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Abbreviations 

 
 

ACE- Angiotensin-Converting Enzyme 

ACTR- hRARβ-stimulatory protein 

AF1- Activation Function 1  

AF2- Activation Function 2 

AIPs- Aldosterone-Induced Proteins  

AKT- Protein Kinase B 

AME- Apparent Mineralocorticoid Excess  

AngII- Angiotensin II  

ANOVA- analysis of variance  

AR- Androgen Receptor 

AT1- G-protein-coupled receptor, type 1 

AT2- G-protein-coupled receptor, type 2 

ATCC- American Type Culture Collection 

BSA- Bovine Serum Albumin  

CaM- Ca2+-calmodulin 

CaMK- Calcium/calmodulin-Dependent Protein Kinase 

CAV1- caveolin 1 

CAV2- caveolin 2 

CAV3- caveolin 3 

CBP- cAMP Response Element Binding Protein 

cDNA- complementary Deoxyribonucleic acid 

CHIF- Channel-Inducing Factor 

Co-IP- co-immunoprecipitation 

COX2- Cyclo-Oxygenase 2  

CRE- cyclic AMP Response Element  

CREB- cyclic AMP response element binding protein  

CSD- caveolin scaffolding domain 

Ct – Cycle Threshold 

D- Flexible hinge region 



 7

DAG- Diacylglycerol 

DBD- DNA Binding Domain 

DMEM- Dulbecco’s Modified Eagle’s Medium 

DNA- Deoxyribonucleic acid 

DTT- Dithiothreitol  

E2- 17β-Estradiol 

eNOS- endothelial nitric oxide synthase  

ER- Estrogen Receptor 

EGFR- Epidermal Growth Factor Receptor 

ENaC- Epithelial Na+ Channel 

ER- Estrogen Receptor 

ERK 1/2- Extracellular signal-regulated kinase 1/2 

FBS- Foetal Bovine Serum 

G6PDH- Glucose-6-phosphate dehydrogenase 

GPCR- G-protein coupled receptor 

GR- Glucocorticoid Receptor 

GRIP1- Glucocorticoid Receptor-Interacting Protein 1 

H1- Histone 1 

H12- Helix 12 

12- HETE- 12-lipoxygenase to generate 12-hydroxyeicosatetraenoic acid 

HAT- Histone acetyltransferase 

HSD3B2- Type 2 3-Hydroxysteroid Dehydrogenase 

HSP90- Heat Shock Protein 90 

HRE- Hormone Response Element  

11HSD- 11β-hydroxysteroid dehydrogenase  

11HSD2- 11β-hydroxysteroid dehydrogenase type II isoform  

IgG- Immunoglobulin G 

IGF-1R- Insulin-like growth factor 1 receptor 

IMM- Immunophilin 

IL-6- Interleukin 6  

IP3 - Inositol 1,4,5-triphosphate 

kDa- kilo Dalton 
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LBD- Ligand Binding Domain 

MAEC- Mouse Aortic Endothelial cells 

MAPK- Mitogen Activated Protein Kinase 

-ME- -mercaptoethanol 

MCP-1 - Monocyte Chemoattractant Protein-1  

M-MuLV - Moloney Murine Leukaemia Virus 

mTOR- Rapamycin 

MR- Mineralocorticoid Receptor 

mRNA- Messenger Ribonucleic acid 

NCoA2- Nuclear receptor Co-Activator 2 

N-CoR- Nuclear Receptor Corepressor 

NF-B- Nuclear Factor kappa-light-chain-enhancer of activated B cells 

NLS- Nuclear Localization Signal  

NO- Nitric Oxide 

NOS- Nitric Oxide Synthase  

NR- Nuclear Receptors 

NTD- N-terminal domain 

OD- Optical Density 

PAGE- polyacrylamide gel electrophoresis   

PAI-1- Plasminogen Activator Inhibitor-1 

PBS- Phosphate Buffered Saline 

p/CIP- mouse homolog CBP-interacting protein 

PELP1- proline, glutamic acid and leucine-rich protein 

peNOS- phosho endothelial nitric oxide synthase 

PKA- Protein Kinase A 

PKC- Protein Kinase C  

PMSF- phenylmethanesulfonylfluoride  

PPIase- Peptidylprolyl Isomerase  

PI3-k- Phophatidylinositol 3-kinase 

PIP2 -Phosphatylinositol 4,5-biphosphate 

PLC- Phopholipase C 

PR- Progestrone Receptor 

PTEN- Phosphatase with tensin homology 



 9

PTGS- post-transcriptional gene silencing 

PVDF- polyvinyl difluoride  

qPCR- quantitative real time polymerase chain reaction 

RAC3- Retinoic Acid Receptor Interacting protein 3 

RAR- Retinoic acid Receptor 

RNA- Ribonucleic acid 

RNAi- Ribonucleic acid interference  

rRNA- ribosomal Ribonucleic acid 

SDS- sodium dodecyl sulfate 

SERMs- Selective Estrogen Receptor Modulators 

SGK- Serum and Glucocorticoid-induced Kinase 

siRNA- Small interfering Ribonucleic acid 

-SMA- alpha smooth muscle actin 

SMRT- Silencing Mediator for RAR and TR  

SHR-Steroid Horomone Receptors 

StAR- Steroidogenic Acute Regulatory protein 

SRC-1- Steroid Receptor Coactivators-1  

SRE- Steroid Response Element 

SUMO- Small Ubiquitin-related Modifier 

TBS- Tris-Buffered Saline 

TPR- Tetratricopeptide Repeats  

TFIIB- Transcription Factor IIB  

TIF2- Transcriptional Intermediary Factor 2  

TLR- Toll-like receptor 

TNF-- Tumour Necrosis Factor alpha 

TR- Thyroid hormone Receptor 

TRAM1- TR-interacting protein 1 

tRNA- transfer Ribonucleic acid  

VWF- Von Willebrand Factor 

http://en.wikipedia.org/wiki/Transcription_(genetics)�
http://en.wikipedia.org/wiki/Gene_silencing�
http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate�
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Abstract 
 

The cellular responses to steroids are mediated by two general mechanisms: 

genomic and rapid/nongenomic effects. Identification of the mechanisms underlying 

aldosterone’s rapid versus their genomic actions have been difficult to study and are 

not clearly understood. I explored the hypothesis that striatin is a critical intermediary 

of the rapid/nongenomic effects of aldosterone and that striatin serves as a novel link 

between the actions of the mineralocorticoid and estrogen receptors. In human and 

mouse endothelial cells, aldosterone promoted an increase in pERK that peaked at 

15 minutes. Striatin is a critical mediator in this process as reducing striatin levels 

with siRNA technology prevented the rise in pERK levels. In contrast, reducing 

striatin did not significantly affect two well-characterized genomic responses to 

aldosterone. Down regulation of striatin with siRNA produced similar effects on 

estrogen’s actions – reducing nongenomic, but not the genomic actions investigated. 

Aldosterone, but not estrogen, increased striatin levels. When endothelial cells were 

pre-treated with aldosterone, the rapid/nongenomic response to estrogen on 

peNOS/eNOS ratio was enhanced and accelerated significantly. Importantly, pre-

treatment with estrogen did not enhance aldosterone’s nongenomic response on 

pERK. In conclusion, these results indicate that striatin is a novel mediator for both 

aldosterone’s and estrogen’s rapid and nongenomic mechanisms of action on pERK 

and peNOS, respectively, thereby providing evidence for a synergistic effect between 

the mineralocorticoid receptor and the estrogen receptor. Furthermore, these results 

suggest a unique level of interactions between steroids on the cardiovascular system 

that may have broad application for the treatment of cardiovascular diseases. 
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Introduction 
 

The Merriam-Webster dictionary states that the definition for steroid hormone 

is: “any of numerous hormones (as estrogen, testosterone, cortisone, and 

aldosterone) having the characteristic ring structure of steroids and formed in the 

body from cholesterol”. The etymology of the term itself comes from a mixture of 

Greek and Latin words like: stereos, solid; oleum, oil; eidos, form and hormaein, to 

set in motion. 

Steroids are a class of organic 

compounds with a chemical structure that 

contains a gonane core i.e., a specific 

arrangement of four cycloalkane rings that 

are joined to each other (Figure 1) or a 

derived skeleton. Usually, methyl groups 

are present at the carbons C-10 and C-

13. It is also possible for an alkyl side 

chain to be present at carbon C-17.  

In physiology steroid hormones are involved in various aspects of growth, 

development, differentiation, reproduction and homeostasis. They exert their effects 

by means of specific receptors, the steroid hormone receptors, such as estrogen 

(ER), progesterone (PR), androgen (AR), glucocorticoid (GR) and the 

mineralocorticoid receptor (MR). Steroid hormone receptors (SHR) belong to the 

steroid/thyroid hormone receptor superfamily, which includes thyroid hormone (TR), 

retinoic acid (RAR), and vitamin D3 receptors, as well as “orphan” receptors, for 

which no ligands have yet been found. 

All members of the steroid and thyroid hormone receptor superfamily (more 

commonly called nuclear receptors (NR)) share a similar structure consisting of 

modular domains A though F (from NH2 to COOH terminus) (4): a variable N-terminal 

domain (NTD, A/B); a highly conserved DNA Binding Domain (DBD, C); a flexible 

hinge region (D); and a C-terminal Ligand Binding Domain (LBD, E). The estrogen 

receptor α is unique in that it contains an additional C-terminal (F) domain with 

unknown function (5).  

Figure 1- IUPAC recommended ring 
lettering (left) and atom numbering (right) 
of cholestane, a prototypical steroid 
skeleton (2). The four rings A-D form the 
gonane nucleus of the steroid. 
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A/B REGION (N-TERMINAL DOMAIN) 
 

 The A/B region in the different SHR is highly variable, revealing a weak 

evolutionary conservation, in fact, this is the least conserved region both in size and 

sequence (6). All the receptors have a unique N- terminal region (100-500 amino 

acids) whose 3D structure has not been clarified. This poorly defined region contains 

a transcriptional activation function, referred to as activation function 1 (AF-1) that 

can operate autonomously (independent of the presence of ligand). The A/B region is 

potentially involved in multiple protein-protein interactions and the length of this 

domain has a positive correlation with the activity of AF-1 for different members of 

the SHR superfamily (7). 

C REGION (DNA BINDING DOMAIN)  

The DNA binding domain lies toward the centre of the molecule and is a highly 

conserved residue core. The amino acid sequence of this domain is similar among 

different steroid receptors (56–79% identity). The 3D structure of the DBD has been 

resolved for a number of nuclear receptors.  

D REGION (HINGE REGION)  

The D region, which is a poorly conserved domain, serves as a hinge between 

the DBD and the LBD, allowing rotation of the DBD. The hinge region allows the DBD 

and LBD to adopt different conformations without creating a steric hindrance. This 

domain also harbours a nuclear localization signal (NLS) or at least some elements 

of a functional nuclear localization signal.  

E REGION (LIGAND BINDING DOMAIN)  

The largest domain and the hallmark of a nuclear receptor is its moderately 

conserved ligand-binding domain (LBD). This domain is highly structured, and 

encodes a wealth of distinct functions most of which operate in a ligand-dependent 

manner. The highly conserved region of the nuclear receptor proteins lies near the 

carboxyl terminus.  

The LBD is a region where chaperone proteins, such as Hsp90, bind NR when 

they are present in the cytoplasm. Upon ligand binding, exposure of a nuclear 
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localization signal in the LBD induces the nuclear translocation of the NR (6). After 

dissociation of the chaperones, the liganded NR–complexes can bind to particular 

DNA sites within gene promoters termed hormone response elements (HRE). The 

HRE-recruited hormone-receptor-complexes are then able to initiate chromatin 

remodelling and to relay activating or repressing signals to the target genes 

transcription machinery.  

Nuclear receptor pharmacology has made us understand that ligands may 

exert very diverse effects, this is dependent on individual chemical structure and the 

allosteric changes induced in the receptor/accessory protein complex (8). Binding of 

agonistic or antagonistic ligands leads to different allosteric changes of NR making 

them able to exert positive or negative effects on the expression of target genes by 

different mechanisms.  

 

Figure 2- Steroid hormone receptors consist of six domains (A-F) based on regions of 

conserved sequence and function (5). The domains starting from the N-terminus (left) to C-

terminus (right) are: NTD- N-terminal domain; DBD- DNA binding domain; LBD- ligand-

binding domain; AF- activation function. The numbers to the right represent the lengths in 

amino acid residues (6). 

 

Although a lot is known in the field of steroid hormone action, this is a 

relatively new area and no more than five decades old. Pivotal experiments in the 

late 1950’s and 1960’s showed that hormone-binding components exist within the 

nuclei of target tissues and that steroid hormones act by regulating gene expression, 
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Figure 3- On the right
Professor Gerald C. 
Mueller, M.D., Ph.D. 1920-
2010 and on the left 
Professor Elwood V. 
Jensen, Ph.D. 

rather than directly influencing enzymatic processes. The understanding that steroid 

hormone receptors interact with the general transcription machinery and alter 

chromatin structure came in the 1970’s and 1980’s, and details of these mechanisms 

continue to be elucidated in contemporary bio-medical research. 

In addition, the discovery of rapid cellular responses to steroid hormones has 

led to the identification of membrane-bound receptors that act without affecting gene 

transcription which is the main focus of this thesis. 

 

The birth of the field of steroid hormone action 
 

 Pivotal experiments performed in the late 1950’s and early 1960’s primarily in 

the laboratories of Gerald Mueller and Elwood Jensen, 

set the stage for the development of the field of steroid 

hormone action. Jensen’s laboratory showed that 

tritiated (H3) estradiol was specifically taken up and 

retained in the immature rat uterus, indicating the 

presence of an “estrogen-binding component” or 

“estrophilin” later termed “estrogen receptor” by Jensen 

(9, 10). This was the first time that target tissue 

specificity was observed for a hormone. During the same period Dr. Mueller’s 

laboratory reported that estrogen treatment induced RNA and protein synthesis. 

Later the same laboratory showed that uterine responses to estrogen were blocked 

when both RNA or protein synthesis was inhibited, showing that gene transcription 

and protein translation were required for its effects (9). 

 Still in the 1960’s Jensen in collaboration with Jack Gorski and others 

demonstrated that after treatment estrogen, or estradiol, travelled from the cell 

cytosol to the nucleus (9, 10). This led to the belief that the ER bound estrogen in the 

cytoplasm and then translocated to the nucleus. However, it is currently known that 

the ER is in fact a nuclear factor that initiates its interaction with estrogen in the 

nucleus (11). Scientists at this time also concluded that steroid hormones, through 

their receptors, regulate gene expression rather than influencing enzymatic 

metabolism directly. It was in 1966 that a collaboration between Gorski and Angelo 

Notides showed that estrogen treatment resulted in the production of a specific 
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uterine protein (12). Subsequently, Bert O’Malley’s laboratory demonstrated steroid-

mediated mRNA induction of ovalbumin in response to estrogen and of avidin in 

response to progesterone (10). The 60’s culminated with the first Gordon Conference 

on Hormone Action, establishing steroid hormone action as a legitimate and growing 

field of research.  

 The early 1970’s came with an explosion of research on steroid hormone 

receptors. In 1972 the first steroid hormone receptor was purified, O’Malley’s 

laboratory purified PR from chicken (13). Soon after the purification of PR, ER and 

AR were purified, (14, 15) and finally many years later in 1990 MR was purified (16). 

 

The molecular biology revolution 
 

 With the advent of recombinant DNA and DNA sequencing technologies in the 

mid 1970’s came the ability to characterize the steroid hormone receptors and their 

target genes in more detail. Again, O’Malley’s laboratory was the first to clone (1977) 

and sequence (1978) a target gene for steroid hormones, ovalbumin from chicken. 

Cloning of the first steroid hormone receptor (GR) occurred in 1985 through 

collaboration between Ronald Evans’, Michael Rosenfeld’s, and Brad Thompson’s 

laboratories. Shortly after this breakthrough, the receptors for estrogen (1986), 

progesterone (1987), aldosterone (1987) and androgen (1988) were cloned (17). 

 Through the work of a number of laboratories in the 1980’s and early 1990’s, a 

model for steroid receptor action at gene level began to emerge. In 1983, Keith 

Yamamoto’s and Jan-Åke Gustaffson’s laboratories demonstrated for the first time 

that a steroid hormone receptor (GR) binds DNA in a sequence-specific manner. The 

receptor binding site, now termed the steroid response element (SRE), is located 

within the steroid hormone-regulated promoters. In general, SREs are 15-base pair 

consensus sequences consisting of two half sites, arranged as 6-base pair inverted 

repeats separated by a few random base pairs. The SREs for various receptors 

exhibit significant sequence similarity, with SREs for GR, PR and AR oftentimes 

being identical (18).   

 In 1988, O’Malley’s laboratory was again instrumental in showing that 

receptors bind the SREs cooperatively as dimmers, with one receptor molecule at 
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each half site (18). In vitro experiments performed in the mid 1990s demonstrated 

that receptor binding to DNA is not hormone dependent (19). 

 Still in the 1980 decade, the laboratories of Etienne-Emile Baulieu, David Toft, 

and William Pratt discovered that inactive steroid hormone receptors interact with a 

non-hormone protein, later identified as heat shock protein 90 (hsp90) (20, 21). Heat 

shock proteins likely stabilize unliganded steroid hormone receptors by preventing 

folding, aggregation and DNA binding (22). Steroid hormone receptors are the only 

members of the steroid/thyroid superfamily know to bind to these proteins (23). 

Experiments performed by the Pratt and Toft laboratories in the late 1980s 

demonstrated that the dissociation of heat shock proteins from receptors is hormone-

dependent (24). During this decade it was also shown that hormone receptors are 

phosphorylated in a hormone-dependent manner. Edwin Milgrom’s laboratory 

showed that PR is phosphorylated, and with hormone administration, becomes 

hyperphosphorylated (25) leading investigators to believe that steroid hormone 

receptor action is dependent on phosphorylation state.  

 After the discovery that receptors bind the SREs as dimmers, O’Malley’s 

laboratory showed that steroid hormone receptors interact with transcription factor IIB 

(TFIIB), leading to the hypothesis that steroid hormone receptors facilitate 

transactivation via protein-protein interactions with general transcription factors. This 

hypothesis was soon validated when they successfully reconstructed the entire 

pathway of steroid hormone action in a ligand dependent, receptor-mediated, cell-

free transcription system (10). It was shown that ligand-bound receptor binds the 

SRE and stabilizes the association of general transcription factors. This interaction 

between receptor and general transcription factors allows for the successful 

recruitment of polymerases to the promoter and subsequent transcription of the 

target gene. 

 

 These discoveries represented the culmination of three decades of research 

and led to a well supported model for steroid hormone receptor action: ligand binding 

induces a conformational change in the receptor, releasing heat shock proteins. The 

receptor undergoes hormone- and DNA-dependent hyperphosphorylation, dimerizes, 

and binds its target DNA. The binding of the receptors to the SRE allows for 
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recruitment of general transcription factors and, subsequently, RNA polymerase to 

begin efficient transcription (22, 25). 

 

 

Figure 4- General model of steroid hormone receptor action. 
 

 

Refining the model 
 

 Coactivators. In 1989, experiments performed in the laboratories of both 

O’Malley and Hinrich Gronemeyer showed that overexpression of one SHR results in 

the inhibition of itself or other SHRs. These results suggested that there might be 

other limiting factors, termed “coactivators” that modulate transactivation by steroid 

hormones. These coactivators are thought to function as bridging factors that, directly 

or indirectly, facilitate the crucial protein-protein interactions between the steroid 

hormone receptor and the general transcription machinery to ensure efficient 

transcription of target genes. 

Coactivators can be receptor-specific or general. Two general coactivators, 

steroid receptor coactivators-1 (SRC-1) and cAMP response element binding protein 

(CBP), enhance the transcriptional activities of several steroid/thyroid hormone 

receptors (4). SRC-1 was identified in 1995 by O’Malley’s laboratory and has shown 

to enhance the transcriptional activity of all the steroid receptors tested, without 

altering basal promoter activity. In 1996, Williams Chin’s laboratory showed that 
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SRC-1 interacts with a variety of steroid and thyroid hormone receptors in a ligand-

dependent manner, as well as with TATA-binding protein and TFIIB. Receptor-

specific coactivators include the androgen receptor-associated protein 70, first 

described by Chawnshang Chang’s laboratory in 1996. 
 

Corepressors. Besides activating transcription, steroid/thyroid hormone 

receptors can also silence basal promoter activity of target genes in the absence of 

hormone or in the presence of an antagonist. This phenomenon was first observed 

with TR and RAR, which have shown to bind cognate DNA response elements in the 

absence of hormone and repress basal transcription (4). Competition experiments 

suggested that this silencing activity requires binding of a “corepressor”. The 

corepressors silencing mediator for RAR and TR (SMRT) and nuclear receptor 

corepressor (N-CoR) were cloned in 1995 (4). These proteins are thought to act by 

recruiting additional proteins with histone deacetylase activity, thus inhibiting 

transcription complex formation through a chromatin dependent mechanism (26). 

Agonists, but not antagonists, are able to dislodge corepressors bound to unliganded 

receptors, thus relieving the silencing function. In the case of a mixed agonist and 

antagonist, such as tamoxifen (for ER), relief of the silencing functions may depend 

on the relative ratio of coactivators to corepressors (27). 

Evidence for corepressor interaction with the classic steroid hormones is also 

emerging. Recently, ER has been shown to interact with N-CoR (26). In addition, the 

surprising observation that human PR-A acts as a transdominant transcriptional 

inhibitor appears to be due to its interaction with the corepressor SMRT and its 

inability to interact with coactivators (27). As receptor specific coactivators and 

repressors continue to be discovered, researchers can better understand how steroid 

hormone receptors alternate between gene silencing and transactivation functions. 

The interesting fact about the biology of steroid hormone receptor action on 

gene expression is that it’s dependent on a number of factors, including the nature of 

the ligand (agonist or antagonist), the isoform or subtype of the receptor, the nature 

of the steroid response element, and the character and balance of coactivators and 

corepressors. These factors confer tissue and gene specificity and begin to explain 

the complexity and diverse cellular roles of steroid hormone receptors. 
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It has been more than 50 years since two key discoveries were made in the 

United Kingdom, the isolation of both the steroid hormone aldosterone (28) and the 

structure of DNA (29) both happened in 1953. Although these discoveries were not 

connected, the last one allowed for the technologies of molecular biology to elucidate 

the mechanism by which aldosterone regulates epithelial sodium transport. 

 

The mineralocorticoid receptor 
 

Aldosterone, like other steroid hormones, has an intracellular receptor, which 

acts through a genomic mechanism to enhance the transcription of specific genes 

that encode putative aldosterone-induced proteins (AIPs). AIPs mediate the main 

physiological response to aldosterone, epithelial Na+ transport. Various studies, now 

over three decades old (30), clearly demonstrated the presence of an intracellular 

receptor that specifically bound tritiated aldosterone in mice, these studies were later 

confirmed in the human kidney (31). In 1987, Arriza et al. cloned the human MR by 

low stringency hybridization with the glucocorticoid receptor cDNA from a human 

placental library (17). The cloned MR was found to be highly  homologous to the GR 

and curiously, although the affinity of aldosterone for the human MR was similar to 

what had been reported (31), the receptor had a much higher affinity for cortisol (17).  

The human MR is a 107 kDa protein with 984 amino acids and, as with other 

steroid receptors, contains three main domains, the central DNA-binding domain of 

68 amino acids (DBD), the C-terminal ligand-binding domain (LDB), which shares 

57% homology with the GR, and the N-terminal domain, which differs both in length 

and sequence between the two receptors (17). The DBD of the MR corresponds to a 

highly conserved region among members of the nuclear receptor superfamily 

showing 94% homology with the GR and 90% homology with other nuclear 

receptors. Two groups of four cysteines form -helixes called “zinc fingers”, one of 

which lies in the major groove of the DBD facilitating specific contacts during 

transcription (see Figure 5) (17). The zinc fingers contain a P box, the interacting 

surface with the half site of the inverse repeat of the hormone (glucocorticoid) 

response element, and a D box responsible for weak dimerization with the DNA (32, 

33). A specific MR response element has not been identified. An additional nuclear 

export signal is located between the two zinc fingers near the LBD. 



 20

 

Figure 5- Consensus structure of the MR (1). 

 

 

 The hinge region is located between residues 671 and 732 and contains a 

proline stretch, which permits a twist of the DBD relative to the LBD, positioning the 

receptor in contact with the general transcritption machinery (34). This region also 

possesses weak ligand-independent nuclear localization signal (NLS1) responsible 

for receptor subcellular translocation. 

 The MR has an activating function, AF-2, within the LBD that becomes 

activated in a ligand-dependent manner after agonist binding in the hydrophobic 

pocket of the LBD. The AF-2 sequence is highly conserved and is located in helix 12 

(H12) of MR.  

 The N-terminal domain of the MR, with 602 amino acids, is the longest and 

most highly variable among the steroid receptors. While it has only 15% homology 

with the GR, it has been conserved in evolution and is highly homologous among 

species. This domain contains multiple functional sites responsible for ligand-

independent transactivation or transrepression. 
 

Although the MR LDB binds both to aldosterone and cortisol with high affinity 

in vitro, the GR does not bind to aldosterone and the MR itself binds to cortisol with a 

lower affinity (17). However, similar binding specificities for aldosterone and cortisol 

were seen when the MR was isolated from the rat hippocampus (35). This work 
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suggested that some factor was precluding cortisol access to the MR in the kidney, 

but not the hippocampus. Subsequently, the groups of John Funder in Melbourne 

and Chris Edwards in Edinburgh showed that the carbenoxolone-sensitive enzyme, 

11β-hydroxysteroid dehydrogenase (11βHSD), was responsible for this phenomenon 

(36). In epithelial target tissues for aldosterone and in some other tissues, 

aldosterone specificity is maintained by the type II isoform of 11βHSD (11βHSD2), 

which converts cortisol to cortisone, thereby rendering it inactive as cortisone does 

not bind to the MR. Inactivation of 11βHSD by ingestion of large quantities of 

liquorice or the administration of carbenoxolene (36) results in mineralocorticoid 

excess in the presence of low aldosterone levels. These features are also seen in the 

condition of apparent mineralocorticoid excess (AME), an autossomal recessive 

condition characterized by an early onset of severe low rennin hypertension with 

hypokalemia, yet low aldosterone levels. AME results from mutations in 11βHSD2 

(36).  

 

Ligand-binding specificity 

  

To determine the structural basis of the specificity of the MR for aldosterone 

binding, Rogerson et. al. exploited (37) the differences and the similarities between 

the LBDs of the MR and GR. The MR binds and is transcriptionally active in response 

to both aldosterone and cortisol, whereas the GR responds primarily to cortisol (17, 

37). To understand the basis of this difference, a series of chimeras was created 

between the LBD of the GR and the MR (37). The 14 chimeras retained their basic 

structural integrity in that they all bound tritiated dexamethasone, albeit with variable 

affinities (38). In those chimeras in which aldosterone binding was seen, trans-

activation also occurred. MR sequences in the second region (amino acids 804-874 

of the MR sequence) were essential for activation by aldosterone. A second round of 

chimeras focusing on this region  between amino acids 804 and 874 of the MR LBD 

identified the 820-844 region as the crucial region for aldosterone binding (38). 

 The crystal structures of the LBD of many of the nuclear hormone receptors 

have been published, PR (39), AR (40), GR (41, 42). Besides containing all of the 

determinants for binding the hormone, the LBD also contains the C-terminal 

activation function-2 helix (AF-2). Crystal structures of several NR LDBs have shown 



 22

that correct positioning of the AF-2 is required for recruitment of co-activators of 

transcription (41-43). Understanding the ligand requirements that lead to the proper 

positioning of the AF-2 and activation of MR is fundamental to designing drugs that 

can modulate receptor activation. Overall , the MR LDB shows the three-layered α-

helical fold observed in other nuclear receptor LDBs, with aldosterone bound in a 

fully enclosed pocket containing residues in helixes 3, 4, 5, 6, 7 and 11, and the β-

turn (Figure 4A). As seen in other steroid receptor LDBs, the C-terminal extension of 

MR interacts with helix 10 via hydrogen bonds between Asp929 and the amide 

nitrogens of Phe981 and His982. The most unusual feature of the structure is that the 

residues N-terminal to helix 1 (727-737) form a short helix that associates near the 

coactivator groove of a chrystallographically related molecule. This N-terminal feature 

is present in all MR complexes. 

 

In general, MR makes interactions with aldosterone in a manner consistent 

with how other steroid receptors bind their natural ligands (Figure 6, B and C). There 

is an extensive hydrogen bond network involving the A-ring ketone of aldosterone, 

Gln776 and Arg817 of MR, and several water molecules that firmly lock the A-ring of 

the steroid in place. Specific to the MR there is a water-mediated hydrogen bond 

between Gln776 and Ser810. AR, GR, and PR have a methionine at this position so 

this interaction is not possible. Adjacent to the D-ring, the C-18 hydroxyl makes a 

hydrogen bond to the side chain carbonyl of Asn770 on helix 3. Asn770 is in position to 

coordinate a triplet of hydrogen bonds: one between the side chain carbonyl and the 

C-18 OH of the ligand, and two from the side chain nitrogen to the C-21 OH of the 

ligand and the backbone carbonyl of Glu955, a residue that lies on a loop preceding 

the AF-2 helix. The ligand is stabilized further by a pair of hydrogen bonds between 

the aldosterone C-21 hydroxyl, C-20 ketone, and Thr945 located on helix 10. This 

threonine is conserved in GR and PR but is replaced by leucine in AR. 
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Figure 6- Crystal structure of MR LDB bound to aldosterone. A- the overall fold of the 

MR is very similar to the other steroid receptors. B, helix 3 (magenta) residues Asn770 and 

Ser767 form hydrogen bonds (yellow dashed lines) with the loop (green) residue Glu955 

preceding the AF-2 (red). Thr945 present on helix 10 (orange) plays a key role in receptor 

activation by hydrogen bonding to the C-20 carbonyl and C-21 hydroxyl of aldosterone 

(yellow). C, close-up view of MR-aldosterone hydrogen bond network. The 18-OH is 

positioned for hydrogen bonding with the Asn770 carbonyl, whereas the Asn770 amide remains 

in position for hydrogen bonding to the C-21 OH of aldosterone and Glu955, which lies in the 

loop preceding the AF-2. Thr945, present on helix 10, forms a pair of hydrogen bonds with the 

C-20 and C-21 substituents of aldosterone. Cysteine 942 is in position to interact with the 18-

OH group to give aldosterone three potential hydrogen bonds to helix 10 (41). 

  

 It is clear from the crystal structure that the orientation of Thr945 is ideal for 

hydrogen bonding with steroids containing C-20 carbonyls and C-21 hydroxyl groups 

(Figure 6, B and C) (41). 

In addition to Asn770, Ser767 is in position to make a hydrogen bond to the 

backbone amide of Glu955 in the loop preceding the AF-2. This observation suggests 

that both of the helix 3 residues (Asn770 and Ser767) play a role in stabilization and 

activation of MR. Notably, interference with the interaction between helix 3 and the 

loop preceding the AF-2 reduces MR activation (44). Amino acid alignments of the 

A B

C
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receptors show that an asparagine is conserved in a similar position in all of the 

oxosteroid receptors, suggesting that the interaction between helix 3 and the loop 

preceding the AF-2 may be a conserved mechanism of steroid receptor action. Two 

properties of steroid ligands dictate that an asparagine is required at position 770 in 

MR to stabilize the helix 3/loop interaction. First is the length of the steroid itself, and 

second are substituents at the C-11 position of the steroid. 
 

In summary, maximum MR activation occurs only when there is simultaneous 

stabilization of the loop preceding the AF-2 helix and a strong interaction of the ligand 

with helix 10. Stabilization of the loop preceding the AF-2 requires hydrogen bonds 

between Asn770 and Ser767 on helix 3 and Glu955 present on this loop. Ligands that 

promote this hydrogen bond network and interact with helix 10 via hydrogen bonds or 

hydrophobic interaction with Thr945 induce a stabilization of helix 3 and a movement 

of the AF-2, enabling coactivator recruitment and ultimately gene transcritption. This 

series of ligand-mediated activation steps ensures that ligands such as progesterone 

and cortisone fail to activate MR even though these ligands will be in excess over 

aldosterone in many tissues. Likewise, spironolactone also fails to activate MR 

because of an inability to create the hydrogen bonding network and thus behave as a 

passive MR antagonist. 

 

Genomic Structure and Organization 

  

The human MR gene (NR3C2)  is located in chromosome 4 in the q31.1 

region (43), spans 450 kb and is composed of ten exons (45). The two first exons 

are referred as exon 1 and 1 and correspond to the 5’ untranslated region in the 

human. They are followed by eight exons that code for the protein with exon 2 

encoding the N-terminal domain (NTD or A/B region). Exons 3 and 4 code for the 2 

zinc fingers of the DNA binding domain (C region) and the last five exons code for 

the LDB (45). Alternative transcription for these 5’-untranslated exons generate 

different mRNA isoforms that are differentially expressed in aldosterone target 

tissues (46, 47). Mineralocorticoid receptor translation starts 2 bp downstream from 

the beginning of exon 2 and the translated protein is the same for the two 5’-

untranslated isoforms.  
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 There are functional splice variants of the MR. A 12 bp insertion between the 

two zinc fingers results from the use of a cryptic splice site at the exon3/intron C 

splice junction creating a splice variant that is expressed in most tissues (44), but its 

transactivation activities are not significantly different from the wild-type (48-50). A 10 

bp deletion in the rat and human MR leads to a truncation in the LBD and 

unresponsiveness to aldosterone. It is expressed at low levels in the rat and human 

tissues and does not interfere with the wild-type mRNA activity (51). An additional 

alternative splice variant skips exons 5 and/or 6, leading to the co-repression of the 

5 or the 5,6 human mineralocorticoid receptor mRNA isoforms (52). This isoform 

retains de DNA-binding domain and can act in a ligand-independent manner (52). 

