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Abstract 

Malarial pigment, hemozoin, appears to modulate the immune system, however it remains 

controversial if it has stimulatory or inhibitory effects. Biological properties may depend on 

the type of hemozoin, namely its origin and production method, morphology or size. Natural 

hemozoin can be obtained from P. falciparum cultures and identical β-hematin can be 

synthesized from heme. Characterization becomes crucial to confirm size, shape and 

possible contaminations. 

Hemozoin production is also a unique antimalarial drug target. There are several heme 

inhibition assays to screen for drugs with the potential to inhibit hemozoin growth. Yet, these 

assays are often complex, use highly concentrated, toxic reagents, and not all confirm the 

end product’s nature. 

This work aimed to produce and characterize natural hemozoin and synthetic hemozoin, as 

well as hemozoin-like crystals. Hemozoin-like crystals growth was also investigated to 

determine if drugs inhibit crystallization, and adapted in an assay format to explore their 

potential to screen for hemozoin-inhibiting drugs. 

Hemozoin obtained from different origins was characterized by several methods, including 

scanning electron microscopy, X-ray diffraction and infrared spectroscopy. Hemozoin-like 

crystals were grown in broth medium with different drugs to investigate their ability to inhibit 

crystallization. 

Despite an overall similarity in morphology and size, differences were detected and 

characterized between different types of hemozoin, which may be biologically relevant. 

Although very similar, X-ray diffraction and infrared spectroscopy showed that hemozoin-like 

crystals were not true hemozoin. However, inhibition results were consistent with previous 

heme inhibition studies, with chloroquine and amodiaquine presenting the highest potency, 

followed by other quinolines such as quinine and mefloquine. 

In conclusion, hemozoin used in immunology should be thoroughly characterized by several 

complementary methods. Hemozoin-like crystals growth could be successfully used as a 

novel assay to screen compounds for their hemozoin inhibiting activity, and may be a helpful 

tool for antimalarial drug screening. 

 

Keywords: hemozoin, hemozoin characterization, hemozoin-like crystals, antimalarial drugs, 

heme crystallization inhibition assays 
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Resumo 

A malária, uma das mais importantes doenças infecciosas da actualidade, permanece um 

problema de saúde pública a nível global, atingindo regiões tropicais e subtropicais em todo 

o mundo. Esta doença causa grande morbilidade e mortalidade e contribui para o atraso no 

desenvolvimento social e económico dos países afectados. A doença é causada por 

parasitas do género Plasmodium, transmitidos por fêmeas de algumas espécies de 

mosquito Anopheles. Após a fase sexual no mosquito e a fase hepática do ciclo de vida do 

parasita no Homem, é durante a fase sanguínea que se manifestam os sintomas da doença 

febril. Factores do hospedeiro e do parasita poderão contribuir para o desenvolvimento de 

malária severa, levando eventualmente à morte do doente, sendo que a espécie 

Plasmodium falciparum é responsável pelo maior número de mortes associadas a malária. 

Apesar dos esforços travados por organizações internacionais no sentido de combater este 

flagelo, os programas de controlo e erradicação da malária enfrentam vários obstáculos, 

como a resistência aos insecticidas usados para impregnar redes mosquiteiras, a 

inexistência de uma vacina eficaz e, principalmente, a grande disseminação de estirpes de 

parasitas resistentes aos fármacos anti-maláricos actualmente disponíveis. Ainda que sejam 

pontuais os relatos de resistência ao quinino, utilizado desde o século XVII, este provoca 

graves efeitos secundários. Independentemente do sucesso de fármacos sintetizados 

durante o século passado, compostos como a cloroquina, a mefloquina e os antifolatos são 

hoje inúteis em muitas regiões do mundo. Não obstante a notável eficácia das artemisininas, 

estes fármacos podem escassear e tornam-se bastante dispendiosos, devendo ser 

administrados apenas em combinação com outros, de forma a evitar a propagação de 

resistência. Assim, é urgente descobrir novos fármacos eficazes no combate à malária. 

O pigmento malárico, também designado hemozoína, é o produto da desintoxicação de 

moléculas de heme livre, formado por biocristalização no parasita durante a fase 

intraeritrocítica, após digestão do conteúdo celular do eritrócito infectado. Pensa-se que 

fármacos anti-maláricos pertencentes à classe das quinolinas interajam com as moléculas 

de heme, inibindo este processo de biocristalização e resultando na acumulação de heme 

livre tóxico responsável pela morte do parasita. Alguns autores defendem que as 

artemisininas actuam de forma semelhante, apesar de este ser assunto de debate. Esta via 

de desintoxicação de heme pelo parasita é bastante interessante no desenvolvimento de 

novos fármacos, já que é exclusivo do parasita e parece ser imutável, devido ao facto de 

não depender de enzimas codificadas pelo parasita passíveis de sofrer alterações por 

mutações que estivessem na origem de resistência. 

Existem várias abordagens para investigação e descoberta de fármacos cujo alvo é a 

formação da hemozoína. Os ensaios in vitro de inibição da cristalização de heme tentam 

mimetizar a formação de hemozoína recorrendo à síntese de β-hematina, hemozoína 
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sintética considerada idêntica à hemozoína natural, e permitem identificar compostos com 

potencial para inibir o crescimento do cristal. Todavia, ensaios diferentes variam 

grandemente em termos dos resultados que produzem e dos próprios métodos e condições 

utilizados para a sua realização, e nem sempre são suficientemente reprodutíveis nem de 

simples execução. 

O presente estudo teve como objectivo produzir e caracterizar hemozoína de diferentes 

origens, investigar a capacidade de vários fármacos para inibir o crescimento de cristais 

semelhantes a hemozoína, e o potencial destes cristais para identificar compostos 

antimaláricos inibidores da formação de hemozoína. 

A hemozoína sintética foi obtida por catálise acídica, ao passo que a hemozoína nativa foi 

obtida quer por purificação, quer por simples extracção a partir de culturas de eritrócitos 

humanos infectados com P. falciparum. Os cristais semelhantes a hemozoína foram 

cultivados num meio bem definido suplementado com extracto de sangue. Os cristais 

produzidos foram caracterizados recorrendo a microscopia óptica, de polarização e 

microscopia electrónica de varrimento, bem como a difracção raio-X e espectroscopia de 

infravermelho, e investigados em relação à presença de contaminação por heme, 

Mycoplasma, DNA ou proteína. Os cristais semelhantes a hemozoína foram ainda cultivados 

em microplaca na presença ou ausência de vários antibióticos e fármacos antimaláricos. 

Numa primeira abordagem para a caracterização da hemozoína produzida, que visualmente 

se apresenta preta em suspensão ou pó seco, a microscopia óptica e de polarização 

permitiram observar algumas diferenças morfológicas, de cor e depolarização entre os 

cristais obtidos por diferentes métodos. A microscopia electrónica de varrimento revelou-se 

talvez o método mais adequado para avaliar a morfologia e homogeneidade, evidenciando a 

forma de paralelepípedo dos cristais de origem nativa e a forma acicular dos cristais de 

origem sintética e dos cristais semelhantes a hemozoína. Todavia, apenas recorrendo à 

difracção raio-X e à espectroscopia de infravermelho foi possível distinguir inequivocamente 

os cristais semelhantes a hemozoína dos cristais de verdadeira hemozoína. 

Quando purificada, a hemozoína de origens natural e sintética apresenta ausência dos 

contaminantes investigados, ao passo que a hemozoína nativa extraída, não purificada, se 

encontra associada a proteínas e ácidos nucleicos. Ainda assim, e apesar de alguns 

estudos sugerirem um papel de estimulação do sistema imunitário para a hemozoína, a 

presença de proteínas e DNA pode ser interessante, caso se considere que a hemozoína 

poderá ser libertada dentro do vacúolo digestivo intacto ou associada a reminiscências desta 

ou de outras estruturas do parasita. A contaminação com uma quantidade apreciável de 

heme em cristais semelhantes a hemozoína contribuiu para estabelecer a diferença 

relativamente à verdadeira hemozoína. A quantificação realizada com o QuantiChrom™ 

Heme Assay Kit permitiu tirar partido da optimização para amostras de origem biológica e 
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evita o uso de reagentes tóxicos. A obtenção de hemozoína de origem natural foi morosa e 

dispendiosa, ao passo que a produção de hemozoína sintética e cristais semelhantes a 

hemozoína foi mais simples e económica.  

O IFDO (do inglês Ileal Fluid Dependent Organism) foi descrito por Burdon em 1989 após ter 

sido isolado do fluido de ileostomia de indivíduos com a doença de Crohn. Além de 

organismo auto-replicativo, pensou-se poder ser uma espécie de cristal formado por 

constituintes do meio. Semelhante a priões no respeitante à resistência a desinfecção e 

esterilização, a empresa Steris interessou-se pelo seu potencial como modelo para 

investigar este tipo de processos, e confirmada a sua natureza hémica, além da 

birrefringência e cor castanha, pensou-se que poderia ser hemozoína.  Apesar da 

semelhança, uma caracterização mais completa em colaboração com a Steris revelou a 

diferença dos cristais, e estes foram então designados cristais semelhantes a hemozoína. 

A avaliação de compostos anti-maláricos e antibióticos como possíveis inibidores do 

crescimento dos cristais semelhantes a hemozoína permitiu criar um ensaio in vitro para 

identificar compostos cujo alvo seja a formação de hemozoína. Observando a microplaca 

após a incubação do cristal na presença de diferentes concentrações de fármaco, foi 

possível observar visualmente a presença ou ausência de um precipitado escuro no fundo 

do poço que indicam respectivamente o crescimento ou a inibição da formação dos cristais 

semelhantes a hemozoína. 

O presente trabalho reforça a importância da caracterização da hemozoína obtida a partir de 

diferentes origens. Deve recorrer-se a vários métodos complementares para avaliação da 

morfologia, tamanho e identidade dos cristais, e testar a presença de moléculas 

contaminantes que possam apresentar propriedades químicas e biológicas em estudos 

imunológicos. Contribuir-se-á desta forma para esclarecer resultados ambíguos na 

investigação do papel da hemozoína na modulação do sistema imunitário do hospedeiro, 

bem como na avaliação da actividade de antimaláricos por inibição da formação do cristal. 

Os resultados obtidos sugerem ainda que o ensaio de inibição do crescimento dos cristais 

semelhantes a hemozoína pode ser usado a par dos ensaios existentes para testar 

compostos em relação à sua actividade de inibição da formação de hemozoína. O ensaio de 

inibição do crescimento dos cristais semelhantes a hemozoína é simples de realizar e requer 

infraestruturas laboratoriais básicas e reagentes relativamente económicos, podendo 

contribuir assim para a descoberta de novos antimaláricos e para os esforços no controlo da 

malária. 

