performs the detection of the common elements;

• lowerCase module, which converts all the elements of a HTML DOM tree into
lower case letters;

• counter module, which determines the number of elements of a HTML DOM tree.

The previous lists resume all the modules/libraries used.

3.8 Summary

In this chapter, it was defined the architecture of the evaluation framework, its require-
ments and all that was necessary to develop for its implementation. More specifically,
the techniques that had to be implemented, the match algorithm used, the template-based
evaluation and a new accessibility metric.

Finally, there were also described the various components of this Evaluation Frame-
work, presented the various libraries used and some specific implementations details.

Chapter 4

Evaluation

In this chapter will be detailed the validation of the techniques implemented and two
experimental studies the were performed. Each experimental studies has a research hy-
pothesis and goals:

• the first experimental study aims to verify if Web content in the Web browser pro-
vides more accurate and more in-depth analysis of its accessibility – H1 –, and the
goals are:

– understand the differences in the HTML between execution environments;

– discover the limitations of accessibility evaluation in different execution envi-
ronments;

– assuring that the evaluation procedures are the same in all execution environ-
ments, so that they can be compared;

• the second experimental study aims to verify if template-awareness simplify assess-
ment reporting – H2 – and the goals are:

– provide an approximation of the templates’ elements in its construction and a
reasonable estimate for initial assessments;

– apply the template-aware metric in a few Web sites.

4.1 Validation of WCAG 2.0 Techniques Implementation

A test-bed was developed, in order to verify that all the WCAG 2.0 implemented tech-
niques provide the expected results. Therefore, it can be guaranteed that the evaluation
outcomes are applied correctly, reports are corrected and thus metrics that can be applied
also give the correct results, i.e., the framework quality can be assured.

The test-bed is constituted by a set of HTML test documents. The HTML test docu-
ments should be based on documented WCAG 2.0 techniques and ancillary WCAG 2.0

43

Chapter 4. Evaluation 44

documents. Besides, each HTML test document should be carefully hand-crafted and
peer-reviewed (within the research team), in order to guarantee a high level of confidence
on the truthfulness of implementation. Success or failure cases were performed for each
technique, to test all the possible techniques’ outcomes. To get a better perspective on the
implementation of the tests, the examples of success or failure cases described, for each
WCAG 2.0 technique used.

All the success or failure cases described for each WCAG 2.0 technique were consid-
ered and it was developed a total of 102 HTML documents. In the chart of Figure 4.1,
it is presented the number of HTML test documents defined for each technique that will
be implemented for the QualWeb evaluator. The number of HTML test documents for
each technique depends on the number of fail, pass or warning cases possible. Finally, to
ensure that the evaluation outcomes are not modified when changing execution environ-
ments, the same HTML test documents have to be used in both execution environments.

Figure 4.1: Number of Test Documents per Technique

The HTML test files were as simple as possible and they were focused on what is
intended to verify in the techniques. Figures 4.2 and 4.3 show examples of HTML docu-
ments of the test-bed of the WCAG 2.0 techniques. Figure 4.2 shows an example of the
correct application of the technique H25, i.e., the HTML document does have a title. In
opposite, Figure 4.3 shows an example of the wrong application of technique H25, i.e.,
the HTML document does not have a title.

After the implementation of the HTML test documents, a small meta-evaluation of
the techniques was performed, to guarantee its proper application. This meta-evaluation
consisted in triggering the evaluation of the Command Line with a small automation script,
as well as opening each of the HTML test documents in the Browser, and triggering the
evaluation. All techniques were tested with the test-bed and a few implementation errors
were detected and corrected, which was the objective of the development of the test-bed.

Afterwards, the evaluation outcomes (warn/pass/fail by technique) for all HTML test
documents were compared with the previously defined expected results. Since all of these
HTML tests documents will not include Javascript-based dynamics that transform their
respective HTML DOM tree, it was postulated that the implementation will return the

Chapter 4. Evaluation 45

<html xmlns= " h t t p : / / www. w3 . org / 1 9 9 9 / xhtml ">
<head >

< t i t l e > T i t l e < / t i t l e >
</ head >
<body >

<h1> ola < / h1>
</ body >

</ html >

Figure 4.2: A HTML test document with an example of the right application of technique
H25.

<html xmlns= " h t t p : / / www. w3 . org / 1 9 9 9 / xhtml ">
<head >
</ head >
<body >

<h1> ola < / h1>
</ body >

</ html >

Figure 4.3: A HTML test document with an example of the wrong application of tech-
nique H25.

same evaluation results in both execution environments.

4.2 Experimental Study 1 - Web Accessibility Evaluation

This experimental study was performed on the home pages from the Alexa’s Top 100
Web sites1. It is centred on analysing how Web accessibility evaluation results in different
outcomes for the Command Line and Browser execution environments.

In the next section will be detailed the setup of this experiment, followed by a de-
scription of how data was acquired and processed. Finally, it will be presented the most
significant results of the experiment.

4.2.1 Setup

Initially, it was verified, for each Web site, if it could be reached, and if a valid HTTP
response was obtainable, with the Web site’s corresponding home page. For those which
passed this verification, some of them had to be ignored. In one of them, the domain
is used for serving ancillary resources for other Web sites. Others were filtered, since
they are blocked by the university’s network (mostly illegal file sharing or adult content

1Alexa Top 100: http://http://www.alexa.com/topsites

http://http://www.alexa.com/topsites

Chapter 4. Evaluation 46

services). Finally, due to unknown reasons, some Web sites were unavailable, and had to
be ignored for this setup.

The resulting set of Web sites that were to be evaluated comprises a total of 82 reach-
able home pages.

4.2.2 Data Acquisition and Processing

Both the original HTML documents (through the Command Line execution environment)
and the transformed HTML documents (through the Browser execution environment) of
the accessed Web pages were saved, so the assessments of these documents could be
repeated, if necessary.

The evaluations were performed in both execution environments sequentially to the
same Web page, and with little temporal differences. This way, the potential content
differences between the HTTP responses, in both execution environments, were avoided,
preventing incorrect evaluation results. The resulting time delta between evaluations of
both execution environments averages at 89.72 seconds, σ = 69.59.

In some cases, on the Browser execution environment, strong safeguards were faced
that deflected the ability to inject evaluation procedures into the HTML document (often
implemented as safeguards for cross-site scripting attacks). For these cases, the restric-
tions were eliminated and the documents were successfully evaluated afterwards.

Finally, with all the evaluations finished, all EARL results were transformed into the
corresponding CSV format for subsequent analysis, as mentioned in a previous section.

The evaluation yielded differences in the size of the HTML documents, both in terms
of absolute bytes and HTML elements, when comparing these numbers between execu-
tion environments. The average difference on the byte size of the documents is 2885 bytes,
σ = 51181.63, which supports the idea that Web pages can have several transformations
in their content between execution environments. In terms of HTML element count, there
is an average difference of 72.5 elements, σ = 693.56. These results indicate that, in fact,
there are differences in the HTML between these two execution environments.

These numbers were further investigated, in order to understand if any of the cases,
where the size of the documents, in bytes and number of HTML elements, increase or
decrease in absolute values. These results are depicted in Figures 4.4 and 4.5, respectively.

In terms of absolute byte size for the evaluated Web pages, the Command Line ex-
ecution environment yields an average of 69794 bytes, σ = 95358.67, while averaging
at 81007.02 bytes in the Browser execution environment, σ = 126847.75. This scenario
repeats itself for HTML elements, where the Command Line clocks at 915.71 elements
on average, σ = 1152.11, and 1154.72 elements on average for the Browser execution
environment, σ = 1565.87.

This outcome reflects the underlaying assumption made in the hypothesis, i.e., that
the difference between HTML documents in both execution environments is real, and

Chapter 4. Evaluation 47

Figure 4.4: Comparing size in bytes in both execution environments

very significative. Based on this, it will be presented, in the next section, an analysis on
how accessibility evaluation – based on WCAG 2.0 – becomes evident on the Command
Line and Browser execution environments.

4.2.3 Results

The study was focused in two main set of results: first, the difference of evaluation out-
comes (fail, pass, warning) between both execution environments; and second, what WAE
criteria are able to characterise the differences between evaluating in each execution en-
vironment. The next sections detail the corresponding findings.

Evaluation Outcomes

It was detected that there are significant differences in the number of HTML elements
detected by WAE procedures between both execution environments. In Figures 4.6, 4.7,
and 4.8 it is presented how the three evaluation outcomes (fail, pass, warn, respectively)
differ between execution environments. A failure occurs in cases where the evaluator
can automatically and unambiguously detect if a given HTML element has an accessibil-
ity problem, whereas the passing represents its opposite. Warnings are raised when the
evaluator can partially detect accessibility problems, but which might require additional
inspection (often by experts).

Figure 4.5: Comparing size in HTML Elements count in both execution environments

Chapter 4. Evaluation 48

Figure 4.6: Number of HTML Elements that Passed

Figure 4.7: Number of HTML Elements that Failed

Figure 4.8: Number of HTML Elements that had Warnings

Chapter 4. Evaluation 49

Inspecting these results with additional detail, the Web pages have the following eval-
uation outcomes:

• Pass: an average of 9.67 elements pass their respective evaluation criteria (σ =

19.12) in the Command Line execution environment. However, this number highly
increases in the Browser execution environment to an average of 272.78 elements
(σ = 297.10);

• Fail: an average of 47.44 elements fail their respective evaluation criteria (σ =

70.82) in the Command Line execution environment. This number increases in the
Browser execution environment to an average of 90.10 elements (σ = 125.93);

• Warn: an average of 425.02 elements produce warnings in their respective eval-
uation criteria (σ = 682.53) in the Command Line execution environment. This
number increases in the Browser execution environment to an average of 685.21
elements (σ = 1078.10).

In the next section will be described in detail how evaluation criteria differentiate
between both execution environments.

Evaluation Criteria

WCAG 2.0 defines a set of evaluation criteria for each of its general accessibility guide-
lines. This experimental study resulted in several interesting outcomes from the acces-
sibility evaluation. As it can be grasped from Figure 4.9 (log-scale on HTML Elements
count), each implemented criteria is invariantly applied more times in the Browser execu-
tion environment than in the Command Line execution environment.

Figure 4.9: Browser vs Command Line per criterion (log-scale on HTML Elements count)

However, these results still mask an important detail about criterion applicability:
there might be Web pages where any given criterion could be applied in the Command
Line execution environment, but dismissed in the Browser execution environment (i.e.,
false positives). Likewise, the opposite situation can also occur (i.e., false negatives). In

Chapter 4. Evaluation 50

other words, false negatives and false positives occur due to the differences between eval-
uation results of both execution environments, for instance, failing on Criterion 1.1 (i.e.,
alternative texts) in Command Line evaluation, but passing in the Browser (e.g., a script
introduced alternative texts for images). This is a false negative yield by Command Line
evaluation, since users are faced with its Browser counterpart.

Consequently, in this analysis, some cases were discovered where specific criteria
in fact resulted in both false positives and false negatives, when using the Command
Line execution environment results as the baseline for comparison. This resulted in the
outcomes depicted in Table 4.1.

Table 4.1: False positives and false negatives in criteria applicability on Command Line
execution environment

Criterion False positives False negatives
1.2.3 11%
1.2.8 2% 12%
1.3.1 27%
3.1.1 6%
3.2.2 9%
3.2.5 1% 5%
3.3.2 9%
3.3.5 6%
4.1.1 1%
4.1.2 37%

This analysis shows that, in fact, nearly 67% of the cases (10 criteria out of the 15 that
were implemented) in the Command Line execution environment yield false negatives,
i.e., were unable to be applied. The occurrence of false positives, i.e., when a Web page
version for the Command Line execution environment triggered the application of criteria
but not on the Browser execution environment, was substantially lower.

In the following sections will be detailed the four WCAG 2.0 criteria that reflect the
different evaluation natures that emerge from the comparison of the outcomes of the two
execution environment: 1.1.1, 1.2.3, 2.4.4, and 3.2.2.

WCAG 2.0 Criterion 1.1.1 Criterion 1.1.1 is the poster child of Web accessibility ad-
equacy (both in engineering and evaluation terms). It reflects the necessity for content
equivalence, thus enabling content understanding, no matter what impairment a user has.
For instance, the existence of alternative textual descriptions for images. Thus, it was
analysed individually this criterion, as depicted in Figure 4.10.

For a significant number of the Web pages analysed, there is a high increase of situ-
ations that could be detected in the Browser context. A brief glance at these differences
showed the dynamic injection of images at either the DOM Ready or DOM Load browser

Chapter 4. Evaluation 51

Figure 4.10: Browser vs Command Line for criterion 1.1.1

Figure 4.11: Browser vs Command Line for criterion 1.2.3

Figure 4.12: Browser vs Command Line for criterion 2.4.4

Figure 4.13: Browser vs Command Line for criterion 3.2.2

Chapter 4. Evaluation 52

rendering events. This kind of disparity of the results is the one that occurs more often for
all of the implemented criteria.

WCAG 2.0 Criterion 1.2.3 Criterion 1.2.3 depicts, in Figure 4.11, one case of the
aforementioned false negatives. Almost all of the detected applicability occurred in the
Browser execution environment.

WCAG 2.0 Criterion 2.4.4 In the case of Criterion 2.4.4, as depicted in Figure 4.12,
most of the results are typical, i.e., at least an equal or greater number of elements are de-
tected in the Browser. However, as identified in the graph, there is a Web page where the
Command Line execution environment detects a substantially bigger amount of problems
for this criterion. While not all of those cases disappear in the Browser execution envi-
ronment, it shows that even when no false positive is raised for a criterion’s applicability,
there are cases where dynamic scripts remove detectable accessibility issues.

WCAG 2.0 Criterion 3.2.2 Finally, Criterion 3.2.2, as depicted in Figure 4.13, allows
the detection of the (un)availability of form submission buttons. This could not be de-
tected in the Command Line execution environment (i.e., the missing gaps in the graph),
as these buttons were dynamically injected into the Web page.

4.2.4 Discussion

The study on the resulting outcomes from evaluating Web accessibility in the Command
Line and Browser execution environments has yielded an interesting amount of insights,
respecting to automated Web accessibility evaluation practices. It can be concluded that,
due to the presented results the hypothesis, H1, was proven.

