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Sumário 

Tem-se tornado cada vez mais evidente que a transcrição no ambiente da cromatina é 

um processo extremamente complexo e finamente regulado. É agora claro que a maquinaria 

transcricional eucariótica está adaptada para explorar a presença de nucleossomas de 

variadíssimas e sofisticadas maneiras. Após activação, os genes sofrem drásticas 

mudanças na estrutura da cromatina. Isto é possível devido a um sistema de montagem da 

cromatina dependente da transcrição que integra a acção coordenada de numerosos 

factores proteicos capazes de modificar as propriedades da cromatina. Estes factores vão 

cooperar ou competir de forma a alterar o estado da cromatina entre permissivo e não 

permissivo, levando à activação ou repressão da transcrição. O trabalho apresentado nesta 

tese focou-se na terminação da transcrição. O objectivo foi investigar de que forma está a 

cromatina implicada na fase final da transcrição. Assim, levantou-se a hipótese que 

características específicas da cromatina são observadas nas regiões do DNA onde a RNA 

polimerase II se dissocia do DNA molde. Para testar esta hipótese, foram utilizadas técnicas 

bioquímicas, como por exemplo, imunoprecipitação de cromatina e digestão com nucleases. 

Os resultados revelaram um comportamento dinâmico da RNA polimerase II dependente da 

transcrição em regiões downstream do limite 3´ dos genes. Além disto, os resultados 

sugerem que os nucleossomas localizados nesta região são desmontados ineficientemente 

pelos complexos transcricionais da RNA polimerase II. De facto, experiências adicionais 

demonstraram que regiões a jusante do local de poliadenilação, onde a terminação ocorre, 

exibem reduzido recrutamento de chaperones de histonas. Finalmente, foi possível 

confirmar um enriquecimento de modificações específicas de histonas nas regiões 3’ que 

flanqueiam os genes. Em conjunto, os resultados aqui apresentados permitem sugerir um 

modelo pelo qual o estado da cromatina a jusante do local de poliadenilação facilita os 

eventos moleculares que levam à terminação da transcrição. 

 

Palavras-chave: Cromatina, Nucleossomas, Chaperones de histonas, Terminação da 

transcrição pela RNA polimerase II 
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Resumo 

A célula eucariótica armazena a sua informação genética em moléculas de DNA que 

podem ter mais de um 1 metro de comprimento. De forma a caber no volume limitado do 

núcleo, o DNA é compactado cerca de 20 000 vezes. A forma mais compactada na qual o 

DNA pode ser encontrado nas células é produzida durante a mitose: o cromossoma 

metafásico. Cada cromossoma consiste numa longa molécula de DNA organizada em níveis 

crescentes de compactação por proteínas com as quais se encontra associado. O primeiro 

nível de organização é a compactação do DNA numa fibra de 10nm formando uma estrutura 

designada nucleossoma. Os nucleossomas são a unidades estrutural da cromatina e são 

compostos pela associação do DNA com uma família de pequenas proteínas básicas 

designadas histonas. Estas proteínas são as mais abundantemente associadas ao DNA 

eucariótico e são denominadas H1, H2A, H2B, H3 e H4. Cada nucleossoma é composto por 

duas cópias de cada histona (excepto a histona H1) agregadas numa estrutura octamérica 

que é envolvida por cerca de 146-147 pares de bases de DNA. Os nucleossomas estão 

separados por uma sequência de DNA com tamanho variável à qual está associada a 

histona H1.  As histonas são caracterizadas pela presença de um domínio globular formado 

pela região C-terminal e por uma extensão N-terminal, designada de cauda.  A característica 

mais relevante desta cauda é o elevado número de modificações pós-traducionais que os 

seus resíduos podem sofrer tais como, acetilações, metilações ou fosforilações. Estas 

modificações têm sido extensivamente implicadas na reparação do DNA, na activação 

transcricional e no silenciamento génico. Além disto, estas caudas assumem também um 

papel importante na estabilidade e montagem dos nucleossomas, contribuindo para a 

compactação da cromatina. O nível seguinte de compactação da estrutura da cromatina é a 

fibra de 30nm formada por arranjos de nucleossomas. Esta estrutura representa uma 

compactação de cerca de 50 vezes, sendo necessário o compactamento adicional do DNA.  

A arquitectura destes níveis organizacionais superiores não é clara e permanece 

incompreendida. 

Apesar de crucial para as células, o empacotamento do DNA impõe limitações na sua 

acessibilidade influenciando assim todos os processos dependentes deste tais como a 

reparação, replicação recombinação e transcrição. Consequentemente a conversão entre 

estados de cromatina com diferentes graus de compactação é um processo altamente 

regulado. É frequentemente necessário rearranjar ou mobilizar os nucleossomas de forma a 

facilitar tais processos. Como tal, as células desenvolverem múltiplas estratégias para o 

controlo da estrutura da cromatina e da acessibilidade do DNA tais como: enzimas 

modificadoras de histonas, variantes de histonas, complexos remodeladores da cromatina e 

chaperones de histonas. O modelo actualmente aceite visa que estes mecanismos agem em 
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conjunto e coordenadamente de forma a restringir o acesso da maquinaria celular ao DNA 

durante determinados períodos de tempo e em locais precisos. Os nucleossomas são muito 

mais dinâmicos e ajustáveis do que anteriormente previsto. Têm sido feitos progressos 

consideráveis no esclarecimento dos mecanismos que permitem a passagem da  RNA 

Polimerase II (RNAPII) através dos nucleossomas aquando da transcrição. Presentemente, 

os nucleossomas são vistos como componentes essenciais deste processo em vez de uma 

simples barreira passiva. Vários chaperones de histonas têm sido implicados em facilitar a 

transcrição, particularmente o Facilitator of Chromatin Transcription (FACT). Vários estudos 

sugerem a existência de mecanismos que expulsam as histonas nucleossomais em frente 

da RNAPII durante o elongamento e mecanismos que coordenam a posterior recuperação 

dos nucleossomas imediatamente atrás desta. A remontagem dos nucleossomas após a 

transcrição é fundamental de forma a manter a integridade da estrutura da cromatina, 

impedindo assim a iniciação da transcrição intragénica.  

Só recentemente se começou a compreender esta regulação da transcrição mediada 

pela cromatina. Os aspectos mecanísticos deste processo estão longe de serem 

completamente compreendidos. Inúmeros exemplos de um acoplamento funcional entre a 

cromatina e a transcrição pela RNAPII têm sido reportados durante as fases de iniciação e 

elongação. No entanto, o papel da cromatina na terminação da transcrição não tem sido 

devidamente estudado. Assim, o principal objectivo desta tese foi averiguar como é que a 

cromatina  influencia a última fase da transcrição. 

