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Abstract 
 

 About 2/1000 new born present hearing loss (HL) and of these, approximately 50% 

can be genetically explained. 

 In this work, 70 Portuguese probands presenting nonsyndromic sensorineural HL were 

investigated for the presence of mutations in the DFNB1 locus. Mutation c.35delG, in the 

GJB2 gene, was first screened by restriction analysis. Two individuals were homozygous 

(2,9%) and five (7,1%) heterozygous for this mutation. The GJB2 coding exon was then 

analysed by sequencing in cases found to be negative or heterozygous for the c.35delG 

mutation.  A novel mutation, p.Leu213X, was identified. This mutation wasn’t present in a 

random control sample of 480 individuals from the Portuguese population previously 

sequenced. Along with the two c.35delG homozygous, the genetic cause for HL due to GJB2 

mutations could be determined for six more individuals, representing a total of 11,4% of the 

probands. The most frequent GJB6 deletions were further screened by multiplex PCR in 

individuals negative or monoallelic for GJB2 mutations. No mutation was found. 

Three common mitochondrial DNA mutations associated to HL were investigated by 

enzymatic restriction in 143 families, previously screened for DFNB1 and compatible with 

maternal inheritance. Only the m.1555A>G mutation was found, in one of the analysed 

families.  

Two cases of low-frequency sensorineural HL were investigated regarding the most 

relevant exons of WFS1 gene. A novel mutation, p.Asp171Asn, was found in exon 5 of WFS1 

gene. This mutation wasn’t present in 100 Portuguese hearing controls later sequenced.  

Two cases of Pendred Syndrome were studied. No mutation was found in the relevant 

exons analysed. So, the genetic cause couldn´t yet be determined.  

 This study represents a contribution for extending the knowledge on hereditary HL in 

the Portuguese population, either in the identification of the genetic etiology in affected 

families, or in the development of more accurate diagnostic protocols. 

 

 

Keywords:  hearing loss, DFNB1, p.Leu213X mutation, p.Asp171Asn mutation. 
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Resumo 
 
 Cerca de 2/1000 recém-nascidos apresentam surdez e, nestes, aproximadamente 50% 

têm uma causa genética. 

 No presente trabalho, foram estudados 70 probandos Portugueses com surdez não- 

sindrómica neurosensorial. A análise iniciou-se com o estudo da mutação c.35delG no gene 

GJB2 através de restrição enzimática. Dois indivíduos apresentaram esta mutação em 

homozigotia (2,9%) e cinco em heterozigotia (7,1%). O exão codificante de GJB2 foi 

analisado por sequenciação em todos os casos negativos ou heterozigóticos para c.35delG. 

Uma nova mutação, p.Leu213X, foi descoberta. Esta mutação não foi encontrada numa 

amostra aleatória de 480 indivíduos da população Portuguesa. Juntamente com os indivíduos 

homozigóticos para c.35delG, a causa genética da surdez devida a GJB2 foi determinada para 

mais seis indivíduos, representando no conjunto 11,4% dos probandos. As deleções mais 

frequentes no gene GJB6 foram investigadas por PCR multiplex em indivíduos monoalélicos 

ou negativos para GJB2. Nenhum dos indivíduos apresentou deleções em GJB6.  

As três mutações mais comuns associadas a surdez no DNA mitocondrial foram 

investigadas por restrição enzimática em 143 famílias previamente testadas para GJB2 e 

compatíveis com hereditariedade materna. Apenas numa família foi encontrada a mutação 

m.1555A>G. 

 Dois casos de surdez neurosensorial com perdas nas baixas frequências foram 

estudados através da análise dos exões mais relevantes do gene WFS1. Uma nova mutação, 

p.Asp171Asn, foi encontrada no exão 5 deste gene. Esta mutação não foi encontrada em 100 

controlos Portugueses ouvintes posteriormente sequenciados. 

Dois casos esporádicos de Síndrome de Pendred foram estudados mas nenhuma 

mutação foi encontrada nos exões analisados, pelo que a causa genética não pôde ser ainda 

determinada. 

 Este estudo constituiu uma contribuição para aprofundar o conhecimento sobre a 

surdez hereditária na população Portuguesa. A importância do estudo genético fica aqui 

patente, quer na identificação da etiologia genética da surdez em famílias afectadas, quer no 

desenvolvimento de protocolos de diagnóstico mais eficazes. 

 

Palavras-chave: surdez, DFNB1, mutação p.Leu213X, mutação p.Asp171Asn.  
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Resumo alargado 

 

 A surdez representa a deficiência sensorial mais frequente na população humana, 

apresentando uma incidência de aproximadamente 2 em cada 1000 nascimentos. A surdez 

devida exclusivamente a causas genéticas tem tendência a aumentar nos países desenvolvidos, 

onde já cerca de 50% dos casos são devidos a surdez hereditária, em consequência da 

melhoria dos cuidados de saúde e diminuição da incidência dos factores ambientais. Dentro 

destes, em 70% a surdez é o único sintoma clínico (surdez não-sindrómica) e nos restantes 

30% a surdez pode estar associada a outras desordens clínicas, sendo designada por surdez 

sindrómica. As formas de surdez não sindrómica autossómicas recessivas são geneticamente 

heterogéneas e constituem a forma mais comum da perda auditiva hereditária, contabilizando 

cerca de 75-85% dos casos. Este número é seguido pela hereditariedade autossómica 

dominante (12-13%) e pela hereditariedade mitocondrial ou ligada ao cromossoma X, que 

representa 2-3% dos casos de surdez genética. 

 Os mais recentes avanços na área da genética molecular permitiram associar a surdez a 

mais de 400 síndromes, ao mesmo tempo que mais de 140 loci relacionados com a surdez 

não-sindrómica foram mapeados. Até à data, cerca de 60 genes foram já associados com a 

perda auditiva. 

 O gene GJB2 (Gap Junction β-2) forma com o gene GJB6 (Gap Junction β-6) o locus 

DFNB1. Estes genes localizam-se no cromossoma 13q11-q12 e codificam para as proteínas 

conexina-26 (Cx26) e conexina-30 (Cx30), respectivamente. As proteínas conexinas possuem 

uma localização transmembranar e podem associar-se num hexâmero formando conexões 

(Martínez, 2009). Os conexões são designados homoméricos, quando são constituídos por um 

único tipo de conexina ou heteroméricos, quando são formados por diferentes tipos de 

conexinas. As gap junctions resultam da associação entre si de conexões na superfície de 

células adjacentes e são designadas de homotípicas, quando são formadas por conexões 

semelhantes ou heterotípicas, quando são formadas por conexões heteroméricos. As células 

ligadas por gap junctions usam este tipo de canais para transferir iões e outras pequenas 

moléculas entre si. Na cóclea, a Cx26 e a Cx30 encontram-se co-localizadas e co-expressas, 

contribuindo para a homeostasia coclear. A manutenção desta homeostasia é conseguida 

através da re-circulação de iões K
+
 na endolinfa após estimulação das células ciliadas do 

ouvido interno. 

 O gene GJB2 contém cerca de 5500 pb e um único exão codificante, num total de dois 

exões. Mais de 100 mutações foram já identificadas neste gene e, dependendo da população, 
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contribuem para cerca de 10-40% dos casos de surdez hereditária, representando a causa mais 

frequente de surdez hereditária não-sindrómica autossómica recessiva. A mutação mais 

comum na população Caucasóide é a c.35delG, que resulta numa terminação precoce da 

cadeia polipeptídica da Cx26, após uma alteração na grelha de leitura que conduz a um codão 

STOP prematuro. A frequência alélica para esta mutação foi estimada em 2,5% na população 

Caucasóide geral, num total de 3% de frequência alélica para todas as mutações em GJB2. A 

mutação c.167delT, por sua vez, possui uma elevada frequência na população de Judeus 

Ashkenazi (7,5%) e a mutação c.235delC é a mais frequente nas populações Coreanas e 

Japonesas, com frequências alélicas estimadas em 0,5 e 1%, respectivamente.  

O gene GJB6, contrariamente ao gene GJB2, possui até hoje poucas mutações 

descritas, apenas seis, que apresentam um padrão de hereditariedade recessiva. Dessas seis 

mutações, quatro são deleções. As mais frequentes são as deleções Δ(GJB6-D13S1830) e 

Δ(GJB6-D13S1854), que, ao mesmo tempo que truncam o gene GJB6, inactivam o gene 

CRYL1, eliminando a região entre estes. O gene CRYL1 codifica para a λ-cristalina e até à 

data, nenhum caso de indivíduos que possuam quer a deleção Δ(GJB6-D13S1830), quer a 

deleção Δ(GJB6-D13S1854), foi reportado juntamente com desordens oculares. 

A transmissão do DNA mitocondrial, através de herança materna, também contribui 

para casos de surdez não-sindrómica quando na presença de determinadas mutações. Uma 

destas mutações, m.1555A>G, constitui-se como uma causa comum de surdez não-

sindrómica familiar. Esta mutação conduz a uma alteração na conformação do gene 12S 

rRNA, tornando a sua estrutura semelhante ao gene ribossomal das bactérias. Assim, a 

exposição a antibióticos aminoglicósidos, como a estreptomicina, torna-se ototóxica, podendo 

conduzir a um fenótipo de surdez acentuado. 

As perdas auditivas nas altas frequências são relativamente comuns, ao contrário de 

perdas auditivas que afectem predominantemente as frequências abaixo dos 2000Hz. Devido 

à manutenção da audição nas altas frequências, os indivíduos que sofrem de perdas auditivas 

nas baixas frequências retêm a capacidade da percepção da fala, pese embora a presbiacúsia 

ou a exposição a ruídos elevados possam causar perdas auditivas nas altas frequências mais 

tarde nas suas vidas. A maioria dos casos reportados de perdas auditivas nas baixas 

frequências é devida a mutações dominantes no gene WFS1, que codifica para a wolframina, 

uma glicoproteína transmembranar localizada no retículo endoplasmático. 

Entre os diferentes síndromes em que a surdez se encontra associada a outras 

anomalias, destaca-se o Síndrome de Pendred. Este síndrome, autossómico recessivo, 
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representa a forma mais comum de surdez sindrómica e apresenta uma incidência de cerca de 

7,5 a 10 casos por cada 100000 indivíduos. Os indivíduos afectados com Síndrome de 

Pendred possuem mutações bialélicas no gene SLC26A4 e apresentam, para além de surdez 

neurosensorial, defeitos na tiróide e malformações no ouvido interno, que podem originar 

displasia de Mondini. 

O principal objectivo deste trabalho foi determinar a causa genética da surdez 

apresentada por pacientes Portugueses com surdez neurosensorial não-sindrómica. Casos 

esporádicos de Síndrome de Pendred e de perdas auditivas nas baixas frequências foram 

também estudados. 