 

Post-Translational Modifications of the MR 

  

The MR is a phosphoprotein (53-55) with multiple consensus sites for 

phosphorylation (Figure 5). Rapid phosphorylation of serine and threonine residues 

occurs within minutes of exposure to aldosterone. These are mediated in part by 

protein kinase C alpha (PKC) activation and might be involved in the rapid, 

nongenomic effects of aldosterone (56). There is some evidence that 

phosphorylation by PKC enhances MR function, but this could be due to 

phosphorylation of an associated co-regulator rather than a direct effect (57). 

Inhibition of serine/threonine phosphatases inhibits MR transformation and inhibits 

DNA binding (55). Except for the nongenomic effects, the role of phosphorylation 

remains unclear (56, 58). 

Sumoylation, modification by SUMO (small ubiquitin-related modifier), is a 

post-translational modification common to most steroid receptors (59-61). The MR 

has four sumoylation consensus motifs in the N-terminal end at positions K89, K399, 

K428 and one in the LBD at K593 of the human sequence (Figure 7). The consensus 

motifs for sumoylation are named synergy control motifs and are defined by the 

sequence consensus KXE, where X is any residue and the  is an aliphatic 

residue. These sites are highly conserved through evolution. Studies have shown 

that the transcriptional activity of the MR can be modulated by its sumoylation 

potential, as well as the sumoylation of MR-interacting proteins, and requires the 

continuous function of the proteosome (62). Acetylation of the receptor is also 
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theoretically possible as it has a consensus sequence for acetylation, but it remains 

to be demonstrated (63). 

 

 

Figure 7- The human mineralocorticoid receptor gene, mRNA, protein functional domains 

and post-translational modifications. The intron, exon structure of the gene and the two 

different promoters are shown in the upper part of the figure. The middle part represents the 

mRNA and in the lower part the MR protein and its different domains are shown (1). 

 

MR Trafficking 

 

 In their mature form, steroid receptors are associated to 90-kDa and 70-kDa 

heat shock proteins, the small acidic protein p23 and proteins that posses 

tetratricopeptide repeats (TPR), i.e. sequences of 34 amino acids repeated in tandem 

that are critical for protein-protein interactions. In the steroid receptor heterocomplex, 

the TPR-acceptor site of hsp90 is normally occupied by either high molecular weight 

immunophilin (IMM) FKBP52, FKBP51, CyP40 or PP5 (64). IMMs are a family of 

intracellular receptors for immunosuppressant drugs also characterized for having 

peptidylprolyl isomerase (PPIase) enzymatic activity, which directs cis-trans 

isomerization of peptidylprolyl bonds (65). The oligomeric structure of untransformed 

SRs is also found in primarily nuclear receptors such as progesterone and estrogen 

receptors. 
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Upon aldosterone binding, the MR moves rapidly, within minutes, towards the 

nucleus, whereas it cycles back to the cytoplasm upon ligand withdrawal much more 

slowly, more than 18 hours. A classical model accepted for more than two decades 

posits that the ligand binding-dependent dissociation of the hsp90-based 

heterocomplex (a process frequently referred to as “transformation”) is a must for the 

nuclear translocation of SRs (66, 67). This model was based on the assumption that 

the chaperone complex anchors the SR to the cytoplasm, impairing its nuclear 

translocation. The transformation model, although unproven, prevailed until recent 

years. 

A key discovery was that a cytoplasmic dynein co-immunoprecipitates with 

FKBP52 (68). Dyneins are molecular motors that generate force towards the minus 

end of microtubules and are related to the retrograde movement of vesicles. Cargo 

attachment occurs via the dynein intermediate chain, whereas the ATP-hydrolitic 

domain responsible for the motor function is located in the heavy chains. The actual 

microtubule-binding site is a small globular unit that protrudes from heavy chains. It 

then became clear that the dynein-IMM interaction involves the PPIase domain of the 

IMMs (68, 69), a property that appears to be a common feature for most high 

molecular weight IMMs associated with SRs (70). Importantly, at least two of the 

most abundant IMMs found in SRhsp90 complexes, FKBP52 and PP5, co-localize 

with microtubules.  These observations implied that an active transport system 

requiring hsp90, IMMs, dynein motor proteins and cytoskeletal tracts moves SRs 

within the cell towards the nucleus.  

If correct, this would mean that the hsp90IMM complex associated with the 

untransformed receptor should not dissociate upon ligand biding because it would be 

required for the retrograde movement of the ligand-receptor complex. Results from 

an experiment using tritiated aldosterone and a continuous sucrose movement 

clearly contradict the unproven classical model: transformation is not an early event 

(69). Also in agreement with the new model, the cytoplasmic-nuclear movement of 

hsp90IMM-chaperoned factors is impaired or blocked by hsp90 inhibitors 

(geldanamycin or radical), overexpression of the PPIase domain of FKBP52 

(preventing dynein binding), saturation of the hsp90IMM binding site with TPR and 

by overexpression of the dynein complex subunit, p50/dynamitin, which disrupts the 
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Figure 8- The molecular machinery for 

movement of the MR and the agent for 

selectively uncoupling the system. 

Arrows show the sites of uncoupling by 

hsp90-disrupting agents such as 

geldanamycin (GA), the TPR domain 

fragment of PP5, the PPIase domain 

fragment of FKBP52 and the 

p50/dynamitin (Dyt). Immunophilin TPR 

domain (black crescent). Dynein heavy 

chains (HC), intermediate chains (IC) (1). 

dynein-dynactin complex and dissociates cargo from dynein (Figure 6). Thus, there is 

ample evidence that validates a model in which the retrograde movement of certain 

soluble factors occurs in an active manner via cytoskeletal tracts with the hsp90IMM 

complex forming the bridge between the cargo and the motor protein responsible for 

the retrograde movement of SR and that this system can be uncoupled by some 

inhibitory agents. 

 

 

 

 

Aldosterone-induced proteins 
  

Although it has been recognized many years ago that aldosterone acted to 

increase (or decrease) the expression of specific genes (30), the identification of 

these target genes has only occurred in the past decade or so (71). Six genes are 

known to be acutely regulated by a rapid and transcriptional response to aldosterone, 

namely genes encoding the three epithelial Na+ channel subunits α, β and γ 

(SCNNIA,-Band -G), channel-inducing factor (FXYD4), serum and glucocorticoid-

induced kinase (SGK) and K-ras2 (KRAS2) (Figure 9). In addition, there is evidence 

to support the regulation of three other genes, those encoding glucocorticoid-induced 

leucine zipper protein (49), N-myc downstream-regulated gene (50), and the kidney 

specific WNK1 isoform (72). 
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Figure 9- Schematic representation of an aldosterone-responsive epithelial cell. The 

putative interactions of the AIPs in relation to the epithelial Na+ channel (ENaC) and the 

basolateral Na+ pump (Na.K-ATPase) are shown (65). A possible role for phophatidylinositol 

3-kinase (PI3-k) in integrating different signalling pathways (66) is indicated. Abbreviations: 

CHIF, channel-inducing factor; sgk, serum- and glucocorticoid-induced kinase. 

 

 The amiloride-sensitive epithelial Na+ channel (ENaC) is the key rate-limiting 

step at the apical membrane for the Na+ flux across transporting epithelial cells (51, 

71). The other key mediator of epithelial Na+ transport is the energy-dependent 

pump, Na.K-ATPase, which is located in the basolateral membrane, where it 

mediates the efflux of Na+ (71). The activity of Na.K-ATPase increases in response to 

aldosterone. The genes encoding the Na.K-ATPase α- and β-subunits are not acutely 

regulated by aldosterone, although increased levels are part of the response to 

chronic aldosterone administration.  

 ENaC is a key component of the response to aldosterone and therefore an 

obvious candidate for regulation (51). The genes encoding the ENaC β- and γ-

subunits in the distal colon are regulated by aldosterone (53, 71). The gene encoding 

the α-subunit, but not the β- and γ-subunits of ENaC, is similarly upregulated in the 

kidney (54). However, the time course of this response and the magnitude of the 

change are inadequate to explain the increased amiloride-sensitive Na+ flux that 

occurs in response to aldosterone (71). 

 Probably the best characterized AIP is sgk (73, 74). This protein is rapidly 

upregulated by aldosterone in the colon and distal nephron (1, 32). Two studies (33, 

75) have demonstrated the ability of sgk to interact with the ubiquitin ligase Nedd 4-2 
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and, through that interaction, to inhibit the action of Nedd 4-2, thereby prolonging the 

half-life of the ENaC channels in the apical membrane. The molecular 

characterization of the monogenetic hypertension syndrome or Liddle’s syndrome 

(72) has shown the importance of the degradation of the ENaC channels as part of 

their regulation (75). Nedd 4-2 plays an important role in this process. When the 

interaction between Nedd 4-2 and the C-terminus of the ENaC β- and γ-subunits is 

compromised, the channels exhibit a prolonged half-life, resulting in increased Na+ 

flux (75). 

 Work on amphibian systems has shown that KRAS2, particularly the 2A 

isoform, is acutely upregulated by aldosterone (75, 76). It is possible that the 

interaction might involve the phosphatidylinositol 3-kinase pathway, which is 

responsible for the phosphorylation of sgk (66). 

 The other well characterized aldosterone-induced gene, FXYD4 (77), is 

regulated in the distal colon but not the kidney (78, 79). It is an acute primary 

transcriptional event (74). Although the initial studies of channel inducing factor 

(CHIF) (77) suggested that it might interact with a K+ channel, recent information 

from the same group has demonstrated an interaction with Na.K-ATPase (80). CHIF 

belongs to the FXYD family of small transmembrane proteins, which includes the γ-

subunit of Na.K-ATPase; this subunit is not upregulated by aldosterone in the distal 

colon (71). CHIF has the reverse effect of the γ-subunit in that it increases the affinity 

of the pump for Na+ and therefore increases flux through the pump (80). This is a 

probable mechanism through which aldosterone increases the activity of the 

basolateral pump.  

 

Regulation of Aldosterone Production 
 

 Aldosterone represents the primary mineralocorticoid produced by the adrenal 

gland and specifically within the outer adrenocortical cells of the glomerulosa layer. 

Aldosterone is synthesized in the glomerulosa from cholesterol through the 

successive actions of four enzymes (Figure 10). Cholesterol side-chain cleavage 

(CYP11A1), 21-hydroxilase (CYP21) and aldosterone synthase (CYP11B2) are 

members of the cytochrome P450 family of enzymes. CYP11A1 are localized to the 

inner mitochondrial membrane, while CYP21 is found in the endoplasmic reticulum. 

These enzymes are P450 heme-containing proteins that accept electrons from 
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NADPH via accessory proteins and utilize molecular oxygen hydroxylations (CYP21 

and CYP11B2) or other oxidative conversions (CYP11A1). The fourth enzyme, type 2 

3-hydroxysteroid dehydrogenase (HSD3B2), is a member of the short-chain 

dehydrogenase family and is localized to the endoplasmatic reticulum. 

 Historically, the regulation of aldosterone biosynthesis has been divided into 

two main phases. Acutely (minutes after a stimulus), aldosterone production is 

controlled by rapid signalling pathways that increase the movement of cholesterol 

into the mitochondria (Figure 12). This has been called the “early regulatory step” 

and, is mediated by increased expression and phosphorylation of StAR protein (81). 

Chronically (hours to days), aldosterone production is regulated at the level of 

expression of the enzymes involved in the synthesis of aldosterone (82). This has 

been called the “late regulatory step” and is particularly dependent on increased 

transcription and expression of CYP11B2 (Figure 13). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 10- Adrenal steroid pathways leading to mineralocorticoid, glucocorticoids and 

adrenal androgens. Enzymes involved include side-chain cleavage (CYP11A1), 3-

hydroxysteroid dehydrogenase type 2 (HSD3B2),17-hydroxylase, 17,20 lyase (CYP17), 21-

hydroxylase (CYP21), 11-hydroxylase (CYP11B1), and aldosterone synthase (CYP11B2). 

Steroidogenic acute regulatory (StAR) protein is needed for the rate-limiting movement of 

cholesterol to CYP11A1 in the inner mitochondrial membrane (1).  
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Factors Regulating Aldosterone Production 
 

The Renin-Angiotensin-Aldosterone System (RAAS) 
  

Because the major function of aldosterone is to control body fluid volume by 

increasing sodium reabsorption by the kidneys, it is appropriate that the major 

regulator for aldosterone synthesis and secretion arises in the kidneys. Thus, the 

kidneys play the controlling role in the rennin-angiotensin-aldosterone feedback 

system (Figure 11). Renin is a protease produced and stored in the juxtaglomerular 

cells that surround the glomerular afferent arterioles. Renin release is controlled by at 

least three mechanisms. First, release is activated by a decrease in the perfusion 

pressure of blood traversing the renal afferent arterioles, which is sensed by the 

juxtaglomerular apparatus functioning as a baroreceptor. This reduction in perfusion 

pressure occurs as a result of a decrease in either systemic blood volume or blood 

pressure. Second, renin secretion can be stimulated by secretions from the macula 

densa as a result of a drop in sodium concentration in the distal tubule. Third, a drop 

in blood pressure will cause sympathetic stimulation of juxtaglomerular cells to 

stimulate both renin release and afferent arteriole constriction. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11- Aldosterone production is primarily regulated through a feedback loop that 

focuses on kidney production of renin. Once released, renin cleaves angiotensinogen to 

angiotensin I through the action of angiotensin-converting enzyme (ACE) to produce 
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angiotensin II. Angiotensin II is the primary hormonal regulator of adrenal aldosterone 

production. Aldosterone indirectly exerts negative feedback to decrease renin release 

through renal sodium retention and elevation in the blood pressure (1). 
 

 

 Acting in the blood, renin mediates the rate-limiting step in the production of 

angiotensin II (AngII), cleaving the circulating precursor angiotensinogen to release 

the 10-amino acid peptide, angiotensin I. Thereafter, inactive angiotensin I is rapidly 

converted to the potent octapeptide hormone AngII by the action of angiotensin-

converting enzyme (ACE), which is found in the plasma membrane of vascular 

endothelial cells throughout the body. Circulating AngII is the arguably the most 

important regulator of adrenal glomerulosa aldosterone production.  
 

Angiotensin II-Regulated Intracellular Glomerulosa Cell Signalling Pathways 
  

In humans AngII has two G-protein-coupled receptors, type 1, (AT1) and type 

2 (AT2), through which this hormone can elicit intracellular responses. AngII works 

primarily through AT1 receptors to regulate aldosterone production (Figure 10). The 

expression of AT1 receptors is highest in the glomerulosa, which localizes the action 

of this hormone to aldosterone-producing cells. AT1 receptors activate a variety of 

signalling pathways including phosphoinositide-specific phopholipase C (PLC), which 

hydrolyzes phosphatylinositol 4,5-biphosphate (PIP2) to generate the two second 

messengers, inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (83). IP3 is 

thought to initiate aldosterone secretion by eliciting a transient increase in the 

cytosolic calcium concentration and activating calcium/calmodulin-dependent protein 

kinases (CaM kinase), whereas DAG increases protein kinase C (PKC) activity. PKC 

activity has been suggested to underlie sustained aldosterone secretion from 

glomerulosa cells (83). 
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Figure 12- The acute regulation of aldosterone production is primarily regulated by AngII. 

AngII binds to AT1 receptor (AT1-R) activating PLC to release DAG and IP3. PLC activation 

also increases cellular levels of 12-HETE. DAG activates PKC, PKD and PLD. In turn, IP3 

causes release of intracellular calcium stores. CaM kinases, 12-HETE and PKD increase 

StAR protein levels and phosphorylation leading to increased cholesterol movement into the 

mitochondria. Within the mitochondria cholesterol is converted to pregnenolone by CYP11A1 

which is then metabolized to aldosterone (1).  

 

 AngII also increases calcium influx in glomerulosa cells. Influx of extracellular 

calcium acts to increase PKC activity, enhance PKC-stimulated steroidogenesis and 

maintain aldosterone production (84). In addition to activating PKC, the DAG 

produced by AngII-stimulated phospholipid hydrolysis also serves as a precursor for 

other signals regulating aldosterone secretion. Thus, arachidonic acid can be 

released by DAG lipase and is then metabolized by 12-lipoxygenase to generate 12-

hydroxyeicosatetraenoic acid (12-HETE) (85). 12-HETE appears to play an important 

role in mediating AngII-induced aldosterone secretion since blocking its production or 

metabolism reduces AngII-induced steroidogenesis (85).  

 The second and rate-limiting step of steroidogenesis involves transfer of the 

mobilized cholesterol from the outer mitochondrial membrane to the inner membrane, 

where CYP11A1 is localized and initiates steroid production. StAR seems to be 
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responsible for that role but the mechanism by which StAR induces cholesterol 

movement is not clear. Several hypothesis have been proposed, none of which seem 

entirely satisfactory. The molten globule model suggests that near the mitochondrial 

membrane, a high concentration of protons converts a structured tertiary 

conformation of the StAR carboxy terminus into a semi-ordered molten globule, 

which as secondary but not tertiary structure (86). However, whether the pH is 

sufficiently low to trigger this transition or whether such a relatively unstructured 

domain could efficiently transport cholesterol is unclear. Other models have similar 

shortcomings, such that the mechanism of StAR’s  action remains unclear. 

Nevertheless, StAR is clearly required for the translocation of cholesterol from the 

outer to the inner mitochondrial membrane and this rate-limiting step is controlled by 

signalling pathways that are activated by aldosterone secretagogues. 
 

Chronic Effects of Angiotensin II 
 

Chronically, AngII increases adrenal aldosterone production through two major 

actions. First, AngII increase expression of the enzymes needed to produce 

aldosterone, particularly CYP11B2. Second, AngII causes hypertrophy and 

hyperplasia of the adrenal glomerulosa, thus increasing the number of aldosterone-

producing cells. In vivo studies have provided strong evidence that sodium restriction 

increases renin/AngII levels causing an induction of glomerulosa CYP11B2 

expression (87, 88). 

The increase in CYP11B2 expression appears to result from increased 

transcription of the gene (89). Activation of the transcription appears to rely on the 

activation of transcription factors that bind to a cyclic AMP response element (CRE) 

found in the proximal region of the CYP11B2 promoter (90). In addition, both AngII 

and potassium rapidly induce the expression of the nuclear hormone receptor 

NR4A3, which also binds the promoter and activates CYP11B2 transcritption (82).  

AngII regulation of long-term aldosterone relies on other signalling pathways. 

AngII treatment activates adrenal cell protein kinase D (PKD) and this activation is 

associated with increased CYP11B2 expression, suggesting that this pathway may 

be involved in CYP11B2 regulation. Further, AngII-induced PKD activation is 

dependent upon PKC (91). However, PKD is known to phosphorylate and stimulate 

transcriptional activity of the cAMP response element binding (CREB) protein 
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transcription factor (92, 93). The promoter region is highly dependent on CREB 

response elements (89), suggesting that this PKD-mediated CREB activation may be 

important in regulating chronic aldosterone synthetic capacity.   
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13- The chronic regulation of aldosterone production is mainly due to angiotensin II 

and potassium. Angiotensin II binds to AT1 receptors (AT1-R) to activate PLC activity, which 

releases DAG and IP3. DAG activates PKC and PKD, and IP3 causes intracellular calcium 

release. PKC activation inhibits the transcription of CYP17, while calcium and PKD increase 

transcription of CYP11B2. This occurs through increased expression and phosphorylation of 

specific transcription factors. The increase in CYP11B2 increases the capacity to produce 

aldosterone (1).  

 

The role of potassium in the regulation of aldosterone production is often 

underestimated. Infusion of potassium will cause an acute increase in aldosterone 

production and a high potassium diet will increase aldosterone levels as well as the 

capacity of the adrenal to produce aldosterone. The mechanism by which potassium 

regulates aldosterone production relies on the extreme sensitivity of the glomerulosa 

cell membrane to small increases in potassium concentrations. Indeed, small 

increases in potassium stimulate calcium influx, via depolarization of the plasma 

membrane and activation of voltage-dependent calcium channels. As with AngII 

stimulation, this influx is also thought to activate CaM kinase (94) and is required for 

elevated potassium-induced aldosterone secretion, since inhibition of calcium influx 

abolishes the elevated potassium-stimulated secretory response (83). 
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ALDOSTERONE EFFECTS 
 

 

Kidney 
  

The kidney plays the primary role in salt and water homeostasis, maintaining 

osmolarity and volume in the extracellular space within a very narrow range despite 

wide variations in fluid and salt intake. Aldosterone plays a significant role in the 

maintenance of mammalian sodium, potassium, water and acid-base balance, 

primarily through effects on renal electrolyte excretion. Aldosterone promotes 

stimulation of Na+ absorption, potassium and hydrogen secretion by tight epithelia 

that display high transepithelial electrical resistance and amiloride-sensitive sodium 

transport. This epithelium is found in distal segments of the nephron, bladder, distal 

parts of the colon and rectum and in the ducts of exocrine glands (salivary, sweat 

glands) (95). 

 Sodium transport across the epithelia is driven by an electrochemical potential 

difference across the apical membrane allowing for passive movement of ions and 

water and by an active transport of ions across the basolateral membrane. The 

apical-membrane step is mediated by the opening of the amiloride-sensitive sodium 

channels that are sodium-selective. The basolateral extrusion of sodium is mediated 

by activation of a ouabain-sensitive sodium potassium ATPase (96). 

 Vectorial sodium transfer induced by aldosterone occurs mainly in the distal 

nephron and distal colon. Sodium entry in the cell at the apical membrane is 

regulated by the amiloride-sensitive epithelial sodium channel (ENaC). Efflux of 

sodium from the epithelial cell at the basolateral membrane is energy-dependent and 

is mediated by the sodium-potassium ATPase (Na+-K+ ATPase). Aldosterone 

stimulates Na+ transport by activating pre-existing sodium channels (96). 

 ENaC is composed of three subunits , , , which are regulated by 

corticosteroids in a tissue specific manner, however, this is not the principal 

mechanism by which aldosterone regulates ENaC activity (76). More importantly 

aldosterone can alter ENaC subunit turnover (degradation) and increase the number 

of channels located in the plasma membrane. Turnover of ENaC is mediated by 

ubiquitin protein ligase, Nedd4-2 (75). 
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 Under Na+ replete conditions, when aldosterone levels are low, ENaC is 

mainly in an intracellular location (77). Na+ absorption in response to aldosterone 

increases before any changes in mRNA for the subunits are observed (78) 

suggesting that aldosterone first induces the transcritption of proteins that modulate 

ENaC trafficking or function. One aldosterone-induced protein is SGK, a member of 

the serine-threonine kinase family. Sgk1 overexpression results n a large increase in 

Na+ current, but has no effect on K+ channel activity, due to an increase in the 

number of ENaC channels at the cell surface (74). Sgk1 phosphorylates Nedd4-2, 

decreasing its binding to ENaC and resulting in ENaC surface expression. 

Aldosterone stimulation results in a rapid increase in Sgk1 which peaks 1-2 hours 

after exposure (79).  

 The late phase of aldosterone regulation of ENaC involves the increase in the 

expression of ENaC mRNA and protein in the kidney with no changes in the  or  

subunits (80, 97). 
 

Nongenomic effects of aldosterone 
 

 Nongenomic effects of aldosterone which occur too rapidly to be mediated by 

gene transcription, insensitive to inhibitors of transcription (actinomycin D) or 

translation (cyclohexamide) have been postulated to be mediated by a membrane 

receptor different from the soluble MR (98-100). Some membrane MR effects may be 

inhibited by classical MR antagonist, but not others. 

 Nongenomic effects of aldosterone on ion transport proteins have been 

studied. Aldosterone has been show to regulate the Na+/K+ exchange isoforms 

(NHE) NHE1 and NHE3. The Maldin-Darby canine kidney cells (MDCK cells) have 

properties corresponding to collecting duct intercalated cells and demonstrate 

nongenomic responses to aldosterone. At physiologic concentrations, aldosterone 

had rapid (1-2 minutes) nongenomic stimulatory effects N+/H+ exchange in these 

cells as determined by increases in pH and Na+ concentration (101, 102). The rapid 

effects were not prevented by actinomycin D, cyclohexamide or spironolactone and 

resulted from an increase in affinity of the exchanger for intracellular H+. The rapid 

stimulation of N+/H+ exchange by aldosterone depends on an increase in intracellular 

Ca+, as well as rapid phosphorylation of the extracellular signal-regulated kinase 

(ERK1/2) (101).  
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Cardiovascular System 
 

In recent years, our understanding of aldosterone has changed from 

considering it to be a hormone mainly responsible for fluid and electrolyte balance to 

a hormone with widespread cardiovascular and metabolic effects. A large body of 

literature demonstrates that activation of the mineralocorticoid receptor by 

aldosterone increases oxidative stress, inflammation, insulin resistance and vascular 

dysfunction, leading to renovascular and cardiovascular injury and stroke. Further, 

clinical studies using the selective MR antagonist, eplerenone, or the non-selective 

antagonist, spironolactone, have demonstrated beneficial cardiovascular and 

renovascular effects in patients with heart failure, diabetes and hypertension. The 

adverse cardiovascular actions of MR involve both genomic and nongenomic 

mechanisms. 

 

 Heart  

Approximately 50 years after the discovery of aldosterone, several large-scale 

clinical studies revealed potent beneficial effects of MR antagonist on the heart. The 

Randomized Aldalactone Evaluation Study (RALES) was designed to test the effect 

of an MR antagonist in addition to standard therapy, including angiotensin-converting 

enzyme (ACE) inhibitors, on mortality in patients with severe heart failure secondary 

to systolic left ventricular dysfunction with ejection fraction  35% (103). 

Spironolactone treatment had clear benefits with a 30% reduction in relative risk of 

death. Hospitalization rate for worsening heart failure was 35% lower in the 

spironolactone group than in the placebo group. In addition, spironolactone caused a 

significant improvement in the symptoms of heart failure. Further, the beneficial effect 

of spironolactone was observed without significant effects on blood pressure.  

 The benefit of MR blockade in heart disease was confirmed in the Eplerenone 

Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study 

(EPHESUS). This study was designed to test the effect of eplerenone, a selective 

MR antagonist, on mortality and hospitalization rates in patients with left ventricular 

dysfunction and heart failure after acute myocardial infarction (104). During a mean 

follow-up of 16 months, there was a 15% relative risk reduction in overall mortality 



 40

and 17% relative risk reduction in cardiovascular mortality. Hospitalization rates were 

also significantly lower in the eplerenone group. 

 Two small clinical studies suggest a beneficial effect of MR blockade on 

diastolic dysfunction. Treatment for 6 months with MR antagonist canrenone 

improved diastolic function, as compared to placebo treatment, in patients with 

hypertension and left ventricular diastolic dysfunction on ACE inhibitor and calcium 

channel blockade therapy (105). The improvements in diastolic function with 

canrenone were not mediated by changes in blood pressure or left ventricular mass, 

suggesting that MR blockade has a direct beneficial effect on diastolic function. In 

another study in patients with dilated cardiomyopathy, 12 months of treatment with 

spironolactone led to decreased myocardial collagen content, decreased myocardial 

stiffness and ameliorated diastolic dysfunction (106). 

 Thus, available clinical data demonstrate benefits of MR blockade in the 

treatment of heart failure, left ventricular hypertrophy and diastolic dysfunction. The 

potential mechanisms for these beneficial effects have been investigated using cell 

culture systems and animal models of cardiovascular injuries. 

 Animal models of cardiac injury have clearly demonstrated an adverse effect 

of mineralocorticoids on the heart and vasculature. Activation of the MR for 8 weeks 

through administration of aldosterone or deoxycorticosterone led to hypertension and 

cardiac fibrosis in uninephrectomized rats on a moderately high sodium diet (1% 

NaCl in drinking water) and MR blockade prevented this damage (107, 108). In a 

short-term (14 day) rodent model of hypertension and cardiovascular injury, rats 

receiving a nitric oxide synthase (NOS) inhibitor, AngII and a moderately high sodium 

diet developed coronary artery injury, myocardial necrosis and inflammation in both 

right and left ventricles (109, 110). Vascular injury was characterized by increased 

expression of plasminogen activator inhibitor (PAI-1), inflammation, intimal thickening 

and vascular wall necrosis with surrounding granulation tissue. Treatment with 

eplerenone or spironolactone to block the actions of aldosterone or adrenalectomy to 

reduce circulating aldosterone levels prevented the injury, while injury recurred when 

adrenalectomized animals were infused with aldosterone. In this model, there was 

minimal cardiac fibrosis suggesting that vascular injury is an early event in 

aldosterone-mediated cardiovascular injury leading secondarily to myocardial 

ischemia and necrosis followed by repair and fibrosis.  
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 Several investigators demonstrated that activation of MR by administration of 

aldosterone, deoxycorticosterone acetate or an inhibitor of 11βHSD2, increased 

coronary vascular expression of pro-inflammatory molecules, cyclo-oxygenase 2 

(COX-2), monocyte chemoattractant protein-1 (MCP1) and osteopontin in 

uninephrectomized rats on a moderately high sodium diet (111, 112). These vascular 

changes preceded the development of cardiac fibrosis. In these pre-clinical studies of 

cardiovascular injury, the beneficial effects of blocking the MR or reducing 

aldosterone via adrenalectomy appeared to be independent of effects on volume 

homeostasis and blood pressure as vascular injury was ameliorated without 

reductions in blood pressure (110, 111). 

 Thus, vascular injury and dysfunction appeared to play a key role in the 

pathophysiology of aldosterone-induced cardiac injury. However, aldosterone’s 

adverse vascular effects are not limited to the heart but, extend to brain, kidney and 

peripheral vasculature. 

 

 Renal disease 

Aldosterone blockade has been shown to reduce albuminuria in hypertensive 

patients independent of an effect on blood pressure itself (113, 114). Eplerenone 

caused a reduction in 35% of urinary albumin excretion. Similarly, in older patients 

with isolated systolic hypertension, eplerenone reduced microalbuminuria to a much 

greater extent than amlodipine (a drug used to treat for this condition). One 

mechanism for the apparent increase in mineralocorticoid-mediated renal injury may 

involve increased renal expression of MR. Renal biopsies of patients with renal 

disease demonstrated a marked increase in renal expression of the MR in individuals 

with high albuminuria, compared to those with lesser amounts of albuminuria (115). 

MR blockade also reduces renal injury in non-diabetic animal models. In 

rodents on a moderately high sodium diet, administration of a NOS inhibitor and 

AngII caused proteinuria and renal arteriopathy that was prevented by administration 

of eplerenone or adrenalectomy (110). The injury was again present when 

adrenalectomized rats were infused with aldosterone, demonstrating that aldosterone 

is required for the induction of AngII renal injury in this model. Similarly, blockade of 

the MR or adrenalectomy reduced proteinuria and renal arteriopathy in other 

hypertensive rodent models of AngII-mediated renal injury (116). 
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Potential mechanisms mediating the cardiovascular effects of aldosterone  

 

 

 

 

 

 

 

 

 

 

 

 Effect of Aldosterone on Intracellular Signalling Pathways 

 In addition to aldosterone’s well characterized effects on gene transcription, 

aldosterone has rapid nongenomic effects that appear to involve cross-talk between 

the MR and other signalling cascades, many of which are associated with 

cardiovascular injury. A research group led by Grossman demonstrated that 

aldosterone increased phosphorylation of ERK through a process dependent on 

aldosterone-mediated increases in c-Src phosphorylation and transactivation of 

epidermal growth factor receptor (EGFR) (117, 118). Further, they identified the c-

terminal EF domain of the MR, which includes the ligand binding region, as the 

region that mediates these nongenomic actions of aldosterone on ERK activation 

(119). Other investigators reported that aldosterone interacts synergistically with 

angiotensin II to increase ERK activation (120). Aldosterone-mediated 

phosphorylation of c-Src also leads to increased activation of MAP kinases and 

NADPH oxidase in rat vascular smooth muscle cells (121). In endothelial cells, 

aldosterone increased superoxide generation via activation of Src, NADPH oxidase 

and the small GTP-binding protein Rac-1 (122).  

Thus, aldosterone has effects on multiple intracellular processes including 

activity of EGFR and angiotensin II receptor, oxidative stress and activity of ERK, c-

Src and MAP kinase signalling pathways. Activation of these pathways may mediate 

some of the adverse effects of aldosterone. For example, aldosterone stimulation of 

MAPK1 led to increased vascular smooth muscle proliferation (122). 

Figure 14- potential 

mechanisms of 

aldosterone-induced 

adverse cardiovascular 

effects (1). 
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 Vascular Function 

 Aldosterone affects vasoconstriction and vasodilation. In mesenteric 

resistance vessels, aldosterone potentiated phenylephrine-mediated constriction 

through a nongenomic process involving PI3K and PKC, but not ERK activation 

(123). In rabbit preglomerular arterioles, aldosterone promoted vasoconstriction 

through these same pathways, but also stimulated vasodilation through increases in 

endothelial-derived nitric oxide (NO) (124). In intact aortic rings, the vasodilatory 

effects of aldosterone appeared to dominate. However, when the endothelium was 

removed from the aortic ring, aldosterone reversed the effect, indicating dominance 

of aldosterone’s vasoconstrictive properties under these conditions (125). 

 Additional studies suggest that aldosterone may reduce endothelial NO. In 

human umbilical vein endothelial cells (HUVEC), MR activation increased generation 

of oxygen reactive species, which can inactivate NO, and decreased NOS 

expression (126). Also, aldosterone was shown do decrease endothelial glucose-6-

phosphate dehydrogenase (G6PDH) expression and activity leading to increased 

oxidative stress, decreased NO and impaired vascular reactivity (127). In conclusion, 

while aldosterone has both vasodilatory and vasoconstrictive actions, most preclinical 

studies supported an adverse effect on vascular function. In disease states, such as 

heart failure, the adverse vascular effects of aldosterone also appear dominant.  
 