De forma a investigar-se a dinâmica da cromatina após activação da transcrição, tirou-

se partido do programa de expressão génica activado durante a unfolded protein response 

(UPR), uma reacção celular accionada pela presença abundante de proteínas misfolded no 

retículo endoplasmático. Durante a UPR, determinados genes são activados de forma a 

restaurar a homeostase celular. Entre estes genes encontram-se CHOP, ERP70 e 

HERPUD. A UPR pode ser induzida através da adição do agente redutor ditiotreitol (DTT) ao 

meio de cultura celular. Assim, células HeLa expostas a este composto mostraram um 

aumento significativo nos níveis de mRNA o que sugere um aumento da taxa de transcrição 

dos mesmos. A ocupação da RNAPII ao longo dos genes foi avaliada antes e depois da 

activação transcricional pelo DTT. Estas experiências revelaram um comportamento 

dinâmico da RNAPII dependente da transcrição mesmo em regiões a jusante do local de 

poliadenilação (poli(A)). Visto que os nucleosomas podem agir como uma barreira à 

passagem da RNAPII e causar o seu abrandamento, estes podem desempenhar um papel 

na terminação da transcrição impedindo a transcrição espúria de genes adjacentes e 

induzindo os acontecimentos mecanísticos que levam à dissociação da RNAPII do DNA 

molde. De forma a investigar esta hipótese, os níveis das histonas H2B e H3 foram 

determinados. Após a activação transcricional dos genes CHOP, ERP70 e HERPUD, estes 
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demonstraram uma redução dos níveis da histona H3 ao longo de todas as regiões génicas 

estudadas. No entanto, esta redução não foi consistente e é possível observar uma 

diminuição da mesma à medida que avançamos em direcção da região terminal dos genes. 

Para a histona H2B os resultados apresentados foram similares. De forma a estudar mais 

aprofundadamente a localização dos nucleossomas, foi realizado um ensaio com nuclease 

microcócica (Mnase), que permite mapear a localização dos nucleossomas. Estas 

experiências revelaram que após activação da transcrição, os nucleossomas localizados 

downstream do local poli(A) não são eficientemente ejectados pela RNAPII. Uma vez que os 

chaperones de histonas são cruciais para este processo, foi analisado o recrutamento do 

FACT. O resultado destas experiências permitiu conlcuir que o mecanismo pelo qual o 

FACT é recrutado para as regiões codificantes é interrompido após o local poli(A). Por 

último, a distribuição no genoma humano de três modificações da histona H3 (H3K4me, 

H3K4me2 e H3K9me) obtida através de uma análise bioinformática efectuada no laboratório 

de acolhimento revelou um enriquecimento específico na região de terminação da 

transcrição. Estes resultados foram validados experimentalmente através da quantificação 

destas marcas em genes individuais. 

Em conjunto, os dados obtidos nesta tese permitem propor um novo modelo para a 

terminação da transcrição. Segundo este modelo, após o local poli(A), os nucleossomas 

actuam de modo a impedir o avanço da RNAPII porque os complexos de transcrição não 

são capazes de recrutar eficientemente chaperones de histonas nesta região. A pausa que 

deste modo será induzida na RNAPII facilitará os eventos moleculares que culminam na 

terminação de transcrição. Além disto a descoberta de modificações na  histona H3 

presentes na região terminal dos genes alimenta o interesse pela pesquisa adicional do 

papel destas marcas na terminação da transcrição. Estes dados proporcionam uma nova 

visão para a terminação da transcrição, um processo fundamental, que continua a ser uma 

das fases menos compreendidas do ciclo de transcrição. 
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Abstract 

It has become increasingly evident that transcription in a chromatin environment is an 

extremely complex and finely tuned process. It is now clear that the eukaryotic transcriptional 

machinery is adapted to exploit the presence of nucleosomes in a variety of sophisticated 

ways. Nucleosomes are now seen as a crucial component of this process, rather than a 

simple passive barrier. Upon activation, genes undergo severe changes in chromatin 

structure. This is achieved through a transcription-dependent chromatin assembly system 

that involves the orchestrated action of numerous protein factors capable of modifying 

chromatin properties. These proteins will cooperate or compete to change the chromatin 

state between permissive and non-permissive, leading to activation or repression of 

transcription. Herein we focused on transcription termination. We aimed at investigating 

whether chromatin is a determinant of the final stage of transcription. In this sense, we 

hypothesized that specific chromatin features are observed at the DNA regions where RNA 

Polymerase II dissociates from the transcribed template. To test this hypothesis, we used a 

biochemical approach, which includes techniques such as chromatin immunoprecipitation 

and nuclease digestion assays. Our results reveal a transcription-dependent dynamic 

behavior of RNA Polymerase II molecules in regions downstream the 3’ boundary of genes. 

Our data further suggest that the nucleosomes occupying this region are inefficiently 

disassembled by the RNA polymerase II transcription complexes. Notably, the regions 

downstream the poly(A) site, where termination takes place, exhibited reduced recruitment of 

histone chaperones. Finally, we were able to confirm the presence of histone modifications 

enriched at the 3’ flanking region of genes. Altogether, these data allow us to envisage a 

model by which the chromatin landscape downstream the poly(A) site facilitates the 

molecular events that drive transcription termination.  

 

Keywords: Chromatin, Nucleosomes, Histone chaperones, RNA polymerase II transcription 

termination 
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Introduction  

1. Chromatin basics 

The eukaryotic cell stores its genetic information in DNA molecules that can be over 1 

meter in length (Mariño-Ramírez et al., 2005). In order to fit into the limited volume of the 

nucleus, the DNA is compacted about 20,000-fold (Németh and Langst, 2004). The most 

highly condensed form of DNA that can be encountered in cells is produced during mitosis: 

the metaphase chromosomes (Belmont et al., 1987). Each chromosome consists of a single, 

long molecule of DNA, organized into increasing levels of condensation by proteins with 

which it is intricately complexed. The first level of organization is the compaction of the DNA 

into a 10nm fiber which confers a 5- to 10- fold compaction (Bell et al., 2011). This is 

achieved through the association of DNA with specific proteins named histones, forming a 

nucleoprotein complex that resembles “beads-on-a-string” (Li and Reinberg, 2011). The 

beadlike structures are termed nucleosomes and represent the primary structural unit of the 

chromatin (see 1.2 Nucleosome structure). The next level of chromatin organization is the 

30-nm fiber, which is composed of packed nucleosome arrays mediated by core histone 

internucleosomal interactions (Mariño-Ramírez et al., 2005). This produces an approximately 

50-fold net compaction (Németh and Langst, 2004). Additional folding is required to compact 

DNA further. The architecture of these high order organizational levels is unclear but several 

evidences support the loop model (Németh and Langst, 2004). This model postulates that 

the 30nm chromatin fibers form large loops of DNA that are tethered at their bases to a 

proteinacious structure referred to as nuclear scaffold  (Mardsen, 1979). Although histones 

are the predominant proteins in chromatin, nonhistone proteins are also involved in 

organizing chromatin structure (Mardsen, 1979). Nonhistone proteins provide the structural 

scaffold for these loops (Mardsen, 1979).  Additional folding of the scaffold has been 

proposed to compact the structure into the highly condensed form of chromatin (Belmont and 

Bruce, 1994; Belmont et al., 1987). The precise structure of chromatin beyond the 30nm fiber 

remains uncharacterized and is poorly understood (Horn and Peterson, 2002; Luger, 2003). 