Setenta probandos com fenótipo de surdez neurosensorial não-sindrómica foram 

primeiramente testados para a presença da mutação c.35delG, por restrição enzimática. Esta 

mutação foi encontrada em homozigotia em dois (2,9%) probandos e em heterozigotia em 

cinco (7,1%) probandos. Para os 2 indivíduos homozigóticos para a mutação c.35delG estava 

nesta altura encontrada a causa genética do seu fenótipo de surdez. Para os restantes 68 

indivíduos, negativos (n=63) e heterozigóticos (n=5) para a mutação c.35delG, foi feita a 

sequenciação para o exão codificante do gene GJB2. Esta sequenciação revelou a presença de 

14 diferentes variantes nos indivíduos considerados. Para seis casos (8,8% 6/68) a causa 

genética da surdez foi determinada através de sequenciação automática, enquanto para os 

restantes permaneceu inconclusiva. A causa genética da surdez pôde ser estabelecida para: um 

probando heterozigótico composto com as mutações p.Met34Thr e p.Iso140Ser; um probando 

com heterozigotia composta envolvendo as mutações c.333-334delAA e p.Leu213X; um 

probando homozigótico para a mutação p.Trp24X; um probando com heterozigotia composta 

envolvendo as mutações p.Met34Thr e p.Arg184Pro; um probando heterozigótico composto 

c.35delG e p.Trp172X e, um probando apresentando uma heterozigotia composta com as 

mutações p.Val37Ile e p.Asn206Ser. No conjunto, 11,4% dos probandos (8/70) apresentam 

surdez associada ao gene GJB2. Durante esta etapa, uma nova mutação nunca antes descrita 

foi reportada, p.Leu213X, com localização no C-terminal da Cx26. Esta mutação não foi 

encontrada numa amostra aleatória de 480 indivíduos Portugueses que tinha sido previamente 

sequenciada para o exão codificante do gene GJB2.  

Para os probandos monoalélicos ou sem mutações em GJB2 procedeu-se à análise por 

PCR multiplex das deleções mais frequentes no gene GJB6. Nenhuma das deleções testadas 

foi encontrada.  
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Relativamente à análise das três mutações mais comuns no DNA mitocondrial 

associadas a surdez, dos 143 indivíduos analisados apenas um probando foi diagnosticado 

com heteroplasmia para a mutação m.1555A>G. Posteriormente, a análise por restrição 

enzimática à irmã e à mãe revelou neles também a presença desta mutação. 

No âmbito deste trabalho, foram também analisadas duas famílias que apresentavam 

fenótipo de perdas auditivas nas baixas frequências. Foram sequenciados os exões 4, 5, 6 e 8 

do gene WFS1 onde se localizam, até à data, a maioria das mutações patogénicas descritas. 

Para uma das famílias este rastreio foi inconclusivo. No que diz respeito ao segundo caso, foi 

encontrada uma nova mutação, p.Asp171Asn, não descrita até à data. Esta mutação, presente 

em heterozigotia num indivíduo não foi encontrada numa amostra de 100 indivíduos ouvintes 

Portugueses que foram sequenciados para o exão 5 do gene WFS1.  

Dois probandos pertencentes a duas diferentes famílias Portuguesas foram 

encaminhados para este estudo com a indicação de um fenótipo compatível com Síndrome de 

Pendred. Para estes indivíduos foi feito o estudo por sequenciação automática dos exões 6 e 

10 e das regiões IVS8 e IVS14 do gene SLC26A4. Não tendo sido encontrada nenhuma 

variante, a causa genética do fenótipo apresentado por estes indivíduos não ficou elucidada. 

No entanto, no estudo da região IVS14, onde parte do exão 15 foi também analisada, houve a 

suspeita de uma nova mutação, p.Ser552Gly, ter sido encontrada. Este facto causou 

estranheza, pois esta nova mutação surgira nos dois indivíduos de diferentes famílias em 

homozigotia. Um novo protocolo de diagnóstico molecular foi desenhado e clarificou-se que 

se tratou de um artefacto induzido ou na reacção de PCR ou na sequenciação automática, não 

constituindo uma nova mutação. 

O estudo molecular reveste-se de grande importância, quando se considera a 

probabilidade de uma futura gravidez vir a gerar novamente um descendente com 

perturbações auditivas. Uma análise cuidada do heredograma familiar, juntamente com a 

análise genética, constitui-se também de grande utilidade, na medida em que outros membros 

da família podem vir a beneficiar de um teste semelhante, se a causa genética da surdez for 

familiar. Um diagnóstico genético atempado pode elucidar a causa e a evolução da surdez 

(progressividade ou não). Com base nesse resultado, melhores estratégias terapêuticas podem 

ser equacionadas, contribuindo decisivamente para uma melhor saúde auditiva e uma melhor 

qualidade de vida dos indivíduos afectados e, também, com menores custos associados. 

 



Investigation of the Genetic Etiology of Sensorineural Hearing Loss in Portuguese Patients 

1 
Master Course in Molecular Biology and Genetics 

Faculty of Sciences, University of Lisbon 

2011/2012 

1. Introduction 

 
1.1.  Genetic Hearing Loss 

Hearing loss (HL) is the most frequent disability of the human senses (Pollak et al, 

2007). Clinically relevant sensorineural HL (SNHL) is present in at least 2 per 1000 new born 

at birth, rising to at least 2,7 per 1000 infants by the age of four (Petersen et al, 2012). About 

50-70% of hearing impaired children have a monogenic cause for their deafness (Matsunaga, 

2009). 

Hereditary HL can be subdivided into two types: syndromic or nonsyndromic. The 

syndromic type is associated with other distinctive clinical features beyond deafness and 

accounts for 30% of hereditary congenital HL. The nonsyndromic type, in which HL is the 

only clinical manifestation, represents the other 70% (Matsunaga, 2009). 

Regarding nonsyndromic HL, autosomal recessive is the most frequent inheritance 

pattern, accounting for 75-85% of the cases (Snoeckx et al, 2005; Ibrahim et al, 2011). It is 

followed by dominant pattern (12-13%) and X-linked or mitochondrial inheritance that 

accounts for 2-3% of the cases (Ibrahim et al, 2011). 

More than 140 genetic loci that have been associated to nonsyndromic HL were 

mapped, being identified to date about 60 genes (Minami et al, 2012). 

 

1.2.  DFNB1 locus 

At chromosome 13q11-q12, DFNB1 locus comprises Gap Junction β-2 (GJB2) and 

Gap Junction β-6 (GJB6) genes that encode for connexin 26 (Cx26) and connexin 30 (Cx30), 

respectively (Rodríguez-Paris et al, 2011). 

Connexin are transmembrane proteins, being constituted by intracellular amino- and 

carboxy-termini and four transmembrane domains. Connexons are transmembrane hexameric 

gap junction hemi-channels composed by six connexin proteins (Martínez et al, 2009). 

Connexons can be classified into homomeric, when they are made up of a single type of 

connexin or heteromeric, when they are formed by different connexin proteins (Erbe et al, 

2004; Tang et al, 2006). Connexons embedded in the surfaces of adjacent cells can associate 

and form intercellular channels. Intercellular channels then cluster and form gap junctions. 

Gap junction channels can be homotypic, when are composed of similiar connexons or 

heterotypic, when made up of different connexons (Martínez, 2009). Cells connected by gap 

junctions use the channels to transfer ions and other small molecules across cell membranes 

(Tang et al, 2006). 
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Cx26 and Cx30 are co-localised and co-expressed in the cochlea, an organ in the inner 

ear, where they contribute to cochlear homeostasis, since they are thought to provide the 

recirculation of K
+
 ions to the endolymph after hair cell’s sound stimulation (fig.1) 

(Rodríguez-Paris et al, 2011; Erbe et al, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.1. GJB2 gene 

GJB2 gene (fig.2) has 5500 bp and a single coding exon, in a total of two exons (Falah 

et al, 2011). More than 200 different pathogenic mutations were identified in this gene that 

account for 10-40% of congenital HL depending of ethnicity, being the most frequent cause 

of nonsyndromic autosomal recessive hereditary HL (Tang et al, 2006; Falah et al, 2011).  

The majority of mutated Cx26 alleles among Caucasoids worldwide are due to a 

deletion of a guanine within a string of six guanines at nucleotide 35 (c.35delG) that results in 

a premature chain termination (Gasparini et al, 2000). Carrier frequency for this allele was 

estimated to be 2,86% in countries from southern Europe and 1,27% in countries from central 

and northern Europe (Gasparini et al, 2000). In United States Caucasoids c.35delG carrier rate 

was found to be 2,5% (Green et al, 1999). In Portugal, the carrier rate for c.35delG in general 

population was estimated to be 0,88% (Chora et al, 2011). The absence of the c.35delG 

mutation in other populations, like North American Blacks, Egyptians and Yemenite Jews, for 

example, could be explained as a consequence of a single origin, somewhere in Europe or in 

the Middle East (Gasparini et al, 2000). The high frequencies observed for c.35delG carriers 

Figure 1 – Schematic representation of the cochlea, showing the location of its different 

structures. The K
+
 recycling pathway is indicated. Adapted from Jentsch, 2000. 
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in some Caucasoid population suggest either a founder effect or a selective advantage for 

heterozygotes, or even a combination of both (Gasparini et al, 2000). It was hypothesized 

(Gasparini et al, 2000) that since Cx26 is expressed among a variety of tissues, it is 

conceivable that a putative heterozygote advantage is related to a function of Cx26 in one of 

these tissues, but clearly not the cochlea. This advantage could be associated to specific 

functions of gap junctions and could be involved in climate, food, toxic factors and infectious 

agents, among others, reflecting geographic and cultural different conditions that could 

influence the frequency of c.35delG allele (Gasparini et al, 2000). 

GJB2 mutations associated with other specific ethnic groups include c.167delT, with a 

carrier rate of 7,5% in Ashkenazi Jews and c.235delC, with a carrier rate of 0,5% to 1% in 

Korean and Japanese populations (Erbe et al, 2004).  