 

Palavras-chave: hemozoína, caracterização da hemozoína, cristais semelhantes a 

hemozoína, fármacos anti-maláricos, ensaios de inibição da cristalização do heme  
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1. Introduction 

1.1. Malaria 

Malaria is an ancient infectious disease, thought to have an effect on human history since its 

very beginning, in Africa, with recorded periodic fever episodes since 2700 BC in China, 

continuing through almost every society until the present eradication in North America and 

Northern and Western Europe [1] [2]. Protozoan parasites Plasmodium spp. cause the 

disease, and Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium 

malariae and Plasmodium knowlesi are known to presently infect humans. It is an acute 

febrile illness, including episodes of rigors alternated with high fever and intense sweating 

and chills, vomiting, diarrhea and headache [3]. P. falciparum is the most deadly species [4] 

and can cause severe malaria, with loss of consciousness, cerebral malaria, severe malarial 

anemia, placental malaria or acute lung injury, whereas the other species cause milder 

disease, but severity and prognosis may result from diverse parasite and host factors [5]. 

Various Anopheles spp. female mosquitoes transmit Plasmodium parasites to humans, and 

their geographical distribution is associated with epidemiological patterns of the disease [6] 

[7], with tropical and subtropical regions worldwide being affected, as shown in Figure 1 [8]. 

 
Figure 1: Countries and territories affected by malaria in 2010. Tropical and subtropical regions 
are affected by malaria worldwide. [8] 

 

Presently, the World Health Organization (WHO) reports a declining trend in malaria cases 

and mortality, with 81% of the total 216 million cases and 91% of the 655.000 estimated 

malaria deaths in 2010 occurring in Africa. Children less than five years of age are 86% of 

the deaths, and Sub-Saharan Africa accounts for the majority of morbidity and mortality. [4] 

Nonetheless, some authors believe in a higher global mortality burden, with circa 1.133.000 

deaths in 2010 and a higher proportion of malaria deaths in individuals aged five years or 
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older (42%) [9]. In fact, in some African regions more adults are being infected and 

susceptibility to severe malaria is shifting towards older children [10]. 

Malaria contributes to prevent social and economic growth in already impoverished countries 

[11], and the United Nations set malaria combat as part of the Millennium Development 

Goals. Enormous efforts have been made towards malaria eradication, with mobilization of 

financial help and human resources allowing substantial advances in research and the 

implementation of vector control and drug therapy programmes. Nonetheless, an effective 

vaccine remains to be developed, and effectiveness of insecticide-treated bed nets is 

vulnerable to populations’ noncompliance and resistance to pyrethroids [12]. Drug therapy, a 

key part in malaria control, faces increased resistance worldwide, with no drug being 

universally effective, and so malaria continues to be a threatening global health problem [7]. 

 

1.2. Hemozoin, the malarial pigment 

1.2.1. Plasmodium life cycle and hemozoin formation 

Plasmodium life cycle comprehends the hepatic and erythrocytic phases in the human host 

and the sexual reproduction cycle in the mosquito vector. After the mosquito bite and the 

entrance of numerous sporozoites, multiplication takes place in the liver and merozoites are 

released into the blood stream, where they invade red blood cells. The blood stage of P. 

falciparum life cycle is schematically represented in Figure 2. When inside the erythrocyte, 

the parasite consumes host cellular resources so that it can grow, mature and become a 

schizont, the dividing form. [13] To obtain aminoacids, space and to maintain osmotic 

balance, the parasite digests up to 80% of the erythrocytic hemoglobin. [14] Inside the 

parasite acidic food vacuole, hemoglobin is oxidized to methemoglobin and then hydrolyzed 

into free heme and denatured globin by plasmepsins I, II and IV and histoaspartic protease. 

Denatured globin is hydrolyzed by falcipain and falcilysin into small peptides, which are only 

further degraded into amino acids by exopeptidases in the parasite cytoplasm. [15] 

Free heme released as a byproduct of these reactions is toxic both to host and parasite. 

Reactive oxygen species generated by free heme may induce oxidative stress, leading to cell 

lysis and death, killing the parasite. In the human host, free heme may not only cause 

hemolysis, but also be involved in inflammation and organ toxicity. To avoid this, in mammals 

heme is detoxified into biliverdin by heme oxygenase and then into bilirubin by biliverdin 

reductase. Malaria parasite has different mechanisms to detoxify heme, of which the primary 

one is hemozoin formation in the food vacuole. Other mechanisms occur in the cytosol, such 

us detoxification by reduced glutathione, heme-binding proteins or degradation by hydrogen 

peroxide. [16] 

As reviewed by Egan (2008) [17], a specific enzyme was thought to be responsible for 

polymerizing heme into the malarial pigment, hemozoin. However, it was then suggested that 
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hemozoin crystals were formed by autocatalysis, growing in a process of biomineralization. 

Despite some controversy, it is now believed that hemozoin crystals nucleate at the interface 

between the aqueous milieu and the surface of neutral lipid nanospheres in the digestive 

vacuole, rather than depending on the activity of a specific protein [18] [19]. 

 
Figure 2: Plasmodium falciparum blood stage cycle representation. Merozoite invades an 
erythrocyte and develops into an early trophozoite, the ring form. The early trophozoite grows and 
becomes a mature trophozoite, in which hemozoin formation starts. DNA synthesis begins, to prepare 
the dividing stage, the schizont. After erythrocyte rupture, merozoites are released in the blood stream 
together with hemozoin crystals. Parasites which differentiate into male and female gametocytes can 
be taken up by the mosquito vector and continue the cycle and transmission. 

 
Hemozoin amount increases as the parasite grows. When the schizont is mature, the 

infected red blood cell goes through a controlled process of rupture and merozoites are 

released in the blood stream together with hemozoin crystals. Merozoites will invade other 

erythrocytes and some will differentiate into gametocytes, which may be taken by the 

mosquito during its blood meal, starting a new cycle. [20] 

 

1.2.2. Hemozoin characteristics and properties 

Hemozoin is a paramagnetic crystal of well-defined, flat faces [21], and with 0,5-1 µm in size 

[22]. The crystal is constituted by cyclic π-π dimers of ferriprotoporphyrin IX (heme) 

molecules, with coordination of the propionate group of one heme monomer to the Fe (III) 

centre of the other, and linked through hydrogen bonds between the propionate groups [23] 

[24]. Hemozoin from the malaria parasite is considered to be identical to synthetic β-hematin, 

as assessed by X-ray diffraction and infrared spectroscopy [25] [26]. Notwithstanding the 

brick-like morphology of P. falciparum hemozoin, synthetic β-hematin has a more needle-like 
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appearance when observed with scanning and transmission electron microscopy [27] [28] 

[29]. 

Being birefringent, hemozoin has the ability to depolarize light, and can be detected by 

optical methods such as darkfield and polarization microscopy, as well as flow cytometry. 

Hemozoin released in the blood is internalized by host phagocytes, playing an important role 

in the modulation of the immune system. Depending on the phase of the infection it may be 

beneficial or harmful to the host, with the pigment producing proinflammatory or 

immunosuppressive effects. [30] However, published studies on biological effects elicited by 

hemozoin are performed with different concentrations of hemozoin and the methods used to 

produce hemozoin are also different. Hence, as different methods yield different types of 

hemozoin, with distinct properties, they may as well produce different biological results [22]. 

Numerous studies have been published on hemozoin effect in immune responses and on 

adjuvant effects during vaccination. Characterization of hemozoin from different sources and 

the assessment of their differences become extremely important in order to be able to clarify 

the role of hemozoin in the modulation of immune responses. 

 

1.3. Antimalarial drugs 

Malaria therapy was for a long period of time limited to quinine, an alkaloid derived from the 

bark of the Cinchona tree, already used to treat the disease in the 17th century [2]. 

Nonetheless, it has serious adverse effects at therapeutic concentrations, which are referred 

to as cinchonism and include not only headache, nausea, vomiting and diarrhea, but also 

hearing and vision problems, hypoglycemia, hypotension and venous thrombosis as well as 

arrhythmia [31] [32] [33]. Last century, synthetic molecules similar to quinine were 

developed, such as chloroquine, amodiaquine, primaquine, halofantrine and mefloquine [34]. 

These were safer and easier to produce, and were thus preferentially used for malaria 

therapy, with chloroquine being the most used [31]. Their mechanism of action is thought to 

be the inhibition of malarial pigment (hemozoin) formation [35]. 

However, the parasite evolved to develop resistance to the commonly used drugs through a 

variety of mechanisms which emerged by the selective drug pressure, now thought to be 

originating in mutations or copy number changes of genes encoding parasite proteins that 

are either drug transporters or the drug target [36]. When a drug is administered and 

absorbed in the recommended dose and is accessible to the parasite, but still it is able to 

survive and multiply, that strain is considered resistant [34]. Quinine-resistant strains occur 

very sporadically since the first case in South America in the beginning of the 20th century, 

but chloroquine-resistant P. falciparum is now widespread all over endemic areas after being 

first reported to occur in late 1950’s in Southeast Asia and South America, and mefloquine 

resistance is frequent in Southeast Asia, where it appeared in late 1980’s [37]. 
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Meanwhile other drugs have been discovered that present antimalarial activity (Table 1).  

Table 1: Major antimalarial drugs. 

Class Drug(s) Toxicity and side effects [33] Mechanism of action 

Q
u
in

o
lin

e
s
 

Arylamino- 

alcohols 

Quinine High toxicity, low therapeutic index, 

serious side effects (cinchonism) 

Inhibition of hemozoin 

formation, by π-π interactions 

of drug with free heme [35] 

Mefloquine Cardiac depression, antifibrillary 

activity, gastrointestinal or central 

nervous system adverse effects 

(seizures, psychosis) 

Halofantrine Cardiotoxicity; not safe in pregnancy 

Amino- 

quinolones 

Chloroquine Generally well tolerated 

Amodiaquine Hepatitis and organ damage 

Primaquine Hemolytic anemia or fatal hemolysis 

in glucose-6-phosphate 

dehydrogenase (G6PD)-deficient 

people and methemoglobinemia; not 

safe in pregnancy 

Antifolates Pyrimethamine 

Sulfadoxine 

Proguanil 

Dapsone 

Generally well tolerated, may cause 

cutaneous adverse effects 

Inhibition of dihydrofolate 

reductase and dihydropteroate 

synthase from the folic acid 

synthesis pathway [38] [39] [40] 

Artemisinins 

(sesquiterpene 

lactones) 

Artemisinin 

Dihydro- 

artemisinin 

Artesunate 

Arthemether 

Arteether 

Very well tolerated, but not 

recommended by WHO for pregnant 

women in the first trimester 

Inhibition of hemozoin 

formation [41]; inhibition of 

parasite’s sarco-endoplasmic 

reticulum Ca
2+

-ATPase 

(SERCA) [42] [43]; or 

generation of free radicals and 

protein alkylation [44] 

Antibiotics 

(in combination 

with quinine to 

improve cure 

rates) 

Tetracycline/ 

Doxycycline 

Impairment of hard tissues 

development (not safe in young 

children and pregnant women), 

hepatotoxicity 

Inhibition of protein synthesis 

by binding to microbial 

ribosomes Clindamycin Photosensitivity, gastrointestinal 

upset, diarrhea, pseudomembranous 

colitis 

Hydroxy- 

napthoquinone 

Atovaquone Not safe in young children and 

pregnant women 

Inhibition of the electron 

transport at the cytochrome bc1 

complex due to structural 

analogy with coenzyme Q [45] 

Based on data from publications on the toxicity, side effects [33] and mechanisms of action of the 
major antimalarial drugs [35] [38] [39] [40] [41] [42] [43] [44] [45]. 
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Antifolates are synthetically developed antimalarials and include pyrimethamine, sulfadoxine, 

proguanil, dapsone and others [38] [39] [40]. Proguanil is commercialized as Malarone™ in a 

fixed-dose combination with atovaquone [34]. Nevertheless, resistant strains to antifolates 

spread even faster, with a prompt emergence of resistance to sulfadoxine-pyrimethamine in 

Southeast Asia and Africa in the 1960’s and the 1980’s. 