Compaction also protects the DNA from damage, confers an overall organization to each 

molecule of DNA and only DNA packaged into a chromosome can be transmitted efficiently 

to daughter cells during cell division (Hamilton et al., 2011). Furthermore, it adds an 

additional level to the regulation of DNA-dependent processes as it influences the access to 

the DNA packaged in chromatin (Bai and Morozov, 2010; Bell et al., 2011). Consequently, 

the interconversion between chromatin states is a tightly regulated process and the cell 

developed multiple strategies for the most favorable use of chromatin (Lusser and 

Kadonaga, 2003) (see 1.3 Nucleosome dynamics and genome accessibility). 
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In summary, compaction of eukaryotic genomes into condensed fibers is required due to 

spatial restrictions imposed by the nucleus of cells (Németh and Langst, 2004). This 

compaction is achieved through the association of DNA with proteins (mainly histone 

proteins) (Horn and Peterson, 2002) resulting in a hierarchy of folding levels that range from 

the 10nm diameter chromatin fiber to the highly compacted metaphase chromosomes. 

(Belmont, et al., 1987) Although crucial to the cell, this packaging imposes limitations to the 

DNA accessibility from which the cell takes advantage off as an additional level to the 

regulation of DNA-dependent processes such as DNA repair, replication, recombination and 

transcription (Bell et al., 2011). 

 

2. Nucleosome structure 

Nucleosomes represent the first level of organization of chromatin and consist in the 

association between DNA and histone proteins (Chakravarthy et al., 2005) . Histones are a 

family of small, basic proteins (Mariño-Ramírez et al., 2005). They are the most abundant 

proteins associated with eukaryotic DNA and cells commonly contain five abundant histones: 

H1, H2A, H2B, H3 and H4 (Hondele and Ladurner, 2011). These proteins are rich in 

positively charged basic aminoacids which interact with the negatively charged 

phosphodiester backbone of DNA resulting in a tight bond (Richmond et al., 1997). Each 

nucleosome is composed of two copies of histones H2A, H2B, H3 and H4, assembled in an 

octameric core (Németh and Langst, 2004). Tightly wrapped around this octamer in a left-

handed superhelix are about 146-147 bp of DNA (Mariño-Ramírez et al., 2005). This 

complex forms the nucleosome core particle, which represents the basic repeating unit of 

chromatin (Chakravarthy et al., 2005).  

Each core histone contains two separate functional domains: a histone-fold motif and a 

N-terminal extension called “tail” (Horn and Peterson, 2002). The histone fold motif is a 

globular domain that mediates the heterodimeric interactions between core histones (Mariño-

Ramírez et al., 2005). H3 and H4 histones first form heterodimers that then come together to 

form a tetramer which binds to DNA and directs the subsequent association of histones H2A-

H2B dimers (Németh and Langst, 2004). This domain is sufficient for both histone-histone 

and histone-DNA contacts within the nucleosome (Horn and Peterson, 2002). The N-terminal 

tails are exposed on the outside of the DNA appearing as unstructured random coils and are 

also involved in internucleosomal interactions (Mariño-Ramírez et al., 2005). A striking 

feature of the N-terminal tails is that they are subjected to extensive post-translational 

modifications (Bannister and Kouzarides, 2011; Kouzarides, 2007; Zhou et al., 2011). Their 

residues possess a large number of distinct modifications, such as acetylation, methylation, 

phosporylation and ubiquitylation (Kouzarides, 2007). These modifications are the keystone 
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of epigenetics (Jenuwein and Allis, 2001). This term refers to heritable changes in an 

organism that alter gene expression without altering the DNA sequence (Bird, 2007). 

Implications in DNA replication, transcriptional activation and silencing have also been widely 

reported (Kouzarides, 2007). Furthermore these tails also play important roles in nucleosome 

stability and chromatin assembly and contribute to define the condensed state of the 

chromatin fiber and higher order structures (see 1.3 Nucleosome dynamics and genome 

accessibility).  

Nucleosomes are connected by a segment of DNA of variable length called linker DNA 

(Luger, 2003). Associated with the linker DNA is histone H1, also termed linker histone, 

which further tightens the association of the DNA with the nucleosome (Mariño-Ramírez et 

al., 2005). Linker histones are not related in sequence to the core histones, but they also 

contain a globular domain and a N-terminal tail (Horn and Peterson, 2002). Although only the 

linker histone globular domain is essential for binding to nucleosomes, the tail is believed to 

be important for chromatin folding (Horn and Peterson, 2002). Binding of histone H1 is 

therefore implicated in facilitating the formation of high-order chromatin structures (Németh 

and Langst, 2004). 

 

3. Nucleosome dynamics and genome accessibility 

Every nuclear process that requires access to DNA functions in the context of chromatin 

(Bell et al., 2011). The accessibility of DNA that is sequestered in chromatin differs 

dramatically from that of linear protein-free DNA (Chakravarthy et al., 2005). This has 

fundamental implications for all biological processes that use DNA as a template, such as 

transcription, replication, DNA repair, and recombination (Bell et al., 2011; Chakravarthy et 

al., 2005). Nucleosomes, as the main packaging element of DNA within the nucleus, are the 

primary determinant of DNA accessibility (Richmond et al., 1997). To facilitate DNA-directed 

processes in chromatin, it is often necessary to rearrange or to mobilize the nucleosomes 

(Bell et al., 2011). This process is termed chromatin remodeling and it encompasses a range 

of structural transitions between different chromatin conformational states (Flaus and Owen-

Hughes, 2001). The mechanisms that control chromatin structure and thus DNA accessibility 

involve the targeted action of four broad classes of players: histone modifiers, histone 

variants, chromatin remodelers and histone chaperones (Avvakumo et al., 2011). These 

mechanisms operate in concert restricting the access of the cellular machinery to their target 

genomic regions (Mariño-Ramírez et al., 2005).  
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Histone modifiers: As mentioned, a striking feature of the histone N-terminal tail is the 

set of post-translational modifications it can host. Such modifications are carried out by a 

group of enzymes commonly termed histone modifiers (Kouzarides, 2007). Some examples 

of these modifications are acetylation, methylation, phosporylation and ubiquitylation 

(Bannister and Kouzarides, 2011; Bell et al., 2011; Kouzarides, 2007; Mariño-ramírez et al., 

2005). These modifications may translate either directly, by altering the nucleosome 

properties, or indirectly, by functioning as signaling and docking platforms for the recruitment 

of numerous proteins, to an altered level of chromatin compaction (Bannister and 

Kouzarides, 2011; Kouzarides, 2007). The best-studied example of how histone 

modifications can directly affect chromatin structure is the acetylation of lysine residues. 

Acetylation neutralizes the positive charge of lysine and thus weakens the interaction with 

DNA providing a more permissive chromatin state (Petesch and Lis, 2012). Another 

extensively studied modification is the trimethylation of lysine 36 of histone H3 (H3K36me3). 

This modification is highly correlated with transcription elongation, splicing and is necessary 

for repression of cryptic transcription initiation (Almeida et al., 2011; Berger, 2007; Luco et 

al., 2011; Moore and Proudfoot, 2009). Ubiquitylation of H2BK123 is also associated with 

transcriptionally active regions (Petesch and Lis, 2012). The indirect role provided by these 

modifications is given by the ability of some proteins to recognize them in a very precise 

manner (Bottomley, 2004). These interactions are mediated, for example, by specific protein 

domains called bromodomains and chromodomains (Bottomley, 2004). Bromodomain-

containing proteins interact with acetylated histone tails whereas chromodomain-containing 

proteins interact with methylated histone tails (Bottomley, 2004). Accumulating evidence 

suggests a link between different patterns and specific biological events. This has led to the 

“histone code” hypothesis (Strahl and Allis, 2000). This hypothesis predicts that distinct 

histone modifications act in combination to form alternative patterns that are “read” by other 

proteins to bring about unique and distinct outcomes in chromatin-templated processes 

(Strahl and Allis, 2000). The discovery of additional effectors and new modifications will 

provide new insight into how particular histone modifications affect chromatin structure and 

composition.  

