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Abstract 

Searching for early indicators of climate change is of utmost importance in 

drylands, since these regions are particularly sensitive to desertification, due to 

water scarcity and land-use impacts. Our main objective was to search for a 

potential ecological indicator of climate change. For that, plant community was 

assessed along a spatial climatic gradient in a dryland area located in southern 

Portugal. Plant community was assessed in 15 sites that varied in mean annual 

precipitation (521-634mm) and mean annual temperature (16-17°C), in 

Mediterranean grasslands. Plant community was studied both in a classical 

approach (species diversity and plant cover) and in a functional approach 

(through the analysis of several a priori functional groups and measured traits 

related to climate) and related to climatic variables. The point-line intercept 

method was used to assess plant community. A priori functional groups were 

based on life form, life cycle and families. Traits measured were biomass, height 

and SLA. 

The sampled sites were dominated by annual grasses. Species richness and 

plant cover decreased significantly with increasing aridity. Considering a priori 

functional groups, the cover of hemicryptophytes decreased with increasing 

aridity, as well as cover of perennial grasses and annual legumes while cover of 

annual grasses remained unchanged. Along the climatic gradient, a community 

shift was found based on relative cover (relative % in the plant community): 

annual grasses and Plantaginaceae species increased their relative cover with 

increasing aridity, while perennial grasses, annual legumes and Caryophillaceae 

species decreased in relative cover. A multivariate analysis grouped species in a 

manner consistent with the previous result. Among a priori functional groups, 

the most promising groups with potential to be used as ecological indicators are 

perennial grasses and annual legumes and the previously mentioned community 

shift. 

Biomass and height changed along the climatic gradient, although the 

response pattern found for dominant species did not always match the response 

of their respective a priori functional groups. For example while height of annual 

grasses increased with precipitation, height of the dominant annual grass A. 

pourretti did not significantly changed. Specific leaf area, which was analyzed 

only for the Compositae species Tolpis barbata, decreased with increasing aridity 

as well. Considering that the height of this species also decreased, this suggests a 

change in the physiological performance along the climatic gradient. Moreover it 

reflects the phenotypic plasticity of this species. In sum, the response of specific 
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traits (e.g. height or SLA) measured in the same species along the gradient seems 

to have the potential to be used as an ecological indicator of climate change, 

especially in species with global distribution. 

 

Key-words  

Climate gradient; grassland; functional diversity; traits; Mediterranean.  
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Resumo 

As alterações climáticas podem ter consequências especialmente graves em 

zonas áridas, uma vez que a escassez de água aliada a pequenas alterações no 

clima ou na gestão do uso do solo podem gerar transformações abruptas e 

dificilmente reversíveis, comprometendo os serviços prestados pelos ecossistemas 

(MEA 2005). A produtividade nestas zonas já é limitada pela falta de água e, neste 

contexto, as alterações climáticas podem inclusivé induzir um processo de 

desertificação iminente (UNCCD 2011). Assim, a procura de indicadores 

ecológicos, i.e. parâmetros do ecossistema que reflictam a sua resposta a 

determinado factor ambiental (Turnhout et al. 2007), que permitam antecipar os 

efeitos das alterações climáticas é de extrema importância (MEA 2005).  

As previsões climáticas para Portugal apontam para um decréscimo de 

precipitação ao longo do próximo século, especialmente acentuado na região 

sudoeste do país (Costa et al. 2012). Esta região tem atualmente valores de 

precipitação muito baixos (Rosário 2004) pelo que está classificada como zona 

árida, de acordo com classificação da Convenção das Nações Unidas para o 

Combate à Desertificação (MEA 2005), apresentando uma elevada variabilidade 

interanual (Soares et al. 2012). Estas características tornam-na uma zona 

susceptível a processos de desertificação que poderão ser acentuados pelas 

referidas previsões climáticas.  

Atributos funcionais são características mensuráveis das plantas, relacionados 

com o seu funcionamento, modelando a forma como respondem a variáveis 

ambientais ou influenciam os processos do ecossistema (Lavorel et al. 2007a). A 

utilização de grupos funcionais – grupos de espécies com atributos semelhantes – 

é muito vantajosa pois além de fornecer informação sobre os processos dos 

ecossistemas, inacessível numa abordagem baseada na composição específica, foi 

também demonstrada a relação entre diversidade funcional e vários factores de 

perturbação tais como pastoreio, disponibilidade de nutrientes, fogo, etc. (Scherer-

Lorenzen 2005, Lavorel et al. 2007a). Acresce que, ao contrário de uma 



VIII 

 

abordagem clássica baseada apenas na diversidade específica, esta permite 

comparar diferentes comunidades vegetais sob o ponto de vista funcional.  

Neste trabalho, pretende-se encontrar um potencial indicador ecológico dos 

efeitos das alterações climáticas. Para isso, avaliou-se a comunidade vegetal ao 

longo de um gradiente climático, localizado em clima mediterrânico, usando 

quer uma abordagem específica, quer uma baseada na diversidade funcional. A 

comunidade vegetal foi avaliada ao longo de um gradiente climático espacial, no 

qual a precipitação média anual variou entre 521 e 634mm. Os 15 locais 

amostrados localizados em Montado de azinho são homogéneos relativamente a 

uma série de parâmetros (baixa intensidade de pastoreio, tipo de solo, altitude, 

pH, litologia e não ocorrência de fogo recente) e foram aleatoriamente 

selecionados após estratificação baseada na precipitação média anual dos últimos 

50 anos.  

A comunidade vegetal foi amostrada usando o método dos quadrados pontuais. 

As espécies encontradas foram classificadas em vários grupos funcionais 

definidos a priori, relacionados com a forma de vida, o ciclo de vida e a família 

taxonómica (como uma aproximação à classificação por grupos funcionais, uma 

vez que agrupam espécies que partilham uma série de características). Alguns 

atributos funcionais foram medidos: biomassa, altura vegetativa e área específica 

foliar. De uma forma geral, este estudo pretende responder às seguintes questões: 

i) a diversidade específica e a cobertura de plantas variam ao longo do gradiente?; 

ii) qual o padrão de resposta dos vários grupos funcionais?; iii) ocorrem 

mudanças ao nível da comunidade como um todo (em termos de cobertura 

relativa)?; iv) podem os atributos funcionais ser usados para avaliar gradientes 

climáticos, ao nível da espécie e ao nível da comunidade?; v) será possível 

identificar um limiar após o qual ocorram alterações significativas ou abruptas 

no ecossistema?; vi) quais são os caracteres ou grupos funcionais com maior 

potencial para se tornarem indicadores ecológicos de alterações climáticas? Uma 

vez que indicadores ecológicos devem ser parâmetros simples e de medição o 
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mais expedita possível, de modo a potenciar uma utilização a larga-escala, a 

estrutura deste trabalho segue uma linha de crescente especificidade nos 

parâmetros avaliados começando por parâmetros relativamente simples, 

nomeadamente diversidade específica e cobertura, seguida por uma avaliação ao 

nível do grupo funcional e terminando numa avaliação ao nível específico. 

Considerando os 15 locais amostrados, foram identificadas ao todo 146 

espécies, na qual a sua maioria pertence às famílias Graminae (37 espécies), 

Compositae (29) e Leguminosae (22). A cobertura de plantas foi, em média, ca. de 

80%, dominada por gramíneas anuais, que ocupavam, em média, 51.8% da 

comunidade vegetal. A diversidade específica e cobertura de plantas aumentou 

significativamente com o aumento da aridez (i.e., ao longo do gradiente 

climático). No entanto, visto que estes parâmetros estão muito dependentes do 

clima e uso do solo, sugere-se que um indicador ecológico baseado na diversidade 

funcional será mais apropriado para uma aplicação a larga-escala. Considerando 

os grupos funcionais avaliados, os resultados mostraram que a cobertura de 

espécies hemicriptófitas diminuiu com o aumento da aridez, bem como a 

cobertura de gramíneas perenes e de leguminosas anuais, enquanto que a 

cobertura de gramíneas anuais permaneceu inalterada. Esta classificação que tem 

em conta conjuntamente a família e o ciclo de vida (ex. gramíneas perenes), 

mostrou ser mais eficaz do que os primeiros grupos funcionais avaliados, que têm 

em conta apenas um atributo (apenas forma de vida, por exemplo). Portanto, com 

base nestes resultados, os grupos que parecem ter maior potencial para se 

tornarem indicadores ecológicos das alterações climáticas são as gramíneas 

perenes e as leguminosas anuais. Estes resultados estão de acordo com vários 

estudos que associam gramíneas perenes e leguminosas a sítios mais húmidos. 

Ao analisar a cobertura relativa (%) de locais em extremos opostos deste 

gradiente climático, verificou-se que, além dos grupos acima referidos, também 

outros taxa variavam a sua cobertura relativa. Verificou-se que 2 grandes grupos 

variavam inversamente: à medida que os locais são cada vez mais áridos, a 
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cobertura relativa de um grupo composto pelas gramíneas anuais e espécies 

Plantagináceas aumenta (de ca. 40% para 60%), enquanto que outro grupo 

composto pelas gramíneas perenes, leguminosas anuais e espécies Cariofiláceas 

diminui (de ca. de 30% para 10%). Uma vez que estes resultados são com base em 

grupos funcionais feitos a priori, foi também efetuada uma análise multivariada 

para verificar como as espécies se associavam entre si. Os resultados são 

consistentes com os grupos funcionais considerados. No entanto, também 

permitiu verificar que, dentro dos grupos funcionais, podem existir espécies que 

não mostram o mesmo padrão de resposta que o grupo funcional em que se esta 

insere, o que sugere que a comunidade vegetal deve continuar a ser analisada, de 

modo a refinar os grupos funcionais considerados. 

