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Abstract 

 Quorum sensing (QS) is a cell-to-cell communication mechanism used by 

bacteria that produce and recognize signaling molecules named autoinducers. It is 

known to be involved in the regulation of different virulence factors including 

exopolysaccharide (EPS) biosynthesis in several pathogens. Bacteria belonging to 

Burkholderia cepacia complex (Bcc) are a group of related species that had emerged 

as important opportunistic pathogens mainly in cystic fibrosis (CF) patients. EPS 

produced by these bacteria plays an important role in the development of Bcc 

infections. Like in other bacteria, Bcc possess several QS-regulated phenotypes but 

little is known about the effect of this regulation mechanism in the Bcc EPS 

biosynthesis. Therefore, to evaluate the role of QS in such regulation, we tested the 

effects of acyl-homoserine lactones (AHLs) degradation by AiiA lactonase and the 

presence of a quorum sensing inhibitor (QSI) 4-nitro-pyridine-1-oxide (4NPO) in EPS 

biosynthesis inhibition. The results indicate that indeed QS regulates EPS biosynthesis 

in Bcc. However the signaling molecules involved are not dependent on the CepI/R QS 

system since an insertion mutant in the cepI gene did not inhibit the EPS production. 

Thus, bioinformatics analyses led to the identification of protein CbsI as another 

putative AHL synthase of Burkholderia.  

 Bcc bacteria are resistant to most of the conventional antibiotic treatments 

making its eradication a challenge. Thus, it has become essential to identify and 

develop alternative therapies to deal with these infections. The use of QSI seems a 

promising field to be explored. Since 4NPO was able to inhibit EPS production in 

Burkholderia, it was decided test its effect in several other Bcc QS-dependent 

phenotypes, such as motility, production of extracellular proteases and siderophores, 

and biofilm formation. Furthermore, its potential use as co-adjuvant of antibiotics in 

different Bcc species was also evaluated. The results confirmed that 4NPO is indeed 

affecting the tested phenotypes and increases the susceptibility to the antibiotics tested 

in both Bcc planktonic and sessile cells. The results also showed that 4NPO 

potentiates the activity of detergents such as Triton X100 and Tween 20. Since the 

clinical application of this compound is limited, its usage to clean and disinfect abiotic 

surfaces could be a possibility. 

 

Keywords: Burkholderia complex cepacia (Bcc), virulence factors, exopolysaccharide 

(EPS), quorum sensing (QS), quorum sensing inhibitors (QSI), 4-nitro-pyridine-1-oxide 

(4NPO) 
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Resumo 

 As bactérias pertences ao complexo Burkholderia cepacia (Bcc) estão divididas 

em 17 espécies e são consideradas patogénicas oportunistas infectando sobretudo 

doentes com fibrose quística (FQ). Apesar de representarem apenas uma pequena 

percentagem da totalidade das infecções em doentes com FQ, os danos causadas por 

estas bactérias apresentam uma grande heterogeneidade, uma vez que as infecções 

que causam podem ser infecções crónicas ou podem estar associadas a quadros 

clínicos mais graves, levando muitas vezes à falência das funções pulmonares, 

desenvolvimento de pneumonia e de septicémia, designada síndrome da cepacia. A 

severidade destas infecções é agravada pela possibilidade de transmissão cruzada 

entre pacientes e pela partilha de equipamentos de terapêutica inalatória. 

Consequentemente, a maioria dos centros de FQ em todo o mundo teve que 

implementar regras especiais de higiene hospitalar e medidas severas de isolamento 

de indivíduos colonizados e indivíduos não colonizados com Bcc. Adicionalmente, 

estas bactérias são intrinsecamente resistentes à maioria dos antibióticos clinicamente 

usados e à maioria dos desinfectantes. Os compostos antibacterianos, com acção 

bacteriostática ou bacteriocida, têm-se assim revelado pouco eficazes no tratamento 

destas infecções, sendo necessário recorrer a elevadas concentrações de antibióticos 

e ao uso combinado desses mesmos antibióticos. Torna-se, portanto, fundamental o 

desenvolvimento de novas estratégias que permitam um tratamento mais rápido e 

eficaz desta infecções. 

 Umas das estratégias que tem sido fortemente estudada e que se tem revelado 

promissora é a interferência dos mecanismos de quorum sensing (QS). Este 

mecanismo é dependente de uma densidade populacional elevada, permitindo a 

comunicação entre as bactérias de uma população através da libertação de sinais 

químicos, sendo os mais comuns em bactérias Gram-negativa as acil-homoserina 

lactonas (AHLs). Quando esses sinais se acumulam no meio e atingem um 

determinado nível, ocorre a activação de proteínas reguladoras que vão activar ou 

reprimir a expressão de genes regulados por QS, levando a comportamentos 

sincronizados dentro dessa população. Tem sido demonstrado que o QS está 

envolvido na regulação da expressão de diversos genes relacionados com a 

virulência. No caso das bactérias do complexo Bcc, o sistema mais conservado é 

constituído pela sintase cepI, que produz C6-HSL e C8-HSL, e pelo regulador de 

transcrição cepR, que está envolvido na expressão de genes codificantes para 

proteases e sideróforos, motilidade e formação de biofilmes, entre outros. Ao contrário 

do que ocorre em outras espécies, pouco se sabe sobre os efeitos do QS, e em 
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concreto do sistema CepI/R ao nível da regulação da síntese de exopolissacárido, um 

importante factor de virulência em Bcc. Trabalhos feitos anteriormente no nosso 

laboratório sugerem que a biossíntese deste polímero deverá ser regulada por QS. 

Assim, um dos objectivos deste trabalho foi compreender qual o papel do mecanismo 

de QS na regulação do exopolissacárido em diferentes espécies de Burkholderia. Para 

tal, estudaram-se os efeitos da degradação de AHLs pela lactonase AiiA e do inibidor 

de QS, 1-óxido- 4-nitro-piridina (4NPO) na síntese de exopolissacárido. Os resultados 

obtidos, sugerem que o QS está efectivamente a regular a produção de 

exopolissacárido em Bcc mas as moléculas sinalizadoras não são as dependentes do 

sistema CepI/R. Isto porque a construção de um mutante de inserção no gene cepI 

não aboliu a síntese do exopolissacárido. Assim sendo, utilizaram-se ferramentas 

bioinformáticas para identifcar outro possível sistema de QS em Burkholderia. 

 O segundo objectivo deste trabalho foi determinar os efeitos de um inibidor de 

QS descrito em Pseudomas aeruginosa, o 4NPO, em diferentes espécies do complexo 

Bcc, ao nível de diversos fenótipos regulados por QS, nomeadamente a mobilidade, 

produção de proteases extracelulares e de sideróforos e a formação de biofilmes. Uma 

vez que se confirmou que efectivamente o 4NPO inibe o QS em Burkholderia, decidiu-

se estudar a potencial utilização deste composto como co-adjuvante de antibióticos. 

Para tal, testaram-se diferentes antibióticos e os resultados mostraram que o 4NPO 

aumenta a capacidade antibacteriana desses antimicrobioanos, tanto ao nível da 

inibição do crescimento das células planctónicas como ao nível da inibição da 

formação de biofilmes. Embora o uso clínico deste produto esteja limitado devido às 

suas propriedades mutagénicas, o uso de 4NPO em superfícies abióticas poderá ser 

uma potencial aplicação deste composto, uma vez que, também se verificou potenciar 

a actividade de detergentes como o Triton X100 e o Tween 20, ao nível do 

crescimento planctónico e do desenvolvimento de biofilmes. De acordo com estes 

resultados, os inibidores de QS, e o 4NPO em particular, poderão de facto ter 

aplicações a nível da desinfecção de superfícies e de material clínico, prevenindo o 

aparecimento de casos de contaminações hospitalares, que já levaram a graves surtos 

de Bcc em doentes com FQ. 
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1 Introduction  

1.1 The Burkholderia genus  

 Bacteria belonging to the Burkholderia genus are motile, metabolically diverse 

Gram-negative β-proteobacteria that occupy a wide range of ecological niches 

including soil, industrial waste, water, clinical sources and many others [1, 2]. 

Burkholderia species have unusual large genomes, which contribute to the high 

plasticity, adaptability and capacity to colonize different environments and to survive 

under several stress conditions. These bacteria are able to use many unusual carbon 

and energy sources, being highly versatile from the metabolic point of view [3]. Some 

beneficial Burkholderia species establish symbiotic rhizospheric interactions with fungi, 

bring benefits to crops due to their ability to produce several antimicrobial compounds; 

promote plant growth by fixing atmospheric nitrogen in symbiosis with several plants; 

and can degrade natural and man-made pollutants (reviewed in [4]). On the other 

hand, some Burkholderia can be pathogens of plants, animals and humans [5, 6]. 

Among the pathogenic Burkholderia species are included B. mallei, which causes 

glanders in horses; B. pseudomallei that causes melioidosis; and the species belonging 

to Burkholderia cepacia complex (Bcc) which have emerged as important opportunistic 

human pathogens, especially in patients with chronic granulomatous disease (CGD), of 

immunocompromised individuals, and most importantly  in cystic fibrosis (CF) patients 

[7]. Burkholderia cepacia complex comprises a group of related species that share a 

high level of similarity at 16S rRNA gene sequence (>97.5%) and of recA gene 

sequence (94% to 95%), and moderate levels of DNA-DNA hybridization (30% to 60%) 

[8-11].  

 

1.1.1 Burkholderia cepacia complex: a group of opportunistic CF pathogens 

 Cystic fibrosis is a genetic disease caused by mutations in a gene encoding the 

cystic fibrosis transmembrane conductance regulator (CFTR) that leads to the 

accumulation of a thick mucus in different organs including lungs, favoring bacterial 

colonization of several pathogens like Burkholderia [12, 13]. Even though Burkholderia 

infections affect less than 10% of the CF patients [14], it has become an extremely 

important opportunistic pathogen, which is associated with a worst clinical outcome and 

lower life expectancy. Furthermore, lung transplants are usually denied to these 

patients, due to the possibility of the development of cepacia syndrome characterized 

by necrotizing pneumonia and septicemia [15]. Bcc are highly transmissible from 

patient-to-patient and by contact with contaminated clinical devices, such as respiratory 
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therapy equipment, reusable temperature probes and catheters, being these bacteria 

resistant to the most commonly used disinfectants [16-19]. Burkholderia is also 

intrinsically resistant to antibiotics. Although poorly understood, the antibiotic resistance 

mechanisms in Bcc strains can be divided into three categories: enzyme modification, 

alteration of drug targets and limited permeability [20]. Permeability alterations at the 

membrane level play a key role in the Bcc defense mechanisms against antimicrobial 

agents, due to the existence of modified LPS, porins and efflux pumps, as well as the 

ability to produce EPS and/or form biofilms, which are thought to limit drugs access to 

the cell [20]. Bcc are able to cause enzyme drug modifications and target changes. 

These organisms are intrinsically resistant to aminoglycoside antibiotics and have high 

levels of β-lactam resistance due to the production of inducible chromosomal β-

lactamases and altered penicillin-binding proteins [21]. Moreover, the capacity of 

antibiotic resistance in the Bcc can be highlighted by its capacity to use penicillin G as 

a sole carbon source [22]. Accordingly, the majority of Bcc strains are multidrug 

resistant and conventional antimicrobial therapies which includes the combination of  

two or sometimes three different antibiotics are often ineffective [19].  

 

1.1.2  Virulence factores in Burkholderia 

 Multiple factors contribute to the pathogenicity of Bcc bacteria giving them the 

capacity to overwhelm the host defenses, to establish chronic infections that are rarely 

eradicated, to invade the epithelial cells, causing their necrosis, or to cross the 

epithelium paracelularly, enabling their dissemination into the blood stream [23]. These 

proprieties are due to the production of numerous virulence factors, the intrinsic 

resistance to antibiotics and the ability to form biofilms. 