  

Histone variants: Histone variants are specialized histones that can replace core 

histones and exhibit specific spatial and temporal patterns (Chakravarthy et al., 2005). They 

serve to demarcate particular regions or confer specialized functions to the nucleosome into 

which they were incorporated (Bell et al., 2011). Due to their unique structural properties, 

replacement of canonical histones with variant forms may alter the interaction surfaces and 

the overall stability of nucleosomes and contribute to the formation of altered chromatin 

structures (Bell et al., 2011). Almost all eukaryotic organisms have variants of both histone 
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H2A and histone H3 and some contain histone H2B variants, but no variants of histone H4 

appear to exist (Petesch and Lis, 2012). There are numerous examples of different histones 

variants, for instance, H2A.Z and H3.3, whose presence in the nucleosomes correlates 

positively with transcription (Kamakaka and Biggins, 2005). The deposition of H2A.Z into 

chromatin is important for the proper transcription of many genes and essential for many 

organisms (Petesch and Lis, 2012). H3.3 is deposited onto transcriptionally active genes in a 

replication-independent manner and, remarkably, only differs from the canonical H3 by four 

aminoacids (Deal, 2010; Petesch and Lis, 2012). Nucleosomes containing these variant 

histones occupy regions surrounding the promoter and 5’ ends of transcribed genes and are 

thought to contribute to 5’ nucleosome depleted regions and facilitate RNA Polymerase II 

access to the underlying DNA (Petesch and Lis, 2012). 

 

Chromatin remodelers: Nucleosome stability is also influenced by large protein 

complexes referred to as chromatin remodeling complexes (Flaus and Owen-hughes, 2001; 

Lusser and Kadonaga, 2003). These multi-protein complexes facilitate changes in 

nucleosome occupancy or interaction with the DNA using the energy of ATP hydrolysis 

(Hargreaves and Crabtree, 2011). There are multiple types of remodeling complexes in a cell 

and they can have as few as two subunits or more than ten subunits (Hargreaves and 

Crabtree, 2011). Although the ATP hydrolyzing subunit is relatively well-conserved, the 

remaining subunits differ among these complexes and can, for example, target them to 

particular locations in the genome (Flaus and Owen-hughes, 2001). Currently there are four 

known main families of chromatin remodelers that carry out these functions: switch/sucrose 

nonfermentable (SWI/SNF), imitation switch (ISWI), chromodomain-helicase- DNA-binding 

protein (CHD) and inositol-requiring 80 (INO80) (Petesch and Lis, 2012). The SWI/SNF 

complex has been better studied for its role in nucleosome depletion near promoters and the 

ISWI family has been shown to help RNA Polymerase II overcome the nucleosomal barrier 

during transcription (Petesch and Lis, 2012; Tolkunov et al., 2011). The major reported 

function of CHD is to slide nucleosomes into ordered arrays throughout gene bodies and 

promote assembly of chromatin whereas INO80 facilitates transcription elongation by its 

ability to exchange histones (Lusser, 2005; Petesch and Lis, 2012). In either situation, these 

complexes alter the chromatin structure and, as a result, the DNA accessibility (Hargreaves 

and Crabtree, 2011). 

 

Histone chaperones: Histone chaperones prevent nonspecific interactions between 

DNA and histones promoting proper nucleosome assembly (Avvakumov et al., 2011). They 

further associate with histones upon their synthesis, escort them into the nucleus, and assist 

their association with DNA during different processes such as DNA replication, repair, or 
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transcription (Avvakumov et al., 2011). Contrary to chromatin remodelers, these factors do 

not use the energy of ATP but are instead endowed with a strong affinity for specific surfaces 

of histones (Petesch and Lis, 2012). Histone chaperones also participate in nucleosome 

disassembly and reassembly (Park and Luger, 2008; Akey and Luger, 2003). Numerous 

histone chaperones have been found to associate with specific histones, histone post-

translational modifications and elongation factors (Petesch and Lis, 2012). Some of the most 

extensively studied histone chaperones are the Facilitator of Chromatin Transcription 

(FACT), anti-silencing factor 1 (ASF1) and suppressor of ty homolog 6 (SPT6) (Petesch and 

Lis, 2012). FACT consists of two subunits, SPT16 and SSRP1 and was first identified by its 

ability to facilitate RNA Polymerase II transcription through a nucleosome template in vitro 

(Orphanides et al., 1998, 1999). ASF1 and SPT6 possess H3–H4 tetramer chaperone 

activity (Petesch and Lis, 2012). Lack of all three histone chaperones results in aberrant 

transcription initiation from cryptic start sites within transcribed coding regions (Bell et al., 

2011; Workman, 2009). Several studies suggest roles for FACT and ASF1 in core histone 

displacement, while SPT6 seems to be required for the assembly of evicted histones 

enabling chromatin reconstitution after RNA Polymerase II passage (Belotserkovskaya et al., 

2003; Schwabish and Struhl, 2006). 

 

4. Transcriptional control of gene expression 

Control of gene expression, the process of selectively using genetic information, enables 

different cells, at different times to differentially activate specific sets of genes. This is usually 

regulated at the level of transcription. In eukaryotes transcription is carried out by three RNA 

polymerases (Richard and Manley, 2009). RNA polymerase I (RNAPI) transcribes ribosomal 

RNAs. RNA polymerase III (RNAPIII) transcribes noncoding RNAs such as transfer RNAs, 

5S rRNA, and U6 spliceosomal snRNA (Richard and Manley, 2009). Transcription of protein-

coding genes is carried out by RNA polymerase II (RNAPII). RNAPII is also responsible for 

transcribing many noncoding RNAs, including spliceosomal small nuclear RNAs (snRNAs), 

small nucleolar RNAs (snoRNAs), microRNA (miRNA) precursors, and cryptic unstable 

transcripts (CUTs) (Richard and Manley, 2009). These polymerases are structurally related 

and share several subunits (Woychik et al., 1990). Human RNAPII is a 550 kDa complex of 

twelve subunits, Rpb1 to Rpb12 (Cramer et al,. 2001). RNAPII uniquely possesses an 

unstructured carboxy-terminal domain (CTD) of its larger subunit, Rpb1 (Buratowski, 2009). 

This domain consists of tandem repeats of the heptameric sequence Tyr1-Ser2-Pro3-Thr4-

Ser5-Pyro6-Ser7 (Buratowski, 2009). The CTD is targeted by a wide range of post-

translational modifications, of which the best-studied is phosporylation (Buratowski, 2009). 

The CTD is a key platform for the recruitment of factors involved in transcription, mRNA 
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processing, and histone modifications (Buratowski, 2009; Kuehner et al., 2011). Different 

phosphorylation patterns predominate at each stage of transcription providing a mean for 

RNAPII regulation and coordination (Buratowski, 2005, 2009). 

Transcription of protein-coding genes by RNAPII is a repetitive, cyclic process that 

enables the synthesis of multiple RNA molecules from the same template (Svejstrup, 2004). 