The most efficient antimalarials are presently artemisinin and its derivatives, which are 

obtained from Artemisia annua herb. These are recommended by the WHO to treat malaria 

in combination with other antimalarial drugs, in an attempt to prevent the spread of resistant 

parasite strains [46]. Artemisinins mode of action is still a subject of much debate, as 

presented in Table 1, but some authors think it may also have a role in inhibiting hemozoin 

formation [41]. Importantly, combination therapy is expensive and artemisinin availability may 

be a limitation. Moreover, its potential toxicity in pregnant women makes it no option to this 

risk-group, and notwithstanding all the efforts to avoid it, there are reports of artemisinin 

resistance already in Cambodia [47]. 

So, despite the severity of its adverse effects, quinine is still the only choice when 

considering the prevalence of resistant-strains to alternative drug formulations in some areas 

or their toxicity in pregnant women in their first trimester. However, antibiotics are used in 

combination with quinine to improve cure rates, but these are toxic for children. [31] 

Hence, widespread and multidrug resistance restricts the possibilities of an efficient therapy 

and holds off effective malaria control and elimination, making the need for new drugs even 

more urgent [48]. When aiming to discover new antimalarial drugs, hemozoin formation is still 

one of the most interesting targets, since it seems to be an immutable pathway [30]. 

Considering this, together with the fact that synthetic quinolines are easy to produce, very 

well tolerated drugs, the approach of synthesizing quinoline analogs is a very attractive one. 

 

1.4. Development of novel antimalarial compounds 

1.4.1. Drug discovery 

Hemozoin formation remains a good antimalarial drug target for novel drug discovery. 

Inhibition of hemozoin formation hampers detoxification of free toxic heme originated by 

hemoglobin proteolysis in the parasite. Hemozoin formation does not seem to rely on the 

activity of a parasite-encoded molecule or enzyme and is an exclusive pathway of the 

parasite. Therefore, drugs targeting hemozoin formation are unlikely to create resistance and 

are highly selective. [30] 

Antimalarial drug discovery is an urgent need, in face of the increasing drug resistance 

worldwide and the fact that malaria remains one of the more devastating infectious diseases, 

despite all the efforts to attain the opposite. Diverse strategies can be adopted to develop 

new compounds or use existing ones in a different formulation or with a novel purpose, in a 
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way that improves current therapy options. While improving existing antimalarial agents is 

possible by exploitation of analogs through chemical modifications, evaluating the activity of 

compounds from natural plants and extracts takes advantage of the knowledge of folk 

remedies, often used by natives in endemic areas for a long time as a solution to febrile 

illnesses. [49] And whilst new targets are being explored as to be the aim of new compound 

activity, perhaps an easier approach may be the identification of agents that are already used 

against other diseases, but prove to be of use in malaria treatment. To this end, high-

throughput assays are performed that facilitate the task of screening previously developed 

compounds. [50] 

Several alternatives exist as tools to screen for new antimalarial drugs, apart from their 

applicability to identify parasite resistance. In vitro sensitivity assays with monitoring of 

Plasmodium cultures in the presence of the compound to be tested enables the evaluation of 

its capacity to inhibit parasite growth. Parasite growth may be measured based on schizont 

maturation or parasitemia, using microscopy, automatic reading with flow cytometry and DNA 

stains, or incorporation of radiolabeled hypoxanthine or ethanolamine. Also, enzyme-linked 

immunosorbent assays exist that correlate accumulation of specific parasite proteins, such 

as lactate dehydrogenase and histidine-rich protein 2 (HRP-2), with parasite viability. [51] 

 

1.4.2. Heme inhibition assays for drug screening 

Heme inhibition assays allow the investigation of antimalarial drug candidates that target 

hemozoin formation. Several approaches may be taken to explore drugs which interact with 

heme molecules. Some focus on the interaction between candidate compounds and heme 

molecules, and others adapt synthetic β-hematin formation in assay formats to test the 

compounds’ ability to inhibit crystallization. 

Multiwell plate assays provide information regarding the ability of compounds to bind to heme 

molecules, by analyzing inhibition of glutathione-dependent hemin degradation by those 

compounds [52] [53] [54]. Other types of analysis search for potential inhibitors of hemozoin 

formation by investigating drug-heme interactions by mass spectrometry [55] or UV-visible 

spectroscopy [56] [57]. 

Synthetic β-hematin formation can also be used as a process which mimics hemozoin 

biocrystallization, to perform in vitro assays where candidate compounds can be assessed 

for their ability to inhibit hemozoin growth [58]. Different β-hematin assays are performed 

according to different experiment formats, where reagents and growth conditions differ 

greatly [21]. The first assays to be described made use of P. falciparum derived hemozoin as 

an initiator for β-hematin formation and 14C-hemin as a way of quantifying the end product 

[59]. Meanwhile, the heme polymerization inhibitory activity (HPIA) spectrophotometric 

microassay was developed, which identifies ligands that bind axially with the protoporphyrin 
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iron [60]. Promoting coordination of pyridine to unreacted hematin, Ncokazi and Egan 

attained a colorimetric assay which enabled visual identification of inhibiting compounds by 

formation of an orange-pink color, and named it pyridine hemichrome inhibition of β-hematin 

(Phiβ) assay [61]. Parapini and colleagues further improved the HPIA assay into the β-

hematin inhibitory activity (BHIA) assay, using the more stable hemin chloride instead of 

hematin and adjusting pH to 5, and concluded that these conditions allow for the 

identification of ligands undergoing π-π interactions with heme [62]. Several groups have 

made use of some kind of initiator or catalyst molecules to improve β-hematin inhibition 

assays, including detergents such as Tween20 [63] or NP-40 and neutral lipids [64], or 

lecithin [65]. 

Standardization of heme inhibition assays is difficult and results are not consistent between 

assays [59] [60]. The assays often involve complex procedures, make use of various 

conditions, reagents as well as different types of initiators [63] [61] [60] [62] [66] [64] [59], and 

some use rather toxic reagents [61] [64] [59]. Moreover, the end product of these heme 

inhibition assays is not always characterized, with little information about the assessment of 

the nature and quality of the final aggregates [67] [68] [69] [70]. 

 

1.5. Novel hemozoin-like crystal inhibition assay for drug screening 

Ileal Fluid Dependent Organism (IFDO) was first described by Burdon in 1989, in 

consequence of the isolation of a “replicating agent” from the intestinal tract of patients with 

Crohn’s disease. After being “cultured” in specific broth and agar media, appearance of dark-

brown “bacterial-like growth” was evident, but the hypothesis of IFDO being formed by 

crystallization from constituents of the medium instead of a biological process was already 

posed. [71] As IFDO is susceptible to inactivation treatments similar to prions, the company 

Steris became interested in exploring this agent as a model to test drugs and processes 

against prion propagation. Interestingly, detailed characterization of IFDO revealed it to be 

very similar to malarial pigment, hemozoin, as it is an aggregate of ferriprotoporphyrin IX 

(heme). At that point, Steris contacted the host laboratory and a collaboration project to study 

this crystal was initiated. IFDO particles were grown in a well defined medium and a 

comparative analysis was performed along with hemozoin obtained by different methods. A 

more extensive characterization of the crystal making use of X-ray diffraction and infrared 

spectroscopy led to the finding that, despite the similarity, IFDO is not true hemozoin, and so 

the crystals were termed hemozoin-like crystals (HLC). However, following Steris 

investigation on an assay to evaluate the therapeutic and decontamination efficiency against 

transmissible misfolded proteins, HLC were explored for the potential to be grown as a novel 

and simple inhibition assay for antimalarial drug screening. 
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2. Objectives 

The aim of this work was to produce malarial pigment (hemozoin) from different origins, 

characterize it and establish its purity by several methods. The ability of antimalarial and 

antibiotic drugs to inhibit the crystallization of hemozoin-like crystals was investigated, 

together with the potential of these crystals to be used for screening for drugs inhibiting 

hemozoin formation. 

 

 

3. Material and Methods 

All reagents were purchased from Sigma-Aldrich® (Sintra, Portugal) unless stated otherwise. 

 

3.1. Culture media and solutions 

3.1.1. Malaria Complete parasite Medium (MCM): 500 mL of RPMI 1640 (1×, without L-

glutamine, with NaHCO3) (Gibco™, Life Technologies, Madrid, Spain) supplemented with 50 

mL of 10× AlbuMAX II® solution, 12 mL of HEPES Buffer Solution (1 M) (Gibco™, Life 

Technologies, Madrid, Spain), 5 mL of L-glutamine 200 mM and 500 µL of gentamicin 50 

mg/mL (Gibco™, Life Technologies, Madrid, Spain). 

3.1.2. 10× AlbuMAX II® solution: 25 g of AlbuMAX II® in a 500 mL aqueous solution of 5,2 

g of RPMI 1640 (with L-glutamine, without NaHCO3) supplemented with 500 µL of 

gentamicin 50 mg/mL, 2,98g of HEPES, 1,67 g of sodium bicarbonate, 1 g of glucose and 

0,1 g of hypoxanthine, adjusting pH to 7,2-7,4 and filtering 0,22 µm. All reagents from Life 

Technologies (Madrid, Spain) except HEPES which is from VWR (Carnaxide, Portugal). 

3.1.3. 1× Phosphate-buffered saline (PBS): diluted 1:10 from 10× PBS pH 7,2 (Gibco™, Life 

Technologies, Madrid, Spain) in ultrapure water, obtained with Milli-Q Synthesis Q-Gard®1 

water purification system (Millipore, Billerica MA, USA). 

3.1.4. Glycerolyte cryoprotective solution: constituted by 57% of glycerol, 16 g/L of sodium 

lactate (VWR, Carnaxide, Portugal), 300 mg/L of potassium chloride and 25 mM of sodium 

phosphate pH 6,8. 

3.1.5. Broth medium for HLC culture: prepared by autoclaving 35,5 g of Mycoplasma Broth 

Base (Oxoid, Basingstoke, England) in 950 mL of distilled water, obtained with Elix®10UV 

Progard®2 water purification system (Millipore, Billerica MA, USA) and 2 mL of Tween® 80; 

cooling at 50°C and adding 1,33 mL of horse serum (Gibco™, Life Technologies, Madrid, 

Spain), 20 mL of a 10% pancreatin solution in 1× PBS and  30 mL of a fresh blood extract. 

Medium is filtered at 0,22 µm and immediately used. 