Among the virulence factors produced by Bcc bacteria there is the synthesis of 

lipopolysaccharide (LPS), which contains particular structural properties that neutralize 

the anionic charge of cell surface, being  involved in the resistance to polymyxin, 

cationic antimicrobial peptides like protegin-1 [24] and in the prevention of bacterial 

phagocytosis by macrophages [25-28]. Other virulence factors are the expression of a 

cable pili and 22 kDa adhesin, which allow the binding to epithelial cells, induce 

cytotoxicity and initiate cellular apoptosis [29]; flagella, which are involved in bacteria 

dissemination, epithelial cells invasion, biofilm formation and induction of host 

responses [30]; and the biosynthesis and secretion of haemolysins, lipases, 

siderophores and  extracellular proteases (eg. ZmpA and ZmpB), which were shown to 

be controlled by quorum sensing (QS) [31-33]. In particular, ZmpA and ZmpB are 
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metalloproteases involved in the disruption of host tissues and the enhancement of the 

host immune system, contributing to an increase of inflammation [32, 34].  

 The ability of Bcc bacteria to form biofilms has been shown in both 

environmental and clinical Bcc isolates grown in abiotic and biotic surfaces [35]. 

Biofilms are defined as a sessile community of bacterial cells in the stationary phase 

irreversibly attached to a surface, being embedded by a matrix of extracellular 

polymeric substances. The matrix of mature biofilms is composed of diverse substrates 

that include polysaccharides, proteins, nucleic acids and lipids. Biofilm communities 

exhibit gradients of nutrients and oxygen through the different layers of the biofilm, 

having the cells of the bottom lower availability of nutrients and therefore less metabolic 

activity [36]. These characteristics protect bacteria-forming biofilm from many 

environmental factors, including antibiotics, disinfectant chemicals and the host 

immune system. The reason it could be the limited drug diffusion and inactivation of 

compounds by the biofilm matrix [37, 38]. Biofilm formation involves several temporal 

phases as resumed in the Figure 1. The role of extracellular polymeric substances on 

biofilm matrix cohesiveness and biofilm disruption have been an interesting target to 

find chemical compounds that acting at that level, could promote biofilm detachment 

[39]. 

 

  

 

 

 

 

 

 

 

 

Figure 1 - Steps required for biofilm formation. [1] initial attachment, [2] irreversible attachment, [3-4] 
maturation, [5] dispersion. Each stage of development in the diagram is paired with a photomicrograph of 
a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale. The planktonic 
bacteria start to swim towards the substratum using flagella, to form loose attachments [1] on the surface 
forming microcolonies [2]. The microcolonies multiply and differentiate into mature biofilms where cells are 

embedded into a thick extracellular polymeric matrix. The biofilm can acquire mushroom- or tower-like 
structures [3-4]. Subsequently, it is observed a detachment of bacterial cells that can be spread to other 
places giving origin to new biofilms [5] (adapted from [40]) 

 

 Besides being involved in biofilm formation, extracellular polysaccharides or 

exopolysaccharides (EPS) are considered to be important virulence features for 

several pathogens. In the case of Burkholderia the role of EPS in infection is not well 
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established, as some authors point out that it might have a virulence role and others 

consider EPS a persistence factor. Still the importance of EPS in Burkholderia 

adaptation to different environments, stress conditions, and to overcome the immune 

system has been demonstrated experimentally (reviewed in [41]), as summarized in 

Figure 2. Several Burkholderia EPSs have been identified and structurally 

characterized, but the EPS cepacian is the most common one, being produced by both 

Bcc and non-Bcc Burkholderia strains of clinical and environmental origin [42, 43]. 

Cepacian biosynthesis involves many genes, most of them encoded by bce-I and bce-II 

gene clusters [43-46]. Still, little is known about the mechanisms involved in the 

regulation of cepacian biosynthesis, with the exception of the BY-kinase BceF and the 

phosphotyrosine phosphatase BceD by exerting regulation at the post-translational 

level [47].  

 

 

Figure 2 – Summary of the role of Burkholderia EPS  in the adaptation to different niches (adapted 
from [41]). Cepacian was shown to interact with antimicrobial peptides [48]; to  scavenge reactive oxygen 

species (ROS), to interfere with neutrophil chemotaxis [49], to be required for the formation of mature 
biofilms structures [50] and to be involved in the resistance to desiccation and metal ion stress, 
contributing to Bcc capacity to thrive in adverse environments [43]. 

 

Quorum sensing (QS) mechanisms are known to control EPS production in 

other bacterial species, including nonpathogenic Sinorhizobium meliloti and the plant 

pathogens Erwinia stewartii and Pseudomonas syringae [51-53]. Recently, Soarez-

Moreno and collaborators had shown that QS mechanisms also control EPS 

biosynthesis in non-Bcc plant-associated Burkholderia [54]. Accordingly, we had 

hypothesized that QS may also regulate cepacian biosynthesis in Bcc by acting at the 

transcriptional level, and that will be one of the aims of this work.  
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1.2  Insights into quorum sensing mechanism and functions 

Cell-to-cell communication can be mediated by different chemical signals that 

are secreted, diffused and detected throughout the community. In response to such 

factors, signal transduction cascades are activated and induce alterations in gene 

expression which enable bacteria to survive in different stress conditions and 

consequently adjust to the surrounding environment [55]. These mechanisms are 

mediated by a cell-density-dependent regulatory mechanism designated by quorum 

sensing.  

 QS signaling is based on the intracellular production of low molecular weight 

molecules, known as  autoinducers, that are either passively or actively released to 

external milieu. When these signal molecules reach a specific threshold, which is 

usually dependent on bacterial population density they bind to specific receptors 

(regulatory proteins) that trigger signal transduction cascades, resulting in the alteration 

of gene expression  [56]. QS plays a central role in both symbiotic and pathogenic 

interactions. For instance, it regulates several virulence phenotypes and allows a 

coordinated “attack” to the host that is triggered only at high population density, 

increasing the bacterial ability to overwhelm host defenses and to establish an infection 

[57]. In symbiotic associations, QS has also crucial roles in root nodulation by 

legumes/Rhizobiaceae associations and the production of bioluminescence in 

squid/Vibrio fisheri symbiosis [58, 59]. 

The autoinducers chemical structure is highly diverse, being the most common 

structures presented by Gram-negative bacteria based on N-acylated-L-homoserine 

lactones (AHLs), while in Gram-positive bacteria QS is based on small peptides 

synthesis and detection [60]. 

 The first QS system was described in the marine bacterium Vibrio fischeri, 

which establishes symbiotic associations with the squid Euprymna scolopes and is 

involved in the activation of the luciferase operon that enables bacterial 

bioluminescence [59, 61]. This system is composed by two proteins: LuxI, a N-

acylhomoserine lactone synthase, and LuxR, a cytoplasmatic transcriptional regulator 

which recognizes the signal molecules constituting the LuxI/R QS-system [62]. This 

system represents the paradigm of QS systems that are usually composed by a 

synthase and a regulator protein. Several  types of QS systems have been described in 

Gram-negative bacteria, each one presenting distinct class of signal molecules, such 

as N-acyl homoserine lactones, quinolones (AQs), long-chain fatty acids and fatty acid 

methyl esters as well as autoinducer-2 (AI-2), a group of furanone derivatives  [63].  

 Due to substrate specificity of the LuxI-homologues and conformation 

restrictions of the LuxR-homologues, only specific AHLs can bind to the regulator 
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protein [64, 65]. Therefore, AHL autoinducers tend to be species specific, as only 

particular acyl-chains are recognized by the species producing them being associated 

to intraspecies communication [64, 65]. Interspecies communication is usually 

associated with another autoinducer class, known as autoinducer-2 (AI-2), which is 

present in both Gram-negative and Gram-positive bacteria being proposed as an 

“universal signal” for interspecies communication (reviewed in [66]).  

In the case of Bcc bacteria, the most well conserved QS system identified so far 

is based on CepI, the synthase LuxI-homologue, and CepR, the LuxR-like protein [67, 

68]. The CepI protein synthesizes two AHL molecules: N-octanoyl-L-homoserine 

lactone (C8-HSL) and, in lower amounts, N-hexanoyl-L-homoserine lactone (C6-HSL) 

[69] (Figure 3). This system was shown to play a crucial role in B. cenocepacia 

virulence being essential for full pathogenicity in several infection models [70, 71]. 

CepI/R system positively regulates expression of extracellular proteases, chitinases 

and a polygalactunorase, as well as the swarming motility and biofilm formation; and 

negatively regulates the biosynthesis of the siderophore ornibactin [72-74]. Besides 

CepI/R homologue systems, an orphan LuxR homologue was also described in B. 

cenocepacia [75]. Orphan LuxR homologues are QS regulators that do not have an 

associated AHL synthase but respond to endogenous or exogenous synthesized AHLs 

[76] (Figure 3).  

 

  

 

 

 

 

 

 

 

 

 

 
Figure 3 - Schematic representation of CepI/R Burkholderia QS system and some QS-regulated 
phenotypes (adapted from http://botserv1.uzh.ch/microbio/site/research/introduction/Burkholderia 

Cepacia.php). 

   

Other AHL- based QS systems have been identified in several Burkholderia 

species. For instance, the B. cenocepacia CciI/R system produces and is activated by 

C6-HSL and C8-HSL [77]. B. vietnamiensis BviI/R system produces and responds to 

C10-HSL [78] and the BraI/R system from B. kururiensis synthesizes and responds to 

3-oxo-C12-HSL [54]. System BraI/R was shown to control EPS biosynthesis in the 

  cep box 
 

 

C6-HSL 

C8-HSL 

 CepR 

 

 
cepI 

  
cepR 

http://botserv1.uzh.ch/microbio/site/research/introduction/BurkholderiaCepacia.php
http://botserv1.uzh.ch/microbio/site/research/introduction/BurkholderiaCepacia.php
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plant-associated Burkholderia species [79]. Even though no BraI/R homologues can be 

found in the sequenced Bcc species and the Bcc EPS is slightly different from the one 

produced by the plant-associated Burkholderia, the results obtained by Suarez-Moreno 

and co-authors give a further indication that QS may control EPS production in Bcc 

species. Besides AHLs, other molecules have been described to be involved in QS 

within the Burkholderia genus such as 4-hydroxy-2-alkylquinolines (HAQ) derivative. 

These compounds are thought to function as iron chelators, immune modulators and 

antimicrobial compounds, able to inhibit bacterial growth [80]. B. cenocepacia is able to 

produce a diverse set of 2-alkyl-4(1H)-quinolones shown be involved in colony 

morphology and elastase production, and cis-2-dodecenoic acid (BDSF), a molecule 

structurally related to the diffusible signal factor found in Xanthomonas campestris 

contributing to interspecies and intraspecies communication [81-83]. 

 

1.3 Quorum sensing inhibitors as antimicrobial compounds  

 Considering the rapid growth of bacterial resistance against many antimicrobial 

compounds and the link between QS and virulence, the discovery of QS antagonists 

may provide a possible means to achieve new antimicrobial strategies and it has thus 

attracted significant attention in recent years. Many QS inhibitors (QSIs) have been 

described and there are a growing number of studies showing their ability to prevent 

and/or disrupt biofilm formation, diminish the production of virulence factors, impair the 

responses to oxidative stress and increase neutrophils activity against bacteria [84-88]. 

Accordingly, these studies point out that the use of QSIs might be the next generation 

of drugs against bacterial infections, as QS is directly related with the production of 

virulence factors that are not essential for bacterial survival. Therefore, with the 

selective disruption of QS, pathogens can no longer adapt to the host environment 

being eliminated by innate host defenses without the selective pressure associated 

with the conventional antibiotic treatments, which have biocide activity [86, 89]. 

 QSI can act at several levels. For instance, the modulation of QS can occur by 

interfering with the synthase, with the regulator protein or with the signal itself (Figure 

4) [86, 90]. Regarding QSI that act by preventing the production of autoinducers, there 

are studies that use small-molecule agents such as 59-methylthioadenosine (MTA) and 

S-adenosylmethionine (SAM) analogs to target LuxI-type synthase proteins [91]; others 

that use substitutes of SAM, one of the AHL’s precursors [86, 92]; and others that use 

autoinducer synthase blocking compounds, such as thiol derivatives and homoserine 

lactone derivatives [93]. Another approach used is to block the signal at the receptor 

level, which can be achieved by the use of antagonist compounds, capable of 
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competing or interfering with the cognate AHL signal for binding to LuxR-type receptors 

and both designed synthetic and natural naturally occurring substances, such as 

extracts from plants and food, have been tested to modulate QS at LuxR-homologues 

levels [94, 95]. Finally, QS inhibition can occur by manipulation of the QS signal itself. 