 

1.2.2. GJB6 gene 

Whilst many mutations have been described in GJB2 gene, so far only six mutations 

with a recessive pattern of inheritance were reported in GJB6 gene or the region upstream 

causing deafness (Ballana et al, 2012). Four of them are deletions, as shown in figure 2. The 

most frequent deletions are Δ(GJB6-D13S1830) and Δ(GJB6-D13S1854), which truncate the 

GJB6 gene. Both Δ(GJB6-D13S1830) and Δ(GJB6-D13S1854) mutations inactivate the 

CRYL1 gene and eliminate the sequence between GJB6 and CRYL1, where no additional 

genes have been reported so far. λ-crystallin is the product of CRYL1 gene and no 

contribution of λ-crystallin to DFNB1 HL was found to date. Additionally, no individual 

carrying either Δ(GJB6-D13S1830) or Δ(GJB6-D13S1854) was found to present any eye 

disorder (del Castillo et al, 2002; del Castillo et al, 2005). The other two deletions affecting 

GJB6 gene are private mutations, one of which (>920 kb) deletes both GJB2 and GJB6 genes 

and the other one [(Δ(chr13:19,837,343–19,968,698))] does not affect either gene and is 

located upstream of GJB6 (Rodríguez-Paris et al, 2011). 

Figure 2 – Map of the region on chromosome 13q11-12 showing GJB2, GJB6 and CRYL1 genes, 

relatively to centromere. The regions disrupted by the deletions are indicated. Adapted from Rodríguez-

Paris et al, 2011. 
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1.3.  Low Frequency Sensorineural Hearing Loss 

Low frequency SNHL (LFSNHL) is an unusual form of HL, in which frequencies at 

2000 Hz and below are predominantly affected. Due to maintenance of high frequency 

hearing, LFSNHL patients retain understanding of speech, although presbycusis or noise 

exposure may cause high frequency loss later in their life (Bespalova et al, 2001). Four loci, 

DFNA1, DFNA6, DFNA14 and DFNA38, are reported as being associated with LFSNHL 

(Bespalova et al, 2001; Young et al, 2001). 

Most of the families with LFSNHL carry mutations in WFS1 gene that maps to 

chromosome 4p16 and has a coding transcript of 2673 bp. WFS1 gene has 8 exons, of which 

only the last seven are coding (Gürtler et al, 2004; Minami et al, 2012). The product of WFS1 

is wolframin, a membrane glycoprotein that is located primarily in the endoplasmic reticulum 

(ER). Its expression in the human cochlea remains unknown (Gürtler et al, 2004). However, 

its location in the ER suggests a possible role for wolframin in ion homeostasis retained by 

the canalicular reticulum, a specialized form of ER (Minami et al, 2012). Studies of 

functional analysis suggest that the autosomal dominant pattern of LFSNHL is due to reduced 

amount of wolframin (Gürtler et al, 2004).
 
  

Mutations in WFS1 gene can cause autosomal dominant LFSNHL (DFNA6/14/38) 

(Bespalova et al, 2001; Cryns et al, 2003). They are also associated with Wolfram Syndrome 

(WS), an autosomal recessive syndrome, characterized by insulin-dependent diabetes mellitus 

and bilateral progressive optic atrophy, usually presenting in childhood or early adult life 

(Cryns et al, 2003; Aloi et al, 2012).  

 

1.4. Syndromic Hearing Loss 

The syndromic type of hereditary HL includes about 400 syndromes, such as Pendred 

Syndrome (PS), the most frequent form of syndromic HL. It accounts for 4–10% of the 

inherited cases (Fraser, 1965; Illum et al, 1972; Reardon et al, 1997), and is inherited in an 

autosomal recessive pattern, with an incidence estimated to be as high as 7,5 to 10 in 100000 

individuals (Reardon et al, 1997; Fraser, 1965).  

PS is characterized by SNHL, goiter and a partial defect in iodide organification. 

These features are generally accompanied by malformations of the inner ear, ranging from 

enlarged vestibular aqueduct (EVA) to Mondini dysplasia (Pera et al, 2008). 
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The clinical features observed in PS are consequence of biallelic mutations in the 

SLC26A4 gene. This gene, containing 

21 exons, is located on chromosome 7 

(7q22.3-q31.1) and codes for the 

multifunctional anion exchanger 

pendrin (fig.3) (Pera et al, 2008; 

Bizhanova, 2010). Pendrin is a 73 kDa 

membrane protein that belongs to the 

solute carrier family 26A. It is 

comprised of 780 amino acids and is predicted to have 12 putative transmembrane domains, 

being both the amino- and carboxi-termini located on the cytosol (Royaux et al, 2000; Gillam 

et al, 2004). Pendrin has a sulfate transporter domain and a sulfate transporter and antisigma 

factor antagonist (STAS) domain. The last one has been suggested to play a role in nucleotide 

binding or to interact with other proteins, such as cystic fibrosis conductance regulator 

(CFTR) (Bizhanova et al, 2010). 

 

1.5.  Mitochondrial Hearing Loss 

Mitochondria are organelles involved in oxidative metabolism, ion homeostasis, signal 

transduction and apoptosis. These cellular organelles contribute to pathogenicity by a variety 

of mechanisms involving maternally inherited diseases due to mutations in mitochondrial (mt) 

DNA, as well as Mendelian-inherited diseases resulting from mutations in nuclear genes 

required for mitochondrial function (Raimundo et al, 2012). The mtDNA is a double-stranded 

circular genome composed of 16569 bp that codes for 13 subunits of respiratory complexes 

(Angulo et al, 2011). Normal cochlear function requires a very high rate of ATP production 

and mtDNA mutations have often been found to cause hearing deficiencies either in 

syndromic and nonsyndromic forms of HL (Guan et al, 2008). Up to now, eight mutations in 

mtDNA have been clearly associated to HL phenotype (Mitomap, 2012). One of these, the 

m.1555A>G mutation in 12S rRNA gene (fig.4) is a common cause of familiar nonsyndromic 

post-lingual SNHL. The HL phenotype due to this mutation is significantly exacerbated after 

exposure to aminoglycosides, in particular streptomycin, because this mutation alters the 12S 

rRNA gene conformation, making it similar to the bacterial ribosomal gene, thus enhancing 

aminoglycoside binding and its toxic effects in the ear (Angulo et al, 2011).  

Figure 3 – Schematic representation of pendrin protein. 

Figure adapted from Bizhanova, 2010. 
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The m.7445A>G mutation in the 

tRNA
Ser(UCN)

 gene, also called COXI (Cytochrome 

oxidase I) gene, is another mtDNA mutation 

associated with HL (Tekin et al, 2003). It occurs in 

the immediately adjacent nucleotide to the 3’-end 

of tRNA
Ser(UCN)

 and previous studies indicate that it 

influences the normal processing of the light strand 

polycistronic mRNA, being the primary defect a 

significant decrease in serine tRNA level and 

protein synthesis rate in mitochondria (Guan et al, 

2008). The m.7511T>C mutation also occurs in 

tRNA
Ser(UCN)

 gene and was associated to nonsyndromic deafness in several families from 

different ethnic groups (Zheng et al, 2012). This mutation is responsible for the substitution of 

a highly conserved A-U to a G-U base pairing on the 5’ side of the acceptor stem of the 

tRNA
Ser(UCN)

 (Zheng et al, 2012).  Mutations in the tRNA
Ser(UCN)

 gene often occur at high 

degrees of heteroplasmy or in homoplasmy, indicating a high threshold for pathogenicity 

(Zheng et al, 2012). In figure 5 it is shown a schematic representation of the human mtDNA. 

 

  

A B 

Figure 4 – The coding region of the 12S 

rRNA human mtDNA gene. A – wild-type 

and B – m.1555A>G mutation. Adapted 

from Böttger, 2010. 

Figure 5 – Schematic representation of human mtDNA showing the loci involving in mtDNA 

associated diseases. The genes 12S and COX I are emphasized with red boxes. Adapted from 

Griffiths, 2004. 
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2. Objectives 

The main objective of this work was to investigate the genetic etiology of the hearing-      

-impaired phenotype presented by Portuguese patients with SNHL.  

The specific objectives were: 

 To analyse the coding exon of the GJB2 gene; 

 To perform the screening of the most common deletions in GJB6 gene; 

 To analyse the most frequent mutations in mtDNA associated with deafness; 

 To screen the WFS1 relevant exons in LFSNHL cases;   

 To screen the SLC26A4 relevant exons in PS cases. 
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3. Materials and Methods 

3.1.  Sample characterization 

A total of 152 Portuguese hearing impaired individuals were selected for this study: 70 

patients referred by the ENT Department, CHLO - Hospital Egas Moniz; 81 cochlear 

implanted individuals referred by the ENT Department, CHC, EPE - Hospital dos Covões, 

Coimbra, previously analysed for the GJB2 coding region and identified with negative results 

(Chora et al, 2010) and one individual from ENT Department, CHLN - Hospital Santa Maria. 

The majority of these patients presented bilateral nonsyndromic SNHL. Two individuals 

presenting LFSNHL and two cases of syndromic HL were also selected and included in this 

study. Blood samples were always codified with a blind code, composed of letters (family 

code) plus numbers (individual code), prior to the DNA extraction and sample manipulation. 

The personal information of each individual was carefully stored with restricted access. A 

detailed clinical history of each proband was taken to ensure that the HL was not a result of 

infection, acoustic trauma, ototoxic drugs or premature birth. For some patients, however, 

family histories weren’t possible to establish. Written informed consent was obtained from all 

the participants in this study. 

 

3.2.  Audiologic examination 

The probands and some members of their families underwent otoscopic and 

audiometric examinations by using age-appropriate methods. Pure tone audiometry was 

obtained by the clinician’s teams of the considered Hospitals listed in 3.1 section in a sound 

proof room according to current clinical standards. The level of HL was classified following 

the European Working Group on Genetics of Hearing Impairment as slight (21–40 dB), 

moderate (41–70 dB), severe (71–95 dB), or profound (>95dB), from an average at 500, 

1000, 2000 and 4000 Hz in the better ear. 

 

3.3.  Extraction of genomic DNA from blood samples 

 The protocols for the extraction of genomic DNA from blood samples are presented in 

section 1 of the supplementary data. 

 

3.4.  Amplification by Polymerase Chain Reaction (PCR) 

PCR was performed in order to amplify specific studied DNA regions described 

below. In each PCR reaction a negative control, in which DNA wasn’t added, was used to 

confirm the absence of contaminants in the reagents. All primers used are listed in table 5 of 
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the supplementary data. PCR reactions were made in Biometra T1 Thermocycler and PCR 

products were always run in a 1% agarose gel in TBE 0,5x by electrophoresis, as described in 

section 2 of the supplementary data. 

 

3.5.  Screening of c.35delG mutation 

PCR-mediated Site Directed Mutagenesis was the method chosen to test for the 

c.35delG mutation in the GJB2 gene. It consisted in originating another restriction site for the 

restriction enzyme BslI (New England Biolabs) in the presence of the mutation, after 

amplification with a modified specific primer. The PCR reaction was performed for the test 

fragment (called δ) and for an internal control of the restriction (called γ). PCR reaction for δ 

fragment used 22BF 80µM and 22BR 20µM primer pair and is described in detail in table 1 

of the supplementary data. The γ fragment was amplified using FP 10µM and RP 10µM 

primer pair following the conditions listed in detail in table 1 of the supplementary data. PCR 

programme for the amplification of δ and γ fragments is shown in table 2 of the 

supplementary data.  