A biomassa e a altura vegetativa são atributos funcionais que mostraram 

responder ao gradiente climático, embora a resposta varie entre os vários grupos 

funcionais e as espécies dominantes. A área específica foliar, medida para a 

espécie Tolpis barbata, diminuiu significativamente com o aumento da aridez. 

Considerando que a altura vegetativa desta espécie também decresceu, a resposta 

conjunta destes dois atributos funcionais sugere que há uma reposta fisiológica 

por parte da planta ao gradiente climático. Os resultados sugerem que a resposta 

destes atributos funcionais medidos na mesma espécie ao longo do gradiente, 

pode constituir um potencial indicador ecológico. No entanto, para que um 

indicador ecológico deste tipo seja aplicável em larga-escala, deve ser utilizado 

numa espécie com distribuição global.  

 

Palavras-chave  

atributos funcionais; diversidade funcional; Mediterrâneo; gradiente climático; 
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Figure Index 

Figure 1: Climate classification of Portugal based on the Aridity Index, using climatic 

data from years 1961-1999. Adapted from: Rosário (2004). 

Figure 2: Climate classification of Portugal based on the Aridity Index. A: current 

official classification, using data from years 1961 to 1990; B: a provisional classification 

using data from decade 2000 to 2010. The sampling area is marked with a blue circle. 

Adapted from: (Rosário 2004). 

Figure 3: Maps of Portugal showing a precipitation gradient, based on total annual 

precipitation from years 1950-2010. A: Map of continental Portugal. B: Map of south 

Portugal, evidencing the sampled sites marked by dots. Maps constructed using data of 

Hijmans et al. (2005).  

Figure 4: Exemplification of the disposition of the 6 transects in the field. The red 

point corresponds to the ICNF point, located using a GPS. The 6 transects are arranged 

perpendicularly to the slope and one transect is deviated to avoid a tree. 

Figure 5: Sampling work. The method used for individuals collection consisted in a 

packaging system, where all hits of one point were packaged together and these small 

packs were grouped by transect and then by site for further identification and trait 

measurement in the lab. 

Figure 6: Median, 25th and 75th percentiles, minimum and maximum, outliers and 

extreme values of A: plant cover and no plant cover; B: percentage of bare soil, litter, 

lichen and bryophyte within the no-plant points, in 15 sites sampled along a climatic 

gradient in Alentejo region. 

Figure 7: Median, 25th and 75th percentiles, minimum and maximum value of number 

of species, in all sites sampled (15 sites), along a climatic gradient in Alentejo region. 

Figure 8: Median, 25th and 75th percentiles, minimum and maximum, outlier and 

extreme values of A: number of species and B: relative cover percentage of herbaceous 

and shrub understory, in 15 sites sampled along a climatic gradient in Alentejo region. 

Figure 9: Median, 25th and 75th percentiles, minimum and maximum, and outlier 

values of annual, facultative biennial and perennial herbaceous species in terms of A: 

number of species and B: relative cover in the community, in 15 sites sampled along a 

climatic gradient in Alentejo region. 

Figure 10: Median, 25th and 75th percentiles, minimum and maximum and 

outliers values of community composition among the study sites regarding 

families, in terms of A: number of species and B: relative cover percentage. 

Figure 11: Bi-plot of plant cover (grey quadrats) an no plant cover (black dots) 

with the aridity index (calculated with data from Y1960-1990). 
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Figure 12: Bi-plots between measured number of species and A: minimum 

temperature of the coldest month (mean from Y1950-2000); B: short-term 

precipitation (mean monthly precipitation from Oct 2011 – Mar 2012). Plant 

community was sampled in 14 sites along a climatic gradient in Alentejo region. 

Figure 13: Plant community composition of the more humid and the driest 

sites according to Medium-term Precipitation, i.e. mean annual precipitation from 

years 1998-2011 (MTPrec), using relative cover data of a sampling performed in 

14 sites along a climatic gradient in Alentejo region.  

Figure 14: Relative cover in the community of functional groups considered in 

table 12 along sites with increasing long-term precipitation (mean annual 

precipitation from period 1960-1999). Plant community was sampled in 14 sites 

along a climatic gradient in Alentejo region. 

Figure 15: Non-metric Multivariate Dimensional Scaling (NMDS; first vs. 

second axes) of cover of the 21 most dominant species and sites. Distance 

measure used was Bray Curtis and stress was 0.097.  Numbers indicate sites sorted 

in ascending order of long-term precipitation (as in Appendix 1). Simbols were 

placed manually on the left of the species name to indicate species assignment to 

functional group or family considered in previous results. Apour= Agrostis 

pourretii Willd.; Bdyst= Brachypodium distachyon (L.) P.Beauv.; Bhord= Bromus 

hordeaceus L.; Ccapi= Crepis capillaris (L.) Wallr.; Cdact= Cynodon dactylon (L.) 

Pers.; Cmixtu= Chamaemelum mixtum (L.) All; Crace= Carlina racemosa L.; 

Gfragi= Gaudinia fragilis (L.) P.Beauv.; Hglab; Hypochaeris glabra L.; Lgall= 

Logfia gallica (L.) Coss. & Germ.; Lrigi= Lolium rigidum Gaudin; Ltara= 

Leontodon taraxacoides (Vill.) Mérat; Ocomp= Ornithopus compressus L.; Pcoro= 

Plantago coronopus L.; Plago= Plantago lagopus L.; Spurp= Spergularia purpurea 

(Pers.) G.Don; ; Tbarba= Tolpis barbata (L.) Gaertn; Tgutt= Tuberaria gutatta (L.) 

Fourr.; Vcili= Vulpa ciliata Dumort.; Vgeni= Vulpia geniculata (L.) Link; Vmyur= 

Vulpia myuros (L.) C.C.Gmel.. 

Figure 16: Bi-plots between climatic variables and SLA (m2kg-1) of annual forb 

Tolpis barbata sampled along a climatic gradient in Alentejo region. This species 

was present in 12 of the 14 sites sampled. A: relation of SLA with the aridity index 

(calculated using climatic data from Y1960-1990); B: relation of SLA with long-

term precipitation (mean annual precipitation Y1950-2000). 
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Table Index 

Table 1: Parameters used for homogenize the sampling sites. 

 

Table 2: Climatic variables considered in this work. For each climatic variable 

is shown the abbreviation adopted, description, calculation and source. 

 

Table 3: Number of species per family found in 15 sites sampled along a 

climatic gradient in Alentejo region. 

 

Table 4: Spearman’s rank correlation coefficients at P<0.05 for no plant cover, 

percentage and standard deviation (SD), plant cover and species richness (Nr sp) 

of 14 sites sampled along a climatic gradient in Alentejo region. Ns= non-

significant. Climatic variables: Arid. Idx= Aridity index (using data from Y1960-

1990); LT Prec= long-term precipitation (mean annual precipitation Y1950-2000); 

MT Prec= medium-term precipitation (mean annual precipitation Y1998-2011); 

ST Prec= short-term precipitation (mean monthly precipitation Oct 2011 to Mar 

2012); LT Temp= long-term temperature (mean annual temperature Y1950-

2000); TColdM= minimum temperature of the coldest month (mean Y1950-

2000). 

 

Table 5: Traits compiled from the literature for the species present in the 

precipitation gradient. Traits analyzed are highlighted. 

 

Table 6: Spearman’s rank correlation coefficients at P<0.05 for species richness, 

total cover and relative cover of functional groups based on life form. Climatic 

variables: Arid. Idx= Aridity index (using data from Y1960-1990); LT Prec= long-

term precipitation (mean annual precipitation Y1950-2000); MT Prec= medium-

term precipitation (mean annual precipitation Y1998-2011); ST Prec= short-term 

precipitation (mean monthly precipitation Oct 2011 to Mar 2012); LT Temp= 

long-term temperature (mean annual temperature Y1950-2000); TColdM= 

minimum temperature of the coldest month (mean Y1950-2000). Life forms: TR 

= terophyte; HM = hemicryptophyte; Other = other life forms present, namely 

therophytes, phanerophytes and species classified as variable. 

 

 Table 7: Spearman’s rank correlation coefficients at P<0.05 for species 

richness, total cover and relative cover (%) of functional groups based on life 

cycle. Plant community sampled in 14 sites along a climatic gradient in Alentejo 

region. Climatic variables: Arid. Idx= Aridity index (using data from Y1960-1990); 

LT Prec= long-term precipitation (mean annual precipitation Y1950-2000); MT 

Prec= medium-term precipitation (mean annual precipitation Y1998-2011); ST 

Prec= short-term precipitation (mean monthly precipitation Oct 2011 to Mar 

2012); LT Temp= long-term temperature (mean annual temperature Y1950-

2000); TColdM= minimum temperature of the coldest month (mean Y1950-
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2000). Life cycle: An + Bn = annual and facultative biennial species; Pn= 

perennial species. 

 

Table 8: Spearman’s rank correlation coefficients at P<0.05 for species richness 

and plant cover of Compositae species sampled in 14 sites along a climatic 

gradient in Alentejo region. Climatic variables: Arid. Idx= Aridity index (using 

data from Y1960-1990); LT Prec= long-term precipitation (mean annual 

precipitation Y1950-2000); MT Prec= medium-term precipitation (mean annual 

precipitation Y1998-2011); ST Prec= short-term precipitation (mean monthly 

precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature (mean 

annual temperature Y1950-2000); TColdM= minimum temperature of the coldest 

month (mean Y1950-2000). Life cycle: An = annual; Pn= perennial; Tot= total. 