 Inflammation 

 Studies in animal models of cardiac and renal injury, have clearly 

demonstrated the pro-inflammatory effects of aldosterone. In vitro studies, suggest 

that these inflammatory effects are due in part to direct pro-inflammatory actions of 

aldosterone. In human coronary artery smooth muscle cells, aldosterone increased 

gene expression of pro-inflammatory molecules as well as those involved in fibrosis 

and calcification (128). Aldosterone increased N-B transcriptional activity and   

MCP-1 expression in cultured mesangial and proximal tubule cells (129, 130) and 

increased TNF-, IL-6 and MCP-1 in adipocytes cultures (131, 132). These pro-

inflammatory effects of aldosterone are also observed in humans (133). 

 Insulin sensitivity 

 Obesity is often associated with hypertension and one of the mechanisms of 

obesity-induced hypertension involves increased mineralocorticoid activity (134). 
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Increased aldosterone levels were associated with an increase in insulin resistance 

(135). The underlying mechanism for aldosterone overproduction in obesity is not 

clear. Some studies linked increased production of aldosterone to mineralocorticoid 

releasing factors from the adipocytes (136). Another hypothesis suggests the role of 

hepatic intermediaries in the stimulation of adrenal aldosterone by fatty acids 

produced by visceral adipocytes (137). 

 The mechanism of aldosterone-induced insulin resistance may involve effects 

of aldosterone on the adipose tissue. MR has been shown to mediate corticosteroid-

induced adipocyte differentiation (138). Furthermore, aldosterone increased 

expression of pro-inflammatory factors, decreased expression of adiponectin and 

PPAR- and reduced insulin-stimulated glucose uptake in culture adipocytes (131, 

132). In vivo studies in the db/db mouse model of obesity and diabetes demonstrated 

that the blockade of the MR reduced adipose tissue inflammation, decreased adipose 

tissue expression of pro-inflammatory factors, increased adipose tissue expression of 

adiponectin and PPAR- and improve measures of insulin sensitivity (131). 
 

 Dietary Sodium 

 In animal models, dietary sodium intake has been shown to have a profound 

effect on aldosterone-mediated cardiovascular injury. A low dietary sodium intake 

prevented the development of cardiac and renal injury uninephrectomized rats 

infused with deoxycorticosterone acetate for 8 weeks, whereas the animals 

developed profound cardiac and perivascular fibrosis when consuming a high sodium 

diet (139). Also, rats receiving a NOS inhibitor and AngII developed vascular and 

cardiac injury when on a moderately high sodium diet. However, a low sodium diet 

prevented this injury despite markedly elevated blood levels of aldosterone (107). 

These studies suggest that increases in circulating aldosterone that are appropriate 

for the level of sodium consumption, i.e. elevated aldosterone levels in individuals 

consuming a low sodium diet, may not result in cardiovascular injury. Rather, 

cardiovascular injury occurs when aldosterone is elevated relative to dietary sodium 

intake (140). In contrast to dietary sodium, modulation of dietary potassium does not 

have a major effect on aldosterone-mediated cardiovascular injury (141). 
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The estrogen receptor 

 

17β-Estradiol (E2) is the main ligand to the estrogen receptor (ERα/β)     

(Figure 15). E2 is secreted into the bloodstream by the adrenal cortex and gonads 

and plays a prominent role in mediating sexual development and behaviour, 

reproductive functions, proliferation and differentiation of various tissues via ER. For 

example, E2/ERα interaction is responsible for E2-induced proliferation of breast and 

uterine tissue.  

ERα was first isolated in 1962, the 

corresponding gene cloned in the same year (142) 

and subsequently located to the long arm of 

chromosome 6 (6q24-q27; today 6q25.1) (143). 

Three decades later, in 1993, the first ERα 

knockout mouse was created and led to the 

discovery that development was possible without 

ERα (144). At that time, ERα was thought to be the 

only receptor mediating responses to E2, but in 

1996 ERβ was cloned (145). 

E2 binds with a high affinity to ER, whereas metabolic products of E2, like 

estrone or estriol, bind with a much lower affinity. Estrogenic action can be influenced 

pharmacologically by anti-estrogens and selective estrogen receptor modulators 

called SERMs. The first SERM clinically tested was tamoxifen in the 1970s and still 

today tamoxifen is used, with very good results, for the reduction of breast cancer 

incidence in high-risk premenopausal and postmenopausal women (146). 

 

 

 

 

 

 

 

Figure 15- Molecular structure of 

ERα bound to E2. Ligand Domain 

of ERα complexed to E2. Image 

based on X-ray structures (3). 
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Estrogen receptor protein structure 

  

Steroid hormone receptors share a high level of homology, conservation of 

three dimensional structure and protein domains (Figure 16). 
 

 

A/B-domain (amino acids 1-180) 
 

The A/B domain is also called activation function 1 (AF1). Concerning ERs, 

different splice variants of AF1 may modulate transcriptional activity by repressing 

AF1-mediated transactivation upon heterodimerization with full-length ER. 

Interestingly, in contrast to ERα, ERβ AF1 contains a repressor domain that 

decreases overall receptor transcriptional activity by masking transactivation of the 

amino terminal domain and it only functions in the context of a full length receptor 

(147). 

 

 

 

 

Figure 16- Estrogen receptor domains. The ER is composed of a variable N-terminal domain 

(A/B), an AF1 protein domain which is weakly conserved (<15%) among NR members and a 

highly conserved DNA-binding domain (DBD) or C-domain (96%), which in the case of ERα/β 

binds EREs. The palindromic character of this sequence supports ER binding as a dimer. 

The receptors also have a flexible hinge region (D) and a C-terminal E-domain, containing 

the ligand-dependent AF2 region. ERα and ERβ contain an additional F-domain at their 

carboxy-terminal ends. Numbers on the right represent the length of each receptor protein in 

amino acids (148). 
 

 

 

C-domain (amino acids 181-263) 
 

The C-domain of ER consists of a DNA-binding domain (DBD), which is highly 

homologous. It features two zinc-finger motifs, which are not only responsible for 

DNA-binding, but also for the dimerization of the receptors, allowing the formation of 

homo- and heterodimers. In addition to the zinc fingers, there are also two alpha-

helical motifs within the DBD, where the first helix directly interacts with the DNA 

major groove, while the second helix stabilizes the complex. ERα and ERβ dimmers 
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bind DNA with comparable affinities as either homo- or heterodimers to the same 

estrogen response elements (EREs) and regulate similar sets of genes. 

 

D-domain (amino acids 264-302) 
 

The D-domain is also referred to as the Hinge-region and contains a serine 

residue (S305) that can be phosphorylated in ERs. 
 

E and F-domains (amino acids 303-552 and 553-595) 
 

The carboxy terminal E-domain (also called AF2) represents a ligand binding 

domain (LBD) and an interaction site co-activators and co-repressors. The carboxy 

terminal F-domain represents the last 45 amino acids in ERα and approximately the 

last 30 amino acids in ERβ where it possibly functions to internally restrain 

dimerization of ER, thus protecting against improper ligand activation (149).  

 

ER isoforms 
  

With eight total ERα coding exons, up to five different ERα transcript 

isoforms/variants have been detected in humans due to alternative usage of eight 5’ 

untranslated exons, exonic duplications, alternative splicing and intronic exons (150). 

The length of human ERα correlates mainly with 595 amino acids, where in different 

cell lines protein variants derived from mRNA splice products have been confirmed, 

e.g. human ERα-36 (ERα-36 kDa), ERα-46 kDa and ERα-66 kDa (151, 152). 

Interestingly, the ERα-36 lacks both transcriptional activation domains (AF1+2) and 

contains an exon coding for myristoylation sites, thus predicting an interaction with 

the plasma membrane (152). 

 Like ERα, ERβ also displays several transcriptional isoforms/variants, 

including seven untranslated 5’ exons, alternative exonic splicing and intronic exons 

(150). 
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Co-activators and Co-repressors 
  

SRC-1 was the first co-activator identified and has been shown to interact with 

different nuclear receptors (153). SRC-2, also termed glucocorticoid receptor-

interacting protein 1 (GRIP1), transcriptional intermediary factor 2 (TIF2) or nuclear 

receptor co-activator 2 (NCoA2), binds to AF2 of specific nuclear receptors. Although 

not considered a real co-activator, the MUC1 oncoprotein not only binds directly to 

ERα, but also increases the recruitment of SRC-1 and SRC-2, thus enhancing ER 

mediated transcription following E2 stimulation of breast cancer cells (154). 

 The third member of the SRC family, SRC-3, was identified and described as 

retinoic acid receptor interacting protein (RAC3), mouse homolog CBP-interacting 

protein (p/CIP), hRARβ-stimulatory protein (ACTR) and TR-interacting protein 

(TRAM1). p/CIP and the human isoforms are involved in cellular proliferation, 

differentiation, migration and up-regulated in breast cancer (155). The demonstration 

of an interaction of SRC family members (also called the p160 family) with the CREB 

binding protein (CBP) and its homolog p300 has provided further insight into the 

molecular mechanisms. Importantly, co-activators exert their functions in at least two 

ways: on the one hand interacting with components of the transcription machinery 

(153), and on the other hand recruiting p300/CBP, which possesses both intrinsic 

and associated histone acetyltransferase (HAT) activities (156), thus promoting 

transcription by opening the chromatin structure. 

 In 2001, a novel co-activator PELP1 (proline, glutamic acid and leucine-rich 

protein), not related to the SRC family was identified (157). PELP1 also interacts with 

CBP and p300 to enhance transcription, and additionally affects cell cycle 

progression. PELP1 was also described to be involved in histone modification, 

especially in the displacement of H1 (158).  

 Evidence supports that antagonist-mediated inhibition of ERα not only blocks 

co-activator recruitment but also facilitates the recruitment of a variety of co-

repressors to ERα (159). The nuclear receptor co-repressor (NCoR1) and silencing 

mediator for retinoic and thyroid receptor (SMRT or NCoR2) are found in complexes 

with histone-deacetylases supporting their role in chromatin modification into a 

transcriptionally less active state (160). Interestingly, ER does not interact with co-
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repressors in the absence of a ligand, but only interacts when antagonists or 

modulators of estrogenic action (e.g. tamoxifen) are bound (161). 

 

Estrogen receptor signalling 
 

 The most well-characterized steroid hormone receptor signalling occurs via a 

cellular genomic response where lipophilic ligands diffuse through the cellular 

membrane, bind to ER, induce a conformational change and release heat shock 

proteins (hsp) (Figure 17). Upon unveiling a nuclear localization signal (NLS), ligand 

bound receptor dimmers translocate to the nucleus and along with a variety of 

cofactors bind to specific response elements know as estrogen response elements 

(EREs) located in the promoters of target genes resulting in a transcriptional 

regulation of such target genes. In addition to freely diffusing steroids, Hames et al. 

demonstrated that megalin, an endocytic receptor in reproductive tissues, may 

provide an active transport mechanism for cellular uptake of biologically active 

androgens and estrogens (162). Also mediated by ligand binding and even 

independent of ligands, activation of membrane associated steroid hormone 

receptors can signal via a rapid cellular but nongenomic response occurring in 

seconds or minutes where activation of signal transduction pathways or second 

messenger signalling results in target gene activation. 

 

 

Figure 17- Model of ER-signalling: the main ER-signalling in cells occurs via a genomic 

response after binding of steroid hormones or analogues. Following ligand binding and 

release from the chaperones hsp70 and/or hsp90 (163), ER dimers (middle grey striped oval 

circle) translocate to the nucleus where they regulate target genes, resulting in specific 
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cellular outcomes. In addition, membrane associated ER can signal via a rapid response 

leading to cellular fates. ER membrane association can occur following different membrane 

receptor activations, like IGF-1R, EGFR or Her2 via PI3-K (p85 and p110) (grey stick 

receptor) and lead to further signal transduction of AKT or with Shc via MAPK pathway. In 

addition, palmitoylated was also found at specific membrane domains, called caveolae (far 

right) associated with caveolin 1 (CAV1), which inhibits adenocyclase (AC) via Gα1 and 

results in ER dissociation from the membrane after ligand binding through de-palmitoylation 

(164). Black diamond E2, cross palmitoylation, P phosphorylation, IRS Insulin receptor 

substrate, PM plasma membrane (148). 

 
 
Nongenomic estrogen signalling 
 

The model of nongenomic responses arose from studies demonstrating that 

E2 repeatedly exerted effects that were too fast to be based on transcriptional 

events. The ER membrane form is predicted to be a full length ER (165), an isoform 

(166), or a completely distinct receptor (167). ERs harbour neither transmembrane 

nor intrinsic kinase domains, which could explain membranous signalling events, 

thus specific modifications like myristoylation, palmitoylation and protein interactions 

are most likely involved to target and maintain ER at the plasma membrane. The 

adaptor protein Shc and the Insulin-like growth factor 1 receptor (IGF-1R) were 

shown necessary for membrane localization of ER by siRNA knock-down assays 

(168).  

 In endothelial cells, as in other cell types, ER was shown to target lipid rafts 

within the plasma membrane (caveolae) by interaction with caveolin-1, where it 

activates endothelial nitric oxide synthase (eNOS) through protein kinase-mediated 

phosphorylation (169). Caveolae facilitate signal transduction by providing a location 

for various signalling molecules (170). 

Activation of ER by phosphorylation was demonstrated in a hormone-

dependent as well as hormone-independent manner and is an integral regulatory 

mechanism of nongenomic responses (Figure 15). Martin et al. demonstrated for the 

first time the involvement of AKT, also called Protein Kinase B, in phosphorylation of 

ERα (171). AKT becomes activated by growth factors binding to tyrosine-kinase 

receptors which signal via phosphatidylinositol 3-kinase (PI3K). Major regulatory 

proteins for AKT regulation in the signalling pathway are phosphatase with tensin 
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homology (PTEN) and target of Rapamycin (mTOR). PTEN is a lipid phosphatase 

specific for 3’phosphorylated inositol phosphates and inhibits AKT, whereas the 

mTOR kinase is essential for AKT phosphorylation (172). Upon phosphorylation and 

activation AKT functions in two ways, on the one hand augments transcription of 

ERα, and on the other hand increases ER activity by phosphorylating AF1 on 

different residues. Increased protein phosphorylation of both AKT and PTEN along 

with PTEN gene mutations, deletions or loss of expression have been detected in 

hormone responsive tumours, which would lead to an enhancement of ER signalling. 

Protein Kinase A (PKA) is also involved in regulating ERα transcriptional 

activity by phosphorylation of ER S236 in one zinc finger of the DBD, this 

modification was found to inhibit dimerization and DNA-binding and had attenuating 

effects. Cholera toxin, a G-protein activator, in combination with 3-isobutyl-1-

methylxanthine, a phosphodiesterase inhibitor, and Dopamine have all been 

demonstrated to increase intracellular cAMP levels and activate PKA (173). 
 

 
Caveolins 
 
 

Caveolin proteins are primary structural components of caveolae, which form 

50-100nm plasma membrane invaginations in various cell types (174). Caveolae are 

involved in several cellular processes including cholesterol homeostasis, vesicular 

transport and regulation of signal transduction (175). There are three known caveolin 

proteins caveolin-1 (CAV1) (176), caveolin-2 (CAV2) (177), and caveolin-3 (CAV3) 

(178). CAV1 and CAV2 are expressed in a variety of tissues, including endothelial 

(179), epithelial (180), and neuronal (181), and have overlapping expression in most 

tissues. CAV3 is expressed mainly in skeletal and smooth muscles (178) and the 

nervous system (181). While ablation of CAV1 and CAV3 resulted in a complete loss 

of caveolae formation (182, 183), disruption of CAV2 did not seem to affect caveolae 

formation (184).  

The plasma membrane invagination structure of caveolae supports functional 

protein-protein interactions and cluster of several discrete signalling pathways. Thus, 

caveolae are thought to integrate interactions of receptors and signalling molecules 

in the plasma membrane, resulting in rapid and specific signal transduction (175). 

The caveolin scaffolding domain (CSD) of CAV1 binds numerous signalling 
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molecules, including Src family kinases, c-Neu, H-Ras, EGFR, eNOS, and G-protein 

coupled receptors (GPCRs). Interaction of the CSD domain with these signalling 

molecules holds them in an inactive state, which is released upon activation by the 

appropriate stimuli (185). 

The ability of CAV1 to hold and orchestrate the spatio-temporal pairing of 

membrane localized ERα with its effectors makes CAV1 an important scaffolding 

protein mediating membrane ERα actions. CAV1 is required for estrogen-mediated 

ERα-dependent eNOS production in endothelial cells (186). In MCF-7 breast cancer 

cells and in vascular smooth muscle cells, overexpression of CAV1 increases 

estrogen-dependent ERα translocation to the cell membrane and potentiates nuclear 

ERα-mediated gene expression (187). 

More recently, CAV1 has also been shown to interact with the WD-repeat 

protein striatin, which has been shown to be a key intermediary of the effects of 

steroid receptors, specifically estrogen receptor-α (ER) (188). Lu et al provided 

evidence that striatin´s N-terminal segment interacts with the DNA binding domain of 

ER in the immortalized human endothelial cell line, EA.hy926 cells. This interaction 

organizes the ERα-eNOS membrane signalling leading to rapid nongenomic 

activation of downstream signalling pathways including ERK and eNOS in endothelial 

cells.  

 

WD-repeat proteins: Striatin, Zinedin and SG2NA 
 

The WD-repeat-containing family of proteins is defined by two main 

characteristic features: a lack of intrinsic catalytic activity and repeated units of beta-

sheet motifs that are arranged into a beta-propeller structure to form a platform on 

which multiple protein complexes can dynamically assemble. In this way WD repeat 

containing proteins play a major role in cellular events by mediating important 

protein-protein interactions by providing a permissive scaffold for the anchorage of 

several diverse molecules that are important in cellular signalling, cytoskeletal 

assembly and vesicular trafficking.   
 

Striatin, zinedin and SG2NA are three distinct but structurally related WD-

repeat proteins that share high protein sequence homology within both C- and N-

terminal domains.   
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Figure 18.  Schematic representation of protein-protein interaction domains present in the 

WD-repeat proteins, striatin, zinedin and SG2NA.  Percentage homology within the mapped 

interaction domains (black boxes) are indicated.  Gray boxes represent poorly conserved 

regions between the three proteins and may contribute to differential functions of these 

molecules.  The respective amino acid length of each protein is also noted.  The arrow head 

indicates the position of an additional amino acid present in SG2NA  (189). 

 

 Striatin, which comprises 780 amino acids and weighs 110 kDa, was first 

isolated from brain synaptomes as a calmodulin-binding protein. It contains at least 

four protein-protein interaction domains (see Figure 18), including caveolin-binding, 

coiled-coil, and Ca2+-calmodulin (CaM) binding at the N-terminus, and a series of 

eight WD repeat domains at the C-terminus (190). Overexpression of striatin in 

endothelial cells resulted in an increase in ERα localization within membrane-

enriched fractions containing EGFR and IGF-1 receptor and a slight decrease in the 

presence of nuclear ERα suggesting that it plays a role in the cellular distribution of 

ER bringing it in close proximity to membrane receptors where it can potentially be 

involved in cellular signalling (188). In this way, the N-terminus of striatin (amino 

acids 1-203) has been found interact with the N-terminus of ERα (amino acids 185-

253) while the C-terminal WD repeat domain binds the GPCR (Gαi) complex. 

Therefore, striatin serves as a scaffold directing ERα to the plasma membrane and 

bridges ERα with the GPCR (Gαi) complex to facilitate assembly of a membrane 

signalling complexes required for rapid estrogen extra-nuclear activation of MAPK, 
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Akt, and eNOS in endothelial cells (188). Interestingly, disruption of the striatin-ERα 

interaction had no effect on estrogen-mediated gene transcription suggesting that 

striatin specifically mediates ERα extra-nuclear signalling independent of ERα 

nuclear actions.  

Phylogenetic analysis of the WD proteins striatin, zinedin and SG2NA suggest 

that are derived from an ancestral gene through gene duplication to explain their 

similar gene and protein characteristics.  Furthermore, tissue expression; at least in 

the mouse, overlap and appear to be localized within the same tissue types.  In this 

way, these three WD protein members may potentially play an important and 

functional role in mediating steroid receptor dependent signalling.  
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Materials and Methods 
 

Cell Lines and Cell Culture 

 

During the course of this work two cell lines were used: EA.hy926 and IMR90.  

 

EA.hy926 

Immortalized endothelial cell lines are very often used as a model of 

endothelium for studies of various processes connected with its functions. Among the 

hybrid cells, the EA.hy926 cell line, derived by the fusion of HUVECs with the 

continuous human lung carcinoma cell line A549, is presently the best characterized 

macro-vascular endothelial cell line (191). The EA.hy926 cells used in these 

experiments were a kind gift from Dr. Cora J Edgell and were obtained from the 

Tissue Culture Facility at the University of North Carolina Lineberger Comprehensive 

Cancer Centre. 

Cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) media 

(DMEM 4,5g/L Glucose with L-Glutamine and sodium pyruvate by Cellgro, Manassas, 

USA) complemented with 10% Fetal Bovine Serum (FBS) (Gibco, Invitrogen, 

Carlsbad, USA) and 1% Pencilin/Streptomycin solution (100U/ml penicillin, 100g 

streptomycin; Gibco, Invitrogen, Carlsbad, USA. 

Cells were kept at low passages (1-13) due to informal reports by other groups, 

stating that the expression of certain proteins was lost or diminished if the cells were 

used past after passage 16. Cells were passaged at a 1 to 16 ratio (4500 cells/cm2). 

 

IMR90 

 The IMR90 cell line is a human diploid fibroblast strain derived by W.W. 

Nichols and associates from the lungs of a 16-week female foetus (192).  

The division potential, viral susceptibilities and other properties have been thoroughly 

studied such that the line may be considered as an alternate for WI-38 and other 

standard human lung cell strains. The cells have been reported to be capable of 

attaining 58 population doublings before the onset of senescence. 

The IMR90 cells used were acquired from the American Type Culture 

Collection (catalogue number CCL-186™) (ATCC, Manassas, VA, USA) and 



 56

maintained until population doubling (PDL) 48. IMR90 cells were grown and 

passaged in MCDB 131 media (Gibco, Invitrogen, Carlsbad, USA) complemented 

with 10% FBS and 1% Pencilin/Streptomycin solution. Cells were passaged at a 1 to 

6 ratio (4000 cells/cm2). 

 

Primary Cell Culture 

 

 Primary cells are thus called because they are derived directly from a living 

organism. In the case of the work here presented healthy C57BL/6 mice were used 

to collect aortic endothelial cells. 

 The advantages of primary cultures are that the cells have not been “modified” 

in any way (other than the enzymatic or physical dissociation necessary to obtain 

them), and that allows for study conditions as close as possible to in vivo. The 

disadvantages of these cultures are the mixed nature of each preparation, limited 

lifespan of the culture and the potential contamination problems. 

 

Mouse Aortic Endothelial Cells 
 

Aortic endothelial cells were isolated under sterile conditions as previously 

described by Kobayashi et al. in 2005 (193).  

The animals were sacrificed under deep inhalatory anaesthesia with isoflurane 

and cleaned with a 70% solution on ethanol. An incision was made vertically from the 

mid abdomen to the neck. The rib cage was cracked and removed as were the lungs 

to expose the aorta. Fat surrounding the aortic vase was removed using a scalpel. 

The lower extremity of the thoracic aorta was clipped to release the blood and 

subsequently perfused with 1 ml PBS (Gibco, Invitrogen, Carlsbad, USA) 

containing 1,000 U/ml heparin (Sigma-Aldrich, St. Louis, MO) from the left ventricle.  

The heart was removed and a 23G needle was inserted in the aorta and the 

top part was tied using surgical thread. The aorta was perfused with DMEM media 

and the lower end equally tied using surgical thread. The aortas was then dissected 

out and placed in a Petri dish (no coating) containing 20% FBS-DMEM with 1000 

U/ml heparin.  
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Using a syringe, the isolated aorta was washed in serum-free DMEM and filled 

with a 2 mg/ml collagenase II solution (Sigma-Aldrich, St. Louis, USA). The aorta was 

placed in a clean Petri dish that went in a 37ºC, 5% CO2 incubator. After 45min 

incubation, endothelial cells were flushed into a conical tube with 5 ml of 20% FBS-

DMEM.  

The cells collected were then centrifuged (1200 rpm for 5 minutes), 

resuspended and cultured in 5 ml 20% FBS-DMEM in type I collagen-coated T25 

flasks (Corning, New York, USA). Cells were incubated for 2 hr at 37ºC. The media 

was then removed and the cells resuspended in 20% FBS-DMEM containing: 

100U/ml penicillin, 100g streptomycin, 2mM L-glutamine (Gibco, Invitrogen, 

Carlsbad, USA), 1% MEM amino acids (Gibco, Invitrogen, Carlsbad, USA), 1% 

sodium pyruvate (Gibco, Invitrogen, Carlsbad, USA), 100 /ml heparin, 100 g/ml 

endothelial cell growth supplements (Sigma-Aldrich, St. Louis, MO) and incubated in 

5% CO2 at 37°C in a humidified atmosphere. The cells were used at passages 2-3. 

The purity of the primary cultures was confirmed by the specific monoclonal 

antibodies raised against vWF and PECAM-1. 

 

FBS Selection and Growth Curve 
 

 As many scientists who work with cells on a regular basis know, there are 

some batches of FBS that seem to work better than others. FBS is not a man made 

product and hence its ingredients/components may vary not only in quality as in 

quantity. This way, and because the cells used for experiments revealed to be 

sensitive to such changes, it was decided to test different batches of FBS opting for 

one with which all of the necessary experiments would be ran. 
  

Using the service Batch Testing with Reserves provided by Gibco, which 

allows customers to obtain a sample for testing in their own application with a reserve 

held on that batch, 5 different serum lots were received and further tested: 
 

Lot 1- 1355888 

Lot 2- 1355891 

Lot 3- 1389439 

Lot 4- 1365490 

Lot 5- 1385397 
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Seven T25 flasks were seeded with the same amount of cells for both the 

EA.hy926 and IMR90 cells. Counts were taken (at the same hour) everyday for 7 

days  using a Neubaüer counting chamber and Trypan Blue Stain (Gibco, 

Invitrogen, Carlsbad, USA) for cell viability purposes. Plating day was considered 

day 1. Cells were allowed to attach for three hours before the first count was taken. 

EA.hy926 cells were used at Passage 13 and IMR90 cells at PDL 26. 

 

 

Immunofluorescence Staining 
 

In order to confirm the endothelial nature and purity of the primary cell cultures  

used in this thesis specific monoclonal antibodies raised against different endothelial 

cell markers were used (Von Willebrand Factor (VWF, Santa Cruz #sc-8068) and 

CD31 (PECAM-1, BD Pharmingen #5502741.50)) in conjunction with 

immunofluorescence techniques.  

Briefly EA.hy926, IMR90 and Mouse Aortic Endothelial Cells were grown in 

microscope coverslips. When cell confluence reached about 70% the coverslips were 

washed twice with PBS to remove any media residues. After the wash cells were 

fixed using 1ml of a 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO) solution 

prepared in PBS per slide and incubated for 15 minutes at room temperature. 

Following fixation, the slides were washed three times with PBS to remove any 

leftover paraformaldehyde residues. 

In order for the antibodies to reach the cells, these have to be permeablized 

after fixated. A solution of 15% Triton X-100 (Sigma-Aldrich, St. Louis, MO) prepared 

in PBS was used. Cells were incubated at room temperature for 15 minutes, 

following a blocking step using a 1% BSA (Sigma-Aldrich, St. Louis, MO) solution 

prepared in PBS for 30 minutes again at room temperature. 

After the cells were prepped the primary antibody was applied. The specific 

antibody was diluted in blocking solution (1% BSA in PBS) and left overnight at 4ºC. 

The following antibodies and dilutions were used: 

 

- Purified Rat anti-mouse CD31 (PECAM-1) Monoclonal antibody; BD 

Pharmingen (San Diego, CA, USA) cat.no. 550274; 1:50 dilution. 
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- Von Willebrand Factor, Goat polyclonal anti-vWF (c-20) Santa Cruz 

Biotechnology Inc. (Santa Cruz, CA, USA) cat.no. sc8068; 1:100 dilution. 

- 1E12 concentrate Iowa Hybridoma Bank Smooth Muscle Actin anti-mouse, 

1:50 dilution. 
 

Once the incubation time is over the coverslips are washed three times with a 0,1% 

Triton X-100 solution in PBS for 5 minutes per wash. 
  

Since the primary antibody is not linked to any fluorochrome its necessary to 

apply a secondary antibody in order to be able to visualize the cell markers under the 

fluorescence microscope. The following secondary antibodies were respectively 

applied for 1 hour at 37ºC in blocking solution: 

- Alexa Fluor 488 donkey anti-rat IgG, Molecular Probes #A-21208, 1:200 

dilution. 

- Alexa Fluor 488 donkey anti-goat IgG, Molecular Probes #A-11055, 1:200 

dilution. 

- Alexa Fluor 568 goat anti-mouse IgG, Molecular Probes #A-11004, 1:200 

dilution. 

 

Once the one hour incubation time is over the coverslips are again washed three 

times with a 0.1% Triton X-100 solution in PBS (5 minutes per wash). The final step 

consists on dipping the slides into water twice and letting them air dry. 

 Finally VECTASHIELD® Mounting Medium with DAPI (Vector Laboratories, 

Burlingame, USA) was applied to preserve fluorescence and counterstain DNA and 

the coverslips mounted on microscope slides (the coverslip was kept in place using 

nail polish). The Nikon Eclipse 90i Fluorescence Roper Scientific Microscope was 

used to analyze the resulting cell staining.  

 

Electron Microscopy 

 

 After having confirmed the endothelial nature of the cells in use, electron 

microscopy was used to confirm the presence of caveolae in the cell membrane of 

the same cells. Both EA.hy926 and Mouse Aortic Endothelial Cells were tested as 

well as Mouse Aortic Endothelial Cells from a CAV1 deficient animal. 
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Briefly, cells were fixed in 2.0% glutaraldehyde in 0.1 mol/L sodium cacodylate 

buffer, pH 7.4 (Electron Microscopy Sciences, Hatfield, PA) overnight at 4ºC.  Cells 

were then rinsed in 0.1 mol/L sodium cacodylate buffer, post-fixed in 1.0% osmium 

tetroxide (in cacodylate buffer) for one hour at room temperature, rinsed in buffer 

again, then in distilled water and stained, en bloc, in an aqueous solution of 2.0% 

uranyl acetate for one hour at room temperature.   

Cells were subsequently rinsed in distilled water and embedded in 2.0% 

agarose for ease of handling before being dehydrated through a graded series of 

ethanol to 100%.  Cells were then infiltrated with Epon resin (Ted Pella, Redding, 

CA) in a 1:1 solution of Epon:ethanol.  The following day they were placed in fresh 

Epon for several hours and then embedded in Epon overnight at 60 ºC.  Thin 

sections were cut on a Reichert Ultracut E ultramicrotome, collected on formvar-

coated grids, stained with uranyl acetate and lead citrate and examined in a JEOL 

JEM 1011 transmission electron microscope at 80 kV.  Images were collected using 

an AMT digital imaging system (Advanced Microscopy Techniques, Danvers, MA).  

Electron microscopy was performed in the Microscopy Core of the Centre for 

Systems Biology/Program in Membrane Biology, which is partially supported by an 

Inflammatory Bowel Disease Grant DK43351 and a Boston Area Diabetes and 

Endocrinology Research Centre Award DK57521. 
 

Western Blot (Electrophoresis and Immunoblot) 

 

Western blot, also know as protein immunoblot, is a widely used analytical 

technique used to detect specific proteins in a sample of tissue homogenate or cell 

extract. It uses gel electrophoresis to separate native proteins by 3D structure or 

denatured proteins by the length of the polypeptide. The proteins are then transferred 

to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) 

using antibodies specific to the target protein (194, 195). 

 

Tissue preparation 
 

Samples can not be taken from whole tissue or from cell culture. Solid tissues 

are first broken down mechanically using a homogenizer and cells broken open by 

use of a sonicator. Assorted detergents, salts, and buffers are employed to 
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encourage lysis of cells and to solubilize proteins. Protease and phosphatase 

inhibitors are added to prevent the digestion of the sample by its own enzymes. 

Tissue preparation is done at cold temperatures to avoid protein denaturing and 

degradation. 

 

 
Figure 19 - Sample preparation for Western Blot technique. 

 

 

In brief the cells/tissues were homogenized in RIPA 

(Radioimmunoprecipitation Assay) Lysis Buffer System (#sc-24948 Santa Cruz 

Biotechnology Inc, Santa Cruz, USA) containing Triton X-100 (detergent) and 

protease/phosphatase inhibitors (PMSF, sodium orthovanadate and protease 

inhibitor cocktail). If phospo-proteins were being studied PhosphoStop (Cat. No. 04 

906 837 001, Roche, Mannheim, Germany) was added to the RIPA Buffer in order to 

inhibit phosphatase activity that would degrade the samples. When the sample of 

interest was a tissue sample (heart, aorta, etc) a homogenizer was used to break the 

collected tissue down but, in most cases, the samples were resultant from a cell 

based experiments. In this case, the cells were collected (scrapped) using the RIPA 

Lysis Buffer System and incubated on ice for 30 minutes. After the incubation, the 

cells were sonicated (30V, 10 seconds, 3 times) and spun down. 

The resulting protein extracts were quantified using the Coomassie (Bradford) 

protein assay (#23200, Thermo Fisher Scientific, Rockford, USA). The Bradford 

assay is a colorimetric protein assay based on an absorbance shift of the dye 

Coomassie Brilliant Blue G-250, in which, under acidic conditions the red form of the 

dye is converted into its bluer form to bind to the protein being assayed. The binding 

of the protein stabilizes the blue form of the Coomassie dye; thus the amount of the 

complex present in solution is a measure for the protein concentration, and can be 
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estimated by use of an absorbance reading. The (bound) form of the dye has an 

absorption spectrum maximum historically held to be at 595 nm. The increase of 

absorbance at 595 nm is proportional to the amount of bound dye, and thus to the 

amount (concentration) of protein present in the sample. 