Some plants and bacteria present defense mechanisms that destroy the invading or 

competing bacteria autoinducers to protect themselves. For instance, some plants 

increase the pH at infection sites, causing hydrolysis of the lactone ring; others secrete 

of oxidized halogenated compounds that are capable of reacting with the 3-oxo-AHLs; 

some bacterial species are capable of using AHLs as a carbon and nitrogen source, 

others are able to breakdown AHL by secreting lactonases and acylases enzymes, 

others produce secondary metabolites, such as brominated furanones, that can block 

the action of AHLs [86, 96, 97].  

 

 

Figure 4 – Different levels of quorum-sensing (QS) disrupting strategies in bacteria using quorum 
sensing inhibitors (QSI) (adapted from [98]). 
 

 The use of QSI as co-adjuvant of antibiotic action has been widely studied, 

particularly against P. aeruginosa causing CF lung infections where halogenated 

furanone compounds were able to inhibit biofilm formation [99] and  garlic extract in 

combination with tobramycin enhanced the clearance of infecting bacteria in the mice 

pulmonary infection model [100]. Still, little is known about the potential use of QSIs 

against Bcc, probably due to the fact that these bacteria are able to degrade a wide 

variety of compounds, as some of the QSIs known to be efficient in P. aeruginosa did 
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not seem to have any effect on Bcc strains [101]. Nevertheless, Brackman and co-

authors (2009, 2011) showed that same QSIs can interfere with biofilm formation and 

maturation in B. multivorans and B. cenocepacia [84, 102].  

1.4 Objectives 

 Quorum sensing is known to regulate the expression of several genes that are 

involved in the production of virulence factors. Among the phenotypes controlled by 

QS, the biosynthesis of exopolysaccharides was shown to be regulated at the 

transcriptional level in several bacterial systems, including the plant pathogens Erwinia 

stewartii and Pseudomonas syringae [51, 52] and nonpathogenic species of 

Sinorhizobium meliloti [53]. Regarding Burkholderia species, the work of Suarez-

Moreno and co-authors (2008, 2010) developed in plant-associated Burkholderia, 

which are non-Bcc and non-virulent species, showed that the QS system BraI/R, 

directing the production of oxo-C12-HSL and oxo-C14-HSL, is involved in the control of 

EPS biosynthesis in these species [43, 44].  

 Previous results from our laboratory also indicate that cepacian biosynthesis is 

most likely regulated by QS. In the presence of the lactonase Aiia from Bacillus subtilis 

which is able to hydrolyze the lactone ring of AHLs and sub-lethal concentrations of a 

QSI, 4-nitro-pyridine-1-oxide (4NPO), cepacian production by B. cepacia IST408 was 

inhibited. Therefore, one of the goals of this work was to determine if QS is indeed 

controlling cepacian biosynthesis in Bcc bacteria and if CepI/R system, the most well 

conserved QS system among Bcc species, was involved in such control or there might 

be another conserved system controlling this feature. To accomplish this goal we 

tested lactonase expression in different Bcc and non-Bcc species and evaluate 

whether the QSI 4NPO is also able to inhibit EPS biosynthesis. In parallel we 

constructed unmarked cepI and cepR genes deletion mutants to evaluate whether the 

AHLs produced by CepI/R QS system are the one controlling EPS expression. If these 

mutants still produce EPS, it is our aim to identify other QS system in a strain with the 

genome sequenced such as B. multivorans ATCC 17616. 

 The second major goal of this work is to determine if the QSI 4NPO can be 

used to control biofilm formation by Bcc strains, if applied as a co-adjuvant of 

antibiotics or detergent/disinfectants. Our previous results had shown that EPS 

biosynthesis by B. cepacia IST408 was inhibited by the P. aeruginosa QSI 4NPO [85] 

when used in sub-lethal concentrations which do not affect bacteria growth. Since 

4NPO seemed to be an efficient QSI against this strain, further work was done to 

determine its potential as an antibiotic adjuvant. The results indicate that indeed B. 

cepacia IST408 susceptibility to trimethoprim, kanamycin, amikacin and piperacillin 
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was enhanced in vitro as well as in Galleria mellonella virulence model of infection, 

where significant survival differences were observed between the presence and 

absence of 4NPO supplementation with trimethoprim and kanamycin (Ferreira et. al. 

unpublished results). Even though the results obtained were quite promising, the 

application of 4NPO to humans is compromised, as previous studies in E. coli and 

fibroblasts showed that this compound has mutagenic activity [103, 104]. Still, 4NPO 

could have other biotechnological applications such as being used as disinfectant of 

surfaces or anti-biofouling agent, being used together with detergents or other 

antimicrobial compounds. The work of Vanoyan et al. (2010) showed that 4NPO has 

interesting physico-chemical properties that can reduce the extent of bacterial adhesion 

to surfaces [105]. Currently, a CF patient infected with Bcc needs to be isolated from 

other CF patients, requiring special treatment rooms, equipment and nursing teams, 

leading to an increase of costs [106]. The potential use of 4NPO or others QSI as co-

adjuvant of detergents or disinfectants could prevent cross-contaminations in CF 

centers and hospitals. Thus, in this work, different classes of antibiotic and detergents 

were used to test the efficiency of 4NPO as a QSI. The chosen antibiotics are the two 

aminoglycosides kanamycin and amikacin (inhibitors of protein synthesis); the 

sulfonamide trimethoprim (folate pathway inhibitor) and the β-lactam piperacillin and 

ceftazidime (inhibitors of cell wall synthesis). As disinfectant agent it were used bleach 

solution and as detergents the anionic sodium dodeyl sulphate (SDS) and non-anionic 

Triton X100 (TX100) and Tween 20. 
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2 Material and Methods 

2.1 Bacterial strains, plasmids and oligonucleotides 

 Bacterial strains and plasmid used in this work are listed on Table 1. 

 

Table 1 – List of strains and plasmids used in this work. 

Strain Relevant Characteristics Reference 

Burkholderia strains   

 

B. cepacia IST408 

 

Cystic fibrosis clinical isolate 

 

[107] 

B. cenocepacia K56-2 Cystic fibrosis clinical isolate [108] 

B. multivorans ATCC 17616 Soil isolate [9] 

B. multivorans D2095 Mucoid cystic fibrosis clinical isolate [109] 

B. dolosa AUO158 Cystic fibrosis clinical isolate [110] 

B. ambifaria AMMD Root-colonizing bacterium [111] 

B. lata 383 Soil isolate [112] 

B. xenovorans LB400 Soil isolate [113] 

B. phymatum STM815 Soil isolate; nitrogen fixation [114] 

B. phytofirmans PsJN Soil isolate; plant growth-promoting bacterium [115] 

B. multivorans ATCC 17616 
cepI::pVO1105-1 

pVO1105-1 integrated into cepI gene region This work 

B. multivorans ATCC 17616 
cepR::pVO1106-1 

pVO1106-1 integrated into cepR gene region This work 

B. multivorans ATCC 17616 
cepI::pVO1105-1+pDAI-SceI 

B. multivorans ATCC 17616 derivative containing 
pVO1105-1 integrated into cepI gene region and the 

replicative plasmid pDAI-SceI 

This work 

B. multivorans ATCC 17616 
cepR::pVO1106-1+pDAI-
SceI 

B. multivorans ATCC 17616 derivative containing 
pVO1106-1 integrated into cepR gene region and the 

replicative plasmid pDAI-SceI 

This work 

B. cepacia IST 408 
cepI::pIS410-1 

pIS410-1 integrated into cepI gene region Ferreira et al. 
unpublished 

results 

E.coli strains   

E. coli αDH5 supE44 (ф80 lacZΔM15) hsdR17(rK
-
 mK

+
) recA1 

endA1 gyrA96 thi-1 relA1 deoR Δ(lacZYA-argF)U169 
Invitrogen 

 

E. coli HB101 thi-1 hsdS20(rB -, mB-) supE44 recA13 ara-14 leuB6 
proA2 lacY1 galK 2rpsL20 (Str

R
) xyl-5 mti-1 

Promega 
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Abbreviations: Tp
R
 trimethoprim resistance; Km

R
: kanamycin resistance; Amp

R
: ampicillin resistance; 

Cm
R
, chloramphenicol resistance. 

 

 The list of oligonucleotides used in PCR and a RT-PCR amplifications is shown 

in Table 2. Oligonucleotides primers were designed using AmplifX 1.5.4, available at 

http://ifrjr.nord.univ-mrs.fr/AmplifX and synthesized by MWG Biotech AG (Germany).  

 

Table 2 - Oligonucleotides used for PCR amplification. Abbreviations: A, Adenine; C, Cytosine; G, 

Guanine; T, Thymine.  

Primer 
name 

Sequence (5`- 3´) Primer 
name 

Sequence (5`- 3´) 

1997A-
fw 

AAGATTCAGTCTGAGATGAAGGCACGAGT RTbceH-
rev 

CGATGTCGTCGCCTTTCC 

1997A-
rev 

AAGGTACCTCGGCAGTTCTCGCATTAG RTbceI-
fw 

AAGTTTCGAGCGTGACCAGT
TC 

1997B-
fw 

GTCTCTAGACTTCCAGACCTTCATGGCGTA RTbceI-
rev 

AACAGCGACTTCAGCAGATA
CG 

1997B-
rev 

TAGGTACCTGTTCCGACTGTCCGACATC RTbceP-
fw 

GGACAAAGGCATACTCAAGA
ACGT 

catKpn-
up 

ATGGTACCTATCACGAGGCCCTTTCGTCTTC RTbceP-
rev 

CGAAGGTCGGCAGGATCA 

catKpn-
low 

CTGGTACCTGTCGTGCCAGCTGCATTA RTbceQ-
fw 

TTCGGCGAGGACGACTATG 

RTbceB-
fw 

TTCGTGAACATCCGCTTCATT RTbceQ-
rev 

TGGAACCCGAGGAAATGC 

RTbceB-
rev 

CCGAGCACCTCGACCACTT proC-fw GTCGGCGAGATCGTATGGTT 

RTbceE-
fw 

CCGAGACCTATCCGGTTCATT proC-rev CTGCAGCGCTTCGATGAAA 

Plasmids   

pMLBAD pBBR1 ori, araC-PBAD, Tp
R
 mob

+
 [116] 

pMLBAD-aiiA 
Broad-host-range vector carrying araC-PBAD-aiiA 

for expression of AiiA; Tp
R
 [117] 

pGPI-SceI oriR6K TP
R
, mob

+
, carries I-SceI cut site [118] 

pDAI-SceI pDA17 carrying the I-SceI gene [118] 

pVO1105-1 pGPI-SceI derivative containing  ΔcepI gene This work 

pVO1106-1 pGPI-SceI derivative containing  ΔcepR gene This work 

pDrive Cloning vector, Amp
R
 Km

R
 Qiagen 

pK18mob Cloning vector, Km
R
 [119] 

pUC18 Cloning vector, Amp
r 

[120] 

pBBRIMCS Cloning vector, containing cat gene, Cm
r 

[121] 

pVO412-1 
pK18mob derivative containing cbsI gene (upstream 

region) This work 

pVO412-2 
pDrive derivative containing  cbsI gene (downstream 

region) This work 

pVO412-3 pK18mob derivative containing cbsI gene regions This work 

http://ifrjr.nord.univ-mrs.fr/AmplifX
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RTbceE-
rev 

CTTTCTGCAGCTGGTCCATCA cepRa-
fw 

TCGAATTCTGTTCCTCGGCGT
GACGATTCC 

RTbceF-
fw 

AAACACTCCTACGCGGATCTGT cepRa-
rev 

ATGGATCCATCGAAGCACCC
TGACGCAA 

RTbceF-
rev 

CAGCCAGATGTCGTCCATGA cepRb-
fw 

ATGGATCCTATACCGAATGG
CATCGCA 

RtbceH-
fw 

ACGAAAGTCCACGTCCATCTG cepRb-
rev 

CATCTAGAGTGCCACAGCAA
TTCGTCA 

cepIa-fw TGAATTCTTGCGTCAGGGTGCTTCGAT cepIb-fw ATGGATCCTCGATCCGCAAA
CGTTTGCT 

cepIa-
rev 

TAGGATCCTCGTGAACGAAGGTCTGCAT cepIb-
rev 

GCGTCTAGAGTAGGGAACTG
ACGAATGGGTA 

 

2.2 Bacterial growth conditions 

 Burkholderia fresh cultures were obtained by inoculating a portion of the frozen 

material at -80oC into plates of Pseudomonas isolation agar media (PIA, Difco), 

followed by incubation at 37oC overnight. The cultures were then maintained at 4oC 

until further use. Pre-inocula required for all assays were done as followed: overnight 

liquid cultures were prepared by transferring one isolated bacterial colony of 

Burkholderia, previously grown on solid media, into LB liquid medium followed by 

incubating overnight at 30oC or 37oC with orbital agitation (250 rpm). Then, these 

cultures would be used to inoculate working cultures in the proper conditions. 

