
UNIVERSIDADE DE L ISBOA
Faculdade de Ciências

Departamento de Inforḿatica

DIVERSITY IN AUTOMATIC
CLOUD COMPUTING RESOURCE SELECTION

Vinicius Vielmo Cogo

MESTRADO EM INFORMÁTICA

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/12427538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE L ISBOA
Faculdade de Ciências

Departamento de Inforḿatica

DIVERSITY IN AUTOMATIC
CLOUD COMPUTING RESOURCE SELECTION

Vinicius Vielmo Cogo

DISSERTAÇÃO

Projecto orientado pelo Prof. Doutor Marcelo Pasin

MESTRADO EM INFORMÁTICA

2011

Acknowledgments

Initially, I would like to thank my advisor, Professor Marcelo Pasin, for all lessons

given to me day after day. Since before I came to Lisbon to the present days he has

supported, encouraged and taught me the value in completingeach job with confidence

and willingness to continue. This continuity always came with new opportunities, which

I will follow intending to transform into new achievements for both.

I render also thanks to my colleagues in the Navigators groupand the LaSIGE. Their

work inspired me and was an important starting point for thiswork, for example from Pro-

fessors Phd. Paulo Verissimo, Nuno Neves, Miguel Correia, Anotnio Casimiro, Alysson

Bessani, Paulo Sousa, Hans Reiser and Marcelo Pasin, which range from intrusion tol-

erance basic concepts, to BFT replication, proactive recovery and diversity mechanisms.

To all my professors from master and undergraduate courses by all teaching on computer

science and regarding life, in special to Andrea Charão, myundergraduate advisor.

Many colleagues became great friends and I would like to thank them also for their

support, patience and encouragement. In special to João Antunes, Monica Dixit, Giuliana

Veronese, Marcelo Pasin, Patricia Gonçalves, Bruno Vavala and André Nogueira by re-

ceiving me as a brother or even as a son. For those who have already left and for those

who recently arrived in Lisbon by their fellowship and interesting lunch-time discussions.

To those that contributed directly to this thesis, with constructive criticism, reviews and

ideas: Marcelo Pasin, André Nogueira, Diego Kreutz, JoãoAntunes, Miguel Garcia and

Alysson Bessani.

Many other friends make me feel at home, indirectly contributing to this thesis but

directly contributing to this life stage. Mainly to Rudra Dixit, Leandro Palma and Márcia

Palma that already left Lisbon, but will be remembered wherever they go. I would like

to also thank Emanuel Falcão, Paulo Carapinha, Marcı́rio Chaves, Cristiane Pedron and

Simão Fontes.

Last but not least, I must thank all my family by their unconditional support, patience

and encouragement even I being physically away from most of them. To my parents

Marco and Sandra, my step-parents Juliana and Luis and my brothers and sister Vitor,

Mateus and Vitória. A special thank to Leticia, my fiancé, by her love, happiness, con-

fidence and by being always more than I expect, a long-standing light in my life. To my

iii

grandparents, uncles and cousins for being my motivators and making everything be pos-

sible. To all my friends from Brazil that even a little bit farare always encouraging me

with force and happiness.

This work was partially supported by the Fundação da Ciência e Tecnologia, through

the project PTDC/EIA-CCO/108299/2008 (CloudFIT), by the European Commission through

the FP7-ICT program under project TClouds, number 257243, and the Large-Scale Infor-

matic Systems Laboratory (LaSIGE). Experiments presentedin this work were carried

out usingQuinta, the Navigators experimental testbed.

iv

A toda gente ṕa!

Resumo

Obter resultados e comportamentos correctos em computaç˜ao é uma preocupação de

longa data. O excerto seguinte sobre o advento das máquinasde calcular foi escrito em

1834 e ilustra a importância já dada naquela época ao uso de mecanismos para tolerar e

identificar erros de cálculo [24]:

“A verificação mais correcta e efectiva contra erros que surgem do processo

de computaç̃ao é realizar a mesma computação em ḿaquinas de calcular

separadas e independentes; e tal verificação é ainda mais decisiva se os

cálculos forem realizados através de ḿetodos diferentes.”

Existem dois mecanismos que surgem desta afirmação e são considerados importantes

para obter computações correctas. O primeiro é areplicaç̃ao, a qual consiste em calcular

os resultados mais de uma vez e compará-los ou realizar uma votação no final. O se-

gundo é adiversidade, a qual consiste em utilizar métodos e componentes distintos em

cada computação. Actualmente, ambos integram o grupo de mecanismos para tolerância

a faltas e intrusões (FIT), os quais são capazes de tolerartanto faltas acidentais como

maliciosas em sistemas computacionais.

Em termos práticos, um serviço replicado pode tolerar faltas acidentais se existir pelo

menos um servidor no seu grupo de réplicas que ainda seja capaz de responder aos pedidos

dos clientes. O mesmo serviço replicado pode tolerar faltas maliciosas, normalmente, se

a maioria das réplicas responderem correctamente ou concordarem com o resultado dos

pedidos dos clientes.

Caso um atacante descubra uma vulnerabilidade que possa serexplorada em um ser-

vidor, e a mesma também existir em outras réplicas, entãoa tolerância a faltas e intrusões

do serviço pode ser comprometida. Tal problema é uma limitação conhecida dos me-

canismos de replicação frente a vulnerabilidades comunsentre as réplicas. Aumentar a

independência de vulnerabilidades é o principal objectivo do mecanismo de diversidade.

A diversidade é um mecanismo que consiste em fornecer e criar diversas combinações

de recursos entre os componentes de um sistema. Obtê-la automaticamente é um processo

que pode ser decomposto em duas fases: criação e selecção. A primeira consiste em forne-

cer recursos diferentes o suficiente para serem considerados, combinados e seleccionados

vii

na segunda fase. A obtenção automática de diversidade nafase de selecção de recursos é

o nosso principal objectivo nesta dissertação.

Gerir grandes quantidades de recursos computacionais é uma tarefa complexa que

pode ser facilitada com o uso de ferramentas automáticas para alocação, utilização e

monitorização. Actualmente, pensar na gestão de sistemas distribuı́dos em larga escala

implicitamente leva a considerar ferramentas decloud computingcomo uma das opções

de gestão. O modelo decloud computing, na sua definição mais simples, é um modelo

de fornecimento de computação como um serviço de utilidade [20]. Porém tecnicamente,

este modelo e seus agentes são fontes infinitas de recursos computacionais, administra-

dos automaticamente e fornecidos publicamente. Neste trabalho, nós consideramoscloud

computingcomo o cenário para atingirmos nosso objectivo principal.

Considerando que o fornecedor de um serviço replicado sejacliente de um dado

serviço decloud, e que todas as réplicas do serviço são alocadas nesta mesma infra-

estrutura. Se uma falta, seja ela por paragem ou arbitrária, causar uma interrupção do

serviço prestado por essacloud, então o serviço replicado pode falhar na sua totalidade,o

que significa que não existe independência de vulnerabilidade entre as réplicas do serviço.

Neste caso, existe um ponto único de falha, o provedor decloud, o que leva a indicação

da diversidade deste componente uma possı́vel solução para o caso.

O primeiro passo para obter diversidade de provedor é criarnovas contas em outros

fornecedores. O segundo passo consiste em seleccionar, para cada nova réplica do serviço,

um fornecedor disponı́vel que não esteja a ser utilizado pelas outras réplicas. Contudo,

seleccionar manualmente um fornecedor decloud para cada nova alocação pode ser in-

conveniente, ou até mesmo inviável, o que torna imperativo o uso de uma ferramenta

automática para selecção de recursos.

Nesta dissertação, nós apresentamos o DiversityAgent,uma biblioteca em Java para

obtenção automática de diversidade na selecção de recursos decloud computing. Seus

clientes apenas precisam registar quais são os recursos disponı́veis, que o DiversityAgent

se responsabiliza por seleccionar uma combinação de recursos diferente para cada nova

réplica a ser alocada e implantada. Acreditamos nesta ser aprimeira biblioteca automática

com tal propósito, tendo em vista conformidade, extensibilidade, escalabilidade e outros

requisitos. O DiversityAgent foi projectado tendo em vistaquatro requisitos funcionais,

nove não funcionais e alguns padrões de projecto bastantedifundidos. O fluxo do algo-

ritmo principal de selecção de recursos é baseado em uma proposta colaborativa entre as

diversidades registadas no momento de cada pedido, o qual será discutido no decorrer

deste documento. Também são apresentadas a composiçãointerna do DiversityAgent e

os algoritmos de diversidade e controladores paracloud implementados.

A biblioteca DiversityAgent é umsoftwarelivre e de código aberto que se encon-

tra disponibilizada no Google Project Hosting [10] sobre a licença GNU Lesser General

Public License (LGPL v3.0). Esperamos que a mesma possa contribuir com muitos pro-

viii

jectos do grupo Navigators, assim como externos em busca de solucionar os problemas

ainda considerados em aberto na área de gestão de diversidade. Incentivamos o desenvol-

vimento de novos algoritmos e propriedades de diversidade,assim como novosdrivers

para mais provedores e ferramentas decloude esperamos poder publicar contribuições da

comunidade de software livre para com esta ferramenta em futuras versões oficiais.

Além disso, nós realizamos uma ampla análise de diversidade no cenário decloud

computing. Este estudo é composto por uma revisão de taxonomia e discussão sobre cada

uma das classificações, onde apontamos as propriedades que actualmente são suportadas

pelos fornecedores e ferramentas decloud. Nele, apresentamos também algumas opor-

tunidades para que os agentes decloud computingpossam contribuir ainda mais com a

área de gestão de diversidade. Mais de cinquenta propriedades foram identificadas, sendo

quatro relativas à diversidade de aplicação, catorze àdiversidade administrativa, dez de

localização geográfica, nove desoftwarede suporte, nove dehardwaree seis relativas à

diversidade de segurança. Do total de cinquenta e duas propriedades, apenas oito são com-

pletamente suportadas pela versão analisada da ferramenta paracloud computingOpen-

Nebula e treze pelo fornecedor decloud Amazon. Ainda em relação à Amazon, outras

dezoito propriedades são parcialmente suportadas atrav´es do uso de rótulos genéricos, to-

talizando trinta e uma propriedades suportadas. Os provedores decloud computingpodem

vir a não concordar em fornecer informações relativas a todas as propriedades definidas

nesta dissertação, uma vez que existem riscos comerciaise custos extras em publicar e

manter todas informações. Porém, ainda assim consideramos importante para a área de

gestão de diversidade a apresentação e discussão do maior número possı́vel de proprieda-

des.

Nós também apresentamos a integração do DiversityAgent com dois casos de uso

previstos pelo projecto CloudFIT, assim como os resultadosdos experimentos de desem-

penho e conformidade. O primeiro caso é um serviçoWebsem estado e o segundo é um

serviço baseado em replicação de máquinas de estado. Ambos casos utilizam técnicas

de recuperação proactiva e posicionam o DiversityAgent entre o gestor de recursos dos

serviços e os provedores decloud, a fim de obter diversidade automaticamente a cada

nova troca proactiva de réplicas.

No fim desta dissertação, encontram-se as conclusões obtidas com este trabalho, possı́veis

trabalhos futuros, além de três apêndices sobre as interfaces públicas, tutoriais de utilização

e personalização do DiversityAgent.

Palavras-chave:Diversidade, Tolerância a Intrusões, Gestão de Recursos, Cloud

Computing.

ix

Abstract

Obtaining correct results and behaviour on computing is a long-standing concern.

Such guarantee can be obtained through fault and intrusion tolerance mechanisms, which

aim to tolerate crash and arbitrary faults. Byzantine faulttolerant replication, when com-

bined with proactive recovery techniques can tolerate any number of arbitrary faults dur-

ing entire system life time. However, common vulnerabilities shared between replicas

can compromise such tolerance, rendering diversity as a complementary mechanism.

Diversity is a mechanism that consists in providing and combining diverse resources

to increase vulnerability independence between system components. Obtaining diversity

automatically is a process that can be decomposed into two phases: creation and selection.

The first phase consists in providing enough diverse resources to be considered, combined

and selected in second phase.

In this thesis we present the DiversityAgent, a Java libraryfor selecting cloud re-

sources considering multiple diversity properties. Its clients only need to register avail-

able resources, then the DiversityAgent assumes the responsibility of selecting appropri-

ate cloud computing resource combination for each server deployment. In order to design

the DiversityAgent, we review taxonomies for diversity on computer systems and analyse

several diversity group properties supported by cloud providers or tools, and opportunities

for cloud computing players contribute with diversity management area.

This document contains a review on basic fault and intrusiontolerance mechanisms,

followed by an extensive diversity analysis in cloud computing environments and by the

DiversityAgent development. We also present an integration of our component with two

use cases foreseen by CloudFIT project, as well as present the results of correctness and

performance evaluations. At the end there are the final remarks about this work and pos-

sible future work, besides three appendices regarding DiversityAgent public interfaces,

usage and customising tutorials.

Keywords: Diversity, Intrusion Tolerance, Resource Management, Cloud Computing.

xi

Contents

List of figures xvii

List of tables xix

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Document structure . 3

2 Context and related work 5

2.1 Fault and intrusion tolerance .. . 5

2.2 Cloud computing . 7

2.3 CloudFIT project . 8

3 Diversity analysis 11

3.1 Taxonomy . 11

3.2 Application diversity .12

3.3 Administrative diversity .. . 13

3.4 Location diversity . 14

3.5 Support software diversity .. 15

3.6 Hardware diversity . 17

3.7 Security diversity . 17

3.8 General considerations .18

4 The DiversityAgent 21

4.1 Requirement analysis . 21

4.1.1 Functional analysis . 21

4.1.2 Non-functional analysis . 22

4.1.3 Architectural analysis . 23

4.2 Implementation . 24

4.2.1 How does it work? . 24

4.2.2 How is it implemented? . 26

xiii

4.2.3 The diversities . 27

4.2.4 Cloud drivers . 30

5 Integration and evaluation 33
5.1 Integration with CloudFIT use cases 33

5.2 Evaluation . 35

5.2.1 Experimental Environment . 35

5.2.2 Correctness Test . 35

5.2.3 Performance Test . 39

6 Conclusions 43
6.1 Final remarks . 43

6.2 Future work . 45

A DiversityAgent public interfaces 47
A.1 Initialising DiversityAgent 47

A.2 Announcing cloud providers .47

A.3 Providing VM images . 48

A.4 Working with diversities .49

A.5 VM related requests . 49

A.6 Recovery feature . 50

B Using DiversityAgent 51
B.1 Preparing . 51

B.1.1 Obtaining from DiversityAgent site 51

B.1.2 Obtaining from DiversityAgent source code 51

B.1.3 After obtaining the package . 52

B.2 Basic usage . 52

B.3 Advanced usage . 53

B.4 Finalising . 54

C Customizing DiversityAgent 55
C.1 Creating new diversity algorithms and properties 55

C.2 Creating new cloud drivers .57

C.3 Publishing contributions .. 58

Abbreviations 62

References 68

Index 69

xiv

xvi

List of Figures

2.1 Fault-error-failure sequence (a) and the AVI compositefault model (b). . . 6

4.1 DiversityAgent positioning. 23

4.2 DiversityAgent class diagram. .. . 24

5.1 DiversityAgent integrated with CloudFIT use cases. 34

5.2 Hierarchical view of correctness test result for the first 15 VMs. 40

xvii

List of Tables

3.1 Proposed properties for obtaining diversity on resource selection. 19

5.1 Experimental environment hardware description. 36

5.2 Resource distribution result of correctness test execution. 39

5.3 Time composition of performance test. 40

5.4 Performance test results in seconds and final overhead. 41

xix

Chapter 1

Introduction

Obtaining correct results and behaviour on computing is a long-standing concern. The

following excerpt regarding calculators advent is from 1834 and already illustrates the

importance of using mechanisms to tolerate and identify errors [24]:

“The most certain and effectual check upon errors that arisein the process of

computation, is to cause the same computations to be made by separate and

independent computers; and this check is rendered still more decisive if they

make their computations by different methods.”