 

Table 9: Spearman’s rank correlation coefficients at P<0.05 for species richness 

and plant cover of Graminae species, sampled in 14 sites along a climatic 

gradient in Alentejo region. Climatic variables: Arid. Idx= Aridity index (using 

data from Y1960-1990); LT Prec= long-term precipitation (mean annual 

precipitation Y1950-2000); MT Prec= medium-term precipitation (mean annual 

precipitation Y1998-2011); ST Prec= short-term precipitation (mean monthly 

precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature (mean 

annual temperature Y1950-2000); TColdM= minimum temperature of the coldest 

month (mean Y1950-2000). Life cycle: An = annual; Pn= perennial; Tot= total. 

 

Table 10: Spearman’s rank correlation coefficients at P<0.05 for species 

richness and plant cover of legume species sampled in 14 sites along a climatic 

gradient in Alentejo region. Climatic variables: Arid. Idx= Aridity index (using 

data from Y1960-1990); LT Prec= long-term precipitation (mean annual 

precipitation Y1950-2000); MT Prec= medium-term precipitation (mean annual 

precipitation Y1998-2011); ST Prec= short-term precipitation (mean monthly 

precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature (mean 

annual temperature Y1950-2000); TColdM= minimum temperature of the coldest 

month (mean Y1950-2000). Life cycle: An = annual; Sb = perennial shrubs; Tot = 

total. 

 

Table 11: Spearman’s rank correlation coefficients at P<0.05 for relative cover 

in the community of family and life-cycle groups, sampled in 14 sites along a 

climatic gradient in Alentejo region. Climatic variables: Arid. Idx= Aridity index 

(using data from Y1960-1990); LT Prec= long-term precipitation (mean annual 

precipitation Y1950-2000); MT Prec= medium-term precipitation (mean annual 

precipitation Y1998-2011); ST Prec= short-term precipitation (mean monthly 

precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature (mean 

annual temperature Y1950-2000); TColdM= minimum temperature of the coldest 

month (mean Y1950-2000). Groups: An Gram= annual grasses; Pn Gram= 
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perennial grasses; An Legu= annual legumes; Plantago= Plantago sp.; Cary= 

Caryophillaceae. 

 

Table 12: Spearman’s rank correlation coefficients at P<0.05 for scores of first 

and second axes of NMDS presented in figure 11.  

 

Table 13: Signal of Spearman’s rank correlation coefficients at P<0.05 for cover, 

biomass and height of functional groups and dominant species with long-, 

medium- and short-term precipitation. Simbols: = = non significant correlations; + 

= positive significant correlations. Dominant species: Cmixt= Chamaemelum 

mixtum (L.) All.; Ltara= Leontodon taraxacoides (Vill.) Mérat; Apour= Agrostis 

pourretii Willd.; Gfrag= Gaudinia fragilis (L.) P.Beauv.; Ocomp= Ornithopus 

compressus L.. 

 

Table 14: Spearman’s rank correlation coefficients at P<0.05 for Specific leaf 

area of Tolpis barbata, sampled in 14 sites along a climatic gradient in Alentejo 

region. Climatic variables: Arid. Idx= Aridity index (using data from Y1960-1990); 

LT Prec= long-term precipitation (mean annual precipitation Y1950-2000); MT 

Prec= medium-term precipitation (mean annual precipitation Y1998-2011); ST 

Prec= short-term precipitation (mean monthly precipitation Oct 2011 to Mar 

2012); LT Temp= long-term temperature (mean annual temperature Y1950-

2000); TColdM= minimum temperature of the coldest month (mean Y1950-

2000). 
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1. Introduction 

 

1.1. Climate change and drylands 

Ecosystems and their communities are experiencing changes at a global scale 

as a result of human activities and climate change, showing global to local effects 

(MEA, 2005). Global change can significantly modify the structure and 

functioning of ecosystems in an irreversible way and consequently reduce their 

biodiversity and provision of goods and services (IGBP 2007). A known example is 

the abrupt degradation of what is now the Sahara desert, which was a productive 

verdant landscape during the early Holocene, supporting several animal and 

human populations (deMenocal et al. 2000). The transformation was highly 

associated with climatic changes, namely the strengthening of the African 

monsoon (deMenocal et al. 2000). Learning how to anticipate the effects of these 

global factors on ecosystems associated to global change is therefore a major 

need (MEA 2005). 

A community existing at a site can be seen as the result of a filtering process, 

where abiotic conditions (ex.: climate, resource availability) and interactions 

among organisms (competition, predation, mutualisms) constrain the species that 

persist from a regionally available pool (Lavorel et al. 2007a). Climate, which acts 

at the regional scale, is one of the primary filters modelling plant communities. 

Thus, the current climate change scenario may have major consequences in 

ecosystems community’s spatial patterns. 

Global climate projections suggest a generalized warming in the 21st century, 

increasing precipitation in high-latitude regions and a decrease in subtropical 

regions (IPCC 2007). In accordance, Luterbacher et al. (2004) concluded that 



2 

 

Europe is currently under climate change and that the 20th century was the 

warmest in the last 500 years.  

Although climate change effects are felt at a global scale, drylands are 

particularly vulnerable to global environmental change, since in these systems 

water is one of the main limiting factors for plant productivity and consequently 

ecosystem services provision (MEA 2005). Drylands occupy 41% of the Earth’s 

surface and include all regions classified as dry sub-humid, semi arid, arid and 

hyper-arid (MEA 2005). This classification is based on an Aridity Index, which is 

the ratio of mean annual precipitation to mean annual potential 

evapotranspiration (MEA 2005). Values range between 0 and 1, and lower values 

indicate more aridity. Figure 1 shows the aridity index classification for Portugal. 

A fundamental distinction exists between aridity, which is a long-term climatic 

phenomenon, and droughts, which are a temporary phenomenon (water deficit). 

In other words, aridity is a function of both precipitation and the potential 

evapotranspiration rate (ETp). An additional factor affecting aridity is 

temperature and the annual timing of precipitation. Rainfall during cold seasons 

is more effective in areas with sufficiently high temperature for plant growth, 

because less water is lost to direct evapotranspiration during cold periods than 

during the hot season (Maliva and Missimer 2012). 
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Figure 1: Climate classification of Portugal based on the Aridity Index, using climatic 

data from years 1961-1999. Source: Rosário (2004). 

 

In Portugal, climate projections made by Costa et al. (2012), for the 2071-2100 

period, suggest that total precipitation will decrease in most of the area of the 

country. The dry period will extend from summer to autumn and spring, 

amplifying the length of dry spells. On the other hand, extreme precipitation 

events will increase during winter periods. In Portugal drylands are mainly 

located in the southern part of the country, where current precipitation levels are 

low and future precipitation decrease will be more significant (Costa et al. 2012). 

Moreover this southern region of Portugal has the highest variability of the 

interannual precipitation (Soares et al. 2012). 

One possible consequence of climate change occurring in drylands is the 

acceleration of the desertification process. Although desertification is the result of 

various factors, namely chronic droughts and unsustainable land use, climate 

change may exacerbate desertification through the projected intensification of 

water scarcity (MEA 2005, UNCCD 2011). Ultimately, arid ecosystems with an 

ongoing desertification process may shift abruptly to desert, often in an 

irreversible manner. Several studies focus on measuring only abiotic drivers (e.g. 
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climatic variables) to evaluate the desertification process (e.g. Costa et al. 2012). 

However, they do not provide information about its impacts at the ecosystem 

level. Moreover, the same change in climatic variables might have different 

impacts in different ecosystems. The changes that occur at the ecosystem level, 

depend on multiple interactions and on the ecosystem’s resistance and resilience. 

In this work we propose to focus on the ecosystems response along a climatic 

gradient, in addition to environmental drivers. Thus we want to assess the 

ecosystems general response pattern to a climatic gradient in the transition 

towards a more arid environment. 

As ecosystem functioning is highly complex, monitoring the effects of 

environmental drivers in ecosystems on an integrative perspective can be too 

time and resource consuming. As an alternative, scientists and managers rely on 

measurable ecological surrogates of the structure, composition, or function of 

ecological systems, named ecological indicators (Cairns et al. 1993). They can be 

used to predict ecosystems’ changes and help defining ameliorating actions for 

both anthropogenic and natural disturbances. 

 

1.2. Ecological Indicators 

Natural systems are highly complex, i.e. dependent on a multitude of factors 

and interactions which act at different levels of ecological organization. Thus, 

there is the need to use “indicator” parameters which are easily measurable and 

preferably integrate several aspects of ecosystems response to a given factor (or 

factors). Ecological indicators are measurable parameters that allow us to access 

nature, based on an observed relationship between environmental factor - 

biological parameter and the existing knowledge of cause-effect relationships in 

ecosystems (Turnhout et al. 2007). Ecological indication is broadly used in 

monitoring programs, either to access the system’s quality and/or to evaluate 

policy performance (Cairns et al. 1993, Turnhout et al. 2007). One kind of 
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ecological indicator largely used to access, for example, pollution toxicity (Munn 

1988), are biomonitors: a target species or population known to respond to a 

certain factor. However, the use of target species has several limitations: i) its 

presence depends on local species assemblages; ii) it gives limited information 

about ecosystem response as a whole in terms of structure, function and 

composition (Cairns et al. 1993, Dale and Beyeler 2001). Monitoring at the 

community or ecosystem level allows a more robust assessment, since it 

integrates cumulative effects of many stressors (Cairns et al. 1993). Additionally, 

an integrative approach is more likely to detect early changes (Munn 1988). In 

this framework, it is possible to apply the ecological indication concept not only 

for tracking certain substances (as in pollution monitoring programs), but to 

indicate community changes in response to a given environmental factor.  