 

3.5.1. Restriction with BslI 

After PCR amplification, the screening of c.35delG mutation was made with the 

restriction enzyme BslI as referred. The γ fragment, which also has a recognition site for BslI, 

was used as an internal control of the restriction. To maintain DNA concentration in the 

reaction mix, 8µL of δ product + 8µL of γ product were concentrated during 7 min at 45ºC on 

DNA SpeedVac. The total volume of each sample restriction and the incubation conditions 

are indicated in table 4 of the supplementary data.  

The δ fragment is not digested in the absence of c.35delG mutation but, in the 

presence of the mutation, this fragment of 207 bp is digested into 181 + 26 bp. The control γ 

fragment has 2 overlapping cutting sites. So, when the enzyme cuts one of them, the other 

disappears, and the 153 bp control fragment can be digested into 97 + 56 bp or 99 + 54 bp.   

 

3.6.  Amplification of GJB2 coding exon 

PCR amplification of the coding exon of the GJB2 gene is listed in detail in table 1 of 

the supplementary data. Standard PCR programme was used following the conditions shown 

in table 2 of the supplementary data. The amplified PCR product had 928 bp. GJB2 PCR 

products from the probands heterozygous or negative for c.35delG mutation and, when 

necessary from parents and siblings, were automatically sequenced after purification with 
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JETQUICK PCR Product Purification Spin Kit (Genomed) according to manufacturer’s 

instructions. 

 

3.7.  Screening for GJB6 deletions 

The GJB6 deletions del(GJB6-D13S1830) and del(GJB6-D13S1854) can be detected 

by multiplex PCR (del Castillo, 2005). Three different primer pairs were used, which 

amplified according to their proximity, depending on the presence of the deletions. The 

Cx30Ex1A and Cx30Ex1B primer pair amplifies a 333 bp fragment in the presence of a wild- 

-type allele. The Del BK1 and Del BK2 primer pair amplifies a 564 bp fragment in the 

presence of a mutated allele with del(GJB6-D13S1854) deletion. The GJB6-1R and BKR-1 

primer pair amplifies a 460 bp fragment in presence of del(GJB6-D13S1830). PCR 

amplification of the GJB6 screened deletions followed the conditions listed in detail in table 1 

of the supplementary data. All primers were used at 10µM. The PCR program included a 

touchdown step, as described in table 3 of the supplementary data.  

 

3.8.  Mitochondrial DNA analysis 

Screening of three known mutations: m.1555A>G, m.7445A>G and m.7511T>C was 

performed for all those cases compatible with maternal inheritance and which cause of 

deafness remained to be elucidated.  

 

3.8.1. Detection of m.1555A>G mutation  

This mutation can be detected by PCR with specific primers that amplify the 12S rRNA 

gene, followed by digestion with the restriction enzyme HaeIII (Promega). PCR mix is 

described in detail in table 1 of the supplementary data. The standard PCR program is listed in 

table 2 of the supplementary data. The PCR product had 339 bp.  

The restriction enzyme HaeIII always recognizes a cleavage site in the mentioned 

amplified PCR area and cuts originating two fragments of 218 bp + 121 bp. The m.1555A>G 

mutation creates one other cleavage site and thus the enzyme cuts twice, originating three 

fragments of 218 bp + 91 bp + 30 bp. The restriction mix and the incubation conditions are 

indicated in table 4 of the supplementary data. 

 

3.8.2. Detection of m.7445A>G and m.7511T>C mutations  

The m.7445A>G and m.7511T>C mutations can be detected by PCR with specific 

primers that amplify part of the the tRNA
Ser(UCN)

 gene, followed by digestion with the 

restriction enzyme XbaI (Promega) and MboII (New England Biolabs), respectively. PCR mix 
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is described in detail in table 1 of the supplementary data. The standard PCR program is also 

listed in table 2 of the supplementary data. The PCR product had 215 bp.  

The m.7445A>G mutation is recognized by the loss of a cleavage site for the XbaI 

restriction enzyme, as compared to the wild-type. So, in the wild-type, XbaI always has a 

recognition site and cleaves, originating two fragments of 166 bp + 49 bp. The restriction mix 

and the incubation conditions are shown in table 4 of the supplementary data.  

MboII restriction enzyme recognizes a cleavage site only in the wild-type. This 

enzyme cuts in the absence of the mutation m.7511T>C, originating two fragments of 175 bp 

+ 40 bp. The restriction mix and the incubation conditions are indicated in table 4 of the 

supplementary data.  

 

3.9.  Screening of WFS1 exons 4, 5, 6 and 8 

For those individuals presenting LFSNHL, automatic sequencing of exons 4, 5, 6 and 

8 of WFS1 gene was performed. PCR amplification mix is listed in table 1 of the 

supplementary data. The standard PCR programme is also shown in table 2 of the 

supplementary data. Exon 8 was amplified in two PCR reactions (designed in this study by 8a 

and 8b) because its large size is not compatible with good quality of automatic sequencing. 

WFS1 PCR products of exons 4 (222 bp), 5 (225 bp), 8a (872 bp) and 8b (1096 bp) were 

automatically sequenced after purification with JETQUICK PCR Product Purification Spin 

Kit (Genomed) according to manufacturer’s instructions. PCR products of exon 6 (186 bp) 

were automatically sequenced after purification with Zymoclean™ Gel DNA Recovery Kit 

(Zymoresearch) following manufacturer’s instructions. 

One hundred normal hearing Portuguese controls were sequenced for the exon 5 of 

WFS1 gene after purification with JETQUICK PCR Product Purification Spin Kit (Genomed). 

 

3.10.  Screening of SLC26A4 exon 6, exon 10, IVS8 and IVS14 regions 

For those individuals presenting medical diagnostic of PS, automatic sequencing of 

exons 6 and exon 10, as well as IVS8 and IVS14 regions of SLC26A4 gene, was performed. 

PCR amplification of each region of SLC26A4 gene is shown in detail in table 1 of the 

supplementary data. In table 2 of the supplementary data is listed the standard PCR 

programme used. SLC26A4 PCR products of exons 6 (459 bp), exon 10 (606 bp), IVS8 (499 

bp) region and IVS14 (185 bp) region were automatically sequenced after purification with 

JETQUICK PCR Product Purification Spin Kit (Genomed) according to manufacturer’s 

instructions. 
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 Results and Discussion 

4.1.  GJB2 gene analysis 

 GJB2 analysis was the first step performed to determine the genetic cause of HL in 

probands from 70 families recently referred to the Deafness Group of the BioFIG. This 

analysis started by screening c.35delG mutation in probands, since it represents the most 

frequent mutation in Cx26 gene in Caucasoid population (Zelante et al, 1997). Its detection 

was done for all the probands prior to the analysis of the GJB2 coding exon, performed for the 

patients shown to present only one or no c.35delG mutation. 

 

4.2.  Screening of the c.35delG mutation 

 After restriction analysis for 

c.35delG mutation, seven of the 70 

probands (10%) were found to be either 

heterozygous (7,1%) or homozygous (2,9%) 

for this mutation. An image of a c.35delG 

restriction analysis agarose gel is shown in 

figure 6.  

One of the heterozygous proband 

was later shown, after sequencing of GJB2 

coding exon (section 4.3.11), to have the 

c.35delG mutation in compound 

heterozygosity with another GJB2 mutation, 

p.Trp172X. 

So, in the present study c.35delG 

mutation explains the HL in three of the 70 patients (4,3%): two homozygous and one in 

compound heterozygosity with p.Trp172X mutation. The mutation c.35delG has been 

reported as the most common mutated allele found among Mediterranean HL families 

(Zelante et al, 1997). The results of this study agree with this finding, since c.35delG was the 

most common allele found among the studied probands, representing 9 alleles in a total of 140 

(6,4%). 

 

 

 

Figure 6 – Agarose gel from a c.35delG restriction 

analysis. Lanes: 1 – 1kb DNA plus ladder 

(Invitrogen); 2 – non-digested control; 3-4 and 7-8 

– wild-type samples for c.35delG; 5 – heterozygous 

sample for c.35delG; 6 – homozygous sample for 

c.35delG. 
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4.3. Automatic sequencing of the GJB2 coding exon 

 Automatic sequencing of coding exon of GJB2 gene was performed for the probands 

from the remaining 68 families, heterozygous and negative for c.35delG mutation. When a 

mutation/variant was found, the parents and siblings DNA, if available, was also sequenced.  

Fifty-six of the 68 sequenced probands (82,3%) were shown to be wild-type for GJB2 

alleles. In 12 probands (17,6%, 12/68), Cx26 variants were found and in 6 families (8,8%, 

6/68) the diagnosis for HL could be establish. The relevant results are described below, for 

each family concerned.  

 

4.3.1. Case KQ 

A single individual presenting SNHL was available for study. His GJB2 genotype was 

found to be [=] + [p.Lys224Gln]. The p.Lys224Gln (fig.1, supplementary data) mutation 

occurs at the intracellular C-terminal domain, which is involved in pH gating of Cx26 channel 

(Kelley et al, 1998). Due to the fact that this is a recessive mutation, no conclusion could be 

drawn as regards the etiology of the HL in this individual. 

 

4.3.2. Family MV 

This family is composed of two siblings 

presenting moderate SNHL and the normal 

hearing parents. The GJB2 genotype was found 

to be [p.Met34Thr] + [p.Val95Met] for one of 

the siblings (fig.7, II:2) and [=] + [p.Val95Met] 

for the other one (fig.7, II:1). The p.Val95Met 

variant (fig.2, supplementary data), occurring in 

intracellular loop (Martinez et al, 2009), was 

inherited from the mother who presents the 

genotype [=] + [p.Val95Met]. The father was found to be a p.Met34Thr (fig.3, supplementary 

data) carrier.  

The p.Val95Met is a controversial variant. Studies by Wang et al (2003) and Zhang et 

al (2005), shows that the ionic permeability of p.Val95Met-Cx26 channels is not affected. 

However, the same study by Zhang, and Beltramello et al (2005) conclude that the 

permeability to large molecules is impaired. The p.Val95Met was found in compound 

heterozygosity with other Cx26 mutations (c.35delG, p.Met34Thr and p.Leu90Pro) in several 

HL patients (Cryns et al, 2004; Snoeckx et al, 2005). 