There are two mechanisms that arise from this statement as important approaches for

correct computations. The first one isreplication, which consists in calculating results

more than once and comparing them or voting at the end. The second one isdiversity,

which consists in using different methods or components in each calculation. Both ap-

proaches integrate the group of mechanisms for fault and intrusion tolerance (FIT) nowa-

days, which are able to tolerate crash and arbitrary faults on computer systems.

In practical terms, a replicated service can tolerate crashfaults if there is, in its group

of replicas, at least one server still able to answer client requests. The same replicated

service can tolerate arbitrary faults, normally, if the majority of replicas answer correctly

each client request.

If an attacker discovers an exploitable vulnerability in a server and the same vulnera-

bility also exists in other service replicas, then the system fault and intrusion tolerance can

be compromised. Common vulnerabilities, shared between replicas, are a known limita-

tion of replication mechanisms. Increasing vulnerabilityand bugs independence between

replicas is the main goal of diversity.

Diversity is a mechanism that consists in providing and combining diverse resources

among system components. Obtaining it automatically is a process that can be decom-

posed into two phases: creation and selection. The first phase consists in providing

enough diverse resources to be considered, combined and selected in the second phase.

Automatic diversity obtention during the resource selection phase is our main objective

in this thesis.

1

Chapter 1. Introduction 2

Managing large amounts of computing resources is a complex task that can be facili-

tated by automated tools for resources allocation and deployment. Nowadays, thinking in

deploying large distributed systems implicitly means to consider cloud computing tools

as one of management possibilities. Cloud computing model,in its simplest definition, is

a model to delivery computing as an utility service [20], buttechnically its players are in-

finite sources of computational resources, automatically managed and publicly provided.

In this work, we consider cloud computing the scenario to achieve our main goal.

Imagine that the owner of a replicated service is a client of agiven cloud provider,

and all service replicas are deployed in this cloud. If a crash or arbitrary fault causes the

disruption of this cloud, the entire replicated service canfail, which means that there are

no vulnerability independence between replicas regardingcloud provider. In this case,

the single point of failure is the cloud provider, which leads to indicate diversity of cloud

provider as a possible solution.

Creating some accounts in other providers is the first step toobtain diversity of cloud

providers. The second phase consists in selecting for each replica deployment one of the

unused available cloud providers. However, manually choosing a cloud provider for each

deployment can be an inconvenient solution, therefore an automatic selection tool is a

must either for this diversity of provider or any other diversity.

In this thesis, we present the DiversityAgent, a Java library for selecting cloud re-

sources considering multiple diversity properties. Its users only need to register available

resources, that the DiversityAgent takes the responsibility of selecting an appropriated re-

source combination for each server deployment. Our solution focuses in providing what

we believe to be the first automatic software library for thispurpose, in the light of cor-

rectness, extensibility, effectiveness and other requirements.

In addition, we provide a broad diversity analysis in the cloud computing scenario.

Such study is composed by a taxonomy review and a discussion on each diversity clas-

sification, pointing properties supported by cloud providers, and opportunities for cloud

computing players to contribute with diversity managementarea through more resource

specification. We also present an integration of our component with two use cases fore-

seen in CloudFIT,1 the project in which this thesis was developed, as well as theresults

of DiversityAgent correctness and performance evaluations. At the end, there are three

appendices regarding DiversityAgent public interfaces, usage and customising tutorials.

1.1 Objectives

Our main goal is to automatically obtain diversity in resource selection, considering cloud

computing our scenario. In order to achieve such objective we defined seven specific

tasks, namely:

1Available at http://cloudfit.di.fc.ul.pt/. Accessed on March 19, 2012.

Chapter 1. Introduction 3

• Classifying the different and relevant types of diversities.

• Analysing the current state of the art of and opportunities for diversity in cloud

computing environments.

• Defining desired functionalities for an automatic diversity management component.

• Designing and implementing such component.

• Integrating the component in a system that uses replicationand proactive tech-

niques.

• Evaluating the component correctness and performance.

• Writing the component documentation.

1.2 Contributions

Our scientific contribution can be divided basically into two main points. The first is to

provide an extensive diversity analysis on cloud computingenvironments, based on a well

defined taxonomy. The second is to develop and publish what webelieve to be the first

software component that allows the automatic obtention of diversity in any component

during cloud computing resource selection process.

1.3 Document structure

In face of the expressed objectives, the present work has sixchapters, from which this

first is a brief introduction to the subsequent topics. Additionally, the context in which

this thesis appears and its related work are presented on Chapter 2. Chapter 3 contains an

analysis on diversity, including the taxonomy that will be used by the following of this

work and opportunities for cloud computing players regarding diversity management. The

requirements, design and implementation of a component forautomatic diversity obten-

tion are described on Chapter 4. We decided to divide the requirement analysis into three

categories: functional, non-functional and architectural analysis. The implementation de-

scription is divided into basic internal components, diversity implementations and drivers

to cloud interfaces.

Chapter 5 is dedicated to describe use case scenarios proposed by CloudFIT, a research

project that funded this thesis, as well as to present how DiversityAgent is integrated in the

project architecture, then for any other infrastructure. At the same chapter, an evaluation

of component correctness is presented and performance aspects are analysed. Chapter 6

contains the conclusions obtained with this thesis and someopportunities for future work.

Chapter 1. Introduction 4

Finally, some further technical information is addressed on appendices. Appendix A

is dedicated to present DiversityAgent public interfaces,while Appendix B is a tutorial

on using such interfaces. Appendix C presents a tutorial on customising DiversityAgent.

Chapter 2

Context and related work

This chapter is dedicated to present basic concepts regarding fault and intrusion tolerance

mechanisms and other works related with automatic obtention of diversity. It is intended

also to address this thesis context with cloud computing andCloudFIT project, besides to

yield a background knowledge about topics that will be discussed on next chapters.

Before presenting fault and intrusion tolerance concepts it is important to introduce

the security field. Software security is a computer system area focused on extracting

vulnerabilities from software and protecting systems to prevent attacks to become intru-

sions [31]. Based just on this definition, a system is considered as secure only if intrusions

never happen on it.

2.1 Fault and intrusion tolerance

Fault tolerant system is one that tolerates a certain amountof faults without disrupting the

delivery of a correct service [1]. But normally only crash faults are considered in fault

tolerance .

Intrusion tolerance arises on intersection of fault tolerance and security. An intrusion

tolerant system is one that tolerates a certain amount of intrusions without disrupting the

delivery of a correct service, neither compromising its security properties (availability,

confidentiality, integrity, etc) [31]. Therefore, this fault model includes malicious faults,

which are also known as arbitrary or Byzantine faults.

In the simplest comparison, security tries to avoid intrusions while intrusion tolerance

tries to reduce intrusions impact. The main differences between fault and intrusion toler-

ance are presented on Figure 2.1 [31], where the main focus isthe sequence of facts that

lead to failures in each case. We consider intrusion tolerance our main fault model for

DiversityAgent, but it can also be used for fault tolerance in other contexts.

State machine replication [29] is one important mechanism to achieve Byzantine fault

tolerance with high throughput [8, 23]. Basically, this mechanism consists in a replicated

service developed over a deterministic state machine approach. A service is replicated

5

Chapter 2. Context and related work 6

intrusion
tolerance

intrusion
prevention

attack
(fault)

vulnerability
prevention

attack
prevention

vulnerability
removal

intrusion
(fault) failureerror

vulnerability
(fault)

Intruder

Intruder/
Designer/
Operator

attack
removal

fault
tolerance

error
processing

fault
treatment

interaction
fault

fault
prevention

error

Designer/
Operator

fault
removal

design/
oper/config.
fault

fault
prevention

(imperfect)

failure

(a) (b)

Figure 2.1: Fault-error-failure sequence (a) and the AVI composite fault model (b).

and replicas start from the same initial state upon processing each client request, each

replica arrives to the same states and provides the same results. Crash faults are easily

tolerated with this mechanism, but arbitrary faults are tolerated through replicas results

by voting.

There is a minimal number of replicas needed by BFT replication protocols to tolerate

f Byzantine faults. This amount of resources will depend on which protocol is being

used, but it can vary from3f + 1 [8, 23], to2f + 1 [12, 33], or even tof + 1 [15, 34].

It is possible to specify that a replicated intrusion tolerant system is a replicated system

in which a malicious adversary needs to compromise more thanf out of n components

during the entire system life time [4].

We introduced a new property at the end of previous paragraph: the time. Allowing

the entire system life time to be the window time for attacks can lead to a problem: after

f Byzantine faults happen in a service, intrusion tolerance can become compromised. To

reduce the size of window, we use proactive recovery [7], which means that we replace

each replica from time to time, to recover its initial and correct state.

There is a stateless or just fault tolerant version of proactive recovery, which is based

on service redundancy and in this work is called proactive replacement. A proactive

replacement means that we replace each redundant server from time to time, where a

server is rejuvenated and software aging issues can be avoided.

Both proactive techniques reduce window time available foran attack to happen, but

maintain the same limited number of tolerated intrusions oneach proactive period. Fur-

thermore, they remove the existence of faults and intrusions on a recovered server. How-

ever, if we just rejuvenate the components, vulnerabilities that caused such intrusions re-

main. Another possible scenario is an adversary acquiring enough knowledge to rapidly

compromise more thanf recovered servers in less thanT time units. With this in mind,

we devise a mechanism intended to make an attacker’s life even harder, the diversity [30].

Diversity is a fault and intrusion tolerance mechanism thatconsists in providing and

selecting different software or hardware compositions to improve vulnerability indepen-

Chapter 2. Context and related work 7

dence between service instances. It can improve the probability of a vulnerability that

caused an intrusion in one server, does not exist in other servers. In other words, an at-

tacker needs to discover more thanf different exploits to attack an entire service, and

when combining diversity with proactive mechanisms, the attacker has a limited time to

perform the entire attack. Common vulnerabilities are one of the main problems of in-

trusion tolerant systems, thus an extensive usage of diversity is needed [4]. Furthermore,

even having good evidences on effectiveness of diversity for operating systems [19] and

database management systems [17], it is a half-solved problem on intrusion tolerance

scenario, at the same time that diversity management is still an open problem [4].

Regarding our first objective with this work, a diversity analysis, there are two tax-

onomies for diversity on computer systems[14, 28]. We review their classifications and

adapted the scenario of each diversity groups to cloud computing. We also pointed which

are the aspects that already are supported by cloud providers, which still remain unsolved

and which are the next steps to consolidate diversity through cloud facilities.

Concerning our second objective, an automatic diversity management component, we

found basically two automatic diversity management proposals. Regarding operating sys-

tem diversity, an algorithm proposed by Henriques [18] usesa database table that contains

all parameters needed to choose consistently an OS for a requested VM. It is meant to

achieve the best combination of all active servers, regarding the highest level of vulnera-

bility and bugs independence through OS diversity. His algorithm considers only diversity

of operating system, while DiversityAgent is a library thatcan be extended to provide di-

versity algorithms on any diversity group or component. Another difference is regarding

the resource selection scenario, where, even both provisioning virtual resource selection,

we consider cloud computing environments and he only considers virtual machine moni-

tor (VMM) environments.

N-variant systems[13] is the framework name proposed by Cox et. al., which uses

automated diversity to provide high assurance detection and disruption for large classes

of attacks. They basically execute a set of automatically diversified variants on the same

inputs, and monitor their behaviour to detect divergences.Their algorithm considers only

diversity at application level, while once more, DiversityAgent is a library that can be

extended to provide diversity algorithms regarding any component. We do not provide

behaviour monitoring features, because our focus is only incomposing diverse resource

combination for service replicas.

2.2 Cloud computing

Cloud computing in its simplest definition is a model to deliver computing as a service

[20], and it is the scenario where DiversityAgent will accomplish its goal of automatic

obtaining diversity. It is divided into three main service models [27], namely:

Chapter 2. Context and related work 8

• Software as a service (SaaS):Refers to the provisioning of any application as a

service, rather than a product, running on cloud environments. At this abstraction

level, an application can be accessible from various clientdevices, but clients nor-

mally cannot explicitly manage or control underlying cloudinfrastructure.

• Plaftorm as a service (PaaS):Refers to the provisioning of a computing platform or

software components as a service to assist the development and execution of cloud

applications. At this abstraction level, clients are software service providers and

do not explicitly manage or control underlying cloud infrastructure, but they have

control over deployed applications and some hosting configurations.

• Infrastructure as a service (IaaS):Refers to the provisioning of computing re-

sources as a service for cloud platforms and applications. At this abstraction level,

IaaS customers do not explicitly manage or control underlying physical infrastruc-

ture, but they have control over their virtual infrastructure (virtual processing, stor-

age and network resources) and software layers (operating systems and applica-

tions).

Infrastructure as a service is the only model where clients can control the resources on

a virtual infrastructure. The diversity can be obtained through virtual resource selection.

Our positioning is as IaaS clients, where DiversityAgent will prepare diversity require-

ments to request virtual resource allocation. The DiversityAgent component can be used

by PaaS and SaaS providers. We first analyse which diversities can be obtained by IaaS

customers and second we provide a component that obtains diversity automatically from

IaaS providers on processing virtual resources selection.

Cloud of clouds emerge as an aggregation structure to federate several independent

IaaS providers. It keeps all advantages that such federation offers, for example, vendor

lock-in prevention. Nowadays, there are cloud brokers thatalready provide support for

resource selection in more than on IaaS provider, but they donot provide any kind of

automatic diversity. Broker clients have to specify which IaaS should be used to allocate

resources for each service instance. Some examples of cloudbrokers are CloudKick,

Rightscale, 3tera, Elastra, and Kaavo.

We assume that we should verify the existence of desired properties on cloud tools

and providers, since we did not found cloud brokerage tools for automatic selecting di-

verse resources. DiversityAgent should consider the automatic diversity obtention on all

diversity groups in a generic and extensible manner.

2.3 CloudFIT project

This thesis was developed within a research project called CloudFIT, Fault-and-Intrusion

Tolerance for Clouds at the University of Lisbon. It is a two-year research project funded

Chapter 2. Context and related work 9

by the national research funding agency (FCT) to define an infrastructure for intrusion

tolerant services in a cloud environment.

This section briefly introduces CloudFIT and its system, called FITCH, Fault and In-

trusion Tolerant Cloud Computing Hardpan, because it is thestructure where DiversityA-

gent will be integrated. All FITCH components and their relationship with this thesis will

be presented on Chapter 5. FITCH was conceived with several components, combining

Byzantine Fault Tolerant (BFT) replicated services and hardware virtualization, tolerating

intrusions in a subset of replicas of a service, and implementing proactive recovery using

replica replacement with diversity. The DiversityAgent will be the component responsible

to obtain diversity automatically when selecting resources for proactive requests.