Protein extracts (10-20 μg) were combined with an equal volume of 2X 

Laemmli Sample Buffer (Bio-Rad, Hercules, USA) (containing 5% 2-

mercaptoethanol), boiled for 5 minutes at 95ºC, and size-fractionated by 

electrophoresis on 7.5%-12.5% SDS-polyacrylamide gels.  
 

 

Gel Electrophoresis 
 

The sample proteins are separated using gel electrophoresis. The most 

common type of gel electrophoresis employs polyacrylamide gels and buffers loaded 

with sodium dodecyl sulfate (SDS). SDS-PAGE (SDS polyacrylamide gel 

electrophoresis) maintains polypeptides in a denatured state once they have been 

treated with strong reducing agents (2-mercaptoethanol) to remove secondary and 

tertiary structure and thus allows separation of proteins by their molecular weight. 

Sampled proteins become covered in the negatively charged SDS and move to the 

positively charged electrode through the acrylamide mesh of the gel. Smaller proteins 

migrate faster through this mesh and the proteins are thus separated according to 

size (usually measured in kilodaltons, kDa). The concentration of acrylamide 

determines the resolution of the gel - the greater the acrylamide concentration the 

better the resolution of lower molecular weight proteins. The lower the acrylamide 

concentration the better the resolution of higher molecular weight proteins.  

Samples are loaded into wells in the gel. One lane is usually reserved for a 

marker or ladder, a commercially available mixture of proteins having defined 

molecular weights, typically stained so as to form visible, coloured bands. Bio-rad 

kaleidoscope pre-stained standards (Bio-Rad, Hercules, USA) where use as control 

for molecular weight. When voltage is applied along the gel, proteins migrate into it at 

different speeds and separate into bands within each lane. 
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Figure 20 - SDS-Page Electrophoresis Gel System. 

 

Transfer  
 

In order to allow for antibody detection, the proteins are moved from within the 

gel onto a membrane made of cellulose. The membrane is placed on top of the gel 

carefully avoiding air bubbles to form and a stack of filter papers placed on top of that. 

The entire stack is then dipped in a buffer solution. The method used for transferring 

the proteins is called electroblotting and uses an electric current to pull proteins from 

the gel into the  nitrocellulose membrane. The proteins move from within the gel onto 

the membrane while maintaining the organization they had in the gel. As a result of 

this "blotting" process, the proteins are exposed on a thin surface layer for detection 

(see below). Throughout the experiments 0.2 m nitrocellulose membrane from Bio-

rad (Bio-Rad, Hercules, USA) was used. 

 

 

Figure 21 - Western Blot Transfer System (Electrobloting). 
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The uniformity and overall effectiveness of the transfer process was checked 

by  staining the membrane with a Ponceau S dye (Sigma-Aldrich, St. Louis, MO, 

USA) solution (0,1% w/v in 5% acetic acid). 

 
Blocking 
 

Since the membrane has been chosen for its ability to bind protein and as both 

antibodies and the target are proteins, steps must be taken to prevent interactions 

between the membrane and the antibody used for detection of the target protein. 

Blocking of non-specific binding is achieved by placing the membrane in a dilute 

solution of protein - typically 3-5% Bovine serum albumin (BSA) or non-fat dry milk  in 

Tris-Buffered Saline (TBS), with a minute percentage of detergent such as Tween 20 

or Triton X-100. The protein in the dilute solution attaches to the membrane in all 

places where the target proteins have not attached. Thus, when the antibody is 

added, there is no room on the membrane for it to attach other than on the binding 

sites of the specific target protein. This reduces "noise" in the final product of the 

western blot, leading to clearer results, and eliminates false positives. 

For the purpose of the experiments TBS-Tween (USB Corporation, Cleveland, 

OH) was used together with Blotting Grade Blocker Non Fat Dry Milk (Bio-Rad, 

Hercules, USA) usually in the form of a 5% solution employed for 1 hour at room 

temperature with gentle agitation.  

 

Detection 
 

During the detection process the membrane is "probed" for the protein of 

interest with a modified antibody which is linked to a reporter enzyme; when exposed 

to an appropriate substrate this enzyme drives a colorimetric reaction and produces a 

colour. This traditionally takes place in a two-step process. 

 

Primary antibody 

 

Primary antibodies are generated when a host species or immune cell culture 

is exposed to the protein of interest. Normally, this is part of the immune response, 

whereas here they are harvested and used as sensitive and specific detection tools 

that bind the protein directly. After blocking, a dilute solution of primary antibody is 

incubated with the membrane under gentle agitation. Typically, the solution is the 

http://en.wikipedia.org/wiki/Primary_antibody�
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same as the one used for blocking the membrane. The antibody solution and the 

membrane can be sealed and incubated together for anywhere from 30 minutes to 

overnight. It can also be incubated at different temperatures, with warmer 

temperatures being associated with more binding, both specific (to the target protein, 

the "signal") and non-specific ("noise"). 

Primary antibodies were from BD Transduction Laboratories (San Diego, CA, 

USA): mouse anti- striatin (catalogue no. 610838, 1:1000), mouse anti-eNOS 

(catalogue no. 610297, 1:2500), anti-CAV1 (clone 2297, catalogue no. 610406, 

1:1000), and mouse anti-ERK1/2 (catalogue no. 610124, 1:5000); Cell Signalling 

Technology (Danvers, MA, USA): rabbit anti-phospho-eNOS (peNOS) (catalogue no. 

9571, 1:1000), rabbit anti-phospho-p44/42 MAPK (pERK 1/2) (catalogue no 4377, 

1:1000); and Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA) rabbit anti-MR 

(catalogue no. sc11412, 1:1000).  Primary antibodies were typically left to incubate 

overnight at 4ºC with gentle agitation.  

 

Secondary antibody 
 

 
 

After rinsing the membrane to remove unbound primary antibody, the 

membrane is exposed to another antibody, directed at a species-specific portion of 

the primary antibody. Antibodies come from animal sources; anti-mouse secondary 

will bind to almost any mouse-sourced primary antibody, which allows some cost 

savings by allowing an entire lab to share a single source of mass-produced antibody, 

and provides far more consistent results. This is known as a secondary antibody, and 

due to its targeting properties, tends to be referred to as "anti-mouse," "anti-goat," etc. 

The secondary antibody is usually linked to biotin or to a reporter enzyme such as 

alkaline phosphatase or horseradish peroxidase. Most commonly, a horseradish 

peroxidase-linked secondary is used to cleave a chemiluminescent agent, and the 

reaction product produces luminescence in proportion to the amount of protein. A 

sensitive sheet of photographic film is placed against the membrane, and exposure 

to the light from the reaction creates an image of the antibodies bound to the blot. 
 

Secondary antibodies used were from Sigma-Aldrich company (St. Louis, MO, 

USA): Anti-Mouse IgG (Fab specific)–Peroxidase antibody produced in goat 

(catalogue no. A9917, 1:10,000) and Anti-Rabbit IgG (whole molecule)–Peroxidase 

http://en.wikipedia.org/wiki/Secondary_antibody�
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antibody produced in goat (catalogue no. A0545, 1:10,000). Secondary antibodies 

were incubated for 1 hour at room temperature with gentle agitation. 

 

Figure 22 - Two step detection process  for Western Blot analysis. 

 
Analysis 
 

After the unbound probes are washed away, the western blot is ready for 

detection of the probes that are labelled and bound to the protein of interest. In 

practical terms, not all westerns reveal protein only at one band in a membrane. Size 

approximations are taken by comparing the stained bands to that of the marker or 

ladder loaded during electrophoresis. The process is repeated for a structural protein, 

such as actin or tubulin, that should not change between samples. The amount of 

target protein is normalized to the structural protein to control between groups. This 

practice ensures correction for the amount of total protein on the membrane in case 

of errors or incomplete transfers. 

After the initial detection of the target protein the membranes were stripped 

using Stripping Buffer (Boston BioProducts, Asland, MA, USA) and subsequently re-

probed for -actin. The results were normalized to -actin to correct for loading. 

Quantitative data are presented as fold change relative to controls 
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Chemiluminescent detection 
 
 

Chemiluminescent detection methods depend on incubation of the western 

blot membrane with a substrate that will luminesce when exposed to the reporter on 

the secondary antibody. The light is then detected by photographic film, and more 

recently by CCD cameras which capture a digital image of the western blot. The 

image is analysed by densitometry, which evaluates the relative amount of protein 

staining and quantifies the results in terms of optical density. Newer software allows 

further data analysis such as molecular weight analysis if appropriate standards are 

used. 

 

Figure 23 - Chemiluminescence detection used in Western Blot analysis. 

Enhanced Chemiluminescence Reagent (Perkin-Elmer Life Sciences, Boston, MA) 

was used before the membranes were exposed and developed on CL-XPosure Film 

(Thermo Scientific, Chicago, IL, USA). 

 

Co-Immunoprecipitation (Co-IP) 

 

Co-immunoprecipitation was used as a tool to try to establish if there were any 

protein-protein interactions or if the proteins were organized as protein complex.  

Immunoprecipitation of intact protein complexes (i.e. antigen along with any 

proteins or ligands that are bound to it) is known as co-immunoprecipitation (Co-IP). 

Co-IP works by selecting an antibody that targets a known protein that is believed to 

be a member of a larger complex of proteins. By targeting this known member with 

an antibody it may become possible to pull the entire protein complex out of solution 

and thereby identify unknown members of the complex. This works when the proteins 

involved in the complex bind to each other tightly, making it possible to pull multiple 
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members of the complex out of solution by latching onto one member with an 

antibody. This concept of pulling protein complexes out of solution is sometimes 

referred to as a "pull-down".  

Identifying the members of protein complexes may require several rounds of 

precipitation with different antibodies for a number of reasons: 
 

 A particular antibody often selects for a subpopulation of its target protein that 

has the epitope exposed, thus failing to identify any proteins in complexes that 

hide the epitope.  

 The first round of IP will often result in the identification of many new proteins 

that are putative members of the complex being studied. The researcher will then 

obtain antibodies that specifically target one of the newly identified proteins and 

repeat the entire immunoprecipitation experiment. This second round of 

precipitation may result in the recovery of additional new members of a complex. 

The identified proteins may not ever exist in a single complex at a given time, but 

may instead represent a network of proteins interacting with one another at 

different times for different purposes. 

 Repeating the experiment by targeting different members of the protein 

complex allows the researcher to double-check the result. Each round of pull-

downs should result in the recovery of both the original known protein as well as 

other previously identified members of the complex (and even new additional 

members). By repeating the immunoprecipitation in this way, the researcher 

verifies that each identified member of the protein complex was a valid 

identification. If a particular protein can only be recovered by targeting one of the 

known members but not by targeting other of the known members then that 

protein's status as a member of the complex may be subject to question. 
 

In brief the cells were collected (scrapped) and homogenized in 

immunoprecipitation buffer (RIPA Buffer, Santa Cruz Biotechnology Inc.), the cell 

lysate sonicated for 20 seconds (30 Volts) and incubated for 30 min at 4 ºC. Next, 

the lysate was centrifuged at 10,000g for 10 minutes, and protein content determined 

by colorimetric assay (Micro BCA protein kit, Thermo Scientific, Chicago, IL, USA). 

The protein extract (500 g) was incubated with 1-2 g of monoclonal or polyclonal 

antibodies for 1-2 hours at 4 ºC together with 50-100 l of protein G or A/G 
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MicroBeads (Miltenyi Biotec, Auburn, CA, USA). The Microbeads, antibody and cell 

lysate mix were separated using MACSmini columns and respective magnetic stand, 

according to the manufacturers protocol (described bellow). Finally the beads were 

washed with RIPA buffer and the bound immuno-complexes eluted using boiling 

loading dye and assessed by Western Blot analysis.  

The antibodies used were from BD Transduction Laboratories (San Diego, 

CA): mouse anti- striatin (catalogue no. 610838), mouse anti-CAV1 (catalogue no. 

611338) and Santa Cruz Biotechnology Inc.: rabbit anti-MR (catalogue no. sc11412), 

rabbit anti- CAV1 (catalogue no. sc 894). The specificity of the rabbit anti-MR was 

assessed by comparison by those provided by Dr. Gomez-Sanchez (University of 

Mississippi Medical Centre, Jackson, MS, USA) (196). 

 

 Immunopurification using μ Columns and μMACS™ Separator 

 

Before starting the heating block was heated to 95ºC. The (Column is placed 

in the magnetic field of the μMACS™ Separator with a suitable waste container 

under it. The column is prepared by rinsing it with 200 (L of lysis buffer. The elution 

buffer is placed in the pre-heated block (90 (L should be pre-heated for each 

separation column). The cell lysate is applied onto the column and allowed to run 

through. The non-bound fraction can be collected in a fresh tube for analysis. 

Columns are “flow stop” and do not run dry. Magnetically labelled protein is retained 

in the μ Columns. The column is then rinsed with 4 x 200 (L of a suitable buffer (RIPA 

buffer). Finally, 20 μL of pre-heated (95 °C) 1× SDS gel loading buffer are applied 

onto the column matrix using a fresh pipette tip for each column and incubated for 5 

minutes at room temperature (if a drop is present on the column tip, this should be 

removed by contacting the column tip with the waste tube or by using a fresh pipette 

tip). A fresh collection tube is placed under the μColumn and 50 μL of pre-heated 

(95 °C) SDS gel loading buffer are applied onto the column matrix using a fresh 

pipette tip for each column. If a drop is present on the column tip, this should also be 

collected by contacting the column tip with the tube or by using a pipette, ensuring 

thereby, a reproducible elution volume. The eluted immunoprecipitate can now be 

analyzed by SDS-PAGE. 
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Figure 24 – Schematic protocol for Immunopurification using μ Columns and μMACS™ 

Separator. 

 

MACS Technology was selected for this application due to its sensitivity, 

specificity and speed. Immunoprecipitation with μMACS Protein A/G MicroBeads 

does not involve a centrifugation step. Instead, after a short incubation of cleared 

lysate with the MicroBeads- coated with the specific antibody- the magnetizable 

immune complex is passed over a separation column placed in the magnetic field of 

a MACS Separator. The labelled complex is retained within the column while other 

proteins are efficiently washed away. For SDS-PAGE analysis, the 

immunoprecipitated protein is eluted from the column with SDS gel loading buffer. 
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Alternatively, enzymatic reactions with the precipitated immune complex can be 

performed on the separation columns. 

μMACS™ Protein A and μMACS Protein G MicroBeads are colloidal, super-

paramagnetic MicroBeads, which are conjugated to Protein A or Protein G, 

respectively. Protein A is a 42 kDa protein component of the cell wall of 

Staphylococcus aureus while Protein G is a 33 kDa cell surface protein of the group 

G streptococci. Both of these proteins bind to the Fc region of IgG with high affinity 

and avidity, leaving the Fab region of the antibody free for interaction with its antigen; 

thus, resulting in the formation of multimeric complexes between antigen, antibody, 

and MicroBeads. The binding specificities of Protein A and G for immunoglobins 

differ depending on the subclass and origin of the antibody. The extremely small 

MicroBeads, 50 nm in diameter, allow fast reaction kinetics while the column 

technology provides effective washing steps to minimize contaminations. 

 

 

RNA Extraction 
 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen Sciences, 

Valencia, CA, USA) following the manufacturer’s instructions. The RNeasy procedure 

represents a well-established technology for RNA purification. This technology 

combines the selective binding properties of a silica-based membrane with the speed 

of microspin technology. A specialized high-salt buffer system allows up to 100 μg of 

RNA longer than 200 bases to bind to the RNeasy silica membrane. Biological 

samples are first lysed and homogenized in the presence of a highly denaturing 

guanidine-thiocyanate–containing buffer, which immediately inactivates RNases to 

ensure purification of intact RNA. Ethanol is added to provide appropriate binding 

conditions, and the sample is then applied to an RNeasy Mini spin column, where the 

total RNA binds to the membrane and contaminants are efficiently washed away. 

High-quality RNA is then eluted in 30–100 μl water. With the RNeasy procedure, all 

RNA molecules longer than 200 nucleotides are purified. The procedure provides an 

enrichment for mRNA since most RNAs <200 nucleotides (such as 5.8S rRNA, 5S 

rRNA, and tRNAs, which together comprise 15–20% of total RNA) are selectively 

excluded.  
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Protocol: Purification of Total RNA from Animal Cells Using Spin Technology 
 

It is essential to use the correct amount of starting material in order to obtain 

optimal RNA yield and purity. The minimum amount is generally 100 cells, while the 

maximum amount of starting material should not exceed 1 x 107 cells. All steps of the 

procedure are performed at room temperature. Before starting the procedure it is 

recommended to add -mercaptoethanol (-ME) to Buffer RLT, 10 μl -ME should be 

added per 1 ml of Buffer RLT.  

For cells grown in a monolayer (EA.hy926 cells) and in a surface area of under 

10 cm2 (6 well plate) it is advised to lyse the cells directly in the cell culture vessel. 

The cell-culture medium should be removed using aspiration (without touching the 

cell layer) and the cells rinsed with PBS before lysis in order to remove any leftover 

media which could reduce the RNA yield. Cells are disrupted by adding 350 l of 

Buffer RLT and scraping with an appropriate cell scrapper. The lysate is transferred 

to a microcentrifuge tube and vortexed to mix the cell pellet. No cell clumps should 

be visible before the homogenization step. 

When processing a number of cells under 1x105, homogenization can be 

achieved by vortexing the cell pellet at high speed for 1 minute. After this step, 350 l 

of 70% Ethanol are added and mixed by pippeting up and down several times. This 

solution is transferred to an RNeasy spin column placed in a 2 ml collection tube and 

centrifuged for 15 seconds at 10,000 rpm. The resulting flow-through is discarded 

and the collection tube re-used. Next, 700 l of Buffer RW1 are added to the spin 

column followed by centrifugation at 10,000 rpm for another 15 seconds.  The flow-

through is again discarded and the collection tube re-used. 500 μl RPE Buffer are 

added to the RNeasy spin column followed by centrifugation at 10,000 rpm 15 

seconds. The flow-through is discarded and the step repeated with a 2 minute 

centrifugation to wash the spin column membrane before the final step. 

After centrifugation, the RNeasy spin column is carefully removed from the 

collection tube so that the column does not contact the flow-through. The RNeasy 

spin column is placed in a new 1.5 ml collection tube and 30–50 μl RNase-free water 

is added directly to the spin column membrane. Next, the tube is centrifuged for one 

minute at 10,000 rpm to elute the RNA. The resulting RNA is pure enough to use for 

reverse-transcription. 
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Following extraction, the RNA yield was measured using spectrophotometric 

analysis. Nucleic acids absorb ultraviolet light in a specific pattern. In a 

spectrophotometer, a sample is exposed to ultraviolet light at 260 nm, and a photo-

detector measures the light that passes through the sample. The more light absorbed 

by the sample, the higher the nucleic acid concentration in the sample. Using the 

Beer-Lambert Law it is possible to relate the amount of light absorbed to the 

concentration of the absorbing molecule. At a wavelength of 260 nm, the average 

extinction coefficient  for single-stranded RNA it is 0.025 (μg/ml)-1 cm-1 . Thus, an 

optical density (or "OD") of 1 corresponds to a concentration of 40 μg/ml for single-

stranded RNA. This method of calculation is valid for up to an OD of at least 2 (197). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 - Schematic protocol for RNA 

extraction using RNeasy Mini Kit. 
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Reverse Transcription (RT) 

 

 cDNA was synthesized from 3 g total RNA with the First Strand cDNA 

Synthesis Kit (Amersham, Buckinghamshire, UK). Reverse transcription is a 

laboratory technique commonly used in molecular biology where a RNA strand is 

reverse transcribed into its DNA complement (complementary DNA, or cDNA) using 

the enzyme reverse transcriptase. First-strand cDNA synthesis is catalyzed by 

Moloney Murine Leukaemia Virus (M-MuLV) reverse transcriptase. The conditions of 

this reaction have been optimized to permit full-length transcription of RNAs 7 

kilobases or more in length. The preassembled bulk firststrand cDNA reaction mixes 

require only the addition of DTT, RNA, and a primer of choice. The first-strand 

reaction may be primed with either of the primers provided with the kit: the Not I-

d(T)18 bifunctional primer or pd(N)6 primer. Custom primers complementary to a 

specific mRNA sequence may also be used to prime first-strand synthesis. Following 

synthesis of the first-strand cDNA, the resulting doublestranded RNA:cDNA 

heteroduplex can be used directly for second-strand cDNA synthesis. Alternatively, 

the completed first-strand reaction may be amplified directly by PCR (198-200). 

Depending on the intended use of the first-strand cDNA, synthesis may be 

performed using different volumes of bulk first-strand cDNA mix, and different types 

and amounts of primer and RNA. If the cDNA is to be amplified, either 5 μl or 11 μl of 

the bulk reaction mix may be used, and 1–5 μg of total RNA, or 20–150 ng of mRNA, 

are sufficient. For the purposes of the experiments conducted, 5 μl of bulk reaction 

mix were used together with 3 μg of total RNA diluted in a total of 8 μl of RNAse-free 

water. 

The RNA sample is placed in a microcentrifuge tube and RNAse-free water 

added, if necessary, to bring the RNA to the appropriate volume (either 8 μl or 20 μl). 

The RNA solution is heated to 65ºC for 10 minutes and then chilled on ice. The bulk 

first-strand cDNA reaction mix is gently pipetted to obtain a uniform suspension and 

the appropriate volume of the bulk first-strand cDNA reaction mix (either 5 μl or 11 μl) 

is added to a sterile 1,5 or 0,5 ml microcentrifuge tube. To this tube are added 1 μl of 

DTT solution, 1 μl of primer at the appropriate concentration, and the heat-denatured 

RNA. The solution is pipetted up and down several times to mix and incubated at 
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37°C for 1 hour. The completed first-strand cDNA reaction product is now ready for 

immediate PCR amplification. 

 
Quantitative Real-Time Polymerase Chain Reaction (qPCR) 
 

In molecular biology, quantitative real time polymerase chain reaction (qPCR) 

is a technique based on PCR, which is used to amplify a targeted DNA sequence. 

For one or more specific sequences in a DNA sample, qPCR enables both detection 

and quantification. The quantity can either be an absolute number of copies or a 

relative amount when normalized to DNA input and/or additional normalizing genes.  

The procedure follows the general principle of PCR; its key feature is that the 

amplified DNA is detected as the reaction progresses in real time. Two common 

methods for detection of products in real-time PCR are: (1) non-specific fluorescent 

dyes that intercalate with any double-stranded DNA, and (2) sequence-specific DNA 

probes consisting of oligonucleotides that are labelled with a fluorescent reporter 

which permits detection only after hybridization of the probe with its complementary 

DNA target. 

A DNA-binding dye binds to all double-stranded (ds)DNA in PCR, causing 

fluorescence of the dye. An increase in DNA product during PCR therefore leads to 

an increase in fluorescence intensity and is measured at each cycle, thus allowing 

DNA concentrations to be quantified. However, dsDNA dyes such as SYBR Green 

will bind to all dsDNA PCR products, including non-specific PCR products (such as 

primer dimer). This can potentially interfere with, or prevent, accurate quantification 

of the intended target sequence. 

Fluorescent reporter probes detect only the DNA containing the probe 

sequence; therefore, use of the reporter probe significantly increases specificity, and 

enables quantification even in the presence of non-specific DNA amplification. 

Fluorescent probes can be used in multiplex assays—for detection of several genes 

in the same reaction—based on specific probes with different-coloured labels, 

provided that all targeted genes are amplified with similar efficiency. The specificity of 

fluorescent reporter probes also prevents interference of measurements caused by 

primer dimers, which are undesirable potential by-products in PCR. The method 

relies on a DNA-based probe (e.g. Taqman probes) with a fluorescent reporter at one 

end and a quencher of fluorescence at the opposite end of the probe. The close 
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proximity of the reporter to the quencher prevents detection of its fluorescence; 

breakdown of the probe by the 5' to 3' exonuclease activity of the Taq polymerase 

breaks the reporter-quencher proximity and thus allows unquenched emission of 

fluorescence, which can be detected after excitation with a laser. An increase in the 

product targeted by the reporter probe at each PCR cycle therefore causes a 

proportional increase in fluorescence due to the breakdown of the probe and release 

of the reporter. 

 

Figure 26 – DNA quantification using fluorescent reporter probes. (1) In intact probes, 

reporter fluorescence is quenched. (2) Probes and the complementary DNA strand are 

hybridized and reporter fluorescence is still quenched. (3) During PCR, the probe is 

degraded by the Taq polymerase and the fluorescent reporter released. 

 
 

Real-time PCR can be used to quantify DNA sequences by two methods: 

relative quantification and absolute quantification. Relative quantification is based on 

internal reference genes to determine fold-differences in expression of the target 

gene. Absolute quantification gives the exact number of target DNA molecules by 

comparison with DNA standards (201). The general principle of DNA quantification by 

real-time PCR relies on plotting fluorescence against the number of cycles on a 

logarithmic scale. A threshold for detection of DNA-based fluorescence is set slightly 

above background. The number of cycles at which the fluorescence exceeds the 

threshold is called the cycle threshold, Ct. During the exponential amplification phase, 

the sequence of the DNA target doubles every cycle. For example, a DNA sample 

whose Ct precedes that of another sample by 3 cycles contained 23 = 8 times more 

template. However, the efficiency of amplification is often variable among primers 

and templates. Therefore, the efficiency of a primer-template combination is 

assessed in a titration experiment with serial dilutions of DNA template to create a 

standard curve of the change in Ct with each dilution. The slope of the linear 
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regression is then used to determine the efficiency of amplification, which is 100% if 

a dilution of 1:2 results in a Ct difference of 1. For commercially available probes 

such experiments are no longer necessary since the manufacturer has already 

optimized the performance of the primers for each target sequence. 

To quantify gene expression, the Ct for an RNA or DNA from the gene of 

interest is divided by Ct of RNA/DNA from a housekeeping gene in the same sample 

to normalize for variation in the amount and quality of RNA between different 

samples. This normalization procedure is commonly called the ΔΔCt-method (202), 

and permits comparison of expression of a gene of interest among different samples. 

However, for such comparison, expression of the normalizing reference gene needs 

to be very similar across all the samples. Choosing a reference gene fulfilling this 

criterion is therefore of high importance, and often challenging, because only very 

few genes show equal levels of expression across a range of different conditions or 

tissues (203, 204).  

 

Polymerase Chain Reaction amplification reactions were performed with 

Taqman gene expression assays in duplicate with the use of the ABI Prism 7000 

Sequence Detection System (Applied Biosystems, Foster City Calif.). The  cycle 

(CT) threshold method was used to determine mRNA levels. Target gene expression 

was normalized to 18S rRNA levels. Probes used: zinedin (STRN4, 

Hs00183850_m1), SG2NA (STRN3, Hs00205827_m1), striatin (STRN, 

Hs00162404_m1), lysine deficient protein kinase 4 (WNK4, Hs00260769_m1), serum 

glucocorticoid regulated kinase 1 (SGK1, Hs00178612_m1), prostaglandin I2 (PTGIS, 

Hs00919949_m1) and prostaglandin-endoperoxide synthase 1 (PTGS1, 

Hs00168776_m1). 

 

siRNA knockdown of striatin 

 

Small interfering RNA (siRNA), sometimes known as short interfering RNA or 

silencing RNA, is a class of double-stranded RNA molecules, 20-25 nucleotides in 

length, that play a variety of roles in biology. The most notable role of siRNA is its 

involvement in the RNA interference (RNAi) pathway, where it interferes with the 

expression of a specific gene. In addition to its role in the RNAi pathway, siRNA also 



 78

acts in RNAi-related pathways, e.g., as an antiviral mechanism or in shaping the 

chromatin structure of a genome; the complexity of these pathways is only now being 

elucidated.  

siRNAs were first discovered by David Baulcombe's group at the Sainsbury 

Laboratory in Norwich, England, as part of post-transcriptional gene silencing (PTGS) 

in plants. The group published their findings in Science in a 1999 paper titled "A 

species of small antisense RNA in posttranscriptional gene silencing in plants" (205). 

Shortly thereafter, in 2001, synthetic siRNAs were shown to be able to induce RNAi 

in mammalian cells by Thomas Tuschl, and colleagues in a paper published in 

Nature (206). This discovery led to a surge in interest in harnessing RNAi for 

biomedical research and drug development. 

siRNAs have a well-defined structure: a short (usually 21-nt) double-strand 

RNA (dsRNA) with 2-nt 3' overhangs on either end: 

 

 

Figure 27- Schematic representation of a siRNA molecule. 

 

Each strand has a 5' phosphatase group and a 3' hydroxyl (-OH) group.  This 

structure is the result of processing by dicer, an enzyme that converts either long 

dsRNAs or small hairpin RNAs into siRNAs (207). siRNAs can also be exogenously 

(artificially) introduced into cells by various transfection methods to bring about the 

specific knockdown of a gene of interest.  In essence, any gene whose sequence is 

known can, thus, be targeted based on sequence complementarity with an 

appropriately tailored siRNA.  This has made siRNAs an important tool for gene 

function and drug target validation studies in the post-genomic era. Transfection of 

an exogenous siRNA can, sometimes, prove to be problematic because the gene 

knockdown effect is only transient, in particular, in rapidly dividing cells. 
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EA.hy926 cells were transfected with ON-TARGETplus siRNA pre-designed 

duplex specific for striatin (J-019572-09-0050) obtained from Dharmacon RNAi 

Technologies, Thermo Scientific (Chicago, IL, USA). Control/blank siRNA (D-001810-

01-05) was transfected in parallel with striatin siRNA following the manufacturer’s 

protocols and using the Dharmafect 1 siRNA Transfection Reagent (T-2001-03) from 

Dharmacon RNAi Technologies. The cells were then harvested for Western blot 

analysis 48 hours post-transfection.  

 

siRNA Transfection Protocol 
 

All steps of protocol should be performed in a laminar flow cell culture hood 

using sterile techniques. Cells were plated at a density of 700,000 cells per well of a 

six well plate in antibiotic-free media, the day before the experiment and left to 

incubate overnight at 37°C with 5 % CO2. Before transfection, a 5 μM siRNA solution 

is prepared in 1X siRNA buffer. 

In separate tubes, the siRNA (10 l of siRNA, 5 M per well) and the 

DharmaFECT transfection reagent (2 l per well) are diluted with serum-free media 

to a total volume of 200 l per well. The components of each tube are gently mixed 

by pipetting up and down followed by a 5 minute incubation at room temperature. 

The contents of tube 1 and 2 are added together and mixed by pipetting up and down, 

followed by 20 minutes incubation at room temperature. 

 The culture medium is removed from the cell culture well and 400 l of the 

previous mixture are added. Another 1,6 ml of antibiotic-free media are added to 

each well to fulfil the 2 ml recommended volume per well. The plates are gently 

swirled to ensure appropriate distribution of the transfection reagents. The cells are 

incubated at 37°C in 5 % CO2 for 24–48 hours (for mRNA analysis) or 48–96 hours 

(for protein analysis). In order to reduce cytotoxicity, the transfection medium is 

replaced by regular culture medium after 24 hours of incubation. 
 

 Before selecting the concentrations of transfection reagents to use as well as 

which reagents to use several optimization experiments were conducted.  
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Animals 

 

The present studies followed the guidelines approval from the Institutional 

Animal Care and Use Committee at Harvard Medical School and conforms to the 

Guide for the Care and Use of Laboratory Animals published by the US National 

Institutes of Health (NIH Publication No. 85-23, revised 1996). Male mice (C57Bl/6J) 

from Jackson Laboratory (Bar Harbour, ME) were selected for experiments. All 

animals were housed in a room lighted 12 h/day at an ambient temperature of 22 ± 

1ºC. Animals were allowed 1-3 weeks to recover after arrival and had free access to 

Purina Lab Chow 5001 (Ralston Purina Co., St. Louis, MO) and tap water until the 

initiation of the experiment unless otherwise stated.  

 

General Cell Culture Experimentation Protocol 

 

EA.hy926 cells were maintained in DMEM with 10% FBS. Twelve hours before 

treatment, cells were switched to DMEM without FBS. At the time of treatment, cells 

were incubated with vehicle, aldosterone (10-8 mol/L; Acros Organics, Geel, Belgium), 

or aldosterone (10-8 mol/L) plus the MR antagonist canrenoate (10-6 mol/L; Sigma-

Aldrich, St. Louis, USA) in DMEM without FBS. For the Estrogen experiments cells 

were grown is Estrogen Deficient (ED) phenol free media (Gibco) prepared with 

charcoal striped FBS (208). Twelve hours before treatment, cells were switched to 

DMEM without FBS. At the time of treatment, cells were incubated with vehicle, 

estrogen (5 x 10-8 mol/L; Sigma-Aldrich, St. Louis, USA), or estrogen (5 x 10-8 mol/L) 

plus aldosterone (10-8 mol/L) in DMEM without FBS. 
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Results 
 

 

 

A significant part of the research shown here was based on cell culture of 

established immortalized cell lines and it is crucial to keep the culture conditions as 

homogenous as possible, so that, this is not one more variable that needs to be 

taken into account when analyzing the results of the experiments carried out with 

these cells. Since the culture media itself has a controlled formulation the major 

source of variation comes from additives that are not standardized such as, foetal 

bovine serum (FBS). To reduce such variation, FBS from a single manufacturer’s lot 

was selected after rigorous screening, and subsequently used throughout the 

duration of the experimental phase of the work presented herein. As part of this 

screening cell number and viability were measured as well as the pERK protein 

response to aldosterone stimulation. 

 

FBS is the sterile liquid that is obtained from the clotted blood of the bovine 

foetus. It contains numerous growth factors that are needed for the survival and 

propagation of mammalian cells in culture and for this reason was introduced early in 

cell biology research, subsequent to initial studies with hen and sheep sera (209-

212). Already in the 1950s profound differences for cellular growth between human 

serum and FBS were described and first attempts were made to culture cells in 

serum-free media (212, 213). Despite advances in the fabrication of standardized 

serum-free media over the last decades (214), FBS still remains the most widely 

used cell culture medium supplement in cell biology.  