Burkholderia strains were cultured in S medium or MM medium (see below), at 30ºC 

with orbital agitation (250 rpm). E. coli strains were always grown in LB medium (Difco) 

and incubated at 37ºC with orbital agitation (250 rpm). 

S liquid medium – 12.5 g/l Na2HPO4, 3 g/l KH2PO4, 1 g/l K2SO4, 1 g/l NaCl, 0.2 g/l 

MgSO4.7H2O, 0.001 g/l FeSO4.7H2O, 0.01 g/l CaCl2  2H2O, 20 g/l glucose, 1 g/l yeast 

extract, 1 g/l casamino acids 

MM liquid medium – 2 g/l of yeast extract (Difco), 20 g/l of mannitol (Merck) 

 

2.3 DNA manipulation techniques 

2.3.1 DNA extraction 

 Plasmid DNA was extracted from overnight cultures of E. coli host strains 

growing in LB medium supplemented with appropriate antibiotics, by a QIAprep Spin 

Miniprep kit (QIAGEN), following the manufacturer’s instructions. Total genomic DNA 

from Burkholderia strains was extracted according standard protocol [122]. 

Concentration of genomic and plasmid DNA solutions was determined on a 

Spectrophotometer ND-1000 (NanoDrop). 
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2.3.2 DNA amplification by PCR 

 B. multivorans ATCC 17616 genomic DNA was used as template for PCR 

amplification of different DNA fragments required in this work. General conditions used 

were: 100 ng template DNA, 0.4 µM of each primer, 200 µM of deoxynucleotides and 1 

U Platinum Taq DNA polymerase (Invitrogen); or 1 U TaqMed DNA polymerase in the 

case of cat gene amplification. Enhancer (Invitrogen) and MgSO4 concentrations were 

optimized for each case according to the Table 3. PCR amplification was performed on 

GeneAmp® PCR System 2700 (Applied Biosystems). The annealing temperature (Ta) 

and extension time (Te) were also optimized for each set of primers and DNA 

fragments as described in the Table 3. The general PCR conditions were: samples 

were subjected to an initial denaturation at 95ºC for 2 minutes, followed by 34 cycles of 

three steps: denaturation at 95ºC for 45 seconds, annealing at the optimized Ta for 30 

seconds and elongation at 68ºC for text, calculated as 1 minute per kb of product 

expected. After the cycles, samples were submitted to a final elongation at 68ºC for 8 

minutes and stored at 4ºC. 

 

Table 3 - PCR amplification conditions and restriction endonucleases used. 

Gene 
amplified 

Primers 
name 

Enhancer [MgSO4] 
Annealing 

Temperature 
Product 

size 
Restriction 

Endonucleases 

cepR 
(flanking 
region A) 

cepRa-fw 

cepRa-rev 
1× 1 mM 65 ºC 1472 bp 

EcoRI 

BamHI 

cepR 
(flanking 
region B) 

cepRb-fw 

cepRb-rev 
1× 2 mM 60 ºC 1479 bp 

BamHI 

XbaI 

cepI 
(flanking 
region A) 

cepIa-fw 

cepIa-rev 
1x 5 mM 59 ºC 1488 bp 

EcoRI 

BamHI 

cepI 

(flanking 
region B) 

cepIb-fw 

cepIb-rev 
1× 2 mM 61 ºC 1415 bp 

BamHI 

XbaI 

Bmul1997 

(flanking 
region A) 

1997A-fw 

1997A-rev 

1x 5 mM 59 ºC 1328 bp EcoRI 

KpnI 

Bmul1997 

(flanking 
region B) 

1997B-fw 

1997B-rev 

1x 4 mM 61ºC 1323 bp KpnI 

XbaI 

cat catKpn-up 

catKpn-low 

1x 6 mM 59º C 974 bp KpnI 
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2.4 Construction of unmarked deletion mutants 

 Burkholderia deletion mutations were designed according to Flannagan et al. 

[118]. Fragments of around 700 bp of each flanking regions of cepI and cepR genes 

were obtained by PCR amplification, digested with the appropriate restriction 

endonucleases (Table 3) and inserted into pK18mob and pUC18 cloning vectors to 

increase their number of copies, and selected according to white/blue selection in the 

respective selection marker. The digested PCR fragments were subsequently ligated 

into pGPI-SceI (a suicide plasmid that cannot replicate in Burkholderia and contains the 

I-SceI recognition site) digested with EcoRI and XbaI in a triple ligation mixture, giving 

rise to the plasmids pVO1105-1 (deletion of cepI) and pVO1106-1 (deletion of cepR). 

Selection of vectors containing the inserted regions was made on E. coli αDH5 by 

electrotransformation and candidates were selected based on pGPI-SceI selection 

marker (trimethoprim). Then, the vectors obtained were introduced into B. multivorans 

ATCC 17616 by triparental mating and candidates were selected based on 

trimethoprim resistance phenotype.  

 Next, pDAI-SceI, constitutively expressing the I-SceI nuclease, was introduced 

by triparental mating into the strains carrying the integrated mutagenic plasmid. I-SceI 

will causes a double strand break into the inserted plasmid sequence, stimulating the 

intramolecular recombination between the mutant and parental alleles. From this 

recombination it can be observed either the restoration of the parental allele or gene 

deletion. Thus, exconjungants were selected for tetracycline resistance (to select for 

pDAI-ISceI) and trimethoprim sensitivity (indicating the loss of the integrated pGPI-SceI 

plasmid). Then, the colonies were picked to LB agar in the absence to tetracycline until 

the loss of pDAI-SceI occurs and the mutants confirmed by PCR and Southern blot 

hybridization. 

 

2.5 Construction of a marked deletion mutant on cbsI gene 

 Fragments of around 1400 bp of each flanking regions of cbsI gene were 

obtained by PCR amplification, digested with the proper restriction endonucleases 

(Table 3) and inserted into pK18mob and pUC18 cloning vectors to increase its number 

of copies and selected according to white/blue selection in the respective selection 

marker. Two constructions were obtained, pVO412-1 and pVO412-2. Subsequently, 

pVO412-2 was digested with EcoRI and KpnI, and the fragment of interest was then 

inserted in the digested pVO412-1, originating the pVO412-3 plasmid, carrying the 

flanking areas of cbsI. To insert the Cmr cassette between cbsI flanking regions, 

pBBRIMCS plasmid was used as template to amplify by PCR the cat gene encoding 

chloramphenicol acetyltransferase that was subsequently digested with KpnI. The PCR 
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fragment with around 980 bp was obtained and it was then inserted in the digested 

pVO412-3 plasmid. Selection of vectors containing the inserted regions and the Cmr 

cassette were made on E. coli αDH5 by electrotransformation and candidates were 

selected based on plasmid selection markers. The obtained construction was 

subsequently, inserted into B. multivorans ATCC 17616 by triparental mating and 

candidates selected by the Cmr phenotype. 

2.6 Burkholderia triparental mating 

 Triparental conjugation was used to transfer plasmids of interest from E. coli to 

Burkholderia strains. The E. coli donor strain and the helper strain E. coli HB101 

(pRK2013) were grown overnight at 37ºC in 30 ml of LB supplemented with appropriate 

antibiotics. The recipient Bcc strain was grown overnight at 30ºC in 30 ml of LB. Cells 

from 0.6 ml of Burkholderia culture, of donor and helper strains were harvested by 

centrifugation, washed with sterile 0.9% (wt/v) NaCl twice and suspended in saline 

solution. The three bacterial cultures were mixed together and harvested by low speed 

centrifugation for 5 minutes. The pellet was suspended in 80 µl of 0.9% (wt/v) NaCl and 

spot-inoculated on the surface of a filter Supor®-200 (13 mm diameter; 0.2 µm pore 

size, Pall corporation), placed onto the surface of an LB agar plate. After overnight 

incubation at 30ºC, the bacterial layer on the surface of the filter was suspended in 1 ml 

of saline solution and appropriate serial dilutions were plated on PIA supplemented 

with the proper antibiotic. 

 

2.7 RNA manipulation techniques 

2.7.1 RNA extraction and purification 

 The time point chosen to extract RNA was the 24th hour of growth that is the 

time where EPS production is detected in B. multivorans ATCC 17616. Therefore, 

strains under study were inoculated with an initial OD640 nm 0.1 in MM medium 

supplemented with 1% (wt/v) of arabinose to promote the expression of Aiia lactonase, 

and incubated at 30ºC with orbital agitation. Similar approach was assayed with 4NPO 

at sub-lethal concentration. Strains carrying pMLBAD-aiiA that allows the expression of 

the lactonase and the addition of 4NPO to the pre-inocula were performed to evaluate 

their effects by comparison with the wild type strain (without lactonase/4NPO). RNA 

was extracted with RNeasy Mini Kit (Qiagen) following an optimized procedure. Briefly, 

samples of 400 µl of culture were taken and two volumes of RNA protect reagent were 

added, promoting mRNA stabilization. After 5 minutes of incubation at room 

temperature, the mixture was centrifuged and the pellet was suspended in 200 µl of TE 

buffer (30 mM Tris-HCl, 1 mM EDTA, pH 8.0) containing 15 mg/ml lysozyme and 15 µl 
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of proteinase K (Qiagen) were added to the suspension. After 10 min of enzymatic lysis 

700 µl of RLT buffer were added, the mixture was vortexed for 10 s and 500 µl of 100% 

ethanol were added, mixed and transferred to a RNeasy Mini spin column. The 

mixture, in the columns, was then centrifuged and washed with RW1. To avoid 

contamination with genomic DNA, a step of DNA digestion using RNase-free DNA 

digestion kit (Qiagen) was introduced after wash with RW1 buffer. RNA elution was 

made after a second wash with RW1 buffer and a two-step RPE wash. 

 All steps described above were executed using RNase-free material. RNA 

concentration was estimated using a UV spectrophotometer (ND-1000 UV-Vis, 

NanoDrop Technologies, USA). RNA samples were stored at -80ºC, immediately after 

the extraction. 

2.7.2 Quantitative Real-Time PCR 

 qRT-PCR was performed using a relative quantification method based on a two 

steps protocol. In the first step RNA was converted into cDNA and in the second step 

the cDNA formed was quantified. TaqManR Reverse Transcription Reagents (Applied 

Biosystems) were used to convert 1000 ng of total RNA to cDNA, according to the 

manufacturer’s instructions. The cDNA samples obtained were diluted to a proper 

concentration and mixtures containing 400 ng of template cDNA, 2x SYBR Green PCR 

Master Mix (Applied Biosystems) and 0.4 mM of reverse and forward primer for each 

gene under study, in a total amount of 25 µl, were prepared. Reactions were run on 

7500 Instrument from Applied Biosystem.  The expression ratio of the target gene was 

determined relative to a reference gene, proC, encoding L-proline oxidase, which did 

not show variation in the transcription under the conditions tested. Results were 

obtained from the average of three technical and three biological replicates. 