Regarding expected results from the above-mentioned project there are three directly

related goals with this thesis:

• The requirement analysis on resource management for intrusion tolerance, such as

replica dislocation and diversity;

• The extension of a cloud resource allocation tool in order toincorporate FIT re-

quirements;

• A prototype that integrates a virtualization architecturewith the extension of a re-

source allocation tool. An performance evaluation of this prototype. And an im-

provements analysis that the proposed architecture yieldsin terms of intrusion tol-

erance.

Diversity requirement analysis is addressed on Chapter 5, where the relationship of

all diversity groups with cloud computing resource selection is presented . OpenNebula

is the cloud resource management tool chosen to be extended by CloudFIT, since it is free

and open source software, it was already available when the project started. Furthermore,

it was the only tool with matchmaking scheduling policies, which allows for filtering and

ranking resources based on requirements. DiversityAgent uses a matchmaking approach

in its cloud driver for OpenNebula, and it is presented on Chapter 4. Finally, a brief

overview of FITCH prototype integrated with DiversityAgent is presented on Chapter 5.

Chapter 3

Diversity analysis

This chapter presents a taxonomy of various diversity groups that will be used in the

remaining ones. In addition, we analyse all diversity groups and correlate each one of

them with automatic resource selection through the usage ofcloud computing facilities.

3.1 Taxonomy

The first taxonomy created for diversity on computer systemsdifferentiates the level in

which diversity is offered. It is divided into the followinggroups [14]: at level of users or

operators, at human-computer interfaces, at application software, at execution level, and

finally at hardware or operating system level.

A newer taxonomy was proposed by Obelheiro et al., which is defined in terms of the

component in which diversity can exist or be created [28]. Itis intended to clearly identify

where and how diversity can be obtained, and it is divided into the following groups:

• Application.Using diverse implementations for the same software specification.

• Administrative.Executing applications in diverse administrative entities.

• Location.Using diverse geographic locations to execute an application.

• Commercial off-the-shelf software.Using diverse commercial products for the same

computing task. It is composed of five subcategories: Database management sys-

tems, middleware, virtual machines for bytecode, compilers and libraries.

• Operating system.Using different operating systems to execute an application.

• Security method.Enforcing security properties through diverse security methods.

• Hardware. Executing applications on diverse machines with differentphysical

hardware.

In addition, each diversity can be decomposed into two properties:

11

Chapter 3. Diversity analysis 12

• Axis of diversity:contains the components where diversity can be introduced (ex-

ample: operating system);

• Degree of diversity:quantifies the possibilities regarding one axis (example: 3, if

we consider Windows, GNU/Linux Ubuntu and Solaris);

Regarding the taxonomy to be followed by this work, our approach is similar to Obel-

heiro’s taxonomy, but with some minor modifications, in order to simplify the classi-

fication of components. We are not concerned about specific components or software,

therefore we merged some groups. The resultant taxonomy is divided into the following

groups:application, administrative, location, support software, hardwareandsecurity.

The range of components in which diversity can exist or can becreated should not

be limited. Thus, we propose the usage offolksonomy1 when defining the component

from which will be obtained the diversity, provided that it must belong to one of the

groups presented in our taxonomy. For example, if one wishesto obtain diversity through

different web server implementations, he may define the diversity name as “Web server”

and define it to belong to the taxonomy group of “Support software”. The diversity groups

will be presented in following sections, as well as their relation with automatic resource

selection will be discussed.

3.2 Application diversity

The first diversity group to be addressed is the application diversity, which consists ba-

sically in using more than one implementation of the same software specification. The

main goal with this diversity is to increase the probabilityof creating software whose vul-

nerabilities (if exist) are completely independent, whichmeans that they are not shared

between different implementations.

This idea arose as redundant programming in 1975 [2], and lately it was proposed

as N-Version programming in 1977 [3]. The N-Version programming considers N pro-

gramming teams developing N different application implementations. This methodology

contributes to vulnerability independence in some systems[25], where it increases the

probability of creating completely independent application versions, but it cannot guar-

antee vulnerability independence in other cases [21]. Withthis in mind, caution is appro-

priated, where controlled experimentation in a realistic environment can be important to

define if N-Version programming is useful for the application in question [22].

Registering resources in cloud computing requires some information that are used to

describe the respective resources. Such information is normally called metadata, and can

also be collected when a new resource is registered. For example, after registering a new

1Folksonomy.A classification method based on tags created and managed collaboratively by regular
people instead of experts.

Chapter 3. Diversity analysis 13

virtual machine image, a manager software can retrieve someextra information as image

size and file type. When metadata is not supported by cloud providers, it is possible to

circumvent such limitation through generic tags (if supported) or even composing the re-

source name by more than one metadata. The application version is mandatory to provide

N-Version application diversity on resource selection, but it is not supported on most of

cloud providers. The current method used to differ application versions and other VM

image metadata is to compose its name with all information needed.

Another existent approach for automated creation of application diversity are transfor-

mation techniques, for example, rearranging memory, randomising system calls, instruc-

tion set, protocol parameters, among others. In cloud computing, automatic selection of

resources using this diversity approach can be achieved similarly to previous one, but for

each variant, there is the need of providing metadata regarding transformation methods on

VM images. Another possibility for resource selection is using automatic transformation

after the deployment through scripts, but this approach is out of this work’s scope.

3.3 Administrative diversity

The second diversity group to be analysed is the administrative diversity, which consists

in using more than one administrative entity to run a service orstore data. The fault and

intrusion independence provided by this diversity is the prevention of an entire service or

data set being affected by any local administrative event.

One of the hottest and most recent examples where this diversity plays an impor-

tant role is vendor lock-in, which consists in making customers dependent on a specific

provider, and where changing it requires substantial costs[5]. There are some possible

initiatives to avoid or to reduce costs in vendor lock-in, which encompasses a modular

development of drivers for diferent providers, usage of open interfaces, or usage of more

than one provider since the beginning. But all these possibilities are cloud-of-clouds sce-

narios, where cloud providers are completely unreliable, which means that cloud clients

are responsible to obtain all diversity of cloud providers.

We developed in this thesis the DiversityAgent, a componentthat allow cloud clients

to automatically obtain diversity at this level, which willbe presented on Chapter 4. With

this component, administrative diversity (as all other groups) can be naturally provided.

It allows to developers of cloud applications to consider, since the beginning, the usage

of more than one cloud provider through different cloud drivers implemented on this

component, or even using more than one cloud with the same driver already implemented.

Internal events on specific providers is another example where administrative diversity

is important for intrusion tolerance. Electrical disturbances and accidents are some of the

most expressive ones. Spikes and surges normally cause disturbances if redundant power

management are not provided (for example in private clouds). To avoid these disruptions,

Chapter 3. Diversity analysis 14

a component like DiversityAgent can solve the problem if it considers the usage of more

than one cloud provider. This component should consider information regarding physical

hosts, racks and clusters during resource selection, for similar reasons.

The reliability of a cloud provider and its tools is the thirdscenario. Cloud clients

could use any form of reliability metrics to decide on resource selection. For example,

one could use the amount of failures and uptime as propertiesto be considered. These

values allow to define some traditional fault tolerance metrics like failure rates, mean

time to failure (MTTF), mean time between failures (MTBF), and others.

Resource selection regarding this diversity group can provide an improvement on

globally distributed services performance, because it canbe used to select cloud providers

conveniently located in order to reduce network latencies.When using service replace-

ment protocols as in FITCH, performance impact is relevant,either in service level degra-

dation or approximation with end user cases. Considering network latency, round trip

time (RTT) or number of hops can be relevant for resource selection, once through com-

parison between cloud providers could be possible to verifywhich one is the best option

in relation to the mentioned performance metrics.

3.4 Location diversity

The next group is location diversity, which consists inusing geographically distributed

resources to run a service or to store data. The fault and intrusion independence provided

by this diversity is the prevention of an entire service or data set being affected by any

geographically local event.

The most used examples to express the importance of this diversity are natural disas-

ters, amongst which the earthquake that hit Japan on March, 2011 was one of the most

devastating and recent. Asia Cloud Forum1 published a series of posts about services

and resource disruptions caused by this event, where through large companies announce-

ments (like Amazon, Google, Microsoft, Verizon and NTT Com), it is possible to verify

the importance of this class of diversity.

Political and legal events are equally important scenarioswhere diversity of location

plays an important role, even if it has been less discussed. Unstable governments, diplo-

matic positioning and personal data or copyrights prosecutions are some specific exam-

ples of scenarios where this diversity can be helpful. An advantage when using location

diversity in these scenarios is that any local political or legal event cannot lock in that

region an entire service or data set. One way to provide political independent (or almost

independent) cloud provisioning would be data centres located in international areas. To

exemplify this possibility, Google Inc. proposed a water-based solution for data centres

1Available at http://www.asiacloudforum.com/tag/Japan%20earthquake%202011. Accessed on March
19, 2012.

Chapter 3. Diversity analysis 15

(and registered a patent with this idea), which can be placedin any international Ocean

portion [9].

The last scenario, where this diversity can be used, is regarding performance aspects.

There is a large number of services that can be deliberately distributed on different spe-

cific locations to approximate service and end users, normally reducing network latency

between them, similarly to what is presented in Section 3.3.Location diversity can be

easily achieved through cloud computing, even with a singlepublic cloud provider. For

example, Amazon has data centres in United States, Europe, South America and Asia

Pacific.

Considering geographic location of physical resources is the main way to provide

location diversity. Currently, geographic location of cloud providers are managed by

clients manually or through services that matches IP addresses with their location, but

they are unofficial and probably imprecise results. In orderto achieve more precision,

cloud providers could supply their location with meaningful information, for example,

physical coordinates or other geopolitical metadata like city, state, region, country, conti-

nent, economic group, political union, among others.

Physical coordinates can be very useful to calculate, in allocation time, the smallest or

the highest distance between any two specific points in the world. With this information,

it would be possible to choose the farther away resource fromsome place where happened

some recent natural disaster or, in opposite case, the nearest resource from some end user.

Additionally, there is a novel Byzantine fault-tolerant (BFT) protocol called EBAWA

[32], which focuses on Wide Area Networks (WANs), instead ofLocal Area Network

(LANs). It requires fewer communication steps, fewer replicas and has better throughput

and latency that others in literature (that are mainly focused on LANs). Location diversity

on resource selection can improve this protocol considering that it can be possible to

correlate geographic location of client requests and service replicas geographic location,

in order to always approximate service replicas and regionswhere there are significant

amounts of clients requests.

3.5 Support software diversity

The fourth diversity group to be analysed is support software, which consists inusing

diverse versions and implementations of any software that can provide a basis for service

applications. This basis can be composed by many software layers and components, rang-

ing from operating systems to commercial off-the-shelf software, middleware, libraries,

compilers, among others. The fault and intrusion independence focused by this diver-

sity is the prevention of an entire service from being affected by any common software

vulnerability shared between them.

Measuring the independence level on this diversity group iscomplex because it has to

Chapter 3. Diversity analysis 16

consider all known vulnerabilities of each component and correlate them. Even after this

correlation, there is the unknown vulnerability problem, which can be exploited through

zero-day attacks and are impossible to measure among different components. Our objec-

tive with this analysis is not to discuss how much independent are software vulnerabilities,

but presenting who already contributed to this area and how this group of diversity can be

used on cloud computing resources selection.

Operating system is one of the main (and largest) componentsthat can be used by

cloud applications as a support software. There are some studies that analysed OS vulner-

abilities and bugs (seeRelated Workchapter on [18]). We believe that their judgement in

addition to conclusions from [19] provide good evidences that OS diversity has acceptable

degrees of vulnerability independence.

All other components of support software are dependent fromthe service or appli-

cation scope, but some of them already were studied to verifytheir vulnerability inde-

pendence level. Some examples of software component that normally are considered

as support software are Database Management Systems, middleware, web servers, FTP

servers, SSH servers, compilers, libraries, etc. Regarding databases, Gashi et. al. [17]

presented that there are good evidences that diverse redundancy using this components

has acceptable vulnerability independence as well.

One drawback of this diversity is a high cost, in human resources and time, to design

and prepare multiple combinations of components. A VM imagehas to be created and

registered by an administrator for each combination to be provided when deploying the

application. We believe that, in a near future, there will begood solutions that may provide

automatic composition of VM images in execution and allocation time. One example of

this kind of project is the OSFarm [6], which contains a service that aims to provide VM

images generated on demand.

We propose a large set of metadata that could be supported by cloud providers re-

garding registered VM images. But nowadays most of them justmaintain a minimal

set of information like image name, path and owner. To exemplify, information like OS

type (GNU/Linux, BSD, MacOS, Microsoft Windows, Solaris, etc), OS name (Ubuntu

11.10, Windows 7, Solaris 11), virtualization type (para orfull-virtualized), architecture

(i386, i686, x64, SPARC, etc), application and services installed, supported program-

ming languages, among others could be registered for each VMimage. All this range of

information could provide a good granularity for selectingresources using diversity.

Another important support software on cloud computing thatcould be diversified is

the hypervisor. It is possible to request for each server to be deployed on a different hy-

pervisor if cloud providers offer more than one option, and if there is metadata associated

with the images to express which are the hypervisors that candeploy it.

Chapter 3. Diversity analysis 17

3.6 Hardware diversity

The fifth diversity to be considered in this analysis is the hardware group, which con-

sists inusing physical hosts with different hardware components toallocate the service

instances. The fault and intrusion independence provided by this diversity is the preven-

tion of an entire service or data set being affected by one common hardware vulnerability

shared between more than one physical host that are running the virtual machines.

From all components, processors are one of the main targets,and one example of

shared bug was the F00F Pentium bug [11], where an execution of one specific instruction

was not handled by the exception handler, causing blockage of interrupts handling.

Cloud resource selection can provide hardware diversity only when this information

is available. For example, some properties that could be considered are CPU model, ar-

chitecture and speed. Not just limited to CPU metrics, information about all hardware

components could be supported by cloud providers to select different models of, for ex-

ample, network or video cards, hard disks and Trusted Platform Modules (TPM). Trust

Platform Modules are important security components that provide secure generation and

storage of cryptographic keys and and offer functionalities for remote attestation of sys-

tem components.

3.7 Security diversity

The last diversity group to be analysed is the security diversity, which is equally important

and consists inusing more than one security method or more than one securitypolicy

within a group of cloud providers and replicated service instances. The fault and intrusion

independence provided by this diversity is the prevention of an entire service or data set

being affected by one common security vulnerability or security flaw.

The first scenario is the authentication security mechanism, where there is the assur-

ance that a cloud client is the one it claims to be. Considering that each provider can sup-

port a specific authentication method, it allows the selection of cloud provider based on

different authentication methods in a cloud-of-clouds scenario. All other security methods

can be equally used as properties on resource selection using security diversity, ranging

from access control, to data integrity and confidentiality.

In addition to security mechanisms, the security policy of acloud provider can be

equally important when selecting resources through security diversity. Such security poli-

cies can include different physical access and control methods, which can provide diver-

sity on protection against service disruptions caused by physical attacks to data centres

of some specific cloud provider. Choosing different cloud providers means that they can

have different security policies. Cloud providers could publish which security policy they

Chapter 3. Diversity analysis 18

follow (for example, the ISO 27001)1 , so clients can choose different security policies.