 

FBS is commercially available from numerous manufacturers and researchers 

typically choose their sera batches based on price, good viability and function of their 

cell cultures, or cloning efficiency. However, few researchers study the composition 

of their FBS batches and these sera therefore remain a major black box in cellular 

experiments. It was previously reported that different sera contain distinct 

compositions of fatty acids, including arachidonic acid (215), and that these lipids can 

directly influence cellular experiments (216, 217). More recently, it was shown that 
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FBS can contain unknown factors that are able to inhibit Toll-like receptor (TLR) 

activation under certain circumstances (218). Although it is generally accepted that 

the composition of FBS may directly influence the outcome of cellular experiments, 

relatively little is known about the impact of lipids and other sera components. 

 

FBS Selection and Growth Curve 

 

Using the service Batch Testing with Reserves provided by Gibco, 5 different 

lots of serum were tested: 

 

Lot 1- 1355888     

Lot 2- 1355891     

Lot 3- 1389439 

Lot 4- 1365490 

Lot 5- 1385397 
  

 

 

Seven T25 flasks were seeded with the same amount of cells for both the 

EA.hy926 and IMR90 cells. Counts were taken (at the same hour) everyday for 7 

days using a Neubaüer counting chamber and Trypan Blue Stain (Sigma-Aldrich) for 

cell viability purposes. Plating day was considered day 1.   

 

 
 

Table 1- EA.hy926 Cell Growth Study for FBS lot Selection. 

Day Cell number (x105) Cell Viability (%) Cell Density (%) Lot 

1 2.0 x 105 100% 10% 

2 1.0 x 105 100% 20% 

3 2.0 x 105 100% 40% 

4 3.0 x 105 100% 40% 

5 2.0 x 105 100% 30% 

6 5.0 x 105 100% 60% 

7 8.0 x 105 100% 80% 

L
o

t 1- 1355888 
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Day Cell number (x105) Cell Viability (%) Cell Density (%) Lot 

1 2.0 x 105 100% 20% 

2 1.0 x 105 100% 20% 

3 2.0 x 105 100% 40% 

4 3.0 x 105 100% 40% 

5 8.0 x 105 87.5% 80% 

6 8.0 x 105 100% 100% 

7 20 x 105 100% 100% 

L
o

t 2- 1355891 

1 2.0 x 105 100% 15% 

2 1.0 x 105 100% 20% 

3 2.0 x 105 100% 30% 

4 5.0 x 105 100% 60% 

5 6.0 x 105 83.3% 70% 

6 9.0 x 105 88.9% 100% 

7 15 x 105 100% 100% (secondary) 

L
o

t 3- 1389439 

1 3.0 x 105 100% 20% 

2 2.0 x 105 100% 40% 

3 4.0 x 105 100% 60% 

4 8.0 x 105 100% 75% 

5 10 x 105 100% 90% 

6 15 x 105 100% 100% (secondary) 

7 20 x 105 85% 100% (secondary) 

L
o

t 4- 1365490 

1 2.0 x 105 100% 20% 

2 1.0 x 105 100% 30% 

3 3.0 x 105 100% 40% 

4 4.0 x 105 100% 60% 

5 7.0 x 105 100% 60% 

6 11.0 x 105 81.8% 90% 

7 14 x 105 100% 100% 

L
o

t 5- 1385397 

 

 Before the FBS lot was selected, media samples were sent to a core facility 

part of Harvard University in order to measure the aldosterone levels present in each 

lot. After measurement aldosterone levels were considered too low to cause any 
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interference in the experiments being carried out with the FBS since they were not 

detectable using a sensitive radioactive assay. 

 

Graphic 1- FBS Growth Study using EA.hy926 cells. 
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After analyzing the growth study results for all lots it became apparent that    

lot 1 did not present the necessary conditions for optimal growth of the cells due to 

poor cell growth, lots 2-4 showed consistent results with a exponential trend as 

desired but, lot number 4 did better overall not only showing a more consistent 

growth trend than the other lots but also a faster growth achieving full confluency 

sooner than other lots. Further testing was done to determine if this lot was suitable 

for the experiments planned although, at this stage, lot 4 was considered the most 

promising and the specific growth rate for these cells was calculated using data from 

lot number 4 growth curve.  

 The most well know form of the growth equation is as follows: 

 

N = N0.e
μ t 

 

This equation allows scientists to calculate the approximate number of cells (N) that 

will be present at a time t, provided that the initial number of cells plated (N0) is 
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known. μ is termed the specific growth rate or often simply growth rate, (unit: d-1, 

h−1, or min−1) and can be calculated using the following formula: 

 

ln (x2/x1) = (t2-t1) 

 

The specific growth rate for EA.hy926 cells using FBS lot number 4 was calculated to 

be 0.0289 h−1. The doubling time for this cell line is between 24 and 48 hours 

depending on which phase of the growth curve the cells are in. 

 FBS lot 4 was the best choice for growing EA.hy926 cells but, what about 

IMR90 cells? 

 

Table 2- IMR90 Cell Growth Study for FBS lot Selection. 

Day Cell number (x105) Cell Viability (%) Cell Density (%) Lot 

1 2.0 x 105 100% 10% 

2 1.0 x 105 100% 10% 

3 2.0 x 105 100% 15% 

4 3.0 x 105 100% 40% 

5 6.0 x 105 100% 50% 

6 7.0 x 105 100% 70% 

7 8.0 x 105 100% 70% 

L
o

t 1- 1355888 

1 2.0 x 105 50% 10% 

2 2.0 x 105 100% 15% 

3 3.0 x 105 100% 20% 

4 3.0 x 105 100% 40% 

5 7.0 x 105 100% 60% 

6 7.0 x 105 100% 70% 

7 7.0 x 105 100% 60% 

L
o

t 2- 1355891 

1 2.0 x 105 50% 10% 

2 3.0 x 105 66.7% 10% 

3 2.0 x 105 100% 20% 

4 6.0 x 105 83.3% 50% 

5 11.0 x 105 90.9% 50% 

6 8.0 x 105 100% 60% 

7 9.0 x 105 88.9% 70% 

L
o

t 3- 1389439 
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Day Cell number (x105) Cell Viability (%) Cell Density (%) Lot 

1 2.0 x 105 100% 10% 

2 2.0 x 105 100% 10% 

3 3.0 x 105 100% 30% 

4 4.0 x 105 100% 60% 

5 9.0 x 105 100% 60% 

6 7.0 x 105 100% 70% 

7 10 x 105 100% 70% 

L
o

t 4- 1365490 

1 2.0 x 105 100% 10% 

2 2.0 x 105 100% 20% 

3 2.0 x 105 100% 40% 

4 3.0 x 105 100% 40% 

5 4.0 x 105 100% 40% 

6 4.0 x 105 100% 50% 

7 6.0 x 105 100% 60% 

L
o

t 5- 1385397 

 

Graphic 2- FBS Growth Study using IMR90 cells. 

FBS Growth Study IMR90 Cells
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Analyzing the results shown on the table and graph depicted above it is easy 

to ascertain that the IMR90 cell line presents a very different growth pattern from the 

EA.hy926 cell line. The cell numbers achieve are lower and full confluency is never 
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achieved which is in keeping with the fact that these fibroblasts suffer from contact 

inhibition and hence need to be passaged before reaching full confluency. An 

example of that contact inhibition can be seen with lots 3 and 4 where cells peak at 

96 hours but subsequently reduce in number. The growth also seems slower with a 

doubling time closer to 48 hours. 

 In terms of FBS batches, once again three different groups can be 

distinguished according with their general effectiveness. Lot number 5 was 

considered the worse FBS for culturing the IMR90 cell line due to a very poor growth 

rate.  Lot number 1 and number 2 achieved better growth rates and could potentially 

be used but, it was lot number 3 and lot number 4 that delivered the best growth. Of 

all the lots tested, number 3 seems to have faired the best displaying a perfect 

exponential trend with higher number of cells. However, because this is not the only 

cell line used for experimental procedures and, furthermore, the main cell lines used 

are endothelial in nature, lot number 4 was elected the best fit for the work to be 

developed ahead, providing the best results for EA.hy926 cells and good results with 

IMR90 cells. 

 The specific growth rate for IMR90 cells using FBS lot number 4 was 

calculated to be 0.0338 h−1. The doubling time for this cell line is between 24 and 48 

hours depending on which phase of the growth curve the cells are in. 

 

Endothelial Cell Phenotyping 

 

 Optimal cell culture conditions are very important to maintain the growing 

variables such as time and cell number present as stable as possible but, even more 

important is to make sure that the cells used have the right characteristics for the 

designed experiments. In the case of the experimental work developed for this thesis, 

the elected cell lines were selected in order to try and mimic the endothelial layer 

(endothelium) of the cells and arteries present in the cardiovascular system. As 

mentioned before and amongst the hybrid cells, the EA.hy926 cell line, derived by 

the fusion of HUVECs with the continuous human lung carcinoma cell line A549, is 

presently the best characterized macro-vascular endothelial cell line (191). Although 

these cells have been described it is still necessary to confirm its properties under 
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our culture conditions and also to make sure that the proteins of interest for this study 

are indeed present in these cells.  

 However, for the purpose of writing this thesis not only immortalized cell lines 

were used but also a primary cell line. The advantages of primary cultures are that 

the cells have not been “modified” in any way (other than the enzymatic or physical 

dissociation necessary to obtain them), and that allows for study conditions as close 

as possible to in vivo. The disadvantages of these cultures are the mixed nature of 

each preparation, limited lifespan of the culture and the potential contamination 

problems. For all of these reasons several tests have to be performed before any 

conclusions can be derived from the experiments designed using these cells. 

 

Morphological Analysis 
 

 One of the first and easiest phenotypic analysis that can be performed is to 

evaluate the morphology of the experimental cells. The American Type Culture 

Collection (ATCC) is a non-profit bioresource centre which has been preserving, 

growing and distributing cultures for almost 80 years. ATCC is the largest biological 

resource centre in the world with the most comprehensive source of reference 

cultures and reagents. Since 1925, this company has set the standard for 

authentication and distribution of biological reference materials and it is easy to 

access its library to get the technical information relating to the cell type you might be 

working with. The following figures are representative images of EA.hy926 cells 

maintained and sold by ATCC that can be used as reference when evaluating the 

morphology of these cells. 

 EA.hy926 cells display a “triangular” shape at a low density and eventually 

evolve to cobblestone morphology when they are maintained in culture on a plastic 

support. They do not form multiple layers but a uniform cobblestone like monolayer at 

full confluency (219). Since the primary cultures used in these studies are also 

endothelial nature, it is expected they would exhibit a similar morphology and growth 

pattern to EA.hy926 cells. 

 Below are electron micrographs photos showing EA.hy926 cells (figure 29) 

used in the laboratory as well as Mouse Endothelial Cells (figure 30) at different 

culture densities.  
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Figure 28- Light microscope photographs showing EA.hy926 cells at different  

culture densities. 
 
 

  

 

 

 

 

 

 

Figure 29- Light microscope photographs showing EA.hy926 used for experiments.  
Pictures taken using 200x magnification. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 30- Light microscope photographs showing Mouse Aortic Endothelial Cells used for 
experiments. Pictures taken using 200x magnification. 
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Comparing the images supplied by ATCC (figure 28) to the images obtained 

by photographing the cells in culture in the laboratory (figure 29) it is easy to see 

morphological similarities. When the cells are less confluent it is possible to 

distinguish the triangular shape typical for these cells and, when the cells become 

confluent they evolve to form the monolayer cobblestone pattern as specified by 

ATCC. 

Mouse Aortic Endothelial Cells electron micrographs depicted show a striking 

similarity to EA.hy926 cells. In low densities the cultured cells show several shapes 

ranging from fusiform to the typical more triangular shape. From observational 

studies it was possible to distinguish different stages of growth from the shape the 

cells take. When the cells first attach to the collagen matrix with which the flasks 

were treated they are spherical. After adhering onto the matrix, the cells start 

“stretching” and taking a more fusiform shape. On the next stage, pseudopods or 

“feet” start forming and evolve until the shape takes the more triangular and typical 

endothelial cell shape. At full confluency these cells show a tight cobblestone pattern 

similar to the EA.hy926 cells but it is also possible to see a couple scattered cells on 

top of the monolayer. All in all the primary cultures used for experiments show 

(through morphological analysis) a high degree of purity. 
 

Immunofluorescence Staining 
 

In order to confirm the endothelial nature and purity of the primary cell cultures 

used, specific monoclonal antibodies raised against different endothelial cell markers 

were used (Von Willebrand Factor (VWF) and CD31 (PECAM-1)) (220, 221) in 

conjunction with immunofluorescence techniques.  

Briefly EA.hy926, IMR90 and Mouse Aortic Endothelial Cells were grown in 

microscope coverslips. When cell confluence reached about 70% the cells were fixed 

using paraformaldehyde and permeablized with a solution of 15% Triton X-100 

detergent. After the cells were prepped the primary antibody was applied. The 

specific antibody was diluted in blocking solution (1% BSA in PBS) and left overnight 

at 4ºC. Since the primary antibody is not linked to any fluorochrome its necessary to 

apply a secondary antibody in order to be able to visualize the cell markers under the 

fluorescence microscope. Fluorescent green and red antibodies were used to label 

the VWF, CD31 and alpha smooth muscle actin (-SMA), respectively. 
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VECTASHIELD® Mounting Medium with DAPI was applied to preserve fluorescence 

and counterstain DNA (stains the DNA blue) and the coverslips mounted on 

microscope slides. The Nikon Eclipse 90i Fluorescence Roper Scientific Microscope 

was used to analyze the resulting cell staining.  

 Both EA.hy926 and Mouse Aortic cells are expected to stain positive to 

endothelial cell markers CD31 and VWF but negative to -SMA, whereas IMR90 

cells, being fibroblasts are expected to stain positive to -SMA (222), but negative to 

the other two markers. 

 EA.hy926 cells were used at passages 12 and 13, Mouse Aortic Endothelial 

cells were used at passages 3 and 4 and derived from different isolation experiments 

and finally IMR90 cells were used at different PDLs and were included in most 

immunofluorescence staining experiments as a negative control. 
 

 

Figure 31- EA.hy926 and IMR90 cells stained with CD31 (green) or -SMA (red) antibodies. 

Nuclear DNA stained blue with DAPI. Images shown with a 400x magnification (10x ocular, 

40x lens) (A, D): EA.hy926 cells stained with CD31 antibody shown in green; (B, E): 

EA.hy926 cell nuclear DNA stained blue with DAPI; (C, F): EA.hy926 cells show negative 

staining for -SMA (red). (G): IMR90 cells show negative staining for CD31 (green); (H): 

IMR90 cell nuclear stained blue with DAPI; (I): IMR90 cells stained with -SMA shown in red. 
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 Results shown above confirm that these cells are viable models t study 

cardiovascular function. EA.hy926 cells stained positive for CD31 confirming its 

endothelial nature. Further proof came from the negative staining for -SMA. 

Contrary to EAhy.926 cells, IMR90 fibroblasts stained positive for -SMA and 

negative to CD31. This result indicates that these cells are a good negative control 

and demonstrates that the immunofluorescence staining is extremely sensitive, with 

very low background and non-specific staining levels. Nuclear DNA staining, 

highlighted by DAPI shows that the cells have maintained their integrity and depict 

optimal levels of fixation and permeabilization as well as the quality of the mounting 

medium used. 

 

Figure 32- EA.hy926 and IMR90 cells stained with VWF (green) or -SMA (red) antibodies.  

Images shown with a 400x magnification (10x ocular, 40x lens) (A, C): EA.hy926 cells 

stained with VWF antibody shown in green; (B, D): EA.hy926 cells show negative staining for 

-SMA (red). (E): IMR90 cells show negative staining for VWF (green); (F): IMR90 cells 

stained with -SMA shown in red. 
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Once again results shown above are in agreement with expectations. 

EA.hy926 cells stained positive for VWF confirming its endothelial nature with further 

proof derived from the negative staining for -SMA. IMR90 fibroblasts stained 

positive for -SMA and negative to VWF, again as expected.  

Another piece of evidence demonstrating that the immunofluorescence 

staining was a success is the even distribution of the colour in the cells. This shows 

that the antibody displays little non-specific binding and the cells were prepared 

properly for the staining. 

 

 

Figure 33- Mouse Aortic Endothelial cells stained with VWF (green) or -SMA (red) 

antibodies. Nuclear DNA stained blue with DAPI. Images shown with a 400x magnification 

(10x ocular, 40x lens) (A, D): Mouse Aortic cells stained with VWF antibody shown in green;     

(B, E): Mouse Aortic cells nuclear DNA stained blue with DAPI; (C, F): Mouse Aortic cells 

show negative staining for -SMA (red).  

 

 Due to the isolation method, these primary cells have a considerable chance 

of containing a mixture of more than one cell type, making the immunofluorescence 

staining results particularly important to determine if this is a viable method for future 

use in experimental procedures or if further purification of these primary cells is 

required.  
 

 Results depicted above point to the presence of a cell population of 100% 

endothelial cells suggesting that no further purification of these cells is required. 

Images show that even at higher levels of confluency all cells stain positive for VWF, 
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a specific marker for endothelial cells. Like EA.hy926 cells, Mouse Aortic Endothelial 

cells are also negative for -SMA, confirming its endothelial nature. It is possible to 

see some background staining but comparatively to the staining seen in fibroblast 

cells, it is too low to be considered positive. Nuclear DNA, as measured by DAPI 

staining, indicates that these cells withstood fixation and permeabilization well and 

the primary antibodies were allowed to penetrate and stain the cell throughout.  

 

 

Figure 34- Mouse Aortic cells and IMR90 cells stained with CD31 (green) or -SMA (red) 

antibodies.  Images shown with a 400x magnification (10x ocular, 40x lens) (A, C): Mouse 

Aortic cells stained with CD31 antibody shown in green; (B, D): Mouse Aortic cells show 

negative staining for -SMA (red). (E): IMR90 cells show negative staining for CD31 (green); 

(F): IMR90 cells stained with -SMA shown in red. 
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Results shown above are in agreement with what was observed in EA.hy926 

cells. Mouse Aortic cells stained positive for CD31 antibody confirming its endothelial 

nature with further proof derived from the negative staining for -SMA. Also as 

expected, IMR90 fibroblasts stained positive for -SMA and negative to CD31.  
  

These results, together with the VWF staining results, indicate that the Mouse 

Aortic cells are indeed endothelial and, therefore, can be used for further 

experiments without any concerns for purity. Both isolation experiments resulted in a 

pure endothelial cell population viable for experimentation. 
 

As mentioned previously in the introductory chapter, in endothelial cells ER 

was shown to target lipid rafts within the plasma membrane (caveolae) by interaction 

with caveolin-1, where it activates endothelial nitric oxide synthase (eNOS) through 

protein kinase-mediated phosphorylation (169). Caveolae facilitate signal 

transduction by providing a location for various signalling molecules (170). Activation 

of ER by phosphorylation has been demonstrated to occur in both a hormone-

dependent as well as hormone-independent manner and is an integral regulatory 

mechanism of nongenomic responses.  

The plasma membrane invagination structure of caveolae supports functional 

protein-protein interactions and cluster of several discrete signalling pathways. Thus, 

caveolae are thought to integrate interactions of receptors and signalling molecules 

in the plasma membrane, resulting in rapid and specific signal transduction (175). 

The caveolin scaffolding domain (CSD) of CAV1 binds numerous signalling 

molecules, including Src family kinases, c-Neu, H-Ras, EGFR, eNOS, and G-protein 

coupled receptors (GPCRs). The ability of CAV1 to hold and orchestrate the spatio-

temporal pairing of membrane localized ERα with its effectors makes CAV1 an 

important scaffolding protein mediating membrane ERα actions. CAV1 is required for 

estrogen-mediated ERα-dependent eNOS production in endothelial cells (186).  

More recently, CAV1 has also been shown to interact with the protein striatin, 

which has been shown to be a key intermediary of the effects of steroid receptors, 

specifically estrogen receptor-α (ER) (188). Lu et al provided evidence that striatin´s 

N-terminal segment interacts with the DNA binding domain of ER in the 

immortalized human endothelial cell line, EA.hy926 cells. This interaction organizes 
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the ERα-eNOS membrane signalling leading to rapid nongenomic activation of 

downstream signalling pathways including ERK and eNOS in endothelial cells. 

Interestingly, disruption of the striatin-ERα interaction had no effect on estrogen-

mediated gene transcription suggesting that striatin specifically mediates ERα extra-

nuclear signalling independent of ERα nuclear actions.  

 

 Results demonstrated for ERα by other groups and mentioned above served 

as the basis for this thesis. Being part of the same family of steroid receptors and 

having in common its method of action it is possible that MR also shares this form of 

nongenomic/rapid signalling with ERα. Having established the endothelial nature of 

both the EA.hy926 and mouse aortic primary cells, the next logical step was to make 

sure that the proteins of interest (MR, striatin and caveolin 1) were present in the 

cells to be used in experimental studies.  

 

Protein Determination by Western Blot Analysis 

 

 Since the subject of this study is the nongenomic action of MR, it is only 

natural to investigate MR expression in EA.hy926 and mouse aortic cells. According 

to the proteomic information repository website UniProtKB/Swiss-Prot, MR protein is 

expected to have a molecular weight of 107 kDa. UniProt is a comprehensive, high-

quality and freely accessible database of protein sequence and functional 

information, many entries being derived from genome sequencing projects. It 

contains a large amount of information about the biological function of proteins 

derived from the research literature and is a good place to look for reliable 

information on molecular weights and protein isoforms. 

 The antibody selected for this study was Santa Cruz’s rabbit polyclonal 

antibody raised against amino acids 1-300 of the human MR protein (catalogue 

number sc-11412). The main reason for selecting this antibody was the fact that it 

had been used before in the laboratory (223), providing consistent results. Below is 

the image provided by the manufacturer for the band size to expect. 
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 Analyzing the image it is possible to see several bands. One faint band over 

113 kDa which one can speculate might either be non specific or, due to post-

translational modification of the MR protein. The strong intensity band at around    

107 kDa can be assumed to be MR and finally, an even stronger intensity band at 

around 75-80 kDa which could potentially be an MR isoform that lacks steroid-

binding activity and acts as ligand-independent transactivator (52). Bearing in mind 

that the manufacturer itself does not offer any explanation for the multiple bands 

present, this explanation is only one of many possible. 

 

 Both Mouse Aortic Endothelial cells (MAEC) and EA.hy926 cells were tested 

for MR protein. Mouse heart tissue was also used to ascertain if there was any MR 

present in this tissue. 

 

 

 

 

 

Figure 36 – Western blot membrane showing the presence of MR protein in Mouse Aortic 

Endothelial cells (MAEC), EA.hy926 cells (EA.hy) and Mouse heart tissue (Heart). 

 

Figure 35 – Image provided by 
Santa Cruz Technology for cat. 
no. sc-11412 MR antibody. 

107 kDa 

MAEC  EA.hy  Heart
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 The size of the bands shown in this western blot membrane was estimated 

from the relative position of the bands to the Kaleidoscope Precision western blot 

marker manufactured by BioRad. The bands were positioned slightly above the 100 

kDa marker, making the 107 kDa a very likely weight.  

 Results show a strong presence of the protein in both MAEC and EA.hy926 

cells, being the later where the highest abundance can be found. There are several 

reports pointing to the presence of MR in cardiac tissue (224, 225). It has also been 

established that the presence of MR in cardiac tissue tends to increase with 

inflammation and fibrosis, being higher in disease models (226). Western blot results 

above show the presence of MR in mouse cardiac tissue although not in very high 

amounts as seen in the endothelial cells tested alongside in the same membrane. 

These results are consistent with the literature and would indicate a healthy rodent. 

The different bands seen in the image provided by the manufacturer were not 

present in the western blots carried out with our samples.  
 

The next protein that was looked at was striatin since it plays a key role in the 

nongenomic actions of ER and may possibly be involved in the nongenomic actions 

of MR if the initial hypothesis for this work is correct.  
 

The UniProtKB/Swiss-Prot website predicts the molecular weight of the striatin 

protein to be around 86 kDa. The antibody selected for this study was BD 

Bioscience’s mouse monoclonal antibody raised against amino acids 450-600 of the 

rat striatin protein (catalogue number 610838). Below is the image provided by the 

manufacturer for the band size to expect. 

 

 

 

 

 

 

 

 

 

 

Figure 37 – Image provided by 
BD Biosciences for cat. no. 
610838 striatin antibody. 
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The expected molecular weight differs significantly from the predicted weight 

but, it is in accordance with results obtained for other antibodies available in the 

market which strongly points to the possibility that striatin undergoes a post-

translational modification. In light of the available information on this protein, the most 

probable modification appears to be phosphorylation and there is some evidence in 

the literature (227) that seems to corroborate this hypothesis. Unfortunately, there 

isn’t a commercially available antibody that can be used to prove such a theory.  
 

 Again, both endothelial cell lines were tested for striatin protein, alongside 

mouse heart tissue. Results obtained are depicted below.  

 

 

 

 

 

Figure 38 – Western blot membrane showing the presence of striatin protein in Mouse Aortic 

Endothelial cells (MAEC), EA.hy926 cells (EA.hy) and Mouse heart tissue (Heart). 
 

Once again, the size of the bands shown in this western blot membrane was 

estimated from the relative position of the bands to the Kaleidoscope Precision 

western blot marker. The bands were positioned a little above the 100 kDa marker, 

pointing to the 110 kDa weight.  

 Results show the presence of the protein in all the samples tested, MAEC, 

EA.hy926 cells and Mouse heart tissue. Samples show an even amount of striatin 

protein present, although the strongest band can be seen for the EA.hy926 cell line, 

making it an ideal cell line to study this thesis hypothesis.  
 

 Finally, the samples were tested for the presence of the protein caveolin 1.The 

UniProtKB/Swiss-Prot website predicts the molecular weight of the caveolin 1 protein 

to be around 20/21 kDa, having an alpha and a beta isoform. The antibody chosen 

for this study was BD Transduction Laboratories mouse monoclonal antibody 

developed using amino acids 1-178 of Rous Sarcoma Virus Transformed-Chick 

Embryo Fibroblasts (RSV-CEF) and purified from tissue culture supernatant or 

ascites using affinity chromatography (catalogue number 610406). Below is the 

image provided by the manufacturer for the western blot results that can be expected. 

110 kDa 

MAEC EA.hy Heart 
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 The manufacturers western blot results show a single band which they place 

at 24 KDa. This result is in agreement with the expected molecular weight for the 

alpha isoform of this protein (20/21 KDa). Although there is a discrepancy, the 

variation does not seem to indicate that there is any post-translational modification or 

that it can be a different protein. 
 

Both endothelial cell lines used in this study were tested as well as a mouse 

heart sample. Western blot was carried out using the standard protocol for the 

laboratory and following the manufacturer’s instructions. Results obtained are 

depicted below. 

 

 

 

 

 

Figure 40 – Western blot membrane showing the presence of caveolin 1 protein in Mouse 

Aortic Endothelial cells (MAEC), EA.hy926 cells (EA.hy) and Mouse heart tissue (Heart). 

  

Figure 39 – Image provided by 
BD Transduction Laboratories for 
cat. no. 610406 caveolin 1. 
antibody. 
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Results obtained in the lab show the presence of one or two bands around the 

22/24 KDa weight. It is also possible that there were two bands for EA.hy926 cells 

and/or heart tissue but, there is so much of the protein that the potential two bands 

appear as one. The bands all came under the 25 KDa Kaleidoscope weight marker. 

Mouse endothelial cells show 2 distinct bands which were attributed to a possible 

phosphorylated form of the protein. Results seen are in line with what the 

manufacturer predicts. The highest level of caveolin 1 protein is seen in the mouse 

heart tissue sample, followed by the EA.hy926 endothelial cell line.  
 

The results from all the western blot tests carried out confirm the choice of the 

EA.hy926 immortalized endothelial cell line as a good model to study this work’s 

hypothesis.  

In addition to western blot analysis, the presence of MR and striatin protein in 

mouse aortic endothelial cells was also detected using immunofluorescence 

techniques. 

 

 

Figure 41 – Mouse Aortic Endothelial cells stained with striatin (green, A) antibody and MR 

(red, B) antibody. Cells were used at passage 4. Images shown with a 400x magnification. 

 

The presence of the protein caveolin 1 in the cell lines studied is a good 

indication of the existence of caveolae rafts in the cell membrane but, in order to be 

sure of their presence and, because it’s a fundamental point in the hypothesis, it was 
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decided to send the cells to be tested by electron microscopy to confirm the presence 

or absence of the caveolae.  

 

Determination of the Presence/Absence of caveolae rafts by Electron Microscopy 

 

The plasma membrane is a biological membrane that separates the interior of 

all cells from the outside environment. It is selectively permeable to ions and organic 

molecules and controls the movement of substances in and out of cells, protecting 

them from outside sources. But, the plasma membrane is not a homogenous 

structure. Specifically, the plasmalemma typically contains numerous small lipid 

patches enriched for cholesterol and glycosphingolipids, commonly referred to as 

lipid rafts. Lipid rafts may function to bring different proteins into proximity and thus 

promote interactions between receptors and signalling proteins and among different 

signalling receptors, allowing for receptor cross-talk (228). In certain cell types, 

plasmalemmal lipid rafts can be clustered and organized by a scaffolding composed 

of the intracytoplasmatic cholesterol-binding proteins caveolin 1, 2, or (in muscle 

cells) 3 into 50- to 100-nm flask shaped invaginations called caveolae (229). These 

organelles were originally discovered in the early 1950s by electron microscopic 

analysis of vascular endothelial cells (230) and of bladder epithelium (231). Caveolae 

have since been observed in many cell types although adipocytes, fibroblast, muscle 

cells and endothelial cells show the greatest abundance. Caveolae function to permit 

transcytosis of macromolecules across an endothelial cell barrier such as that found 

in brain capillaries. More recently, it has been appreciated that caveolae may also 

play a key role in cell signalling. This is because caveolins, especially caveolin 1, can 

bind to several types of plasma membrane receptor proteins and concentrate these 

molecules within the caveolae (232). This clustering of disparate receptor types 

further facilitates receptor cross-talk, allowing one type of ligand-occupied receptor to 

activate the downstream signalling pathways normally initiated by a different receptor 

type (185, 229). In other words, in addition to their role in transcytosis, caveolae 

appear to function as highly efficient lipid rafts. 

 It is know that caveolae are abundant in endothelial cells (ECs) in situ but 

markedly diminished in cultured cells, making it difficult to assess their role in 

signalling. For the particular immortalized cell line used in this study (EA.hy926) there 
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is some preliminary data that demonstrates the presence of caveolae on the cell 

membrane of these cells (see figure 42). D’Alessio et al (229), used Transmission 

Electron Microscopy (Phillips CM 100 electron microscope at an accelerating voltage 

of 80 kV) to demonstrate the presence of these structures in EA.hy926 cells. 

 

 

 

Results obtained by this group show the presence of caveolae in resting 

EA.hy926 cells that, disappear when these cells are treated with methyl-β-

cyclodextrin which acts as a disruptor of lipids rafts. These results are a very good 

indication of what can be expected from the cells used in this thesis sent for EM 

analysis. 

 

EA.hy926 cells were sent for EM analysis together with mouse aortic 

endothelial cells (wild type and caveolin 1 knock-out) and a potentially negative cell 

line (HEPG2 liver hepatocyte cell line). After fixation in the laboratory, thin sections 

were cut on a Reichert Ultracut E ultramicrotome, collected on formvar-coated grids, 

stained with uranyl acetate and lead citrate and examined in a JEOL JEM 1011 

transmission electron microscope at 80 kV.  Images were collected using an AMT 

digital imaging system (Advanced Microscopy Techniques, Danvers, MA). Electron 

microscopy was performed in the Microscopy Core of the Centre for Systems 

Biology/Program in Membrane Biology at the Massachusetts General Hospital in 

Boston. Results obtained can be seen in the figures presented below.   

 

 

Figure 42- A: Transmission electron 

microscopy reveals caveolae, 

indicated by arrowheads, in resting 

EA.hy926 cells.  

B: Electron Microscopy analysis of 

methyl-β-cyclodextrin (MβCD) treated 

cells showing the disappearance of 

caveolae network (28). 
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Figure 43 – Transmission electron micrographs depicting EA.hy926 cells. Caveolae can be 

seen on the cell membrane (refer to arrows). Images shown at 40000x magnification. Scale 

bar shown on right bottom below the image. 

 

Figure 44 – Transmission electron micrographs depicting mouse aortic endothelial cells. 

Caveolae can be seen on the cell membrane (refer to arrows). Images shown at 40000x 

magnification. Scale bar shown on right bottom below the image. 
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Figure 45 – Transmission electron micrographs depicting HEPG2 hepatocyte cells. 

 No caveolae can be seen on the cell membrane. Images shown at 40000x magnification. 

Scale bar shown on right bottom below the image. 

 

  
EA.hy926 cells shown in figure 43 clearly show the presence of caveolae in 

the cell membrane. The flask-shape invaginations are present all along the cell 

membrane of different cells and are accompanied by signs of endocytosis. There are 

several endocytic vesicles in the vicinity of the cell membrane thought to be result of 

the intake of molecules by the caveolae to be transported to different locations in the 

cell, namely the nucleus. The results depicted are very similar to what had been 

published before (229) not only in the number and shape of the caveolae seen but 

are also in keep with the expected size of 50- to 100 nm. 
 