In the next sections, it will be discussed the Web accessibility evaluation in the Browser,
finishing with a discussion of the limitations of the experimental setup.

Web Accessibility Evaluation in the Browser

The expectations with regards to the raised hypothesis (H1) were confirmed. In fact,
there are deep differences in the accessibility evaluation between the Command Line and
Browser execution environments. This is reflected not only in the additional amount of
processable HTML elements, but also on the rate of the false negatives and positives
yielded by Command Line execution environment evaluations as well.

Hence, it is important to emphasize that evaluating the accessibility of modern Web
pages in a Command Line execution environment can deliver misleading paths for design-
ers and developers, due to the following reasons:

Chapter 4. Evaluation 53

• there are significant differences between the structure and content of Web pages
in both execution environments. Thus, for dynamic Web pages, developers and
designers can be faced with evaluation results that reflect different HTML DOM
trees. This fact, on its own, can often provide confusion and result on difficulties of
detecting the actual points where accessibility problems are encountered;

• False positives at the Command Line execution environment provide another point
that can confuse designers and developers that are faced with these accessibility
evaluation results, since they become invalid in the Browser execution environment
(e.g., corrected with the aid of Javascript libraries);

• False negatives are most critical, since a lot of potential accessibility problems are
simply not detected in the Command Line execution environment. Consequently, an
evaluation result might pass on 100% of accessibility checks, but the HTML DOM
tree that is presented to end-users faces severe accessibility problems.

These results show that, it is of the most importance to evaluate the accessibility of
Web pages in the execution environment where end-users interact with them. The of-
ten proposed methodology of building Web pages in a progressive enhancement fashion
(where scripts insert additional content and interactivity) do guarantee neither the im-
provement, nor the maintenance of the accessibility quality of any given Web page.

4.2.5 Limitations

The experiment has faced some limitations, both in terms of its setup, as well as on the
type of results that can be extrapolated, including:

• Data gathering: since there were gathered all of the Web pages in the two execu-
tion environments at different instants, it could not be 100% guaranteed that the
Web page generation artefacts were not introduced between requests for each eval-
uated Web page. Furthermore, the presented results are valid for the sample set
of Web pages that were selected. However, it was believed that these pages are
representative of modern Web design and development of front-ends;

• DOM trees: while the QualWeb evaluator takes a DOM representation of the HTML,
it was only analysed the profusion of Web accessibility inadequacies in term of
HTML elements, leaving out other potential factors that influence the accessibility
of Web pages (e.g., CSS);

• Comparison of DOM trees: experimental setup did not provide enough information
to pinpoint what transformations to the HTML DOM were made at both DOM
Ready and DOM Load phases;

Chapter 4. Evaluation 54

• Script injection: encountered some cases (for example: facebook.com) where
the injection of accessibility evaluation scripts was blocked with cross-site scripting
(XSS) dismissal techniques. In these cases, minimal alterations were hand-crafted
on these Web pages, in order to disable these protections. For example: removal
of some scripts that prevent code injection. Nevertheless, none of these alterations
influenced the outcome of the accessibility evaluations performed in these cases;

• Automated evaluation: since this experiment is centred on automated evaluation of
Web accessibility quality, it shares all of the inherent pitfalls. This includes the
limited implementation coverage of WCAG 2.0.

4.3 Experimental Study 2 - Templates on Web Accessi-
bility Evaluation

This experimental study was centered on analysing similarities of HTML elements be-
tween Web pages. The similarity criteria targets typical template-based definitions. The
study was performed in a set of sites that feature a consistent use of HTML.

In the next section will be detailed the setup of this experiment, denote data acquisition
and processing and present the most significant results from the experiment.

4.3.1 Setup

The selection rationale was to select well-known and representative Web sites from the
Alexa’s Top 100 Web sites2 – Google, Wikipedia, Facebook and Amazon –, two modern
online Portuguese newspapers – DN and Público – and the WordTaps. WordTaps’s Web
site was chosen because it uses WordPress3, a well known blogging and Web site platform.
Table 4.2 presents the Web sites chosen.

Table 4.2: Analysed Web sites

http://www.google.com
http://www.publico.pt
http://www.dn.pt
http://wikipedia.org
http://www.facebook.com
http://www.amazon.com
http://wordtaps.com

2Alexa Top 100: http://http://www.alexa.com/topsites
3WordPress: http://wordpress.org/

facebook.com
http://www.google.com
http://www.publico.pt
http://www.dn.pt
http://wikipedia.org
http://www.facebook.com
http://www.amazon.com
http://wordtaps.com
http://http://www.alexa.com/topsites
http://wordpress.org/

Chapter 4. Evaluation 55

4.3.2 Data Acquisition and Processing

It was selected a Web page from each Web site, other than the home page. Theses pages
were then compared with the respective home page, to obtain the set of elements that are
common between them (the template set) and the set that is specific for the Web page (the
specific set).

Each Web page is then assessed using the automatic QualWeb evaluator (developed
in the beginning of this work) and the reported errors are matched with the elements in
the above-mentioned set. This division allows a faster access to each type of accessibility
evaluation results. The process was repeated for all the Web sites.

4.3.3 Results

The study was focused on the percentage of WCAG 2.0 techniques applicability (i.e.,
specific outcomes - pass, warn, fail). The average of all the template sets is 38.85%
(σ = 7.48), and in the specific content is 61.15% (σ = 7.48). Besides, the averages for
the outcomes considered in the applicability are: 34.50% of warnings (σ = 7.00), 0.80%
of fails (σ = 1.00), and 3.56% of pass (σ = 2.64). The percentage of errors that need to
be repaired in the templates have an average of 38.06% (σ = 7.78).

Figure 4.14: Applicability of WCAG 2.0 techniques on one of the evaluated Web pages.

4.3.4 A Template-Aware Web Accessibility Metric

Figure 4.15 contains 7 examples of applicability for Web sites sample, considering the
Web page template and the specific part of the Web pages considered. The charts of the
figure show variable applicability in the specific parts of Web pages, but higher than tem-
plate applicability, as expected because of the results obtained previously. These results
are similar for all examples.

In the next section will be presented the results of the metric application in two Web
sites.

Chapter 4. Evaluation 56

Figure 4.15: Graphs represent the elements per Web page, on top row left to right the Web
sites are: Google, Público, DN and Wikipedia. In bottom row the Web site are: Facebook,
Amazon and Wordtaps

Results of Metric Application

Two simple examples of the application of the metric were performed with Google and
DN. For these examples, the Web sites were evaluated considering the home page and the
Web pages of the same domain directly accessed by it. Besides to simplify the test, the
sub-menus were not considered.

Equation (4.1) shows an example of the application of the metric in the Google Web
site.

α(Google) =

{
12

[22, 24, 32, 1204, 1405, 179, 987, 22, 22, 97, 295, 113, 178, 75, 17, 72]
(4.1)

Equation (4.2) shows an example of the application of the metric in the DN.

α(DN) =

1741

[3060, 3415, 3275, 3510, 3873, 3761, 3445, 3896, 3049, 3744, 3951,

3626, 3363, 3992, 2166, 3311, 3736, 3945, 3633, 3341, 3431, 4021,

3652, 3846, 3523, 3261, 3705, 3786, 3976, 3709, 3699, 3333, 4044,

3607, 3739, 4031, 3785, 3843, 3702, 3806, 3924, 3716, 3599, 3778,

3665, 3653, 3590, 3967, 3712, 3970, 3123, 3775, 3899, 3966, 3548,

3671, 3566, 3561]
(4.2)

It can be verified that in the first example, there is a small number of elements in the
template applicability. This happens because, in the Google Web site, some pages are
very similar (e.g., home page, image search engine and video search engine), but there
are other pages that maintain few similarities. In a newspaper Web site, as DN, there are
a larger number of similarities between the Web pages.

Chapter 4. Evaluation 57

4.3.5 Discussion

The presented results point to a positive verification of the second hypothesis, H2. In
the next sections, it will be discussed the impact of the Web page templates in several
thematic, as well as the experiment limitations.

Impact on Evaluation Results

It was determined that approximately 39% of the results are reported at least twice, of
which approximately 38% are errors that can be corrected once.

Taking into account that templates are often automatically generated, template acces-
sibility errors are automatic produced. Errors in the specific content of a Web page depend
on the accessibility knowledge of the designer/developer who is developing the Web site
and on how good some helping tools, that they can use, are. However, as it can be seen in
the results, this type of errors has the highest percentage.

This could be developed even further considering the similarities between elements on
more than two pages, and determining the number of times (more than two) that a WCAG
2.0 technique is applicable to each common element on the site. As such, reporting can
be additionally simplified, performance can be improved, and more accurate metrics can
be defined.

Besides, regarding repairing, template aware reports can be integrated in development
tools directing developers/designers to a much more effective error correction process.

Finally, it is important to understand the differences in the Web pages of a Web site.
Because, as happens in Google, differences can be very paradigmatic, i.e., the Web page
templates can be very diverse in the same Web site. This way, when the template detection
is performed, it is important to get maximum coverage of pages, i.e., combine the pages
in various ways to get the templates most suitable among them.

Impact on Web Accessibility Research

The results obtained shown that it is possible for accessibility experts and researchers to
create new accessibility metrics (as the metric created in this work), that can, for example,
measure the template influence on Web pages and/or Web sites. Besides, they can create
new and different evaluators that simplify accessibility evaluations using templates.

Assessment methods should be modified in order to do not consider Web pages as
a whole. This way, pages can be divided, as suggested, in template and specific sets to
improve evaluations and consider their various characteristics.

Impact on Designing Accessible Web Pages

Designers can access to accessibility evaluation results report, without the same template
errors repeated for each Web site page. Therefore, they only have to repair a problem

Chapter 4. Evaluation 58

once and, because of the template use, this problem should remain corrected throughout
the Web site. Consequently, repair of accessibility errors can be simplified and time spent
in design can be reduced.

In some cases, developers might encode similar/equal elements in multiple Web pages
– extra templates — which makes them being identified as part of the Web page template.
However, its correction is not propagated automatically. If developers realize that these
templates are often used, they can be included in the Web page template. This inclusion
will facilitate the repair of its errors and help the design of accessible Web pages.

4.3.6 Limitations

The experiment has faced some limitations, in terms of template detection and the selected
Web sites for the experimental study:

• Intra-page template: intra-page templates are defined inside the Web page itself
such as list, ads, etc. Since this type of templates are not considered, all the possible
repetitions of accessibility errors for these cases were not removed.

• Thresholds: more tests were performed to define the threshold values, nonetheless
these values may be incorrect for some Web sites not tested. Because of that, they
may exclude some elements that are part of the template or the opposite;

• Web sites sample: the study focuses only on the seven Web sites selected. However,
these Web sites are representative of the best practices of template usage. Addi-
tionally, although non-template Web sites were not the focus, the expected result is
that the Fast Match algorithm could not find any match or it finds very few. This
assumption can be made, because in the test phase of the algorithm two completely
different trees were tested and it did not present any match;

4.4 Summary

This chapter described the experiments carried out in this work. The accessibility evalua-
tion framework performed was used to evaluate the accessibility of Web pages of some of
the most popular Top 100 Web sites, in two different execution environments (Command
Line and Browser). The results of these evaluations show the advantage of the evalua-
tion to be held in the transformed HTML, proving the hypothesis. Besides, there is a big
percentage of false negatives and a lower percentage of false negatives.

Relatively to the use of Web page template in accessibility, a template detection algo-
rithm was used to verify if the repair of accessibility errors was facilitated. It was shown
that the accessibility results of the common elements are more than a third of the whole
results set. A significant percentage of the accessibility errors that would simplify error

Chapter 4. Evaluation 59

reports and consequently the developers/designers work. This way, developers/designers
can repair accessibility errors only once and these are automatically repaired throughout
the Web site.

Chapter 4. Evaluation 60

Chapter 5

Conclusion

All the objectives proposed for this work were accomplished and all the identified re-
quirements for accessibility evaluation were considered. An automatic Web accessibility
framework, able to perform evaluation in both envisaged execution environments, was de-
signed and developed. The WAE framework uses the more recent accessibility standard
guidelines, for which a significant subset of techniques was implemented. A test-bed was
also produced to validate the implemented techniques. Moreover, a reporting mechanism
using EARL was implemented, ensuring compatibility with official reporting standards.
The whole framework architecture ensures easy extensibility for: a) emerging report-
ing standards and specific ones that assure integration with complementary development
tools; b) new techniques derived from different and alternative accessibility guidelines.
Finally, the whole WAE was designed considering the common Web development pro-
cedures. For that, the framework incorporates the generation of accessibility assessment
results and a new metric, both template-aware.

Relatively to the first experimental study presented, it was performed an automated
WAE in the context of two execution environments: Command Line and Browser. For
the experiment, it was analysed the accessibility quality of the home pages of the Top
100 most visited Web sites in the world. It was provided evidence that the significant
differences introduced by AJAX and other dynamic scripting features of modern Web
pages do influence the outcome of Web accessibility evaluation practices. It was showed
that the automated WAE in the Command Line execution environment can yield incorrect
results, especially on the applicability of success criteria.

Further, it was performed and presented a second experimental study on detection of
Web page templates to facilitate the repair of accessibility errors. For the experiment, a
subset of Web pages of 7 different Web sites was analysed. It shown that the accessibility
results of the common elements are more than a third of the whole results set. This is a
significant percentage of the accessibility errors, which would help to improve reporting
and consequently simplify the developers/designers work.

Both studies confirm the initial hypothesis that: 1) WAE should be performed after the

61

Chapter 5. Conclusion 62

browser processing, as a means for more accurate evaluation; and 2) that it is possible to
simplify reporting and devise metrics that, in conjunction, provide better departing points
for web site repairing.

5.1 Future Work

Facing with the obtained results of the comparative of Command Line and Browser envi-
ronments, and based on the implementation of the QualWeb evaluator and environment
evaluation framework, some work can be conducted in the following directions:

1. implementation of more WCAG 2.0 tests based on the analysis of CSS, especially
in the post-cascading phase, when all styling properties have been computed by the
Web browser;

2. continuous monitoring of changes in the HTML DOM, thus opening the way for de-
tection of more complex accessibility issues, such as WAI ARIA live regions [20];

3. detecting the differences in DOM manipulation, in order to understand the typical
actions performed by scripting in the browser context;

4. the implementation of additional evaluation environments, such as developer exten-
sions for Web browsers (e.g., Firebug1), as well as supporting an interactive analysis
of evaluation results embedded on the Web pages themselves.