[=] + [p.Val95Met] 

  

[=] + [p.Val95Met] [p.Met34Thr] + [p.Val95Met] 

[=] + [p.Met34Thr] 
I:1 I:2 

II:1 II:2 
 

Figure 7 – Heredogram of Family MV. 
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The p.Met34Thr variant, occuring in transmembranar domain 1 of Cx26, is a 

controversial variant, described as a recessive mutation by some authors (Snoeckx et al, 2005) 

and as a benign polymorphism by other authors (Feldmann et al, 2004). Data in literature are 

quite contradictory for p.Met34Thr variant, with some studies concluding that p.Met34Thr 

does not interfere with efficient formation of stable connexons (Oshima, 2003) and other 

studies concluding that the defect observed in the function of mutant protein is due to a shift 

in the gating response of the channel, resulting in a low conductance and permeability 

(Skerrett et al, 2004).  

Due to the fact of both mutations being controversial and the affected son having the 

same genotype as his hearing mother, we cannot assume that the HL in this family is 

associated to the GJB2 genotypes observed. 

 

4.3.3. Family NI 

This family is composed of three normal 

hearing siblings (fig.8 II:1, II:2 and II:3) and 

their parents (fig.8 I:1 and I:2), having other 

relatives with deafness. The siblings and their 

mother presented the [=] + [p.Arg127His] GJB2 

genotype. The variation p.Arg127His (fig.4, 

supplementary data) is localised to the 

intracellular loop 2 of Cx26 (Martinez et al, 

2009).  

The p.Arg127His variant was found to greatly impair the ability of Cx26 protein to 

form functional gap junctions, by reducing the channel permeability (Wang et al, 2003). 

However, other study reported homozygous individuals for p.Arg127His that harboured 

normal hearing condition (Roux et al, 2004). Moreover, additional data show that frequency 

of p.Arg127His between normal hearing individuals and HL patients is not statistically 

different, demonstrate that p.Arg127His is effectively a polymorphism (RamShankar et al, 

2003).  

Mutation p.Arg127His is still controversial, but it is possible that it exerts a pathogenic 

effect depending on the environment and genetic background (Matos et al, 2010). In this 

family all the affected individuals carry the p.Arg127His. They may be coincidental carriers, 

but it is also possible that a noncoding GJB2/GJB6 mutation in trans with p.Arg127His might 

be present in these family members, thus accounting for the HL. 

Figure 8 – Heredogram of Family NI. 

  

 

[=] + [=] 
I:1 I:2 

 
II:1 II:2 
 

II:3 

[=] + [p.Arg127His] 

[=] + [p.Arg127His] [=] + [p.Arg127His] [=] + [p.Arg127His] 
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4.3.4. Case NP 

A single individual presenting severe bilateral SNHL was available for study. His 

GJB2 genotype was found to be [=] + [p.Gly160Ser]. The p.Gly160Ser mutation (fig.5, 

supplementary data) localizes to the extracellular loop 2 of Cx26 and is described as a 

polymorphism (Tang et al, 2006). These data are not sufficient for the establishment of the 

HL genetic cause in this individual.  

 

4.3.5. Case NT 

A single individual presenting familiar cases of deafness was available for study. The 

+785 A>T and +792 C>T variations were detected on GJB2 gene in heterozygosity. Both 

variations were first reported by Tang and his collaborators (Tang et al, 2006), and were 

found at high frequence among the african-american population. This results aren’t strange 

considering the similarity of the genetic background of Portuguese population in relation with 

the African population. No genetic cause was yet determined for the HL in this individual. 

 

4.3.6. Case NY  

One individual presenting bilateral severe nonsyndromic SNHL was available for 

study. His GJB2 genotype was found to be compound heterozygous for the variants 

[p.Met34Thr]+[p.Ile140Ser] (Gonçalves et al, 2012, A). This individual has a sister with HL, 

of unknown genotype since she was not available for study. Mutation p.Ile140Ser (fig.6, 

supplementary data), localised to transmembrane domain 3 of Cx26, was first reported in 

2005 (Snoeckx et al, 2005) as being recessive, and is not enough to explain the HL of this 

individual (Martinez et al, 2009; Snoeckx et al, 2005). Taking into account the role of 

p.Met34Thr variant described in 4.3.2 section, the conjugation of p.Ile140Ser with 

p.Met34Thr variant may justify the HL phenotype observed. 

 

4.3.7. Family OB  

This family is 

composed of two hearing- 

impaired siblings (fig.9) with 

moderate and severe 

nonsyndromic SNHL (fig.10), 

respectively aged 11 (fig.9 

II:2, fig.10D) and 15 (fig.9 

[c.333-334delAA] + [p.Leu213X] 

 

 

 

 

[c.333-334delAA] + [p.Leu213X]  

 

I:1 I:2 

II:1 II:2 

Figure 9 – Heredogram of Family OB. 

[=] + [p.Leu213X] [=] + [c.333-334delAA]  
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II:1, fig.10C) (proband) years and their normal hearing parents (fig.9 I:1 and I:2 and fig.10 A 

and B, respectively). Both siblings shared the same GJB2 genotype [c.333-334delAA] + 

[p.Leu213X], being the deletion c.333-334delAA inherited from the mother. The p.Leu213X 

is a novel variant, identified for the first time in this study and is present in both siblings 

(Gonçalves et al, 2012, accepted paper, B). This mutation was later found in heterozygosity 

in their father.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The recessive deletion c.333-334delAA (fig.11,B) (Kelley et al, 1998), localised to the 

intracellular loop of Cx26, causes a frameshift which results in chain termination after an 

additional novel amino acid, truncating about half of the protein. It is the first time that this 

mutation is reported in Portuguese HL patients.   

The novel recessive mutation p.Leu213X (fig.11,D) creates a premature STOP codon 

by changing the codon 213 (TTG) which codes for a leucine, to a STOP codon (TAG). This 

mutation leads to the deletion of the last 14 amino acids of the protein. The Leu213 amino 

acid residue is localised to the C-terminus domain of the Cx26 protein. The residues in the 

intracellular loop region and C-terminus are very different among different connexins and are 

hence thought to be responsible for regulation, thus imparting unique properties to the various 

connexin molecules (Mani et al, 2009). The p.Leu213X mutation wasn’t present in 480 

Figure 10 – Representative  audiograms  of Family OB. Individual I:1 (A), individual I:2 (B), 

individual II:1 (C) and individual II:2 (D) showing pure-tone  audiometry  results  for  air  conduction  

bilaterally.  Circles  in  blue  represent  the  right  ear; crosses in red represent the left ear.   

A B 

C D 
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Portuguese individuals from a random control sample that were previously sequenced for 

GJB2 gene (Chora et al, 2011).  Future functional studies are necessary to characterize this 

novel mutation p.Leu213X. 

 It can be conclude that the etiology of deafness in these siblings is most likely due to 

the GJB2 genotype involving the c.333-334delAA deletion and the novel p.Leu213X 

mutation in compound heterozygosity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4.3.8. Family OF 

This gypsy family is composed of five individuals, three siblings and two related 

individuals. A previously described variation in the nucleotide position -40 (from the ATG 

initiation codon) was found in all the individuals of this family. This variation, c.-22-18T>A, 

was found in homozygosity in the proband and his affected siblings. It was also found in 

heterozygosity in the two relatives. This variation was reported previously (Tang et al, 2006), 

but in heterozygosity. So, to our knowledge, this is the first time that this variation is reported 

in homozygosity.  

One of the two relatives carrying the c.-22-18T>A variation, was also found to be a 

carrier for the GJB2 mutation p.Trp24X. The role of this mutation will be described next in 

4.3.9 section. 

The second relative was found to present, besides the c.-22-18T>A heterozygosity, the 

p.Phe83Leu polymorphism. The polymorphism p.Phe83Leu localised to the transmembranar 

Figure 11 – Electrophoretograms of c.333-334delAA and p.Leu213X mutations, respectively. A and B – 

wild-type and c.333-334delAA mutation in heterozygosity, respectively. C and D – wild-type and 

p.Leu213X mutation in heterozygosity, respectively. 
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domain 2 of Cx26 and was previously reported as a non-pathogenic variation (Bruzzone et al, 

2002). The genetic cause of the HL wasn’t yet elucidated for this family. 

 

4.3.9. Family OH 

This gypsy family is composed of two 

siblings (fig.12 II:1 and II:2), presenting 

profound bilateral SNHL phenotype. Their 

GJB2 genotype was found to be the same 

[p.Trp24X] + [p.Trp24X]. The nonsense 

recessive mutation p.Trp24X (fig.7, 

supplementary data), localised to the 

transmembranar domain 1, truncates Cx26 

protein, leading to the formation of 24 amino acids, instead of the normal 226 polypeptide.  

According to literature (Minárik et al, 2003), in individuals homozygous for 

p.Trp24X, no functional Cx26 channels are present in the cochlea, which has a negative 

impact on K
+
 recycling to the endolymph, thus resulting a week or null physiological response 

to sound stimuli (Minárik et al, 2003). The p.Trp24X mutation is found in high frequency 

among gypsy populations, namely Spanish Romani, Slovak Romani and Indian, with recent 

data pointing to the specificity of this mutation to Indian population (Álvarez et al, 2005; 

Minárik et al, 2003; Padma et al, 2009), since it was found to account for 73% of all 

pathogenic mutations in GJB2 gene (Mani et al, 2009) in this population. Its higher frequency 

(2,4%) in Indian population leads to the question if the high carrier frequency of p.Trp24X 

mutation is also associated with a heterozygote advantage (Mani et al, 2009). Because of its 

premature STOP codon, p.Trp24X is not expected to form a protein, but a study demonstrate 

an apparently full-length protein but with defective cellular localisation, being retained in 

cytoplasm (Mani et al, 2009). This evidence points for the need of performing functional 

studies even with mutations leading to premature STOP codon. All this data lead us to 

conclude that the homozygosity of p.Trp24X in both siblings is certainly the cause of their HL 

phenotype. 

 

4.3.10. Family OI  

This family present two daughters (fig.13 II:1 and II:2) with severe and moderate to 

severe nonsyndromic bilateral SNHL, respectively. The sisters were found to carry two 

different coding variants, and thus having the same GJB2 genotype [p.Met34Thr] + 

 

 

 

 

[p.Trp24X ] + [p.Trp24X] 

Unknown 

genotype 
Unknown 

genotype 

I:1 I:2 

II:1 II:2 
[p.Trp24X ] + [ p.Trp24X] 

Figure 12 – Heredogram of Family OH. 
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[p.Arg184Pro], (Gonçalves et al, 2012, 

C). Their hearing father (fig.13 I:1) is a 

p.Arg184Pro carrier, while their hearing 

mother (fig.12 I:2) is a p.Met34Thr 

carrier.  