This work focuses on searching potential ecological indicators of climate 

change. However, tracking climate change responses would demand long-term 

datasets (more than 30 years) to cover the usual period for tracking climate 

changes. This kind of approach is addressed in long-term ecological studies that 

only started recently in Portugal (SPECO 2012). To expeditiously search for 

potential ecological indicators we can make a screening using a spatial gradient 

instead of a temporal one. Thus, in this work we propose to use a spatial gradient 

that simulates a climate change scenario over time. It is expected that from 

spatial patterns observed at ecosystem transition (towards more arid 

environments) associated with climatic gradients, it will be possible to derive a 

pattern of temporal change, enabling to anticipate ecological changes due to 

climate change. 

 

1.3. Functional diversity 

The functional diversity concept eventually arose from an old discussion 

between scientists to answer whether biodiversity is important for ecosystem 

functioning. Scherer-Lorenzen (2005) give a good historical perspective on this 
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matter. An attempt to answer this main question was done by comparing 

communities along a biodiversity gradient, while trying to keep extrinsic 

conditions (ex.: climate) as constant as possible. Species identities were found to 

be important in biodiversity – ecosystem function relationships. Thus, biodiversity 

relates to ecosystem processes through functional differences between species 

(Garnier et al. 2004, Scherer-Lorenzen 2005). In accordance, many studies (see 

Scherer-Lorenzen (2005) for a review) have shown that species identities within a 

mixture (i.e. its functional diversity) is more important than the number of 

species per se (Tilman and Knops 1997, Dı  az and Cabido 2001). Traits are related 

to plant functions, so it is through traits that plants respond to environmental 

factors and influence ecosystem processes (Garnier et al. 2004, Scherer-Lorenzen 

2005).  

Functional groups gather species with similar traits (or observed correlations 

among their various traits), or with similar functions (Cornelissen et al. 2003, 

Lavorel et al. 2007a). Therefore, there are functional response groups, with species 

that respond similarly to a particular environmental factor, and functional effect 

groups, grouping species with a similar effect on one or several ecosystem 

functions (e.g. nutrient cycling) (Scherer-Lorenzen 2005, Lavorel et al. 2007a). 

Functional classification is a very useful tool at various research fields, since it 

simplifies the floristic complexity of natural communities. It has been widely 

used in monitoring the effects of global change or of management actions on 

plant distribution patterns and ecosystem processes (see Lavorel et al. (2007a) for 

a review). Additionally, since functional classification is not species-specific, it 

enables the comparison between sites with different floras, belonging to different 

regions, continents or biomes. Limitations among functional classification have 

mostly to do with finding/creating an ideal classification, named by Lavorel et al. 

(2007a) as the holy grail: a single classification that i) would be applicable at the 

global-scale and ii) can together represent plant responses and effects. This 

difficulty is largely related to the fact that traits responsible for plant responses 
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may coincide directly, indirectly, or not at all with traits responsible for plant 

effects on ecosystem function (Lavorel et al. 2007a).  

Functional traits can be morphological, physiological, biochemical, 

reproductive or demographic characteristics that relate to plant function in 

ecosystems (Lavorel et al. 2007a). This definition leads to an undefined number of 

possible measurable traits. Although there may be several methodologies for 

measuring a certain trait, there are traits that are more laborious than others, 

independently of the methodology used. For example, traits measured in the 

roots will probably involve greater labor than traits measured in the leaves. With 

this in mind, Hodgson et al. (1999) suggested a trait classification where soft traits 

would be relatively easy to measure, versus hard traits, which involve complex 

and laborious investigations. Soft traits are therefore favored in functional trait 

research, and an important effort has been made to standardize its measurement 

methodology (Cornelissen et al. 2003). 

 

 

 

 

1.4 Measuring functional diversity in inland Alentejo 

This study was conducted in Alentejo region, since it is among the more arid 

regions in Portugal (Rosário 2004) and a decrease in precipitation is predicted 

during the next century (Costa et al. 2012). Sampled sites are located in Montado 

ecosystem, a semi-natural open woodland, which is the dominant land-use in this 

region.  

In order to analyze functional diversity along the sampled sites it is important 

that the sampling method enables: i) accuracy in species identification and 

consequently on traits classification; ii) precision in cover estimation, in order to 

detect even slight community shifts and iii) a random selection of plant 
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individuals for trait measurements in the laboratory. Since this study is based on a 

functional approach and aims to study community composition along a climatic 

gradient, a thorough registration of species presence per se is not the main goal. 

Cover estimation through visual estimation methods is common, although an 

unknown level of observer bias is inherent. Moreover, cover is estimated in 

classes, so slight alterations in real cover are hardly reported (Elzinga et al. 1998). 

In order to choose the best sampling method to evaluate shifts in plant 

community functional diversity, a preliminary essay was performed in two 

contrasting sites along the study area by Nunes et al. (submitted). Three 

commonly used methods were compared: two area-based methods (the Modified-

Whittaker’s method and Dengler’s method) and the point-line intercept method 

(hereafter named PT method)(Stohlgren et al. 1995, Elzinga et al. 1998, Dengler 

2009). The PT method displayed higher precision in cover estimates, a similar or 

higher number of quantified species and a more even cover distribution from 

more abundant to less abundant species, i.e., a higher evenness. This feature is 

important in order to: i) not overvalue dominant species in detriment of less 

abundant ones; ii) have a better picture of the multiple functional traits present in 

the community; iii) detect even slight shifts in the community whether they 

depend only on dominant species or also on less abundant ones. The higher 

precision of the PT method was also verified by Godínez-Alvarez et al. (2009). 

Additionally, it was highlighted that this method, unlike ocular estimation 

methods, also enables cover estimates for soil surface.  

The gathered knowledge in functional traits enabled the creation of several 

databases, either regional or international, where average trait values are 

presented for a growing number of species. Today, several trait data bases are 

available online (Kattge et al. 2011). This can be very useful since using pre 

existing trait values, instead of measuring them, can save a lot of resources 

(Cornelissen et al. 2003, Lavorel et al. 2007b). However, the use of databases 

information must be used with some caution and has some limitations. First, the 
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methodology used for trait measurement must be taken into account for data 

interpretation and comparison. The use of standardized methods is a way to 

reduce variability and problems associated with this issue (Cornelissen et al. 

2003). Second, functional traits, like any plant feature, reflect intra-specific 

variability. Therefore, it is expected that trait values vary between species, 

populations and, to a lower degree, between individuals of the same population. 

However, general data bases present an average value per species, ignoring the 

range or level of intra-specific variability within populations (Lavorel et al. 2007b). 

Another limitation is that data on the species of interest may not be available (de 

Bello et al. 2006), and this was an important limitation in the present work, 

although this drawback has the tendency to decrease as more data is added to 

data bases. Nevertheless, in functional diversity studies, average values are often 

used (Cianciaruso et al. 2009, de Bello et al. 2011). In these cases, a species 

comparison approach is used, and intraspecific variability is considered negligible 

(de Bello et al. 2011). In this work, a mixed approach was used. A number of traits 

were measured following protocols in Cornelissen et al. (2003). These traits were: 

plant biomass, a hard trait with large-scale ecological significance; height, which 

is related to plant competitiveness and may be involved in trade-offs between 

height and stress tolerance/avoidance; and specific leaf area, a trait related to 

environmental resources availability (Cornelissen et al. 2003). For another group 

of traits, mean values from literature were used, namely life form, life cycle and 

onset of flowering. This approach allows to study plant traits both at the species 

level (comparing trait values of the same species among sites) and at the 

community level (via interspecific comparison). 

1.5 Objective 

The purpose of this study was to search for a potential ecological indicator of 

early responses to climate change. Plant community was assessed along a spatial 

climatic gradient composed of a set of 15 sites located in a dryland area in 
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Alentejo region. The sites were randomly selected after being homogenized for 

most of the possible confounding variables (soil type, land-use, altitude, 

inclination) and stratified for precipitation. Plant richness and cover of the 

understory community of the Quercus ilex (L.) Montado were sampled using the 

point-line intercept method. Plant species found were classified for a series of 

traits related with response to climate (life form and life cycle) Specific traits such 

as biomass, height and specific leaf area were measured at functional group and 

species level of dominant species.  

The following specific questions will be addressed in this study: 

1) How do species richness and plant cover changes along the climatic 

gradient? 

2) How different plant functional groups respond along a climatic gradient? 

3) What are the major shifts at the community level? 

4) Can traits at the plant species level or functional group be used to track 

climatic gradients? 

5) Is it possible to identify a critical threshold for significant changes in the 

ecosystem? 

6) What are the most promising ecological indicators of climate change?  