It consists of three main stages: initiation, elongation and termination. The transcription cycle 

starts with RNAPII gaining access to the promoter, unwinding DNA and initiating RNA 

synthesis (Shandilya and Roberts, 2012; Svejstrup, 2004). RNAPII must then get a stable 

grip on both the template DNA and the growing RNA chain and elongate through the entire 

length of the gene (Shandilya and Roberts, 2012; Svejstrup, 2004). Finally, RNA synthesis 

ceases and both the polymerase and the nascent RNA are released from the DNA template 

(Kuehner et al., 2011; Shandilya and Roberts, 2012). There are specific sequences that 

signal transcription termination. These sequences constitute the poly(A) signal and result in a 

characteristic AAUAAA element that emerges in the nascent transcript (Kuehner et al., 2011; 

Shandilya and Roberts, 2012). The poly(A) signal is recognized by RNA-binding factors 

prompting changes in the polymerase-associated machinery (Shandilya and Roberts, 2012; 

Svejstrup, 2004). Ultimately this triggers transcription termination (Kuehner et al., 2011; 

Richard and Manley, 2009). After being released, RNAPII can then reinitiate a new round of 

transcription (Shandilya and Roberts, 2012).  ll stages of the transcription cycle are 

functionally coupled to a specific event in pre-m    processing  5  -capping, splicing and 3  -

end formation) and each of them is highly controlled and involves a large number of specific 

factors (Buratowski, 2005; Moore and Proudfoot, 2009; Proudfoot et al., 2002). 

 

5. Interplay between chromatin and transcription 

Considerable progress has been made towards the clarification of the mechanistic 

aspects of transcription through nucleosomal templates. The current view posits that histone 

chaperones work in concert with chromatin-remodeling and histone-modifying enzymes to 

allow the progression of RNAPII (Avvakumov et al., 2011). Several mechanisms evict 

nucleosomal histones in front of elongating RNAPII, while others coordinate the subsequent 

recovery of the nucleosomes immediately behind transcribing RNAPII (Workman, 2009). 

Recent studies predict that, in a transcription context, the nucleosome has two distinct 

components, a interchangeable  H2A–H2B dimer and a more stable H3–H4 tetramer (Mellor, 

2006). This is because histones H2A-H2B and H3-H4 behave differently during transcription. 

H3-H4 tetramers are considerably less mobile than the H2A-H2B dimers during transcription, 

meaning that the interactions of H2A-H2B histones with DNA are disrupted preferentially 

relative to H3-H4 causing a biased displacement of the H2A-H2B dimers (Mellor, 2006). 
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Several histone chaperones have been implicated in facilitating transcription. Particularly, 

FACT and SPT6 have been extensively studied for the assembly and disassembly of core 

histones within nucleosomes (Buratowski, 2009; Petesch and Lis, 2012; Workman, 2009). 

FACT tracks with elongating RNAPII and enhances transcription elongation through its 

interaction with H2A-H2B dimers, destabilizing the nucleosome during polymerase passage 

(Mason and Struhl, 2003; Orphanides et la., 1999; Saunders et al., 2003). It is also 

associated with various factors that aid RNAPII elongation (Petesch and Lis, 2012). SPT6 

also closely associates with elongating RNAPII (Andrulis et al., 2000). Loss of this chaperone 

results in a genome-wide reduction in H3 density across many transcriptionally active genes 

suggesting that SPT6 is required for the assembly of evicted histones (Ivanovska et al., 

2011). Nucleosome reassembly after transcription-induced disassembly is critical to maintain 

the integrity of chromatin structure prohibiting cryptic transcription initiation (Workman, 2009). 

This chromatin-mediated regulation of transcription is just beginning to be understood. 

The mechanistic aspects of this complex process are far from being fully understood and 

further studies are needed to unravel all its features. For instance, how does RNAPII make 

its way through the hostile chromatin milieu during transcription and how do selected histone 

modifications influence each stage of the transcription process (initiation, elongation and 

termination) are outstanding questions in the field far from being clarified. Numerous 

examples of the functional coupling between chromatin and transcription have previously 

been provided for transcription initiation or RNAPII elongation. However, the role of 

chromatin on transcription termination has not been adequately addressed. Therefore the 

major goal of this thesis is to understand how does chromatin influence the final stage of 

RNAPII transcription. We expect the results to reveal fundamental aspects of chromatin 

dynamics implicated in transcription termination and hopefully help to address fundamental 

questions in the field. 
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Experimental Procedures 

1.  Cell culture and drug treatment 

HeLa cells grown as monolayers in Dulbecco’s modified Eagle medium - DMEM 

(Invitrogen), supplemented with 10% (v/v) fetal bovine serum (FBS) and 100U/mL Penicillin-

Streptomycin. Drugs were added to HeLa cells in media at final concentrations of 2mM 

dithiothreitol (DTT, Sigma-Aldrich) and 50µM 5,6-dichloro-1-β-D-ribobenzimidazole (DRB, 

Sigma-Aldrich). Cells were exposed to DTT for 60 minutes and to DRB for 30 minutes. Data 

from cell cultures without any treatment is shown in all cases. 

 

2.  RNA isolation and cDNA synthesis 

Total cellular RNA was extracted using PureZOL TM. cDNA was made using Transcriptor 

High Fidelity cD   Synthesis Kit   oche) according to the manufacturer’s instructions. For 

mRNA levels quantification, the synthesized cDNAs were analyzed by real-time PCR (see 

below 2.5 Quantitative real time PCR). 

 

3. Chromatin Immunoprecipitation (ChIP) 

ChIP was performed as described in de Almeida, SF et al (de Almeida et al., 2011). 

Briefly, cell extracts were sonicated with a Sanyo Soniprep 150 at an amplitude of 10 

microns with six 20 seconds bursts, shearing chromatin into 200–400 bp fragments. The 

DNA fragments crosslinked to proteins were then immunoprecipitated with specific 

antibodies and protein A sepharose beads (Sigma). DNA from immunoprecipitated samples 

was extracted with Chelex 100 (BioRad) as described previously (Nelson et al., 2006). DNA 

from input samples was extracted with UltraPure Phenol:Chloroform:Isoamyl Alcohol 25:24:1 

(Invitrogen). Samples were analyzed by quantitative real-time PCR (see below 2.5 

Quantitative real time PCR). The following antibodies were used: anti-Histone H3 (Abcam, 

ab1791); anti-Histone H2B (Abcam, ab1790), total; anti-Spt16 (Santa Cruz, sc-28734); anti-

Spt6 (Abcam, ab49066); anti-RNA Polymerase II, N20 (Santa Cruz, sc-899). 

 

4.  Micrococcal Nuclease Assay (MNase) 

The assay was performed as described in Nature Methods (Nature Publishing Group 

2005. Shortly, after cell harvesting by trypsinization, the nuclei were extracted and digested 

with one unit of Micrococcal Nuclease for 0; 5; 10 or 20 minutes at 28⁰C. The reaction was 

stopped by adding MNase stop buffer (100 mM EDTA, 10 mM EGTA pH 7.5). DNA was 

extracted with UltraPure Phenol:Chloroform:Isoamyl Alcohol 25:24:1 (Invitrogen) and treated 
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with RNase A (10 mg/ml) for total RNA digestion. DNA quantification was performed using 

Nanodrop and samples were resolved by gel electrophoresis (1.8% TAE agarose gel). DNA 

fragments were stained with Gel Red and photographed under a UV 

light transilluminator (AlphaImager). Samples were further analyzed by quantitative real-time 

PCR (see below 2.5 Quantitative real time PCR). 