Mouse aortic endothelial cells were collected from animal vessels and 

perpetuated in culture for several passages. Although they are closer to the in vivo 

conditions, it is still possible for them to lose characteristics when placed in culture 

conditions, hence it is very important to look for caveolae presence in these cells 

before proceeding to more experiments.  Results shown in figure 44 are very similar 

to the ones observed for EA.hy926 cells. Cell membranes show a high number of 

invaginations consistent with the presence of caveolae in these cells together with 
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endocytic vesicles concurrent with the engulfing of molecules from the outside 

environment of the cells to be “delivered” to different destinations within the cellular 

milieu. The main differences that can be seen between the mouse aortic endothelial 

cells and the immortalized endothelial cell line EA.hy926 are that the size of the 

caveolae appears to be smaller in the mouse cells and these also appear to be more 

distant between themselves. It is difficult to discern if this is result of culturing the 

cells or a characteristic intrinsic to the cells. What can be said is that the presence of 

the endocytic vesicles is a positive sign of the working order of the caveolae present 

and hence makes these cells adequate for further experiments on the potential 

function of the caveolae in cell signalling. 
 

Contrary to the endothelial cells seen in figure 43 and 44, the hepatocyte cell 

line HEPG2 electron micrographs shown on figure 45 depict a very smooth cell 

membrane without any invaginations resembling the shape of caveolae seen before. 

There are also no endocytic vesicles which is in keep with the lack of endocytosis 

carried out by the caveolae. It is possible to discern a few “dimples” on the cell 

membrane that show heavy staining. These are clathrin-coated pits which tend to be 

bigger than the caveolae and are present in virtually every type of cells. These pits 

are also present in the endothelial cells shown and can be easily differentiated from 

the caveolae due to their heavy staining and bigger size, they also do not have the 

flask shape associated with the caveolae. 
 

 All in all these results are very positive, endothelial cells shown, both 

immortalized and primary cultures, depict a strong caveolae presence on their cell 

membrane confirming their promise as a good study tool to potentially answer the 

questions asked during this experimental project. 
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Figure 46 – Transmission electron micrographs depicting mouse aortic endothelial cells from 

CAV1 WT animals. Caveolae can be seen on the cell membrane (refer to arrows). Images 

shown at 40000x magnification. Scale bar shown on right bottom below the image. 

 

Figure 47 – Transmission electron micrographs depicting mouse aortic endothelial cells from 

CAV1 KO animals. No caveolae can be seen on the cell membrane. Images shown at 

40000x magnification. Scale bar shown on right bottom below the image. 
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 Figures 46 and 47 show electron micrographs of mouse aortic endothelial cells 

resultant from primary cell culture of aortic cells collected from CR57BL6 mice that 

lack the caveolin 1 gene (CAV1 KO animals) or their wild type counterparts. The 

reason why we look at the wild type mouse once again is due to the fact that different 

species were being used. Whereas the original mouse aortic endothelial cells were 

collected from CD1 mice (the regular white or brown laboratory mouse), which is a 

cheaper animal model, the CAV1 KO wild type animal comes from a different species 

of mouse, the black 6 model that has some genetic differences. Hence the only way 

to make sure that the cells collected from these different animals displayed the same 

basic characteristics was to submit both cell cultures to be analyzed by electron 

transmission microscopy and compare the photographic results obtained. 
 

 Looking at figure 46 it is easy to spot differences between these cells and the 

ones shown in figure 44. The caveolae are present but are more difficult to spot on 

the cell membrane due to their size. The membrane has the same general reticulated 

aspect as the previous mouse aortic endothelial cells but the invaginations 

themselves are much smaller in size making them harder to distinguish against the 

general background of the cell cytoplasm. There is some evidence of endocytic 

vesicles but again not as pronounce as what was observed before. Figure 47 derives 

from a CAV1 KO animal and shows smoother cell surface with clathrin-coated pits 

visible but no apparent caveolae or endocytic vesicles.  
 

 Although the results are in keeping with what was expected, they are not 

believed to be very clear. The size of the caveolae is much smaller than what was 

observed before and they are difficult to distinguish in the cell membrane. In this way 

judgment was reserved until further experiments were undertaken about the 

presence/absence of caveolae in these cells. 
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Aldosterone-Response Studies 

 

 This work is based on the premise that aldosterone rapid signalling via the 

mineralocorticoid receptor may function in a similar way to what has been described 

for the estrogen receptor alpha (188). To explore this hypothesis it is important to 

select a signalling molecule to focus on and test in order to investigate whether the 

action of this molecule is enhanced when the cells are stimulated with aldosterone. 

The authors of the paper mentioned above, used mitogen activated protein kinases 

(MAPK), specifically ERK1/2 kinases as target molecules and tested if its 

phosphorylation was enhanced when the cells were stimulated with estrogen. After 

careful consideration, literature review and previous results analyzed, it was decided 

to study ERK1/2 from the MAPK family as possible important players in the 

aldosterone nongenomic signalling cascade. This decision was greatly aided by the 

literature where several sources referred to an increase in pERK activity (118, 233, 

234) but also by previous results observed within the research group (235).  

 Male C57BL/6 on a 3% NaCl (salt) diet were injected intraperitoneally with 

either 10 µg/kg of aldosterone (experimental group) or vehicle (control group) and 

killed at different time points after injection (0, 0.5, 1, 2, 3, 4, 5 and 12h). Plasma 

aldosterone levels reached a peak (290 ng/dl) at 30 minutes, returning to baseline at 

3 hours. Total RNA was extracted from whole hearts and used in microarray studies 

to analyze the gene expression profiles in the heart. Animal models of 

mineralocorticoid excess demonstrate cardiac damage (107, 236, 237), and human 

clinical trials offer evidence that blockade of the mineralocorticoid receptor can 

decrease morbidity and mortality in patients with heart failure (103, 104). The 

experiment was designed to focus on the genetic effects of aldosterone that could 

potentially mediate empirically observed myocardial injury. In rodent models, 

uninephrectomy and high-salt diet are necessary for demonstration of 

mineralocorticoid-mediated cardiac damage (107, 110, 111). Whereas the duration of 

this particular experiment was too short to observe myocardial injury, experimental 

conditions were designed to replicate the physiological conditions that have been 

shown to lead to cardiac damage. Several of the genes whose expression level was 

affected by aldosterone are known to play a role in steroid signalling: dual specificity 

phosphatase 7 dephosphorylates ERK (238), and protein phosphatase 5 may be 
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involved in glucocorticoid receptor signalling (239). Several groups have reported an 

increase in phosphorylation of ERK1/2 within several minutes after aldosterone 

administration that is not blocked by inhibitors of transcription and translation (240, 

241), implying a nongenomic mechanism. These findings possibly indicate a second, 

genomic pathway leading to ERK1/2 phosphorylation (by decreasing the expression 

of the enzyme responsible for ERK1/2 dephosphorylation), after a longer period of 

time.  

 With reports of increases in phosphorylation as early as 5 minutes after 

stimulation with aldosterone, it was felt that the best course of action was a short-

time aldosterone stimulation study to pinpoint when the endothelial cells used in the 

laboratory achieve a peak in ERK1/2 phosphorylation. 

 

Graph 3: Aldosterone short-time stimulation study. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 EA.hy926 cells were grown in 10% FBS DMEM media until reaching about 

70% confluency. At that stage the cells were stepped-down to 0,4% FBS DMEM to 

keep the environment stimulation to a minimum. Although the aldosterone levels in 

FBS were measured and considered to be negligent, this is still a very rich media and 

it is difficult to assess if the growth factors and cytokines present influence the 

signalling pathway under study, hence by keeping their levels to the minimum to 

ensure cell viability the chance of external factors influencing the outcome of the 
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experiments is highly diminished. Cells were kept in the step-down media overnight 

and then stimulated with 10 nM aldosterone or vehicle (ethanol solution used to 

dissolve the aldosterone chemical) for different periods of time. Cells were then 

washed in PBS and collected in RIPA buffer for western blot analysis. 

Phosphorylated ERK1/2 protein levels were measured and normalized to ERK1/2. 

Results are shown on graph 3 and it is easy to identify two distinct peaks of activity 

for phospho-ERK after EA.hy926 cells are stimulated with aldosterone. The first peak 

is quite steep and observed at 15 minutes of aldosterone treatment. Although the 

short length of time of treatment leads to the very tempting conclusion that this might 

be a nongenomic effect of aldosterone signalling, it is not possible to correctly 

ascertain if this is the case without performing further experiments. The second peak 

can be seen at 5 hours of treatment. Due to the relatively long period of time of 

treatment, this peak is believed to be due to genomic effects of aldosterone and 

further experiments were undertaken to confirm this hypothesis. Statistical results 

shown on graph 3 were obtained by one-way ANOVA followed by post-hoc Mann-

Whitney t-test comparison for selected time-points.  

 
Graph 4: Aldosterone short-time stimulation study. 
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and 5 hours with the highest being at 15 minutes with an almost doubling of ERK 

phosphorylation. Once more, statistical results shown on graph 4 were obtained by 

one-way ANOVA followed by post-hoc Mann-Whitney t-test comparison for selected 

time-points.  
 

 When it comes to what aldosterone dose to use for cell stimulation authors 

seem to be divided. When looking at the literature it is possible to find values going 

from 0,1 to 100nM of aldosterone being used to stimulate cells. For the first 

experiments carried out with the EA.hy926 cells, 10nM aldosterone was the selected 

concentration for time course studies. Although cells responded well to this 

concentration, it was felt that a dose response study was necessary to determinate if 

this was the best concentration to use with these cells. 
 

Graph 5: Aldosterone dose response study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 48 – Western blot depicting the results shown on graph 5. 

Numbers shown above the photo represent the aldosterone dose in nM. 
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aldosterone dose at 15 minutes of stimulation leading up to a 2-fold response when a 

1µM aldosterone dose is used. * represents a p < 0,05 when compared to vehicle (0 

nM). Although it is tempting to select the dose that delivers the highest response in 

terms of ERK phosphorylation and, hence, cell signalling, it is important to consider 

the physiological relevance of the dose used in cell experiments, making it possible 

to compare to situations of high aldosterone levels in medical science. 

 Primary hyperaldosteronism (PHA) is recognized as the most common 

endocrine form of secondary hypertension (242-247) with an estimated prevalence 

between 5% and 15% in the hypertensive population (248). Primary aldosteronism, 

also known as primary hyperaldosteronism, is characterized by the overproduction of 

aldosterone by the adrenal glands without the expected excessive renin secretion, 

making the ratio of plasma aldosterone concentration to plasma renin activity the 

most common screening test for this condition. Aldosterone causes increase in 

sodium and water retention and potassium excretion in the kidneys, leading to 

arterial hypertension. PHA has many causes, including adrenal hyperplasia and 

adrenal carcinoma. When it occurs due to a solitary aldosterone-secreting adrenal 

carcinoma (a type of benign tumour), it is known as Conn’s syndrome (249). Plasma 

aldosterone levels vary considerably, even for normotensive individuals. A study 

conducted in 76 healthy individuals and 28 confirmed PHA patients resulted in 

plasma aldosterone values of 0,033 to 1,930 nM for healthy subjects and 0,158 to 

5,012 nM for PHA patients (250). 

 These values, especially the top value for PHA patients seems to validate the 

choice of 10nM aldosterone as a valid one both for cell studies as for a possible 

comparison with pathophysiological states in humans as it is within the same order of 

magnitude, although higher. This way although 10nM aldosterone cannot be called a 

pathophysiological dose, it is still an acceptable pharmacological dose for 

comparison with disease states in humans. In addition, clinical results collected by 

other investigators in the group over the past 30 years (HyperPATH cohort) show 

that in 828 hypertensive subjects the circulating aldosterone levels ranged between 

0,05 and 11,53 nmol/L (Mean= 1,37 ± 0,94 nmol/L [Std Dev]; Median 1,13 nmol/L). 

Furthermore, aldosterone levels over 100 nmol/L have been observed in heart failure 

patients (251, 252), reinforcing the fact that high levels of aldosterone play a part in 

the pathophysiology of cardiovascular failure. 
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Aldosterone’s nongenomic effects 
 

 Having focused on making sure that everything is in place for the key 

experiments, the aldosterone short-time study was repeated with cells grown in the 

selected FBS batch media and a mineralocorticoid receptor inhibitor. EA.hy926 cells 

were grown until about 70% confluency in 10% FBS media and then stepped-down 

to 0,4% FBS media overnight before the experiments took place. Each treatment was 

applied in triplicate and each experiment repeated three times. 

 Potassium canrenoate is the potassium salt of canrenoic acid, an antagonist of 

aldosterone action. Like spironolactone, it is a prodrug, which is metabolized to 

canrenone in the body. Spironolactone and its active metabolites canrenone and 

potassium canrenoate are normally used as hypertensive drugs but, their mechanism 

 

Figure 49 – Potassium canrenoate. 

Systematic IUPAC name: potassium 3-

[(8R,9S,10R,13S,14S,17R)-17-hydroxy-10,13-

dimethyl – 3 – oxo - 2, 8, 9, 11, 12, 14, 15, 16 

– octahydro - 1H – cyclopenta [a] 

phenanthren -17-yl] propanoate. 

 

of action is not fully understood. It is known that it initially inhibits sodium 

reabsorption and secondarily potassium excretion in the distal tubule of nephrons but 

little is known about how it acts in the cardiovascular system. A study conducted in 

aortic rings suggests that canrenoate might exert this action through an inhibition of 

voltage-dependent Ca2+ channels (253). 

 There were several reasons for selecting canrenoic acid as the inhibitor of 

choice for aldosterone in these studies, most of them due to practicality. Canrenoic 

acid is readily available from chemical suppliers like Sigma-Aldrich whereas 

eplerenone and especially spironolactone are more difficult to get hold of in pure form. 

Canrenoic acid is also water soluble making it a perfect inhibitor for use in cell based 

assays. In contrast, both spironolactone and eplerenone need to be dissolved in 

ethanol making them more toxic for cells. 

 As previously described, cells were plated in 6 well plates at a density of         

5 x 105 cells/well and allowed to reach 70% confluency before the media was 
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changed from DMEM 10% FBS (selected batch) to DMEM 0,4% FBS and left 

overnight. Canrenoic acid was used at a concentration of 1µM (100 times the 

aldosterone concentration) to ensure an efficient inhibition.  

 

Graph 6: Aldosterone short-time course with antagonist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50 – Western blot illustrating the results shown on graph 6. 

Letters shown above the photo represent the treatment  

(V- vehicle, A- aldosterone, MRA- mineralocorticoid antagonist). 

 

 Just as seen before, EA.hy926 cells show an increase in ERK1/2 

phosphorylation when stimulated with 10nM aldosterone for 15 minutes. This result is 

in agreement with has been observed before with these cells with a 2,5 fold increase 

in pERK (p  0,01 when compared to 5 minutes). When the mineralocorticoid 

antagonist canrenoic acid (MRA) is used in conjunction with the aldosterone 

treatment, the increase in ERK phosphorylation is abrogated, thus confirming that the 
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increase in pERK observed is indeed due to an effect of aldosterone acting through 

the mineralocorticoid receptor. 
 

This result is by itself promising, especially because it is consistent with 

previous experiments and thus would appear to be a true biological observation and 

not an artefact of the experimental paradigm. Although promising, more experiments 

are necessary before claiming any physiological significance for this result. One of 

the easiest critiques is that the cell line used is not only an immortalized cell line but 

also not of cardiovascular origin, making the conclusions drawn from these results of 

lesser interest and significance in the study of cardiovascular relevance of 

aldosterone nongenomic actions. In order to add relevance to the results observed in 

EA.hy926 cells, experiments were repeated using early culture mouse aortic 

endothelial cells collected from healthy mice. Cells were isolated from the pulmonary 

section of mice aortas and grown in DMEM, 20% FBS with the addition of 1% MEM 

amino acids, 1% sodium pyruvate, 100 /ml heparin, 100 g/ml endothelial cell growth 

supplements (Sigma-Aldrich, St. Louis, MO) and incubated in 5% CO2 at 37°C in a 

humidified atmosphere. The cells were used at passages 2-3. The purity of the 

primary cultures was confirmed by the specific monoclonal antibodies raised against 

VWF and PECAM-1 previous to use in experiments. 
 

  Because each individual aorta yields a small number of cells, it was 

necessary to combine cells from more than one aorta for these experiments. All 

aortas were collected at the same time and processed using the same experimental 

protocol and reagents. Cells were cultured in collagen coated 6 well plates till 

confluency and then passaged to collagen coated t-flasks to expand previous to use 

in aldosterone experiments. Cells were first used at passage 2 and for no longer than 

4 passages total. As with EA.hy926 cells, mouse aortic endothelial cells were 

stepped-down previous to use in experiments. Due to the fact that these cells are 

grown in double the amount of FBS as the EA.hy926 cells it took to stepping-down 

phases, from 20% FBS to 10% FBS and then to 0,4% FBS, to allow the cells to get 

used to less nutrients without entering senescence.  
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Graph 7: Aldosterone short-time stimulation study using Mouse Aortic Endothelial cells. 
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Figure 51 – Western blot illustrating the results shown on graph 7. Treatments were done in 

triplicate using 10nM aldosterone for different periods of time. 

 

 Each treatment was done in triplicate and the experiment itself repeated at 

least 3 times. 6 mice were sacrificed per experiment and the cells collected pooled 

together in order to have the necessary number of cells per experiment.  

 Results show a significant increase in pERK protein levels at 15 minutes of 

aldosterone, confirming previous observations with the EA.hy926 cells line. The 

magnitude of the increase in protein levels is smaller than the one observed before 

but more consistent between experiments as indicated by a smaller error bar (see 

graphs 6 and 7). Seeing that these cells were isolated from the aorta of healthy 

rodents, the results observed are in all probability closer to physiological relevance in 

humans. They also confirm that the EA.hy926 cell line as a good model for 

endothelial cell action. 
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 Combined together, the results from short-time aldosterone stimulation studies 

with EA.hy926 endothelial cells and mouse aortic endothelial cells start to piece 

together a convincing amount of evidence pointing to a newly described nongenomic 

action of aldosterone in endothelial cells. Although the observed results can be 

considered as a rapid action of aldosterone, in order to call it a nongenomic action, 

first it is necessary to demonstrate that no gene translation is occurring in the 15 

minutes of aldosterone action.  

 EAhy.926 cells were stimulated with 10nM aldosterone for 15 minutes and 5 

hours and then collected for mRNA extraction. After mRNA was purified and 

quantified, a reverse-transcription kit was used to obtain cDNA that was then used in 

Real-Time PCR gene expression experiments. The 5 hour time-point was used as a 

measure of positive genomic action. Aldosterone is known to change the expression 

of several different genes being it by increasing or reducing it (254). 4 different genes 

were selected for quantification in aldosterone stimulated EA.hy926 cells but only 2 

showed the expected results with an increase/decrease at 5 hours and no change at 

15 minutes. Although all the genes studied showed no change at 15 minutes, NOS 

and aldolase, did not show a sufficient change at 5 hours to make it significant 

evidence of a genomic effect of aldosterone, only being slightly elevated when 

compared to control.  
 

 The mechanisms behind aldosterone action have been extensively 

characterized, particularly in the kidney collecting duct (CD).  In intact CD or cultured 

CD cells, the response to aldosterone can be divided into main phases- early and 

late –that differ significantly, although both require changes in gene transcription 

(255). The principal early action of aldosterone in CD cells (after 30-45 minutes) is to 

increase apical membrane permeability by increasing Na+ transport through ENaC 

(96). In most cases, the ENaC-mediated early effect of aldosterone accounts for 

more than 60% of the total increase in Na+ current and, importantly without changes 

in ENaC gene transcription (77). These observations suggest that MR regulates the 

transcription of a regulatory protein that increases the plasma membrane localization 

and/or activity of existing ENaC protein. The early effects of aldosterone are potent, 

rapid and largely limited to changes in ENaC-mediated Na+ transport, with other 

effects such as proliferation, occurring later (256). Thus, the mRNA levels of a 
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mediator of the early response should increase markedly and rapidly and the 

mediator of the early response should, in turn, strongly stimulate ENaC activity. 

SGK1 (Serum/glucocorticoid regulated kinase 1) has been shown to be such an 

aldosterone-stimulated regulator of ENaC activity (79, 257, 258).  

 SGK1 mRNA is rapidly increased by 

aldosterone and, when expressed in Xenopus 

oocytes, SGK1 strongly and selectively stimulates 

ENaC-mediated Na+ transport in addition to 

localizing ENaC to the membrane (255). Most 

studies regarding aldosterone action concern the 

renal system where its action is most important, 

indeed, one study using cardiomyocytes has shown 

that some of the genes whose expression is 

affected by aldosterone in the collecting duct are 

also increased in the cardiovascular system. 

Results of this study showed a 2.5 fold increase in 

SGK1 mRNA (259), other genes were found to be 

up-regulated by aldosterone action, including several connected to inflammation and 

fibrosis like   PAI-1 and ADAMTS1. 

 

Graph 8: SGK1 mRNA levels in EA.hy926 cells after stimulation with aldosterone. 
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Figure 52- Crystal structure of Serum 

Glucocorticoid Regulated Kinase 1, 

adapted from the Protein Data Base 

(PDB 2R5T). 
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Consistent with the observations for cardiomyocytes, EA.hy926 cells 

stimulated with aldosterone showed an increase in SGK1 mRNA levels. SGK1 went 

up by about 2,5 fold after 5 hours of 10nM aldosterone treatment (p 0,001 when 

compared to 15 minutes). Contrary to the 5 hour time-point that displays a classic 

genomic action of aldosterone with a significant increase in SGK1 mRNA levels, the 

15 minute time-point did not show any significant change supporting the hypothesis 

that the increase in pERK protein levels is indeed a nongenomic effect of aldosterone 

action at this time-point. In order to take into account differences between samples, 

SGK1 mRNA levels were normalized using the housekeeping ribosomal gene 18S. 

 

Graph 9: WNK4 mRNA levels in EA.hy926 cells after stimulation with aldosterone. 
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of hyperkalemia and an increased secretion of aldosterone (which will upregulate 

both ENaC and the renal outer medullary potassium channel (ROMK)), this inhibition 

of NCC, will allow an increase in the arrival of sodium to the distal nephron (rich in 

ENaC and ROMK) which will allow the exchange of sodium for potassium ions, 

thereby reducing plasma potassium levels, without increasing sodium chloride 

retention (which is always accompanied by volume expansion). Mutations in NCC 

regulators WNK1 and WNK4 cause Type II pseudohypoaldosteronism (PHA2), also 

known as Gordon’s syndrome, an autosomal dominant disease in which there is an 

increase in NCC activity leading to short stature, increased blood pressure, increased 

serum K+ levels, increased urinary calcium excretion and hyperchloremic metabolic 

acidosis. 
 

It was thought that aldosterone required the presence of angiotensin II to 

activate the WNK4 regulator but, recently, it was shown that in the presence of 

losartan (an angiotensin II inhibitor), aldosterone was still capable of increasing total 

and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK 

(STE20/SPS1-related proline/alanine-rich kinase) also increased with aldosterone 

and losartan. Furthermore, a dose-dependent relationship between aldosterone and 

NCC, SPAK and WNK4 was identified, suggesting that these are aldosterone-

sensitive proteins (262). 
 

In keeping with these observations, EA.hy926 cells stimulated with 

aldosterone showed an increase in WNK4 mRNA levels. WNK4 increased by about 

3.5 fold after 5 hours of 10nM aldosterone treatment (p 0,001 when compared to 15 

minutes). Although the 5 hour time-point displayed a classic genomic action of 

aldosterone with a significant increase in WNK4 mRNA levels, the 15 minute time-

point again did not show any significant change reinforcing the idea that the increase 

in pERK protein levels is a nongenomic effect of aldosterone action. In order to take 

into account differences between samples, WNK4 mRNA levels were normalized 

using the housekeeping ribosomal gene 18S. 
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Aldosterone’s genomic effects 

 
 Having so far concentrated on the nongenomic effects of aldosterone and 

having established that there is a significant increase of pERK due to aldosterone 

stimulation both in EA.hy926 cells and mouse aortic endothelial cells, it was 

necessary to investigate if striatin and the caveolae play a role in this action as seen 

for estrogen’s nongenomic actions.  

 The first question asked was if aldosterone influences striatin in any way and 

in order to answer that question, EA.hy926 cells were stimulated with 10nM 

aldosterone for different periods of time conducive to a potential genomic effect. As 

before cells were stepped-down the day before the experiment. After stimulation, 

cells were collected for western blot analysis and striatin protein levels measured. 

 

Graph 10: Striatin protein levels in EA.hy926 cells after stimulation with aldosterone (ALDO). 
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 Results showed a significant increase in striatin protein at 5 hours of 

aldosterone stimulation, consistent with the second increase in ERK1/2 

phosphorylation observed before, leading to the possibility that these two effects 

might, somehow, be linked. This result was unexpected, since striatin is believed to 

be a chaperone protein, facilitating the interactions between different signalling 

proteins. The increase in striatin takes place at 5 hours of aldosterone stimulation 

which, as shown before, is in agreement of other genomic actions of aldosterone. 
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However, this increase seems to be an acute event that occurs only at 5 hours of 

stimulation and is not sustained further. Striatin protein levels were normalized to     

β-actin to account for possible variations in the amount of protein loaded in each well. 

  In order to determine if this is indeed an effect of mineralocorticoid activation, 

further experiments were carried out using the MR antagonist canrenoic acid. 

EA.hy926 cells were treated with, vehicle, 10nM aldosterone or 1µM canrenoic acid 

for 5 and 24 hours. 

 

Graph 11: Striatin protein levels in EA.hy926 cells after MR activation/inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 Results show that the aldosterone-induced increases in striatin expression are 

mediated via the activation of the mineralocorticoid receptor in EA.hy926 cells since 

canrenoic acid effectively inhibited the increase in striatin protein levels. Consistent 

with the previous experiments, striatin protein levels (after normalization to β-actin) 

went up by about two fold (*p < 0.05 vs. vehicle-treated cells). In the graph ALDO 

stands for 10nM aldosterone treatment and MRA for 1µM canrenoic acid treatment. 
 

 Although it was established that the observed effect is a consequence of 

mineralocorticoid receptor activation, it is still to be determined if this is in fact a 

genomic action of aldosterone. To determine if this is the case, EA.hy926 cells were 

stimulated with 10nM aldosterone ± canrenoic acid for 5 and 24 hours. After 

stimulation, cells were harvested for mRNA isolation and quantification of striatin 

mRNA using Real-Time PCR.  
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Graph 12: Striatin mRNA levels in EA.hy926 cells after MR activation/inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 Results observed are consistent with the observed increase in striatin protein 

levels seen at 5 hours of aldosterone stimulation and supports the hypothesis that 

aldosterone is exerting a genomic effect on the EA.hy926 cells studied and that 

striatin is an aldosterone-sensitive protein. Striatin mRNA levels (after normalization 

to 18S) went up by about two fold (*p < 0.05 vs. vehicle-treated cells). In the graph 

ALDO stands for 10nM aldosterone treatment and MRA for 1µM canrenoic acid 

treatment. 

  

 Because the increase in striatin protein was an unexpected find, experiments 

were repeated using mouse aortic endothelial cells to ensure that this was not an 

artefact due to using an immortalized cell line as a model. As before cells were 

stepped-down to 0,4% FBS media and left overnight to quiesce. The following day 

cells were treated with 10nM aldosterone in the presence/absence of the 

mineralocorticoid inhibitor canrenoic acid (1µM). After 5 hours of treatment, cells 

were rinsed and collected in RIPA buffer for subsequent western blot analysis. Each 

treatment was carried out in triplicate wells and, every experiment executed three 

times for statistical analysis. 
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Graph 13: Striatin protein levels in MAEC cells after MR activation/inhibition. 

 

 

 

Figure 53 – Western blot illustrating the results shown on graph 13. ALDO stands for 10nM 

aldosterone treatment and CA for 1µM canrenoic acid. 

 

 Results obtained with MAEC are very similar to previous observations with 

EA.hy926 cells. Striatin protein levels went up by about two-fold confirming that 

striatin is indeed an aldosterone-sensitive protein and leading to more questions 

about the consequences of this discovery. Although striatin protein was increased at 

five hours in these cells, there wasn’t an increase in the mRNA levels, leading us to 

believe that the peak of stimulation does not occur at the same time as was observed 

with EA.hy926 cells or the increase in mRNA levels is not as noticeable as with 

EA.hy926 cells making the differences more difficult to detect. 

 Results obtained in animal studies seem to confirm the observations from the 

cell experiments carried out. An experimental study with animals showed that dietary 

sodium restriction increased striatin levels in mouse hearts and aorta. A sodium 

restricted mouse model was studied which is known to have increased aldosterone 

levels (263). Mice were given a low sodium (LS) diet for 11 days which led to a 

significantly higher plasma aldosterone level (64,18 ± 14,30 ng/dl; (n=6)) than their 

cohort study companions on a (HS) high sodium diet (34,26 ± 4,99 ng/dl (n=7)) for 
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the same amount of time. Heart tissue as well as aorta was isolated upon animal 

sacrifice and protein isolated and measured by western blot analysis. Striatin levels 

were significantly higher in mice on a low sodium diet than the mice on higher sodium 

levels. 

 

Graph 14: Heart tissue striatin protein levels in mice on a high sodium or low sodium diet. 

 
 

 Results show on graph 14 depict a near two-fold increase in striatin protein 

levels in animals on a low sodium diet, consistent with the higher plasma aldosterone 

levels and previous results obtained in experimental endothelial cell studies. Higher 

striatin protein levels were also observed in aortic tissue collected from these animals. 

 

Graph 15: Aorta striatin protein levels in mice on a high sodium or low sodium diet. 
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 As with heart tissue, striatin protein levels were significantly higher in aortas 

from LS mice when compared to HS mice by about two-fold once again, consistently 

with the higher striatin protein levels observed in mouse aortic endothelial cells 

treated with aldosterone. Blood pressure levels were also measured in these animals 

using the tail cuff method (264). As shown previously under these conditions, low 

sodium was associated with lower blood pressure than high sodium (108,8 ± 2,8 mm 

Hg vs. 114,7 ± 3,1 mm Hg, LS vs. HS respectively, mean ± standard deviation, p < 

0,03) (264). 

 

 In order to characterize the in vivo relevance of these findings, the effects of 

aldosterone on striatin levels was studied in mouse heart by using additional models 

of mineralocorticoid activation. The effects of an acute in vivo aldosterone 

administration on striatin levels in the heart were analysed. A vehicle injection was 

included at each time point in order to distinguish the effects caused by the injection 

from the ones due to a response to aldosterone stimulation. Male C57BL/6 mice on a 

3% NaCl diet were injected intraperitoneally (IP) with either 10 µg/kg of aldosterone 

or vehicle and sacrificed at the following time-points after injection: 0 hours (no 

injection), 1, 2 and 3 hours. Five mice were sacrificed in each group at each 

individual time-point.  

 

Graph 16: Striatin protein levels in mice injected with aldosterone or vehicle. 
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Figure 54 – Western blot illustrating the results shown on graph 16.  

Sham stands for vehicle injection. 

 

 It was observed (in heart tissue) that striatin levels increased in aldosterone-

treated mice when compared to vehicle injected animals (sham). Plasma aldosterone 

concentrations were determined in each animal as reported previously (235) and, as 

expected, plasma aldosterone levels only increased in the aldosterone injected 

group, reaching its highest level at 30 minutes with a concentration of 280 ng/dl. 

Although the results shown are not statistically significant due to high error values, 

the overall result confirms previous results obtained and adds physiological 

relevance to them. The big difference being that, in the case of an acute injection it 

seems that the increase in striatin protein occurs more quickly than in in vitro studies. 

This can be due to many factors but it is believed to be mainly due to the fact that we 

are working with a bigger mass of cells as well as interactions (including feedback 

mechanisms) and crosstalk of other tissue types that are intact within the whole 

animal, instead of a monolayer of cultured endothelial cells. 
 

 Finally, a previous studied animal model of acute, generalized, multiple organ 

injury secondary to vascular inflammation (109, 110) was used to assess the 

interaction of mineralocorticoid activation on striatin. In this model, animals are 

treated with the nitric oxide synthase inhibitor, L-NG-Nitroarginine Methyl Ester (L-

NAME), in combination with angiotensin II. The treatment induces myocardial 

damage initiated at the vascular level which can be prevented by MR blockade or by 

adrenalectomy (109, 110). Knowing this, the      AngII/L-NAME model was used as a 

“stressor” model to ascertain if an increase in mineralocorticoid activation would also 

lead to an increase in striatin levels. 

 Results show that AngII/L-NAME treatment is associated with increased 

striatin levels both in heart and kidney tissues when compared to vehicle treated 

control. In these studies, AngII/L-NAME treatment increased aldosterone circulating 
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levels (122,1 ± 34,1 ng/dl (n= 6)) when compared to vehicle treatment (34,26 ± 4,99 

ng/dl (n =7); p= 0,008). In addition, blood pressure levels were also measured in 

these animals and, as shown previously, AngII/L-NAME treatment was associated 

with increased blood pressure levels vs. vehicle treated mice (120 ± 3,8 mm Hg vs. 

161 ± 23 mm Hg, vehicle vs. AngII/L-NAME respectively, mean ± standard deviation, 

p < 0,04) (265). 

 

Graph 17: Heart striatin protein levels in mice treated with AngII/L-NAME or vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Graph 18: Kidney striatin protein levels in mice treated with AngII/L-NAME or vehicle. 
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 All the data obtained from these different animal experiments consolidates the 

previous results generated by the endothelial cell studies. Although unexpected, the 

finding that aldosterone levels seem to influence striatin protein levels is an important 

one and might change the way this protein is viewed by other investigators as well as 

add to its functions. 
 

 After establishing that aldosterone has both genomic and nongenomic effects 

in the endothelial cells studied and, the presence of striatin in the same cells, it is 

now necessary to ascertain if the presence of striatin is necessary for the 

nongenomic effects to occur and, if higher striatin levels will change the way the 

mineralocorticoid signalling occurs in these cells. In order to establish if striatin is a 

necessary player in the nongenomic rise of pERK levels in the endothelial cells 

studied it was decided to employ siRNA technology to knock-down striatin in these 

cells followed by aldosterone stimulation to confirm if the nongenomic effects had 

changed in any way. 