 

The rationale of the structure of this work followed the criteria that indicators 

should be as simple as possible and as wide applicable as possible. Thus, the quest 

for an ecological indicator started on the simplest variables that can be obtained 

in a herbaceous community namely plant diversity and cover. On a following 

approach a priori functional groups were evaluated in general and within families 

approach. The work also reaches the species level and their possible associations 

were tested using multivariate analysis. Finally traits such as biomass, height and 

specific leaf area were tested from the functional group to the species level. 
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2. Materials and Methods 

2.1. Study area 

The study was conducted in the inland Alentejo region, SE Portugal. This 

region is dominated by semi-natural open woodland called Montado. It has a long 

history of man management, resulting in a mosaic of forest, pastures for 

extensive grazing and agriculture (Pereira and Fonseca 2003). In the more arid 

areas, the tree layer is dominated by scattered Holm-oak trees (Quercus ilex L.) 

Grazing areas are common in the Montado ecosystem. Among the sampled 

sites, pastures with low grazing intensity were the only one land-use type selected, 

to reduce variability and increase the chance of detecting plant community 

response to the climatic gradient. In these sites soils are poor and vary between 

lithosoils and luvisoils.  

The study area has a Mediterranean climate, with dry and hot summers and 

mild to cold and wet winters (Rivas-Martínez et al. 2004). Additionally, the study 

area is classified as a dryland, based on the Aridity Index (see chapter 1.1). The 

Aridity Index was calculated for the Portuguese territory by the Instituto de 

Conservação da Natureza e Florestas (ICNF), and the resulting climatic 

classification is presented in figure 2A. In general terms, the southern part of the 

country includes the driest regions. 
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Figure 2: Climate classification of Portugal based on the Aridity Index. A: current 

official classification, using data from years 1961 to 1990; B: a provisional classification 

using data from decade 2000 to 2010. The sampling area is marked with a blue circle. 

Source: do Rosário (2004). 

The study area, marked with a blue circle, includes sub-humid, dry sub-humid 

and semiarid areas which compose the drylands in the region. Figure 2B is a 

provisional classification (since it uses only data from the last decade, instead of 3 

decades) that shows a trend to increasing aridity in the southern part of the 

country. 

2.2. The climatic gradient 

Sampling design was made prior to this work, by Pedro Pinho, for the project 

Modeling Ecosystem Structure and Functional Diversity as early-warning 

indicators of Desertification and Land-degradation - from regional to local level. 

The sites sampled in this work are a small part of a large set of sites that are 

regularly assessed by the ICNF in terms of the tree layer dominance. From this 

large set of sites, firstly those where Q. ilex is the dominant tree species were 

chosen. Secondly the set of sites was homogenized according to a series of 

environmental parameters listed in table 1.  
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Table 1: Parameters used for homogenize the sampling sites. 

Parameter Range admitted 

Altitude 158-280m 

Soil Lithosoil ans luvisoil 

Soil pH 5.6-6.5 (exceptionally -7.3) 

Lithology Sedimentary and metamorphic 

Slope 0.8-4.8 

Fire Non-existence between 1975-2005 

 

 

Finally a stratified random sampling was performed, with mean annual 

precipitation (Y1950-2000) as the stratifying parameter. This sampling design 

ensured a set of sites similar to each other for the parameters listed in table 1, but 

with different precipitation regimes. 

A number of other climatic parameters were also assessed: aridity, 

evapotranspiration, and temperature. Since these parameters co-vary with 

precipitation, the sampled sites are actually located along a climatic gradient. In 

this work 15 sites were sampled. When a randomly selected site was found to be 

inaccessible or inappropriate, the sampling was performed in the second 

randomly selected site, which had similar climatic features and was located in the 

same region. A site could be considered inappropriate if there were marks of 

recent soil mobilization or severe grazing (plants visibly diminished in height and 

cover). Appendix 1 shows a detailed characterization of the sampled sites, 

concerning several temperature and precipitation variables, organic matter 

content, soil and altitude. Among the 15 sampled sites, located along ca. 115 km 

(distance between the 2 most distant sites), the mean annual precipitation ranged 

between 521 and 634 mm and the mean annual temperature varied between 16 

and 17 ºC (period Y1950-2000). 

Figure 3 shows the location of the sampled sites along the precipitation 

gradient (total annual precipitation data for the period 1950-2000).  
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Figure 3: Maps of Portugal showing a precipitation gradient, based on total annual 

precipitation from years 1950-2010. A: Map of continental Portugal. B: Map of south 

Portugal, showing the sampled sites marked by dots. Maps constructed using data of 

Hijmans et al. (2005). 

 

 

 

 

 

 

 

 

2.2.1. Climatic variables 

Table 2 shows the climatic variables considered in this work, including 

abbreviations used in the Results and Discussion section. 
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Table 2: Climatic variables considered in this work. For each climatic variable is shown 

the abbreviation adopted, description, calculation and source. 

Abbrev. Description Calculation Source 

Arid. Idx Aridity Index Mean annual precipitation by 

Potential evapotranspiration 

(Y1960-1990) 

Instituto da Conservação 

da Natureza e Florestas 

(ICNF) 

LT Prec Long-term precipitation Mean annual precipitation 

(Y1950-2000) 

(Hijmans et al. 2005) 

MT Prec Medium-term precipitation Mean annual precipitation 

(Y1998-2011) 

Calculated using monthly 

data of Sistema Nacional 

de Informação de 

Recursos Hídricos (SNIRH) 
ST Prec Short-term precipitation  Mean monthly precipitation 

(October 2011-March2012) 

LT Temp Long-term temperature Mean annual temperature 

(Y1950-2000) 

(Hijmans et al. 2005) 

TColdM Temperature Coldest Month Mean minimum temperature of 

the coldest month (Y1950-2000) 

(Hijmans et al. 2005) 

 

2.3. Sampling Method 

In this study, only the understory vegetation (herbaceous and shrubs species) 

was sampled, since in the Montado ecosystem trees are very often planted and 

managed, resulting in a tree cover that may reflect not only climate, but 

management as well. 

The herbaceous and shrub vegetation were sampled using the point-line 

intercept method (PT method) along linear transects. Sampling was performed in 

late spring, at the end of the growing season. Google Earth and GPS were used to 

reach each of the sampling sites in the field corresponding to ICNF sites. From 

these coordinates 6 transects were placed in different directions (Fig.4), so all 6 

transects were aligned, with the starting point in the middle. If the site was 

located in a slope, transects were oriented perpendicularly to the slope, in order to 

avoid a possible slope-induced gradient. Exceptions to this spatial arrangement 

were made in order to avoid tree canopy, drainage lines, flooding surfaces and 

small paths made by livestock transit (fig. 4). This procedure aimed at avoiding 

heterogeneity among transects. 
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Figure 4: Exemplification of the disposition of the 6 transects in the field. The red 

point corresponds to the ICNF point, located using a GPS. The 6 transects are arranged 

perpendicularly to the slope and one transect is deviated to avoid a tree. 

 

Transects were 20m long, and intercept points were spaced every 50cm, 

summing 41 intercept points per transect and 246 intercept points per site. At 

each intercept point a metal pin 5 mm thick was placed along the transect 

perpendicular to the ground.  

At each intercept point, the pin was lowered through the vegetation until the 

ground and all plant individuals touched by the metal pin were collected and 

putted together in a paper bag. The entire aboveground part was collected, trying 

to keep individuals as complete as possible for further identification and traits 

measurement. When no plant was hit, the presence of bryophytes, lichens, litter, 

dead plant or 

bare soil were 

recorded in the 

absence of plants. 
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Figure 5: Sampling work. The method used for individuals collection consisted in a 

packaging system, where all hits of one point were packaged together and these small 

packs were grouped by transect and then by site for further identification and trait 

measurement in the lab. 

2.4. Data measurements and analysis 

2.4.1. Species identification 

All collected individuals were identified as close as possible to species level. 

This identification was conducted in the lab using floras and identification keys 

of: Flora Iberica (Castroviejo 1986-2012), Nova Flora de Portugal (Franco 1971, 

1984, Franco and Afonso 1994, 1998, 2003), Flora Vascular da Andalucía 

Occidental (Valdés et al. 1987), Catálogo das Plantas Infestantes das searas de 

trigo (Beliz and Cadete 1982). Species nomenclature was updated using Flora 

Iberica (Castroviejo 1986-2012), except for species not covered, which follow Nova 

Flora de Portugal (Franco 1971, 1984, Franco and Afonso 1994, 1998, 2003). 

2.4.2. Richness and Cover measurement 

Identified species were used to calculate species richness at each site (total 

species richness and species richness by functional group). 

Changes in species cover were calculated by summing up all the points 

intercepted by plant species at each site (sum of 6 transects). Functional groups 

cover was calculated by summing the cover of species belonging to the same 

group. Relative cover in the community (%) was calculated by dividing the total 

number of hits that touch a specific plant or group by the total number of 

intercept points measured that hit a plant at each site (sum of 6 transects). This 
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variable reflects the representativeness of a species/group in the plant 

community.  

2.4.3. Selected traits 

 A list of traits related to climate was created through a literature review (e.g. 

Cornelissen et al. 2003, Lavorel et al. 2007a) (Appendix 2). Then, mean values 

were collected for the species previously identified using databases, floras and 

papers. Traits for which values were found for all species identified were used for 

species classification into functional groups. Additionally, some of the listed plant 

traits were directly measured, namely height, biomass and specific leaf area 

(SLA). 

2.4.3.1.  Height  

After plant identification height was measured. For each species, height was 

measured only for the 10% tallest individuals of each transect to evaluate the 

potential of the community to grow in height. Since the sites had some degree of 

grazing and the plants were carried out to the lab, the measurement of all plants 

would bring some error because some were not complete. Furthermore, 

measuring only the 10% tallest individuals reduces processing time without 

reducing the accuracy of the measurement. Both vegetative and reproductive 

height were measured, but in this work only vegetative height is analyzed, since it 

is the trait described in Cornelissen et al. (2003).  