 

2.8 Determination of 4NPO sub-lethal concentration 

 To determine the highest concentration of 4NPO that can be added to each 

Burkholderia species under study without affecting their growth, a 96-well plate 

microtiter dish was inoculated with the bacteria and different 4NPO concentrations and 

grown for 15 hours. Briefly, a stock solution of 50 mM 4NPO was prepared and 150 µl 

of S medium were added to each well. Two-fold serial dilutions of 4NPO were made 

from 500 µM to 0 µM. The wells were then inoculated with 50 µl of each bacterial 

species to a final OD640 nm of 0.2. Growth was followed on a Spectro star nano (BMG 

Labtech) at 640 nm using an appropriate kinetic program. The microtiter plate was 

thermostatized at 30ºC during the growth. Rows containing only S medium were used 
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as blank and negative controls to show that wells were not contaminated during the 

growth period. 

2.9 Determination of Minimal Inhibitory Concentration (MIC) 

 MICs of antibiotics and disinfectant agents, in presence or absence of 4NPO, 

used in this study were determined in triplicate using a microdilution assay in 96-well 

microtiter plates. The proper amount of the disinfectant compounds, stock solutions of 

each antibiotic and 4NPO sub-lethal concentrations were added to the respective wells 

containing 300 μl of S medium and subsequently, two-fold serial dilutions of each 

compound were carried to test the concentrations ranging from 3300 mg/l to 6.4 mg/l, 

in the case of antibiotics tested, and 50% (v/v) to 0.1 % (v/v) for the disinfectants. Two 

rows of dilutions were made for each condition (each compound alone and in 

combination with 4NPO sub-lethal concentrations) being the final volume of each 

sample 150 μl. Wells were then inoculated with more 150 µl of the respective 

Burkholderia cultures to a final OD640 nm of 0.05. Rows containing only S medium or 

Burkholderia culture were used as blank and positive controls, respectively. The plates 

were incubated for 24 h at 30oC and absorbance at 590 nm was measuring in a 

Spectro star nano (BMG Labtech). The results were standardized by subtraction of the 

negative controls absorbance from those of the corresponding inoculated wells. To 

each condition, the lowest concentration for which no growth was observed it was 

recorded as the MIC.  

2.10 Phenotypic tests 

 Several phenotypic properties of B. multivorans ATCC 17616, B. cepacia 

IST408 and B. cenocepacia K56-2, in 4NPO presence and absence, were tested, as 

will be described. 

2.10.1 EPS precipitation and quantification 

 To test the EPS production, strains under study were grown in S medium for 3 

days, at 30ºC with orbital agitation. Samples of 2 ml were taken overtime for EPS 

quantification. 

 EPS quantification was based on the dry weight of ethanol-precipitated 

polysaccharide [50]. Samples were taken from Burkholderia cultures and centrifuged at 

8000 rpm for 15 min to separate bacterial cells. Supernatant was then added to 2.5 

volumes of cold ethanol. The EPS precipitates obtained was dried and weighted. 
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2.10.2 Motility assays: Swimming and Swarming 

Several optimizations had to be performed to infer how 4NPO could affect 

Burkholderia motility. These included testing different media, which would allow 

following Bcc growth over 2 days; incubation at 30oC or 37oC; and 4NPO 

supplementation over the solid media surface or by incorporating the QSI into the 

media under test. All assays were done using 3 μl of overnight Bcc cultures 

standardized to an OD640 nm of 0.3 and were inoculated in swimming and swarming 

media with or without 4NPO supplementation. Plates were then incubated for 2 days 

and the halos were measured at 24 h and 48 h of incubation. The best results were 

obtained using the following media: 

Swarming medium – 20 g/l of LB medium (Difco) supplemented with agar 0.5% (wt/v) 

and 5 g/l glucose 

Swimming medium – 20 g/l of LB medium (Difco) supplemented with agar 0.3% (wt/v) 

and 5 g/l glucose 

2.10.3 Proteases and Siderophores production   

 To test the 4NPO effect in the production of proteases and siderophores, 

different media were prepared. Thus, to proteases production, AL medium (12 g/l skin 

milk (Difco), 10 g/l peptone (Difco) and 25 g/l agar) and to siderophores production, 

Chrome azurol S (CAS) agar diffusion, were made. In the latter case, the modified CAS 

agar diffusion assay was carried out. A CAS agar diffusion assay made according to 

the method described by Shin et al. [123] was modified adding 20 g/l of mannitol, 2 g/l 

yeast extract and 15 g/l of agar (Noble, Difco) and pH adjusted to 7.0. Then, 5 µl of B. 

cepacia IST408 strains overnight liquid cultures standardized to an OD640 nm of 1, were 

inoculated into plates of AL medium or MM medium supplemented with CAS. From 

those plates, only half of them were supplemented with 4NPO sub-lethal concentration. 

During incubation 30oC for 3 days, halos were measured every 24h. 

2.10.4 Antibiotic and disinfectant susceptibility in the presence of 4NPO 

 To evaluate whether 4NPO could be used to enhance Burkholderia 

susceptibility to antibiotics and disinfectant agents, growth differences with and without 

4NPO were measured. The antibiotics and disinfectant/detergents tested were 

inoculated in 96-well plates with B. mulitovorans D2095 B. cepacia IST408 and B. 

cenocepacia K6-2 to a final OD640 nm of 0.2 using LB medium. Half of the inoculum was 

supplemented with 4NPO sub-lethal concentrations. Sequential two-fold dilutions of 

each compound were carried to test the concentrations ranging from 1000 mg/l to 8 

mg/l, for each antibiotic tested and 10 % (v/v) to 0 % (v/v) in the case of the 

disinfectants. Rows containing only bacteria with and without 4NPO were used as 
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controls to guarantee that 4NPO did not affect bacteria growth within each assay; as 

well as rows containing only medium to account for possible contaminations. Growth 

was followed on a Spectro star nano (BMG Labtech) read at 640 nm using an 

appropriate kinetic program. 

2.10.5 Biofilm formation assays 

 Biofilm assays were conducted to determine 4NPO possible role as anti-

biofouling agent. Differences in biofilm formation upon antibiotic and disinfectant 

addition and in presence or absence of 4NPO sub-lethal concentrations were analyzed. 

The antibiotic and disinfectant concentrations tested correspond to those where 

different growth behaviors were observed due to 4NPO presence. 

Biofilm assays were performed at least in triplicate and based on the 

methodology described by O’Toole and Kolter [124]. LB overnight liquid cultures of Bcc 

species were performed and grown at 30 or 37oC with orbital agitation until the mid-

exponential phase was reached. The cultures were then diluted to a standardized 

culture OD640 nm of 0.1, and 20 µl of this cell suspension were used to inoculate the 

wells of a 96-well microtiter plate containing 180 µl of liquid medium. The compounds 

under study were supplemented in the medium at appropriate concentrations. Plates 

were incubated at 30 (disinfectants) or 37°C (antibiotics) for 48 hours without agitation. 

Wells containing sterile medium were used as negative controls. 

For biofilm quantification, the culture medium and unattached bacterial cells 

were removed by washing the wells with 200 µl of distilled water, three times. Adherent 

bacteria were stained with 200 µl of a 1% (wt/v) crystal violet solution for 20 minutes at 

room temperature. After three gentle rinses with 200 µl of distilled water, the dye 

associated with the attached cells was solubilized in 200 µl of 95% ethanol and the 

biofilm was quantified by measuring the absorbance of the ethanol solution at 590 nm 

in a Spectro star nano (BMG Labtech) reader.  

Crystal violet solution 1% was prepared as described by dissolving 0.5 g crystal 

violet in 10 ml of 95% (v/v) ethanol and 40 ml of water containing 0.4 g of ammonium 

oxalate. 

2.11 Bioinformatic analyses 

BLAST [125] algorithm was used to compare sequences of the deduced amino 

acids to database sequences available at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

and Expasy (http://www.expasy.org/). Alignments were performed using the program 

CLUSTALW [126]. Swiss model (http://swissmodel.expasy.org/) was used to predict 

protein 3D-structure Protein function was predicted using Tm-align [127]. SWISSDOCK 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.expasy.org/
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prediction (http://swissdock.vital-it.ch/docking) was performed do study molecular 

interactions between a protein target and its ligands.  

http://swissdock.vital-it.ch/docking
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3 Results and Discussion 

3.1 Role of quorum-sensing in cepacian biosynthesis regulation 

 The first step to test the hypothesis that 

QS may regulate EPS biosynthesis in Bcc 

strains was to introduce the plasmid pMLBAD-

aiiA into several isolates of Bcc (B. cepacia, B. 

multivorans, B. dolosa, B. ambifaria and B. lata) 

and non-Bcc species (B. xerovorans, B. 

phytofirmans, B. phymatum) and verify if 

polymer production was inhibited. This plasmid 

contains the aiiA gene encoding a lactonase 

enzyme under the control of an arabinose 

inducible promoter and this enzyme is 

responsible for AHLs degradation. The pLMBAD 

vector alone was introduced into the same strains as a negative control. The results 

shown in Figures 5 and 6 indicate that lactonase expression inhibited EPS production 

in all tested strains, which indeed confirms that QS mediated AHL molecules are 

involved in such regulation.   

 

 

 

 

 

In order to confirm these results at the transcriptional level, quantitative real-

time RT-PCR assays were performed. Expression of some bce genes involved in EPS 

biosynthesis was studied by growing B. multivorans ATCC 17616 harbouring pMLBAD 
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Figure 5 – Ethanol- precipitated 
exopolysaccharide production by B. 
multivorans ATCC 17616 in presence of 
pMLBAD-aiiA (left); vector pMLBAD 
only (centre) and wild-type strain 
(right). This result is representative of 
the behavior of the other strains 
studied. 

Bcc species 

* * * * * * 

B. c. 
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B. x. 

LB 

400 
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815 

Figure 6 – EPS production by the Bcc and non-Bcc species in presence or absence of the AiiA 

lactonase. Error bars represent the standard error of the mean. ANOVA analysis was performed. A P 

value of <0.05 was considered significant compared with the condition of pMLBAD only (*). Abbreviations: 

B. c. IST408: B. cepacia IST408; B. m.  ATCC 17616: B. multivorans ATCC 17616; B. d. AU158: B. dolosa 

AU158; B. a. AMMD: B. ambifaria AMMD; B. lata sp 383; B. x. LB400: B. xenovorans LB400; B. p. PsIN: B. 

phytofimans PsIN; B. ph. STM815: B. phymatum STM815. 
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or pMLBAD-aiiA in MM medium supplemented with 1% (wt/v) of arabinose. Cultures 

were grown at 30ºC for 24 hours and total RNA was extracted. The relative expression 

of genes belonging to the bce-I and bce-II gene clusters under the two tested 

conditions indicate that lactonase production caused a repression in the expression of 

all genes studied, with exception for the bceE gene (Figure 7). Consequently, these 

results support the hypothesis of EPS biosynthesis in Burkholderia being regulated by 

QS at a transcriptional level. 

Figure 7 - Quantitative real-time RT-PCR analysis of the relative transcript abundance of B. multivorans 
ATCC 17616 containing pMLBAD-aiiA plasmid relatively to the parental strain harbouring pMLBAD 
growing in MM medium supplemented with 0.1% (wt/v) arabinose. Data was standardized to the internal 
control gene proC. The results were obtained from three independent experiments. Error bars represent 

the standard error of the mean. 
 

3.1.1 Role of a quorum sensing inhibitor in preventing EPS biosynthesis  

 As mentioned before, Bcc species are intrinsically resistant to many toxic 

compounds, being able to degrade them and sometimes to use them as alternative 

carbon sources. Due to this feature, little is known about QSI that can efficiently 

interfere with Burkholderia QS. Previous work from our laboratory led to the 

identification of a QSI that was able to inhibit EPS production by B. cepacia IST408. 

Such QSI, 4-nitro-pyridine-N-oxide (4NPO), was firstly identified by random screening 

of pure compound libraries using QSI selector systems, based on killing/survival of 

reporter bacteria upon AHL presence/absence, respectively [85]. Expression studies 

using microarrays showed that sub-lethal concentrations of 4NPO down regulated 37% 

of the genes known to be dependent on QS in Pseudomonas aeruginosa [85].  

 Even though 4NPO was able to inhibit EPS production in B. cepacia IST408, 

nothing was known for other EPS-producer Bcc species, namely for B. multivorans 

ATCC 17616 whose genome sequence is freely available. To test that, we had to find 

the highest 4NPO concentration that does not affect the growth of B. multivorans and 

this value was 50 μM (Figure 8A). Therefore, the supplementation of the EPS-
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producing medium with this sub-lethal concentration of 4NPO confirmed that no EPS 

was present in the culture supernatant of B. multivorans ATCC 17616 (Figure 8 B).  