Besides, looking at the obtained results in template detection, some work can also be
conducted in the following points:

1. explore intra-page templates, that will allow to detected a greater percentage of
templates and reduce the inner page repetitions of the same accessibility errors;

2. explore extra templates, it can be suggested to developers the inclusion of this extra
templates in the Web page templates;

3. a larger sample of Web sites should be used, for template detection;

4. compare more than two pages and therefore errors that will be reported more than
two times;

5. assess the Fast Match algorithm in order to fully understand how accurately it
matches the template, i.e., what elements are actually components of a template
and which are not.

Finally, it is planned to provide all the code online in the GitHub repository2.
1Firebug: http://getfirebug.com/
2GitHub repository: https://github.com/

http://getfirebug.com/
https://github.com/

Appendix A

Papers Written

A.1 Avaliação Pericial de Barreiras ao Acesso sobre Sí-
tios Web de Entidades Públicas - Interacçäo 2010

63

Avaliação Pericial de Barreiras ao Acesso sobre Sítios Web de

Entidades Públicas

Nádia Fernandes
Universidade de Lisboa

nadia.fernandes@di.fc.ul.pt

Rui Lopes
Universidade de Lisboa
rlopes@di.fc.ul.pt

Luís Carriço
Universidade de Lisboa
lmc@di.fc.ul.pt

Sumário
A acessibilidade de sítios Web é um factor crucial para pessoas com deficiências, para que estes consigam aceder a

informação relevante existente em páginas Web. Este artigo apresenta uma análise pericial efectuada ao sítio Web

do Governo de Portugal (http://www.portugal.gov.pt) baseada na metodologia de detecção de barreiras ao acesso

Barrier Walkthrough. Mostramos que este tipo de metodologias potencia a detecção de um número maior de proble-

mas, comparativamente aos processos normalmente utilizados.

Palavras-chave
Acessibilidade Web, Avaliação Pericial, Barrier Walkthrough.

1. INTRODUÇÃO
O conceito de acessibilidade baseia-se na facilidade de

acesso a conteúdos ou serviços por parte de pessoas com

algum tipo de incapacidade sem que para isso necessitem

do auxílio de terceiros.

A directiva em Portugal que obriga à acessibilidade de

sítios Web institucionais é a Resolução do Conselho de

Ministros número 155/2007 [PCM07], que utiliza a nor-

ma WCAG 1.0 [Chisholm99]. De acordo com esta direc-

tiva, “a organização e apresentação da informação facul-

tada na Internet pelos sites do sector público”, devem ser

escolhidas para permitir ou facilitar o seu acesso pelos

cidadãos com necessidades especiais. A acessibilidade

deverá abranger, no mínimo, a informação relevante para

a compreensão dos conteúdos e para a sua pesquisa”.

Apresentamos um estudo da acessibilidade no sítio do

Governo de Portugal, para utilizadores: invisuais, daltó-

nicos e com deficiências nos membros superiores.

2. TRABALHO RELACIONADO

2.1 Avaliação Pericial da Acessibilidade Web
A avaliação pericial da acessibilidade da Web pode ser

realizada tendo em conta que é definido em normas como

a WCAG, ou seguindo metodologias de análise pericial

como a Barrier Walkthrough [Brajnik09].

A Barrier Walkthrough é uma metodologia em que estão

definidas categorias de utilizadores e as barreiras para

cada categoria. Sendo as barreiras qualquer condição que

impeça um utilizador com uma deficiência de cumprir um

objectivo. Assim, para cada categoria de utilizadores são

verificadas as barreiras que se verificam e que o impeçam

o seu acesso ao sítio. Podendo verificar-se se os critérios

da WCAG 2.0 estão a ser cumpridos.

2.2 Avaliações Institucionais
A Resolução do Conselho de Ministros número 155/2007

indica que se deve assegurar que a informação disponibi-

lizada pela Administração Pública na Internet seja acessí-

vel a cidadãos com necessidades especiais. Na actualida-

de, o acesso às tecnologias da informação e da comunica-

ção e a capacidade para a sua utilização são diferenciado-

res das oportunidades sociais.

O logótipo de "Certified Accessibility" da UMIC

[ASC09] indica a acessibilidade do sítio em que se

encontra. É dinâmico e permite a vigilância dos conteú-

dos de um sítio na Web, através do validador eXaminator

(utiliza WCAG 1.0). Apresenta vários estados de acordo

com o cumprimento das normas. Esta avaliação é automá-

tica, não detectando muitos dos erros detectados com o

Barrier Walkthrough, nem os agrupando por deficiências.

A existência de mais de 600 mil pessoas com incapacida-

des em Portugal (EU 2002) que são “info-excluídas”,

suportam a ideia de que criar sítios Web acessíveis.

Em 2008, foram realizados estudos de acessibilidade dos

sítios Web das mil maiores empresas portuguesas em

volume de negócio [Gonçalves09] (INE 2007), seguindo-

se as normas do W3C, pelo Grupo de Negócio Electróni-

co. Os resultados foram: 9,4% apresentam o nível A, uma

tem o nível de AA e nenhuma apresenta o nível máximo.

3. AVALIAÇÃO PERICIAL

3.1 Metodologia
Seguiu-se a metodologia Barrier Walkthrough, para as

categorias de utilizadores/deficiências já referidas. Esco-

lheram-se vinte e cinco templates representativos dos

conteúdos e estruturas do sítio do governo. O critério de

escolha dos templates escolhidos foi a diferença da estru-

tura entre eles e a verificação visual de barreiras.

4. RESULTADOS
A avaliação resultou na detecção de diversos problemas

de acessibilidade. Obteve-se uma taxa de aprovação de

30% para invisuais, de 50% para daltónicos e de 50%

para deficiências dos membros superiores.

De seguida vão ser descritos algumas das barreiras encon-

tradas e possíveis formas de eliminação das mesmas.

3.2.1 Links genéricos
São links que não fornecem informação suficiente para

que se compreenda o seu conteúdo. Por exemplo, um link

com o texto “mais… ” que nos redirecciona para uma

página de notícias (Figura 1). Seleccionar-se-ia este pro-

blema modificando os labels de links para que dessem

pistas da página que vai ser aberta.
<a

href="/pt/GC18/Noticias/Pages/20100608_Not_CM

_PMEInveste.aspx"> mais...

Figura 1 – Exemplo no código de um link genérico

3.2.2 Objectos opacos
São componentes totalmente opacos para os leitores de

ecrã. Nesta caso, são utilizados vídeos em Flash (Figura

2). Isto poderia ser resolvido garantido que o objecto é

acessível, seguindo directivas específicas, caso isso não

fosse possível o objecto deveria ser removido.
swfobject2.embedSWF(

"/pt/GC18/ConteudosTransversais/Flashs/20091118_

Governo/slideshowpro.swf",

 "flashcontent","978","255", "9.0.0", false,

flashvars, params, attributes);

Figura 2 – Exemplo no código de um objecto opaco

3.2.3 Eventos do rato

São eventos desencadeados apenas com a utilização do

rato, pessoas que não utilizassem o rato nunca consegui-

riam utilizá-los. Isto verifica-se na utilização de event

handlers ("onclick", ...) que são orientados para o rato. O

problema era resolvido utilizando event handlers lógicos

("onfocus", ...) além dos orientados para o rato.

3.2.4 Nova janela
Quando se clica num link somos redireccionados para

uma nova janela no browser, devido à utilização de

´target=“_blank”´. O problema seria resolvido evitando

abrir-se novas janelas normalmente. Se for mesmo neces-

sário deve haver um link ou botão que permita fechar a

janela, para que os utilizadores percebam que se abriu

uma nova janela e que têm a possibilidade de a fechar.

3.2.5 Não é possível saltar links
Não é permitido saltar directamente para o conteúdo da

página. Por exemplo o utilizador tem de passar por todos

os links anteriores antes de chegar ao link que pretende.

3.2.6 Contraste visual insuficiente
A página contém elementos cujo contraste entre estes e o

fundo é insuficiente. Por exemplo, o contraste entre fundo

branco e ícones/texto cinzento. Este problema poderia ser

resolvido com o aumento do contraste dos elementos.

5. DISCUSSÃO
Apesar dos esforços para tornar o sítio do governo mais

acessível, encontraram-se várias barreiras de acesso, que

impedem os utilizadores de aceder correctamente aos

conteúdos e de realizarem operações. Por exemplo, os

invisuais poderiam ter de percorrer toda a página para

encontrar um link e pessoas com deficiências nos mem-

bros superiores não evitariam a utilização do rato.

Sendo as metodologias empregues insuficientes, deveriam

ser tomadas mais medidas para que o site fosse acessível

a todos os seus utilizadores. A resolução conselho minis-

tros, não está a ser cumprida e está desactualizada, utili-

zando ainda WCAG 1.0, quando a norma suportada pelo

do W3C é a WCAG 2.0.

6. CONCLUSÕES E TRABALHO FUTURO
A acessibilidade na Web é importante para que as pes-

soas com deficiências consigam compreender conteúdos e

realizar as actividades que pretendem. Com a análise

pericial realizada ao sítio do Governo de Portugal, basea-

da na metodologia Barrier Walkthrough, verificou-se que

este tem bastantes barreiras ao acesso.

No seguimento deste trabalho, aplicaremos este processo

no estudo de outros sítios Web de instituições públicas.

Procederemos à comparação quantitativa de processos de

avaliação pericial com avaliadores automáticos e à explo-

ração destas limitações no âmbito de testes de acessibili-

dade com utilizadores finais.

7. REFERÊNCIAS
[ASC09] Agência Para A Sociedade Do Conhecimento,

Programa Acesso, 20 de Setembro de 2009,
http://www.acesso.umic.pt/webax/nota_tec

nica_logo.html

[Brajnik09] Brajnik, Giorgi, Barrier Walkthrough Heuris-

tic Evaluation Guided by Accessibility Barriers,

Março de 2009,

http://users.dimi.uniud.it/~giorgio.braj

nik/projects/bw/bw.html

[Chisholm99] Chisholm, Wendy, Vanderheiden, Madison

Gregg, Jacobs, Ian, Web Content Accessibility Guide-

lines (WCAG) 2.0, 5 de Maio de 1999,

 http://www.w3.org/TR/WCAG10/

[Gonçalves09] Gonçalves, Ramiro, Pereira, Jorge, Mar-

tins, José, Mamede, Henrique, Santos, Vítor, Web

Ponto de Situação das Maiores Empresas Portuguesas,

Setembro 2009,
 http://www.acesso.umic.pt/estudos/1000ma

ioresempresas_apdsi_0909.pdf

[PCM07] Presidência Do Conselho De Ministros, Reso-

lução Do Conselho De Ministros N.º 155/2007, Diá-

rio Da República, 1.ª série — N.º 190 — 2 de Outu-

bro de 2007,
http://www.umic.pt/images/stories/public

acoes200710/RCM%20155%202007.pdf

Appendix A. Papers Written 66

A.2 On Web Accessibility Evaluation Environments - W4A
2011

On Web Accessibility Evaluation Environments

Nádia Fernandes, Rui Lopes, Luís Carriço
LaSIGE/University of Lisbon
Campo Grande, Edifício C6
1749-016 Lisboa, Portugal

{nadia.fernandes,rlopes,lmc}@di.fc.ul.pt

ABSTRACT
Modern Web sites leverage several techniques (e.g. DOM
manipulation) that allow for the injection of new content
into their Web pages (e.g., AJAX), as well as manipulation
of the HTML DOM tree. This has the consequence that
the Web pages that are presented to users (i.e., browser
environment) are different from the original structure and
content that is transmitted through HTTP communication
(i.e., command line environment). This poses a series of
challenges for Web accessibility evaluation, especially on au-
tomated evaluation software.
This paper details an experimental study designed to un-

derstand the differences posed by accessibility evaluation in
the Web browser. For that, we implemented a Javascript-
based evaluator, QualWeb, that can perform WCAG 2.0
based accessibility evaluations in both browser and com-
mand line environments. Our study shows that, in fact,
there are deep differences between the HTML DOM tree
in both environments, which has the consequence of having
distinct evaluation results. Furthermore, we discovered that,
for the WCAG 2.0 success criteria evaluation procedures we
implemented, 67% of them yield false negative answers on
their applicability within the command line environment,
whereas more than 13% of them are false positives. We dis-
cuss the impact of these results in the light of the potential
problems that these differences can pose to designers and
developers that use accessibility evaluators that function on
command line environments.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia—User issues; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Evaluation/
methodology ; K.4.2 [Computers and Society]: Social Is-
sues—Assistive technologies for persons with disabilities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W4A2011 - Technical Paper, March 28-29, 2011, Hyderabad, India. Co-
Located with the 20th International World Wide Web Conference.
Copyright 2011 ACM 978-1-4503-0476-4 ...$5.00.

General Terms
Measurement, Human Factors.

Keywords
Web Science, Web Accessibility, Web Accessibility Evalua-
tion Environments, Automated Evaluation.

1. INTRODUCTION
Accessibility on the Web is often framed in a tripartite

way: Web page semantics, assistive technology (AT), and
Web browser capabilities. Given an arbitrary Web page, its
content is exposed by the Web browser in such a way that
AT aids users with disabilities understanding and interact-
ing with it. Existing best practices for Web accessibility
adequacy are based on these two factors: WCAG [4] defines
best practices for Web page semantics, whereas UAAG [6]
dictates how Web browsers must be implemented in order
to leverage AT.
These best practices can also be applied as checklists for

evaluation. In the case of WCAG, they can be used to as-
sess how accessible a Web page is. This evaluation procedure
can be performed (1) with users, such as usability tests, (2)
through expert analysis, and (3) with the aid of automated
evaluation software. While usability tests and expert analy-
sis are focused on the rendered state of the Web page within
the browser, most implementations of automated evaluation
just focus on the Web page content that is sent through the
first HTTP request.
With the ever growing dynamics of Web pages (e.g., AJAX

and other Javascript techniques), the state of a Web page’s
content, structure, and interaction capabilities are becom-
ing different in what regards to their initial HTTP com-
munication. Several dynamic content techniques allow for
displaying/hiding information, injecting new content, and
even removing content from Web pages. Since AT is capa-
ble of interacting with this kind of content through modern
Web browsers, it is imperative for automated evaluation to
be applied to the content Web browsers display.
Following this line of thought, this paper presents an ex-

perimental study on automated evaluation of Web accessi-
bility at two different evaluation environments: Command
Line – representing the typical environment for automated
evaluation, which includes existing evaluators that can be
accessed online – and Browser, the environment where users
interact with the Web. Our study centres on the appli-
cation of the same implementation techniques for evaluat-
ing a representative subset of WCAG 2.0, to understand

the impact of evaluating the accessibility of Web pages in
the browser environment. Next, we discuss the typical Web
browsing process that happens when end-users interact with
Web pages.