3.8 General considerations

In this section we provided some general comments regardingour diversity analysis and

present a summary of all properties identified on this chapter. Our first general consider-

ation is dedicated to reinforce that we did not aim to discussdiversities effectiveness, but

we aimed to discuss their meaning, scenarios and identify properties that cloud providers

should pay attention for. Cloud providers may not agree to inform all proposed proper-

ties, once there are commercial risks and extra costs in publishing and maintaining all

information addressed on this thesis, but we consider such discussion an important step

on diversity management area.

Our second consideration is that our analysis does not focuson economic constraints

applied on diversity obtention. In addition, we consider that any of diversities presented

on this analysis can be combined with others. Diversities can also form hierarchical rela-

tionships, which means that a diversity with lower hierarchy level depends on resources

previously chosen by a diversity algorithm with a superior hierarchical level. Choosing

a certain type of component from one diversity group may eliminate the diversity once

available in another group. For example, by choosing cloud provider one has to cope with

its hardware or locations. The hierarchical order is extremely important when combin-

ing diversities, and should be described always from the most to the less important. We

explain how this relationship works and should be addressedby our component on next

chapter.

Finally, on Table 3.1 we present a summary of properties discussed on this chapter,

their relationship with cloud computing resources and if they already are supported by

OpenNebula (ONE) tool and by Amazon Web Services (AWS) cloudprovider as exam-

ples of their existence in cloud environments.

1Available at http://www.17799.com/. Accessed on March 19,2012.

Chapter 3. Diversity analysis 19

Diversity group Property description Cloud resource ONE AWS

Application

Image name VM images Yes Yes
Application name VM images No No
Application version VM images No No
Transformation method VM images No No

Administrative

Cloud provider name Cloud provider No No
Available APIs Cloud providers No No
Physical host name Physical hosts Yes No
Rack name Physical hosts No No
Cluster name Physical hosts Yes No
Number of failures Cloud providers No No
Number of power outages Physical hosts No No
Number of VM failures Physical hosts No No
Cloud uptime Cloud providers No No
Host uptime Physical hosts No No
Autonomous system (AS) Cloud providers No Yes
Network latency to X Cloud providers No No
Round trip time to X Cloud providers No No
Number of hops to X Cloud providers No No

Location

GPS coordinates Cloud providers No No
Location based on IP Cloud providers No No
City Cloud providers No No
State Cloud providers No No
Region Cloud providers No Yes
Country Cloud providers No No
Continent Cloud providers No No
Economic group Cloud providers No No
Political union Cloud providers No No
Geographic distance to X Cloud providers No No

Support software

Image name VM images Yes Yes
OS type VM images No Yes
OS name VM images No No
OS architecture VM images No Yes
Kernel VM images No Yes
Virtualization type VM images No Yes
Application and service VM images No No
Supported programming languagesVM images No No
Compatible hypervisors VM images No Yes

Hardware

CPU model Physical hosts Yes No
CPU architecture Physical hosts Yes No
CPU Speed Physical Hosts Yes No
Network card model Physical Hosts No No
Network card speed Physical hosts No No
Video card model Physical hosts No No
Hard disk model Physical hosts No No
Hard disk speed Physical Hosts No No
Hypervisor Physical hosts Yes No

Security

Cloud provider name Cloud providers No No
Authentication methods Cloud providers No Yes
Access control methods Cloud providers No Yes
Data integrity methods Cloud providers No Yes
Data confidentiality methods Cloud providers No Yes
Security policies Cloud providers No No

Table 3.1: Proposed properties for obtaining diversity on resource selection.

Chapter 3. Diversity analysis 20

Chapter 4

The DiversityAgent

DiversityAgent is a Java library that allows IaaS clients toautomatically obtain diversity

on cloud resource selection. In this chapter, we present theconsidered requirements for

this component, its design and development. A tutorial on how to use DiversityAgent is

available in Appendix B, as well as two use cases are presented in Chapter 5.

4.1 Requirement analysis

4.1.1 Functional analysis

The main challenge for DiversityAgent is the automatic selection of resources considering

any diversity group. The first functional requirement,the automatic selection of resources

considering the obtention of any diversity, could be solved by a generic algorithm with an

extensible structure that might allow DiversityAgent users to create and provide their own

diversity algorithms. A generic property set could be used in order to receive contributions

from each diversity algorithm. Then, it could be sent to cloud providers, which should

select and allocate the appropriated resources.

The second functional requirement is thedynamic interaction with DiversityAgent,

which means that users might add or remove clouds, images, diversities and virtual ma-

chines at any time. To solve this requirement, CRUD pattern [26] could be adopted. In

doing so, users could dynamically modify service instancesand available resources at

execution time, without disrupting their service provisioning.

Regardinginformation managementaspects, DiversityAgent must maintain only a

minimal amount of mandatory information for automatic resource selection. This infor-

mation should be related with the client service, includingregarding cloud providers, VM

images, diversities and running service instances. It should not create attributes that do

not exist in cloud providers. Just to complement this idea, DiversityAgent might also

differ from centralised meta-schedulers (or brokers), which are normally time triggered

components that from time to time fetch information from allcloud providers to maintain

locally the maximum of global information and to take decisions alone.

21

Chapter 4. The DiversityAgent 22

In order to achievehierarchy between diversities, DiversityAgent could orchestrate di-

versity algorithms considering different hierarchical levels. It might allow users to register

diversity algorithms, from the most to the less important inthe hierarchical sequence of

diversity algorithms. Each algorithm must receive the contributions from diversities regis-

tered before itself and should check if its properties were not already defined. An example

of hierarchical relation between diversities is the case ofdiversity of cloud provider and

physical host. If an user registers the diversity of cloud provider first, then DiversityAgent

must request the contribution from this diversity before the contribution from diversity of

physical host

4.1.2 Non-functional analysis

Correctness.A correct diversity algorithm is the one that obeys a minimaland a maximal

level of diversity obtention. Regarding the minimal level,DiversityAgent would provide

diversity selection only if it is currently available, which means that if users do not provide

enough diverse resources, DiversityAgent cannot guarantee selecting diverse resources.

Regarding the maximal, DiversityAgent must provide alwaysthe highest level of diversity

as possible, which means accomplishing all possible and diverse combinations before start

repeating resource combinations.

Extensibility.DiversityAgent could provide abstract classes to be extended by diver-

sity algorithms and cloud drivers. Another approach that might contribute to this solution

is the factory design pattern [16], which correlates tags with the respective class instan-

tiation. This way, in order to users extend DiversityAgent,they could modify just some

specific classes and methods, without modifying DiversityAgent’s core algorithms. A

tutorial on how to customise DiversityAgent is presented inAppendix C.

Scalability. DiversityAgent should maintain just the minimal amount of information

necessary regarding client software, which might allow users to deploy large and dis-

tributed services without system degradation caused by scalability issues. Furthermore,

diversity algorithms should have good or optimal complexity time, in order to remain

scalable face to large amounts of available resources.

Maintainability. In order to achieve the highest level of maintainability as possible,

our approach must consider simplicity, modularity, flexibility and code documentation.

Security.DiversityAgent must maintain exactly the same authentication methods and

credentials provided by cloud providers. Providing our component as a library might

be another factor that contributes to this approach, because DiversityAgent should not

provide a secure key storage service.

Recovery.DiversityAgent should provide public interfaces to save and recover infor-

mation about the current resources allocated to client services.

Configuration management.The component should support configuration manage-

ment for dynamic adaptation, for example, upgrades and downgrades regarding the type

Chapter 4. The DiversityAgent 23

of service instances in execution time. CRUD interfaces could be provided regarding all

resources presented on functional requirements, as well asan interface for clients inform

predefined properties, for example, the amount of memory andCPU to be allocated for

each service instance.

Documentation.All DiversityAgent classes should be documented using JavaDoc

specification and tool, allowing users to see internal components properties and methods

within an web browser. Furthermore, all tutorials presented in this work appendices must

be published on DiversityAgent site [10].

Licensing.Our approach must be focused on free and open source code, where any

user can improve the implementation with their own algorithms and drivers. We could

provide DiversityAgent under GNU Lesser General Public License (LGPL), which allows

using this library even with proprietary software. In addition to the customisation tutorial,

there are some notes on publishing users contributions to DiveristyAgent in Appendix C.

4.1.3 Architectural analysis

The architectural analysis consists in presenting DiversityAgent positioning as a com-

ponent to be integrated in client software architecture. A resource manager normally

is responsible for creating, maintaining and removing service instances from the group

of active servers. Such maintenance tasks are requests fromresource managers to cloud

providers in order to create, migrate or delete virtual machines, which can be done through

multiple interfaces supported by each provider. DiversityAgent must be a library compo-

nent that could be instantiated by resource managers to become responsible for preparing

such requests and maintaining information regarding the current service instances. Fur-

ther than this, DiversityAgent must select automatically adiverse resource combination

for each new instance deployment. A possible DiversityAgent positioning in relation to

client software and cloud providers can be seen in diagramb of Figure 4.1. In next sec-

tions, the internal components of DiversityAgent are presented and explained.

Client software

cl
oud01

cl
oud02

cl
oud03

(a) Without DiversityAgent

cl
oud01

cl
oud02

cl
oud03

Client software

Resource
manager

(b) With DiversityAgent

DIVERSIT
AGENT

Resource
manager

Figure 4.1: DiversityAgent positioning.

Chapter 4. The DiversityAgent 24

4.2 Implementation

In the following descriptions, all components existent on Figure 4.2 will be presented, as

well as their importance and contributions to DiversityAgent, a Java library for selecting

cloud resources considering multiple diversity properties.

Figure 4.2: DiversityAgent class diagram.

4.2.1 How does it work?

Collaboration is a key word to explain how DiversityAgent works. There are at least

three parts involved in its collaborative process, namely:clients, diversity algorithms, and

cloud drivers.

When DiversityAgent is instantiated by client resource managers, it creates internally

two factories and one data container that will maintain all information about resources

currently being used or available to the client service in question.1 After such initialisa-

1A factory is basically a component that contains a method that receives a tag (for example a string) and

Chapter 4. The DiversityAgent 25

tion, DiversityAgent is ready to receive the registration of available resources. Clients

are responsible to register all available resources through provided interfaces, as well as,

inform which diversities should be considered on resource selection. All DiversityAgent

public interfaces are presented in Appendix A,

Once a client resource manager requests the creation of a virtual machine, DiversityA-

gent creates an empty list of properties (key value pairs) and requires for each diversity

registered at that moment its contribution to the set of properties. The VM creation pro-

cess is presented on Algorithm 1 and the steps followed by each diversity to create a

contribution is presented on Algorithm 2.

Algorithm 1: Virtual machine creation process.
output: The created virtual machine identifier (Id) on DiversityAgent.

begin
P ← an empty list of properties;
DC ← current data container view;

foreachdiversityD registered in DiversityAgentdo
P ← get contribution ofD considering currentP andDC;

end

C ← get the selected cloud;
Id← requestC to create a VM consideringP andDC;
return Id;

end

Algorithm 2: Get contribution of a diversity algorithm.
input : The current list of properties (P) already defined and data container (DC)
output: The updated list of properties (P) with the contribution of diversity in question.

begin
// create the key of <key, value> pair
K← some key string;

if K ∋ P then
// create the value of <key, value> pair
V ← select a resource (related withK) based onDC;
P ← P

⋃
< K, V >

end
return P ;

end

Once all diversity algorithms return their contributions to the property set, it will be

sent to the selected cloud driver. The cloud driver will receive and parse the properties

to compose the requests and will send them to the selected cloud provider. Clients will

receive a VM identifier from DiversityAgent, which can be used to request more informa-

tion about the VM or delete it later.

returns a new instance of an abstract class implemented by the class associated with that tag. In DiversityA-
gent factories were used on diversity algorithms and cloud drivers.

Chapter 4. The DiversityAgent 26

4.2.2 How is it implemented?

A diagram with all internal DiversityAgent classes is presented on Figure 4.2. The fol-

lowing descriptions are dedicated to explain each one of them.

Client software

Client softwareis a system in which diversity mechanism will be inserted. Itis sup-

posed to contain a component responsible to instantiate theDiversityAgent, which here is

calledResourceManager. This management component registers all available resources

to be considered on resource selection process and requeststhe creation of new service

instances. Other components may exist in client software, even representing other FIT

mechanisms, but the only steps needed regarding the integration between resource man-

agers and DiversityAgent library are: creating an instanceof DiversityAgent, registering

available clouds, VM images and diversities on DiversityAgent, and requesting service

components to create or delete the service instances, whichnormally, are virtual machines

that contain the service code.

DiversityAgent

DiversityAgentclass is the entrance door for interaction with DiversityAgent library. It is

instantiated by a resource manager component within the client software. This class has

oneDataContainerinstance, two factories and provides all public interfacesfor client

software. The only functionality besides the previously mentioned is that when a new

service instance is requested, this class receives the contributions from diversity algo-

rithms, which will be send to cloud drivers in order to createa new replica with a resource

combination diverse from the other replicas.

DataContainer

DataContaineris a class responsible for maintaining all information everregistered about

the client service that is using DiversityAgent. It also provides a global view of infor-

mation for diversity algorithms and cloud drivers similarly to a system snapshots. The

container design pattern [16] was used on this class, and it has lists of all registered and

active clouds, diversities, images and virtual machines allocated to the client service. All

this information can be used by diversity algorithms to choose the appropriated resource

that will be selected as the responsible for allocating it.

VirtualMachine

VirtualMachineclass is the representation of a VM instance that runs the service code. It

is used to maintain internal information about VMs, namely:the identifier on DiversityA-

gent, identifier on cloud provider, name of selected cloud provider, name of the selected

Chapter 4. The DiversityAgent 27

physical host, IP address of the service instance, VM image and amount of memory. Af-

ter each newVirtualMachineinstance be created, it is stored in the current VM list on

DataContainerinstance.

Image

Imageclass is the representation of a VM image, which in its turn contains an operating

system and the service code. This image has to be registered on DiversityAgent compo-

nent and must already exist in cloud providers, thus it is possible to create new VMs using

it. The majority of diversities from support software and application diversity groups can

be provided using VM images metadata.

4.2.3 The diversities

Diversity

Diversity is an abstract class that is used as a model to provide new diversity algorithms

and has one principal method calledgetContribution, which is implemented to provide

their contributions in a standardised way. ThePropertiesJava class is used to provide the

contributions, in such way that, all information inserted by diversities are expressed in

key value pairs, which will be later interpreted by cloud drivers.

On the following paragraphs, the implemented diversity algorithms will be explained,

and a tutorial on creating your own diversity algorithms andproperties is presented in

Appendix C.

DiversityFactory

DiversityFactoryis an auxiliary class that facilitates the insertion of new custom diversi-

ties, through the factory design pattern [16]. It correlates tags, used to register diversity

algorithms on DiversityAgent, and returns an instance of the respective class that imple-

ments the required diversity algorithm for each tag.

Diversity of cloud provider

CloudProvideris a Diversity class implementation and contains one of the most basic

diversity algorithms on cloud computing, which creates diversity selection between dif-

ferent cloud providers. As discussed on previous chapter, it acts at administrative domain

and security diversity groups because by choosing different cloud providers there is a

probability of selecting different management human resources, administrative domains

and security policies.