3.1.6. Fresh blood extract: prepared by washing red blood cells from healthy human donors, 

obtained from a “buffy coat” from Instituto Português do Sangue (IPS), three times with 1 vol. 

of 1× PBS; lysing RBC by addition of 1 vol. of sterile ultrapure water; submitting the 
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suspension to three successive freeze-thaw cycles and 5 min. of sonication using the 35 kHz 

ultrasonic bath Transsonic T570 (Elma®, Singen, Germany); centrifuging for 15 min. at 

2400×g and discarding the pellet. 

3.1.7. Wash buffer: constituted by 10 mM Tris hydrochloride (Merck, Lisbon, Portugal) pH 

8.3, 50 mM potassium chloride and 1,5 mM magnesium chloride. 

3.1.8. Solution A: constituted by 10 mM Tris hydrochloride pH 8,3, 100 mM potassium 

chloride and 2,5 mM magnesium chloride. 

3.1.9. Solution B: constituted by 10 mM Tris hydrochloride pH 8,2, 2,5 mM magnesium 

chloride, 1% Tween® 20, 1% Triton® X-100 and 120 µg/mL proteinase K (Promega, 

Madison WI, USA). 

 

3.2. Plasmodium falciparum cultures 

3.2.1. Continuous Plasmodium falciparum cultures maintenance 

Plasmodium falciparum 3D7 strain was obtained from Malaria Research and Reference 

Reagent Resource Center (MR4; Manassas VA, USA) and continuous cultures of the 

parasite were maintained with human red blood cells (RBC), isolated from buffy coats. 

Healthy human blood from the buffy coat was washed three times with RPMI 1640 (1×, 

without L-glutamine, with NaHCO3) (Gibco™, Life Technologies, Madrid, Spain) and 

centrifuged 600×g for 5 minutes without brake to separate and isolate RBC from the 

leukocytes. Infected RBC were incubated at 37°C and 5% CO2, in MCM, which was changed 

every day. 

Cultures were kept at <1% parasitemia and 5% hematocrit, unless when used to purify or 

extract hemozoin, for which it was necessary to have >10% parasitemia and 1% hematocrit, 

and 2-5% parasitemia and 5% hematocrit, respectively. 

 

3.2.2. Giemsa staining of blood smears 

To estimate the amount of infected RBC in culture, a smear was prepared daily with a small 

amount of blood from the culture, when the medium was changed. The smear was fixed in 

absolute methanol (Merck, Lisbon, Portugal) for 20 s, air-dried and stained with Giemsa’s 

azur eosin methylene blue solution (Merck, Lisbon, Portugal) diluted 1:100 in  1× PBS, for 20 

minutes. Then, slides were rinsed with tap water and air-dried to be observed by bright field 

microscopy under oil immersion. 

Parasitemia is determined as the average percentage of infected RBC on ten different visual 

fields when observing at 1000× magnification. When needed, the infected RBC were diluted 

by substituting the right volume with uninfected RBC to lower parasitemia and maintain the 

hematocrit. 
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3.2.3. Frozen P. falciparum 3D7 strain stocks 

Frozen stocks of schizont-enriched P. falciparum 3D7 infected RBC from highly parasitized 

cultures can be maintained in vials at -80°C or in liquid nitrogen for long-term storage if 

transferred to a cryoprotective solution of glycerolyte. After obtaining the pellet of infected 

RBC from the culture by centrifuging for 10 min. at 600×g, 0,33 and then 1,33 volumes of 

glycerolyte were added drop by drop, gently mixing. 

When needed, glycerolyte-frozen parasites were thawed to begin a new culture by gently 

washing the thawed infected RBC with 0,1 vol. of 12% and 10 vol. of 1,6% sodium chloride, 

centrifuging at 600×g and 20°C for 5 min., resuspending in 1× RPMI 1640 (without L-

glutamine, with NaHCO3) (Gibco™, Life Technologies, Madrid, Spain), centrifuging again and 

finally resuspending in MCM. Uninfected RBC were added to obtain 5% hematocrit in the 

culture when it was necessary. 

 

3.3. Purification of Plasmodium falciparum hemozoin 

P. falciparum hemozoin (or native hemozoin, nHZ) was purified after saponin harvesting of 

parasites from 1 L of P. falciparum (3D7 strain) cultures at 1% hematocrit, enriched in 

trophozoites at a parasitemia of at least 10%, as previously described by Coban et al. (2002) 

[72]. In short, parasites were extensively washed with 1× PBS, pellet was sonicated for 5 

min., extensively washed with 2% sodium dodecyl sulfate (SDS) and then incubated 

overnight with 2 mg/mL proteinase K (Promega, Madison WI, USA). After being washed with 

2% SDS again, the pellet was incubated for 3 h in 6 M urea and then washed with 2% SDS 

and ultrapure water. Purified nHZ was resuspended in 1 mL of ultrapure water, quantified as 

heme-equivalents using QuantiChromTM Heme Assay Kit DIHM-250 (BioAssay Systems, 

Hayward CA, USA), and stored at 4°C. 

 

3.4. Extraction of crude Plasmodium falciparum hemozoin 

P. falciparum hemozoin was extracted without further purification (cnHZ), as described by 

Keller et al. (2004) [73], with some modifications. Briefly, infected RBC from 2 to 5% 

parasitemia P. falciparum (3D7 strain) cultures at 5% hematocrit were centrifuged at 800×g 

for 10 min. and the pellet was resuspended in 40 mL of 1× PBS with 1% of saponin for 10 

minutes. After centrifuging at 16000×g for 15 min., the pellet was washed seven times in 1× 

PBS, resuspended in 1 mL of ultrapure water, quantified as previously described and stored 

at 4°C. 

 

3.5. Production of synthetic hemozoin 

Synthetic hemozoin (sHZ) was obtained by the method described by Slater et al. (1991) [25], 

with some modifications. Briefly, 475 mg of hemin chloride were dissolved in 100 mL of 0,1 N 
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sodium hydroxide and heme was precipitated by slowly adding 35 mL of glacial acetic acid 

(Merck, Lisbon, Portugal). Crystallization was promoted by overnight incubation of the 

mixture at 80°C. Non-crystalline heme was then removed by washing three times with 1 vol. 

of 100 mM sodium bicarbonate pH 9,1 during 3 h, centrifuging for 15 min. at top speed. The 

pellet was further washed three more times in 1 mL of ultrapure water and finally 

ressuspended, quantified as for nHZ, and stored at 4°C. 

 

3.6. Production of hemozoin-like crystals 

Original “IFDO” cultures were kindly provided by Dr D. Burdon to Steris and later on termed 

hemozoin-like crystals (HLC). Culture methods were adapted from the original protocol [71], 

in which a seeded medium is used to grow the particles (here designated Broth medium for 

HLC culture). Cultures were prepared by seeding 50 µL of a McFarland 6 HLC suspension in 

10 mL of Broth medium for HLC culture, and incubating at 37°C and 5% CO2 for 5 to 7 days, 

in the CO2 incubator Heraeus® HERA® Cell (Fisher Scientific, Loures, Portugal). 

A modified broth medium was also developed, replacing the fresh blood extract by 50 µM 

hemin chloride, added from a stock solution prepared in 0,4 N sodium hydroxide, and 

adjusting pH of the medium at 7,2 before filtering at 0,22 µm. An Agar medium for HLC 

culture was also prepared, with Mycoplasma Agar Base (Oxoid, Basingstoke, England). 

Besides these, other growth conditions were tested, including: adjusting pH of the medium to 

5; incubation at ambient atmosphere instead of 5% CO2; using Brain Heart Infusion (Becton 

Dickinson, Madrid, Spain) broth or 1× PBS instead of Mycoplasma Broth Base; replacing 

horse serum by human serum (obtained from a healthy donor); excluding pancreatin from the 

medium; and seeding with sHZ instead of HLC. 

Obtained HLC were washed three times with 1 vol. of 100 mM sodium bicarbonate pH 9,1 

during 3 h, centrifuging for 15 min. at top speed, followed by three washes in ultrapure water. 

Then, HLC were finally resuspended in 1 mL of ultrapure water, quantified and stored at 4°C 

as performed for hemozoin. Alternatively, absolute ethanol (Merck, Lisbon, Portugal), 

absolute methanol (Merck, Lisbon, Portugal) and dimethyl sulfoxide (DMSO) were also used 

to wash HLC, in an attempt to reduce remaining heme contamination. 

 

3.7. Light and depolarizing microscopy 

Giemsa-stained smears of infected RBC from P. falciparum cultures (prepared as described 

above), and hemozoin and HLC preparations were observed with light and depolarizing 

microscopy, using the brightfield microscope Leica DM2500 (Leica Microsystems, Wetzlar. 

Germany). 
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3.8. Scanning electron microscopy 

Ten microliters of hemozoin and HLC samples were allowed to dry overnight in air on top of 

a carbon tape on a metallic sample holder and were metalized for 30 min. using JEOL, JFC-

1200 with a gold target. Scanning electron microscopy was performed with JEOL, JSM-2500 

LV scanning electron microscope (JEOL, Tokyo, Japan), at Faculdade de Ciências da 

Universidade de Lisboa. 

 

3.9. X-ray diffraction 

Hemozoin and HLC were subjected to X-ray diffraction (XRD) analysis. Crystals were 

resuspended in 10 µL of absolute ethanol (Merck, Lisbon, Portugal) and allowed to air-dry on 

the silicon sample holders. XRD patterns were then acquired at Faculdade de Ciências da 

Universidade de Lisboa, with the automatic X-ray diffractometer Philips Analytical PW 

3050/60 X’ Pert PRO (Ө /2Ө) (PANalytical, Almelo, The Netherlands), with an X’Celerator 

detector and automatic data acquisition with X’Pert Data Collector, version 2.0b. Cu Kα 

radiation (λ= 1,54060 Å) was used, operating with 30 mA and 40 kV. The diffractograms 

were recorded in the 2Ө range between 5° and 30° with a step size of 0.0170° (2Ө) and scan 

step time of 100 seconds. 

 

3.10. Infrared spectroscopy 

Synthetic hemozoin and HLC were dried overnight in a desiccator over phosphorus 

pentoxide and silica gel. Potassium bromide pellets of sHZ and HLC were prepared from the 

dried samples with a mortar and pestle and a compressor. Infrared spectra were obtained for 

each sample at Faculdade de Farmácia da Universidade de Lisboa, using IRAffinity-1 

Fourier Transform Infrared Spectrophotometer and IR Solution Software (Shimadzu, Kyoto, 

Japan). 