2. WEB BROWSING PROCESS
As of today, the dynamics of Web pages centre around a

sequence of communication steps between the Web browser
and Web servers, as depicted in Figure 1.

Browser Server

Request Web page

Web page

time
Request resources

Resources

...

AJAX Request

Response

Figure 1: Web Browsing Resource Interaction

This communication takes the form of request-response
interactions, focusing in three main areas:

• Web page: this is the main resource that defines the
skeleton of the content that is being presented in the
Web browser;

• Resources: these complementary resources include im-
ages and other media, stylesheets, and scripts that are
explicitly specified in the Web page’s structure (i.e.,
with proper HTML elements);

• AJAX : these resources are transmitted during or after
the browser triggers the loading events for a Web page.

This is a mixture between the architecture of the Web
(request-response nature of Web pages and Resources) and
theWeb page loading process within a browser (e.g., AJAX).
Next, we further detail these aspects.

2.1 Architecture of the Web
The architecture of the Web [9] is composed by servers,

URIs, and user agents. User agents (such as Web browsers)
communicate with servers to perform a retrieval action for
the resource identified by the URI. A server responds with a
message containing a resource representation. As depicted
in Figure 1, in the case of Web browsers, a Web page is
represented not just by its HTML content, but also by a set
of ancillary resources. Due to this increased complexity on

handling resources and their representation for users, Web
browsers process all the resources through adequate tech-
nologies (e.g., executing Javascript), which results in the
transformed HTML document that is presented to users.

2.2 Web Page Loading Process
After all resources are successfully delivered to the Web

browser, four steps are sequentially executed before users are
able to interact with the Web page, as depicted in Figure 2:

Requests Parsing DOM
Ready

DOM
Load

Page
Available

Figure 2: Web Page Loading Process

The first step in the Web page loading process, Requests,
concerns getting all resources that compose the Web page.
After that, the Web browser parses these resources, i.e.,
build the HTML DOM tree, the CSS object model, and con-
structing the execution plan based on the existing scripted
behaviours. Afterwards, the browser triggers two events in
sequence: DOM Ready and DOM Load. The former is trig-
gered when the HTML DOM tree is ready, whereas the sec-
ond is triggered after all resources are ready (CSS, images,
etc.)
Web pages typically attach a set of behaviours to these

events. This way, scripts are executed before the user gets
the chance to start interacting. Since the HTML DOM tree
is available for manipulation by these scripts, they can po-
tentiate the addition/removal/transformation of this tree.
Consequently, the Web page a user is presented might be
from slightly too heavily different from the URI’s resource
representation that is initially transmitted to the browser
from the Web server.

2.3 Research Hypothesis
In the light of the way browsers interpret Web pages, as

detailed above, and taking into account that users with dis-
abilities interact with these Web resources through browsers
and AT, we devised the following research hypothesis that
serves as the basis for our experimental study:

Evaluating Web content in the browser provides
more accurate and more in-depth analysis of its
accessibility.

To investigate the outcome of this hypothesis, we estab-
lished the following assumptions: (1) there is the need for
understanding what are the differences in the HTML be-
tween environments; (2) discover the limitations of acces-
sibility evaluation in different environments; (3) evaluation
procedures must be the same in all environments for we can
compare them.
Next, in the light of this hypothesis and corresponding

assumptions, we present the related work on Web accessibil-
ity evaluation particularly focusing on automated evaluation
procedures, as well as in-browser evaluations.

3. RELATED WORK
To help create accessible Web pages, WCAG define guide-

lines that encourage creators (e.g., designers, developers) in

constructing Web pages according to a set of best practices.
If this happens, a good level of accessibility can be guaran-
teed [8, 11]. Although these guidelines exist and are sup-
posed to be followed by the creators, most Web sites still
have accessibility barriers making its utilization very diffi-
cult or even impossible for many users [8]. Thus, WCAG can
also be used as a benchmark for analysing the accessibility
quality of a given Web page.
Web Accessibility Evaluation is an assessment procedure

to analyse how well the Web can be used by people with dif-
ferent levels of disabilities [8]. Optimal results are achieved
with combinations of the different approaches of Web acces-
sibility evaluation, taking advantage of the specific benefits
of each of them [8]. Therefore, conformance checking [2],
e.g., with the aid of automated Web accessibility evaluation
tools can be an important step for the accessibility evalua-
tion.

3.1 Automated Accessibility Evaluation
Automated evaluation is performed by software, i.e., it is

carried out without the need of human intervention, which
has the benefit of objectivity [11]. However, this type of
assessment has some limitations as described in [10]. To
verify where and why a Web page is not accessible it is im-
portant to analyse the different resources that compose the
Web page. This analysis brings the possibility of measur-
ing the level of accessibility of a Web page, with the aid of
automated Web accessibility evaluation software. Examples
include Failure Rate [12], UWEM [13], and WAQM [14].

3.2 Accessibility Evaluation in the Browser
In the past, the predominant technologies in the Web were

HTML and CSS, which resulted in static Web pages. To-
day, on top of these technologies, newer technologies appear
(e.g., Javascript), and, consequently, the Web is becoming
more and more dynamic. Nowadays, user actions and/or
automatically triggered events can alter a Web page’s con-
tent. Because of that, the presented content can be different
from the initially received by the Web browser.
However, automatic evaluations do not consider these changes

in the HTML document and because of that results could
be wrong and/or incomplete. Since expert and user evalu-
ation are performed in the browser, they do not suffer with
these changes. To solve this problem, the accessibility eval-
uation should be applied to new environments, i.e., in the
Web browser context.
The importance of the Web browser context in the evalu-

ation results is starting to be considered and is already used
in three tools named Foxability, Mozilla/Firefox Accessibil-
ity Extension, WAVE Firefox toolbar [7] and the list of tools
provided by Web Accessibility Initiative (WAI) [1]. How-
ever, these tools focus only evaluating Web pages according
to WCAG 1.0. Furthermore, since the fist three evaluation
procedures are embedded as extensions, they become more
limited in terms of their application in the command line
environment.
Also, since these tools focus on providing developer-aid

on fixing accessibility problems, the resulting outcomes from
evaluations are user-friendly, thus less machine-friendly. There-
fore, if taking into account the proposed goal of this paper,
it becomes cumbersome to define an experiment that can
leverage the evaluation knowledge embedded in these tools.
This browser paradigm – as called in [7] – is still nascent.

Until now, to the best of our knowledge, differences between
results in different evaluation environments are not clear.
To perform correct comparisons, it must be guaranteed that
tests are implemented in different environments in the same
way, by reducing implementation bias.
Furthermore, we wanted to make a fair comparison be-

tween HTML pre and pos-processors evaluators. Having a
single framework, provided that capability.

4. WEB ACCESSIBILITY EVALUATION
ENVIRONMENTS

Our study is emphasized in two main environments: Com-
mand Line, and Browser. In the Command Line environ-
ment, evaluation is performed on the HTML document that
is transmitted initially in an HTTP response, whereas in the
Browser environment, evaluation is targeted at the trans-
formed version of the HTML document.
Consequently, to better grasp the differences between these

environments, we defined an architecture that allows for
leveraging the same evaluation procedures in any environ-
ment, as detailed below. Afterwards, we explain how we im-
plemented the ideas from this architecture, as well as how
it was validated.

4.1 Architecture
The architecture of the evaluation framework is composed

by five components, as depicted in Figure 3: the QualWeb
Evaluator, Environments, Techniques, Formatters, and Web
Server.

QualWeb
Evaluator

Environments

Techniques Formatters

WCAG 2.0 EARL

... ...

Command Line Browser

Web
Server

Figure 3: Architecture of the Evaluation Framework

The QualWeb Evaluator is responsible for performing the
accessibility evaluation of Web pages, through the features
provided by the Techniques component (e.g., implementa-
tion of WCAG 2.0 techniques); it uses the Formatters com-
ponent to tailor the results into specific serialisation formats,
such as EARL reporting [3]. Finally, the QualWeb Evalua-
tor is applied in the different Environments.
Finally, the Environments component instantiates the types

of environments that can leverage the QualWeb evaluator.
In the case of the Browser environment, we specified the re-
quirement for a Web Server component, to allow for trans-
mitting all evaluation assets (e.g., scripts) that are to be
applied in the currently selected Web page, as well as to
gather the evaluation results at a well-known point within
the server.

4.2 Implementation
To facilitate the accurate replication of the experiment

and to provide in-depth guidance on how to implement such
evaluators we provide a high detail of the implementation.
In order to compare the proposed evaluation environments,

we must use the same accessibility evaluation implemen-
tation. Given that one of the environments is the Web
browser, we have a restriction on using Javascript as the
implementation language. Thus, to develop the Command
Line version of the evaluation process, we leveraged Node.js1,
an event I/O framework based on the V8 Javascript engine2.
In addition to standard Node.js modules, we used several
other ancillary modules3, including:

• Node-Static, which allowed for serving static files into
the browser environment;

• Node-Router, a module that supports the development
of dynamic behaviours, which we used to implement
the retrieval and processing of evaluation results, and

• HTML-Parser, which provides support for building
HTML DOM trees in any environment.

Besides these standard modules, we also implemented a
set of modules for our evaluation framework, including:

• EARL module, which allows for the creation of EARL
documents with the defined templates and parse EARL
files using the Libxmljs library, and

• Evaluator module, which performs the accessibility eval-
uation with the implemented techniques.

Next, we present additional details on how we implemented
both evaluation environments, as well as report generation
and processing capabilities.

4.2.1 Command Line Environment
This environment obtains the HTML document from a

URL using an HTTP request, executes the QualWeb eval-
uator on the HTML DOM tree, and serialises its outcome
into EARL. All of these processes are implemented with a
combination of the HTML-Parser, EARL, and Evaluator
modules, executed from a command line.
1Node.js: http://nodejs.org
2V8 Javascript engine: http://code.google.com/p/v8/
3GitHub modules: https://github.com/ry/node/wiki/
modules

4.2.2 Browser Environment
This environment uses a bookmarklet (Figure 4) to trigger

the execution of the evaluation within the browser. Book-
marklets are browser bookmarks that start with the Javascript:
protocol. In front of this, pure Javascript commands follow.
When a user activates the bookmarklet, these commands
are run.

Figure 4: Evaluation execution example on Browser

In the case of our evaluator, this bookmarklet injects the
necessary functions to obtain the HTML DOM tree of the
current Web page, executes the QualWeb evaluator, and
sends the evaluation results to a server component. These
results are transformed in the EARL serialisation format,
and subsequently stored. To implement this browser-server
execution and communication mechanism, we used the fol-
lowing modules:

• Bootstrap, to import the required base modules, and

• LAB.js, to inject all of the evaluation modules into the
browser’s DOM context.

4.2.3 Report Generation and Processing
Finally, to generate the evaluation reports containing the

accessibility quality results, we used the following modules:

• Node-Template, to define EARL reporting templates,

• Libxmljs, to parse EARL reports, and

• CSV module, to recreate a comma-separated-values (CSV)
counterpart from a given EARL report. This module
allowed for a better inspection and statistical analysis
with off-the-shelf spreadsheet software.

While the EARL format allows for the specification of
evaluation results, we had to extend EARL with a small set
of elements that could allow for the analysis of the resulting
outcomes from our experiment. Hence, we defined a Meta-
data field that supports the specification of HTML element
count, as well as a Timestamp to state the specific time when
the evaluation was performed.
The EARL reports served as the basis for generating CSV

reports. Due to the extensiveness of EARL reports gener-
ated by our evaluator, specially in what respects to parsing
and consequent memory consumption provided by generic
DOM parsers, we implemented the EARL-CSV transforma-
tion procedures with SAX events.

4.3 Testability and Validation
We developed a test bed comprising a total of 102 HTML

documents, in order to verify that all the WCAG 2.0 imple-
mented techniques provide the expected results. They were
based on documented WCAG 2.0 techniques and ancillary
WCAG 2.0 documents. Besides, each HTML document was
carefully hand crafted and peer-reviewed within our research
team, in order to guarantee a high level of confidence on the
truthfulness of our implementation. Success or failure cases
were performed for each technique, to test all the possible

techniques outcomes. To get a better perspective on the
implementation of our tests, we leveraged the examples of
success or failure cases described for each WCAG 2.0 tech-
nique.
The graph depicted in Figure 5 shows the number of

HTML test documents defined for each technique that was
implemented in the QualWeb evaluator.

Figure 5: Number of Test Documents per Technique

We opted for having the same HTML documents, so that
we could ensure that the evaluation outcomes aren’t mod-
ified when changing evaluation environments. To test the
proper application of the implemented techniques in the two
evaluation environments, we defined a small meta-evaluation
of our tool. This meta-evaluation consisted on triggering the
evaluation on the command line with a small automation
script, as well as opening each of the HTML test documents
in the browser, and triggering the evaluation through the
supplied bookmarklet.
Afterwards, we compared the evaluation outcome (warn/-

pass/fail by technique) for all HTML test documents and
compared their results with the previously defined expected
results. Since all of these HTML tests do not include Javascript-
based dynamics that transform their respective HTML DOM
tree, we postulated that the implementation returns the
same evaluation results in both evaluation environments.

5. EXPERIMENTAL STUDY
We devised an experimental study on the home pages

from the Alexa Top 100 Web sites4. This study centred
on analysing how Web accessibility evaluation results in dif-
ferent outcomes for the Command Line and Browser envi-
ronments.
Next, we detail the setup of this experiment, followed by a

description of how data was acquired and processed. Finally,
we present the most significant results from our experiment.