This diversity algorithm has three possible selection policies: round robin, current

usage and historical usage. The first one simply selects the next provider from a circular

Chapter 4. The DiversityAgent 28

list of available cloud providers. The second consists in choosing the least used cloud

provider at the moment and the third consists in selecting the least used of all times. The

expected behaviour is always to find a cloud provider if at least one is registered and, in

case of a tie on current or historical usage of cloud providers, the first analysed cloud with

the smallest number of service instances running will be chosen.

The contribution of this diversity implementation to the property set is the property

indexed bycloud.namekey and value equal to the name of selected cloud provider. Ifthis

property has already been defined, this algorithm does nothing.

Diversity of Hostname

Hostnameis the secondDiversityimplementation and aims to contribute with the previous

one, increasing the diversity at administrative level, as well as contribute to security and

hardware diversity groups. It allows the selection of different physical hosts that with

some probability will be vulnerability and bugs independent in some contexts like natural

disasters, unauthorised physical access or even physical hardware issues.

This diversity algorithm consists in selecting any physical host that is not being used

by the service in question, within a previously selected cloud provider. As we want to

avoid meta-scheduling approach of fetching all information from all providers, we just

create a property indexed by thehost.name.differkey and populate its value with all hosts

from the chosen cloud provider that are being used by the client service. This way, the

corresponding cloud driver has to know how to require any host different from those

specified by the mentioned property.

The expected behaviour of this algorithm, in contribution with cloud driver algorithm

for this property, is to select any physical host that is not being used by the client service.

If all physical hosts of a cloud provider are being used by theservice, the algorithm has

to allocate a VM in the least used physical host, which means that the host that allocated

less VMs for the service will be chosen.

This diversity algorithm requires a previously selected cloud provider to choose a

physical host within it. With this in mind, the algorithm first verifies if thecloud.name

property already was created on current property set. If it was not created, the algorithm

chooses one cloud provider randomly, and then executes the algorithm of physical host

selection. Ifhost.name.differproperty has already been defined, this algorithm does noth-

ing.

Diversity of Operating System

OperatingSystemis the third and lastDiversity implemented for this thesis and acts at

diversity group of support software, which aims to select anoperating system that is not

being used by other current service instances.

Chapter 4. The DiversityAgent 29

The importance of this diversity implementation already was discussed in Section 3.5,

but as discussed on [19], there are some good evidences that OS diversity plays an impor-

tant role when one wants to achieve vulnerability independence.

The expected behaviour of this diversity algorithm is to select a VM image that con-

tains an operating system that was never used on service instances, or the less used one on

each cloud and physical host. The algorithm first verifies if the received set of properties

already contains a selected VM image, where in this case, this algorithm does nothing. In

opposite case, the algorithm verifies if some cloud provideralready was chosen, where in

this case, the algorithm chooses the least frequently used image on that cloud or host.

The contribution of this algorithm is presented in a property indexed bydisk.image.name

and its value is the name of the selected VM image. To achieve different OS selection,

the creation of an image metadata that contains an operatingsystem name and version is

important, as discussed in Section 3.5. In our case, the information regarding the operat-

ing system of an image is passed during image registering, but the cloud provider should

support this metadata to inform its clients.

An algorithm proposed by Henriques [18] uses a database table that contains all pa-

rameters needed to choose consistently an OS for a requestedVM. It is meant to achieve

the best combination of all active servers, regarding the highest level of vulnerability and

bugs independence through OS diversity. His algorithm can be integrated with Diver-

sityAgent as a new algorithm version for diversity of operating system.

Properties supported by DiversityAgent

Currently, DiversityAgent supports the following properties on diversity algorithms:cloud.name,

disk.image.name, host.name.equalandhost.name.differ. Thecloud.nameproperty is used

to inform the cloud provider name that will be responsible toallocate the next virtual ma-

chine. Thedisk.image.nameproperty is used to present the VM image name to be used on

the next VM. Thehost.name.equalproperty is used to inform that a specific physical host

was selected, and thehost.name.differproperty is used to inform which are the physical

hosts that should not be considered on next resource allocation.

Regarding configuration properties, DiversityAgent supports the following:vm.name.prefix,

vm.name.suffix, vm.cpu, vm.vcpu, vm.memory, andvm.network. Thevm.name.prefixand

vm.name.suffixproperties are used by cloud drivers to register the name of service in-

stances on cloud providers. The VM name is composed by its prefix, its identifier number

on agent and its suffix. Thevm.cpuandvm.vcpuproperties are used to inform how many

physical and virtual CPUs will to be allocated to each service instance, where the virtual

CPUs are what will be informed as allocated to service instances. Thevm.memoryis used

to inform how many megabytes (MB) of memory will be allocatedfor each service in-

stance and thevm.networkis used to inform the virtual network name which will have an

interface connected with service instance.

Chapter 4. The DiversityAgent 30

4.2.4 Cloud drivers

Cloud

Cloud is also an abstract class that contains abstract methods to be implemented by cus-

tom cloud drivers. This class has one abstract method for each CRUD method provided

by DiversityAgentclass and is responsible to translate the defined property set to the re-

quests that will be sent to cloud providers. On Appendix C a tutorial on how creating new

cloud drivers is presented.

CloudFactory

CloudFactoryis an auxiliary class, similar toDiversityFactory, which was also devel-

oped based on factory design pattern [16]. It facilitates the insertion of new custom cloud

drivers. It correlates tags, used to register clouds on DiversityAgent, and returns an in-

stance of respective class for each tag.

OpenNebula

Due to our project context and background knowledge on OpenNebula, we have chosen

it as our first cloud driver implementation. The driver for OpenNebula uses Java OCA

(OpenNebula Cloud API), which is a wrapper for OpenNebula requests that are based on

XML-RPC methods.

The class that implements OpenNebula driver contains just one OpenNebula client

instance and the implementation of some abstract methods proposed onCloud class to

create and delete virtual machines. Besides these methods,this class has some methods

regarding fetching VM metadata and status, which are achieved through the response of

XML-RPC methods.

The method responsible for creating VMs has to parse the defined property set and

create the appropriated request to be sent to cloud provider. In OpenNebula’s case, a VM

template is created, similar to the presented on Listing 4.1, which contains information

regarding the amount of memory and CPU to be allocated, as well as the VM image name

to be used, network interfaces, physical hosts restrictions and other specific information

to the hypervisor.

After VM template creation, it is sent to the cloud provider,which will answer with

an identifier on cloud provider for the new service instance.Once the answer is under the

cloud driver control, it is possible to register that VM identifier, as well as verify if it is

already running and get its IP address and the host name that allocated the VM.

1Available at http://opennebula.org/documentation:archives:rel2.0:java. Accessed on March 19, 2012.

Chapter 4. The DiversityAgent 31

Listing 4.1: OpenNebula VM template example.

NAME = my-server-name
MEMORY = 1024
CPU = 2
DISK = [IMAGE = "some-image-name"]
NIC = [NETWORK = "my-network-name"]
REQUIREMENTS = "HOSTNAME != \"some-host-already-used\""
RAW = [

TYPE = "xen",
DATA = "builder = \"hvm\"

shadow_memory = 8
boot = \"c\""
device_model = \"/usr/lib/xen-default/bin/

qemu-dm\"
]

Chapter 5

Integration and evaluation

In this chapter, we aim to present the DiversityAgent integration with two use cases fore-

seen in CloudFIT and its evaluation regarding correctness and performance terms.

5.1 Integration with CloudFIT use cases

As presented in Section 2.3, CloudFIT is the research project in which this thesis was

developed. FITCH is a system structure proposed by CloudFIT, where DiversityAgent

will be integrated with a resource manager component in order to automatically obtain

diversity during resource selection process. An overview of FITCH is presented in Figure

5.1. There are two use cases foreseen by CloudFIT to FITCH, which are client-server

architectures differentiated by the system model assumptions and mechanisms.

A replicated stateless web service is our first use case, where each client request is

processed independently, unrelated to any other requests previously sent to the service

instance in question or other instances. It is composed by some minimal amount of re-

dundant servers, which has exactly the same service implementation, and are orchestrated

by a load balancer component (Gateway component in Figure 5.1), which forwards clients

requests to redundant servers. The amount of redundant servers (n) depends on the num-

ber of faults (f) that one wants to tolerate and is given by the following expression for

crash faults:

n > f + 1

With this in mind, to tolerate one fault, a system needs at least two redundant servers.

To tolerate two faults, a system needs at least three redundant servers and so on. The

basic idea is that even with faults, there is always at least one more server running and

answering client requests.

A service based on Byzantine fault tolerant state machine replication is our second

use case, where each request is processed in parallel by multiple service replicas and

the majority of replicas answers are compared to achieve a correct service answer. The

number of replicas (n) also depends on the number of faults (f), both crash and arbitrary,

33

Chapter 5. Integration and evaluation 34

DIVERSIT
AGENT

cl
oud01

cl
oud02

cl
oud03

Server 01
(VM)

Server 02
(VM)

Server N
(VM)

Resource
Manager

Gateway

Client 01

Figure 5.1: DiversityAgent integrated with CloudFIT use cases.

that one wants to tolerate and is given basically by the following expression:

n > 3f + 1

Based on this expression, to tolerate one Byzantine fault, asystem needs at least four

service replicas. To tolerate two arbitrary faults, a system needs at least seven service

replicas and so on. The basic idea is that even with Byzantinefaults, the majority of

replicas are always running and answering correctly each client request.

A proactive recovery mechanism is employed in both use casesto tolerate any number

of faults in entire service life time, instead of justf faults. It consists in replacing, from

time to time, an old server by a new and clean one. Based on thisapproach, the window

time available for an attacker to try to stop or disrupt a service is reduced from the entire

service life time to the proactive replacement time of all servers. In the first use case,

the protocol consists in terminating all pending requests,creating a new redundant server

from a safe point, adding this new server to a list of servers on load balancer, removing the

old replica from load balancer list and deleting the server instance on cloud provider. In

the second use case, the replacement consists in terminating all pending requests, creating

a new service replica from a clean state, making it to join thereplica group through some

Chapter 5. Integration and evaluation 35

state machine replication protocol, removing the old replica from the service group and

deleting the server instance in the cloud provider.

The resource manager, in Figure 5.1, is responsible to orchestrate FITCH. It has a

time-triggered process that requests server replacementsand has another process that

controls actions foreseen by protocols when replacements happen. In a case without Di-

versityAgent, the resource manager should also have a process responsible for choosing

resources that will be allocated for each new replica on replacements.

The DiversityAgent is placed between resource manager and cloud providers. It re-

ceives proactive requests and automatically obtains diversity for FITCH. Using this com-

ponent is a modular approach to separate everything relatedwith diversity from other

mechanisms, beyond reducing the size of resource manager component. Diversities re-

garding cloud providers, physical hosts and operating systems were implemented because

it demonstrates that it is possible to obtain diversity frommore than one diversity group

automatically. Other diversity algorithms can be developed through DiversityAgent as

presented in Appendix C.

5.2 Evaluation

In this section we present our experimental environment, and an evaluation of DiversityA-

gent correctness and performance.

5.2.1 Experimental Environment

All physical resources for the experimental environment used on tests that will be pre-

sented on next sections belongs toQuinta, the cluster of Navigators research team. On

Table 5.1 the physical hardware used on evaluations are described.

Regarding software components used on this thesis, the firstto be presented is Open-

Nebula (version 2.0.1), which was our cloud computing management tool. This spe-

cific version was the first that handled scheduling policies through rank and requirements,

which was necessary when expressing the decisions of diversity algorithms.

The main programming language used in this thesis was Java (version 6, from Open-

JDK Runtime Environment and 64-bit Server VM 1.6.018), which is the language used

on all DiversityAgent components.

5.2.2 Correctness Test

The correctness test consists in verifying if DiversityAgent component provides diversity

to the available extent. Our methodology is presented through mathematical proofs and

test executions, in order to match practical with theoretical expected correctness.

Chapter 5. Integration and evaluation 36

Component Quantity Description
Dell PowerEdge 850

Client software 1 Intel Pentium 4 CPU 2.80GHz
1 CPU per node, 1 core per CPU, 2 threads per core

Cloud providers front end 3

2.8 GHz / 1 MB L2 cache
2 GB RAM (2x1GB) / DIMM Synchronous 533MHz (1.9ns)
2 x Broadcom NetXtreme BCM5721 Gigabit Ethernet
Hard disk 80 GB / SCSI

Physical cloud hosts 5

Dell PowerEdge R410
Intel Xeon E5520
2 CPU per node, 4 core per CPU, 2 threads per core
2.27 GHz / 1 MB L2 cache / 8 MB L3 cache
32 GB (8x4GB) / DIMM Synchronous 1066 MHz (0.9 ns)
2 x Broadcom NetXtreme II BCM5716 Gigabit Ethernet
2 x Intel Ethernet interface
Hard disk 146 GB / SCSI

Table 5.1: Experimental environment hardware description.

The mathematical proof result in two main theorems: one to settle correctness for

a single diversity algorithm, and one to settle correctnesswhen combining diversity al-

gorithms. Most of discussion are based on combinatorics andits properties applied on

obtaining diversity from resource selection process.

Definition 1 Combination, in mathematical combinatorics, is the process of selecting

a subset of elements from a finite set, where order does not matter and the number of

combinations is given by the following binomial coefficient:

Cn
p =

n!

p!× (n− p)!
, (5.1)

wheren represents the amount of elements on finite set, andp represents the quantity of

elements that will compose the new subset.

Lemma 1 The quantity of possible combinations of only one element from a finite set

is equal to the amount of elements that compose the entire set.

Proof: From Expression 5.1, we have thatn is the amount of elements on finite set,

which will follow being n. And we have also thatp represents the amount of elements

that will compose the new subset, which in this case is 1. Withthis in mind, the quantity

of possible combinations of only one element is given by the following expression:

Cn
1

=
n!

1!× (n− 1)!
=

n× (n− 1)!

1!× (n− 1)!
=

n

1!
=

n

1
= n (5.2)

Lemma 2The quantity of possible combinations of one element among those provided

on diversity in question is equal to the degree of diversity.

Chapter 5. Integration and evaluation 37

Proof: Considering that the quantity of elements that will composethe new subset

is 1, from a finite set with sizen, and from Expression 5.2, the quantity of possibilities

provided on diversity in question isn. Finally, from the definition of degree of diversity

in Section 3.1,n will always be equal to the degree of diversity.

Theorem 1 If a single Diversity implementation can deploy the same amount of VMs

as the degree of diversity provided, without repeating the resource selected in question,

then it can be considered as correct.

Proof: First, as settled on Lemma 2, it is possible to select the sameamount of possi-

bilities as the degree of diversity. Second, as our meaning of correctness is the capability

of guarantee the highest level of diversity as possible, theDiversity implementation need

to provide at least the same amount of VMs as the degree of diversity, without repeating

the selected resource. This can only be achieved if and only if an algorithm select all

possibilities before start repeating its choices.

Definition 2 In combinatorics, rule of product is a counting principle that focuses on

count the number of ways a task can occur given a series of events, where basically the

number of possibilities of each event is multiplied by others, as the following expression:

Cf = Cn1

p1
× Cn2

p2
...× CnN

pN (5.3)

Lemma 3 The quantity of all possibilities when combining independent resources

through the selection of one element per resource is equal tothe product of all degree of

diversities in question.