2.4.3.2. Biomass 

After height measurement, species were grouped based on family and life 

cycle. The species were grouped firstly by family:  the three most dominant 

families were kept apart (Graminae, Compositae and Leguminosae) and the 

remaining families were measured all together. Then each of these 4 groups was 

divided by life cycle: i) annuals and species with facultative biennial life cycle and 

ii) perennial species. Additionally, 11 species were selected to be measured 

individually. These species were selected by their dominancy in the community in 
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terms of cover and because they were present in most sampled sites. In resume, 8 

a priori functional groups and 11 species were measured. To calculate biomass, 

plants were dried at 60ºC for a minimum of 72 hours and dry weight was 

measured with a precision balance (Sartorios, 1mg readability). Biomass of the 11 

measured species was added to the biomass of the functional group they 

belonged. 

2.4.3.3. Specific Leaf Area (SLA) 

Specific leaf area (SLA) corresponds to a leaf light-intercepting area divided by 

its dry mass (Garnier et al. 2001). SLA was measured for two dominant species 

(present with a high cover in most sampled sites sampled): Agrostis pourretii 

Willd. and Tolpis barbata (L.) Gaertn. Three fully expanded leaves were collected 

from the same individuals that were measured for height and biomass following 

the protocol of Cornelissen et al. (2003). 

SLA should be measured within 48h after field collection. This procedure was 

impossible in this work because field trips would last 3-5 days per week from 

April to July. To diminish the effects of dry storage, leaves were rehydrated for 6 

hours in the dark at ambient temperature (Garnier et al. 2001). After rehydration 

of Tolpis barbata  the area of leaves were measured with a Portable Area Meter 

(LI-COR, model LI-3000, measurement unit: cm2), while in Agrostis pourretii 

leaves were scanned using a computer and leaf area was measured using software 

Adobe Photoshop CS5. Leaves were then dried at 60ºC for 72h and dry mass was 

measured.  

During the scanning process, Agrostis pourretii leaves tended to curl or bend, 

even using an acrylic cover to keep leaves flat. This directly affected SLA 

measurement. Thus, SLA of Agrostis pourretii is not presented in this work. 

 

2.5. Statistical analysis 
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Research on plant traits responses to environmental variation is mainly based 

on a correlational approach (Lavorel et al. 2007a), and it is also the approach 

chosen in this work. Based on the categorical traits compiled from the literature, 

the community was divided into functional groups made a priori. A correlation 

between the cover of these functional groups with climatic variables was tested. 

Correlations between the variation of the measured traits (biomass, height and 

SLA) and the climatic variables were also tested. All correlations were tested 

using Spearman rank-order analysis since some relations between variables were 

not linear. The software used was Statistica 10.0.  

Grouping species a priori assumes that traits used for that classification may be 

determinant for the observed species distribution along the climatic gradient. To 

visually assess if this assumption was confirmed a Non-metric Multidimensional 

Scaling (NMDS) was performed with species cover data (number of hits per site), 

independently of their traits. This analysis enables to assess the degree of 

similarity in plant community composition along the sampling sites as well as the 

species responsible for it. Species graphically close to each other would have 

similar traits that led to a common distribution pattern (or different traits that led 

to the same response). NMDS was performed with only the 21 most abundant 

species (species with high cover and present in at least 7 sites), because with more 

species the graphic would be very difficult to read. NMDS was performed with 

software R, version 2.15.2 using vegan library (R Core Team 2012), and the Bray 

Curtis dissimilarities as distance measure. The matrix was square root and 

Wisconsin transformed to minimize outliers. NMDS analysis has advantages in 

relation to other multivariate methods because it only uses rank information and 

maps ranks non-linearly onto ordination space, and thus can handle non-linear 

species responses of any shape and effectively and robustly find the underlying 

gradients (Oksanen 2011).  
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3. Results and Discussion 

3.1. Plant community in the study area 

3.1.1. Pant richness and Plant cover 

In this work, 15 sites were sampled for plant richness and cover. At each site 

246 intercept points were evaluated making a total of 3690 intercept points 

evaluated along the climatic gradient. The lack of plant was classified as no plant 

cover. Plant cover was in average 81%. Bugalho et al. (2011) found 83% plant 

cover in grazed plots under similar climate (mean annual precipitation –MAP- of 

587mm) in a study performed in Montado  at Alentejo. 

Figure 6A shows plant cover variation along all 15 sampled sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Median, 25th and 75th percentiles, minimum and maximum, outliers and 

extreme values of A: percentage of plant cover and no plant cover; B: percentage of bare 

soil, litter, lichen and bryophyte within the no-plant cover, in 15 sites sampled along a 

climatic gradient in Alentejo region.  
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The variable no plant cover was classified for the presence of: bryophytes 

(15.3%), lichens, litter (56.9%), dead plant, stone/rock, and bare soil (28.4%) (Fig. 

6B). The observed low cover of lichens is probably related to the land-use intensity 

of the Montado ecosystem, namely trampling. Lichens were shown to be very 

sensitive to disturbance, namely to livestock trampling as shown by Zubiri (2012).  

A total of 146 plants species were identified and on average there were 36.5 

plant species per sampling site, ranging between 26 and 52 (fig.: 7). 

 

 

 

 

 

 

 

 

 

Figure 7: Median, 25th and 75th percentiles, minimum and maximum value of number 

of species, in all sites sampled (15 sites), along a climatic gradient in Alentejo region. 

 

 

Castro et al. (2010) found a lower number of plant species (75 species) in plots 

under extensive grazing and submitted to a climate slightly drier than ours 

(MAP=438mm and MAT-mean annual temperature=16.8ºC). This could be due to 

the fact that in the mentioned study only 3 sampling sites were used to measure 

plant diversity while we measured in 15 different sampling sites. Castro et al. 

(2010), found a lower median of species per plot (25) ranging from 15 to 38 

species based on the observation of 15 plots per site, each with 0.25m2. Castro et al. 

(2010) used an area-based method. Nevertheless our driest sites (MAP=521-

526mm) showed comparable number of species (26-37) suggesting that climate is 

an important variable driving biodiversity in this ecosystem.  
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Under similar climate, Bugalho et al. (2011), found lower plant species (53) 

than the ones found in this work. The latter author evaluated less plots/sites (5 

against 15 sites measured in our study) and had lower total number of intercept 

points (1440 against 3690) than the ones used in this study. A lower median 

number of species among the grazed plots (22 species, from 13 to 26) was also 

found in the study of Bugalho et al. (2011) compared to our results. The authors 

used the pin-point quadrat method, in which needles are positioned in plots using 

a frame, with 288 intercept points per plot and a total of 1440 intercept points in 

grazed plots.  

We suspect that distance between intercept points is lower than the used in the 

present study (0.5m), because frames have 9 needles, positioned 8 times in sub-

plots with 2 x 4m. Thus, the lower number of species per plot can probably be due 

to smaller distance between intercept points, capturing probably lower spatial 

heterogeneity. One of the main characteristics of drylands is their increasing 

spatial heterogeneity with increasing aridity. Thus having methods that enable to 

capture the spatial heterogeneity is of high interest (Kefi et al. 2007). 

 

 

3.1.2. Diversity of families and of functional groups  

Of the 5990 plants collected in 251 hits (4.2%) was not possible to identify 

plants at the species level. Most of the unidentified individuals were grasses 

without flowers (88.04% of all unidentified hits), so it was only possible to identify 

to the family level. The families with higher number of species were Gramineae, 

Leguminosae and Compositae (Table 3). These three families are also dominant 

in terms of relative cover in the community (more than 70% except in one site, 

where it was only 57%). 
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Table 3: Number of species per family found in 15 sites sampled along a climatic 

gradient in Alentejo region.  

Family Nr species  
 

Family Nr species  

Gramineae 37 
 

Rubiaceae 2 

Leguminosae 29 
 

Boraginaceae 1 

Compositae 22 
 

Convolvulaceae 1 

Caryophyllaceae 12 
 

Cyperaceae 1 

Plantaginaceae 6 
 

Euphorbiaceae 1 

Cistaceae 5 
 

Gentianaceae 1 

Geraneaceae 4 
 

Guttiferae 1 

Scrophulariaceae 4 
 

Isoetaceae 1 

Brassicaceae 3 
 

Juncaceae 1 

Polygonacea 3 
 

Linaceae 1 

Labiatae 2 
 

Primulaceae 1 

Campanulaceae 2 
 

Umbelliferae 1 

Liliaceae 2 
    

 

Of all species identified, 138 are herbaceous and 8 are shrubs. The number of 

species (fig.: 8A) and the relative cover (fig.: 8B) of herbaceous plants was much 

higher than that of shrubs. On average, there was only 1 shrub and 3.6% of the 

shrub cover per site. The herbaceous layer clearly dominates, with an average of 

35.6 species and 96.1% of relative cover per site. This low abundance of shrubs is 

expected in Montado, since shrubs are intentionally cleared out for the pastures 

maintenance (Castro and Freitas 2009). The study of Castro (2008), in the same 

region and ecosystem, with similar climatic features (MAP of 438mm and MAT of 

16.8ºC), found that herbaceous species had a relative cover of more than 90%, 

similar to what we found in our work. 
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Figure 8: Median, 25th and 75th percentiles, minimum and maximum, outlier and extreme 

values of A: number of species and B: relative cover percentage of herbaceous and shrub 

understory, in 15 sites sampled along a climatic gradient in Alentejo region. 