5.1 Setup
We started by checking if each Web site could be reached,

and if we got an HTTP response with its corresponding
home page. In one of the cases, the domain is being used for
serving ancillary resources for other Web sites. Other Web
sites were also unavailable, for unknown reasons. Finally, we
filtered the Web sites that were blocked from the university
network (mostly illegal file sharing or adult content services).
The resulting set of Web sites that were to be evaluated

comprises a total of 82 reachable home pages.
4Alexa Top 100: http://http://www.alexa.com/topsites

5.2 Data Acquisition and Processing
We accessed the Web pages and saved the original HTML

documents (through the command line environment) and
the transformed HTML documents (through the browser en-
vironment), so we could repeat the assessments with these
documents, if necessary. We performed the evaluations in
both environments sequentially to the same Web page, and
with little temporal differences. This way we avoided the po-
tential content differences between the HTTP responses in
both environments, which could lead to incorrect evaluation
results. The resulting time delta between the evaluations in
both environments averages at 89.72 seconds, σ = 69.59.
In some cases on the browser environment, we were faced

with strong safeguards that deflected our ability to inject
our evaluation procedures into the HTML document (often
implemented as safeguards for cross-site scripting attacks).
For these cases, we eliminated these restrictions and success-
fully evaluated the documents afterwards.
On browser’s partial fixing of HTML, we want to take that

into account in the comparison of evaluation environments,
since users are faced with the fixed content.
Finally, with all evaluations finished, we transformed all

EARL results into corresponding CSV format for subsequent
analysis, as detailed in the implementation Section.
Our evaluation yielded differences in the size of the HTML

documents, both in terms of absolute bytes and HTML el-
ements, when comparing these numbers between evaluation
environments. The average difference on the byte size of
the documents is 2885 bytes, σ = 51181.63, which supports
the idea that Web pages can have several transformations in
their content between environments. In terms of HTML el-
ement count, there is an average difference of 72.5 elements,
σ = 693.56. These results indicate that, in fact, there are
differences in the HTML between these two environments.
We investigated further these numbers, in order to under-

stand if there were any cases where the size of the docu-
ments, in bytes and number of HTML elements, increase or
decrease in absolute values. These results are depicted in
Figures 6 and 7, respectively.
In terms of absolute byte size for the evaluated Web pages,

the command line environment yields an average of 69794
bytes, σ = 95358.67, while averaging at 81007.02 bytes in
the browser environment, σ = 126847.75. This scenario re-
peats for HTML elements, where the command line clocks
at 915.71 elements on average, σ = 1152.11, and 1154.72 ele-
ments on average for the browser environment, σ = 1565.87.
This outcome reflects the underlaying assumption made

in the hypothesis, i.e., that the difference between HTML
documents in both environments is real, and very significa-
tive. Based on this, we present in the next Section an anal-
ysis on how accessibility evaluation – based on WCAG 2.0
– becomes evident on the command line and browser envi-
ronments.

5.3 Results
We focused our study in two main set of results: first,

the difference of evaluation outcomes (fail, pass, warning)
between both environments; and second, what outstanding
Web accessibility evaluation criteria are able to characterise
the differences between evaluating in each environment. The
next Sections detail our corresponding findings.

5.3.1 Evaluation Outcomes

Figure 6: Comparing size in bytes in both environments

We have detected that there are significant differences in
the number of HTML elements detected by by Web acces-
sibility evaluation procedures between both environments.
In Figures 8, 9, and 10 we present how the three evalua-
tion outcomes (fail, pass, warn, respectively) differ between
environments. A failure occurs in the cases where the evalu-
ator can automatically and unambiguously detect if a given
HTML element has an accessibility problem, whereas the
passing represents its opposite. Warnings are raised when
the evaluator can partially detect accessibility problems, but
which might require additional inspection (often by experts).
Inspecting these results with additional detail, the Web

pages have the following evaluation outcomes:

• Pass: an average 9.67 elements pass their respective
evaluation criteria (σ = 19.12) in the command line
environment. However, this number highly increases in
the browser environment to an average 272.78 elements
(σ = 297.10), ie, 46%;

• Fail : an average 47.44 elements fail their respective
evaluation criteria (σ = 70.82) in the command line
environment. This number increases in the browser en-
vironment to an average 90.10 elements (σ = 125.93),
ie, 12%;

• Warn: an average 425.02 elements pass their respec-
tive evaluation criteria (σ = 682.53) in the command
line environment. This number increases in the browser
environment to an average 685.21 elements (σ = 1078.10),
ie, 45%.

Next, we detail how evaluation criteria differentiate be-
tween both evaluation environments.

5.3.2 Evaluation Criteria
WCAG 2.0 defines a set of evaluation criteria for each of

its general accessibility guidelines. Our experimental study
resulted in several interesting outcomes from the accessibil-
ity evaluation. As it can be grasped from Figure 11 (log-scale
on HTML Elements count), each one of the implemented
criteria is invariantly applied more times in the browser en-
vironment than in the command line environment.
However, these results still mask an important detail about

criterion applicability: there might be Web pages where any
given criterion could be applied in the command line en-
vironment, but dismissed in the browser environment (i.e.,
false positives). Likewise, the opposite situation can also

Figure 11: Browser vs Command Line per criterion
(log-scale on HTML Elements count)

arise (i.e., false negatives). In other words, false negatives
and false positives occur due to the differences between eval-
uation results of both environments, for instance, failing on
Criterion 1.1 (i.e., alternative texts) in command line eval-
uation, but passing in the browser (e.g., a script introduced
alternative texts for images). This is a false negative yield
by command line evaluation, since users are faced with its
browser counterpart.
Consequently, in this analysis, we discovered some cases

where specific criteria in fact resulted in both false positives
and false negatives, when using the command line environ-
ment results as the baseline for comparison. This resulted
in the outcomes depicted in Table 1.
This analysis shows that, in fact, nearly 67% of the cases

(10 criteria out of the 15 that were implemented) in the
command line environment yield false negatives, i.e., were
unable to be applied. The occurrence of false positives, i.e.,
when a Web page version for the command line environment
triggered the application of criteria but not on the browser
environment, was substantially lower, though.
Next, we delve into four WCAG 2.0 criteria that reflect the

different evaluation natures that emerge from the compari-
son of the outcomes from the two evaluation environments:
1.1.1, 1.2.3, 2.4.4, and 3.1.1.

5.3.2.1 WCAG 2.0 Criterion 1.1.1.
Criterion 1.1.1 is the poster child of Web accessibility ade-

quacy (both in engineering and evaluation terms). It reflects

Figure 7: Comparing size in HTML Elements count in both environments

Figure 8: Number of HTML Elements that Passed

Figure 9: Number of HTML Elements that Failed

Figure 10: Number of HTML Elements that had Warnings

Table 1: False positives and false negatives in crite-
ria applicability on command line environment

Criterion False positives False negatives
1.2.3 11%
1.2.8 2% 12%
1.3.1 27%
3.1.1 6%
3.2.2 9%
3.2.5 1% 5%
3.3.2 9%
3.3.5 6%
4.1.1 1%
4.1.2 37%

the necessity for content equivalence, thus enabling content
understanding no matter what impairment a user has. For
instance, the existence of alternative textual descriptions for
images. Thus, we analysed individually this criterion, as de-
picted in Figure 12.
For a significant number of the Web pages we analysed,

there is a high increase of situations that could be detected
in the browser context. A brief glance at these differences
showed the dynamic injection of images at either the DOM
Ready or DOM Load browser rendering events. This kind
of disparity on the results is the one that occurs more often
for all of the implemented criteria.

5.3.2.2 WCAG 2.0 Criterion 1.2.3.
Criterion 1.2.3 depicts, in Figure 13, one case of the afore-

mentioned false negatives. Almost all of the detected appli-
cability occurred in the browser environment.

5.3.2.3 WCAG 2.0 Criterion 2.4.4.
In the case of Criterion 2.4.4, as depicted in Figure 14,

most of the results are typical. However, as identified in the
graph, there is a Web page where the command line environ-
ment detects a substantially bigger amount of problems for
this criterion. While not all of those cases disappear in the
browser environment, it shows that even when no false pos-
itive is raised for a criterion’s applicability, there are cases
where dynamic scripts remove detectable accessibility issues.

5.3.2.4 WCAG 2.0 Criterion 3.1.1.
Finally, Criterion 3.1.1, as depicted in Figure 15, allows

for the detection of the (un)availability of form submission
buttons. This could not be detected in the command line
environment (i.e., the missing gaps in the graph), as these
buttons were dynamically injected into the Web page.

6. DISCUSSION
Our study on the resulting outcomes from evaluating Web

accessibility in the command line and browser environments
has yielded an interesting amount of insights, respecting to
automated Web accessibility evaluation practices. In the
light of the results presented in the previous Section, we
revisit the research hypothesis that initiated our study:

Evaluating Web content in the browser provides
more accurate and more in-depth analysis of its
accessibility.

In the next Sections, we discuss how Web accessibility can
be evaluated in the browser, and finish with a discussion of
the limitations of our experimental setup.

6.1 Web Accessibility Evaluation in the Browser
Our expectations with regards to the raised hypothesis

were confirmed. Indeed, there are deep differences in the ac-
cessibility evaluation between the command line and browser
environments. This is reflected not just in the additional
amount of processable HTML elements, but on the rate of
false negatives and positives yielded by command line envi-
ronment evaluations as well.
Hence, it is important to stress that evaluating the accessi-

bility of modern Web pages in a command line environment
can deliver misleading paths for designers and developers
due to the following reasons:

• There are significant differences between the structure
and content of Web pages in both evaluation environ-
ments. Thus, for dynamic Web pages, developers and
designers can be faced with evaluation results that re-
flect different HTML DOM trees. This fact, on its
own, can often provide confusion and result on difficul-
ties of detecting the actual points where accessibility
problems are encountered;

• False positives at the command line environment pro-
vide another point that can confuse designers and de-
velopers that are faced with these accessibility evalua-
tion results, since they become invalid in the browser
environment (e.g., corrected with the aid of Javascript
libraries);

• Finally, false negatives are more critical, since a lot
of potential accessibility problems are simply not de-
tected in the command line environment. Consequently,
an evaluation result might pass on 100% of accessibil-
ity checks, but the HTML DOM tree that is presented
to end-users faces severe accessibility problems.

We believe that these results show that, in fact, it is of the
most importance to evaluate the accessibility of Web pages
in the environment where end-users interact with them. The
often proposed methodology of building Web pages in a
progressive enhancement fashion (where scripts insert ad-
ditional content and interactivity) do guarantee neither the
improvement, nor the maintenance of the accessibility qual-
ity of any given Web page.

6.2 Limitations of the Experiment
Our experiment has faced some limitations, both in terms

of its setup, as well as on the type of results that can be
extrapolated, including:

• Data gathering : since we gathered all Web pages in
the two environments at different instants, we could
not guarantee 100% that Web page generation arte-
facts were not introduced between requests for each of
the evaluated Web pages. Furthermore, the presented
results are valid for the sample set of Web pages that
were selected. However, we believe that these pages
are representative of modern Web design and develop-
ment of front-ends;

Figure 12: Browser vs Command Line for criterion 1.1.1

Figure 13: Browser vs Command Line for criterion 1.2.3

Figure 14: Browser vs Command Line for criterion 2.4.4

Figure 15: Browser vs Command Line for criterion 3.1.1

• DOM trees: while the QualWeb evaluator takes a DOM
representation of the HTML, we only analysed the
profusion of Web accessibility inadequacies in term
of HTML elements, leaving out other potential fac-
tors that influence the accessibility of Web pages (e.g.,
CSS), and we did not save iFrames in the Web pages,
but ultimately did not influence the evaluation because
we do not look to their content;

• Comparison of DOM trees: our experimental setup
did not provide enough information to pinpoint what
transformations to the HTML DOM were made at
both DOM Ready and DOM Load phases;

• Script injection: we encountered some cases (notably,
facebook.com) where the injection of accessibility eval-
uation scripts was blocked with cross-site scripting (XSS)
dismissal techniques. In these cases, we hand crafted
minimal alterations on these Web pages, in order to
disable these protections. Nevertheless, none of these
alterations influenced the outcome of the accessibility
evaluations performed in these cases;

• Automated evaluation: since this experiment is centred
on automated evaluation of Web accessibility quality,
it shares all of the inherent pitfalls. This includes the
limited implementation coverage of WCAG 2.0.

7. CONCLUSIONS AND FUTURE WORK
This paper presented an experimental study of automated

Web accessibility evaluation in the context of two environ-
ments: command line and browser. For this experiment, we
analysed the accessibility quality of the home pages of the
100 most visited Web sites in the world. We provided ev-
idence that the significant differences introduced by AJAX
and other dynamic scripting features of modern Web pages
do influence the outcome of Web accessibility evaluation
practices. We showed that automated Web accessibility
evaluation in the command line environment can yield incor-
rect results, especially on the applicability of success criteria.
Facing with the obtained results, and based on the imple-

mentation of the QualWeb evaluator and environment eval-
uation framework, ongoing work is being conducted in the
following directions: (1) Implementation of more WCAG 2.0
tests based on the analysis of CSS, especially in the post-
cascading phase, when all styling properties have been com-
puted by the Web browser; (2) Continuous monitoring of
changes in the HTML DOM, thus opening the way for de-
tection of more complex accessibility issues, such as WAI
ARIA live regions [5]; (3) Detecting the differences in DOM
manipulation, in order to understand the typical actions per-
formed by scripting in the browser context; (4) The imple-
mentation of additional evaluation environments, such as
developer extensions for Web browsers (e.g., Firebug5), as
well as supporting an interactive analysis of evaluation re-
sults embedded on the Web pages themselves.

8. ACKNOWLEDGEMENTS
This work was funded by Fundação para a Ciência e Tec-

nologia (FCT) through the QualWeb national research project
PTDC/EIA-EIA/105079/2008, the Multiannual Funding Pro-
gramme, and POSC/EU.
5Firebug: http://getfirebug.com/

9. REFERENCES
[1] S. Abou-Zahra. Complete list of web accessibility

evaluation tools, 2006. Last accessed on February
11th, 2011, from
http://www.w3.org/WAI/ER/tools/complete.

[2] S. Abou-Zahra. Wai: Strategies, guidelines, resources
to make the web accessible to people with disabilities -
conformance evaluation of web sites for accessibility,
2010. Last accessed on November 11th, 2010, from
http://www.w3.org/WAI/eval/conformance.html.