Proof: From the rule of product (Expression 5.3) and on Lemma 1 we canachieve the

following expression:

Cf = Cn1

1
× Cn2

1
...× CnN

1
= n1× n2...× nN, (5.4)

which proves that the number of combinations of all resources is given by the product of

all degrees of independent diversity in question.

Lemma 4 If two or more resources have hierarchical relations, then just the child

components can be considered on rule of product.

Proof: Based on the existence of inheritance between resources, when selecting some

child component, automatically a parent components will beselected, which cannot be

considered on rule of product. To exemplify, if we consider 2cloud providers with 2

physical hosts each and 1 cloud provider with 1 physical host, we have two sets of re-

sources: cloud providers (with 3 elements) and physical hosts (with 5 elements). In this

Chapter 5. Integration and evaluation 38

case, if we use both degrees of diversity on rule of product weshould be able to deploy 15

VMs without repeating the resource combination, but this isnot possible, because each

host is connected just to one cloud provider. The correct in this case is to consider just

the number of physical hosts existent, which lead to 5 VM deployments before starting

repeating the resource combination, because when selecting the physical host, automati-

cally we are selecting a cloud provider.

Theorem 2 If any number of independent Diversity implementation can deploy the

same amount of VMs as the product of all degrees of diversity provided in question, with-

out repeating the resource combinations, then they can be considered as correct.

Proof: First, as settled on Lemma 3, it is possible to select the sameamount of re-

source combinations as the product of degrees of diversity in question, if they are not

hierarchically related (Lemma 4). Second, as our meaning ofcorrectness is the capability

of guarantee the highest level of diversity as possible, theDiversity implementation need

to provide at least the same amount of VMs as the product of degrees of diversity, without

repeating resource combinations, which can just be achieveif and only if the algorithm

select all possibilities before start repeating its choices.

Considering the mathematical proofs previously presentedand that all diversities im-

plemented will be used, we choose the following hierarchical diversity order to be used

on resource selection: (1) diversity of operating system; (2) diversity of cloud provider;

(3) diversity of physical host.

Our system is composed by two cloud providers with two physical hosts each and one

cloud provider with only one physical host. In addition, we will provide three VM images

with different Operating Systems (Ubuntu Dapper 6.06 LTS, Ubuntu Intrepid 8.10 and

Ubuntu Oneiric 11.10). Considering our theoretical correctness analysis, with three cloud

providers, five physical hosts and three VM images with different OS. Then DiversityA-

gent should be able to deploy fifteen virtual machines without repeating the resources

combination, remembering that just the number of VM images (3) and physical hosts (5)

are considered in the rule of product, due to hierarchical relation between physical hosts

and cloud providers.

Our methodology for this test consists in deploy sixteen (16) service instances to ver-

ify the correctness of diversity algorithms. This is possible because the previously pre-

sented proofs, which leads to conclude that will be possibleto select fifteen (15) different

compositions before starting repeating some previous configuration.

The algorithm implemented to correctness test is just a simple resource manager that

registers the resources available and requests virtual machines creation, presentation or

deletion. The basic steps are presented on Algorithm 3.

After the execution of Algorithm 3, we obtain the resource distribution presented on

Chapter 5. Integration and evaluation 39

Algorithm 3: Correctness test algorithm.

create a new instance of DiversityAgent;
create clouds(cloud provider 01, cloudprovider 02, cloudprovider 03);
create images(Ubuntu Dapper, Ubuntu Intrepid, Ubuntu Oneiric);
create diversities(OPERATINGSYSTEM, CLOUD, PHYSICALHOST);
for i=0 ; i <16 ; i++ do

create a virtual machine;
end
for i=0 ; i <16 ; i++ do

print information about VM(i);
delete VM(i);

end

VM ID Cloud Provider ID on Cloud Host VM IP Address OS Name
0 cloud provider 01 270 s4 192.168.2.33 Ubuntu Dapper 6.06
1 cloud provider 02 0 s6 192.168.2.39 Ubuntu Intrepid 8.10
2 cloud provider 03 1935 s7 192.168.2.46 Ubuntu Oneiric 11.10
3 cloud provider 02 1 s5 192.168.2.40 Ubuntu Dapper 6.06
4 cloud provider 03 1936 s7 192.168.2.47 Ubuntu Dapper 6.06
5 cloud provider 01 271 s3 192.168.2.34 Ubuntu Intrepid 8.10
6 cloud provider 03 1937 s7 192.168.2.48 Ubuntu Intrepid 8.10
7 cloud provider 01 272 s4 192.168.2.35 Ubuntu Oneiric 11.10
8 cloud provider 02 2 s6 192.168.2.41 Ubuntu Oneiric 11.10
9 cloud provider 02 3 s6 192.168.2.42 Ubuntu Dapper 6.06
10 cloud provider 01 273 s3 192.168.2.36 Ubuntu Dapper 6.06
11 cloud provider 01 274 s4 192.168.2.37 Ubuntu Intrepid 8.10
12 cloud provider 02 4 s5 192.168.2.43 Ubuntu Intrepid 8.10
13 cloud provider 02 5 s5 192.168.2.44 Ubuntu Oneiric 11.10
14 cloud provider 01 275 s3 192.168.2.38 Ubuntu Oneiric 11.10
15 cloud provider 01 276 s4 192.168.2.32 Ubuntu Intrepid 8.10

Table 5.2: Resource distribution result of correctness test execution.

Table 5.2, which is also presented hierarchically in Figure5.2.

Based on this results, the correctness of all diversities acting together is basically

proved, since the first 15 deployments used different configurations and on 16th deploy-

ment it started to repeat some previous choices.

5.2.3 Performance Test

The performance test consists basically in verifying if DiversityAgent component causes

a substantial overhead to client software that use it to obtain diversity through cloud com-

puting resource selection. Our methodology is to follow a mathematical composition of

each time element to be considered and present the overhead caused by DiversityAgent

Chapter 5. Integration and evaluation 40

Figure 5.2: Hierarchical view of correctness test result for the first 15 VMs.

component. Our approach was to instrument the source code toobtain the exact and real

values for time components representing each task. The complete list of timing metrics

that will be considered on this performance test are presented on Table 5.3.

Time Description
Ta Time of one VM deployment with DiversityAgent.
Tb Time of one VM deployment without DiversityAgent.
T1 Diversity properties preparing time.
T2 Properties parsing time.
T3 Cloud request preparing time.
T4 Cloud asynchronous request time.
T5 VM pending time.
To The real time representing the overhead.

Table 5.3: Time composition of performance test.

The first element to be calculated is the time spend with a deployment of only one

VM using DiversityAgent. This time (Ta) is composed by the sum of all task times (from

T1 to T5), resulting in Expression 5.5.

Ta = T1 + T2 + T3 + T4 + T5 (5.5)

The second element is exactly the same time spend with a deployment of only one

VM, but now without DiversityAgent, which is given by the variable Tb. For this time

computing, a client similar to an architecture controller was created, which requests stat-

ically the same amount of virtual machines for each cloud provider as the previous case.

This metric is given by the sum of some task times (fromT3 to T5) in Expression 5.6.

Chapter 5. Integration and evaluation 41

Tb = T3 + T4 + T5 (5.6)

Considering the difference ofTa andTb definitions, it is already possible to conclude

that the only differences between DiversityAgent usage or not are time components rep-

resented byT1 andT2. Thus, the real time representing the overhead (To) is given by the

sum of this two elements, as shown in Expression 5.7.

To = T1 + T2 (5.7)

Finally, the best overhead presentation is to represent it through the ratio between real

overhead time and total virtual machine deployment time, asshown in Expression 5.8.

Overhead =
To

Ta

(5.8)

After all variables being settled, it is possible to executethe performance test and

gather time results of each task. The results ofTa, Tb, To andOverhead, from fifteen VM

creations on each cloud, are presented in Table 5.4, in seconds.

Time cloud provider 01 cloud provider 02 cloud provider 03

Ta

min 118 110 149
max 130 114 152
avg 127 111 150
mean 124 112 150

Tb

min 120 109 149
max 129 122 152
avg 124 115 150
mean 124 115 150

To

min 0.000038 0.000039 0.000039
max 0.0047 0.000073 0.00012
avg 0.000974 0.000048 0.000053
mean 0.0023 0.000056 0.00008

Overhead 0.000007 0.0000004 0.0000003

Table 5.4: Performance test results in seconds and final overhead.

Based on this results, it is possible to verify and proof thatDiversityAgent does

not cause a substantial overhead when a small amount of resources is considered. The

overhead caused by our component, considering an average among all clouds, is near to

Chapter 5. Integration and evaluation 42

0.00025% and in the worst case, it is 0.0007%, which also is a good result. High varia-

tions on deployment time in the same cloud occurs because deployment time is composed

by three time components: scheduling, transferring and booting, which create such diver-

gences. Difference between different clouds can be caused by many internal factors like

network or processing overload, service uptime (aging issues) or scheduling tasks.

Analysing algorithm complexity time is important for scalability. Diversity properties

creation (T1) is a task where all registered diversities provide their contributions and the

more registered diversities, the more time it takes. In our case, we have three diversity

algorithms that separately have their own internal complexity time.

Cloud provider diversity has a linear (O(n)) complexity time, once it has to select a

cloud provider that has never been used or the less used from the entire set of registered

cloud providers. Host name diversity algorithm has a polynomial (O(m×n)) complexity

time, but it depends on two resources, the virtual machines running the service and the

physical hosts that already were used by client system. The last algorithm, regarding

diversity of operating systems, is polynomial (O(m×n)) to select a never used VM image,

but if it is not found at first time, other methods for selecting the VM image are executed.

For example, find an image that has never been used in some cloud (O(m× n× p)), find

an image that has never been used in some physical host (O(m×n2)), and select a random

image (O(n/2)) as last resource.

Properties parsing (T2) is an algorithm where all properties are translated to cloud

request language and the more properties, the more time it takes. Current DiversityAgent

version only has OpenNebula cloud driver, which parses all supported properties. From

this point of view, the complexity time is linear (O(n)), but we have to consider that the

host.name.differproperty is composed by a list of physical hosts that should be avoided

on resource selection in question, which leads to a polynomial complexity time of (O(m×

n)).

At the end, DiversityAgent has a polynomial complexity timewhen considering all

diversity algorithms implemented, because the property set is composed in a task that is

a sequence of all algorithms previously discussed, which leads to the summation of all

complexity time. Improving complexity time is a good start point to improve DiversityA-

gent performance. Previous complexity analysis shows thatdiversity algorithms are not

scalable for really large amounts of resources and servers,but for CloudFIT use cases

it was efficient enough. Proving that automatic diversity obtention in cloud computing

resource selection is possible was our initial step, but future steps can consider obtaining

diversity even more effectively with better complexity time. Resource selection through

binary search or balanced search trees can provide logarithmic complexity time, which is

a much better result in complexity terms.

Chapter 6

Conclusions

6.1 Final remarks

This thesis focused in obtaining automatically diversity from cloud computing resource

selection. Our two main scientific contributions arose fromthis general goal: an analysis

of diversity in cloud computing scenario and a library for automatic obtention of diversity.

In addition, some basic mechanisms of fault and intrusion tolerance were presented, the

state of the art on diversity in cloud computing was analysed, and a contextualisation of

this thesis with CloudFIT project was provided.

Regarding our first contribution, a diversity analysis in cloud computing environ-

ments, we proposed some minor modifications to existent diversity taxonomies to obtain a

dry classification. Beyond such classification, we analysedall diversity groups occurrence

in cloud computing scenario and indicated opportunities for IaaS providers improve di-

versity management area. More than fifty properties were identified, where four are from

application diversity group, fourteen from administrative, ten from geographic location,

nine from support software, nine from hardware and six from security diversity group.

From the fifty two properties, only eight are completely supported by OpenNebula and

thirteen by Amazon. Amazon still partially supports eighteen properties through the us-

age of generic tags. We believe that there are still a considerable amount of diversities

opportunities to be defined and we expect all to be compatiblewith DiversityAgent.

Comparing both cloud players, Amazon supports more VM imagemetadata than

OpenNebula, but it provides less hardware information. Diversity properties regarding

geographic location is almost not supported either by Amazon or by OpenNebula. Ama-

zon supports generic tags for resources, which is a solutionthat partially support some

properties.

Big exchange proposals are not always well regarded by established companies like

Amazon. Cloud providers may not agree to inform all proposedproperties, once there are

commercial risks and extra costs in publishing and maintaining all information addressed

on this thesis, but we consider such discussion an importantstep on diversity management

43

Chapter 6. Conclusions 44

area. Our aim was to present and discuss as many properties aspossible to accomplish an

extensive diversity analysis.

Concerning our second contribution, we developed the DiversityAgent, a Java library

for automatic diversity obtention during cloud computing resource selection. This com-

ponent was designed considering four functional, nine non-functional requirements and

some well known design patterns. We established a collaborative approach for diversity

properties composition, which was presented in details itsworking processes. In addi-

tion, we explained the DiversityAgent internal composition, as well as, the diversities and

cloud drivers implemented.

Diversity of cloud providers, physical hosts and operatingsystems are the three diver-

sities implemented within this thesis. The only completelysupported property from this

three by OpenNebula is the physical host. Cloud provider is aproperty that is achieved

externally to OpenNebula, because it exist just in federated or cloud-of-clouds scenarios.

Operating system name is a property that is not supported by OpenNebula, but we circum-

vented this limitation in our algorithm through the VM imagename composition by more

information than the normally required. OpenNebula is the cloud tool chosen by Cloud-

FIT and is the only cloud driver implemented on DiversityAgent. There are tutorials on

how to use or customise the DiversityAgent on this document appendices.

DiversityAgent was integrated with two use cases foreseen in the CloudFIT project.

The first is basically a stateless web server and the second isa service based on state

machine replication. Both use cases consider proactive mechanisms and positioned Di-

versityAgent between the client resource manager and the cloud providers, in order to

obtain diversity automatically by using our component.

A correctness analysis was provided, giving proofs that implemented diversity algo-

rithms can be considered as correct from functional requirements perspective. We believe

that there are many other possible correct algorithms, eachone depending on correctness

meaning and requirements. Our focus was to prove that it is possible to obtain several di-

versities automatically and provide a generic library for this task. Regarding performance,

we verified that even with low overhead in CloudFIT use cases,which considered small

amount of resources, the diversity algorithms and cloud drivers can be improved in order

to reduce the complexity time. One possible approach for such improvement is consider

binary tree search in resource selection process, instead of the current linear model.

DiversityAgent evolution and continuity were also this thesis concerns, once we em-

ployed techniques that facilitate DiversityAgent usage, customisation and maintainability.

It is a free and open source software available in its page [10] on Google Project Hosting,

under the GNU Lesser General Public License (LGPL v3.0). We hope this library may

contribute to many future Navigators and external projectsto fill some open problems in

diversity management area.

Chapter 6. Conclusions 45

6.2 Future work

In this section we present some opportunities of continuityon DiversityAgent develop-

ment and diversity management area improvements. The first possible step is to transform

DiversityAgent in a multi service agent, in order to declarejust one component instance

for all services of a given client. We decided by this single service approach because the

use cases foreseen in CloudFIT just consider one service pertime. Other motivation is

because it is simpler and easier to promote the first DiversityAgent version, as well as

gather contributors to develop extensions for the component.