 

Striatin knock-down using siRNA 
 

Small interfering RNA (siRNA), sometimes known as short interfering RNA or 

silencing RNA, is a class of double-stranded RNA molecules, 20-25 nucleotides in 

length, that play a variety of roles in biology. The most notable role of siRNA is its 

involvement in the RNA interference (RNAi) pathway, where it interferes with the 

expression of a specific gene. In addition to its role in the RNAi pathway, siRNA also 

acts in RNAi-related pathways, e.g., as an antiviral mechanism or in shaping the 

chromatin structure of a genome; the complexity of these pathways is only now being 

elucidated.  

siRNAs have a well-defined structure: a short (usually 21-nt) double-strand 

RNA (dsRNA) with 2-nt 3' overhangs on either end. Each strand has a 5' 

phosphatase group and a 3' hydroxyl (-OH) group.  siRNAs can also be exogenously 

(artificially) introduced into cells by various transfection methods to bring about the 

specific knockdown of a gene of interest.  In essence, any gene whose sequence is 

known can, thus, be targeted based on sequence complementarity with an 

appropriately tailored siRNA.  This has made siRNAs an important tool for gene 

function and drug target validation studies in the post-genomic era. Transfection of 
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an exogenous siRNA can, sometimes, prove to be problematic because the gene 

knockdown effect is only transient, in particular, in rapidly dividing cells. 

EA.hy926 cells were transfected with ON-TARGETplus siRNA pre-designed 

duplex specific for striatin obtained from Dharmacon RNAi Technologies in parallel 

with Control/blank siRNA following the manufacturer’s protocols and using the 

Dharmafect 1 siRNA Transfection Reagent. The cells were then harvested for 

Western blot analysis 48 hours post-transfection.  
 

 The goal for the siRNA experiments was to significantly decrease the amount 

of striatin protein being produced in these cells without affecting the normal 

functioning of the cells. Because it was the first time this technology was employed in 

the laboratory, there were several rounds of optimization experiments before the 

suitable conditions were achieved. 

 Since each cell line reacts differently to a siRNA duplex, it was decided to 

order 4 different duplexes and test which one functioned better with the EA.hy926 

endothelial cell line.  Transfection was executed according to the manufacturer’s 

protocols. Cells were transfected for 24 hours for mRNA collection and 48 hours for 

western blot analysis. Each time transfection media was replaced by normal growth 

media after 24 hours to prevent cell toxicity and death. Different transfection 

conditions like solution concentrations and transfection length were also optimized 

but are not shown here. 
 

Graph 19: Striatin mRNA levels in EA.hy926 cells transfected with siRNA duplexes. 
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 Real-time PCR results showed that transfection with duplexes 1-3 resulted in a 

significant decrease in striatin mRNA levels to about 25% when compared to an 

untransfected control. Each experiment was carried out in triplicate wells. 
 

 Since a decrease in mRNA is not sufficient proof that striatin protein was 

indeed reduced, experiments were repeated and the transfection extended to 48 

hours to induce protein reduction. Cells were then collected for western blot analysis. 

 

Graph 20: Striatin protein levels in EA.hy926 cells transfected with siRNA duplexes. 
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 Western blot results confirmed that there was a significant reduction in striatin 

protein levels by about 75% compared to untransfected control when duplexes 1-3 

where employed. Again duplex 4 did not knockdown striatin protein levels with 

respect to control, confirming that each cell line reacts differently and reinforcing the 

need to perform optimization steps prior to experimentation. Different combinations of 

two duplexes where also tried but not shown here. Results obtained where very 

similar to the ones yielded by individual duplexes and therefore not an improvement 

and was not pursued further. 

 Striatin is not the only member of its family; Zinedin and SG2NA are two other 

family members with similar structure and sequence homology which could 
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potentially be affected by the siRNA gene expression inhibition. In this way cells 

transfected with the 4 duplexes for 24 hours where analysed by Real-Time PCR 

quantification to determine if other family members, besides striatin, had their mRNA 

levels significantly reduced. 

 

Graph 21: SG2NA mRNA levels in EA.hy926 cells transfected with siRNA duplexes. 
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Graph 22: Zinedin mRNA levels in EA.hy926 cells transfected with siRNA duplexes. 
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 Results showed that SG2NA levels did not seem to be affected by the 

transfection with siRNA duplexes designed to interfere with striatin gene expression 

but, it was a different case with Zinedin. Duplex 1 and 2 where significantly reduced 

after 25 hours of transfection, making then unviable reagents to use in future 

experiments due to the fact that more than one striatin family member is being 

affected and, in this way, making conclusions about the specific role of striatin in 

future siRNA experiments limited.  

 After all the results where analysed it was decided to selected duplex 3 for use 

in future experimental paradigms since it complied with all the necessary 

requirements, specifically targeted knockdown of striatin expression without off target 

effects of related family proteins.  

 

 Having established the optimal conditions for striatin knock-down experiments 

using siRNA technology, previous experiments where now repeated. Before 

employing the siRNA technology to the cells, the first critical experiment was once 

more repeated to ensure consistency of the results and also to use the same cell 

batch and passage for all of the knock-down experiments. 

 

Graph 23: ERK protein phosphorylation levels in EA.hy926 cells stimulated with aldosterone. 

 

 

 

 

 

 

 

 

 

 

 

 

 Untransfected EA.hy926 cells show an increase in the pERK/ERK ratio, 

following incubation with aldosterone (10nM) for 15 minutes (* p < 0.05 vs. Control, 
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**p < 0.05 vs. Aldosterone). MRA stands for mineralocorticoid receptor antagonist 

and represents treatment with 10M canrenoic acid. These results are consistent 

with what was previously shown and demonstrate that the cells are responsive to 

aldosterone stimulation. 

 

Graph 24: ERK protein phosphorylation levels in EA.hy926 cells transfected with striatin 

siRNA and subsequently stimulated with aldosterone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rapid increase in pERK levels, observed in the previous graphic, is 

abolished when the EA.hy926 cells are transfected with striatin siRNA (* p < 0.01 vs. 

Control). Control represents untransfected cells, all of the “transfection” procedure 

was carried out but the duplex was absent from the mix effectively making it a mock 

transfection. MRA stands for mineralocorticoid receptor antagonist and represents 

treatment with 10M canrenoic acid. Results show that the rapid rise in pERK levels 

is abolished but also, the overall phosphorylation levels seem to be lower in the 

transfected cells. By comparison, though, ERK protein levels seem to be elevated in 

the transfected cells, perhaps justifying the decrease in phosphorylation levels as it is 

showed has a ratio between pERK and total ERK. 

 In order to establish that the scrambled (control) sequence does not affect the 

cell signalling, the first experiment was repeated in cells transfected with the control 

duplex and results compared.  
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Graph 25: ERK protein phosphorylation levels in EA.hy926 cells transfected with striatin 

control siRNA and subsequently stimulated with aldosterone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Cells transfected with scrambled siRNA show a significant increase in ERK 

phosphorylation levels (* p < 0,05 vs. Control; **p < 0,05 vs. Aldosterone). Results 

shown on graph 25 clearly confirm that the scrambled control sequence does not 

affect the way these cells signal. The rapid increase in ERK phosphorylation is 

present in comparable levels to what has been shown previously and is abrogated 

when the cells are treated with canrenoic acid (MRA). 

 

Graph 26: WNK4 mRNA levels in EA.hy926 cells transfected/untransfected with striatin 

siRNA and subsequently stimulated with aldosterone. 
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 Finally, EA.hy926 cells, transfected with striatin siRNA or controls 

(untransfected) were treated with aldosterone (10nM) and mRNA levels of WNK4 

and SGK1 were measured to establish if a decrease in striatin gene expression 

influenced aldosterone’s known genomic responses. Results show that in both cases 

the genomic signalling is not affected, there is no significant change between 

transfected and untransfected cells while, at 5 hours of aldosterone stimulation, a 

genomic effect is still visible and significant (WNK4, p< 0,05 vs. control and SGK1, 

p<0,001 vs. control). 

 

Graph 27: SGK1 mRNA levels in EA.hy926 cells transfected/untransfected with striatin 

siRNA and subsequently stimulated with aldosterone. 

 

 

 

 

 

 

 

 

 

 

 

All combined these results indicate that striatin is a necessary player in 

aldosterone’s nongenomic effects and that when it is not present such effects 

(increase in ERK phosphorylation levels at 15 minutes) do not occur. They also 

indicate that striatin does not seem to be necessary for the classical, genomic effects 

to occur, pointing to the possibility that different pathways are in play here. 
 

Having established that striatin is a key player in aldosterone’s nongenomic 

effects via the mineralocorticoid receptor it remains to study the importance of the 

caveolae in this process. It is known that striatin contains four protein-protein 

interaction domains, including a caveolin-binding domain (190) and that, CAV1 has  

been shown to interact with the protein striatin.  
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Striatin seems to be a key intermediary of the effects of steroid receptors, 

specifically estrogen receptor-α (ER) (188). Lu et al provided evidence that striatin´s 

N-terminal segment interacts with the DNA binding domain of ER in EA.hy926 cells. 

This interaction organizes the ERα-eNOS membrane signalling leading to rapid 

nongenomic activation of downstream signalling pathways including ERK and eNOS 

in endothelial cells. Taking these previous observations into account it is important to 

investigate the possible connection between MR, striatin and caveolin 1. 

 

Interactions between MR, Striatin and CAV1 
 

 

In order to detect any possible interaction between these 3 proteins of interest 

it was decided to employ co-immunoprecipitation (Co-IP) as a tool to try to establish if 

there were any protein-protein interactions or if they were organized as protein 

complex. Co-IP works by selecting an antibody that targets a known protein that is 

believed to be a member of a larger complex of proteins. By targeting this known 

member with an antibody it may become possible to pull the entire protein complex 

out of solution and thereby identify unknown members of the complex. This works 

when the proteins involved in the complex bind to each other tightly, making it 

possible to pull multiple members of the complex out of solution by latching onto one 

member with an antibody. This concept of pulling protein complexes out of solution is 

also referred to as a "pull-down".  

 If MR, striatin and CAV1 are interacting closely, it will be possible to “pull” one 

of these proteins down and use a different antibody to detect the other protein. In 

brief, endothelial cells were collected (scrapped) and homogenized in RIPA Buffer 

and protein content determined by colorimetric assay. The protein extract (500 g) 

was incubated with 1-2 g of monoclonal or polyclonal antibodies for 1-2 hours at     

4 ºC together with 50-100 l of protein G or A/G MicroBeads. The Microbeads, 

antibody and cell lysate mix were separated using MACSmini columns and 

respective magnetic stand, according to the manufacturers protocol. Finally the 

beads were washed with RIPA buffer and the bound immuno-complexes eluted using 

boiling loading dye and assessed by Western Blot analysis.  
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Figure 55 – Western blot illustrating the presence of CAV1 protein after striatin “pull-down”.  

MAEC stands for mouse aortic endothelial cells and EAhy for EA.hy926 cells. 

 

In the first Co-IP, striatin was targeted to be pulled down and the resulting 

elution studied for the presence of CAV1 protein. Results show that there seems to 

be an interaction between striatin and caveolin 1 in mouse aortic endothelial cells, 

EA.hy926 cells and mouse heart tissue. This result was not unexpected since it is 

known that striatin has a caveolin-binding domain but, it was necessary to establish 

such a fact in our cells of interest and it also goes to demonstrate that the Co-IP 

technique chosen to look at possible interactions is an efficient study tool.  

 

 

 

 

 

 

 

Figure 56 – Western blot illustrating the presence of striatin protein after CAV1 “pull-down”.  

Input stands unprecipitated cell extract and EAhy for EA.hy926 cells. 

 

To prevent any possible artefacts resulting from the technique used, the 

reverse Co-IP was always performed. The figure shows that when CAV1 is the target 

of the “pull-down”, striatin is presence is detected in the resulting cell elution. This 

confirms the previous result and demonstrates a close interaction between caveolin 1 

and striatin proteins. Input represents a cell extract that did not go through the Co-IP 

process, and serves as a control for the antibody used in western-blot analysis since 

it hadn’t been used in Co-IP studies previously.  
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Figure 57 – Western blot illustrating the presence of CAV1 protein after MR “pull-down”.  

MAEC stands for mouse aortic endothelial cells and EAhy for EA.hy926 cells. 

 

The next round of Co-IPs connects the mineralocorticoid receptor to caveolin 1 

and the caveolae.  When the MR is captured by the beads treated with MR-specific 

antibody it is possible to detect the presence of CAV1 in the resulting elution. This 

means that MR and CAV1 have a close interaction and potentially places the 

mineralocorticoid in the caveolae structure located in the cell membrane. Results 

shown for heart tissue depict two different bands that correspond to the alpha and 

beta isoforms of caveolin 1, known to be expressed in cardiomyocytes (266). 

 

 

 

 

 

 

Figure 58 – Western blot illustrating the presence of MR protein after CAV1 “pull-down”.  

EAhy stands for EA.hy926 cells. 

 

Once again, the reverse Co-IP confirms the results shown before and points to 

the presence of the mineralocorticoid receptor in the cell membrane in the caveolae 

structures or connected to them via CAV1 protein. Due to a smaller amount of CAV1 

protein present in the EA.hy926 cells when compared to whole heart tissue, the 

resulting MR band appears faint but with enough definition to be considered a 

positive result. 

The next possible interaction studied was that between striatin and MR. It was 

already known that MR needs striatin to exert its nongenomic effects so this 

interaction is expected to be strong. 
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Figure 59 – Western blot illustrating the presence of MR protein after striatin “pull-down”.  

MAEC stands for mouse aortic endothelial cells and EAhy for EA.hy926 cells. 

 

As expected, when striatin is precipitated with A/G beads conjugated to striatin 

antibody, the resulting elution contains a high amount of mineralocorticoid receptor, 

demonstrating and confirming the predicted close interaction between the two 

proteins.  
 

 

 

 

 

 

 

Figure 60 – Western blot illustrating the presence of striatin protein after MR “pull-down”.  

Input stands for unprecipitated cell extract and EAhy for EA.hy926 cells. 

 

The reverse Co-IP confirms the interaction between striatin and MR and 

seems to point to the presence of two striatin isoforms in EA.hy926 cells. According 

to Swiss-Prot striatin has two different isoforms although isoform I is the one that is 

commonly reported and referred to.  Isoform I has 780 amino acid and weighs about 

86.13 KDa, whereas isoform II has 731 amino acids and weighs about 80.76 KDa. 

The different in expected weight and the results obtained with the antibody used 

might be due to a post-translational modification as has been referred previously 

when phenotyping the EA.hy926 cells. 

 These Co-IP results show a strong interaction between MR, striatin and CAV1 

and seem to indicate the formation of a possible triple complex between these three 

proteins, most likely modulated by CAV1 since it has a known role in binding the 
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striatin protein and would likely also serve to anchor the MR to the cell membrane, 

keeping it in place for further interactions with other molecules to occur and leading 

to rapid, nongenomic effects of MR activation. To test this hypothesis mouse aortic 

endothelial cells were collected from wild-type and CAV1 knock-out animals. These 

cells were expended and used at passage 3 and 4. Just like the previous studies, 

cells were collected in RIPA buffer, processed and used for Co-IP studies. 
 

 

  

 

 

 

 

Figure 61 – Western blot illustrating the presence/absence of striatin protein after MR     

“pull-down” in MAEC. WT stands for wild-type animals and KO for knock-out. 

 

Results show that in the absence of CAV1, the mineralocorticoid receptor does 

not seem to interact with striatin or, there interaction is weakened and cannot be 

detected using co-immunoprecipitation techniques. The reverse Co-IP was also 

executed in order to confirm this theory. 

 

 

 

 

 

 

 

Figure 62 – Western blot illustrating the presence/absence of MR protein after striatin     

“pull-down” in MAEC. WT stands for wild-type animals and KO for knock-out. 

 

Likewise and, as expected, the reverse Co-IP showed that in the absence of 

CAV1 Striatin does not seem to interact with the mineralocorticoid receptor. These 

results are very important and seem to strengthen the existence of a triple complex 

between MR, striatin and CAV1, with caveolin 1 as the intermediary between the 
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other the proteins. These results also point to an important role being played by the 

caveolae in providing a prime spot for protein interactions and cell signalling to take 

place. To test if the caveolae are indeed pivotal in MR activation and aldosterone’s 

nongenomic signalling, EA.hy926 cells were treated with lipid-raft disruptors 

(cyclodextrin and -Methylcyclodextrin) and subsequently treated with 10nM 

aldosterone for 15 minutes. 

 

Graph 28: ERK phosphorylation levels in EA.hy926 cells treated with lipid raft disrupting 

chemicals and subsequently stimulated with aldosterone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EA.hy926 cells were pre-incubated overnight with two lipid raft disrupting 

chemicals and then treated with 10nM aldosterone for 15 minutes. As is shown in the 

above graphic, aldosterone had no effect on pERK in the presence of either chemical.  

Although these results are not quite significant due to a low number of repeats, the 

general trend which they demonstrate seems to confirm the caveolae as having a 

facilitating role is aldosterone’s nongenomic effects by providing a place for MR to 

interact with other players in this cell signalling pathway.  
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Further experiments (results not shown) carried out with mouse aortic 

endothelial cells collected form wild-type and CAV1 knock-out animals seemed to 

indicate that the lack of caveolin 1 did not affect the genomic effects of aldosterone 

with a visible peak in striatin protein levels still being observed after 5 hours of 

aldosterone stimulation. This result, albeit not significant, might indicate that 

aldosterone and striatin are playing more than one role in these endothelial cells and 

the striatin protein peak observed at 5 hours of aldosterone might prove to be 

important on its own.  

 

Aldosterone’s influence on Estrogen’s nongenomic actions 
 

 Lu et al identified striatin as a scaffold protein that promotes localization of 

ER to the plasma membrane and assembly of the signalling complex of ER and Gi 

that is required for ER-dependent activation of MAPK, phosphatidylinositol 3–Akt 

kinase, and eNOS, a critical regulator of many physiologic and pathophysiological 

processes (188). Their results show a peak in eNOS phosphorylation at 15 minutes 

of estrogen stimulation that is abrogated if striatin is disrupted (using a blocking 

peptide). They also show that overexpression of striatin markedly changes the 

distribution of ER by substantially increasing the proportion of ER that is 

distributed along the plasma membrane. These results combined with the information 

that the binding of estrogen (E2) to the membrane has been confirmed, in addition to 

the presence of ER and caveolin in plasmalemmal caveolae and, their connection 

to nongenomic and short-term effect of E2 on endothelial NO release (186) led to the 

possibility of a an interaction/cross-talk relationship between aldosterone and 

estrogen signalling in endothelial cells. 
 

 The first step taken was to ascertain if, like aldosterone, estrogen treatment 

stimulated the production of striatin protein. EA.hy926 cells were treated with either 

10nM aldosterone or 50nM estrogen for 5 hours. Aldosterone but not estrogen 

treatment increases striatin protein levels. Cells used for experiments with estrogen 

stimulation were grown in Estrogen-Deficient media which is achieved by charcoal-

stripping the FBS used in the media preparation. 
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Graph 29: Striatin protein levels in EA.hy926 cells treated with aldosterone (10nM)              

or estrogen (50nM) for 5 hours. 

 

 

 

 

 

 

 

 

 

 

 Results show that the increase in striatin protein seems to be specific to 

aldosterone’s MR activation and does not occur with estrogen stimulation. The next 

logical step was then to reproduce the estrogen action previously observed by Lu et 

al and introduce aldosterone in the mix to determine if the presence of more striatin 

protein at a given time in these cells affected the way nongenomic actions of 

estrogen occurred. 

  

Graph 30: eNOS phosphorylation levels in EA.hy926 cells treated with estrogen (50nM) for 

short periods of time with/without aldosterone (10nM) pre-treatment for 5 hours. 
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 EA.hy926 cells were pre-treated with or without aldosterone (10nM) for 5 

hours. peNOS/eNOS levels were then measured in response to estrogen (50nM) 

stimulation were measured at 5, 15 and 30 minutes. Pre-treatment with aldosterone 

enhanced estrogen’s nongenomic response.  

 The graphic depicted above shows that results previously obtained by Lu et al 

were successfully replicated. There was a peak in eNOS phosphorylation which 

occurred at 15 minutes of estrogen stimulation ( *p<0,015 vs. vehicle). This peak is 

smaller than previously observed and the estrogen dose employed higher which can 

be justified by the absence of overexpression of striatin protein in cells used. 

 When an aldosterone pre-treatment is added to the treatment conditions, a 

very interesting event occurs. There is a shift in the peNOS peak observed; it not 

only increases its levels but it also occurs sooner (#p<0,032 vs. 15 minutes with no 

pre-treatmen; **p<0,02 vs. vehicle). This is not an experimental artefact as this 

experiment was repeated six times always in triplicate wells and the results obtained 

consistent with some variation in the peNOS levels achieved. 

 This is a novel result and might prove to change the way steroid signalling is 

viewed, adding a new level of complexity concerning crosstalk between different 

receptors. Although Lu et al had already showed that the peak observed in eNOS 

phosphorylation disappears when striatin action is blocked by a specifically designed 

peptide; they had not attempted to knock-down striatin levels to confirm this 

conclusion. 
 

Graph 31: peNOS levels in EA.hy926 cells transfected with striatin scramble/siRNA and 

treated with estrogen for 15 minutes with/without aldosterone pre-treatment. 
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 EA.hy926 cells grown in estrogen deprived media were transfected with 

striatin scrambled sequence or striatin siRNA for a period of 48 hours. After 

transfection cells were made quiescent by stepping-down serum levels to 0,4% FBS 

overnight. Cells were then treated with 50nM estrogen for 15 minutes with/without a 

pre-treatment with 10nM aldosterone for a period of 5 hours. Results shown confirm 

the previous observations and confirm striatin has a key player in estrogen signalling. 

Cells transfected with striatin scrambled sequence (control) show a 2 fold peak in 

eNOS phosphorylation levels at 15 minutes of estrogen treatment. This peak 

increases when the same cells were subjected to a 5 hour pre-treatment step with 

10nM aldosterone. When the cells are transfected with striatin siRNA, the response 

to estrogen stimulation is completely abrogated, even when pre-treatment with 

aldosterone is employed.  
 

 Because the results showed so far indicate a potential cross-talk between 

estrogen and aldosterone signalling pathways, it was important to study the effect of 

estrogen on ERK phosphorylation. Since aldosterone pre-treatment enhances eNOS 

phosphorylation levels when cells are stimulated with estrogen, it is possible that 

estrogen pre-treatment might influence ERK phosphorylation levels when cells are 

stimulated with aldosterone. 

 

Graph 32: ERK phosphorylation levels in EA.hy926 cells treated with aldosterone (10nM) for 

short periods of time with/without estrogen (50nM) pre-treatment for 5 hours. 
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 Results show that, contrary to what was observed with aldosterone, estrogen 

pre-treatment does not increase pERK levels in EA.hy926 cells. Aldosterone 

stimulation for 15 minutes caused a peak in pERK levels, consistent with has been 

shown here before but, pre-treatment with 50nM estrogen for 5 hours did not 

increase this peak, showing no significant change from cells untreated with estrogen. 

 

 Striatin has been proven to be involved in rapid signalling events in the cells 

studied but, results observed so far do not seem to indicate that the same is true for 

the more classical genomic effects of steroid action. Striatin siRNA did not damper 

the genomic effects of aldosterone stimulation but, it remains to be seen if the same 

is true for estrogen action. PTGIS or prostaglandin I2 (prostacyclin) synthase, 

together with PTGS1 or prostaglandin-endoperoxide synthase 1 were selected as 

targets to study the effects of striatin knock-down on estrogen’s genomic actions. 

 

 Prostaglandin-I synthase (EC 5.3.99.4) also known as prostaglandin I2 

(prostacyclin) synthase (PTGIS) or CYP8A1 is an enzyme involved in prostanoid 

biosynthesis that in humans is encoded by the PTGIS gene (267). This enzyme 

belongs to the family of cytochrome P450 isomerases. This endoplasmic reticulum 

membrane protein catalyzes the conversion of prostaglandin H2 to prostacyclin 

(prostaglandin I2), a potent vasodilator and inhibitor of platelet aggregation. An 

imbalance of prostacyclin and its physiological antagonist thromboxane A2 contribute 

to the development of myocardial infarction, stroke, and atherosclerosis (268). 

Recent studies have shown that in human umbilical vein endothelial cells (HUVEC), 

treatment with estrogen (1-100nM) caused a dose-dependent increase in 

prostaglandin I2 synthase protein production, up to 50% and PTGIS gene expression 

levels were also increased by 50% after exposure to estrogen (269). 

  

PTGIS expression levels were measured by Real-Time PCR in EA.hy926 cells 

transfected/untransfected with striatin siRNA and subsequently treated with 50nM 

estrogen for 15 minutes and 5 hours. 
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Graph 33: PTGIS mRNA levels in EA.hy926 cells transfected/untransfected with striatin 

siRNA and stimulated with 50nM estrogen for 15 minutes and 5 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Results show that, as expected and described in the literature, treatment with 

estrogen stimulated PTGIS expression in the endothelial cells studied (p<0,05 vs. 

vehicle). Transfection with striatin siRNA, did not affect this genomic action, with 

similar levels of mRNA observed for both untransfected and transfected cells. 

 

Graph 34: PTGS1 mRNA levels in EA.hy926 cells transfected/untransfected with striatin 

siRNA and stimulated with 50nM estrogen for 15 minutes and 5 hours. 
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Cyclooxygenase-1 (COX-1), also known as prostaglandin G/H synthase 1, 

prostaglandin-endoperoxide synthase 1 or prostaglandin H2 synthase 1, is an 

enzyme that in humans is encoded by the PTGS1 gene (270, 271). Prostaglandin-

endoperoxide synthase (PTGS), also known as cyclooxygenase (COX), is the key 

enzyme in prostaglandin biosynthesis. It converts free arachidonic acid, released 

from membrane phospholipids to prostaglandin (PG) H2. There are two isozymes of 

COX encoded by distinct gene products: a constitutive COX-1 (this enzyme) and an 

inducible COX-2, which differ in their regulation of expression and tissue distribution. 

The PTGS1 gene encodes COX-1, which regulates angiogenesis in endothelial cells. 

COX-1 is normally present in a variety of areas of the body, including not only the 

stomach but any site of inflammation and is inhibited by nonsteroidal anti-

inflammatory drugs (NSAIDs) such as aspirin. Estrogen is known to increase the 

expression of the PTGS1 gene in endothelial cells (272, 273). 
 

Results show that treatment with estrogen stimulated PTGS1 expression in 

the endothelial cells studied (p<0,05 vs. vehicle), consistent with the literature. 

Transfection with striatin siRNA, did not affect this genomic action in anyway, with 

similar levels of mRNA observed for both untransfected and transfected cells. 
 

 The fact that aldosterone has been shown to increase eNOS phosphorylation 

in EA.hy926 cells stimulated with estrogen might be viewed as a consequence of the 

use of an immortalized endothelial cell line as a study tool, this way previous key 

experiments were repeated in mouse aortic endothelial cells in an attempt to bring 

the results shown close to physiological relevance.  
  

Mouse aortic endothelial cells were collected from healthy animals and 

allowed to expand until passage 2 when a high enough number of cells was achieve 

in order to proceed with the cell studies. Cells were grown in estrogen deprived 

media and stepped-down to 0,4% FBS the night before in order to avoid the 

occurrence of any potential secondary stimulation by factors still present in the FBS.  
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Graph 35: eNOS phosphorylation levels in EA.hy926 cells treated with estrogen (50nM) for 

short periods of time. 

 

 

 

 

 

 

 

 

 

 

 

Graph 36: eNOS phosphorylation levels in EA.hy926 cells treated with estrogen (50nM) for 

short periods of time with aldosterone (10nM) pre-treatment for 5 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 Just as seen with EA.hy926 cells, pre-treatment with aldosterone enhanced 

estrogen’s nongenomic response. Graphic 33, depicted above, begins by showing 

that the results previously obtained in EA.hy926 cells where replicated. There was a 

peak in eNOS phosphorylation which occurred at 15 minutes of estrogen stimulation. 

The levels of phosphorylation achieved are also very similar to what as previously 

been observed for EA.hy926 cells (p<0,001 vs. vehicle). 
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 When an aldosterone pre-treatment is added to the treatment conditions, there 

is, once more, a shift in the peNOS peak observed. In the case of mouse aortic 

endothelial cells there doesn’t seem to be an increase in peNOS levels (as observed 

before) but, the nongenomic response to 5 minutes of estrogen stimulation is 

confirmed (p<0,01 vs. vehicle). Total protein lysates were immunoblotted for 

phospho-eNOS (peNOS) and normalized for the amount of total eNOS. These ratios 

were normalized to one for the vehicle-treated cells. 
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Discussion 
 

 

Aldosterone and MR: classic physiology and pathophysiology 
 

 Aldosterone was first isolated in 1953 and characterized as the major 

mineralocorticoid hormone on the basis of its potent effects on unidirectional 

transepithelial sodium transport (274). It is commonly thought that the major stimulus 

to its secretion is angiotensin (275, 276) and that the physiologic actions of 

aldosterone are homeostatic, preserving fluid and electrolyte status via a negative 

feedback loop - depletion of sodium or circulating volume leading to increased renin 

secretion, and the consequently increased angiotensin generation raising 

aldosterone secretion, which in turn increases Na+ and water retention via epithelial 

mineralocorticoid receptor (MR) activation to restore the status quo.  

 The MR is a member of a close subfamily, with glucocorticoid receptors, 

androgen receptors, and progesterone receptors. This receptor was first studied in 

classic aldosterone target tissues, such as the kidney, distal colon and salivary gland; 

subsequently, identical receptors were described in nonepithelial tissues such as 

hippocampus and heart, not commonly considered to be physiologic aldosterone 

target tissues (35, 277). In addition to the effects on gene expression, such receptors 

have increasingly been shown to have additional rapid nongenomic effects; although 

rapid nongenomic effects of aldosterone via MR activation have been clearly 

demonstrated experimentally, their physiologic roles remain to be established (278). 

Primary aldosteronism (Conn's syndrome) was first reported in 1954 by Dr 

Jerome Conn, who diagnosed aldosterone overproduction in a young woman with 

hypertension and hypokalemia, reversed by surgical removal of the affected adrenal 

(279). Inappropriately elevated aldosterone levels drive sodium and water retention, 

which increases circulatory volume and cardiac output; the latter, in turn, by reflex 

normalized by vasoconstriction, resulting in hypertension.  

Recently, evidence has been accumulating that aldosterone elicits additional, 

nonclassical effects. Besides experimental data, clinical studies like RALES, 

EPHESUS, and 4E (103, 104) convincingly demonstrate that aldosterone receptor      

(i.e. MR) antagonism protects against cardiovascular and renal remodelling 

independently of major alterations in blood pressure or NaCl homeostasis. The 
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model derived from these clinical trials and experimental animal studies suggests 

that activated mineralocorticoid receptor induces an inflammatory milieu with 

enhanced formation of reactive oxygen species and matrix proteins in the 

vasculature (107, 111, 280, 281). Subsequently, this vasculopathy leads to cardiac 

and renal damage. Although this model is now widely accepted, the individual steps 

in this pathophysiological network are only incompletely understood. 

 

Rapid, nongenomic actions of aldosterone 
 

After almost 30 years of research, the existence of nongenomic steroid actions 

is no longer disputed. The classical pathway of steroid action focuses on intracellular 

steroid receptors which modulate gene transcription by interacting with a transcription 

initiation complex and transcription factors (282); in addition, a direct interaction of 

steroids with nuclear DNA has been demonstrated (283). Besides these 

transcriptional actions, steroids mediate multiple other effects, through nongenomic 

mechanisms.  

The main feature of nongenomic steroid actions is the quick onset of their 

effects. Nongenomic effects have been assumed to originate at the cell membrane 

as most of the second messenger generating systems or the early steps in the 

kinase cascades, which are involved in rapid steroid actions, are organized and 

localized here to form functional signalling units. For the classical estrogen, 

glucocorticoid, androgen and progesterone receptors (ER, GR, AR and PR), 

localization at membranes has already been shown (284-286). In contrast to these 

receptors, the MR does not contain a palmitoylation motif which is usually involved in 

the membrane anchoring of steroid receptors. Interestingly, an interaction of the 

classical MR with the epidermal growth factor receptor (EGFR) at the membrane has 

been shown (287). 

At the cellular level, these rapid effects of aldosterone have not only been 

reported in renal and intestinal cells but also in cells from the cardiovascular system 

(278). In 1984, Moura and Worcel (288) showed a biphasic effect of aldosterone on 

Na efflux from arterial smooth muscle with a rapid component which they interpreted 

to be nongenomic, marking the beginning of the research on the nongenomic 

mechanisms of aldosterone. In vascular smooth muscle and endothelial cells, 
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activation of the above-described signalling pathways and the Na+/H+ exchanger 

has now been described by various studies (278, 289), although the functional 

significance has not yet been clarified. For cardiomyocytes, different rapid effects 

have been reported, including PKCɛ-mediated direct inhibition of Na+/K+-ATPase 

activity (278). Furthermore, activation of ERK1/2 had been observed after 30 minutes 

(233). 

 

Aldosterone-Response Studies 
 

 The work presented here is based on the hypothesis that nongenomic actions 

of the MR may function in a similar way to what has been described for the ER 

(188). To explore this hypothesis it was decided to study ERK1/2 from the MAPK 

family as a possible player in the aldosterone nongenomic signalling cascade. This 

decision was greatly aided by the literature where several sources referred to an 

increase in pERK levels suggesting higher MAPK activity (118, 233, 234) but also by 

previous results observed within the research group (235). Several groups have 

reported an increase in phosphorylation of ERK1/2 within several minutes after 

aldosterone administration that is not blocked by inhibitors of transcription and 

translation (240, 241), implying a nongenomic mechanism. With reports of increases 

in ERK phosphorylation as early as 5 minutes after stimulation with aldosterone, it 

was felt that the best course of action was a short-time aldosterone stimulation study 

to pinpoint when the endothelial cells used in the laboratory achieve a peak in 

ERK1/2 phosphorylation. 
 