 

5.  Quantitative real time PCR (qRT-PCR) 

qRT-PCR was performed using Real-Time PCR System 7000 (Applied Biosystems) using 

iTaqTM SYBR Green Supermix with Rox (Bio-Rad). The results were estimated as follows: 2Ct 

(Input) – Ct (IP). For ChIP samples the Ct (Input) and the Ct (IP) are the threshold cycles of qRT-

PCR on DNA samples from input and specific immunoprecipitations, respectively. Input 

samples were diluted 1:40 for the real time PCR reaction. For MNase samples the Ct (Input) 

and the Ct (IP) are the threshold cycles of qRT-PCR on DNA samples undigested and 

digested for 20 minutes, respectively. All real time PCR reactions were performed using 10ng 

of DNA. For mRNA levels quantification the Ct (Input) and the Ct (IP) are the threshold 

cycles of qRT-PCR on DNA samples amplified whit an U6 snRNA primer and with a specific 

primer for each UPR-responsive gene. The cDNA reaction product was diluted 1:15 for the 

real time PCR reaction. Gene-specific primer pairs used are presented in Annex I. 
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Results 

1. Transcriptional modulation of UPR-responsive genes reveals a dynamic behavior of 

RNA Polymerase II downstream of poly(A) sites 

 In order to monitor chromatin dynamics during transcription we took advantage of the 

gene expression program activated by the unfolded protein response (UPR), a cellular 

reaction to the flooding of the endoplasmic reticulum (ER) with misfolded proteins (Schröder 

and Kaufman, 2005). During the URP the transcription of a number of genes is enhanced as 

a means to restore cellular homeostasis following an insult that disrupts protein folding 

(Schröder and Kaufman, 2005). Amongst UPR-responsive genes are CHOP, ERP70 and 

HERPUD (Kokame et al.,  2000; Oyadomari and Mori, 2004; Schröder and Kaufman, 2005). 

The UPR can be induced by treatment of cells with the reducing agent dithiothreitol (DTT), 

which interferes with disulphide bond formation causing an accumulation of improperly folded 

proteins in the ER and by doing so, triggers an UPR (Costa, 2009).  Accordingly, HeLa cells 

cultured in the presence of DTT during 60 minutes showed a striking increase in the mRNA 

levels of these genes, which is indicative of augmented transcription rate (Fig. 1). 

 

 

Figure 1. Transcriptional modulation of UPR-responsive genes 

mRNA levels for CHOP, ERP70 and HERPUD in HeLa cells before (untreated, dark grey) and after DTT 

treatment (light grey). Exposure to DTT causes an upregulation of these genes. The graph depicts the mean for at 

least three independent experiments. Error bars denote standard deviation. 

Since the focus of this thesis is on transcription termination we designed three sets of 

primers located downstream the poly(A) site of each UPR-responsive gene. Each set differs 

in the distance from the poly(A) site. The primers were labeled Poly(A) 1, 2 and 3 and are 

located between 0.1 - 0.6 kilobases, 1.3 – 1.7 kilobases and 2.7 – 3.1 kilobases downstream 

the poly(A) site, respectively. For a more general outlook of our results we also designed a 

primer in the promoter and coding regions of each gene. This allowed us to inspect particular 

features of the regions downstream the poly(A) site.  

To measure RNAPII occupancy along the UPR-responsive genes, we performed ChIP 

before and after transcriptional activation with DTT. Untreated cells displayed low levels of 

RNAPII on the promoter region, throughout the gene and downstream of the poly(A) site 
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(Fig. 2). The reduced transcription rate is consistent with the low mRNA levels of these 

genes (Fig. 1). Upon DTT treatment, RNAPII occupancy increased throughout the genes 

(Fig. 2). This increase was more striking on the promoter region (Fig. 2). These results are in 

accordance with a transcriptional upregulation following DTT treatment (Fig. 1). Notably, this 

increase in RNAPII occupancy was also observed on the 3’ flanking regions of the analyzed 

genes, spanning up to ~3 kilobases downstream of poly(A) sites (Fig. 2). 

To further investigate the chromatin alterations that shepherd transcription inhibition, DTT-

treated cells were further incubated in the presence of DRB. This compound renders RNAPII 

incompetent to escape the promoter-proximal pause and resume elongation (Yamaguchi et 

al., 1998). Accordingly, addition of DRB to HeLa cells that had been cultured for one hour in 

the presence of DTT led to a dramatic accumulation of RNAPII on the promoter region, 

where it became arrested (Fig. 2). In contrast, downstream from the promoter region, RNAPII 

occupancy decreased significantly and it could only be detected at low levels (Fig. 2). 

Notably, the accumulation of RNAPII past the poly(A) site observed on transcriptionally 

active genes was reduced to marginal levels following treatment with DRB (Fig. 2). These 

findings reveal a dynamic behavior of    PII molecules at the region downstream the 3’ 

boundary of the genes that is related to the transcription rate.  
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Figure 2. RNAPII levels 

downstream poly(A) sites are 

transcriptionally related 

ChIP of RNAPII in HeLa cells 

along the genes CHOP (a), 

ERP70 (b) and HERPUD (c) 

before (untreated, dark grey) 

and after transcription 

upregulation (DTT, light grey) 

and after transcription inhibition 

(DTT+DRB, grey). Note the 

DTT-induced increase in 

RNAPII levels downstream the 

poly(A) sites. The y axis 

represents the percent of input 

DNA that was recovered by 

ChIP. All graphs depict the 

mean for at least three 

independent experiments. Error 

bars denote standard deviation. 
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Figure 3. Nucleosomal histones exhibit reduced displacement downstream of poly(A) sites 

(a-c) Histone density across UPR-responsive genes detected by ChIP in HeLa cells before (untreated, dark grey) 

and after transcription upregulation (DTT, light grey) and after transcription inhibition (DTT+DRB, grey). Histone 

H2B (left side) and Histone H3 (right side) ChIP signals along the genes CHOP (a), ERP70 (b) and HERPUD 

(c) are genes are shown as percentage of immunoprecipitated DNA relatively to a non-transcribed intergenic 

region. (d) The percentage of histone displacement along CHOP, ERP70 and HERPUD genes after DTT 

treatment was obtained using the formula %displacement=100-{(histone ChIPafter DTT / histone ChIPnon-treated 

cells)x100}. Histone displacement downstream the poly(A) site exhibits lower levels when compared with the 

coding region of genes. All graphs depict the mean for at least three independent experiments. Error bars denote 

standard deviation. 
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2. Genomic regions downstream of poly(A) sites display reduced histone 

displacement and impaired nucleosome eviction 

Nucleosomes pose a barrier for RNAPII elongation during transcription. To overcome 

such barrier, RNAPII relies on a number of tools that promote the displacement of 

nucleosomes and facilitate the progression of the transcription complexes along the gene 

templates (Petesch and Lis, 2012). On the other hand, nucleosome reassembly on the wake 

of RNAPII elongation is mandatory in order to maintain chromatin structure and prevent 

spurious transcription initiation (Németh and Langst, 2004). Importantly, nucleosomes may 

also play a role in transcription termination by serving as speed bumps that slow down 

RNAPII preventing transcription read-through and instigating the mechanistic events that 

lead to RNAPII dissociation from the DNA template. To investigate these hypotheses the 

levels of histone H3 and histone H2B on UPR-responsive gene templates were measured by 

ChIP. Following transcriptional activation with DTT, the levels of histone H3 decreased when 

compared to the amount recovered prior to the drug addition (Fig. 3a, b, c, right side). 