Regarding component extensions, the second possible future work is one of the most

important, which is the creation of more cloud drivers and diversity algorithms. The cloud

computing model is a growing market, where each time more players are coming up. With

this in mind, we identify the need of implementing more options of cloud drivers to follow

cloud computing growth and become a useful solution for manyresearching projects, as

well as a reference for industry products. At the same time, to reach new users and

scientific niches we identify the same need of implementing more options of diversity

properties and algorithms.

The third possible future step encompasses the promotion ofall diversity opportunities

pointed by our analysis to the largest number possible of cloud computing players. This is

extremely important for diversity management area and its evolution, in order to became

a half- or completely solved problem in computing.

The last future work is the integration of our component withtools dedicated to pro-

vide automatic creation of diversity, once our solution is focused on obtaining diversity

only during resource selection phase. Tools able to automatically create VM images are

really important in a partnership with DiversityAgent to provide a complete solution on

automatic diversity management. Our tool could select resources that only exist in Diver-

sityAgent and request their on-demand creation on cloud providers.

Appendix A

DiversityAgent public interfaces

This appendix contains the DiversityAgent public interfaces explained.

A.1 Initialising DiversityAgent

There are two main ways to instantiate the DiversityAgent library. The first one is using

the simplest constructor, without any argument, as follow:

public DiversityAgent();

The second is passing as argument a path to a recoverable state file. This file basi-

cally consist in aDataContainerobject that extended theSerializableJava class, which

was previously stored with thesaveStateinterface. The constructor in this case is the

following:

public DiversityAgent(String theRecoveryStateFile);

A.2 Announcing cloud providers

After DiversityAgent initialisation, its clients can register which are the cloud providers

that can be used on resource selection process. The interface to register a cloud is the

following:

/**
* Register a cloud provider in the current session.

* @param theCloudName A identifier name for the cloud provider.

* @param theTool The tag that define which cloud driver will be used.

* @param theType The cloud deployment model (private, public or hybrid).

* @param theAddress The IP address to the cloud provider’s front-end.

* @param theUsername The user registered on the cloud provider.

* @param thePassword The password registered for the user.

* @return The successfulness of registering the cloud provider.

*/
public boolean createCloud(String theCloudName,

String theTool,
String theType,
String theAddress,
String theUsername,
String thePassword);

47

Appendix A. DiversityAgent public interfaces 48

As DiversityAgent is a dynamic component, client can removecloud providers in

execution time, through the following interface:

/**
* Remove a cloud provider in the current session.

* @param theCloudName The identifier name registered to be removed.

* @return The successfulness of removing the cloud provider.

*/
public boolean deleteCloud(String theCloudName);

A.3 Providing VM images

Similarly to cloud provider, DiversityAgent clients have to inform which virtual machine

images are registered in which cloud provider, in order to select them when a virtual

machine creation is required. The interface to publish a VM image registered in all cloud

providers is the following:

/**
* Register a VM image as available in all clouds already registered.

* @param theImageName The VM image name to be registered.

* @return The successfulness of registering the VM image.

*/
public boolean createImage(String theImageName);

If the client has some images that are not registered in all cloud providers, then he can

register VM images in each cloud provider separately, as follow:

/**
* Register a VM image as available in some clouds already registered.

* @param theImageName The VM image name to be registered.

* @param theCloudNames The clouds to be linked to the VM image.

* @return The successfulness of registering the VM image.

*/
public boolean createImage(String theImageName, String theCloudNames[]);

The same specific process can be done when deleting VM images from a cloud provider:

/**
* Unregister a image from a specific cloud provider.

* @param theImageName The VM image name to be unregistered.

* @param theCloudName The cloud provider that is linked to the image.

* @return The successfulness of deleting the VM image in that cloud.

*/
public boolean deleteImage(String theImageName, String theCloudName);

If the image is registered in all cloud providers, clients can delete the image from all

providers at the same time.

/**
* Unregister a image from all registered cloud providers.

* @param theImageName The VM image name to be unregistered.

* @return The successfulness of deleting the VM image in all clouds.

*/
public boolean deleteImage(String theImageName);

If clients want to delete all image from a specific cloud provider, they can use the

following interface:

Appendix A. DiversityAgent public interfaces 49

/**
* Unregister all VM images from a specific cloud provider.

* @param theCloudName The cloud provider name to be unlinked to all images.

*/
public void deleteAllImagesFromCloud(String theCloudName);

A.4 Working with diversities

Obtaining diversity automatically is the main goal of DiversityAgent. Clients have to

register which are the diversities that our component should consider on resource selection

process. The interface to add diversities is the following:

/**
* Register one or more diversities in the current session.

* @param theDiversities Group of diversities to be registered in the DataContainer.

* @return The successfulness of registering the diversities.

*/
public boolean createDiversity(String theDiversities[]);

While the interface to delete diversities from the considered range is the following:

/**
* Remove one or more diversities from the current session.

* @param theDiversities Group of diversities to be removed from the DataContainer.

* @return The successfulness of removing the diversities.

*/
public boolean deleteDiversity(String theDiversities[]);

A.5 VM related requests

Processing resources are selected by DiversityAgent considering diversities previously

registered. Clients can request the creation of virtual machines through the following

interface:

/**
* Create a new Virtual Machine through the usage of all diversities.

* registered in current state.

* @return The successfulness of creating the VM.

*/
public int createVm();

The same creation can be done if clients already decided on some resource selection,

through the passage of their own property set:

/**
* Create a new Virtual Machine through the usage of all diversities

* and helped by some properties passed as argument.

* @param theProperties Some properties to be considered on the resource selection.

* @return The successfulness of creating the VM.

*/
public int createVm(Properties theProperties);

After the VM creation, it is possible to read information about the created server:

Appendix A. DiversityAgent public interfaces 50

/**
* Read the instance of VirtualMachine indexed by the ID on agent.

* @param theVmIdOnAgent The identifier of the instance to be read.

* @return The VM instance indexed on agent by the identifier.

*/
public VirtualMachine readVm(int theVmIdOnAgent);

As well as it is possible to just fetch the IP address of a specific VM:

/**
* Read the IP address of a specific VirtualMachine.

* @param theVmIdOnAgent The identifier of the instance to be read.

* @return The IP address of the specified VM.

*/
public String readVmIpAddress(int theVmIdOnAgent);

It is possible to remove a virtual machine from the service group through the following

interface:

/**
* Remove a Virtual Machine from the current group.

* @param theVmIdOnAgent The identifier of the instance to be removed.

* @return The successfulness of removing the VM.

*/
public boolean deleteVm(int theVmIdOnAgent);

A.6 Recovery feature

Recovering service state is an important feature for fault tolerant components, once through

the following interface it is possible to recovery a previously saved state:

/**
* Load an instance of DataContainer to the current session.

* @param theFileName Path to the file to be read in order to load the state.

* @return The successfulness of loading the state contained in the file.

*/
public boolean loadState(String theFileName);

To save the state at any execution time, clients can use the following interface:

/**
* Save the current instance of DataContainer in a file.

* @param theFileName Path to the file to be created or overwritten.

* @return The successfulness of saving the state in the file.

*/
public boolean saveState(String theFileName);

Appendix B

Using DiversityAgent

This tutorial explains how to use DiversityAgent in client systems. It is divided into three

sections, from preparation phase, to basic and advanced usage.

B.1 Preparing

The preparation phase consists in obtaining the required packages and positioning them

on your project folder. Obtaining a functional DiversityAgent package is the first step to

be done, and can be achieved through two different ways.

B.1.1 Obtaining from DiversityAgent site

Download the latest stable version of DiversityAgent from the Downloads page [10]. It

will fetch a previously compiled package, which was createdfollowing the same steps of

source code based (explained in next section).

$ wget http://diversity-agent.googlecode.com/files/DiversityAgent-v0.1b.jar

B.1.2 Obtaining from DiversityAgent source code

Checkout the DiversityAgent source code from the SVN repository. It will fetch the

current stable version of all DiversityAgent classes source code.

$ svn checkout http://diversity-agent.googlecode.com/svn/trunk/ diversity-agent

Create a new folder for some required libraries inside the diversity-agent directory and

download DiversityAgent dependencies (see Downloads).

$ cd diversity-agent
$ mkdir lib
$ cd lib
$ wget http://diversity-agent.googlecode.com/files/opennebula-client-2.0.1.jar
$ wget http://diversity-agent.googlecode.com/files/ws-commons-util-1.0.2.jar
$ wget http://diversity-agent.googlecode.com/files/xmlrpc-common-3.1.2.jar
$ wget http://diversity-agent.googlecode.com/files/xmlrpc-client-3.1.2.jar
$ cd ..

51

Appendix B. Using DiversityAgent 52

Compile all DiversityAgent classes linking them with fetched libraries.
$ javac -cp \
"lib/opennebula-client-2.0.1.jar:lib/ws-commons-util-1.0.2.jar:lib/xmlrpc-client-3.1.2.

jar:lib/xmlrpc-common-3.1.2.jar:." \
src/diversity_agent/*.java src/drivers/*.java src/diversities/*.java

Create a manifest file, which will contain information regarding the utility JAR files

existent in lib directory.
$ cat > MANIFEST.MF << EOF
Manifest-Version: 1.0
Created-By: 1.6.0_20 (Sun Microsystems Inc.)
Class-Path: lib/opennebula-client-2.0.1.jar lib/ws-commons-util-1.0.2.jar lib/xmlrpc-

client-3.1.2.jar lib/xmlrpc-common-3.1.2.jar

EOF

Create the DiversityAgent JAR to be used by other applications.
$ jar cvfm DiversityAgent-v0.1b.jar MANIFEST.MF -C src . lib

B.1.3 After obtaining the package

Move the DiversityAgent package to your application folder. The $PATHTO APP vari-

able is the path location of your application folder root.
$ mv ./DiversityAgent-v0.1b.jar <$PATH_TO_APP>/lib

B.2 Basic usage

The basic usage consists in importing the DiversityAgent, coding some basic interactions

with it, compiling and running the client system. Import theDiversityAgent class in your

application resource manager component.
...
import diversity_agent.DiversityAgent;
...

Create a DiversityAgent instance for your service.
...
DiversityAgent myAgent = new DiversityAgent();
...

Register available cloud providers, VM images and diversities.
...
// Registring a cloud provider
myAgent.createCloud("my_cloud_01_name", "OPEN_NEBULA", "Private", "192.168.2.140",

"username", "password");

// Registering an available VM image
myAgent.createImage("Ubuntu Oneiric 11.10#GNU/Linux#Ubuntu 11.10");

// Registering diversities to be considered on resource selection
myAgent.createDiversity(new String[] {"OPERATING_SYSTEM","CLOUD","PHYSICAL_HOST"});
...

Appendix B. Using DiversityAgent 53

Create and delete service instances, considering that using the createVm interface

without any argument means that the registered clouds are configured accordingly with

the default DiversityAgent properties.
...
int id;
id = myAgent.createVm();
myAgent.deleteVm(id);
...

B.3 Advanced usage

Providing a predefined property set is the current way to configure some VM aspects

without modifying the DiversityAgent source code. Such provisioning is also important

when you want to ignore some diversity algorithm during virtual machine creation. For

both use cases, create an empty property set on your resourcemanager, include an exis-

tent property with valid values and request the creation of anew server considering such

properties.
...
int id;
Properties myProperties = new Properties();
//inserting VM properties
myProperties.setProperty("vm.cpu", "4");
myProperties.setProperty("vm.vcpu", "4");
myProperties.setProperty("vm.memory", "8192");
myProperties.setProperty("vm.network.name", "Private");
// inserting diversity properties
myProperties.setProperty("cloud.name", "my_cloud_01_name");
id = myAgent.createVm(myProperties);
...

Once a virtual machine is created through createVm, the interface will return an in-

ternal identifier regarding the created VM, which is meaningful only in DiversityAgent

context. Use the readVm interface to obtain further information regarding the created

virtual machine.
...
VirtualMachine myVm = myAgent.readVm(id);
System.out.println("Identifier on agent: " + id);
System.out.println("Identifier on cloud: " + myVm.getIdOnCloud());
System.out.println("Cloud name: " + myVm.getCloudName());
System.out.println("Host name: " + myVm.getHostName());
System.out.println("VM IP address: " + myVm.getIpAddress());
System.out.println("VM IP address: " + myAgent.getIpAddress(id);
System.out.println("VM image: " + myVm.getImageName());
System.out.println("VM memory (in MB): " + myVm.getMemory());
...

The last advanced usage topic is the recovery feature. You can save or load all infor-

mation maintained by DiversityAgent on its DataContainer about the service session in

question, through the following interfaces.
...
myAgent.saveState("/tmp/DiversityAgent.state");
myAgent.loadState("/tmp/DiversityAgent.state");
...

Appendix B. Using DiversityAgent 54

B.4 Finalising

All resources created with or registered in DiversityAgentcan be deleted or removed from

current state at any time. Clean the entire service session with the following steps.

...
for(int i=0 ; i<myVmIdGroup.size() ; i++){

mDiversityAgent.deleteVm(myVmIdGroup.get(i));
}
myAgent.deleteImage("Ubuntu Oneiric 11.10");
myAgent.deleteCloud("my_cloud_01_name");
myAgent.deleteDiversity(new String[] {"OPERATING_SYSTEM","CLOUD","PHYSICAL_HOST"});
...

Appendix C

Customizing DiversityAgent

C.1 Creating new diversity algorithms and properties

We provide a modular structure where it is possible to insertnew diversities through the

following steps. To exemplify, we will explain how to createa new diversity for software

support to obtain hypervisor diversity (e.g. Xen, KVM, Hyper-V, VMWare, etc).

Create aHypervisorclass that extendsDiversity class in aHypervisor.javafile and

save this in diversities folder (DiversityAgent/src/diversities).

package diversities;
public class Hypervisor extends diversity_agent.Diversity {

...
}

Create the class constructor and define the diversity group.

...
public Hypervisor() {

mDiversityAxis = diversity_agent.DIVERSITY_AXIS.SUPPORT_SOFTWARE;
}

...

Implement thegetContributionabstract method, which receives a property set and

a DataContainerinstance copy with DiversityAgent current state. Imagining that your

property is a list of all hypervisors that already were used by your service and that

you want to avoid in next VM creations, then you can define, forexample,hypervi-

sor.name.differas your property key.

...
public Properties getContribution(Properties theProperties, DataContainer

theDataContainer) {
//Verify if your property does not exist
if(theProperties.getProperty("hypervisor.name.differ") != null){

return theProperties;
}
//Define an algorithm to get all hypervisors already used
...
//Add your property to the property set
theProperties.setProperty("hypervisor.name.differ", myHypDifferList.

toString());
//Return the new set of properties
return theProperties;

}

55

Appendix C. Customizing DiversityAgent 56

...

Create a tag and define it to instantiate yourHypervisorclass onDiversityFactory

source code. Normally, this tag is different of property key, because it will be used for

other purposes. It is not a standard, but it can be defined in uppercase, for example,

“HYPERVISOR”.

...
package diversity_agent;
...
public class DiversityFactory {

public Diversity getDiversity(String theDiversity) {
Diversity aDiversity = null;
if(theDiversity.equals("CLOUD")) {

aDiversity = new diversities.CloudProvider();
} else if (theDiversity.equals("PHYSICAL_HOST")) {

aDiversity = new diversities.Hostname();
} else if (theDiversity.equals("OPERATING_SYSTEM")) {

aDiversity = new diversities.OperatingSystem();
} ...
//Here your code starts
} else if (theDiversity.equals("HYPERVISOR")){

aDiversity = new diversities.Hypervisor();
}
//Here it ends
return aDiversity;

}

}
...