[3] S. Abou-Zahra and M. Squillace. Evaluation and
report language (EARL) 1.0 schema. Last call WD,
W3C, Oct. 2009. http://www.w3.org/TR/2009/
WD-EARL10-Schema-20091029/.

[4] M. Cooper, G. Loretta Guarino Reid,
G. Vanderheiden, and B. Caldwell. Techniques for
WCAG 2.0 - Techniques and Failures for Web Content
Accessibility Guidelines 2.0. W3C Note, World Wide
Web Consortium (W3C), October 2010. Last accessed
on November 26th, 2010, from
http://www.w3.org/TR/WCAG-TECHS/.

[5] J. Craig and M. Cooper. Accessible rich internet
applications (wai-aria) 1.0. W3C working draft, W3C,
Sept. 2010. http://www.w3.org/TR/wai-aria/.

[6] K. Ford, J. Richards, J. Allan, and J. Spellman. User
agent accessibility guidelines (UAAG) 2.0. W3C
working draft, W3C, July 2009.
http://www.w3.org/TR/2009/WD-UAAG20-20090723/.

[7] J. L. Fuertes, R. González, E. Gutiérrez, and
L. Martínez. Hera-ffx: a firefox add-on for
semi-automatic web accessibility evaluation. In W4A
’09: Proceedings of the 2009 International
Cross-Disciplinary Conference on Web Accessibililty
(W4A), New York, NY, USA, 2009. ACM.

[8] S. Harper and Y. Yesilada. Web Accessibility.
Springer, London, United Kingdom, 2008.

[9] I. Jacobs and N. Walsh. Architecture of the World
Wide Web, Volume One. W3C Recommendation,
World Wide Web Consortium (W3C), Dec 2004. Last
accessed on November 9th, 2010, from
http://www.w3.org/TR/webarch/.

[10] R. Lopes and L. Carriço. Macroscopic
characterisations of Web accessibility. New Review of
Hypermedia and Multimedia, 16(3):221–243, 2010.

[11] R. Lopes, D. Gomes, and L. Carriço. Web not for all:
A large scale study of web accessibility. In W4A: 7th
ACM International Cross-Disciplinary Conference on
Web Accessibility, Raleigh, North Carolina, USA,
April 2010. ACM.

[12] T. Sullivan and R. Matson. Barriers to use: usability
and content accessibility on the web’s most popular
sites. In CUU ’00: Proceedings on the 2000 conference
on Universal Usability, New York, USA, 2000. ACM.

[13] E. Velleman, C. Meerveld, C. Strobbe, J. Koch, C. A.
Velasco, M. Snaprud, and A. Nietzio. Unified Web
Evaluation Methodology (UWEM 1.2), 2007.

[14] M. Vigo, M. Arrue, G. Brajnik, R. Lomuscio, and
J. Abascal. Quantitative metrics for measuring web
accessibility. In W4A ’07: Proceedings of the 2007
international cross-disciplinary conference on Web
accessibility (W4A), pages 99–107, New York, NY,
USA, 2007. ACM.

Appendix A. Papers Written 77

A.3 An Architecture for Multiple Web accessibility Eval-
uation Environments - HCII 2011

An Architecture for Multiple Web Accessibility

Evaluation Environments

Nádia Fernandes, Rui Lopes, Luís Carriço

LaSIGE, University of Lisbon, Edifício C6 Piso 3

Campo Grande, 1749 - 016 Lisboa, Portugal

{nadia.fernandes, rlopes, lmc}@di.fc.ul.pt

Abstract. Modern Web sites leverage several techniques that allow for the in-

jection of new content into their Web pages (e.g., AJAX), as well as manipula-

tion of the HTML DOM tree. This has the consequence that the Web pages that

are presented to users (i.e., browser environment) are different from the original

structure and content that is transmitted through HTTP communication (i.e.,

command line environment). This poses a series of challenges for Web accessi-

bility evaluation, especially on automated evaluation software.

In this paper, we present an evaluation framework for performing Web accessi-

bility evaluations in different environments, with the goal of understanding how

similar or distinct these environments can be, in terms of their web accessibility

quality.

Keywords: Web Accessibility, Web Accessibility Evaluation Environments

1 Introduction

The Web, as an open platform for information production and consumption, is being

used by all types of people, with miscellaneous capabilities, including those with

special needs. Consequently, Web sites should be designed so that information can be

perceived by everyone in the same way, i.e., should be accessible. To analyse if a

given Web page is accessible it is necessary to inspect its front-end technologies (e.g.

HTML, CSS, Javascript) according to specific evaluation rules. From the different

ways this inspection can be done, an interesting evaluation procedure concerns the

usage of accessibility assessment software tools that algorithmically inspect a Web

page’s structure and content in an automated way.

Automatic accessibility evaluation can be performed in original or transformed

HTML, resulting in different environments on which assessment takes place. One of

the environments concerns the original HTML which is the HTML document derived

from the HTTP. The other environment concerns the transformed HTML which is

the resulting application of front-end technologies into the original HTML, as proc-

essed by CSS and AJAX/Javascript. This can substantially change the content struc-

2 Nádia Fernandes, Rui Lopes, Luís Carriço

ture, presentation, and interaction capabilities provided by a given Web page. This

distinction between the original and transformed versions of a Web page’s HTML is

critical, since it is the latter that is presented and interacted by all users within a Web

browser. Usually, the existent automatic evaluation procedures, such as those pre-

sented in [5, 10, 11], occur in the original HTML.

This paper presents an evaluation framework for perform Web accessibly evalua-

tions in different environments. Taking into account that usually the existents auto-

matic evaluation procedures occur in the original HTML conclusions over the acces-

sibility quality of a Web page can be incomplete, or, in extreme erroneous. It is there-

fore important to access the transformed HTML documents and understand how deep

the differences toward the original document are.

2 Related Work

To help create accessible Web pages, the Web Accessibility Initiative (WAI) devel-

oped a set of accessibility guidelines, the Web Content Accessibility Guidelines

(WCAG) [9], that encourage creators (e.g., designers, developers) in constructing

Web pages according to a set of best practices. If this happens, a good level of acces-

sibility can be guaranteed [1, 2]. Although these guidelines exist and are supposed to

be followed by the creators, most Web sites still have accessibility barriers that make

very difficult or even impossible many people to use them [1]. Thus, WCAG can also

be used as a benchmark for analysing the accessibility quality of a given Web page.

Web Accessibility Evaluation is an assessment procedure to analyse how well the

Web can be used by people with different levels of disabilities, as detailed in [1].

Optimal results are achieved with combinations of the different approaches of Web

accessibility evaluation, taking advantage of the specific benefits of each of them [1].

Therefore, conformance checking [3], e.g., with the aid of automated Web accessibili-

ty evaluation tools is an important step for the accessibility evaluation.

Automated evaluation is performed by software, i.e., it is carried out without the

need of human intervention, which has the benefit of objectivity [2]. To verify where

and why a Web page is not accessible it is important to analyse the different resources

that compose the Web page. Two examples of automatic accessibility evaluators are:

EvalAcess [6] that produces a quantitative accessibility metrics from its reports and

the automatic tests of UWEM [5].

In the past, the predominant technologies in the Web were HTML and CSS, which

resulted in static Web pages. Today, on top of these technologies, newer technologies

appear (e.g., Javascript), and, consequently, the Web is becoming more and more

dynamic. Nowadays, user actions and/or automatically triggered events can alter a

Web page's content. Because of that, the presented content can be different from the

initially received by the Web browser. To solve this problem, the accessibility evalua-

tion should be applied to new environments, i.g., in the Web browser context. How-

ever, automatic evaluations do not consider these changes in the HTML document

and, because of that, results can be wrong and/or incomplete. Expert and user evalua-

tion are performed in the browser, they do not suffer with these changes.

An Architecture for Multiple Web Accessibility Evaluation Environments 3

 The importance of the Web browser context in the evaluation results is starting to

be considered and is already used in three tools named Foxability, Mozilla/Firefox

Accessibility Extension, and WAVE Firefox toolbar [7]. However, these tools focus

only evaluating Web pages according to WCAG 1.0. Furthermore, since their evalua-

tion procedures are embedded as extensions, they become more limited in terms of

their application.

 Also, since these tools focus on providing developer-aid on fixing accessibility

problems, the resulting outcomes from evaluations are user-friendly, thus less ma-

chine-friendly. Moreover, this “browser paradigm” - like is called in [7] - is very

preliminary. Until now, to the best of our knowledge, differences between results in

different evaluation environments are not clear. To perform correct comparisons, it

must be guaranteed that tests are implemented in different environments in the same

way, by reducing implementation bias.

3 Web Accessibility Evaluation Environments

Our study is emphasized in two main environments: Command Line and Browser.

The Command Line environment represents the typical environment for automated

evaluation, which includes existing evaluators that can be accessed online and the

evaluation is performed into the original HTML document. In Browser environment

users interact with the Web evaluation, performed into the transformed version of the

HTML document.

 Consequently, to better grasp the differences between the environments, we defined

an architecture that allows for leveraging the same evaluation procedures in any envi-

ronment, as detailed below. Afterwards, we explain how we implemented the ideas

from this architecture, as well as how it was validated.

3.1 Architecture

The architecture of our evaluation framework is composed by five components, as

depict in Figure 1: the QualWeb Evaluator, the Environments, the Techniques, the

Formatters and the Web Server.

The QualWeb Evaluator is responsible for performing the accessibility evaluation

in Web pages using the capabilities provided by the Techniques component; it uses

the Formatter component to tailor the results into specific serialisation formats, such

as EARL reporting [8]. Finally, QualWeb Evaluator can also be used in different

Environments.

The Techniques component contains the individual front-end inspection code that

is intended to be used in evaluation. In our case we chose the WCAG 2.0 [9], because

it is one of most important accessibility standards. The Techniques component is built

so that other techniques could be added, at any time, to be used in the evaluator.

4 Nádia Fernandes, Rui Lopes, Luís Carriço

Fig. 1. Architecture of the Evaluation Framework.

The Browser is the environment where the transformed HTML is used and the

evaluation is performed in a browser. In Browser could be consider two mechanisms

to deliver the evaluation results, the Server and the Embedded. In the Server the

HTML document is evaluated and the result is sent to the Web Server for subsequent

analysis. In the Embedded the evaluation results are injected into the HTML docu-

ment and shown to the developers/designers directly within the Web page.

Furthermore, other environments can be added to Environments component, in or-

der to supply different HTML representations.

3.2 Implementation

In order to compare the proposed evaluation environments, we must use the same

accessibility evaluation implementation. Given that one of the environments is the

Web browser, we have a restriction on using Javascript as the implementation lan-

guage. Thus, to develop the Command Line version of the evaluation process, we

An Architecture for Multiple Web Accessibility Evaluation Environments 5

leveraged Node.js1 an event I/O framework based on the V8 Javascript engine2. In

addition to standard Node.js modules, we used several other ancillary modules3, in-

cluding:

─ Node-Static, which allowed for serving static files into the browser environ-

ment;

─ Node-Router, a module that supports the development of dynamic behaviours,

which we used to implement the retrieval and processing of evaluation results,

and

─ HTML-Parser, which provides support for building HTML DOM trees in any

environment.

Besides these standard modules, we also implemented a set of modules for our

evaluation framework, including:

─ EARL module, which allows for the creation of EARL documents with the

defined templates and parse EARL files using the Libxmljs library, and

─ Evaluator module, which performs the accessibility evaluation with the imple-

mented techniques.

Next it is presented an excerpt from WCAG 2.0 H64 technique.

function inspect(DOMList)

{

 if (typeof DOMList == "undefined" || DOMList.length

== 0)

 return;

 for (var i = 0; i < DOMList.length; i++)

{

 position++;

 if (DOMList[i]["type"] == "tag" && (DOML

 ist[i]["name"] == "frame" || DOMList[i]["name"]

==

 "iframe"))

{

 if(DOMList[i]["attribs"]["title"] != "" && DOML

 ist[i]["attribs"]["title"] != "undefined" &&

 DOMList[i]["attribs"]["title"] != "''")

 {

 addElement(position,'cannotTell: title could not

 describe frame or frame',"");

 }

1 Node.js: http://nodejs.org/
2 V8 Javascript engine: http://code.google.com/p/v8/
3 GitHub modules: https://github.com/ry/node/wiki/modules/

6 Nádia Fernandes, Rui Lopes, Luís Carriço

 else

 addElement(position,'failed',"");

 }

 inspect(DOMList[i]["children"]);

 }

}

exports.startEvaluation=startEvaluation;

Next, we present additional details on how we implemented both evaluation envi-

ronments, as well as report generation and processing capabilities.

3.2.1 Command Line Environment

This environment obtains the HTML document from a URL using an HTTP request,

executes the QualWeb evaluator on the HTML DOM tree, and serialises its outcome

into EARL. All of these processes are implemented with a combination of the HTML-

Parser, EARL, and Evaluator modules, executed from a command line.

3.2.2 Browser Environment

This environment uses a bookmarklet (Figure 2) to trigger the execution of the evalua-

tion within the browser. Bookmarklets are a kind of browser bookmark that has the

particularity of point to a URI that starts with the javascript: protocol. In front of

this, pure Javascript commands follow. Thus, when a user activates the bookmarklet,

these commands are executed.

Fig. 2. Evaluation execution example on Browser.

In the case of our evaluator, this bookmarklet injects the necessary functions to ob-

tain the HTML DOM tree of the current Web page, executes the QualWeb evaluator,

and sends the evaluation results to a server component. These results are transformed

in the EARL serialisation format, and subsequently stored. To implement this brows-

er-server execution and communication mechanism, we used the following modules:

─ Bootstrap, to import the required base modules, and

─ LAB.js, to inject all of the evaluation modules into the browser's DOM context.

3.2.3 Report Generation and Processing

Finally, to generate the evaluation reports containing the accessibility quality results,

we used the following modules:

An Architecture for Multiple Web Accessibility Evaluation Environments 7

─ Node-Template, to define EARL reporting templates,

─ Libxmljs, to parse EARL reports, and

─ CSV module, to recreate a comma-separated-values (CSV) counterpart from a

given EARL report. This module allowed for a better inspection and statistical

analysis with off-the-shelf spreadsheet software. Besides, to the best of our

knowledge, there was nothing that performs the EARL parsing giving results in

CSV.