Mutation p.Arg184Pro (fig.8, 

supplementary data) was previously 

reported as pathogenic and with a 

recessive pattern of transmission (Martinez et al, 2009; Bruzzone et al, 2002). This mutation 

occurs at extracellular loop 2 of Cx26 and prevents not only the traffic of the protein to the 

membrane but also its correct oligomerization (Martinez et al, 2009; Bruzzone et al, 2002), 

thus resulting that no gap junction channels are formed.  

Because p.Arg184Pro mutation is a recessive one, its presence in only one allele in 

both sisters does not explain by itself the HL of them. However, its association with 

p.Met34Thr leads us to assume that the genotype [p.Met34Thr] + [p.Arg184Pro] could be the 

cause of the deafness observed in both individuals. 

The data concerning this family and case NY, above described (section 4.3.6), thus 

point to a possible pathogenic role of p.Met34Thr variant (discussed in section 4.3.2), either 

as a recessive allele or as a polymorphism which increases the severity of the phenotype of a 

recessive monoallelic mutation.  

 

4.3.11. Case OM 

This single individual presented profound SNHL was previously found to be 

heterozygous for c.35delG mutation in section 4.2. Due to this heterozygosity, this proband’s 

DNA was sequenced for GJB2 gene and his genotype was found to be [c.35delG] + 

[p.Trp172X]. The p.Trp172X mutation (fig.9, supplementary data) is localised to the 

extracellular loop 2 of Cx26 protein and leads to a premature STOP codon. This mutation was 

only reported twice. It was reported for the first time on a Brazilian patient present in an 

homozygous state (Pfeilsticker et al, 2004) and the second time in a multicentre study from 

Snoeckx and collaborators (Snoeckx et al, 2005).   

Due to the presence of c.35delG mutation that leads to a frameshift causing a 

premature chain termination and its conjugation with p.Trp172X mutation that causes a 

premature STOP codon, the genetic cause for the profound HL phenotype presented by this 

proband can be due to the compound heterozygosity [c.35delG] + [p.Trp172X]. 

  

 

[p.Met34Thr] + [p.Arg184Pro] 

[=] + [p.Met34Thr] [=] + [p.Arg184Pro] 
I:1 I:2 

II:1 II:2 
 

[p.Met34Thr] + [p.Arg184Pro] 

Figure 13 – Heredogram of Family OI. 
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4.3.12. Family PD  

This family is composed of an eight year old 

proband (fig.14 II:1) presenting moderate bilateral 

SNHL and his normal hearing parents. Proband’s 

GJB2 genotype was found to be [p.Val37Ile] + 

[p.Asn206Ser], having inherited from the father the 

mutation p.Val37Ile and from the mother (fig.14 I:2) 

the p.Asn206Ser mutation.  

The p.Val37Ile mutation (fig.10, 

supplementary data) is localised to the transmembranar domain 1 of Cx26 protein (Martinez, 

2009) and its pathogenic role is still controversial. This mutation was first described as being 

a polymorphism, because of its high carrier frequency in the general population (Kelley et al, 

1998). However, several studies have proposed that p.Val37Ile is in fact pathogenic with a 

reduced penetrance pattern because it was found overexpressed among individuals with mild 

to moderate HL (Snoeckx et al, 2005; Pollak et al, 2007; Ma et al, 2010). Pollak also 

hypothesised that p.Val37Ile mutation can be related to relatively late onset and progression 

of HL (Pollak et al, 2007).  

The p.Asn206Ser mutation (fig.11, supplementary data) is located in transmembranar 

domain 4 of Cx26 (Martinez et al, 2009), and was associated with a higher proportion of 

moderate or mild HL (Marlin et al, 2005). This mutation can lead to the formation of 

functional channels with levels of conductance similar to those observed in wild-type Cx26 

channels, but with small differences in gating or permeability (Martinez et al, 2009).  

Having into consideration the above data on both mutations, the phenotype presented 

by this proband may be considered as the result of the genotype [p.Val37Ile] + 

[ p.Asn206Ser] observed. 

 

4.4. Summing up on GJB2 screening 

The results described above, whereupon 25,7% of the studied families (18/70) were 

found to harbour mutations in GJB2 gene are according to previous determined ones, in 

which the DFNB1 was a likely cause to explain 20,8% of the HL phenotype in the Portuguese 

population (Matos, 2012). In the present study, we identify two families with HL due to 

c.35delG, and 6 other families where HL is due to other genotypes identified in GJB2 gene, 

accounting for a total of 11,4% of elucidated cases. Figure 15 shows the Cx26 variants found 

 

 

 

[p.Val37Ile] + [p.Asn206Ser] 

[=] + [p.Asn206Ser] [=] + [p.Val37Ile] 
I:1 I:2 

II:1 

Figure 14 – Heredogram of Family PD. 
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during this work, with special emphasis for the novel mutation, p.Leu213X, reported here for 

the first time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sixty genes were mapped until now and more than 100 loci were identified as being 

responsible for nonsyndromic HL cases (Minami et al, 2012). So, it can always be considered 

the possibility that the genetic cause of HL for the remaining families could due to mutations 

in other genes.  
 

 

 

 

 

 

 

 

 

 

p.Met34Thr 

p.Arg184Pro 

p.Ile140Ser 

p.Trp24X 

p.Val37Ile 

p.Asn206Ser 

c.333-334delAA 

p.Leu213X 

p.Gly160Ser 

p.Arg127His 

c.35delG 

p.Lys224Gln 

p.Val95Met 

p.Phe83Leu 

p.Trp172X 

Figure 15 – Schematic representation of Cx26 protein. The arrows indicate the mutations and variants identified in 

this study and the novel mutation p.Leu213X is shown in red box. The extent of amino acid conservation is 

colour-coded, with residues shown in blue (1-2) not conserved and rapidly evolving. Residues in white (3-6) show 

an average degree of conservation and residues in red (7-9) are highly conserved and are slowly evolving. The 

degree of conservation of the polymorphic residues was analysed using ConSeq, the sequence only variant of 

Rate4Site, an algorithmic tool for the identification of functional regions in proteins. Adapted from Mani et al, 

2009. 
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4.5. GJB6 analysis 

None of the 62 analysed 

individuals presented any of the GJB6 

deletions (fig.16). These data point to a 

low prevalence of GJB6 deletions in 

Portugal, corroborating previous results 

(Teixeira et al, 2006; Chora et al, 2010). 

On the contrary, in Spain, France, United 

Kingdom, Israel and Brazil the 

prevalence of GJB6 deletions is very 

high, where del(GJB6-D13S1830) allele 

accounts for 5,9-9,7% of all DFNB1 

alleles (del Castillo et al, 2003). Also the 

del(GJB6-D13S1854) mutation has a 

frequency of 2,2% in Spain, being part of 

the five most common DFNB1 alleles in that country (del Castillo et al, 2005).  

 

4.6. Mitochondrial DNA analysis 

Three mtDNA mutations were screened by 

enzymatic restriction: m.1555A>G, m.7445A>G and 

m.7511T>C. In addition to the 62 families screened in the 

previous steps described, more 81 individuals also negative 

for GJB2/GJB6 were screened for mtDNA mutations. 

Only one family (family NL) presented the mtDNA 

mutation m.1555A>G (fig.17). The mutation was first 

detected in the proband and his sister and was later 

confirmed in their mother (fig.18).  

The HL phenotype caused by m.1555A>G is irreversible, leading to death of critical 

cells in the inner ear, by a pathogenic cell-death pathway yet unknown  (Prezant et al, 1993; 

Raimundo et al, 2012). The pathology is caused by oxidative phosporilation due to alterations 

in mitochondrial ribosome function and translation, triggered by m.1555A>G mutation (Guan 

et al, 1996; Raimundo et al, 2012). Raimundo and his colleagues concluded that individuals 

harbouring the m.1555A>G mutation would be more prone to eventual loss of irreplaceble 

Figure 16 – Agarose gel from a GJB6 multiplex 

PCR. Lanes: 1– 1 kb DNA plus ladder 

(Invitrogen); 2– PCR’s negative control; 3 and 6– 

negative samples for both GJB6 deletions; 4– 

heterozygous control for del(GJB6-D13S1830); 5– 

heterozygous control for del(GJB6-D13S1854). 

 

  
I:1 I:2 

II:1 II:2 
 

m.1555A>G 

m.1555A>G m.1555A>G 

+/+ 

Figure 17 – Heredogram of 

Family NL. 
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inner ear cells, due to mitochondrial 

stress pathway to proapoptotic nuclear 

transcription factor E2F1, thus explain 

the irreversible HL in a spontaneous way 

or as a function of age, noise or 

aminoglycosides (Raimundo et al, 2012). 

The presence of m.1555A>G mutation in 

heteroplasmy in these individuals was 

found to be the cause of their HL 

phenotype. 

 No individual was found carrying 

m.7445A>G or m.7511T>C mutations in 

mtDNA. Images of electrophoresis for 

restriction analysis of both m.7445A>G 

and m.7511T>C mutations are shown on 

figure 12, A and B, respectively, of the 

supplementary data. 

 

4.7. WFS1 analysis 

WFS1 gene analysis was performed for individuals of two families, both presented 

LFSNHL. Exons 4, 5, 6 and 8 were chosen for analysis by automatic sequencing since these 

are the WFS1 regions where most pathogenic mutations were found to date (Cryns et al, 2002; 

Gürtler et al, 2005; Fukuoka et al, 2007). 

 

4.7.1. Case BK  

One single individual presenting LFSHNL phenotype was available for study 

(fig.19A). A novel mutation, p.Asp171Asn (Gonçalves et al, 2012, D), was found in 

heterozygosity in exon 5 of WFS1 gene (fig.19 C). This mutation alters the 511 residue of 

wolframin (fig.21), by changing an aspartic acid to an asparagine.  The aspartic acid is an acid 

polar negatively charged amino acid frequently involved in protein active or binding sites. Its 

substitution for a neutral polar amino acid as asparagine may cause some defect in the 

interaction with, for example, positively-charged non-protein atoms (Barnes et al, 2003). The 

p.Asp171Asn mutation is located close to the N-terminus domain of the protein, situated in 

the extracytoplasmic region (Komatsu et al, 2002).  

Figure 18 – Agarose gel from the restriction analysis 

of m.1555A>G mutation in mtDNA of Family NL. 

Lanes: 1 -  1 kb DNA plus ladder (Invitrogen);  2 – 

non-digested control; 3-4 – restriction analysis for 

individual II:1 and II:2, respectively; 5 – 

heteroplasmic control for m.1555A>G mutation; 6-7 – 

restriction analysis for individual I:1 and I:2, 

respectively. 
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One hundred normal hearing Portuguese controls were sequenced for the exon 5 of 

WFS1 gene and in none allele the p.Asp171Asn mutation was found. In this specific gene 

many known pathogenic mutations generally occur in heterozygous dominant pattern, 

conferring HL (Bespalova et al, 2001). However, it cannot be established if this mutation is 

recessive or dominant, since members of other generations of this family weren’t available to 

be tested and no information on their phenotype is known. 