Modify cloud drivers to make them aware of your properties, which in this case is

done onOpenNebula.javafile available on drivers folder (DiversityAgent/src/drivers).

...
public VirtualMachine createVm(Properties theProperties, DataContainer

theDataContainer) {
...

if(theProperties.getProperty("hypervisor.name.differ") != null) {
//Define an algorithm to insert all hypervisors already used in

your request or template
//In OpenNebula, we could use the following expression in

template:
//REQUIREMENTS = "HYPERVISOR != \"vmware\" & HYPERVISOR != \"xen

\""
...

}

//The request to cloud provider is exactly the same
...

}
...

The new diversity is available to be used by DiversityAgent clients. Register the

created diversity on your DiversityAgent instance and request creation of new VMs.

...
myAgent.createDiversity(new String[] {"HYPERVISOR"});

...

Appendix C. Customizing DiversityAgent 57

C.2 Creating new cloud drivers

We provide a modular structure to create new cloud drivers that is similar to the previously

presented for diversities. The new driver must implement the methods existent inCloud

abstract class and atcreateVmmethod it should take care of all description properties

already existent or registered by all diversities. To exemplify, we will explain how to

create a new cloud driver for Amazon EC2 interface.

Create aAmazonEC2class that extendsCloud class in aAmazonEC2.javafile and

save this in drivers folder (DiversityAgent/src/drivers).

package diversities;
public class AmazonEC2 extends diversity_agent.Cloud {

...
}

Create the class constructor, where you will receive all information required to create a

connection with the cloud provider. The first four (cloud name, tool, type and IP address)

must be passed to theCloudclass constructor. There is an official API calledAWS SDK for

Java1, provided by the Amazon Web Services, which could be used to help the creation

of this cloud driver, similarly as the Java OCA was used on OpenNebula driver.

...
public AmazonEC2(String theCloudName, String theTool, String theType, String

theAddress, String theUsername, String thePassword)
{

super(theCloudName, theTool, theType, theAddress);
//Create a client connection with the cloud provider fron end
//If the connection succeed

//Then you can maintain the connection open in a global property
//or just save the authentication credetials to future

connections
//Else

//Inform the client that was not possible to connect with cloud
provider and why

}
...

Implement thecreateVmabstract method, which receives a property set and aData-

Containerinstance copy with DiversityAgent current state.

...
public VirtualMachine createVm(Properties theProperties, DataContainer

theDataContainer)
{

//Create a new diversity_agent.VirtualMachine instance
//Set the cloud provider name on VirtualMachine instance
//Set the VM image name on VirtualMachine instance
//Prepare the template or request
//Request the VM creation to the cloud provider
//Get the VM identifier on cloud and set it on VirtualMachine instance
//Wait the VM be running
//Get the VM IP address and set it on VirtualMachine instance
//Get the host name on cloud and set it on VirtualMachine instance
//Increment the number of VMs running and created on this cloud instance
//Return the VirtualMachine instance created

}
...

1Available at http://aws.amazon.com/sdkforjava/. Accessed on March 19, 2012.

Appendix C. Customizing DiversityAgent 58

Such VM creation has to consider all properties supported inDiversityAgent version

which you are using, even if there are properties not defined on property set received by

argument. The next step is implement thedeleteVmabstract method, which receives the

VM identifier to be deleted on cloud provider.

...
public boolean deleteVm(int theVmIdOnCloud)
{

//Request to the cloud provider delete the VM identified by the Id
passed as argument

//Return the successfulness on deleting the VM
}

...

You have to implement also thereadVmmethod, which returns some VM metadata

(passed as argument) from the cloud provider and thegetVmStatusmethod, which returns

the current VM status on cloud provider. After providing allmethods required, create a

tag and define it to instantiate yourAmazonEc2class onCloudFactorysource code. It is

not a standard, but it can be defined in uppercase, for example, “AMAZON EC2”.

...
package diversity_agent;
...
public class CloudFactory {

public Diversity getCloud(String theCloudName, String theTool, String theType,
String theAddress, String theUsername, String thePassword) {

Cloud aCloud = null;
if(theTool.equals("OPEN_NEBULA")) {

...
} else if (theDiversity.equals("AMAZON_EC2")){

aCloud = new drivers.AmazonEC2(theCloudName, theTool, theType,
theAddress, theUsername, thePassword);

}
return aCloud;

}
...
}

C.3 Publishing contributions

DiversityAgent is a free and open source software under GNU Lesser General Public

License (LGPL v3.0), which means that it can be used even in proprietary software. We

decided by this license to allow users freely choose which license they will provide their

software and systems that uses DiversityAgent.

Modularising software since development beginning can contribute to provide eas-

ier extension and contribution to open source community. Feel free to produce your own

diversity algorithms, properties and cloud drivers for DiversityAgent, and if you feel com-

fortable to spread your contribution, publishing it in official DiversityAgent page will be

a pleasure.

Abbreviations

API Application Programming Interface
AVI Attack, Vulnerability and Intrusion
AWS Amazon Web Services

BFT Byzantine Fault Tolerance

COTS Commercial Off-The-Shelf
COW Copy-On-Write
CPU Central Processing Unit
CRUD Create, Read, Update and Delete

DBMS Database Management Systems
DSA Digital Signature Algorithm

FCT Fundação para Ciência e Tecnologia
FIT Fault and Intrusion Tolerance
FITCH Fault and Intrusion Tolerant Cloud Computing

Hardpan
FTP File Transfer Protocol

GPS Global Positioning System

IaaS Infrastructure as a Service
IP Internet Protocol
ISO International Organization for Standardization
ISP Internet Service Provider

JDK Java Development Kit

LAN Local Area Network
LaSIGE Laboratório de Sistemas Informáticos de Larga

Escala
LGPL GNU Lesser General Public License
LRU Least Recently Used
LTS Long Term Support

MTBF Mean Time Between Failures

61

Abbreviations 62

MTTF Mean Time To Failure
MTTR Mean Time to Recover

NVD National Vulnerability Database

OCA OpenNebula Cloud API
OS Operating System
OTS Off-The-Shelf

PaaS Platform as a Service

RPC Remote Procedure Call
RSA Rivest/Shamir/Adleman algorythm
RTT Round Trip Time

SaaS Software as a Service
SDK Software Development Kit
SMR State Machine Replication
SSH SSH Secure Shell

TPM Trusted Platform Module

VM Virtual Machine
VMM Virtual Machine Monitor

WAN Wide Area Network

XML Extensible Markup Language

Bibliography

[1] Algirdas Avižienis. Design of fault-tolerant computers. In Proceedings of the

November 14-16, 1967, fall joint computer conference, AFIPS ’67 (Fall), pages

733–743, New York, NY, USA, 1967. ACM.

[2] Algirdas A. Avižienis. Fault-tolerance and fault-intolerance: Complementary ap-

proaches to reliable computing.SIGPLAN Not., 10:458–464, Apr. 1975.

[3] Algirdas A. Avižienis and Liming Chen. On the implementation of N-version pro-

gramming for software fault tolerance during execution. InProc. COMPSAC 77, 1st

IEEE-CS Int. Comput. Software Appl. Conf., pages 149–155. IEEE, Nov. 1977.

[4] Alysson N. Bessani. From byzantine fault tolerance to intrusion tolerance (a posi-

tion paper). InProceedings of the 5th Workshop on Recent Advances on Intrusion-

Tolerant Systems (WRAITS), Hong Kong, China, Jun. 2011.

[5] Alysson N. Bessani, Miguel P. Correia, Bruno Quaresma, Fernando André, and

Paulo Sousa. DepSky: dependable and secure storage in a cloud-of-clouds. InPro-

ceedings of the sixth conference on Computer systems, EuroSys ’11, pages 31–46,

New York, NY, USA, Apr. 2011. ACM.

[6] Håvard K. Bjerke, Dimitar Shiyachki, Andreas Unterkircher, and Irfan Habib. Euro-

par 2008 workshops - parallel processing. chapter Tools andTechniques for Man-

aging Virtual Machine Images, pages 3–12. Springer-Verlag, Las Palmas de Gran

Canaria, Spain, Aug. 2009.

[7] Miguel Castro and Barbara Liskov. Proactive recovery ina byzantine-fault-tolerant

system. InFourth Symposium on Operating Systems Design and Implementation

(OSDI), San Diego, USA, Oct. 2000.

[8] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive

recovery.ACM Trans. Comput. Syst., 20:398–461, Nov. 2002.

[9] Jimmy Clidaras, David W. Stiver, and William Hamburgen.Water-based data center,

Aug. 2008.

65

Bibliography 66

[10] Vinicius V. Cogo and Marcelo Pasin. DiversityAgent: Automatic diversity in cloud

computing, 2012. Available at http://code.google.com/p/diversity-agent/. Accessed

on February 15, 2012.

[11] Robert R. Collins. The Pentium F00F bug.Dr. Dobb’s Journal of Software Tools,

23(5):62, 64–66, May 1998.

[12] Miguel P. Correia, Nuno F. Neves, and Paulo E. Verissimo. How to tolerate half less

one byzantine nodes in practical distributed systems. InProceedings of the 23rd

IEEE International Symposium on Reliable Distributed Systems, SRDS ’04, pages

174–183, Washington, DC, USA, 2004. IEEE Computer Society.

[13] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack

Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems:

a secretless framework for security through diversity. InProceedings of the 15th

conference on USENIX Security Symposium - Volume 15, Berkeley, CA, USA, Jul.

2006. USENIX Association.

[14] Yves Deswarte, Karama Kanoun, and Jean-Claude Laprie.Diversity against acci-

dental and deliberate faults. InComputer Security, Dependability, and Assurance:

From Needs to Solutions, pages 171–181. IEEE Press, Nov. 1998.

[15] Tobias Distler and Rüdiger Kapitza. Increasing performance in byzantine fault-

tolerant systems with on-demand replica consistency. InProceedings of the sixth

conference on Computer systems, EuroSys ’11, pages 91–106, New York, NY, USA,

2011. ACM.

[16] Elisabeth Freeman, Eric Freeman, Bert Bates, and KathySierra.Head First Design

Patterns. O’ Reilly & Associates, Inc., 2004.

[17] Ilir Gashi, Peter Popov, and Lorenzo Strigini. Fault tolerance via diversity for off-

the-shelf products: A study with SQL database servers.IEEE Trans. Dependable

Secur. Comput., 4:280–294, Oct. 2007.

[18] Miguel G. T. Henriques. Diversity management in intrusion tolerant systems. Mas-

ter’s thesis, University of Lisbon, Lisbon, Portugal, 2011.

[19] Miguel G. T. Henriques, Alysson N. Bessani, Ilir Gashi,Nuno F. Neves, and

Rafael R. Obelheiro. OS diversity for intrusion tolerance:Myth or reality? InPro-

ceedings of the IEEE/IFIP International Conference on Dependable Systems and

Networks, Hong Kong, China, Jun. 2011.

[20] David Hilley. Cloud computing: A taxonomy of platform and infrastructure-level

offerings. Technical report, College of Computing, Georgia Institute of Technology.,

Apr. 2009.

Bibliography 67

[21] John C. Knight and Nancy G. Leveson. An experimental evaluation of the assump-

tion of independence in multiversion programming.IEEE Trans. Softw. Eng., 12:96–

109, January 1986.

[22] John C. Knight and Nancy G. Leveson. A reply to the criticisms of the knight &

leveson experiment.SIGSOFT Softw. Eng. Notes, 15:24–35, January 1990.

[23] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, AllenClement, and Edmund

Wong. Zyzzyva: speculative byzantine fault tolerance.SIGOPS Oper. Syst. Rev.,

41:45–58, Oct. 2007.

[24] Dionysius Lardner. Babbage’s calculating engine.Edinburgh Review, 59(120):263–

327, Jul. 1834.

[25] Soyini D. Liburd. An N-version electronic voting system. Master’s thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA, 2004.

[26] James Martin.Managing the Data Base Environment. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1st edition, 1983.

[27] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. In

Reports on Computer Systems Technology. NIST, Sep. 2011. Special Publication

800-145.

[28] Rafael R. Obelheiro, Alysson N. Bessani, Lau C. Lung, and Miguel P. Correia. How

practical are intrusion-tolerant distributed systems? Technical report, Department

of Informatics, DI/FCUL, University of Lisbon, Sep. 2006.

[29] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: a tutorial.ACM Comput. Surv., 22:299–319, Dec. 1990.

[30] Paulo Sousa, Alysson N. Bessani, and Rafael R. Obelheiro. The FOREVER service

for fault/intrusion removal. InProceedings of the 2nd workshop on Recent advances

on intrusiton-tolerant systems, WRAITS ’08, pages 5:1–5:6, New York, NY, USA,

2008. ACM.

[31] Paulo E. Verı́ssimo, Nuno F. Neves, and Miguel P. Correia. Architecting dependable

systems. chapter Intrusion-tolerant architectures: concepts and design, pages 3–36.

Springer-Verlag, Berlin, Heidelberg, 2003.

[32] Giuliana S. Veronese, Miguel P. correia, Alysson N. Bessani, and Lau C. Lung.

EBAWA: Efficient Byzantine Agreement for Wide-Area Networks. InProceedings

of the 2010 IEEE 12th International Symposium on High-Assurance Systems Engi-

neering, HASE ’10, pages 10–19, San Jose, CA, USA, Nov. 2010.

Bibliography 68

[33] Giuliana S. Veronese, Miguel P. Correia, Alysson N. Bessani, Lau C. Lung, and

Paulo E. Verissimo. Minimal byzantine fault tolerance : Algorithms and evaluation.

Technical report, Department of Informatics, DI/FCUL, University of Lisbon, Jun.

2009.

[34] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Em-

manuel Cecchet. Zz and the art of practical bft execution. InProceedings of the

sixth conference on Computer systems, EuroSys ’11, pages 123–138, New York,

NY, USA, 2011. ACM.

	List of figures
	List of tables
	Introduction
	Objectives
	Contributions
	Document structure

	Context and related work
	Fault and intrusion tolerance
	Cloud computing
	CloudFIT project

	Diversity analysis
	Taxonomy
	Application diversity
	Administrative diversity
	Location diversity
	Support software diversity
	Hardware diversity
	Security diversity
	General considerations

	The DiversityAgent
	Requirement analysis
	Functional analysis
	Non-functional analysis
	Architectural analysis

	Implementation
	How does it work?
	How is it implemented?
	The diversities
	Cloud drivers

	Integration and evaluation
	Integration with CloudFIT use cases
	Evaluation
	Experimental Environment
	Correctness Test
	Performance Test

	Conclusions
	Final remarks
	Future work

	DiversityAgent public interfaces
	Initialising DiversityAgent
	Announcing cloud providers
	Providing VM images
	Working with diversities
	VM related requests
	Recovery feature

	Using DiversityAgent
	Preparing
	Obtaining from DiversityAgent site
	Obtaining from DiversityAgent source code
	After obtaining the package

	Basic usage
	Advanced usage
	Finalising

	Customizing DiversityAgent
	Creating new diversity algorithms and properties
	Creating new cloud drivers
	Publishing contributions

	Abbreviations
	References
	Index