While the EARL format allows for the specification of evaluation results, we had

to extend EARL with a small set of elements that could allow for the analysis of the

resulting outcomes from our experiment. Hence, we defined a Metadata field that

supports the specification of HTML element count, as well as a Timestamp to state

the specific time when the evaluation was performed.

The EARL reports served as the basis for generating CSV reports. Due to the ex-

tensiveness of EARL reports generated by our evaluator, especially in what respects

to parsing and consequent memory consumption provided by generic DOM parsers,

we implemented the EARL-CSV transformation procedures with SAX events.

Next, an EARL document example in RDF/N34 format.

<#QualWeb> dct:description ""@en;

 dct:hasVersion "0.1";

 dct:location "http://qualweb.di.fc.ul.pt/";

 dct:title "The QualWeb WCAG 2.0 evaluator"@en;

 a earl:Software.

<assertion1> dc:date "1291630729208";

 a earl:Assertion;

 earl:assertedBy <assertor>;

 earl:mode earl:automatic;

 earl:result <result1>;

 earl:subject <http://ameblo.jp/>;

 earl:test <http://www.w3.org/TR/WCAG20-

TECHS/H25#H25>.

<http://ameblo.jp/> dct:description ""@en;

 dct:title "The QualWeb WCAG 2.0 evaluator"@en;

 qw:elementCount "381";

 a qw:metadata,

 earl:TestSubject.

<http://www.w3.org/TR/WCAG20-TECHS/H25> dct:hasPart

<http://www.w3.org/TR/WCAG20-TECHS/H25#H25-tests/>;

 dct:isPartOf <http://www.w3.org/TR/WCAG20-TECHS/>;

 dct:title "H25"@en;

 a earl:TestCase.

<QualWeb> dct:description ""@en;

4 RDF/N3: http://www.w3.org/DesignIssues/Notation3

8 Nádia Fernandes, Rui Lopes, Luís Carriço

 dct:hasVersion "0.1";

 dct:title "The QualWeb WCAG 2.0 evalua-tor"@en;

 a earl:Software;

 foaf:homepage qw:.

<result1> dct:description "descrip-

tion"^^rdf:XMLLiteral;

 dct:title "Markup Valid"@en;

 a earl:TestResult;

 earl:info "info"^^rdf:XMLLiteral;

 earl:outcome earl:passed;

 earl:pointer <1>.

3.3 Testability and Validation

We developed a test bed comprising a total of 102 HTML documents, in order to

verify if all the WCAG 2.0 implemented techniques provide the expected results.

Each HTML document was carefully hand crafted and peer-reviewed within our re-

search team, in order to guarantee a high level of confidence on the truthfulness of our

implementation. For each technique success or failure cases were performed to test all

the possible techniques outcomes. To get a better perspective on the implementation

of our tests, we leveraged the examples of success or failure cases described for each

WCAG 2.0 technique. The graph depicted in Figure 3 shows the number of HTML

test documents defined for each technique that was implemented in the QualWeb

evaluator.

To test the proper application of the implemented techniques in the two evaluation

environments, we defined a small meta-evaluation of our tool. This meta-evaluation

consisted on triggering the evaluation on the command line with a small automation

script, as well as opening each of the HTML test documents in the browser, and trig-

gering the evaluation through the supplied bookmarklet.

Afterwards, we compared the evaluation outcome for all HTML test documents

and compared their results with the previously defined expected results. Since all of

these HTML tests do not include Javascript-based dynamics that transform their re-

spective HTML DOM tree, we postulated that the implementation returns the same

evaluation results in both evaluation environments.

Fig. 3. Number of Test Documents per Technique.

An Architecture for Multiple Web Accessibility Evaluation Environments 9

4 Conclusions and Future Work

The presented architecture for Multiple Web Accessibility Evaluation Environments

that was implemented for: Command Line and Browser environments. The architec-

ture was used in accessibility evaluation tests successfully. In this work were imple-

mented new modules to facilitate this type of evaluations. These modules will be

available online.

 Some limitations of this work are: the evaluations do not occur exactly at the same

time in both environments, so we could not guarantee 100% that Web page genera-

tion artefacts were not introduced between requests for each of the evaluated Web

pages, and injection of accessibility evaluation scripts could be blocked with cross-

site scripting (XSS) dismissal techniques.

 Ongoing work is being conducted in the following directions: 1) an in-depth im-

plementation of WCAG 2.0 techniques for different front-end technologies, as well as

its application in different settings and scenarios; 2) implementation of more WCAG

2.0 tests; 3) continuous monitoring of changes in the HTML DOM thus opening the

way for detection of more complex accessibility issues, such as WAI ARIA live re-

gions [12]; 4) detecting the differences in DOM manipulation, in order to understand

the typical actions performed by scripting in the browser context, and 5) the imple-

mentation of additional evaluation environments, such as developer extensions for

Web browsers (e.g., Firebug5), as well as supporting an interactive analysis of

evaluation results embedded on the Web pages themselves.

Acknowledgements. This work was funded by Fundação para a Ciência e Tecnologia

(FCT) through the QualWeb national research project PTDC/EIA-EIA/105079/2008,

the Multiannual Funding Programme, and POSC/EU.

5 References

1. S. Harper and Y. Yesilada. Web Accessibility Springer, London, United Kingdom,

2008.

2. R. Lopes, D. Gomes, and L. Carriço. Web not for all: A large scale study of web

accessibility. In W4A: 7
th

 ACM International Cross-Disciplinary Conference on

Web Accessibility, Raleigh, North Carolina, USA,April 2010. ACM.

3. S. Abou-Zahra. Wai: Strategies, guidelines, resource to make the web accessible to

people with disabilities conformance evaluation of web sites for accessibility 2010.

Last accessed on November 11th, 2010, from

http://www.w3.org/WAI/eval/conformance.html.

4. T. Sullivan and R. Matson. Barriers to use: usability and content accessibility on

the web’s most popular sites. In CUU ’00: Proceedings on the 2000 conference on

Universal Usability, pages 139–144, New York, NY,USA, 2000. ACM.

5 Firebug: http://getfirebug.com/

10 Nádia Fernandes, Rui Lopes, Luís Carriço

5. E. Velleman, C. Meerveld, C. Strobbe, J. Koch, C. A.Velasco, M. Snaprud, and A.

Nietzio. Unified Web Evaluation Methodology (UWEM 1.2), 2007.

6. M. Vigo, M. Arrue, G. Brajnik, R. Lomuscio, and J. Abascal. Quantitative metrics

for measuring web accessibility. In W4A ’07: Proceedings of the 2007 internation-

al cross-disciplinary conference on Web accessibility (W4A), pages 99–107, New

York, NY, USA, 2007. ACM.

7. J. L. Fuertes, R. González, E. Gutiérrez, and L. Martínez. Hera-ffx: a firefox add-

on for semi-automatic web accessibility evaluation. In W4A ’09: Proceedings of

the 2009 International Cross-Disciplinary Conference on Web Accessibililty

(W4A), pages 26–34, New York, NY, USA, 2009.ACM

8. S. Abou-Zahra and M. Squillace. Evaluation and report language (EARL) 1.0

schema. Last call WD, W3C, Oct. 2009. http://www.w3.org/TR/2009/WD-

EARL10-Schema-20091029/

9. B. Caldwell, M. Cooper, W. Chisholm, L. Reid, and G. Vanderheiden, Web Con-

tent Accessibility Guidelines 2.0. , 2008. , W3C Recommendation, World Wide

Web Consortium (W3C) http://www.w3.org/TR/WCAG20/

10. T. Sullivan, and R.Matson, 2000. Barriers to use: usability and content accessibili-

ty on the Web’s most popular sites. CUU ’00: Proceedings of the Conference on

Universal Usability. New York, NY, USA: ACM, 139–144.

11. M. Vigo, M. Arrue, G. Brajnik, R. Lomuscio, and J. Abascal, 2007. Quantitative

metrics for measuring web accessibility. W4A ’07: Proceedings of the 2007 inter-

national cross-disciplinary conference on Web accessibility (W4A). New

York,NY, USA: ACM, 99–107.

12. J. Craig and M. Cooper. Accessible rich internet applications (wai-aria) 1.0. W3C

working draft, W3C, Sept. 2010. http://www.w3.org/TR/wai-aria/.

Appendix A. Papers Written 88

A.4 The Role of Templates on Web Accessibility Evalua-
tion - Assets 2011

The Role of Templates on Web Accessibility Evaluation

Nádia Fernandes, Rui Lopes, Luís Carriço
LaSIGE/University of Lisbon
Campo Grande, Edifício C6
1749-016 Lisboa, Portugal

{nadiaf,rlopes,lmc}@di.fc.ul.pt

ABSTRACT
This paper presents an experimental study designed to un-
derstand the impact of HTML template usage in accessibil-
ity evaluation reporting. Our study shows that, in average,
about 39% of the accessibility evaluation results for each
page on a Web site are applicable to page common elements
and thus are reported at least twice. This number distorts
the development team's perception of the Web site correc-
tive e�ort, unnecessarily hindering the distribution of work.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia�User issues; H.5.2 [Information In-

terfaces and Presentation]: User Interfaces�Evaluation/
methodology ; K.4.2 [Computers and Society]: Social Is-
sues�Assistive technologies for persons with disabilities

General Terms
Measurement, Human Factors.

Keywords
Web Accessibility, Templates, Automated Evaluation.

1. INTRODUCTION
Front-endWeb development is highly centred on the use of

templates to ease implementing and maintaining coherence
of Web site structural features. An estimate 40-50% of Web
content uses templates [1]. However, automatic accessibility
evaluations are usually done in pages as a whole, i.e., after
all templates are composed into the Web page's �nal form.
As such, evaluating Web sites could lead to misleading

accessibility evaluation results, i.e., the same errors are re-
peated over and over obfuscating the �nal reports. This
exacerbates the repairing problems, when they occur in a
template, and dilute the remanding ones within the numer-
ous reported errors. While managing repairing processes,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

this may simply kill the corrective project (too demanding)
or di�cult the distribution of correction tasks (several pro-
grammers correcting the same problem).
With template-aware accessibility evaluation tools, devel-

oper teams can better manage the accessibility repair pro-
cess and have a more realistic perspective of the actual ef-
fort necessary to do it. Solutions, like doing evaluation in
the original template and sources, yields heavily distorted
results [3] and are not a reasonable alternative.
In order to e�ectively evaluate accessibility considering

templates, one should �rst assess if the amount of errors
found in common elements amongst Web pages is relevant
in respect to the total amount. Although this does not con-
clude the work, it is a fundamental contribution that is ad-
dressed in this paper.
We propose the use of a simple algorithm to identify com-

mon elements amongst the HTML DOM trees. This will
only provide an approximation of the template elements
used in its construction, but o�ers a reasonable estimate
for initial assessment. On the other hand, it will also raise
the developers' awareness to other common elements, not
contained in templates that could be addressed in the cor-
rective processes. We conducted a preliminary study that
demonstrates that a signi�cant part the accessibility errors
found in relevant Web pages occur in common elements.

2. EXPERIMENTAL STUDY
This study centred on analysing similarities of HTML el-

ements between Web pages. The similarity criteria targets
typical template-based de�nitions. We used the Fast Match
algorithm [2] to obtain a measure of similarity, and applied
it on pairs of HTML DOM trees.
The study was performed in a set of sites that feature a

consistent use of HTML. The selection rationale was to se-
lect well-known and representative Web sites from the Alexa
Top 100 Web sites1 � Google,Wikipedia, Facebook and Ama-
zon �, two modern online Portuguese newspapers � DN and
Público � and the WordTaps. WordTaps uses WordPress
and it is a well-known blogging and Web site platform.
We selected a Web page of each Web site, other than the

home page. For each Web page, we compare it with the
home page, to obtain the set of elements that are common
between them (the template set), and the set that is spe-
ci�c for the Web page (the speci�c set). Each Web page
is then assessed using the automatic QualWeb evaluator [3]
and the reported errors are matched with the elements in

1Alexa Top 100: http://www.alexa.com/topsites

the abovementioned sets. This division allows faster access
to each type of accessibility evaluation results. The process
was repeated for all the Web sites.

2.1 Results
We focused our study on the percentage of WCAG 2.0

techniques applicability (i.e., speci�c outcomes - pass, warn,
fail). The average of all the template sets is 38.85% (σ =
7.48), and in the speci�c content is 61.15% (σ = 7.48). Be-
sides, the averages for the outcomes considered in the appli-
cability are: 34.50% of warnings (σ = 7.00), 0.80% of fails
(σ = 1.00), and 3.56% of pass (σ = 2.64). The percentage
of errors that need to be repaired in the templates have an
average of 38.06% (σ = 7.78). Figure 1 shows a sample of
the evaluation results for the selected Web sites.

Figure 1: Applicability of WCAG 2.0 techniques on

one of the evaluated Web pages.

3. DISCUSSION
These results point to a positive veri�cation of our hy-

pothesis: template-awareness indeed may simplify assess-
ment reporting. We determined that approximately 39%
of the results are reported at least twice, of which approxi-
mately 38% are errors that can be corrected once.
Assessment methods should be modi�ed in order to do

not consider Web pages as a whole. This way, pages can be
divided, as suggested, in template and speci�c sets to im-
prove evaluations and consider their various characteristics.
This could be even further developed in considering elements
similarities on more than two pages, and determining the
number of times (more than two) that a WCAG technique
is applicable to each common element on the site. As such,
reporting can be additionally simpli�ed, performance can be
improved, and more accurate metrics can be de�ned.
Besides, regarding repairing, template aware reports can

be integrated in development tools directing developers/de-
signers to a much more e�ective error correction process.

4. RELATED WORK
Template detection is often used in the �elds of Informa-

tion Retrieval and Web page Clustering [1]. It was already
refereed that templates could be considered in accessibility
issues and it was suggested to use accessible content tem-
plates to preserve accessibility [5].
Accessibility results can be presented in a complex way to

developers, e.g., big reports or tools that they cannot un-
derstand [4]. Therefore, reports that contain accessibility

results should be simpli�ed to facilitate developers' work,
since they are not accessibility experts. If the report is
self-evident, obvious and self-explanatory, to the developers,
then they will understand it, without problems.
Many automatic tools generate a di�erent instance for

the same type of problem. A simpli�ed list with the type
of problem and one or two examples of the actual error is
enough so that the developer can resolve the errors without
major di�culties.