One intronic variant, IVS4 – 9 A>G, previously reported (Van Den Ouweland et al, 

2003), was identified in homozygosity in this patient (fig.13, supplementary data). In 

addition, polymorphism p.Arg228Arg was also found in exon 6, in homozygous state (fig.14, 

supplementary data).  

The auditory phenotype of this patient might probably be due to the novel mutation 

p.Asp171Asn. Its functional characterization should be performed in order to assess its effect 

on the protein and to clarify in which way the introduced change in the residue 171 leads to 

low frequency HL.  
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Figure 19 – Pure-tone audiogram of individual BK1 and electrophoretogram of p.Asp171Asn 

mutation. A – Pure-tone audiogram with circles in blue represent the right ear (RE) and crosses in 

red represent the left ear (LE). Electrophoretogram showing: B – wild-type ; C – p.Asp171Asn 

mutation in heterozygosity. 
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4.7.2. Family PF  

 This family was composed of  mother 

(fig.20 I:2) and daughter (fig.20 II:1). No 

information was available regarding the 

father. Both mother and daughter were 

affected only in low frequencies with an 

indication of a dominant pattern of 

inheritance. The mother was found to exhibit 

a common polymorphism in exon 6, p.Arg228Arg, in heterozygosity (fig.15, supplementary 

data), which doesn’t explain her HL phenotype (Fujikawa et al, 2009). The mother also 

presented in exon 8 the p.Ala602Val mutation (fig.16, supplementary data) in heterozygosity. 

Previous studies indicate that this mutation is more frequent in patients with mental disorders 

than in controls, being present, for example, in schizophrenic patients (Torres et al, 2001). 

However, results from other study do not support the pathophysiological significance of 

wolframin in bipolar disorders (Kato et al, 2003). Polymorphism p.Val333Ile (fig.17, 

supplementary data), present in exon 8, was found in heterozygosity in mother and daughter 

but doesn’t explain their HL. So, the genetic cause for the LFSNHL phenotype observed in 

this family couldn’t be determined in this study.  

The variations found in this study are shown in a schematic representation of 

wolframin, in figure 21, with special emphasis in the novel mutation, p.Asp171Asn, reported 

for the first time in this study.  
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Figure 20 – Heredogram of Family PF. 
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Figure 21 – Schematic representation of wolframin protein. Arrows indicate mutations 

and variants found in this study and the novel mutation p.Asp171Asn is shown in red box. 

Figure adapted from Komatsu, 2002. 



Investigation of the Genetic Etiology of Sensorineural Hearing Loss in Portuguese Patients 

26 
Master Course in Molecular Biology and Genetics 

Faculty of Sciences, University of Lisbon 

2011/2012 

4.8. SLC26A4 analysis 

SLC26A4 gene analysis was made for individuals belonging to two unrelated 

Portuguese families diagnosed with PS. Screening of exons 6 and 10, and region IVS8 was 

performed because these are the regions presenting higher frequency of pathogenic mutations 

in the Caucasoid population (Tsukamoto et al, 2003). IVS14 region was also tested, since in a 

previous study a novel mutation (IVS14-2A>G) was identified in Portuguese Pendred patients 

(Simões-Teixeira et al, 2010). No mutation was found in the studied regions for the 

considered individuals. The genetic cause for PS wasn’t yet determined for any of the 

analysed families.  

 

4.9.  Pitfall 

 The first sequencing of the IVS14/exon 15 region of SLC26A4 gene revealed an 

alteration in the nucleotide +1654 of this gene, with an adenine being substituted by a 

guanine. This alteration appeared in a homozygous state (fig.22 A) in each proband of the 

tested families, NR3 and OQ1, and was found to be a novel mutation, p.Ser552Gly, not 

reported until now. This alteration could only be detected with the forward primer 

(IVS14+2F.P , fig.22C) because it was located in the area compatible with the annealing of 

the reverse primer (IVS14+2R.P , fig.22C), not being detected in the sequencing with the 

reverse primer. Due to the fact that a new mutation, never reported before, was observed in 

two individuals belonging to different families, the available members of the NR family and 

three normal hearing Portuguese controls were also sequenced in order to check the presence 

of the new alteration. The variation was observed, also in homozygosity in the sequencing 

with the forward primer. This situation originated more strangeness and a doubt about the 

viability of both the PCR product and the automatic sequencing procedure could be 

considered.  

 The presence of an unreported mutation in homozigosity in affected and hearing 

individuals would be improbable. In order to clarify this situation, a new reverse primer was 

design (IVS14+2R.P2 , fig.22C), to amplify a larger region. The same forward primer was 

used with the new reverse primer in the PCR reaction and in automatic sequencing. When 

sequencing these new PCR products, the variation was no longer observed (fig.22B) either in 

the probands of the considered families neither in the normal hearing Portuguese controls 

used. It was then assumed that the occurrence that was happened was no more than an artefact 

made by the PCR or by the automatic sequencing procedure. This situation acts as an alert for 
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the importance of confirmation by sequencing in both directions, for instance, and validation 

of new results as for the critical and precautious spirit that the molecular analysis requires. 
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Figure 22 – Pitfall in SLC26A4 gene analysis. Electrophoretogram showing: A - guanine 

homozygosity in the nt +1654 of SLC26A4 gene. B – adenine homozygosity in the nt +1654 

of SLC26A4 gene. C - Section of the SLC26A4 gene. In green is indicated the sequence of the 

forward primer IVS14+2F.P. In red is indicated the exon 15. In blue is indicated the reverse 

primer IVS14+2R.P. In orange is indicated the second designed reverse primer IVS14+2R.P2. 

5’CTCCATCTCAAAAAAAAAAAAAAAAGA
AAAGAAAGAAAAGTTGAGTGCTGCTACCC

AGCTCCTCTGAGCAACTGTGACTTGACTCC

TTGCTAAGTAGCCAGAAATGTAATTAAAT
ACTTGAGGCTTGAAATTATTTAATCCCAGA

CAATTTCTTTTAATGCCAGATTGAAGAACC

TCAAGGAGTGAAGATTCTTAGATTTTCCAG
TCCTATTTTCTATGGCAATGTCGATGGTTT

TAAAAAATGTATCAAGTCCACAGTAAGTA

TTTTATCCCTAGAAATTTGTTTTCTAACCTC
TTTTGAGACTTCATTCATTCTACAAGTATT

TACTGGGGTCCAATCAGGAATAGGCCCTA

GACCCTCTTCCCTTTGTGTAGGGCAATGAG
AATTAAAATATAACATCCTTGCCTTCAAAT

AATTTACAGTCTATTTGGGGATTAAAAAA

ACACATATGTTAAAACCCAGGTAGTAATA
ACTATGCCAGACAAAAACATTAGAGATGT

TTCTAGGCAGAATTTGAGTAAGTTTCAAAT

AAGTAGTATAGACAGTTGAGAGTTCATAG
AAGGAAGAGATCCAGGTTAGTTGGACTAA

CAGGCTTTGTGCGGCAGTTGGCTGAAG 3’ 
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5. Conclusion 

In this study, 70 families presenting HL were analysed as regards GJB2/GJB6 genes 

(DFNB1 locus). About 1:4 families (25,7%) harboured mutations in this locus being the cause 

of HL estimated for 11,4% (8/70) of the families. Fourteen different variants previously 

reported and one novel mutation, p.Leu213X, were identified in GJB2 gene. As to GJB6 

gene, no deletion was found. This data are according to the low frequency of these deletions 

previously observed in Portugal. 

Considering the fact that it only was analysed the GJB2 coding region, in families with 

monoallelic recessive mutations in Cx26 it would be recommended to perform screening for 

non-coding regions, since some mutations have already been identified in these regions 

(Matos et al 2012). 

Concerning mtDNA, only one proband from the 143 analysed, presented an 

m.1555A>G mutation in mtDNA 12S rRNA gene. Mutations m.7445A>G and m.7511T>C 

were also screened but none was found in this study. The m.1555A>G is associated with 

aminoglycosides exposure and also with a progressive form of deafness. Its identification in a 

family is extreme relevant when the probands are females considering the maternal 

inheritance of mtDNA. 

Two families presenting LFSNHL were also included in this project. An analysis of 

the regions of WFS1 gene, where most of the disease-associated mutations are located, was 

performed and a novel mutation, p.Asp171Asn, localised to the N-terminus of wolframin 

protein was found in heterozygosity in one of the families. Some polymorphisms and one 

intronic variation previously reported were also identified during the study of the WFS1 gene. 

Two families presenting PS were studied in order to elucidate the genetic cause of the 

syndrome. Sequencing of relevant regions of SLC26A4 gene was performed. No mutations 

were found and the genetic cause of the PS remained to be elucidated. 

As molecular tests are minimally invasive nowadays, the genetic study became more 

widely available and accepted. With the identification of the genetic cause of HL it can be 

predicted the chance of recurrence in a future pregnancy and the expected evolution of HL 

determining if it is progressive or stable. A careful analysis of the heredogram of the family 

under consideration can enable genetic counselling of other family members who may 

potentially benefit in the future of the same test.  
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7. Supplementary data 
 

7.1. Extraction of genomic DNA from blood samples 

Blood samples for DNA extraction were collected in two different forms: extraction of 

about 5 mL of peripheral blood for tubes containing EDTA as an anticoagulant agent, which 

were stored at -20ºC; and in FTA or Guthrie Cards, stored at room temperature. 

The extraction of genomic DNA from liquid blood samples in tubes was made using 

the JetQuick Blood and Cell Culture Kit (GENOMED), according to the manufacturer’s 

instructions.  

For the blood in FTA or Guthrie Cards, genomic DNA was extracted following the 

next steps: 1cm
2
 of card was cut in 2mm

2
 pieces. 500μL of DLB buffer (1mL Tris/HCl 1M 

pH=7,4; 0,2mL NaCl 5M; 2mL EDTA 0,5M pH=8,0; 96,8mL H2Od), 50μL of SDS (10%) 

and 5μL of proteinase K (20mg/mL) were added. The mixture was incubated at 56ºC 

overnight and was gently shaking. Then, 20μL of NaCl (5M) and 575μL of 

Phenol:Chloroform:Isoamyl Alcohol (25:24:1) were added. After mix by inversion, the 

solution was separated in two phases through a 12000rpm centrifugation during 3 minutes. 