 

Regarding the herbaceous understory, 99 species have annual life cycle, 17 are 

facultative biennials (i.e. with annual or biennial life cycle) and 22 are perennials. 

On average, there were 24.1 annual, 5.9 annual or biennial, and 4.9 perennial 

species per site (fig:.9). In terms of relative cover, annuals represented on average 

64.5% of the plant community, annual or biennials 18.8% and the perennials 

12.6%. 

Many studies in grasslands consider species with annual and facultative 

biennial life cycles all together (e.g. Kutiel et al. 1998), for this reason the 

following discussion does not differentiate between annual and facultative 

biennial species. Our results show that their joint mean relative cover is 83.3%.  

The previously mentioned study of Castro (2008) found a slightly higher value 

of 97.4% of annual species in sites with extensive grazing. In Spain, the study site 

of Azcarate et al. (2002), located near Madrid with similar ecosystem, land-use and 

climate (MAP of 450-500mm and MAT of 13ªC), is also dominated by annual 

species. 
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Figure 9: Median, 25th and 75th percentiles, minimum and maximum, and outlier 

values of annual, facultative biennial and perennial herbaceous species in terms of A: 

number of species and B: relative cover in the community, in 15 sites sampled along a 

climatic gradient in Alentejo region. 

 

 

Sternberg et al. (2000) found a relative cover of 74% in Israel, in a site with 

Mediterranean climate (MAP of 570mm and MAT of 18ºC) under different 

treatments of grazing. Since these studies are all located in grasslands with 

Mediterranean climate, with similar ecosystem and land-use, and are all 

dominated by annual species, it seems that annual species is a frequently 

dominating group in grasslands across different regions with Mediterranean 

climate with extensive grazing land-use. Species with this life cycle have the 

ecological advantage of growing and reproducing during the favorable conditions 

of the growing season and spend the dry hot summer that characterizes the 

Mediterranean climate in a seed form (Cain 1950, Noy-Meir 1973).  

Figure 10 shows the number of species (fig. 10A) and relative cover (fig.: 10B) 

of the main families present in the sampled sites. The Graminae family 

dominates either in number of species (mean 13.3) and relative cover (mean 

51.8%), followed by the Compositae family (mean number of species 7.1 and 

mean relative cover 18.6%). The Leguminosae family, in comparison with the 

other families present, has the widest range of variation on the number of species 

(mean 5.7), but in terms of relative cover varies little (mean 6.9%) (Figure 10). 
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Caryophillaceae and Plantaginaceae are both families with little representation 

(mean relative cover 3% and 9.2%, respectively). Although mean relative cover of 

Plantaginaceae is higher than legumes, Plantaginaceae species are not present in 

3 sites sampled, while legume species are present in all sites. Cistaceae family, 

which in these sites is mainly composed of shrub species (only one herbaceous 

species), has a low relative cover, something expected in Montado land use where 

shrubs are intentionally cleared out for the pasture maintenance (Castro and 

Freitas 2009). The remaining families were analyzed together in the category 

‘Other families’. Their relative cover is very low (mean 5.2%) given the 

considerable number of species included.  

 

 
Figure 10: Median, 25th and 75th percentiles, minimum and maximum and outliers 

values of community composition among the study sites regarding families, in terms of 

A: number of species and B: relative cover percentage.  

 

The three more abundant families in the present study were Graminae, 

Compositae and Leguminosae. These three families were also found to be 

abundant in other studies performed in Montado ecosystem in Portugal, with 

similar climatic features (Castro 2008, Bugalho et al. 2011). In Bugalho et al. 

(2011) grasses were the dominant family and represented more than 60% of plant 
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cover. In Castro (2008) the dominant family was Leguminosae, followed by 

Compositae and Graminae, but the sampling sites included not only sites with 

grazing land-use but also abandoned sites in a later stage of succession (10 to 20 

or more years since abandonment), with higher shrub cover (20 to 75%). 

Caryophillaceae and Cistaceae were also present. 

 

3.2. Analysis along the climatic gradient 

In this section plant community is analyzed along the climatic gradient, by 

performing correlations between plant variables and climatic variables. Response 

patterns of species richness and plant cover (section 3.2.1), functional groups 

(section 3.2.2) and measured traits (section 3.2.3) are evaluated. The climatic 

variables considered are described in table 2. One site was excluded from all 

Spearman analysis (site ID 7, appendix 1) because it was the only site ungrazed.  

3.2.1. Species richness and plant cover 

The percentage of No plant cover significantly decreases with increasing 

precipitation and increases with long-term temperature. The standard deviation of 

No plant cover among the 6 transects of each site also significantly and 

negatively correlated to long-term precipitation and aridity index. Plant cover 

significantly increases with precipitation and negatively with long-term 

temperature but has stronger correlations (higher coefficient) with aridity index 

and long-term precipitation (table 4). Figure 11 shows relation of both plant cover 

and no plant percentage with the aridity index. 

 

 

Table 4: Spearman’s rank correlation coefficients at P<0.05 for no plant cover, 

percentage and standard deviation (SD), plant cover and species richness (Nr sp) of 14 

sites sampled along a climatic gradient in Alentejo region. Ns= non-significant. Climatic 

variables: Arid. Idx= Aridity index (using data from Y1960-1990); LT Prec= long-term 

precipitation (mean annual precipitation Y1950-2000); MT Prec= medium-term 

precipitation (mean annual precipitation Y1998-2011); ST Prec= short-term precipitation 



29 

 

(mean monthly precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature 

(mean annual temperature Y1950-2000); TColdM= minimum temperature of the coldest 

month (mean Y1950-2000). 

 
No plant 

 
Plant 

 
Cover (%) SD 

 
Cover Nr sp 

Arid. Idx -0.73 -0.56 
 

0.79 0.69 

LT Prec -0.70 -0.60 
 

0.76 0.72 

MT Prec ns ns 
 

ns 0.72 

ST Prec -0.53 ns 
 

0.66 0.75 

LT Temp 0.61 ns 
 

-0.62 ns 

TColdM ns ns 
 

ns 0.64 

 

 

Various studies under different conditions found increasing plant cover, or 

decreasing bare soil cover, with increasing precipitation along spatial climatic 

gradients. Kutiel et al. (1998) in eastern Mediterranean, along a wider climatic 

gradient from Mediterranean climate to extreme arid (MAP 620-120mm and 

MAT 17-23ºC) found decreasing plant cover towards more arid sites. In Spain de 

Bello et al. (2007) studied different grazing cover along  a climatic gradient, (MAP 

922-325mm and MAT 7.1-15.2ºC), and concluded that grazing caused a higher 

bare soil percentage in more arid areas than in more humid areas. In China, Deng 

et al. (2006) studied a dryland, (MAP 346-192mm and MAT 9.1-8.2ºC), in shrub-

dominated communities, where total plant cover decreased from 96 (more humid 

site) to 37% (drier site). 

An example of a temporal precipitation gradient is the work of Collins et al. 

(2012), who studied grasslands in Kansas, USA, under an experiment simulated 

scenario of increasing precipitation during a 19-year period from 835 to 1108mm 

of precipitation, showed that total plant cover increased significantly in 

comparison to control.  
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Figure 11: Bi-plot of plant cover (grey quadrats) and no plant cover (black dots) with 

the aridity index (calculated with data from Y1960-1990). 

 

Species richness significantly increases with several precipitation variables and 

with minimum temperature of the coldest month (Table 4 and fig:.12).  

Other studies showed similar results with species richness increasing with 

increasing precipitation conditions. Holzapfel et al. (2006), studying herbaceous-

shrubs interactions along a climatic gradient in Mediterranean (MAP 780-90mm 

and MAT 18.1-19.1ºC), found decreasing herbaceous species richness towards 

more arid sites. In North-American grasslands, Adler and Levine (2007), also 

found decreasing species richness in a spatial precipitation gradient (MAP 835-

321mm).  

It is interesting to note that results in the present study for plant cover and 

species richness are in accordance to the papers discussed, considering the 

differences between precipitation gradients: the present precipitation gradient has 

a MAP from 521 to 634mm, a difference of only ca. 110mm, while Adler and 

Levine (2007), for example, the difference is ca. 510mm. Our results show that 

these patterns (decreasing plant cover and species richness) may also occur in less 

pronounced gradients as the one shown in this work. These results show the 

potential of this type of vegetation to respond to climate and consequently their 

potential as ecological indicator of climatic gradients. 
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Figure 12: Bi-plots between measured number of species and A: minimum 

temperature of the coldest month (mean from Y1950-2000); B: short-term precipitation 

(mean monthly precipitation from Oct 2011 – Mar 2012). Plant community was sampled 

in 14 sites along a climatic gradient in Alentejo region. 

 

 

Increased plant diversity seems to be favored by higher recent precipitation 

events and higher lower temperatures of the coldest month (Table 4 and fig:.12). 

The increase in richness might only depend on germination and emergency and 

for that, punctual phenomena of optimum conditions, such as, precipitation 

pulses might be enough to create new niches where new plants can germinate. 

Whereas the changes in plant cover are more associated to long-term phenomena 

that occur during all growing season. This seems reasonable if we think that for 

having a substantial cover of plants it is necessary that the plant not only 

successfully germinate and emerge but also establish and grow during all the 

growing season with their optimum conditions of temperature and precipitation. 