 

 

 

 

 

 

 

 

 

 

 

 

  

 The next step was to determine if CepI/R, the most well conserved QS system 

in Bcc species was involved in EPS biosynthesis regulation. To accomplish this we 

followed the strategy described by Flannagan et al. to construct unmarked deletion 

mutants in cepI and cepR genes [118]. This strategy is based on the use of the 

endonuclease I-SceI to promote recombination events after double strand DNA 

breakage. The sequences flanking B. multivorans ATCC 17616 chromosomal regions 

of cepI and cepR genes were cloned into the suicide plasmid (pGPI-SceI) that is 

unable to replicate in Burkholderia. The plasmids obtained, pVO1105-1 and pVO1106-

1 (see Annex A), were introduced into B. multivorans ATCC 17616 by triparental 

mating and recombinants with the plasmid inserted into the genome selected. These 

single recombinant strains were named B. multivorans ATCC 17616 cepI::pVO1105-1 

and B. multivorans ATCC 17616 cepR::pVO1106-1. The next step was the introduction 

of plasmid pDAI-SceI, that constitutively expresses the I-SceI nuclease into the single 

recombinant strains. The nuclease recognizes a 15bp sequence present in vector 

pVO1105-1 or pVO1106-1, causing a double strand break in the bacterial replicon, 

stimulating the recombination events, mediated by the DNA repair system, between the 

mutant and parental alleles. This recombination can originate either the gene deletion 

or restore the parental allele depending on the site of the cross-over [118]. Although we 

successfully introduced pGPI-SceI into each strain, we were unable to obtain the 

unmarked deletion mutants. In spite of that, the few candidates obtained had the 

parental allele. Accordingly, it was hypothesized that perhaps the nuclease was not be 

expressed in B. multivorans. To test this, RNA was extracted from B. multivorans 

ATCC 17616 cepI::pVO1105-1 and B. multivorans ATCC 17616 cepR::pVO1106-1 with 

or without pGPI-SceI and I-SceI gene expression was evaluated by qRT-PCR 
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Figure 8 -  Determination of 4NPO sub-lethal concentration of 4NPO (A) and EPS precipitation by 
addition of cold ethanol by B. multivorans ATCC 17616 growing in 4NPO absence or presence (B). 



  
  

25 
 

techniques. The results indicate that I-SceI is being expressed (data not shown) and 

therefore the for the failure in obtaining the deletion mutants, should be another one.. 

 As an alternative to the previous strategy, it was used an available insertion 

mutant for the cepI gene encoding the AHL synthase in B. cepacia IST 408 (Ferreira et 

al, unpublished results). After growing this cepI mutant strain in EPS-producing 

medium, we were still able to recover EPS (data not shown), suggesting that C6- and 

C8-HSL are not the signals regulating cepacian biosynthesis in B. cepacia IST 408 and 

another synthase encoding gene must exist in this strain. 

3.1.2 Search of other AHL synthases that might control EPS biosynthesis 

 Due to the previous results, it was decided to use bioinformatic approaches to 

find new candidates of AHL synthase proteins that might be responsible for cepacian 

biosynthesis regulation. For that, the sequences of several experimentally 

characterized QS synthases (see Annex B) were collected and used in a blast search 

against the genome B. multivorans ATCC 17616, available on line. As expected, the 

best score was obtained for B. multivorans CepI protein and no other obvious one was 

identified. Then, we looked for proteins with lower sequence identity and the results 

included diverse proteins, such as a metelloprotease (E:4e-1); a type VI secretion 

protein (E:5e-1); a flavin-containing monooxygenase (E:7e-1) and a hemolysin-like 

protein (E:6e-3). Since these proteins are unrelated and their putative function is 

different from the one we were looking for, we searched the literature for a common 

motif of the AHLs synthases. In fact, according to Fuqua et al. (1996), the homology 

between LuxI homologues has low scores that are often not higher than 28-35% [128]. 

However, the AHL synthase proteins have conserved regions composed by ten 

conserved residues [129]. Among the genes identified through our BLAST search, such 

local conservation was only identified in a putative protein annotated as a hemolysin-

like protein from B. multivorans ATCC 17616, encoded by the gene that we named cbsI 

(Figure 9). This protein has six conserved amino acids among the conserved ten of 

these proteins. 
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Figure 9 - Conserved domains of autoinducer synthases. Alignment of cbsI protein from B. multivorans 
ATCC 17616 with other N-acylhomoserine lactone proteins from Vibrio fischeri ES114 (AAQ90197), 
Pseudomonas aeruginosa PAO1 (NP_250123 and ACI26688), Burkholderia kururiensis (CAP91066), 
Bradyrhizobium sp. BTAi1 (ABQ39897), Mesorhizobium huakuii (ABY91284), Burkholderia cenocepacia 
J2315 (YP_002232872 and CAR55728), B. multivorans ATCC 17616 (YP_001948920)

1
, Ralstonia 

solanacearum PSI07 (YP_003750860), Burkholderia vietnamiensis (ABK32015), Erwinia amylovora 
CFBP1430 (YP_003530770) and Halomonas anticariensis (ADN33402) was performed using CLUSTALW 
[130]. Asterisks and coloured bars indicate amino acid residues that are identical in the analysed proteins; 
two dots indicate conserved substitutions. 

 

 Further in silico analyses were made to characterize the protein encoded by 

cbsI gene and access its possible role as an AHL synthase. Like P. aeruginosa LasI, 

the CbsI protein is predicted to have cytoplasmic localization, using to the PSORTb tool 

prediction. Through SWISS-Model tool was possible to obtain the predicted 3D-

structure of CbsI (Figure 10) revealing overlap between CbsI and LasI from P. 

aeruginosa PAO1 with an Evalue: 8.8e-26 that corresponds to a 20% of homology. In 

order to confirm these results, the TM-align algorithm was also used to predict protein 

structure and function [131]. The output from TM-align is the result of an optimal 

alignment between two proteins based in the TM-score, which calculates the similarity 

of topologies of two protein structures. TM-score >0.5 indicates that the proteins share 

the same fold. From the results obtained using this model, two experimentally 

characterized AHL synthases were identified as being structural analogues of CbsI. 

These enzymes were the P. aeruginosa LasI (TM-score: 0.615) and Burkholderia 

glumae TofI (TM-score: 0.567).   

 

 

 

 

 

 

Figure 10 - Predicted 3D-structure of CbsI performed by SWISS-Model (A). The crystal structure of 
CbsI presents 20% homology with Pseudomonas aeruginosa PAO1 LasI synthase (B). Resolution: 2.30Ӓ 
and Evalue: 8.8e

-26
. 

 

 Additionally, SWISSDOCK program was used to predict molecular interactions 

between the candidate protein and possible subtracts. If CbsI is indeed an AHL 

synthase it will bind to SAM, which is an AHL precursor to form the QS molecules. The 

results obtained in SWISSDOCK indicate that indeed the protein encoded by cbsI has 

high affinity to the SAM molecule (data not shown). 

 Taken all together, even though no significant homology was observed between 

the CbsI protein and the other AHL synthases at the amino acid level, the in silico 

results, and particularly the ones obtained using 3D predictions approaches, indicate 

A B 
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that this candidate protein could be indeed a N-acyl homoserine lactone synthase. 

Furthermore, a search of cbsI gene homologues within the available Burkholderia 

genomes, indicate that the gene and its genetic neighborhood is highly conserved, 

which makes the protein a good candidate for being involved in EPS biosynthesis. 

 To confirm if cbsI gene encodes an AHL synthase involved in cepacian 

biosynthesis, it was decided to construct a deletion mutant on this gene. Briefly, the 

vector pVO412-3 was obtained by cloning the flanking regions of cbsI into pk18mob 

vector. Next, an interposon cassette harbouring the cat gene (for chloramphenicol 

resistance) was amplified using catKpn_up and catKpn_low primers, digested with 

KpnI restriction enzyme, to be introduced into the middle of cbsI flanking regions. This 

construction should be then introduced into a mucoid Bcc strains to evaluate AHL 

production and EPS biosynthesis. Due to time limitation of this study, it was only 

possible to obtain plasmid pVO412-3, harbouring cbsI flanking regions. 

 

3.2 4NPO as a QSI in Bcc species 

 As early mentioned, Bcc bacteria are intrinsically resistant to several 

compounds, including antibiotics and disinfectants. Consequently, there is a strong 

need to develop alternative approaches to target those pathogenic bacteria. One of the 

most promising approaches to cope with multi-drug 

resistance in bacteria is the use of antimicrobial 

compounds that attenuate pathogens virulence 

features, making them more susceptible to the host 

immune system, to antibiotics and to toxic 

compounds. The main drawback to the use of 

antibiotic therapies is the selective pressure imposed, 

affecting cellular growth. Since QS is known to control 

the expression of several virulence factors but not 

affecting bacterial growth, it became a good target to 

develop antimicrobial drugs that could be administrated together with other drugs to 

prevent or to eliminate infections. Several compounds were shown to affect QS, being 

generally designated as QS inhibitors (QSI). A well known QSI in P. aeruginosa is 

4NPO which was identified by screening systems in natural and synthetic compound 

libraries [85]. This compound has unique physico-chemical characteristics (Figure 11) 

and it was shown to reduce the extent of bacterial adhesion in abiotic surfaces [105]. 

4NPO also seems to interfere with QS in B. cepacia IST408 as its supplementation in 

sub-lethal concentration inhibited the expression of both cepI and cepR genes [132]. 

Accordingly to this, it was decided to evaluate the potential use of 4NPO in Bcc 

 

Figure 11 - Molecular structure of 
the quorum sensing inhibitor 4-
nitro-pyridine-N-oxide (4NPO). 
This compound is hydrophilic, do 
not serve as hydrogen bond donor 
and is electrically neutral. These 
properties make this QSI a good 
candidate to be used against 
bacterial infections.  



  
  

28 
 

bacteria by analyzing its effect against several QS-dependent phenotypes. All assays 

described were done using sub-lethal concentrations of 4NPO, so that it does not affect 

the bacterial growth, lowering the selective pressure on the bacteria. 

 

3.2.1 Evaluation of the effect of 4NPO in QS-dependent phenotypes 

 To determine the effect of 4NPO in QS-dependent phenotypes there was the 

need to estimate the 4NPO sub-lethal concentration for each of the Bcc strains under 

study. This concentration is defined as the highest concentration of 4NPO that did not 

affect cell growth. To do that, each Burkholderia species was grown in S medium 

supplemented with increasing 4NPO concentrations (a range between 0 and 1600 µM) 

at 30ºC. The results indicate that B. cenocepacia K56-2 4NPO sub-lethal concentration 

was 25 μM and for B. cepacia IST408, B. multivorans ATCC 17616 and B. multivorans 

D2095 was 50 μM (data not shown). After determination of 4NPO sub-lethal 

concentration for the different species several QS-regulated phenotypes associated 

with Bcc virulence, such as motility, extracellular proteases secretion and siderophore 

production were evaluated in the presence of this compound. 

  

 

 

 

 

 

 

 
 
 
Figure 12 - B. cepacia IST408 swimming (A) and swarming (B) motilities in the absence or in the 
presence of 4NPO sub-lethal concentration, respectively. Error bars represent the standard error of 
the mean. P value < 0.01 was considered significant using ANOVA analysis compared with the condition 
of no 4NPO supplementation (**).  

 

 Motility allows bacteria to move toward a surface, to colonize broader spaces 

and move to locations where higher substrate concentrations are available. In this work 

we tested changes in swimming and swarming motility of several Burkholderia strains 

caused by 4NPO supplementation to the tested media. The technique required several 

optimization steps, such as, best medium; best temperature for growth; 4NPO 

incorporation into the hot medium before platting; spreading onto the medium surface 

after solidification; and incorporation into the pre-inocula. The best results were 

obtained using LB medium supplement with glucose and incorporation of 4NPO in the 
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pre-inoculum and into the agar. Motility was tested at 37oC, with exception of B. 

cepacia IST408 that was only motile at 30oC. Figure 12 shows the 48 h motility results 

obtained for B. cepacia IST408. Both swimming (A) and swarming (B) motilities 

decreased after adding 4NPO to the medium, suggesting that the compound affects 

Bcc motility. Similar results were obtained for B. cenocepacia K56 and B. multivorans 

D2095 (data not shown). 