The upper layer was recovered and then were added 575μL of Chloroform:Isoamyl Alcohol 

(24:1). Another centrifugation at 12000rpm during 3 minutes was made. The upper layer was 

recovered again and 1mL of ethanol 96% stored at -20ºC was added. The solution was 

incubated during 1 hour at -20ºC. After a centrifugation of 15 minutes at 4ºC and 12000rpm 

the ethanol was discard and the precipitate was dried at room temperature. After this process, 

100μL of ultra-pure H2O was added to rehydrate DNA and the solution was incubated at 56ºC 

overnight. 

To confirm the extraction, DNA samples were always run in a 1% agarose gel in TBE 

0,5x, by electrophoresis, with EtBr staining under UV light. 1Kb Plus Ladder (Invitrogen) 

was used to compare the sizes of the DNA fragments. Photographs were taken using 

microDOC System from Cleaver Scientific Ltd. 

 

7.2. Electrophoresis of PCR products 

All the PCR products were run in a 1% agarose gel in TBE 0,5x, by electrophoresis, 

with EtBr staining under UV light. 1Kb Plus Ladder (Invitrogen) was used to compare the 

sizes of the PCR fragments. Photographs were taken using microDOC System from Cleaver 

Scientific Ltd. 
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Table 1 - Reaction of PCR mix per sample. 

  Specific PCR  

 

 

Reagents 

Standard and γ 

c.35delG 

GJB6 

multiplex 

δ c.35delG and 

mtDNA 

regions 

Volume (μL) 

miliQ ultra-pure H2O 29,7 3,85 14,75 

5x MyTaq Buffer 10 3 5 

Primer Forward 2 1 1 

Primer Reverse 2 1 1 

MyTaq DNA polymerase 0,3 0,15 0,25 

DNA template 6 2 3 

Total 50 15 25 

 

Table 2 – Standard PCR programme.                    Table 3 - GJB6 multiplex PCR programme. 

Time Temperature Cycles  Time Temperature Cycles 

1m 94ºC   5m 95ºC  

1m 94ºC  

x 30 cycles 

 40s 94ºC  

1m Specific Tm(ºC)  40s 60ºC Turns to #2 5* 

1m 72ºC  40s 94ºC     

   x 24 cycles 7m 72ºC   40s 55ºC 

∞ 4ºC   7m 72ºC  

 ∞ 4ºC  

 
* = Touchdown step in which 1 degree is reduced in the annealing temperature in each cycle. The touchdown 

step is initiated with 5ºC above the ideal annealing temperature for the considered primers. 5 cycles of 

denaturing are repeated at 94ºC, following the decrease of 1 degree in the annealing temperature per cycle, 

which allows an highly specific amplification in the first steps of PCR reaction. 

 

 
Table 4 - Restriction analysis mix per sample. 

c.35delG m.1555A>G m.7445A>G m.7511T>C 
H2O miliQ – 9,8µL H2O miliQ – 9,5µL H2O miliQ - 14µL H2O miliQ – 14,96 µL 

10x NEBuffer 3 – 2µL Buffer C - 2µL Buffer D - 2µL Buffer 4 1x - 2µL 

BslI – 2U / µL HaeIII – 5U / µL BSA 1mg/mL - 2µL BSA 1mg/mL - 2µL 

PCR product - 8µL PCR product - 8µL XbaI – 10U MboII – 0,4U 

Total – 20µL Total - 20µL PCR product - 1µL PCR product - 1µL 

  Total - 20µL Total - 20µL 

A non-digested control that contained all the mix reagents, but without the specific restriction enzyme, 

was used in each restriction reaction. 

 

 For c.35delG restriction analysis the samples were incubated at 55ºC during 3h; 

 For m.1555A>G restriction analysis the samples were incubated at 37ºC overnight; 

 For m.7445A>G restriction analysis the samples were incubated at 37ºC during 3h; 

 For m.7511T>C restriction analysis the samples were incubated at 37ºC during 1h. 

 

All the restriction samples were run in a 2% agarose gel in TBE 0,5x, by electrophoresis, with EtBr 

staining under UV light. 1Kb Plus Ladder (Invitrogen) was used to compare the sizes of the DNA 

fragments. Photographs were taken using microDOC System from Cleaver Scientific Ltd. 
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Figure 1 – Electrophoretogram showing: 

A – wild-type; B - p.Lys224Gln mutation 

in heterozygosity. 

Figure 2 – Electrophoretogram 

showing: A – wild-type; B - 

p.Val95Met variant in 

heterozygosity. 

Figure 3 – Electrophoretogram 

showing: A – wild-type; B - 

p.Met34Thr variant in 

heterozygosity. 

Figure 4 – Electrophoretogram 

showing: A – wild-type; B - 

p.Arg127His variant in 

heterozygosity. 

Figure 5 – Electrophoretogram 

showing: A – wild-type; B - 

p.Gly160Ser mutation in 

heterozygosity. 

Figure 6 – Electrophoretogram 

showing: A – wild-type; B - 

p.Ile140Ser mutation in 

heterozygosity. 

Figure 7 – Electrophoretogram 

showing: A – wild-type; B - 

p.Trp24X mutation in 

homozygosity. 

Figure 8 – Electrophoretogram 

showing: A – wild-type; B - 

p.Arg184Pro mutation in 

heterozygosity. 

Figure 9 – Electrophoretogram 

showing: A – wild-type; B - 

p.Trp172X mutation in 

heterozygosity. 
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Figure 10 – Electrophoretogram 

showing: A – wild-type; B - 

p.Val37Ile mutation in 

heterozygosity. 

Figure 11 – Electrophoretogram 

showing: A – wild-type; B - 

p.Asn206Ser mutation in 

heterozygosity. 

Figure 12 A – Agarose gel from a restriction analysis for 7445A>G mutation in mtDNA. Lanes: 1 

-  1 kb DNA plus ladder (Invitrogen);  2 – non-digested control; 3-6 and 8-12 – negative samples 

for 7445A>G mutation; 7 – homoplasmic control for 7445A>G mutation. Figure X B – Agarose 

gel from a restriction analysis for 7511T>C mutation in mtDNA. Lanes: 1 – 1 kb DNA plus 

ladder (Invitrogen); 2 – non-digested control; 3-11 – negative samples for 7511T>C mutation.  

 

A B 
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 All the electrophoretograms obtained during this study were evaluated by visual 

inspection and pairwise alignment to reference sequences using NCBI’s BLAST. Chromas 

and BioEdit softwares were used to analyse the sequences obtained after bidirectional 

sequencing.  

 

Figure 15 – Electrophoretogram 

showing: A – wild-type; B - 

p.Arg228Arg polymorphism in 

heterozygosity.  

Figure 16 – Electrophoretogram 

showing: A – wild-type; B - 

p.Ala602Val mutation in 

heterozygosity.  

Figure 17 – Electrophoretogram 

showing: A – wild-type; B - 

p.Val333Ile variant in 

heterozygosity.  

Figure 13 – Electrophoretogram 

showing: A – wild-type; B – IVS4 – 

9 A>G intronic variant in 

homozygosity.  

Figure 14 – Electrophoretogram 

showing: A – wild-type; B - 

p.Arg228Arg polymorphism in 

homozygosity.  
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Table 5 – Primers used in PCR’s reactions. 

Gene Primer name Sequence Tm (ºC) 

GJB2 

22BF (5’-GGTGAGGTTGTGTAAGAGTTGG-3’) 
55 

22BR (5’-CTGGTGGAGTGTTTGTTCCCAC-3’) 

FP (5’-GGGAGATGAGCAGCCGACT-3’) 
55 

RP (5’-ACGTGCATGGCCACTAGGAGC-3’) 

2AF (5’-AAGTCTCCCTGTTCTGTCCT-3’) 
60,7 

2BR (5’-GGCATCTGGAGTTTCACC-3’) 

 

 

GJB6 

Cx30Ex1A (5’-CGTCTTTGGGGGTGTTGCTT-3’)  

 

 

60 

 

Cx30Ex1B (5’-CATGAAGAGGGCGTACAAGTTAGAA-3’) 

Del BK1 (5’-TCATAGTGAAGAACTCGATGCTGTTT-3’) 

Del BK2 (5’-CAGCGGCTACCCTAGTTGTGGT-3’) 

GJB6-1R (5’-TTTAGGGCATGATTGGGGTGATTT-3’) 

BKR-1 (5’-CACCATGCGTAGCCTTAACCATTTT-3’) 

12S 

rRNA 

rRNA12SF (5’-GCTCAGCCTATATACCGCCATCTTTCAGCAA-3’) 
63,9 

rRNA12SR (5’-TTTCCAGTACACTTACCATGTTACGACTTG-3’) 

COXI 
7392F (5’-GGATGCCCCCCACCCTACC-3’) 

60 
7588R (5’-TACTTGCGCTGCATGTGCC-3’) 

 

 

 

 

 

WFS1 

ex4F.W (5’-CGGAGAATCTGGAGGCTGAC-3’) 
64 

ex4R.W (5’-CAACCCTCCAGAGGCTGTTC-3’) 

ex5F.W (5’-ACAAGGCCTTTGACCACATC-3’) 
62 

ex5R.W (5’-GTGCCCAGGGTGAATCCTC-3’) 

ex6F.W (5’-CTGTTAATCCACCCTGTCCC-3’) 
68 

ex6R.W (5’-GAGTCGCACAGGAAGGAGAG-3’) 

ex8aF.W (5’-TTCCCACGTACCATCTTTCC-3’) 
58,7 

ex8aR.W (5’-GGGCAAAGAGGAAGAGGAAG-3’) 

ex8bF.W (5’-GTGAGCTCTCCGTGGTCATC-3’) 
55,8 

ex8bR.W (5’-CCTCATGGCAACATGCAC-3’) 

 

 

 

 

 

SLC26

A4 

 

 

 

 

ex6F.P (5’-ATTTTTGTGCTATAGGCAGG -3’) 
58 

ex6R.P (5’-ATGAGGTCTCACGTCTCAAA-3’) 

ex10F.P (5’-TTATCGAGAGCAATGAGACC-3’) 
60 

ex10R.P (5’-TCAGTTGTTATTGACCACAGC -3’) 

IVS8F (5’- GTGTGCGTGTAGCAGCAGG -3’) 
64 

IVS8R (5’- GGACTATTGAAGGAGTATCAGTG -3’) 

IVS14+2F.P 

IVS14+2R.P 

IVS14+2R.P2* 

(5’-GTTGAGTGCTGCTACCCAGCTCCTC-3’) 

(5’-ATTGCCATAGAAAATAGGACCGGAAAAT-3’) 

(5’- AGGTAGTAATAACTATGCCAGAC-3’) 

64 

 

 

The C base is altered and substitutes an A in the wild-type sequence to creating a recognition site for BslI in the 

presence of c.35delG mutation. 

 
*= new designed reverse primer. 
 
 

 

 

 