5. CONCLUSIONS AND FUTURE WORK
This paper presented an experimental study on detection

of templates to facilitate the repair of accessibility errors.
We had shown that the accessibility results of the common
elements are more than a third of the whole results set. A
signi�cant percentage of the accessibility errors that would
simplify error reports and consequently the developers/de-
signers work. This way, developers/designers can repair ac-
cessibility errors only once and these are automatically re-
paired throughout the site.
Our experiment has some limitations and we are currently

considering: 1) possible repetitions of errors for intra-page
templates inside the Web page itself (e.g. list, ads); 2)
explore extra templates (e.g., similar elements encoded in
multiple Web pages); 3) comparing more than two pages
and therefore errors that will be reported more than two
times; and 4) a larger sample of sites. The Fast Match algo-
rithm should be assessed in order to fully understand how
accurately it matches the template, i.e., what elements are
actually components of a template and which are not.

6. ACKNOWLEDGEMENTS
This work was funded by Fundação para a Ciência e Tec-

nologia (FCT) through theQualWeb national research project
PTDC/EIA-EIA/105079/2008, the Multiannual Funding Pro-
gramme, and POSC/EU.

7. REFERENCES
[1] D. Chakrabarti and R. Mehta. The paths more taken:

matching dom trees to search logs for accurate webpage
clustering. In WWW '10 Proceedings of the 17th
international conference on World Wide Web, New
York, NY, USA, 2010. ACM.

[2] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In SIGMOD '96 Proceedings of
the 1996 ACM SIGMOD international conference on
Management of data, New York, NY, USA, 1996. ACM.

[3] N. Fernandes, R. Lopes, and L. Carriço. On web
accessibility evaluation environments. In W4A '11:
Proceedings of the 2009 International
Cross-Disciplinary Conference on Web Accessibililty
(W4A), New York, NY, USA, 2011. ACM.

[4] C. Law, J. Jacko, and P. Edwards. Programmer-focused
website accessibility evaluations. In Assets '05
Proceedings of the 7th international ACM SIGACCESS
conference on Computers and accessibility, New York,
NY, USA, 2005. ACM.

[5] L. Moreno, P. Martinez, and B. Ruiz. Guiding
accessibility issues in the design of websites. In
SIGDOC '08 Proceedings of the 26th annual ACM
international conference on Design of communication,
New York, NY, USA, 2008. ACM.

Abbreviations

AT Assistive Technology

CSS Cascading Style Sheets
CSV Comma-Separated Values

DOM Document Object Model

EARL Evaluation and Report Language

HTML HyperText Markup Language

IDE Integrated Development Environment

URI Uniform Resource Identifier
URL Uniform Resource Locator

W3C World Wide Web Consortium
WCAG Web Content Accessibility Guidelines
WEA Web Accessibility Evaluation

91

Bibliography

[1] A-Prompt, December 2004.

[2] A-Checker, January 2006.

[3] Foxability - Accessibility Analyzing Extension for Firefox, 2008. Last accessed on
June 18th, 2011, http://foxability.sourceforge.net//.

[4] eAccessibility – Opening up the Information Society, December 2010.

[5] WAVE - Web Accessibility Evaluation Tool, 2011. Last accessed on June 18th,
2011, http://wave.webaim.org/toolbar/.

[6] Shadi Abou-Zahra. Complete List of Web Accessibility Evaluation Tools, march
2006. Last accessed on May 10th, 2011, from http://www.w3.org/WAI/ER/

tools/complete.

[7] Shadi Abou-Zahra. WCAG 2.0 Test Samples Development Task Force (TSD TF)
Work Statement, 2008. Last accessed on July 20th, 2010, from http://www.w3.

org/WAI/ER/2006/tests/tests-tf/.

[8] Shadi Abou-Zahra. Wai: Strategies, guidelines, resources to make the web accessi-
ble to people with disabilities - conformance evaluation of web sites for accessibil-
ity, 2010. Last accessed on November 11th, 2010, from http://www.w3.org/

WAI/eval/conformance.html.

[9] Shadi Abou-Zahra and Michael Squillace. Evaluation and report language (EARL)
1.0 schema. Last call WD, W3C, October 2009. http://www.w3.org/TR/

2009/WD-EARL10-Schema-20091029/.

[10] Richard Atterer. Model-based automatic usability validation: a tool concept for
improving web-based uis. In NordiCHI ’08 Proceedings of the 5th Nordic confer-
ence on Human-computer interaction: building bridges, New York, NY, USA, 2008.
ACM.

93

http://foxability.sourceforge.net//
 http://wave.webaim.org/toolbar/
http://www.w3.org/WAI/ER/tools/complete
http://www.w3.org/WAI/ER/tools/complete
http://www.w3.org/WAI/ER/2006/tests/tests-tf/
http://www.w3.org/WAI/ER/2006/tests/tests-tf/
http://www.w3.org/WAI/eval/conformance.html
http://www.w3.org/WAI/eval/conformance.html
http://www.w3.org/TR/2009/WD-EARL10-Schema-20091029/
http://www.w3.org/TR/2009/WD-EARL10-Schema-20091029/

Bibliography 94

[11] Ziv Bar-Yossef and Sridhar Rajagopalan. Template detection via data mining and
its applications. In WWW ’02 Proceedings of the 11th international conference on
World Wide Web, New York, NY, USA, 2002. ACM.

[12] Giorgio Brajnik, Yeliz Yesilada, and Simon Harper. Testability and validity of wcag
2.0: the expertise effect. In Proceedings of the 12th international ACM SIGACCESS
conference on Computers and accessibility, ASSETS ’10, pages 43–50, New York,
NY, USA, 2010. ACM.

[13] Deepayan Chakrabarti and Rupesh Mehta. The paths more taken: matching dom
trees to search logs for accurate webpage clustering. In WWW ’10 Proceedings of
the 17th international conference on World Wide Web, New York, NY, USA, 2010.
ACM.

[14] Sudarshan Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. In SIGMOD
’96 Proceedings of the 1996 ACM SIGMOD international conference on Manage-
ment of data, New York, NY, USA, 1996. ACM.

[15] Wendy Chisholm, Gregg Vanderheiden, and Ian Jacobs. Web Content Accessibility
Guidelines 1.0. W3C Recommendation, World Wide Web Consortium (W3C), May
1999. http://www.w3.org/TR/WCAG10/.

[16] Michael Cooper, Google Loretta Reid, Gregg Vanderheiden, and Ben Caldwell.
Techniques for WCAG 2.0 - Techniques and Failures for Web Content Accessi-
bility Guidelines 2.0. W3C Note, World Wide Web Consortium (W3C), October
2010. Last accessed on November 26th, 2010, from http://www.w3.org/TR/

WCAG-TECHS/.

[17] Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden, and Ben Caldwell.
Techniques for WCAG 2.0 - Techniques and Failures for Web Content Accessi-
bility Guidelines 2.0. W3C Note, World Wide Web Consortium (W3C), October
2010. Last accessed on November 26th, 2010, from http://www.w3.org/TR/

WCAG-TECHS/.

[18] Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden, and Ben Caldwell.
Understanding WCAG 2.0. W3C Note, World Wide Web Consortium (W3C), Oc-
tober 2010. Last accessed on May 9th, 2011, from http://www.w3.org/TR/

UNDERSTANDING-WCAG20/Overview.html.

[19] Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden, and Ben Caldwell.
Understanding WCAG 2.0. W3C Note, World Wide Web Consortium (W3C), Oc-
tober 2010. Last accessed on May 19h, 2011, from http://www.w3.org/TR/

UNDERSTANDING-WCAG20/conformance.html.

http://www.w3.org/TR/WCAG10/
http://www.w3.org/TR/WCAG-TECHS/
http://www.w3.org/TR/WCAG-TECHS/
http://www.w3.org/TR/WCAG-TECHS/
http://www.w3.org/TR/WCAG-TECHS/
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/Overview.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/conformance.html
http://www.w3.org/TR/UNDERSTANDING-WCAG20/conformance.html

Bibliography 95

[20] James Craig and Michael Cooper. Accessible rich internet applications (wai-aria)
1.0. W3C working draft, W3C, September 2010. http://www.w3.org/TR/

wai-aria/.

[21] José L. Fuertes, Ricardo González, Emmanuelle Gutiérrez, and Loïc Martínez.
Hera-ffx: a firefox add-on for semi-automatic web accessibility evaluation. In W4A
’09: Proceedings of the 2009 International Cross-Disciplinary Conference on Web
Accessibililty (W4A), pages 26–34, New York, NY, USA, 2009. ACM.

[22] José L. Fuertes, Ricardo González, Emmanuelle Gutiérrez, and Loïc Martínez. De-
veloping hera-ffx for wcag 2.0. In W4A ’11: Proceedings of the 2011 International
Cross-Disciplinary Conference on Web Accessibililty (W4A), New York, NY, USA,
2011. ACM.

[23] David Gibson, Kunal Punera, and Andrew Tomkins. The volume and evolution of
web page templates. In WWW ’05 Special interest tracks and posters of the 14th
international conference on World Wide Web, New York, NY, USA, 2005. ACM.

[24] Simon Harper and Yeliz Yesilada. Web Accessibility. Springer, London, United
Kingdom, 2008.

[25] Philippe Le Hégaret. The W3C Document Object Model (DOM), 2002.
Last accessed on July 20th, 2011, from http://www.w3.org/2002/07/

26-dom-article.html/.

[26] Ian Hickson. HTML5 A vocabulary and associated APIs for HTML and
XHTML, 2011. Last accessed on July 20th, 2011, from http://www.

worldwidewebsize.com/.

[27] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume One.
W3C Recommendation, World Wide Web Consortium (W3C), Dec 2004. Last ac-
cessed on November 9th, 2010, from http://www.w3.org/TR/webarch/.

[28] Chris Law, Julie Jacko, and Paula Edwards. Programmer-focused website accessibil-
ity evaluations. In Assets ’05 Proceedings of the 7th international ACM SIGACCESS
conference on Computers and accessibility, New York, NY, USA, 2005. ACM.

[29] Rui Lopes and Luís Carriço. Macroscopic characterisations of Web accessibility.
Found. Trends Web Sci., 16(3):1–130, 20.

[30] Rui Lopes, Karel Van Isacker, and Luis Carriç. Redefining assumptions: accessi-
bility and its stakeholders. In Proceedings of the 12th international conference on
Computers helping people with special needs: Part I, ICCHP’10, pages 561–568,
Berlin, Heidelberg, 2010. Springer-Verlag.

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/2002/07/26-dom-article.html/
http://www.w3.org/2002/07/26-dom-article.html/
http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
http://www.w3.org/TR/webarch/

Bibliography 96

[31] Rui Lopes, Karel Van Isacker, and Luís Carriço. Redefining assumptions: Acces-
sibility and its stakeholders. In The 12th International Conference on Computers
Helping People with Special Needs (ICCHP). Springer, 2010.

[32] Lourdes Moreno, Paloma Martinez, and Belén Ruiz. Guiding accessibility issues
in the design of websites. In SIGDOC ’08 Proceedings of the 26th annual ACM
international conference on Design of communication, New York, NY, USA, 2008.
ACM.

[33] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing
Surveys (CSUR), 33(1):31–88, 2001.

[34] Terry Sullivan and Rebecca Matson. Barriers to use: usability and content acces-
sibility on the web’s most popular sites. In CUU ’00: Proceedings on the 2000
conference on Universal Usability, pages 139–144, New York, NY, USA, 2000.
ACM.

[35] Eric Velleman, Colin Meerveld, Christophe Strobbe, Johannes Koch, Carlos A. Ve-
lasco, Mikael Snaprud, and Annika Nietzio. Unified Web Evaluation Methodology
(UWEM 1.2), 2007.

[36] Karane Vieira, André Carvalho, Klessius Berlt, Edleno Moura, Altigran Silva, and
Juliana Freire. On Finding Templates on Web Collections. World Wide Web,
12(2):171–211, 2009.

[37] Markel Vigo, Myriam Arrue, Giorgio Brajnik, Raffaella Lomuscio, and Julio Abas-
cal. Quantitative metrics for measuring web accessibility. In W4A ’07: Proceedings
of the 2007 international cross-disciplinary conference on Web accessibility (W4A),
pages 99–107, New York, NY, USA, 2007. ACM.

	List of Figures
	List of Tables
	Introduction
	Work Context
	Objectives
	Work Plan
	Description of the Tasks

	Contributions and Results
	Publications
	Institutional Context
	Document Structure

	Requirements and Related Work
	Web and Browsing
	Web Browser Process

	Web Accessibility Evaluation
	Accessibility Standards
	Validation Corpus
	The Evaluated Material

	Using, Ensuring and Developing the Accessible Web
	Reporting Standards
	The Impact of Templates
	Metrics

	Existing tools
	Summary and Requirements

	Evaluation Framework
	Architecture
	Execution Environments
	Command Line Environment
	Browser Environment

	QualWeb Evaluator
	QualWeb Evaluator Client
	QualWeb Evaluator Server

	Techniques
	WCAG 2.0

	Formatters
	EARL

	Template-based Evaluation
	Fast Match algorithm
	A Template-Aware Web Accessibility Metric

	Implementation details
	Summary

	Evaluation
	Validation of WCAG 2.0 Techniques Implementation
	Experimental Study 1 - Web Accessibility Evaluation
	Setup
	Data Acquisition and Processing
	Results
	Discussion
	Limitations

	Experimental Study 2 - Templates on Web Accessibility Evaluation
	Setup
	Data Acquisition and Processing
	Results
	A Template-Aware Web Accessibility Metric
	Discussion
	Limitations

	Summary

	Conclusion
	Future Work

	Papers Written
	Avaliação Pericial de Barreiras ao Acesso sobre Sítios Web de Entidades Públicas - Interacçäo 2010
	On Web Accessibility Evaluation Environments - W4A 2011
	An Architecture for Multiple Web accessibility Evaluation Environments - HCII 2011
	The Role of Templates on Web Accessibility Evaluation - Assets 2011

	Abbreviations
	Bibliography