 Secretion of proteases such as ZmpA and ZmpB and siderophores by Bcc 

bacteria are known to be important in host/pathogen interaction and for CF lung 

infections [32, 133]. Siderophores are involved in iron uptake from the environment and 

therefore have an important role in adaptation, contributing to the severity of Bcc lung 

infections [134]. Both proteases and siderophores production is known to be controlled 

by QS at the transcriptional level. To confirm the efficiency of 4NPO in the disruption of 

QS communication in Bcc, proteases and siderophores secretion were tested in the 

presence of the QSI compound. To test this, B. cepacia IST408 and B. cenocepacia 

K56-2 were inoculated into appropriate medium in the presence or absence of 4NPO. 

AL medium was used to follow proteases activity over time. Proteases secretion was 

evaluated by measuring the formation of a transparent halo around the bacterial colony 

spot. Chrome azurol S modified medium was used to observe siderophore production, 

which can be observed by the formation of an orange halo formed due to iron 

chelation. The results showed that both proteases and siderophores production by B. 

cepacia IST408 (Figure 13) and B. cenocepacia K56-2 (data not shown) were lower 

upon 4NPO supplementation. The proteolytic activity showed the highest differences in 

the diameter of the halos with 120h (Figure 13 A), while the differences in siderophore 

production were visible after 24h of incubation (Figure 13 B). The decrease of 

siderophore biosynthesis when QS is inhibited seems to be in disagreement with 

previous results found in the literature where synthesis of the siderophore ornibactin 

was negatively regulated by QS [73]. One possible explanation for this is that 

Burkholderia species produce several siderophores, besides ornibactin, such as 

pyochelin, salicylic acid, cepaciachelin, among other [135] and their biosynthesis might 

become up-regulated by the indirect effect of 4NPO. 
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 Taken together, the results obtained for swimming and swarming motilities and 

for proteases secretion, phenotypes that are positively controlled by QS indicate that 

indeed 4NPO interferes efficiently with Bcc QS mechanisms. Still, how 4NPO inhibits 

QS in these bacteria remains to be elucidated. 

3.2.2 Effect of 4NPO as enhancer of Bcc susceptibility against antibiotics 

 Bcc species are among the most resistant bacteria to antibiotics being 

intrinsically resistant due to the presence of β-lactamases, permeability changes of the 

membrane due to modified LPS, reduction of the porin number and size and the 

existence of efflux pumps [19]. This obligates the application of high doses of 

antibiotics but even so, it is almost impossible to eradicate these bacteria.  

Considering the observed anti-QS properties of 4NPO, the next stage of this 

work was evaluate whether the use of 4NPO in sub-lethal concentrations induced 

changes in Burkholderia antibiotic resistance profile. The first step to accomplish this 

objective was to determine if the addition of 4NPO changed Bcc strains minimal 

inhibitory concentrations (MICs) of several antibiotics. The antibiotics chosen belong to 

different classes: kanamycin and amikacin are aminoglycosides, trimethoprim is a 

sulfonamide and piperacillin and ceftazidime are β-lactam antibiotics. Three Bcc 

species were tested, namely: B. cenocepacia K56-2, B. multivorans D2095 and B. 

cepacia IST408. B. cenocepacia and B. multivorans are the most common species 

infecting CF patients in the world, Portugal being an exception, where B. cepacia is the 

most common species [136].  The MIC values were determined in 96-well plates using 

S medium with two-fold dilutions of each antibiotic ranging from 3300 mg/l to 6.4 mg/l, 

in the presence or absence of 4NPO added in the sub-lethal concentration. The MIC 

concentration corresponded to the lowest concentration of antibiotic that inhibited the 

bacterial growth. The results obtained are summarized in the table 4, showing that no 

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

24h 48h 120h

H
al

o
 d

ia
m

e
te

r 
(c

m
) 

time 

B A 

** 
** 

Figure 13 – Extracellular proteases (A) and siderophores (B) secretion by B. cepacia IST408 upon 
4NPO supplementation (dark grey bars) and without (light grey bars). Error bars represent the 
standard error of the mean. A P value < 0.01 was considered significant compared with the condition of no 
4NPO supplementation (**). 
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MICs differences were observed due to 4NPO supplementation. These results are 

similar to the ones obtained by Brackman and co-authors while analyzing the effect of 

different QSIs in several B. multivorans and B. cenocepacia strains [102]. These 

authors evaluated the effects of baicalin hydrate and cinnamaldehyde in combination 

with some antibiotics against Burkholderia planktonic and biofilm cells and similarly to 

our data they did not observed differences in the MIC values due to supplementation 

with the QSI´s used. 

 
Table 4 – Minimal inhibitory concentration (MIC) values in absence or presence of 4NPO for B. 
multivorans D2095, B. cepacia IST408 and B. cenocepacia K6-2. Strains not inhibited by 3300 mg/l are 

depicted as an MIC of >3300 mg/l 
 

 

Even though there were no differences in MIC concentrations, there could be 

differences during bacterial growth. Accordingly, several antibiotic concentrations lower 

than the MIC were tested to determine whether the 4NPO supplementation in sub-

lethal concentrations did interfere with the bacterial growth behavior. All antibiotics from 

Table 4 were tested with B. multivorans D2095, B. cepacia IST408 and B. cenocepacia 

K56-2 (Figure 14). 

 

 

 

 

 

 

 

 

 

 
 

Antibiotic 4NPO 

0 µM 4NPO 50 µM 4NPO 

B. multivorans D2095 Kanamycin 1650 mg/l 1650 mg/l 
412 mg/l Amikacin 412 mg/l 

 Trimethoprim 25,8 mg/l 25,8 mg/l 
>3300 mg/l  Piperacillin >3300 mg/l 

 Ceftazidime 25,8 mg/l 25,8 mg/l 
B. cepacia IST408 Kanamycin 1650 mg/l 1650 mg/l 

 Amikacin 412 mg/l 412 mg/l 
 Trimethoprim 25,8 mg/l 25,8 mg/l 
 Piperacillin >3300 mg/l >3300 mg/ 
 Ceftazidime 25,8 mg/l 25,8 mg/l 

B. cenocepacia K56-2 Kanamycin 1650 mg/l 1650 mg/l 
 Amikacin 412 mg/l 412 mg/l 
 Trimethoprim 103,2 mg/l 103,2 mg/l 
 Piperacillin >3300 mg/l >3300 mg/l 
 Ceftazidime 103,1 mg/l 103,1 mg/l 

B. multivorans D2095 B. cepacia IST408 B. cenocepacia K56-2 

Km 
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Figure 14 – Antibiotic susceptibility in presence of 4NPO of different Bcc strains. The antibiotic 

concentration used were for B. multivorans D2095: kanamycin (400 mg/l), amikacin (400 mg/l), 
trimethoprim (7.8 mg/l), piperacillin (31.25 mg/l) and ceftazidime (31.25 mg/l); B. cepacia IST408: 
kanamycin (250 mg/l), amikacin (50 mg/l) trimethoprim (15.6 mg/l), piperacilin (12.5mg/l) and ceftazidime 
(15.6 mg/l); and B. cenocepacia K56-2: kanamycin (500 mg/l), amikacin (250 mg/l), trimethoprim (31.25 
mg/l), piperacillin (31.25 mg/l) and ceftazidime (1.9 mg/l). Growth was in presence of 4NPO sub-lethal 
concentrations. Abbreviations: Km- kanamycin; Amik- amikacin; Tp- trimethoprim, Pip- piperacillin; Ceft – 

ceftazidime 

 

 In the case of B. multivorans D2095, the strongest growth differences due to the 

supplementation of 4NPO and an antibiotic simultaneously were observed for 

ceftazidime. In the case of B. cepacia IST408, 4NPO supplementation seemed 

enhance the activity of trimethoprim, amikacin, piperacillin but no significant differences 

were found using kanamycin. Finally for B. cenocepacia K56-2, the growth inhibition 

was higher in the assays done with amikacin, piperacillin and ceftazidime and no 

differences were observed when using trimethoprim. Overall, the results from Figure 14 

Amik 

Tp 

Pip 

Ceft 

Growth with antibiotic and 4NPO 
sub-lethal concentration 

Growth with antibiotic 
only 

Growth with sub-lethal 
concentration of 4NPO 
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indicate a general increased susceptibility to antibiotics in the presence of 4NPO by all 

three Burkholderia species tested. These five antimicrobial compounds, belonging to 

different families of antibiotics, when used in combination with the QSI enhanced 

bacterial growth inhibition when compared to their individual use. Similarly to P. 

aeruginosa, Bcc are intrinsically resistant to aminoglycosides. However, while in P. 

aeruginosa the aminoglycosides affect the outer membrane, promoting its partial 

disruption and leaving the membrane partially permeabilized, in Bcc these compounds 

seem to have no effect on the membrane probably due to differences in its 

composition, structure and/or function [137]. Furthermore, cationic drugs self-promote 

the entry of these antibiotics by disrupting the outer membrane structure as described 

for E. coli and P. aeruginosa. However, the susceptibility of Bcc to aminoglycosides is 

not enhanced by cationic drugs [138]. This resistance to aminoglycosides was 

confirmed in these experiments. Even upon 4NPO supplementation, high doses of 

kanamycin and amikacin were still necessary to observe a substantial growth inhibition 

in the three Bcc species tested. Nevertheless, among these species, B. cepacia 

IST408 was the most susceptible to amikacin in the presence of 4NPO, as the use of 

relatively low concentrations (50 mg/l) inhibited almost completely bacterial growth. In 

the case of Bcc, studies on clinical isolates indicate that very low membrane 

permeability is the main mechanism of resistance to amikacin [139]. Bcc bacteria are 

also intrinsically resistant to β-lactams due to the presence of β-lactamase proteins that 

degrade these antibiotics. This can explain why we were unable to determine 

piperacillin MIC values. Interestingly, the presence of 4NPO seemed to reduce this 

resistance in all the three studied Bcc species as can be observed in Figure 14 

showing that 4NPO supplementation in conjunction with the piperacillin had more effect 

in bacterial growth of the three species than the administration of piperacillin alone. 

 Some studies showed a significant susceptibility of Bcc bacteria to trimethoprim 

and ceftazidime, being extensively used in CF patients therapies [18, 140]. 

Furthermore, antibiotic combinations are used many times to efficiently treat CF 

patients with Bcc infections, such as, the combination of trimethoprim-

sulfamethoxazole [140]. Our experiments, confirmed that B. multivorans D2095 and B. 

cepacia IST408 have a higher susceptibility to trimethoprim and ceftazidime then B. 

cenocepacia K56-2, which according to the MIC values determined is more tolerant to 

these antibiotics (Table 4). The resistance to trimethoprim might be due to alterations in 

outer membrane porin level and/or specific LPS characteristics which are responsible 

for neutralization of cell anionic charge [141]. Regarding to ceftazidime, previous work 

in P. aeruginosa showed that in low concentrations this antibiotic has QSI activity [142]. 

Skindersoe and colleagues have hypothesized that ceftazidime and other antibiotics 
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might exert its action on QS by interfering with PprB, a multifunctional protein that 

controls the influx of AHLs in P. aeruginosa, thereby globally influencing the expression 

of QS-regulated genes, and is also involved in the regulation of sensitivity to antibiotics, 

probably due to a decrease in membrane permeability. Thus, even though we cannot 

exclude the possibility that 4NPO may directly modify membrane permeability, leaving 

the cells more susceptible to antibiotics, it might also be that this QSI could be acting at 

the transcriptional level to down-regulate the expression of membrane proteins or 

transporters that would reduce membrane permeability against the toxic effects of the 

antibiotics. This is a possible explanation for the increased susceptibility to ceftazidime 

and other antibiotics observed in our experiments in the presence of 4NPO (Figure 14). 