 Two different types of endothelial cells were used in experiments EA.hy926 

and MAEC cells, both of which were extensively phenotyped. In addition, before each 

experiment cells were stepped-down to 0,4% FBS DMEM to keep the environment 

stimulation to a minimum, since it is impossible to determine which potential 

stimulating factors are present in the FBS.  
 

In order to select the adequate aldosterone dosage to use in experimentation, 

a dose response curve was generated. Results showed a dose-dependent response, 

with around 1,5 increase (30%) in ERK phosphorylation with a 10nM aldosterone 

dose at 15 minutes of stimulation leading up to a 2-fold response when a 1µM 
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aldosterone dose is used. Bearing in mind the potential physiological relevance of 

future results, 10nM aldosterone was the elected concentration for ensuing studies. 

Plasma aldosterone levels vary considerably. A study conducted in 76 healthy 

individuals and 28 confirmed primary hyperaldosteronism (PHA) patients resulted in 

plasma aldosterone values of 0,033 to 1,930 nM for healthy subjects and 0,158 to 

5,012 nM for PHA patients (250). In addition, clinical results collected by other 

investigators in the group over the past 30 years (HyperPATH cohort) show that in 

828 hypertensive subjects the circulating aldosterone levels ranged between 0.05 

and 11,53 nmol/L. Furthermore, aldosterone levels over 100 nmol/L have been 

observed in heart failure patients (251, 252). These values, especially the top value 

for PHA patients seems to validate the choice of 10nM aldosterone as a valid one 

both for cell studies as for a possible comparison with pathophysiological states in 

humans.  
 

A short-term study revealed two distinct peaks of activity for pERK after cells 

were stimulated with aldosterone. The first peak is observed at 15 minutes of 

aldosterone treatment and the second peak can be seen at 5 hours of treatment. 

These results were true for both cell lines used in the experimental design. Statistical 

results were obtained by one-way ANOVA followed by post-hoc Mann-Whitney t-test 

comparison for selected time-points.  

 

Aldosterone’s nongenomic effects 
 

 The short length of time of treatment needed to obtain the first peak in pERK 

lead to the hypothesis that this could be part of a nongenomic effect of aldosterone 

signalling. The second peak, seen at 5 hours of treatment was believed to be 

involved in genomic effects of aldosterone. 
 

Before further conclusions could be drawn, an antagonist of aldosterone action, 

potassium canrenoate, was used to ensure that the previously observed effects were 

due to MR activation and not an experimental artefact. Canrenoic acid was selected 

as inhibitor of choice for aldosterone due to practicality. Canrenoic acid is readily 

available from chemical suppliers is also water soluble making it a perfect inhibitor for 

use in cell based assays.  
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EA.hy926 stimulated with aldosterone with/without MR antagonist (MRA) 

showed an increase in ERK1/2 phosphorylation at 15 minutes of treatment, 

consistently with what has been observed before with these cells. When canrenoic 

acid was used in conjunction with the aldosterone treatment, the increase in ERK 

phosphorylation was abrogated, thus confirming that the increase in pERK observed 

is indeed due to an effect of aldosterone acting, at  least in part,  through MR. Put 

together, the results from short-time aldosterone stimulation studies point to a newly 

described nongenomic action of aldosterone in endothelial cells but, in order to call it 

a nongenomic action it was necessary to demonstrate that no gene translation was 

occurring in the 15 minutes of aldosterone action.  
 

 EAhy.926 cells were stimulated for 15 minutes and 5 hours and collected for 

mRNA extraction. After reverse-transcription, cDNA obtained was used for Real-Time 

PCR, the 5 hour time-point was used as a positive control for genomic action, based 

on previously published data. Aldosterone is known to increase or reduce the 

expression of several different genes (254), SGK1 has been shown to be one of 

these genes with a  2.5 fold increase in SGK1 mRNA after aldosterone stimulation 

(259) in cardiomyocytes. The kinase WNK4 has also been shown to have a dose-

dependent relationship with aldosterone, suggesting that it might be an aldosterone-

sensitive gene (262).  
 

Consistent with the observations for cardiomyocytes, EA.hy926 cells 

stimulated with aldosterone showed an increase in SGK1 mRNA levels of 2.5 times 

after 5 hours of aldosterone treatment. WNK4 mRNA levels also showed an increase 

of about 3.5 fold after 5 hours of treatment. Contrary to the 5 hour time-point that 

displays a classic genomic action of aldosterone with a significant increase in mRNA 

levels, the 15 minute time-point did not show any significant change supporting the 

hypothesis that the increase in pERK protein levels is indeed a nongenomic effect of 

aldosterone action at this time-point. In order to take into account differences 

between samples, mRNA levels were normalized using the housekeeping ribosomal 

gene 18S. 
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Aldosterone’s genomic effects 

 

Having established that there is a significant nongenomic increase of pERK 

due to aldosterone stimulation in endothelial cells, it was investigated if striatin and 

the caveolae played a role in this action as seen in estrogen’s nongenomic actions. 

To answer if aldosterone influenced striatin in any way, EA.hy926 cells were 

stimulated with aldosterone for periods of time conducive to a potential genomic 

effect. Results showed a significant increase in striatin protein at 5 hours of 

aldosterone stimulation, consistent with the second increase in pERK previously 

seen, hinting at the possibility that the two effects might be linked.  
 

This result was unexpected because striatin is believed to be a chaperone 

protein, facilitating the interactions between different signalling proteins. The increase 

in striatin took place at 5 hours of aldosterone treatment, similarly to other genomic 

actions of aldosterone. However, this increase seems to be an acute event occurring 

at 5 hours of stimulation. To determine if it was an effect of MR activation, 

experiments were carried out using canrenoic acid which, effectively inhibited the 

increase in striatin protein levels, thus establishing that the observed effect is a 

consequence of MR activation. 
 

Confirming the rise in striatin protein levels as a genomic consequence of MR 

activation, striatin mRNA levels (after normalization to 18S) went up by about two fold 

and did not occur in the presence of canrenoic acid. This result constitutes a novel 

genomic action of aldosterone and may have several implications linked to steroid 

hormone signalling, since striatin has been described as a necessary component in 

other steroid hormone pathways like estrogen (188). The increase in striatin protein 

levels at five hours of aldosterone treatment was confirmed in MAEC cells but, not 

the raise in mRNA levels, leading us to belief that the peak of stimulation does not 

occur at the same time as was observed with EA.hy926 cells or the increase is not as 

noticeable, making the differences more difficult to detect. 
 

 Results obtained in animal studies strengthened the observations derived from 

endothelial cell studies. An experimental study with animals showed that dietary 

sodium restriction increased striatin levels in mouse hearts and aorta. Striatin levels 

were significantly higher in mice on a low sodium diet; characterized as having higher 
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plasma aldosterone levels, than the mice on higher sodium levels. An acute in vivo 

aldosterone administration (IP) lead to an increase of striatin protein levels in mouse 

heart when compared to vehicle injected animals. Finally, animals treated with         

L-NAME, in combination with AngII; treatment which induces myocardial damage that 

can be prevented by MR blockade; showed increased striatin levels both in heart and 

kidney tissues when compared to vehicle treated control.  

Striatin and its family members zinedin and SG2NA are three distinct but 

structurally related WD-repeat proteins that share high protein sequence homology. 

The WD-repeat-containing family of proteins is defined by two main characteristic 

features: a lack of intrinsic catalytic activity and repeated units of beta-sheet motifs 

that are arranged into a beta-propeller structure to form a platform on which multiple 

protein complexes can dynamically assemble. In this way WD repeat containing 

proteins play a major role in cellular events by mediating important protein-protein 

interactions by providing a permissive scaffold for the anchorage of several diverse 

molecules that are important in cellular signalling, cytoskeletal assembly and 

vesicular trafficking.   
 

Striatin, which comprises 780 amino acids and weighs 110 kDa, was first 

isolated in the brain as a calmodulin-binding protein. It contains at least four protein-

protein interaction domains (see Figure 18), including caveolin-binding, coiled-coil, 

and Ca2+-calmodulin (CaM) binding at the N-terminus, and a series of eight WD 

repeat domains at the C-terminus (190). The N-terminus of striatin (amino acids 1-

203) has been found interact with the N-terminus of ERα (amino acids 185-253) while 

the C-terminal WD repeat domain binds the GPCR (Gαi) complex. In this context, 

striatin acts as a scaffold directing ERα to the plasma membrane and bridges ERα 

with the GPCR (Gαi) complex to facilitate assembly of a membrane signalling 

complexes required for rapid estrogen extra-nuclear activation of MAPK, Akt, and 

eNOS in endothelial cells (188).  
 

 Outside the brain, not much is known about striatin function apart from its 

connection to ER and, in the literature it is always viewed as a scaffolding protein 

that facilitates the interaction between different intervenients in a signalling cascade. 

It is proven that it binds to CAV1 (290) and that it assembles signalling complexes in 
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the vicinity of the cell membrane but it is the first time that a steroid hormone has 

been shown to influence its levels.  
 

 Having shown that aldosterone has nongenomic effects in the endothelial cells 

studied and, the presence of striatin in the same cells, it is was important to ascertain 

if the presence of striatin is necessary for the effects to occur and, if higher striatin 

levels changed the way MR signalling occurs in these cells. To explore these 

possibilities, striatin was knocked-down using siRNA technology and MR activation 

studies repeated in transfected cells. 
 

Through several rounds of optimization, ideal conditions for striatin knock-

down experiments using siRNA technology were established. Striatin gene 

expression and protein production was reduced to 25% when compared to 

untransfected cells and the oligonucleotide selected was shown not to affect the 

expression of the other two striatin family members.  
 

In order to ensure the consistency of the results, the same cell batch was used 

for all of the knock-down experiments. Untransfected EA.hy926 cells were once more 

stimulated with aldosterone in the presence/absence of MRA to determine if the cells 

are responsive to aldosterone stimulation and the baseline levels of ERK 

phosphorylation. Consistently with what was previously shown EA.hy926 cells 

showed an 1,5 fold increase in the pERK/ERK ratio, following incubation with 

aldosterone for 15 minutes, which was abrogated with MRA. 
 

When the cells were transfected with striatin siRNA, the rapid increase in 

pERK levels was abolished. The controls for these experiments were mock 

transfected cells. Results showed that the rapid rise in pERK levels is abolished but 

also, the overall phosphorylation levels were lower in the transfected cells. The first 

important point in these results is the fact that the controls used were, in fact, 

untransfected cells. Although this does not invalidate the conclusions, it would have 

been more adequate to use cells transfected with the scrambled control sequence 

instead. This way, the transfection effects on the cells would have been fully 

controlled for, including any potential changes in the levels of ERK phosphorylation. 
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Another point worth mentioning is the fact that pERK levels were lower in 

transfected cells when compared to mock transfected cells. The fact that 

untransfected cells are being compared to transfected ones might, very well, account 

for this difference and also, ERK protein levels seem to be more elevated in the 

transfected cells, which, due to the way the results are shown would in part justify the 

decrease in phosphorylation levels. Despite these possibilities, it is necessary to 

assume that this might also be a real biological find and look for possible 

explanations.  
  

One possible explanation is linked to the already described actions of striatin. 

The serine/threonine protein phosphatases are targeted to specific subcellular 

locations and substrates in part via interactions with a wide variety of regulatory 

proteins. Understanding these interactions is thus critical to understanding 

phosphatase function. Protein phosphatase 2A (PP2A) is a multifunctional 

serine/threonine phosphatase that is critical to many cellular processes including 

development, neuronal signalling, cell cycle regulation, and viral transformation. 

PP2A has been implicated in Ca2+-dependent signalling pathways, but how PP2A is 

targeted to these pathways was not understood until striatin was found to form a 

stable complex with the PP2A A/C heterodimer (291). Striatin, binds to CaM in a 

Ca2+-dependent manner. In addition to CaM and PP2A, several other proteins stably 

associate with the striatin-PP2A and SG2NA-PP2A complexes. Thus, one 

mechanism of targeting and organizing PP2A with components of Ca2+-dependent 

signalling pathways may be through the molecular scaffolding proteins striatin and 

SG2NA (291).  

Other proteins found in complexes with striatin family members include, but 

are not limited to, Mob3/phocein (227, 292), which is involved in vesicular trafficking 

(292-294); Mst3, Mst4, and STK25 (295), members of the Germinal Centre Kinase-III 

(GCK-III) subfamily of sterile 20-like kinases recently implicated in control of cell 

migration, cell cycle, Golgi assembly, and cell polarity (296-299); cerebral cavernous 

malformation 3 (CCM3) protein (295), which is required for stabilization of the GCK-III 

kinases and thus for their function (297); and striatin-interacting proteins (STRIP) 1 

and 2 (295). 
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Considering that, in most of the described interactions, striatin functions as a 

chaperone protein “taking” proteins where they need to go, it was hypothesized that 

lower levels of striatin might influence signalling molecules that come before ERK in 

the pathway and, in that way, inhibit its phosphorylation, this way it would make 

sense that the overall phosphorylation levels in transfected cells were lower than in 

cells that retain all its striatin.  
 

In order to establish that the scrambled (control) sequence did not affect the 

cell signalling, the short-time aldosterone treatment was repeated in cells transfected 

with the control duplex. Cells transfected with scrambled siRNA showed a significant 

increase in ERK phosphorylation levels confirming that the scrambled control 

sequence does not affect the way these cells signal. pERK levels were similar to 

what was shown previously and was abrogated by MRA. 
 

Finally, EA.hy926 cells, transfected with striatin siRNA or controls 

(untransfected) were treated with aldosterone and mRNA levels of WNK4 and SGK1 

measured to establish if a decrease in striatin gene expression influenced 

aldosterone’s known genomic responses. Results show that in both cases the 

genomic signalling was not affected. 
 

The above mentioned results indicate that striatin is a necessary player in 

aldosterone’s nongenomic effects and in its absence (or when in reduced levels) 

such effects (increase in ERK phosphorylation levels at 15 minutes) do not occur. 

They also indicate that striatin does not seem to be necessary for the classical, 

genomic effects to occur, suggesting that pathways independent of striatin, are more 

important or that the genomic aldosterone action in these cells is less sensitive to 

reduced striatin levels. 
 

Taking into account that striatin has a major role in aldosterone’s nongenomic 

effects via the MR and that it is know to associate with CAV1 (190), the importance of 

the caveolae in this process was also analysed.  
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Interactions between MR, Striatin and CAV1 
 

Co-immunoprecipitation (Co-IP) was used in order to explore possible protein-

protein interactions between the MR, striatin and CAV1. If proteins interact closely, it 

is possible to “pull” one of these proteins down (known) and use a different antibody 

to detect the other protein (unknown). This would support the notion that MR, striatin 

and CAV1 are involved in a reciprocal cellular mechanism. 
 

To determine if the technique was working, striatin was targeted to be pulled 

down and the resulting elution studied for the presence of CAV1 protein. Results 

showed an interaction between striatin and CAV1 in MAEC, EA.hy926 cells and 

mouse heart tissue. The result was expected and demonstrated that the technique 

chosen is an efficient study tool. To prevent any possible artefacts, the reverse Co-IP 

was always performed and in this case, CAV1 was shown to interact with striatin. 
 

The next round of Co-IPs connected MR to CAV1 and, as CAV1 is an integral 

caveolar protein, the presence of MR in the caveolae. Results point to a close 

interaction between MR and CAV1 and, potentially place MR in the caveolae structure 

located in the cell membrane. Results shown for heart tissue depict two different 

bands that correspond to the alpha and beta isoforms of CAV1, known to be 

expressed in cardiomyocytes (266). 
 

The next possible interaction studied was that between striatin and MR. It was 

already known that MR needs striatin to exert its nongenomic effects so this 

interaction was expected to be strong. As expected, when striatin was precipitated 

with A/G beads conjugated to striatin antibody, the resulting elution contained a high 

amount of MR, confirming the predicted interaction between the two proteins. The 

reverse Co-IP confirmed this interaction and showed the presence of two striatin 

isoforms in EA.hy926 cells.  
 

 Co-IP results show a strong interaction between MR, striatin and CAV1 and 

seem to indicate the formation of a possible triple complex. 
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Figure 63- Individual complexes shown on the left represent the results obtained in the     

Co-IP studies. On the right is represented the posited, potential triple complex  

between MR, striatin and CAV1. 

 

Considering the role of CAV1 in binding striatin protein it was proposed that 

caveolin could be acting as an intermediary in this complex, most likely serving as an 

anchor for MR in the cell membrane and keeping it in place for further interactions 

with other molecules, leading to rapid, nongenomic effects of MR activation. To test 

this hypothesis MAEC from wild-type and CAV1 knock-out animals were used for   

Co-IP studies. Results showed that in the absence of CAV1, the MR does not seem 

to interact with striatin or, the interaction is weakened and cannot be detected using 

co-immunoprecipitation techniques.  

 

 

 

 

 

 

 

Figure 64- Diagram representing CAV1 WT/KO MAEC Co-IP study results. In the absence of 

CAV1 protein there doesn’t seem to be an interaction between MR and striatin. 
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Such results are very important and strengthen the existence of a triple 

complex, with CAV1 as the intermediary between the other the proteins. These 

results are consistent with caveolae playing a role in providing a platform for protein 

interactions and cell signalling to occur. To test this hypothesis, EA.hy926 cells were 

treated with lipid-raft disruptors, which inhibit caveolae formation, and subsequently 

stimulated with aldosterone. EA.hy926 cells were pre-incubated overnight with two 

lipid raft disrupting chemicals and then treated with 10nM aldosterone for 15 minutes. 

Results showed that aldosterone had no effect on pERK in the presence of either 

chemical. Results were not statistically significant but, the general trend seems to 

confirm that caveolae have a facilitating role in nongenomic aldosterone effects by 

providing a platform for MR to interact with other players to mediate subsequent cell 

signalling cascades.  
 

 

Originally caveolae were given the exclusive electron microscopic description 

of membrane invaginated “smooth” vesicles of 50 to 100 nm in size (as opposed to 

the more electron-dense and larger “coated” vesicles- i.e., clathrin-coated pits). 

However, with further investigation the definition of caveolae has expanded to also 

include vesicles detached from the plasma membrane, associated in groups as 

grape-like clusters or rosettes, and in fused form as elongated tubules or trans-

cellular channels (Figure 65).  
 

 

 The discovery of caveolin, the original member of the three-protein caveolin 

family, and its relationship to caveolae was converged upon by investigators from 

different fields with disparate research interests. In an antibody screen for tyrosine-

phosphorylated substrates in Rous sarcoma virus-transformed fibroblasts, four 

predominant proteins were isolated (300).  
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Figure 65- Different types of caveolae morphology (A). (B), two electron micrographs 

(16000x), an adipocyte (on the left) and an endothelial cell (on the right). Caveolar rosettes 

are frequently observed in adipoctyes, and endothelial cells are often found with caveolae in 

all states of membrane association- from membrane bound to fully invaginated (185). 

 

Antibodies raised against one of the proteins showed punctuated staining on 

the plasma membrane (174, 300). This distribution was curiously similar to that 

observed for flask-shaped caveolae and led to experiments linking this 22-kDa 

protein and caveolae (174). Caveolae were shown to be composed of a series of 

concentric striated rings that stained with antibodies directed against the 22-kDa 

protein. Moreover, treatment of cells with cholesterol binding agents, led to flattening 

of the vesicles and dissociation of the 22-kDa protein rich striations. Because this 

protein was so intimately associated with the structural components of caveolae, it 

was named caveolin (174). 
 

The subsequent cloning of the caveolin gene led to yet another surprise about 

the possible functions of the protein (176, 301). In an attempt to identify the cellular 

machinery involved in the differential sorting of vesicles to the apical or basolateral 

surface of polarized epithelial cells, VIP-21 (vesicular integral protein of 21 kDa) had 

been cloned (302). As it turned out, the caveolin sequence was identical to that of 

VIP-21, thereby showing that the same protein could possibly serve as a structural 
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component of plasma membrane caveolae, as well as have roles in oncogenesis and 

vesicular trafficking- all at the same time (301). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 66- Detailed organization of lipid rafts and caveolae membranes.  

(A) lipid rafts. (B) caveolae. (185)  

 

Caveolin-1 was not only the first protein to be localized to caveolae but due to 

its apparent involvement in the structural integrity of caveolae was also the first 

caveolar “marker protein” (174). Caveolar resident proteins were identified using  

sucrose gradients. Of the numerous proteins identified in this manner, it was 

surprising to find that a large majority were signal transduction molecules, some at 

concentrations manifold higher than the bulk plasma membrane (179, 303). This 

observation led to the “caveolae/raft signalling hypothesis”: the compartmentalization 

of such molecules has distinct advantages as it provides a mechanism for the 

regulation of subsequent signalling events and explains cross-talk between different 

signalling pathways (232). Since this initial observation, an array of proteins (ranging 

from receptor tyrosine kinases, G-protein-coupled receptors, ion channels, adaptor 

proteins, and structural proteins) has now been reported to be preferentially localized 

to caveolae (185). This is a growing list but, nevertheless, it is clear that caveolae are 

involved in the compartmentalization of various signalling pathways and can be 

considered specialized signalling organelles. 
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Several lines of evidence now suggest that the caveolins might also act as 

scaffolding proteins by directly interacting with and modulating the activity of 

caveolae-localized signalling molecules. Residues 82-101 form a region termed the 

caveolin scaffolding domain (CSD) where G-proteins but also a host of other 

signalling proteins bind to. Caveolin-interacting molecules have caveolin binding 

domains (CBDs). Striatin is one of those molecules and it has been shown to 

modulate nongenomic actions of another steroid hormone, estrogen (188). Due to 

this last connection it was felt that it was necessary to investigate a possible 

connection between aldosterone and estrogen effects since aldosterone increases 

striatin levels in endothelial cells. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 67- Diagram depicting the interaction between striatin and caveolin proteins.  
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Aldosterone’s influence on Estrogen’s nongenomic actions 

 

 Lu et al identified striatin as a scaffold protein that promotes localization of 

ER to the plasma membrane and assembly of the signalling complex of ER and Gi 

that is required for ER-dependent activation of MAPK, phosphatidylinositol 3–Akt 

kinase, and eNOS, a critical regulator of many physiologic and pathophysiological 

processes (188). Their results show a peak in eNOS phosphorylation at 15 minutes 

of estrogen stimulation that is abrogated if striatin is disrupted. They also show that 

overexpression of striatin increases the proportion of ER that is distributed along the 

plasma membrane. These results combined with the information that the binding of 

estrogen (E2) to the membrane has been confirmed, in addition to the presence of 

ER and caveolin in plasmalemmal caveolae and, their connection to nongenomic 

and short-term effect of E2 on endothelial NO release (186) led to the possibility of a 

an interaction/cross-talk relationship between aldosterone and estrogen signalling in 

endothelial cells. 
 

 The first step taken was to ascertain if, like aldosterone, estrogen treatment 

stimulated the production of striatin protein. EA.hy926 cells were treated with either 

10nM aldosterone or 50nM estrogen for 5 hours. Aldosterone but not estrogen 

treatment increases striatin protein levels. Results show that the increase in striatin 

protein seems to be specific to aldosterone’s MR activation. 
 

Because the experimental design used was different from aforementioned 

studies it was necessary to replicate the results already published. EA.hy926 cells 

were stimulated with estrogen (50nM) for 5, 15 and 30 minutes, with or without 

aldosterone (10nM) pre-treatment for 5 hours. peNOS/eNOS levels were then 

measured by western blot analysis. Results obtained successfully replicated the 

findings of Lu et al, exhibiting a peak in eNOS phosphorylation occurring at 15 

minutes of estrogen stimulation. This peak is smaller than previously observed and 

the estrogen dose employed higher which can be justified by the absence of 

overexpression of striatin protein in the present study. 

 

 When the aldosterone pre-treatment was added to the experimental paradigm, 

a very interesting event occurred; there was a shift in the pattern of the peNOS 
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activity; peNOS levels were not only increased compared to estrogen treatment 

alone but it also occurred sooner.  
 

 This is a novel result and might prove to change the way steroid signalling is 

viewed, adding a new level of complexity concerning cross-talk between different 

steroid receptors and subsequent downstream signalling cascades and cellular 

events. 
 

In order to confirm that this effect is dependent on striatin, EA.hy926 cells 

were transfected with striatin scrambled sequence or striatin siRNA. Cells were then 

treated with estrogen for 15 minutes with or without aldosterone pre-treatment. 

Results confirmed published observations and implicated striatin as a key player in 

estrogen signalling. Cells transfected with the scrambled sequence display a peak in 

peNOS levels at 15 minutes of estrogen treatment, which increases when the cells 

are subjected to aldosterone pre-treatment. When the cells are transfected with 

striatin siRNA, the response to estrogen stimulation is completely abrogated, even 

when pre-treatment with aldosterone is employed.  
 

With the mounting evidence of a potential cross-talk between estrogen and 

aldosterone signalling pathways, it was important to study the effect of estrogen on 

ERK phosphorylation. Results showed that, contrary to what was observed with 

aldosterone, estrogen pre-treatment does not increase pERK levels in EA.hy926 

cells.  
 

 Striatin siRNA did not damper the genomic effects of aldosterone stimulation 

but, the same had to be shown for estrogen. PTGIS, together with PTGS1 were 

selected as targets to study the effects of striatin knock-down on estrogen’s genomic 

actions. PTGIS and PTGS1 expression levels were measured by Real-Time PCR in 

EA.hy926 cells transfected/untransfected with striatin siRNA and subsequently 

treated with 50nM estrogen for 15 minutes and 5 hours. Results showed that, as 

described in the literature, treatment with estrogen stimulated PTGIS and PTGS1 

expression in the endothelial cells studied. Transfection with striatin siRNA, did not 

affect these genomic actions in anyway, with similar levels of mRNA observed for 

both untransfected and transfected cells. 
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 In an attempt to bring the results shown close to physiological relevance, 

MAEC were used in repeat experiments with estrogen stimulation with/without 

aldosterone pre-treatment. Just as seen with EA.hy926 cells, pre-treatment with 

aldosterone enhanced estrogen’s nongenomic response. There was a peak in eNOS 

phosphorylation at 15 minutes of estrogen stimulation with levels of phosphorylation 

very similar to previously observed for EA.hy926 cells. When an aldosterone pre-

treatment was added to the treatment conditions, there was, once more, a shift in the 

peNOS peak observed. In the case of MAEC there was no apparent increase in 

peNOS levels but, the nongenomic response at 5 minutes of estrogen stimulation 

was confirmed.  
 

Estrogen is a complex hormone with pleiotropic effects. Aging and estrogen 

loss are indelibly linked. Aging is associated with inflammation (304), with increased 

oxidative stress and a blunting of the protective heat shock response (305). In the 

cardiovascular system, aging is accompanied by increased stiffness, increased 

fibrosis, and loss of contractile reserve, increased ROS and endothelial dysfunction. 

All of these factors contribute to cardiovascular dysfunction. Estrogen, which is an 

antioxidant through indirect upregulation of antioxidant gene expression and 

increasing eNOS activity while decreasing superoxide production, is lost through 

menopause and may underlie such cardiovascular diseases that are often observed 

in postmenopausal women.  
 

Membrane associated ERα, when bound by estrogen, can activate a signalling 

cascade that includes PI3K and Akt, as well as ERK 1/2, JNK and p38 (306). This 

signalling cascade protects the cell from injury, except for JNK, which increases 

apoptosis. The signalling mediated by membrane associated ERα has been termed 

nongenomic signalling and has recently been shown to provide cardiovascular 

protection without increasing uterine or breast cancer growth in mice (307). Also, 

without rapid signalling, this apparent protective effect is lost (308). This supports the 

idea that the increased risk of cancer with estrogen therapy is related to estrogen's 

classical nuclear effects. 
 

 These facts combined with the findings here presented could potentially lead 

to two very different possible biological outcomes. Based on the data generated by 

experimental work herein, a general signalling model can be proposed.  
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 Figure 68- Diagram depicting the general conclusions drawn from the experimental  

studies here presented. 

 

 The left panel of the diagram shows the nongenomic and genomic actions of 

aldosterone that were described in this thesis. Aldosterone activates the MR that can 

be found at the cell membrane level in the form of a triple complex with striatin and 

CAV1. MR activation for a short period of time (15 minutes) leads to the nongenomic 

increase in phosphorylation of ERK1/2. When MR is activated for a longer period of 

time (5 hours), striatin protein expression levels are increased, which constitutes a 

genomic effect of aldosterone action. 
 

 In the right panel the nongenomic signalling pathway for estrogen action is 

depicted, as previously described (188). This panel also illustrates the potential 

cross-talk between the two steroid hormones with the increased striatin levels 

brought about by aldosterone’s genomic action.  
 

MR blockade has important effects on reno-cardiovascular remodelling and 

fibrosis, autonomic balance, fibrinolysis, oxidative stress, and activation of 

proinflammatory and profibrotic pathways (309). These are the adverse effects of 

aldosterone action. However, a very important aspect of the “ugly” actions of 

aldosterone is the fact that this hormone per se is incapable of eliciting damage but 

requires a certain pathological milieu, and only when correct conditions are met 

(Figure 69) does this leads to pathophysiological MR activation resulting in this 

adverse or ugly action. In 1992, Brilla and Weber reported that in the presence of 
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enhanced sodium intake, but not with sodium deprivation, chronic administration of 

aldosterone is associated with cardiac fibrosis and hypertrophy (107). Further in vivo 

studies confirmed that the damaging effect of aldosterone in reno-cardiovascular 

tissue depends on a high salt diet (310-315), which could be followed by a milieu 

characterized in part by enhanced reactive oxygen stress (ROS) and prevented by a 

low salt diet (314, 316-319). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69- Hypothetical coincidence model of the signalling events, 

leading to damaging actions of MR-stimulation (320). 

 

 Adding this information to what has already been stated about nongenomic 

actions of estrogen there are two possible conclusions that can be drawn from the 

experimental studies herein. The first conclusion is that the cross-talk between 

aldosterone and estrogen, through striatin is of potential therapeutic significance, 

because it increases the anti-oxidative action of estrogen. This is only true when 

there is no evident, pre-existing, cardiovascular damage. In the case that there is 

already some inflammation due to age or a different initiating agent, the increase in 

striatin protein by aldosterone might be adverse to cardiovascular health and may 

preclude disease by, facilitating further MR activation, leading to more damage in the 

cardiovascular system. 
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Conclusion 

 

Cellular responses to steroids are mediated by two general mechanisms: 

genomic and rapid/nongenomic effects. Identification of the mechanisms underlying 

aldosterone’s nongenomic actions has been difficult to study and is still not clearly 

understood. In the presented thesis, the hypothesis that striatin is a critical 

intermediary of the rapid/nongenomic effects of aldosterone was explored.  

In human and mouse endothelial cells, aldosterone promoted an increase in 

pERK that peaked at 15 minutes. Striatin was shown to be a critical mediator in this 

process as reducing striatin levels with siRNA technology prevented the rise in pERK 

levels. In contrast, reducing striatin did not significantly affect two well-characterized 

genomic responses to aldosterone. Down regulation of striatin with siRNA produced 

similar effects on estrogen’s actions – reducing nongenomic, but not the genomic 

actions investigated and, aldosterone, but not estrogen, increased striatin levels. 

When endothelial cells were pre-treated with aldosterone, the rapid/nongenomic 

response to estrogen on peNOS/eNOS ratio was enhanced and accelerated 

significantly. Importantly, pre-treatment with estrogen did not enhance aldosterone’s 

nongenomic response on pERK.  

In conclusion, these results indicate that striatin is a novel mediator for both 

aldosterone’s and estrogen’s rapid and nongenomic mechanisms of action on pERK 

and peNOS, respectively, thereby providing evidence for a synergistic effect between 

the mineralocorticoid receptor and the estrogen receptor.  

Multiple studies in vivo and in vitro have indicated that estrogen has the ability 

to either confer cardiovascular protection or increase cardiovascular risk. For 

example, in the Women’s Health Initiative the overall findings support the concept 

that estrogen increases cardiovascular risk in post-menopausal females (321). 

However, a secondary analysis suggests that depending on the women’s age, 

estrogen can reduce or increase cardiovascular risk (322). Since aldosterone levels 

also vary with age (323), the results of the present study may provide one 

mechanistic explanation for these findings- varying striatin levels. Thus, these results 

suggest a unique level of interactions between steroids on the cardiovascular system 

that may have broad application for the treatment of cardiovascular diseases.  
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Future Directions 

 

The experimental work described in this thesis is by no means concluded and 

some of the conclusions described not fully investigated. Additional studies need to 

be performed to prove the posited triple complex and its relevance to 

Aldosterone/MR and estrogen/ERα signaling. The absence of an animal model 

lacking striatin hampers the ability to assess the physiological relevance of these 

findings. It has also been assumed that the mechanism observed is mediated by the 

classical MR since it is blocked by canrenoic acid. However, the possibility that 

ALDO is interacting with a recently proposed non-genomic regulator of ALDO 

function, GPR30 (324) cannot be excluded.  

 

In the future, one of the most significant experiments necessary is to assess 

the physiological relevance of striatin by employing a striatin KO animal model 

(heterozygous), especially relative to salt sensitivity and aldosterone-mediated 

cardiovascular damage. Some experiments are already underway connected to the 

salt sensitivity of the blood pressure (Hight Salt vs Low Salt in the Heterozydous vs 

Wild Type) and results seem promising. 

The physiological relevance in humans, is also to be assessed by looking at 

SNPs (Single Nucleotide Polymorphism) in the striatin gene, and by using the 

carefully phenotyped HyperPATH cohort already studied within the group. 

 Another interesting avenue would be the interaction between gender           (i.e. 

estrogen) and the effects of aldosterone, which could be assessed in the animal or 

even humans. 

Finally, other nongenomic events following aldosterone stimulation need to be 

clarified in order to build a clearer signalling pathway model. Akt phosphorylation is 

known to associate with ERK1/2 and would be a good first target. 
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