Notably, this reduction was not consistent throughout the entire gene length, since histone 

displacement decreased towards the 3’ flanking region of genes  Fig. 3, right side). 

Interestingly, nucleosomes located after the poly(A) site displayed reduced disassembly of 

their core histones when compared to the coding region of genes as revealed by the levels of 

histone H3 in DTT treated and untreated cells (Fig. 3d). A similar result was observed for 

histone H2B (Fig. 3 left side). After DRB treatment the levels of both histones increased 

throughout the entire gene length to the levels observed in non-treated cells (Fig. 3a, b and 

c) in agreement with the view that nucleosomes are evicted during RNAPII elongation. 

To further investigate the nucleosome occupancy in response to transcription rate 

modulation we performed a micrococcal nuclease (MNase) assay. This enzyme digests all 

DNA except the sequences protected by the nucleosomes. MNase has the ability to digest 

the linker DNA between nucleosomes yielding DNA fragments of approximately 147 base 

pairs (that correspond to the DNA comprised in a single nucleosome) or a multiple number 

(which accounts for oligonucleosomes). The separation of the fragments partition by gel 

electrophoresis after MNase digestion generates a characteristic “ladder” pattern visible in 

Figure 4a. Quantification of the DNA sequences that resist MNase digestion by real-time 

quantitative PCR reveals the nucleosome occupancy of a given gene segment. Following a 

20 minutes MNase digestion, the amount of DNA recovered in the coding regions of CHOP, 

ERP70 and HERPUD upon DTT treatment was significantly lower than that recovered from 

the untreated cells (Fig. 4b, c and d). This result is consistent with increased nucleosome 

displacement by the transcription machinery and progressively vanished as we walked into 

the genomic regions located after the poly(A) sites (Fig. 4b, c and d). DRB treatment caused 
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nucleosome occupancy to rise back to levels comparable to those off untreated cells cultured 

throughout the entire gene length. Surprisingly, we observed an increased nucleosome 

occupancy in the past-poly(A) regions of the analyzed genes after DRB addition, which was 

particularly noticeable on the poly(A) 3 amplicon of HERPUD (Fig. 4b, c and d). This result 

most likely reflects the formation of high order chromatin structures – which strongly protect 

the DNA from MNase due to the massive genome-wide inhibitory effect of DRB.  
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Figure 4. Nucleosomes resist to 

disassembly downstream of 

poly(A) sites 

(a) Gel electrophoresis of a MNase 

assay performed in HeLa cells 

exposed to DTT or DTT+DRB. 

Nuclei were digested with one unit 

of MNase for 0; 5; 10 or 20 minutes. 

At the right is indicated the position 

of the DNA fragments assembled 

on one or more nucleosomes (1=n; 

2=2n; X=Xn, where n indicates 

approximately 147 bp of D  ). “M” 

denotes the lanes containing the 

DNA ladder. (b-d) Nucleosome 

occupancy profile along CHOP (b), 

ERP70 (c) and HERPUD (d) in 

HeLa cells before (untreated, dark 

grey) and after transcription 

activation (DTT, light grey) and after 

transcription inhibition (DTT+DRB, 

grey). The nucleosome occupancy 

was determined by normalizing the 

amount of the MNase digested 
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experiments. Error bars denote 

standard deviation. 
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3. FACT recruitment decreases downstream of poly(A) sites 

Comparison of the RNAPII profile (Fig. 2) and nucleosome occupancy at the 3’ flanking 

region (Fig. 3 and Fig. 4) suggests that after the poly(A) site nucleosomes are not efficiently 

negotiated by the elongating RNAPII. Since histone chaperones play a major role in 

releasing RNAPII from nucleosomal constraint, the distribution of SPT16 (a subunit of the 

FACT complex) and SPT6 was assessed by ChIP (Fig. 5). FACT complex and SPT6 are two 

histone chaperones whose activity promotes histone displacement from nucleosomes and 

subsequent histone deposition and nucleosome reassembly in the wake of RNAPII 

elongation (Németh and Langst, 2004; Petesch and Lis, 2012). Upon transcriptional 

activation of the UPR-responsive genes the levels of SPT16 bound to chromatin templates 

increased significantly on the coding regions (Fig. 5a, b and c). Notably, this recruitment was 

considerably lower on regions downstream of the poly(A) site (Fig. 5d). After transcription 

inhibition with DRB, SPT16 levels decreased throughout the entire gene length to values 

comparable to the untreated condition (Fig. 5a, b and c). Intriguingly, SPT6 did not show a 

significant enrichment in none of the experimental conditions tested when compared to the 

intergenic control region (Fig. 5e). In contrast, we could observe the recruitment of SPT6 to 

another (non UPR-related) gene (Fig. 5e). This result provides evidence that this histone 

chaperone does not participate in the co-transcriptional remodeling of the chromatin 

templates of the studied genes. Altogether, these data suggest that the mechanism of FACT 

recruitment that operates along the coding region is interrupted at the poly(A) site. 

4. H3K4me, H3K4me2 and H3K9me histone marks are enriched at the 3’ flanking 

region of genes 

Previous studies revealed that the recruitment of histone chaperones is in part driven by 

post translational modification of histones (Kouzarides, 2007). Recently, our lab performed a 

bioinformatics analysis of the genome-wide distribution of different histone marks and 

identified a specific enrichment of H3K4me, H3K4me2 and H3K9me at the 3’ flanking region 

of active protein-coding genes (data not shown). This enrichment in the terminal region of 

genes could implicate an involvement of these modifications on transcription termination. In 

order to validate this observation the distribution of these modifications along the UPR-

responsive genes was assessed by ChIP after transcriptional activation (Fig. 6). In 

agreement with the genome-wide data, CHOP, HERPUD and ERP70 displayed higher levels 

of the three histone modifications in the 3’ flanking region when compared with the coding 

region. This result paves the way for the investigation of a novel role of these histone marks 

in the mechanism of recruitment of histone chaperones after the poly(A) site, which could be 

directly implicated on transcription termination. 
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Figure 5. FACT is inefficiently 

recruited to genomic regions 

downstream of poly(A) site  

(a-c) ChIP of SPT16, a FACT subunit, 

along CHOP (a), ERP70 (b) and 

HERPUD (c) in HeLa cells before 

(untreated, dark grey) and after 

transcription stimulation (DTT, light 

grey) and after transcription inhibition 

(DTT+DRB, grey). (d) ChIP of SPT16 

along CHOP, ERP70 and HERPUD 

genes in HeLa cells treated with DTT. 