 

3.11. Heme contamination assessment 

Hemozoin and HLC produced were assessed for remaining heme contamination using thin 

layer chromatography (TLC). A quantified sample was first diluted in absolute methanol 

(Merck, Lisbon, Portugal) to the higher concentration of hemin chloride to be eluted (0,2 

mM). Then, 10 µL of the sample were eluted for 30 to 40 min. on a silica gel glass plate 

(Merck, Lisbon, Portugal) along with hemin solutions of known concentrations (0,2, 0,04 and 

0,02 mM), inside a methanol-saturated tank. Images of the plates were acquired with Alpha 

Imager® HP System (ProteinSimple, Santa Clara CA, USA) and the result was analyzed by 

determination of integrated density using ImageJ software (National Institute of Mental 

Health, Bethesda MD, USA) and calculation of remaining heme contamination percentage in 

the sample. 
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3.12. Mycoplasma contamination assessment 

To assess for Mycoplasma contamination, Polymerase Chain Reaction (PCR) was 

performed as follows. One hundred microliters of sHZ, nHZ, cnHZ and HLC were diluted in 1 

mL of 1× RPMI 1640 (Gibco™, Life Technologies, Madrid, Spain) and incubated in a 24-

wells plate for 24h at 37°C and 5% CO2. After incubation, samples were collected into a 

microtube, centrifuged for 15 min. at 15700×g and 4°C, supernatant was discarded and 

pellet resuspended in Wash buffer. After centrifuging again, pellet was resuspended in 1:1 

Solution A and Solution B, incubating at 60°C for 1 h followed by denaturing at 90°C for 10 

minutes. PCR was performed using My Cycler™ thermal cycler (Bio-Rad, Amadora, 

Portugal), by subjecting the Reaction mix to the following program: 1 cycle at 95°C for 5 min. 

(step 1), 30 cycles for step 2 – 95°C for 0,5 min., 58°C for 1,5 min., 72°C for 1,5 min. – and 

72°C for 10 min. (step 3). Reaction products were analyzed together with 1kb DNA Extension 

Ladder (Life Technologies™, Madrid, Spain) by electrophoresis at 60 V, for 1 h in 1× TAE 

Buffer, on a 1% agarose (NZYTech, Lisboa, Portugal) gel with 10000× GelRed® Nucleic acid 

gel stain (Biotium, Hayward CA, USA) diluted 1:20000. Positive results show a DNA 

amplicon of 717 bp. 

Reaction mix: prepared to a volume of 25 µL in nuclease-free distilled water (Gibco™, Life 

Technologies, Madrid, Spain), with 1× NZYTaq Colourless Master Mix (NZYTech, Lisboa, 

Portugal), 0,1-1 µM upstream (Pr27 – 5’ TGC ACC ATC TGT CAC TCT GTT AAC CTC 3’) 

and downstream (Pr22 – 5’ ACT CCT ACG GGA GGC AGC AGT A 3’) primers (Fisher 

Scientific, Loures, Portugal), and <250 ng DNA template. 

 

3.13. DNA contamination assessment 

Hemozoin and HLC were assessed for DNA contamination by agarose gel electrophoresis. 

Ten microliters of each sample, pretreated or not with 10 µL of 1% saponin for 10 min., were 

loaded with 3,5 µL of Gel Loading Buffer on a 0,8% agarose gel with 10000× GelRed® 

Nucleic acid gel stain diluted 1:20000, and ran in 1× TAE Buffer for 30 min. at 100 mA. 

 

3.14. Protein contamination assessment 

Hemozoin and HLC were assessed for protein contamination by polyacrylamide gel 

electrophoresis under denaturing conditions. Twenty microliters of each sample were boiled 

for 5 min. at 100°C with 20 µL of 2× Loading buffer and then loaded onto a SDS-

polyacrylamide gel (5% Acrylamide resolving gel/4% Acrylamide stacking gel) and ran in 1× 

Running buffer, for 40 min. at 180 V. The gel was stained in 1% Coomassie Brilliant Blue 

staining solution (Bio-Rad, Amadora, Portugal) for 20 min., destained overnight in Destain 

solution (constituted by 30% ethanol and 10% acetic acid in distilled water). After being 
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rinsed with abundant water, an image of the gel was acquired with Alpha Imager® HP 

System. Gels were dried on a filter paper with the DrygelSr Slab Gel Dryer SE1160 (Hoefer® 

Scientific Instruments, Holliston MA, USA), for at least 40 min. at 70°C. 

2× Loading buffer: 10% glycerol, 5% β-mercaptoethanol, 3 % SDS, 62,5 mM Tris (Merck, 

Lisbon, Portugal) pH 8,8, and 0,01% bromophenol blue (Bio-Rad, Amadora, Portugal) in 

ultrapure water. 

5% Acrylamide resolving gel: 5% acrylamide/0,1% bisacrylamide (Bio-Rad, Amadora, 

Portugal), 0,375 M Tris (Merck, Lisbon, Portugal) pH 8,8, 0,1% SDS, 0,05% ammonium 

persulfate and 0,1% TEMED in ultrapure water. 

4% Acrylamide stacking gel: 4% acrylamide/0,1% bisacrylamide (Bio-Rad, Amadora, 

Portugal), 0,375 M Tris (Merck, Lisbon, Portugal) pH 8,8, 0,1% SDS, 0,05% ammonium 

persulfate and 0,1% TEMED in ultrapure water. 

5× Running buffer: 15,15 g/L Tris, 72,05 g/L glycine (Merck, Lisbon, Portugal) and 0,5% 

SDS. 

 

3.15. Hemozoin and Hemozoin-like crystals quantitation (heme equivalents) 

The amount of hemozoin and HLC in the water suspensions was quantified as heme-

equivalents using QuantiChromTM Heme Assay Kit DIHM-250 (BioAssay Systems, Hayward 

CA, USA), by colorimetric determination of total heme at 400 nm. Shortly, after solubilization 

in an aqueous solution of 20 mM sodium hydroxide for 1 h, samples were added to the 

Reagent solution and let react for 5 min., after which absorbance at 400 nm was read and 

the concentration in µM (heme equivalents) determined using the following expression: 

Total heme concentration = 
               

                   
 × 62,5 × Dilution factor, 

which correlates absorbance at 400 nm with the concentration of heme present in solution. 

 

3.16. Novel Hemozoin-like crystal inhibition assay 

A McFarland 6 HLC suspension in water was sonicated for 5 min., using the 35 kHz 

ultrasonic bath Transsonic T570 (Elma®, Singen, Germany), and diluted 1:100 in Broth 

medium for HLC culture. One hundred and eighty microliters were distributed in wells of a 

96-wells plate. A range of drug concentrations was tested in order to determine a minimum 

inhibitory concentration for HLC growth. Stock solutions of chloroquine diphosphate, 

amodiaquine dihydrochloride, quinine hydrochloride dihydrate, quinacrine dihydrochloride, 

clindamycin hydrochloride, gentamicin and ampicillin were prepared in sterile ultrapure water, 

and those of mefloquine hydrochloride (Roche, Amadora, Portugal), halofantrine 

hydrochloride and artemisinin were prepared in absolute methanol (Merck, Lisbon, Portugal). 

After being adjusted to pH 7 ± 0,2 and 0,22 µm-filtered, drug solutions diluted in Broth 
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medium for HLC culture and then diluted in the seeded wells to a final concentration of 50, 

100, 250, 500, 750 and 1000 µM. Each drug was tested at least in duplicate, and plates were 

visually observed every day, for 5 days of incubation at 37°C and 5% CO2, to determine 

presence or absence of HLC growth – wells with less growth than unseeded control were 

considered as presenting absence of growth. Five microliters of all crystal-positive wells were 

seeded onto Tryptone Soya Agar (Oxoid, Basingstoke, England) and Mycoplasma Agar 

Base (Oxoid, Basingstoke, England) plates to confirm absence of bacteria. Five microliters 

from each well were also seeded onto fresh plates of Agar medium for HLC culture, to 

observe any HLC regrowth. 

 

 

4. Results 

4.1. Characterization of hemozoin of different origins and hemozoin-like crystals 

Hemozoin crystals are a dark-brown, black powder which when suspended in water give rise 

to a blackish suspension. Figure 3 shows the end-product of hemozoin synthesis and 

purification or extraction from P. falciparum (3D7 strain) cultures, as well as the product of 

hemozoin-like crystals (HLC) culture. Water suspensions of hemozoin obtained from the 

different origins and HLC were kept in microtubes at 4°C, after being quantified as for heme 

equivalents concentration. Visually, all these crystals are very similar, and when air-dried 

yield a black powder which presents no differences when observed with the naked eye. 

 

 

Figure 3: Water suspensions of hemozoin and hemozoin-like crystals (HLC). Synthetic hemozoin 
(sHZ, A), native hemozoin (nHZ, B), crude native hemozoin (cnHZ, C) and HLC (D) suspensions in 
water were kept in microtubes at 4°C after quantification in terms of heme equivalents concentration. 

 

During HLC incubation in broth medium at 37°C and 5% CO2, a dark-brown deposit 

appeared, as visible in Figure 4B. A small deposit also formed in the unseeded broth 

medium, but in a residual amount (Figure 4A), and not always being observed. Alternatively, 

an agar medium was used, in which seeded HLC originated dark-brown structures similar to 

bacterial or fungal “colonies”, which occurred beneath and on the surface of the agar, and 

were more numerous near the site of inoculation (Figure 4C and 4D). 



17 
 

 

 
Figure 4: Hemozoin-like crystals (HLC) cultures in broth and agar media. HLC unseeded (A) and 
seeded (B) broth in culture flasks and HLC seeded agar medium plates (C, D) were incubated for 5 
days at 37°C and 5% CO2. 

 

4.1.1. Light and depolarizing microscopy 

Hemozoin from the different sources and HLC have a crystalline appearance and depolarize 

light as observed with light and depolarizing microscopy at 1000× magnification, with the 

optical microscope Leica DM2500 (Figure 5). All preparations showed a more or less 

homogeneous crystal in size, but  tend to aggregate in suspension, as shown for native 

hemozoin (nHZ) in Figure 5A and HLC in Figure 5D. Aggregates could be dispersed by 

incubating the samples in the ultrasonic bath (with a frequency of 35 kHz) for 5 min., as 

exemplified for synthetic hemozoin (sHZ) in Figure 5C, with the exception of HLC (Figure 

5D).  In the case of HLC, extensive sonication did not disperse crystal aggregates in 

suspension. The crude extract of native hemozoin (cnHZ) seems to consist of small 

aggregates of hemozoin surrounded by membranes (Figure 5B). 

 
Figure 5: Microscopy observation of hemozoin and hemozoin-like crystals (HLC). Light (upper 
pannel) and depolarizing (lower pannel) microscopy observation of native hemozoin (nHZ, A), crude 
native hemozoin (cnHZ, B), synthetic hemozoin (sHZ, C) and HLC (D), at 1000× magnification, with 
the optical microscope Leica DM2500. 

 

Some differences could be noticed in the way that hemozoin from different origins 

depolarized light, with needle-like particles appearing more bluish (Figure 5C, lower panel) 

and aggregates more brown-gold and green (Figure 5A, lower panel). 
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4.1.2. Scanning electron microscopy 

Scanning electron microscopy allowed to analyze morphology and size of hemozoin crystals. 

As visible in Figure 6, sHZ, nHZ and HLC have a similar size, which ranges from 1,1 to 2,4 

µm, HLC having the biggest crystals. Also, morphology of the crystals is very alike, showing 

protruding needle-like particles, as presented in Figure 6 (B, C and D). Native hemozoin 

appears to be more brick-like shaped (Figure 6B). At 3500× magnification, round structures 

are visible in images acquired from cnHZ samples (Figure 6A). 