 Taken together, these data suggest that 4NPO can increase the antimicrobial 

potential of some antibiotics against planktonic cells. Still, further studies are needed to 

understand the role of this QSI in Burkholderia physiology. However, one of the major 

factors leading to antibiotic resistance is the bacterial capacity to form biofilms. Thus, 

our next aim was to evaluate if 4NPO had a role in biofilm formation. 

 

3.2.2.1 Effect of the QSI 4NPO in biofilm formation 

 Bacterial biofilms are an important source of persistent bacterial infection, 

contributing to a continuous inflammation and tissue damage [143]. After entering the 

respiratory airways, Bcc is known to attach epithelial cells, forming microcolonies that 

become extremely difficult to eradicate. Furthermore, Bcc species can also colonize 

abiotic surfaces, forming biofilm structures that difficult the material cleaning and 

disinfection and might represent a vehicle for infection propagation. Consequently, 

conventional therapies, such as antibiotic treatments and disinfectants were shown to 

be useless against biofilm populations due to their special physiology and physical 

characteristics. Furthermore, biofilms are a concern since billions of dollars are spent 

every year worldwide to deal with equipment damage, contamination of products and 

infections in human beings as a result of microbial growth as biofilms [144].  

 Biofilm formation has been shown to be dependent on QS in several pathogens 

including Burkholderia [74]. Thus, the application of QSI seems to be an interesting 

field to inhibit biofilm formation. As a first approach, the effect of 4NPO itself in Bcc 

biofilm formation was evaluated by testing how its supplementation in sub-lethal 

concentrations would affect the biofilm biomass of the three species under study. The 

results obtained showed that 4NPO has no significant effects on biofilm formation 

(Figure 15). Therefore, the next step would be to study the additive effect of 4NPO 
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supplementation and antibiotics, especially the ones that were shown to have some 

inhibitory effect in planktonic bacterial growth. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 – Burkholderia biofilm formation in presence of 4NPO sub-lethal concentration. Biofilm 

formation was evaluated in static 96-well plates after 48 h of growth in S medium, at 30º C. The 4NPO 
sub-lethal concentrations used were 50 μM to B. multivorans D2095 and B. cepacia IST408 and 25 μM to 
B. cenocepacia K6-2. Error bars represent the standard error of the mean Abbreviations: D2095: B. 
multivorans D2095; IST408: B. cepacia IST408; K56-2: B. cenocepacia K6-2. 

 

 B. cepacia IST408 was used as a test strain and the results showed that the 

size of the biofilm formed in the presence of antibiotics and 4NPO is significantly 

reduced when compared to the biofilm formed with antibiotic supplementation only 

(Figure 16). However, these differences in biofilm formation were only observed when 

higher doses of antibiotic other than the ones used to obtain bacterial growth inhibition 

against planktonic cells were used. These observations are in agreement with the 

current knowledge that biofilm formation by Burkholderia plays a key role in the 

persistence of Bcc infections, since this form of growth is known to protect cells against 

several stress conditions, including antibiotics. The only exception was observed for 

ceftazidime, where a lower dose of antibiotic was required to reduce the size of the 

biofilm formed, compared to the concentration required to observe inhibition of 

planktonic growth. A possible explanation could be the fact that ceftazidime may affect 

the cell envelope structure/function, interfering with the flux of AHLs and therefore, 

affecting biofilm formation as shown in P. aeruginosa [142]. 
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Figure 16 - B. cepacia IST408 biofilm formation in static 96-well plates after 48 h of growth in S 
medium, at 30ºC. Supplementation of 4NPO at sub-lethal concentration reduces the biofilm formation 

when used in combination with trimethoprim (25 mg/l), kanamycim (400 mg/l) and ceftazidime (8 mg/l). 
Error bars represent the standard error of the mean. Abbreviations: IST408, B. cepacia IST408; Tp, 
Trimethoprim; Km, Kanamycin; Ceft, Ceftazidime. P value < 0.05 was considered significant compared 

with the condition of no 4NPO supplementation (*). 

 

3.2.3 Effect of 4NPO as co-adjuvant of detergents and disinfectants  

 Even considering that clinical application of 4NPO might be restricted due to its 

possible mutagenic activity this QSI might still present important characteristics that 

would allow its industrial use as co-adjuvant of detergents and other disinfectant 

agents. Thus, it was decided to analyze the effects of 4NPO together with three 

detergents and the commercial disinfectant agent bleach. For that, we started by 

determining if the MIC values for each compound varied due to QSI presence at sub-

lethal concentrations for the three bacterial species under study. Two-fold dilutions to 

test concentrations ranging from 50 % (v/v) to 0% (v/v) for each compound were 

assayed. The results obtained are summarized in the Table 5 and, contrastingly to the 

observed for the antibiotics, there were some MICs differences. B. cepacia IST408 was 

more susceptible to sodium dodecyl sulfate (SDS) and B. cenocepacia K56-2 was 

more susceptible triton X100 in presence of 4NPO, suggesting a synergy between 

these compounds and 4NPO. Nevertheless, it was not possible to determine the MIC 

values of tween 20 for the three Bcc species neither of bleach for B. cepacia IST408 

revealing the ineffectiveness of these commercial compounds in Bcc clearance.  
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Table 5 – Minimal inhibitory concentration (MIC) values in the absence or presence of 4NPO for B.multivorans 
D2095, B. cepacia IST408 and B. cenocepacia K6-2. Strains not inhibited by 50% (v/v) are depicted as an MIC of 
>50% (v/v). 
  

 

  

 

 

 

 

  

 

 

 

 

 To perceive the combined effects of 4NPO and the surfactant agents, different 

sub-MIC concentrations of these compounds were used to determine differences in 

biofilm formation of the three species duo to 4NPO activity. Cultures were grown in S 

medium statically at 30oC, and biofilm quantification was assessed after 48 h of growth. 

The results indicate that the effect of 4NPO combined with the compounds studied is 

species-dependent. However, the same tendency was observed for the three Bcc 

species, where 4NPO enhanced the antimicrobial activity of all the compounds tested. 

Figure 17 describes the results obtained for B. multivorans D2095, being 

representative of the results obtained for the other species under study.  

 The usage of commercial bleach solution at sub-MIC concentration revealed to 

be completely inefficient against Bcc biofilms (Figure 17 A). Even, in presence of 4NPO 

there were no significant differences in biofilm formation for the three tested species 

using bleach. This resistance might be due to transport limitations of the disinfectant 

through the biofilm due to reaction-diffusion interactions [145]. Although the basis for 

biofilm resistance to NaOCl remains unknown, there are evidences that chlorine 

penetration (a substance released from the reaction of hypochlorous acid and the 

organic material) into biofilms can be retarded due to quicker consumption of the active 

chlorine in the biofilm surface layers compared to its rate of diffusion into the biofilm 

[146]. Moreover, a study in B. cenocepacia J2315 revealed that the presence of NaOCl 

resulted in a significant up-regulation of genes involved in the oxidative stress response 

as well as in the general stress response [147]. Accordingly, bleach, one of the most 

common disinfectants used, is inefficient against Bcc. 

 

 Stress 4NPO 

  0 µM 50 µM 

B. multivorans D2095 Bleach 1,56% 1,56% 

 SDS 0.47% 0.47% 

 Triton X100 25% 25% 

 Tween 20 >50% >50% 

B. cepacia IST408 Bleach >50% >50% 

 SDS 1.88% 0.47% 

 Triton X100 25% 25% 

 Tween 20 >50% >50% 

B. cenocepacia K56 Bleach 50% 50% 

 SDS 7.5% 7.5% 

 Triton X100 50% 25% 

 Tween 20 >50% >50% 
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Figure 17 – B. multivorans D2095 biofilm formation in presence of 4NPO sub-lethal concentration. 

Bleach, SDS, TritonX100 and Tween 20 at concentration 0.17% (v/v) were evaluated in combination with 
4NPO, to test the efficacy of this QSI in biofilm formation. A P value < 0.05 was considered significant 

compared with condition of no 4NPO supplementation but with the detergent/disinfectant (*). 
 

 Also, the use of 4NPO sub-lethal concentrations in combination with SDS does 

not seem to increase the efficiency of this detergent against B. multivorans D2095 

biofilm (Figure 17 B). SDS is an anionic detergent commonly used to disrupt bacterial 

membrane. Contrastingly, 4NPO decreased biofilm formation when used in 

combination with the non-anionic detergents triton X100 and tween 20 (Figures 17 C 

and D), suggesting that their combined application might bring benefits in the 

disinfection process. 

 The high impact of biofilm formation in a broad range of surfaces is undoubted. 

Although it was desirable a total biofilm formation inhibition, this is rarely accomplished. 

Thus, using the detergents that exhibited a greater antibacterial activity upon 4NPO 

supplementation we assayed for disruption of pre-established biofilm. After 24 h of 

biofilm formation in 96-well plates at 30ºC, Bcc biofilms were rinsed and consequently 

treated with a detergent alone; sub-lethal of 4NPO alone (control) or a combination of 

the QSI and the detergent. However, no significant biofilm formation was observed 

either using triton X100 or tween 20 only or in combination with 4NPO in the three Bcc 

species under study (data not shown) being only observed biofilm formation in the 

control conditions. Nevertheless, these are preliminary results that need further 

confirmation and optimization. 
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4  Final remarks 

 One of the goals of this work was to study the influence of QS in Burkholderia 

EPS biosynthesis regulation. Here we present evidence that EPS is regulated by AHL-

based QS systems since the presence of the lactonase enzyme AiiA from Bacillus sp. 

inhibits EPS production in several Bcc and non-Bcc species. Moreover, the presence of 

a known QSI also inhibited cepacian production in the tested Bcc strains. Even though 

CepI/R system does not seem to be involved in EPS biosynthesis in Bcc, the 

identification of a new putative autoinducer gene in B. multivorans ATCC 17616 will 

allow us to get additional insights into the underlying mechanism of cepacian 

biosynthesis regulation.   

 The second goal of this research work was the evaluation of the QSI 4NPO as a 

possible agent to decrease Bcc bacteria virulence. It was first demonstrated that 4NPO 

interferes with Bcc QS since several phenotypes known to be positively regulated by 

QS (motility, biofilm formation, EPS production, extracellular proteases production 

showed decreased levels in the presence of this inhibitor. These results are promising 

since we are looking for compounds that do not interfere directly with bacterial growth, 

but instead affect virulence factor expression and expose unprotected bacteria to killing 

by for example the host immune system. 

 Another great problem of Bcc bacteria is their intrinsic resistance to most of the 

clinically used antibiotics, making eradication of infections (namely, lung infections of 

CF patients) very difficult. Here we tested whether 4NPO could be co-adjuvant of 

antibiotics to decrease Bcc resistance to these last antimicrobials. Indeed, we showed 

that 4NPO potentiate the antimicrobial action of the tested antibiotics against both 

planktonic and sessile (biofilm) Bcc cells. Although the use of 4NPO for therapeutic 

purposes is limited due to the mutagenic properties of this compound, its use to 

prevent biofilm formation in abiotic surfaces of clinical or industrial origin it is perhaps a 

possibility to explore. Similarly, we had shown that 4NPO combined with some 

detergents such as Triton X100 or Tween 20 also affects biofilm development. Since 

the use of antibiotics to prevent Bcc biofilm formation is not feasible/ desirable, these 

detergents could be a good alternative that should be considered in future studies. 
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6 Supplementary data  

Annex A 

Schematic representation of the cloning strategy to construct unmarked deletion 

mutants in cepI and cepR genes (only the strategy for cepR is exemplified) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Annex B 

 

AHL synthases used to search B. multivorans ATCC 17616 genome.  

Strain Protein name ID number 

Vibrio fischeri ES114 LuxI VF_AO924 

Erwinia amylovora CFBP1430 ExpI YP_003530770 

Ralstonia solanacearum PSI07 SolI YP_003750860 

Burkholderia kururiensis BraI CAP91066 

Bradyrhizobium sp. BTAi1 TraI ABQ39897 

Burkholderia cenocepacia J2315 CciI YP_002232872 

Burkholderia cenocepacia J2315 CepI CAR55728 

Pseudomonas aeruginosa PAO1 LasI NP_250123 

Pseudomonas aeruginosa PAO1 RhiI PA3476 
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