The y axis represents the results 

expressed as “relative enrichment”, 

calculated as the enrichment of 

SPT16 relatively to the levels 

detected in a non-transcribed 

intergenic region. (e) ChIP signal of 

SPT6 in HeLa cells before (untreated, 

dark grey) and after transcription 

upregulation (DTT, light grey) and 

after transcription inhibition 

(DTT+DRB, grey). The y axis 

represents the percent of input 

material immunoprecipitated. All 

graphs depict the mean for at least 

three independent experiments. Error 

bars denote standard deviation. 
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Figure 6. Histone marks enrichment on regions downstream the poly(A) site 

ChIP of histone marks H3K4me (a), H3K4me2 (b) and H3K9me (c) in HeLa cells treated with DTT along CHOP, 

ERP70 and HERPUD. These histone marks are enriched preferentially on regions downstream the poly(A) site. 

The y axis represents the percent of input material immunoprecipitated. All graphs depict the mean for at least 

three independent experiments. Error bars denote standard deviation. 
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Discussion 

By taking advantage of UPR-responsive genes we were able to set an experimental 

model system to track RNAPII density and map changes in the chromatin structure upon 

transcriptional activation and inhibition. Our ChIP analysis revealed a transcription-induced 

accumulation of RNAPII at regions up to three kilobases downstream the poly(A) site (Fig. 2).  

This accumulation suggests pausing of RNAPII, a widespread phenomenon that can be 

observed in different regions of the transcribed DNA template (Oesterreich et al., 2011; 

Glover-cutter et al., 2008; Levine, 2011).For instance, pausing in the promoter-proximal 

region is important for coupling transcription and mRNA processing and is also involved in 

regulating the transition from initiation to elongation (Core and Lis, 2008). Promoter-proximal 

pausing is mediated by negative elongation factor (NELF) and DRB sensitivity-inducing 

factor (DSIF) (Core and Lis, 2008). Pausing downstream the poly(A) site has also been 

extensively reported and several studies have shown its role in transcription termination 

(Glover-cutter et al., 2008; Gromak, West, and Proudfoot, 2006; Kuehner et al., 2011). A 

recent study suggested that the presence of nucleosomes after the poly(A) site induces 

pausing of polymerase (Grosso et al., 2012). In support of this, our results reveal that 

nucleosome occupancy on CHOP, ERP70 and HERPUD correlates with the RNAPII profile. 

Upon transcriptional upregulation nucleosome occupancy is higher at the distal 3’ flanking 

region of genes (Fig. 4). This region also displays impaired histone eviction (Fig. 4) as 

confirmed by the diminished levels of histone displacement observed in regions downstream 

of the poly(A) site (Fig 3). Given that the activity of histone chaperones is critical for the 

eviction of nucleosomal histones (Avvakumov et al., 2011; Park and Luger, 2008; Ãkey and 

Luger, 2003) we hypothesized that altered nucleosome dynamics observed downstream the 

poly(A) site relates to unproductive recruitment of histone chaperones. Concordantly, our 

results revealed reduced recruitment of FACT, a major player in transcription regulation 

(Belotserkovskaya et al., 2003; Petesch and Lis, 2012; Winkler and Luger, 2011), to the 3’ 

flanking region of genes (Fig. 5). Notably, in agreement with unpublished analysis of 

genome-wide data from our lab we verified an enrichment of H3K4me, H3K4me2 and 

H3K9me on the genomic regions downstream the poly(A) site (Fig. 6), which may interfere 

with the recruitment of histone chaperones such as FACT.  

Altogether, the findings reported on this thesis disclose a novel mechanism of 

transcription arrest acting at the 3’ flanking region, which is where termination takes place. At 

this region, nucleosomes stall RNAPII because transcription complexes are not able to 

efficiently recruit histone chaperones after the poly(A) site. It is possible to envisage a model 

by which pausing of RNAPII facilitates the molecular events that culminate in transcription 

termination, preventing unproductive transcription read-through. The finding of histone 
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modifications specifically enriched at the 3’ flanking region discloses a role for these marks 

on nucleosome eviction and fuels the interest for additional research aimed at investigating 

the contribution of these epigenetic traits to transcription termination. Taken together, our 

results provide novel insights to transcription termination, a fundamental process that 

remains one of the least understood stages of the transcription cycle. 
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Annex I 

Gene Primer designation Primer sequence (5’-3’) 

CHOP 

Promotor Forward GTGGGGGTAAAACGGCGGGT 

Promotor Reverse GGTCGCCCCTAGTCGGTCGT 

Coding Region Forward * TCGAGCGCCTGACCAGGGAA 

Coding Region Reverse * TCCAAGCCTTCCCCCTGCGT 

Poly(A) 1 Forward CTGCTGGCTTCGGGGACGTT 

Poly(A) 1 Reverse TTTGGCCCTGCCGCTTCCTC 

Poly(A) 2 Forward GTTCCTGCCCGTTGCCTGAGG 

Poly(A) 2 Reverse TCCGGGATGCCTTGCGCAGT 

Poly(A) 3 Forward GGGTCCAGGGCTCAGAGAGTGT 

Poly(A) 3 Reverse TGGTGCCTATCTCAGCTCTTCTGC 

ERP70 

Promotor Forward CCCAGGCTCCGCCTCTCCTGC 

Promotor Reverse CTCCGAGCCCTAACGTGAGGTGCC 

Exon1 Forward * TGCCGGCGTCAGTCTGGGAT 

Exon1 Reverse * CGGGGGAGCCGGAAAAACCC 

Coding Region Forward TGGGCCCCCTCACCTGTTCC 

Coding Region Reverse ACCAGGGGCAGGGCGTACTT 

Poly(A) 1 Forward CATCACCGTCCTCACCCCGC 

Poly(A) 1 Reverse AATGCCTCCTGCCCCCACCA 

Poly(A) 2 Forward CCTGCAAAAGGCGGGACCACT 

Poly(A) 2 Reverse CACCGATCACGCTGGGCTGT 

Poly(A) 3 Forward CCAGGAGCCCCATGGACAAATCT 

Poly(A) 3 Reverse GCTGCACCGGGTAGGGTCTGA 

HERPUD 

Promotor Forward GGTTGCATCAGCCCGTGCCC 

Promotor Reverse CTGCAACGACAGTTCACGTCTCT 

Exon1 Forward * TCCGAGACCGAACCCGAGCC 

Exon1 Reverse * CAGGTGGGCCTTGAGGTGGC 

Coding Region Forward GCGGATGAATGCACAAGGTGGC 

Coding Region Reverse ACAACGGTGGCCCCCATGAC 

Poly(A) 1 Forward CAGAGACTCCTGTCATCCTAGCAG 

Poly(A) 1 Reverse ACCGGCACAAACAGTCCTCTTCT 

Poly(A) 2 Forward CCAGCTCAAGGTAAGAAGGGTGGC 

Poly(A) 2 Reverse GCTGTTTGGCAGGAAGAGCACG 

Poly(A) 3 Forward CCTGTCCAAGGTCTCAAACCCCT 

 Poly(A) 3 Reverse CTCCTGGCCCCCACGCCATA 

INTERGENIC 
Intergenic Forward GGCTAATCCTCTATGGGAGTCTGTC 

Intergenic Reverse CCAGGTGCTCAAGGTCAACATC 

U6 snRNA 
U6 Forward GCTTCGGCAGCACATATACTA 

U6 Reverse AAATATGGAACGCTTCACGA 

c-MYC 
Exon3 Forward CCTGAGCAATCACCTATGAACTTG 

Exon 3 Reverse CAAGGTTGTGAGGTTGCATTTG 

* These primers were used in mRNA levels quantification 