 

 
Figure 6: Scanning electron microscopy of hemozoin and hemozoin-like crystals (HLC). Crude 
native hemozoin (cnHZ A) (3500× magnification), and native hemozoin (nHZ B), synthetic hemozoin 
(sHZ C) and HLC (D) (5000× magnification) images obtained for air-dried samples with the scanning 
electron microscope JEOL, JSM-2500 LV. 

 

4.1.3. X-ray diffraction 

Hemozoin from synthetic (sHZ) and natural (nHZ) source was analyzed with the X-ray 

diffractometer Philips Analytical PW 3050/60 X’ Pert PRO and revealed to have identical X-

ray diffraction peak patterns (Figure 7). HLC presented a different X-ray diffraction pattern, 

which is indicative of a difference relative to the other crystals. 
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Figure 7: X-ray diffraction patterns of hemozoin and hemozoin-like crystals (HLC). Synthetic 
hemozoin (sHZ, blue line), native hemozoin (nHZ, green line) and HLC (red line) air-dried samples 
were analyzed on silicon sample holders with the X-ray diffractometer Phillips Analytical PW 3050/60 
X’ Per PRO using a Cu Kα radiation (λ= 1,54060 Å) source. 

 

4.1.4. Infrared spectroscopy 

When subjected to infrared spectroscopy analysis, sHZ produced a spectrum which presents 

the two hemozoin-characteristic peaks at 1663 and 1210 cm-1 (highlighted with arrows in 

Figure 8). HLC failed to show these peaks, thus confirming XRD data, which indicated the 

two crystals are in fact different. 

 

 
Figure 8: Infrared spectra of synthetic hemozoin (sHZ) and hemozoin-like crystals (HLC). sHZ 
(blue line) and HLC (red line) samples were dried over phosphorous pentoxide and silica gel in a 
desiccator and analyzed in potassium bromide pellets with IRAffinity-1 Fourier Transform Infrared 
Spectrophotometer; arrows highlight the two hemozoin-characteristic peaks at 1663 and 1210 cm

-1
. 
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Obtaining native hemozoin from parasitized cultures is considerably time consuming and 

costly and infrared spectroscopy analysis requires a relatively high amount of sample. Thus, 

considering that XRD results had already shown nHZ and sHZ to be identical, nHZ was not 

analyzed with infrared spectroscopy. 

 

4.2. Hemozoin and hemozoin-like crystals quantitation 

4.2.1. QuantiChrom™ Heme Assay Kit 

After production and purification or extraction of hemozoin from different origins and HLC, the 

resultant suspensions in water were quantified as heme-equivalents using QuantiChromTM 

Heme Assay Kit, which correlates absorbance at 400 nm with the concentration of total heme 

in solution. Concentration of sHZ and HLC samples ranged between approximately 3 to 11 

mM, depending on the initial total volume of reaction or culture. In spite of yielding larger 

pellets after extraction from the P. falciparum (3D7 strain) cultures, because cnHZ is not 

purified, it also contains membranes and proteins which contribute to pellet volume, without 

meaning it has a higher amount of hemozoin. Samples of cnHZ had concentrations of 0,2 

mM. Purification from P. falciparum (3D7 strain) cultures produced water suspensions of nHZ 

at around 1 mM. 

 

4.2.2. Absorbance measurements 

Trying to follow HLC growth by absorbance measurement revealed to be a somewhat difficult 

task. When growing HLC in glass tubes, daily measuring A405 nm with WPA CO8000 Biowave 

Cell Density Meter (Biochrom, Cambridge, United Kingdom) reflected the dark brown deposit 

formation in the bottom of the tubes, augmenting from first day and stabilizing after 5 to 7 

days of incubation. However, when cultures were carried out in polystyrene 96-well plates, 

neither A405 nm or A595 nm measuring with the microplate reader Infinite M200 (Tecan, 

Männedorf, Switzerland) were reliable HLC growth indicators, as they varied greatly between 

duplicates and in some cases unseeded wells had higher absorbance values than seeded 

ones, making it impossible to subtract a “blank” value from the growing HLC wells. 

 

4.3. Purity and contamination assessment of hemozoin and hemozoin-like crystals 

4.3.1. Heme contamination 

Heme contamination in hemozoin and HLC samples was assessed by thin layer 

chromatography (TLC) and examples of the silica plates used are depicted in Figure 9. 

Hemozoin from natural source was not contaminated with remaining heme (Figure 9A and 

9B). The synthetic crystal obtained from hemin chloride was contaminated with a residual 

amount of free heme, representing less than 1% of total heme content. However, HLC has 
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an average 37% heme contamination, even after being extensively washed with sodium 

bicarbonate (pH 9,1), water and methanol. 

 

 

Figure 9: Silica plates used for thin layer chromatography to assess remaining heme 
contamination in hemozoin and hemozoin-like crystals (HLC) suspensions. 10 µL of 0,2 mM 
native hemozoin (nHZ, A), crude native hemozoin (cnHZ, B), synthetic hemozoin (sHZ, C) and HLC 
(D) samples (3) were eluted on silica gel plates along with 10 µL of 0,2 mM (1), 0,04 mM (2) and 0,02 
mM (4) hemin chloride solutions in methanol. 

 

4.3.2. Mycoplasma contamination 

Hemozoin and hemozoin samples were subjected to polymerase chain reaction (PCR) in 

order to test the presence or absence of Mycoplasma DNA, indicative of Mycoplasma 

contamination. PCR products for each sample were analyzed by agarose gel 

electrophoresis, that revealed the absence of the DNA amplicon of 717 bp, size of the 

amplified Mycoplasma DNA sequence corresponding to the positive control (lane 1 in Figure 

10), which indicates no Mycoplasma contamination. 

 

 

Figure 10: Agarose gel after electrophoresis of polymerase chain reaction (PCR) products of a 
Mycoplasma DNA sequence amplification to assess hemozoin and hemozoin-like crystals 
(HLC) samples for contamination with Mycoplasma. 1 – amplified Mycoplasma DNA sequence 
(positive control); 2 – 1 kb DNA Extension Ladder (Life Technologies™, Madrid, Spain); 3 – water 
(negative control); 4 – synthetic hemozoin (sHZ); 5 – native hemozoin (nHZ); 6 – crude native 
hemozoin (cnHZ); 7, 8, 9 – HLC. 1% agarose gel, 60 V, 1 h, in 1× TAE, GelRed® diluted 1:20000; 12 
µL loaded sample. 
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4.3.3. DNA contamination 

Synthetic hemozoin, HLC and purified nHZ samples have no DNA contamination, as 

observed by agarose gel electrophoresis, illustrated in Figure 11. As expected, the cnHZ 

extract is contaminated with DNA, which did not migrate on the gel beyond the site of 

loading, even with the previous saponin treatment, possibly due to the interaction with 

proteins and membranes present in the unpurified suspension. 

 

 
Figure 11: Agarose gel after electrophoresis of hemozoin and hemozoin-like crystals (HLC) 
samples to assess DNA contamination. 1 – 1 kb Plus DNA Ladder (Life Technologies™, Madrid, 
Spain); 2 – synthetic hemozoin (sHZ); 3, 4* – HLC; 5, 6* – native hemozoin (nHZ); 7, 8* – crude native 
hemozoin (cnHZ). 0,8% agarose gel, 100 mA, 30 min., in 1× TAE, GelRed® diluted 1:20000; 20 µL 
loaded sample, pretreated with saponin unless where denoted with *. 

 

4.3.4. Protein contamination 

Synthetically produced hemozoin, purified nHZ and HLC are free of protein, as assessed by 

polyacrylamide gel electrophoresis in denaturing conditions (SDS-PAGE, Figure 12). Crude 

extract hemozoin (cnHZ) contains protein, as visible in lane 4 of the gel after Coomassie blue 

staining. Dark bands in the end of the gel in lanes 2 and 7 are due to the dark brown color of 

the hemozoin or HLC samples themselves, not corresponding to proteins, as these are 

revealed by Coomassie blue staining. 
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Figure 12: Protein polyacrylamide gel after electrophoresis of hemozoin and hemozoin-like 
crystals (HLC) samples in denaturing conditions (SDS-PAGE) to assess protein contamination. 
1 – Precision Plus Protein™ Dual Color Standards; 2 – synthetic hemozoin (sHZ); 3 – native 
hemozoin (nHZ); 4 – crude native hemozoin (cnHZ); 5, 6, 7 – HLC; 8 – H2O (negative control). 5% 
acrylamide resolving gel/4% acrylamide stacking gel, 180 V,  40 min., in 1× Running buffer, 1% 
Coomassie blue stained; 20 µL loaded sample, previously boiled for 5 min. at 100°C. 

 

4.4. Novel hemozoin-like crystals inhibition assay 

The novel HLC inhibition assay makes use of HLC growth in the previously described 

medium in a 96-well plate to test the effect of drugs on HLC crystallization. Appearance of a 

dark brown pellet at the bottom of the seeded wells after 3 to 5 days of incubation allows to 

visually observe HLC crystallization, yielding positive growth results, which is visible in Figure 

13 for gentamicin and ampicillin, even at a concentration of 1 mM. 

 

 
Figure 13: HLC crystallization inhibition assay in a 96-wells plate. In HLC seeded blood extract-
based broth with 0 to 1000 µM of gentamicin, ampicillin or chloroquine, a dark precipitate is easily 
visible with the naked eye in the positive growth wells (as for all tested concentrations of gentamicin 
and ampicillin wells); the first well with less growth than the drug free control was considered a 
negative growth result (as for ≥100 µM chloroquine wells). 
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A negative growth result is read when a well presents less growth than the control without 

added drug, shown in 100-1000 µM chloroquine wells. None of the wells showed cultivable 

contamination from bacteria or fungi, after inoculating and incubating 5 µL of content of the 

positive growth wells on Tryptone Soya Agar and Mycoplasma Agar Base plates. 

Different HLC growth conditions were tested, whose different results are shown in Table 2. 

 
Table 2: Results for different HLC growth conditions tested. 

Conditions changed Growth Comments 

Basic condition* 

 
+++ 

Black deposit accumulation, visible from 3
rd

 day of 

incubation, stabilizing after 5-7 days; smaller black 

deposit forms in some of the non-seeded wells; medium 

turns brownish in the second day of incubation 

Lysed horse blood extract 

(instead of human blood) 
++++ 

Despite the higher yield, it does not grow faster/growth 

is not detected earlier 

Hemin (instead of human blood) + Growth occurs in a lesser extent and slower  

Human serum (instead of horse 

serum) 
++ 

Growth occurs in a lesser extent and slower 

Brain Heart Infusion broth 

(instead of Mycoplasma broth) 
+/- 

Small black deposits form as in non-seeded normal 

assay condition (first row) 

pH 5 (instead of pH7) ++ More diffuse growth 

Ambient atmosphere (instead of 

5% CO2) 
++ 

Growth occurs in a lesser extent and slower 

Seeding with synthetic 

hemozoin (instead of “IFDO”) 
+++ 

Growth identical to IFDO seeding 

Without pancreatin 
- 

No black deposit formation; medium stays reddish and 

does not turn brownish in the second day of incubation 

 

Interestingly, replacing lysed blood with commercial hemin resulted in a somewhat reduced 

growth. Seeding is essential for the growth to occur, but using sHZ was equally effective as 

using HLC. Lowering the pH reduced the growth, as did exposure to ambient atmosphere, 

the use of a different culture broth or replacing horse serum by human serum. Broth without 

pancreatin did not allow pellet formation. 

Several antimalarial and antibacterial compounds were tested over a range of concentrations 

for HLC inhibition. Figure 13 represents a typical HLC inhibition assay and the overall results 

are summarized in Table 3. Chloroquine and amodiaquine showed the strongest HLC growth 

inhibition (100 µM), followed by quinine, quinacrine, halofantrine (250 µM), and mefloquine 

(500 µM). Interestingly, artemisinin also inhibited HLC growth at 250 µM concentration. As 

expected, antibacterials, namely gentamicin, ampicillin and clindamycin showed no inhibitory 
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effect at all. Tetracycline, rolitetracycline, tigecycline and doxycycline also did not inhibit HLC 

growth at the tested concentration range. 

 

Table 3: Inhibition of hemozoin-like crystals (HLC) formation by several antimalarial and 

antibacterial molecules at various concentrations in Broth medium for HLC culture. 

 Compounds concentrations (µM) 

 1000 750 500 250 100 50  0  

Chloroquine - - - - - + + 

Amodiaquine - - - - - + + 

Mefloquine - - - + + + + 

Quinine - - - - + + + 

Quinacrine - - - - + + + 

Halofantrine - - - + + + + 

Artemisinin - - - - + + + 

Clindamycin + + + + + + + 

Tetracycline + + + + + + + 

Rolitetracycline + + + + + + + 

Tigecycline + + + + + + + 

Doxycycline + + + + + + + 

Gentamicin + + + + + + + 

Ampicillin + + + + + + + 

 “-“ means no growth, “+” means visible growth 
 

 

5. Discussion 

5.1. Characterization of hemozoin and hemozoin-like crystals 

5.1.1. Importance of characterizing hemozoin 

Hemozoin may play an important role as a modulator of immune system responses, possibly 

contributing to malaria immunopathology [30]. In order to assess and understand its 

biological properties, scientists need to obtain hemozoin crystals. It is possible to obtain 

hemozoin from P. falciparum cultures [72], which is cumbersome and rather expensive. 

Alternatively, synthetic hemozoin can be chemically synthesized from hemin chloride under 

acidic or anhydrous basic conditions [74]. Thus, both types of hemozoin are obtained using 

different methods and they can be purified to a certain degree in terms of the contaminating 

substances present in the end product. 

Some studies suggest hemozoin may exert stimulatory effects, while others propose 

inhibitory effects [22]. Different inflammatory effects may be produced by nanocrystalline, 

amorphous synthetic hemozoin and needle-like crystals [22]. The size of the synthetic 

hemozoin crystals also appears to be an important factor [75]. Consequently, study results 
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on host immunomodulation may crucially depend on the type of hemozoin, that is its origin, 

shape and size, as well as contaminating substances.  

In order to ensure that the produced crystals are uniform, morphology and size must be 

assessed. Characterization of hemozoin crystals makes use of tools such as light, 

depolarizing and electron microscopy, as well as X-ray diffraction and infrared spectroscopy. 

Notably, hemozoin remains a good antimalarial drug target. To screen for drug candidates, 

one can make use of several methods to produce β-hematin synthesis [62] [61] [63] [60]. Yet, 

not every study confirmed that the end product in their β-hematin assay was indeed true 

hemozoin or controlled for remaining heme contamination. 

 

5.1.2. Analysis of hemozoin from different origins and hemozoin-like crystals 

Characterization of hemozoin is crucial, especially when obtained from varied sources or with 

different methods. Nonetheless, most studies on the possible role of hemozoin in host 

immunomodulation give little information on the methods used to characterize and identify 

the nature of the crystals they use. Some do not characterize them at all [76] [77] [78], others 

only assess the presence of contaminants [79] [80] [81], and few use SEM, XRD, infrared 

spectroscopy or thin layer chromatography [75] [73]. 

Hemozoin obtained from different origins is not distinguishable by simple visual observation 

of the blackish suspensions in water (Figure 3). Although minor differences in the viscosity 

can be observed, namely a higher viscosity in the crude extract of native hemozoin. 

Therefore, a microscopic observation has to be performed to be able to characterize 

hemozoin better, both synthetic and natural, in what concerns morphology and size. 

Light microscopy allows the observation of typical needle-like morphology of synthetic and 

natural hemozoin crystals (Figure 5). However, hemozoin-like crystals were slightly different 

and always presented as roundish aggregates despite extensive sonication to try dispersion. 

Depolarizing microscopy is useful to confirm the typical birefringence of hemozoin 

preparations. In fact, it was possible to note some differences in the way that hemozoin from 

different origins depolarized light, with needle-like particles appearing more bluish and 

aggregates more brown-gold and green. 

Importantly, only scanning electron microscopy analysis allowed to assess crystal size and to 

elucidate crystal morphology clearly. However, despite some differences concerning P. 

falciparum derived hemozoin’s brick-like shape and synthetic hemozoin’s needle-like 

appearance, crystals from different sources presented an overall similarity (Figure 6). Crystal 

size correlated well with the dimensions described by others [18] [27], and homogeneity of 

crystals supports the idea that it is possible to have similar synthetic and native hemozoin if 

the process of obtaining them is carefully controlled [22].  
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Still, in order to unequivocally confirm the physicochemical nature of hemozoin from different 

origins, it was necessary to perform an XRD analysis. Values for diffraction peaks of sHZ and 

nHZ matched those obtained in other studies, namely the d-spacing values [82] [26] (Figure 

7). Some differences of peak intensity may be due to preferential growth occurring through 

different planes of the crystal. Hemozoin-like crystals, however, showed a different XRD 

pattern, as shown in Figure 7. Diffraction peaks corresponding to different 2Ө angles indicate 

that these crystals are not equal to hemozoin. 

Infrared spectroscopy analysis further confirmed the difference of hemozoin-like crystals 

relative to hemozoin. The infrared spectrum obtained for sHZ shows the two hemozoin-

characteristic peaks at 1663 and 1210 cm-1, as determined by other groups [25] [17] [83], 

whereas hemozoin-like crystals spectrum lacks these peaks (Figure 8). However, the 

information which can be obtained by infrared spectroscopy is not superior to XRD, which 

appears to give the optimal information to assess the physicochemical nature of the crystals. 

In summary, several methods are advisable to assess the nature and quality of hemozoin in 

a complementary way: 

- A first approach to characterize hemozoin after its production must include 

observations by light and depolarizing microscopy; 

- Scanning electron microscopy is essential for the assessment of morphology, size 

and homogeneity of the crystals; 

- Evaluation of the physicochemical nature of the crystal, however, is only possible by 

XRD and infrared spectroscopy analysis. Nevertheless, these analyses require a 

considerably high amount of sample. When obtaining native hemozoin, crystals are 

formed by the parasite itself. Considering the costs involved in maintaining cultures to 

purify the pigment, it may not be necessary to perform XRD or infrared spectroscopy 

for native hemozoin. When synthesizing β-hematin, however, it is important to 

perform these analyses in order to know if the obtained crystals are in fact similar to 

hemozoin. 

 

5.1.3. Purity and contamination assessment 

Some groups working with sHZ devoid of DNA or protein suggest that hemozoin may play an 

immunostimulatory role in malaria pathology [79]. Others, who extract the unpurified pigment 

from cultures, consider that hemozoin-bound DNA, proteins or lipids may confer the crystal 

its immune modulation properties [84] [85] [73] [86]. In fact, it has not been clarified how 

hemozoin is released in in vivo milieu. Some authors refer that hemozoin remains inside 

intact digestive vacuoles after schizont rupture into the blood stream and that the vacuole 

itself causes these effects [87] [86]. Others suggest that DNA and proteins bind to the crystal 
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and are responsible for immune effects [88] [73]. Other groups report egress of merozoites 

without referring explicitly to how hemozoin is liberated [89] [20]. 

Thus, not too surprisingly, hemozoin obtained by different methods may contain other 

molecules of host or parasite origin. Synthetic and purified native hemozoin as well as 

hemozoin-like crystals obtained in this study did not contain DNA and protein molecules 

detectable by agarose gel and polyacrylamide gel electrophoresis (Figures 11 and 12). The 

crude extract hemozoin, however, is contaminated with DNA and protein. Therefore, different 

methods may yield crystals which contain or not other molecules, and this may elicit different 

results when assessing their possible immunomodulatory effects. Yet, depending on how we 

consider hemozoin to be released from infected erythrocytes, the presence of DNA and 

protein may be of interest when studying the effects of hemozoin. 

Other contaminants may be considered in addition to host and parasite molecules. Hemozoin 

and hemozoin-like crystals samples obtained in the present work were all found to be free of 

Mycoplasma (Figure 10). Another important test to perform would be the endotoxin detection, 

to exclude lipopolysaccharide (LPS) contribution when studying immune responses to 

hemozoin. When studying hemozoin immunomodulatory properties, Mycoplasma and 

endotoxin contamination must not be present, in order to exclude their possible role in the 

effects being observed. 

 

5.1.4. Quantitation and remaining heme contamination 

Regardless of the high purity of the produced hemozoin, substances of biological origin may 

be present in some samples, since native hemozoin is derived from cultures of infected 

erythrocytes and hemozoin-like crystals are grown in a medium supplemented with blood 

extract. However, precise determination of the produced hemozoin concentration is crucial, 

in order to obtain the right amount of crystal being tested either when investigating its 

immunomodulatory effects or in heme inhibition assays. Hemozoin quantification can be 

performed using different methods. One can simply weigh the dried crystal [25] [82] or 

convert hemozoin samples back into heme and spectrophotometrically measure the 

absorbance and express the amount of hemozoin in heme-equivalents. Absorbance may be 

read either directly [24] [83] or making use of pyridine (category 4 of acute toxicity [90]) to 

evaluate coordination to heme molecules [61] [91].  

The QuantiChrom™ Heme Assay Kit was used in this study to determine the hemozoin 

concentration in heme-equivalents. This kit does not require toxic reagents and was 

specifically optimized to reduce potential interference from substances of biological origin. 

Synthesis of β-hematin and cultivation of hemozoin-like crystals were more economic and 

less laborious, safer, and had a higher yield than the isolation and purification of hemozoin 

from P. falciparum cultures. Hemozoin from P. falciparum cultures was more difficult to 
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obtain than sHZ and hemozoin-like crystals, requiring maintenance of high volume cultures, 

which is time consuming and needs expensive reagents.  A large blackish pellet of crude 

native hemozoin obtained with less volume of culture did not mean a higher amount of the 

crystal, probably because membranes and proteins contributed to the larger volume of the 

crude extract. Thus, it may be advantageous to use sHZ or hemozoin-like crystals rather 

than natural hemozoin, but that depends on the premises and objectives of the study in 

question. 

Importantly, the QuantiChrom™ Heme Assay Kit measures the absorbance of total heme 

molecules after hemozoin conversion into heme which cannot be used to determine 

contaminations by unreacted heme. However, in the case of synthesis of sHZ thin layer 

chromatography was performed to be able to distinguish between reacted and unreacted 

heme molecules which allowed to assess remaining heme contamination. 

The assessment of heme contamination allows to exclude that possible free, unreacted 

heme interferes when investigating hemozoin effects in the modulation of immune system’s 

responses [75]. Determining the remaining heme is also useful to evaluate the yield of β-

hematin synthesis. Hemozoin of natural source was shown not to be contaminated with free 

heme (Figure 9) and synthetic hemozoin showed only a 1% contamination with free heme. 

Thus, the synthesis method was considerably efficient, since washing with a basic solution 

allowed to remove almost all unreacted heme. On the other hand, hemozoin-like crystals 

presented an average 37% heme contamination. 

Extensive washing of hemozoin-like crystals with a basic solution, water and methanol failed 

to reduce the contamination with heme. Using DMSO reduced heme contamination to some 

extent, but not all. In fact, the high heme contamination of hemozoin-like crystals could in 

part explain the difference relative to hemozoin crystal, because hemozoin-like crystals could 

be some sort of aggregate constituted by heme and β-hematin. However, XRD patterns of 

synthetic hemozoin and hemozoin-like crystals are sufficiently different to indicate that a 

phase with the specific synthetic hemozoin peaks was not present in hemozoin-like crystals 

(Figure 7). 

 

5.2. Novel hemozoin-like crystals inhibition assay 

5.2.1. Hemozoin-like crystals characterization and cultivation 

Ileal Fluid Dependent Organism (IFDO) was first described by Burdon in the 1980’s. In an 

attempt to identify a possible cause of Crohn’s disease, Burdon used ileal fluid-supplemented 

medium to isolate IFDO from the ileostomy fluid of patients. The hypothesis that IFDO was a 

living organism was considered, and its resemblance with replicating agents such as slow 

viruses, amyloid and prions was reported. But Burdon also thought that IFDO could be a sort 

of crystal spontaneously forming from precipitation of constituents of the culture medium [71]. 
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IFDO presented characteristics of resistance to standard methods of disinfection and 

sterilization similar to those of prions and other related agents. Therefore, the company 

Steris became very interested in studying IFDO, with the intent to develop a model to test for 

new drugs and processes for prion inactivation. Mass spectrometry analysis showed that 

IFDO particles are in fact ferriprotoporphyrin IX aggregates. Together with IFDO’s 

birefringence and dark-brown color, this raised the possibility that IFDO could be hemozoin.  

Further characterization was then performed by us in collaboration with Steris. 

Scanning electron microscopy showed IFDO to be similar to sHZ and nHZ in morphology. No 

proteins or DNA were detected in IFDO samples, similarly to what was previously described 

for sHZ and purified nHZ [22] [29]. However, XRD and infrared spectroscopy results for IFDO 

samples revealed it was different from hemozoin, as explained above, and the particles were 

named hemozoin-like crystals. 

Hemozoin-like crystals (HLC) can be grown in a well-defined medium, following the 

description from Burdon. The obtained hemozoin-like crystals were similar to those observed 

when IFDO was first described [71]. The formation of a brown precipitate was visible during 

incubation in broth medium, and brown colony-like structures appeared beneath and on the 

surface of seeded agar medium plates (Figure 4). Interestingly, seeding with sHZ instead of 

IFDO particles produced similar results. Different growth conditions were explored (Table 2), 

but it was not possible to exclude any medium constituent or to simplify incubation. In 

accordance with what had already been described [71], pancreatin in particular was essential 

for crystal growth. Of note, human blood extract was used instead of horse blood extract to 

supplement the culture medium, because it was easier to obtain as part of other ongoing 

research work.  

 

5.2.2. Inhibition of hemozoin-like crystals growth by antimalarial compounds 

Hemozoin-like crystals were grown in broth medium in the presence or absence of different 

antimalarial and antibiotic drugs which permitted to investigate their ability to inhibit the 

process of crystallization. A range of drug concentrations was tested in a 96-well plate 

format, as shown in Figure 13, allowing to visually determine minimum inhibitory 

concentrations of HLC growth (Table 3). 

Chloroquine and amodiaquine presented the highest inhibitory potency, followed by other 

quinoline drugs, such as quinine and mefloquine. This is consistent with previously reported 

results for antimalarials targeting hemozoin formation [63] [61] [62]. As expected, no 

inhibition was observed for the antibacterials gentamicin, ampicillin, clindamycin and 

tetracyclines at the tested concentrations. 

Curiously, artemisinin showed an inhibitory effect on HLC formation comparable to that 

observed with quinine, quinacrine and halofantrine. In fact, the mode of action of artemisinins 
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has been a subject of debate. Some authors argue that artemisinins do not inhibit β-hematin 

formation [66] or that heme-adducts are only formed with the drug under reductive conditions 

[55]. Yet, other studies report similar results to those obtained in the present work [60] [28]. A 

possible explanation for artemisinin inhibition results could be the difference between 

hemozoin-like crystals and hemozoin. Some believe assay formats using different reagents 

may assess different types of interaction between heme and drug molecules, namely 

artemisinin [66]. Perhaps artemisinin interacts differently with hemozoin-like crystals and with 

hemozoin, resulting in inhibition when assessed with the assay from the present work. Future 

work will include testing of further artemisinin derivatives in the HLC-assay, as well as 

reproducing previous results with artemisinin using other HZ-inhibition assays. 

Interestingly, different types of interactions can occur to form heme aggregates. Hemozoin is 

formed by dimers of heme molecules which interact through π-π stacking forces. Other 

interactions may result in the formation of µ-oxo dimers, consisting of two heme molecules 

linked by an oxygen atom which establishes a covalent bond to the iron centers. [35] [24] [92] 

[93] HLC seem to be relatively stable, since they were not solubilized in DMSO, which is the 

solvent used in hemozoin inhibition assays to remove unreacted hematin before the end 

product is quantified [62]. It can be that HLC are heme aggregates similar to hemozoin with 

different types of interactions occurring between the heme molecules, but additional studies 

are needed in order to fully understand their exact nature. 

Of note, most reports on hemozoin inhibition assays give little information on the methods 

used to identify the nature of the final aggregates and to quantify the extent of remaining 

heme contamination [67] [68] [69] [70]. Some only use infrared spectroscopy, and few use 

SEM or XRD [61] [65] [94]. So, if an assay reliably detects hemozoin inhibiting drugs, one 

can argue that it may not be essential that the end product is true hemozoin. 

Nevertheless, when screening for antimalarial drugs using the HLC inhibition assay, positive 

results must be carefully analyzed in order to assure that tests reflect true hemozoin 

inhibition. 

Of interest, the potency of drugs inhibiting hemozoin formation may depend on the stability of 

the interactions in heme-drug adducts [55]. But the specific binding to differentially-growing 

surfaces of the hemozoin crystal could also determine drug potency [35]. Most of described 

heme inhibition assays start with heme or hematin reagents [60] [62]. Conversely, HLC 

inhibition reported in this study makes use of HLC seeding as an initiator, which may account 

for drug interaction with both heme molecules and differentially-growing faces of the crystal. 

 

5.2.3. Other assays and advantages of the novel hemozoin-like crystals inhibition assay 

Several heme inhibition assays have been developed with the intent of screening drugs with 

the potential to inhibit hemozoin growth. In most of these assays, crystallization occurs 
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during a defined time interval (1-18 h) at a certain temperature (37-60°C), after adding glacial 

acetic acid or acetate buffer at pH 5 to a hemin chloride or hematin solution in DMSO or 

NaOH. To remove non-crystalline heme, the final product is washed with DMSO, dissolved 

back into heme using NaOH, and finally measured by spectrophotometric reading at A405nm 

[62]. To assess if a compound inhibits β-hematin formation, it is included in the reaction and 

then the inhibition quantified as the decrease in final β-hematin concentration. As an 

alternative to transforming β-hematin back into heme, colorimetric assays use pyridine to 

coordinate with unreacted hematin. The formation of an orange-pink color allows visual as 

well as spectrophotometric identification of β-hematin inhibition. [61] 

However, these assays depend on the use of highly concentrated solutions of hemin (final 

concentration of 1-2 mM), drugs (1-20 molar equivalents relative to hemin) and acid (8-12.9 

M), and the procedures involved include multiple manipulation steps (pipetting, washing 

steps). Also, centrifuging microtiter plates at 3300×g may not be possible in some 

laboratories, where existing centrifuges may not have the necessary rotors to achieve such a 

force. Measurement of the end product is often complex, involving transformation of 

hemozoin back into heme, or using pyridine [61] [64] [68], which is very toxic. 

A lower concentration of drug is needed to perform the HLC inhibition assay as compared to 

other heme inhibition assays. However, drugs have to be prepared in considerably 

concentrated stock solutions, in order to dilute the drug solvent in the culture medium enough 

to avoid that the ratio of HLC growth medium to drug solvent is too low and thus the medium 

might not support crystal growth. Still, some drugs cannot be prepared in such concentrated 

solutions. Furthermore, the amount of drug needed may itself be a limitation in terms of 

availability during compound discovery. In the future, it will be interesting to explore the 

assay in a systematic way by trying to reduce the final proportion of medium as much as 

possible, to be able to start with less concentrated stock solutions. 

In summary, the hemozoin-like crystals inhibition assay is simple and easy to perform. It is 

carried out in a microplate and requires rather basic and inexpensive reagents. Growth 

occurs at physiological pH (7) at 37°C. It only needs basic laboratory infrastructures, and 

once set up there are no further manipulation steps. The final read-out is very simple, as it is 

based on visual observation of the end product. Although HLC are not identical to hemozoin, 

the results of the inhibitory effects of the quinoline drugs, including their different potency, are 

consistent with results from previously published heme inhibition studies. This supports the 

use of HLC as an assay to screen antimalarial drugs for their hemozoin inhibiting activity. 

The described HLC inhibition assay may therefore have the potential to be a helpful tool in 

addition to existing assays for antimalarial drug screening. 
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6. Conclusions 

Characterization of hemozoin crystals is crucial to better understand their potential role as a 

modulator of immune responses. A first approach to characterize hemozoin after its 

production must include observations by light and depolarizing microscopy. Scanning 

electron microscopy is essential to evaluate morphology, size and homogeneity of the 

crystals. To investigate the physicochemical nature of the crystal, however, X-ray diffraction 

or infrared spectroscopy analyses are important, especially when synthesizing β-hematin. In 

the present work, an overall similarity was observed in morphology and size for hemozoin 

from different origins, but hemozoin-like crystals were shown to be different from true 

hemozoin by X-ray diffraction and infrared spectroscopy. 

Growth of hemozoin-like crystals successfully allowed to investigate the hemozoin inhibiting 

effects of antimalarial drugs. In fact, the potency of quinoline drugs to inhibit hemozoin-like 

crystals growth is consistent with previously published heme inhibition studies. The assay is 

easy to perform and requires rather basic and inexpensive reagents. Also, it only needs 

basic laboratory infrastructures and the final read-out is very simple, as it is based on visual 

observation of the end product. The hemozoin-like crystals inhibition assay may be used as a 

first approach in antimalarial drug screening, not only of compounds designed from analogs 

of known antimalarials, but also drugs already used to treat other diseases. 
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