Both plant cover and species richness seem to have the potential to be used as 

ecological indicators of climate since they show trends with it. Different habitats 

in the same climatic region can have completely different values of plant cover 

and of species richness. Thus this type of indicators can only be used to compare 

the same type of habitat not having the potential to a widely used ecological 
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indicator. One of the 11 indicators that was proposed by UNCDD (United Nations 

for Combating Desertification and Soil Degradation) to be applied all over the 

world to evaluate the level of desertification at each country was the diversity of 

plant species (Berry et al. 2009). In this work we suggest that such an indicator 

does not have the potential to be compared everywhere. We suggest that 

functional diversity has more potential to be universal since it is not species 

specific dependent. Thus, the next steps of this work will be to further test 

functional diversity as an ecological indicator along a climatic gradient. 

 

3.2.2. Functional groups 

The following analyses attempt to assess plant community along the climatic 

gradient, using a functional approach. Plant species were classified in a series of 

functional groups regarding life form, life cycle. Species richness, plant cover and 

relative cover in the community (%) of these functional groups were evaluated. 

Plant cover corresponds to number of intercept points were a functional group 

was hit, what enables to study functional groups’ plant cover fluctuations along 

the climatic gradient. Relative cover in the community, being a percentage 

variable, gives a better insight of community composition Additionally, analyzing 

community in terms of percentage helps to compare with other studies with 

different methods or in different communities. 

 

Table 5 shows the list of traits for which information was found for all species 

present in this study but a complete list can be found in Appendix 2. The traits 

“photosynthetic pathway” and “clonality” showed very little variation among the 

species present thus were not analyzed. For “height”, measured values were 

chosen to be analyzed instead of the categorical ones. Based on previous 

references on the effect of climate on plant trait we proposed to analyze as a 

priority the following functional groups: life form, life cycle, height (de Bello et 
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al. 2005, Garnier et al. 2007). Analyzes for “growth form”, “flower duration” and 

“dispersal mode” are not shown in this work.  

The limitations have to do mostly with: i) a small number of traits and species 

available in the data bases; ii) data bases are often region specific (Gaucherand 

and Lavorel 2007, Lavorel et al. 2007b); iii) we need to use the genus for our local 

flora. Floras and papers concerning regional vegetation were also used to ensures 

more precise information. 

 

 

 

 

Table 5: Traits compiled from the literature for the species present in the precipitation 

gradient. Traits analyzed are highlighted. 

 

Abbrev. Trait's name Classes  Sources 

Gr_form Growth form Rosette  (Alday et al. 2011) 

  
Semi-basal (partial-rosette)  (Ehleringer et al. 1997) 

  
erect leafy  (Liu et al. 2003) 

  
tussock  (Liu et al. 2011) 

  
climber  (Singsaas et al. 2001) 

Li_form Life form Therophyte  (Still et al. 2003) 

  
Hemicryptophyte  (Vogel et al. 1986) 

  
Geophyte  (Waller and Lewis 1979) 

  
Camephyte  (Wang 2002) 

  
Phanerophyte  (Wang 2003) 

  
Variable  (Bonet and Pausas 2004) 

Li_cycle Life cycle Annual  (Castro 2008) 

  
Annual or biennial  (Coca and Pausas 2012) 

  
Perenial  (Luna and Moreno 2009) 

  
Variable  (Porto et al. 2011) 

Height Height Short (<40cm)  (Valdés et al. 1987) 

  
Medium (40-80cm)  (Castroviejo 1986-2012) 

  
Tall (>80cm)  (Franco 1971, 1984) 

Ph_path Photosynthetic pathway C3 
 (Franco and Afonso 1994, 

1998, 2003) 

  
C4  (Kleyer et al. 2008) 

  
CAM  (Paula et al. 2009) 

Clonal Clonality Non-clonal 
 (Clayton et al. 2006 

onwards) 

  
Short-rhyzomes  (Green 2009) 

  
Stolons  

 B_flower Onset of flowering  January to December  

 D_flower Flowering duration Nr of months flowering lasts  
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Dis_mode Dispersal mode Anemochory  

 

  
Barochory  

 

  
Ectozoochory  

 

  
Endozoochory  

 

  
Combinations  

  

The following analyses aim at assessing plant community along the climatic 

gradient, using a functional approach. Plant species were classified in a priori 

functional groups regarding life form and life cycle. Species richness, plant cover 

and relative cover in the community (%) of these functional groups were 

evaluated. Plant cover corresponds to the number of intercept points were a 

functional group was hit, what enables to study functional groups’ plant cover 

fluctuations along the climatic gradient. Relative cover reflects species or groups’ 

relative dominance in the community and thus gives a better insight of changes 

in community composition as a whole. Additionally, analyzing community in 

terms of percentage helps to compare with other studies assessed with different 

methods or in different communities. 

3.2.2.1. Life form 

The plant community sampled in this study comprised 94 terophytes, 22 

hemicryptophytes, 9 phanerophytes, 3 geophytes and 1 chamaephyte. Eleven 

species were classified as variable. In accordance, Castro (2008) shows that 

terophyte and hemicryptophyte life forms are highly associated with extensive 

grazing land-use, in a study performed in Montado ecosystem, under similar 

climatic conditions. Species with annual or biennial life cycle are classified by 

some sources as terophyte, and by others as hemicryptophyte and we chose to use 

hemicryptophyte. Because the values for geophytes and chamaephytes were very 

low, both in number and in cover, analyzes for these groups are not presented. 

Species richness and plant cover of phanerophytes and variable species showed 

not significant correlations with all climatic variables (data not shown). 
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Phanerophytes, as well as chamaephytes, may be influenced by the Montado land-

use where shrubs are cleared (Castro and Freitas 2009). 

  

 

Table 6: Spearman’s rank correlation coefficients at P<0.05 for species richness, total 

cover and relative cover of functional groups based on life form. Climatic variables: Arid. 

Idx= Aridity index (using data from Y1960-1990); LT Prec= long-term precipitation 

(mean annual precipitation Y1950-2000); MT Prec= medium-term precipitation (mean 

annual precipitation Y1998-2011); ST Prec= short-term precipitation (mean monthly 

precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature (mean annual 

temperature Y1950-2000); TColdM= minimum temperature of the coldest month (mean 

Y1950-2000). Life forms: TR = terophyte; HM = hemicryptophyte; Other = other life 

forms present, namely therophytes, phanerophytes and species classified as variable. 

 
Nr species 

 
Total cover  Relative cover (%) 

 
TR HM 

 
TR HM  Other HM   

Arid. Idx 0.73 0.72 
 

0.55 0.61  ns 0.54   

LT Prec 0.77 0.76 
 

ns 0.62  ns 0.57   

MT Prec 0.69 0.61 
 

ns 0.75  -0.69 0.75   

ST Prec 0.70 0.78 
 

ns 0.71  -0.62 0.71   

LT Temp ns -0.69 
 

ns ns  ns ns   

TColdM 0.62 0.56 
 

ns 0.66  -0.7 0.64   

 

 

Both terophytes and hemicryptophytes increase their species richness with 

precipitation and with temperature of the coldest month, but only 

hemicryptophytes seem to be affected by increasing long-term temperature 

(mean annual temperature) (table 6). Terophyte cover correlates poorly with the 

climatic variables, whereas hemicryptophyte cover has, in turn, strong positive 

correlations with precipitation variables. 

Relative cover (%) of terophytes, phanerophytes and variable species was joined 

(Other in table 6) and shows a community shift between this group and 

hemicryptophytes. With increasing short-, medium- precipitation, relative cover 

(%) of hemicryptophytes increases, while joined relative cover (%) of terophytes, 

phanerophytes and variable species decreases.  
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3.2.2.2. Life cycle 

Although Raunkiaer’s life forms are, to some point, related to life cycle, 

functional groups only based on life cycle were also analyzed. Herbaceous 

vegetation was classified as annual, facultative biennial (species with annual or 

biennial life cycle) and perennials; results are shown in table 7. Annual and 

facultative biennial species were analyzed together since the number of species 

classified as facultative biennial is low and other studies frequently don’t make a 

distinction between these life cycles (e.g. Castro 2008).  

 

 

Table 7: Spearman’s rank correlation coefficients at P<0.05 for species richness, total 

cover and relative cover (%) of functional groups based on life cycle. Plant community 

sampled in 14 sites along a climatic gradient in Alentejo region. Climatic variables: Arid. 

Idx= Aridity index (using data from Y1960-1990); LT Prec= long-term precipitation 

(mean annual precipitation Y1950-2000); MT Prec= medium-term precipitation (mean 

annual precipitation Y1998-2011); ST Prec= short-term precipitation (mean monthly 

precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature (mean annual 

temperature Y1950-2000); TColdM= minimum temperature of the coldest month (mean 

Y1950-2000). Life cycle: An + Bn = annual and facultative biennial species; Pn= perennial 

species. 

 

 

 

 

 

 

 

 

The species richness of annual species and facultative biennial species 

increases with increasing precipitation and increasing minimum temperature of 

the coldest month. Perennial species’ richness showed no significant correlations 

with any climatic variables. Cover of annual and facultative biennial species 

correlates significantly and positively with the aridity index, but this correlation is 

 
Nr species 

 
Total cover  Relative cover (%) 

  An+Bn Pn 
 

An+Bn Pn  An+Bn Pn 

Arid. Idx 0.62 ns 
 

0.53 ns  ns ns 

LT Prec 0.66 ns 
 

ns 0.52  ns ns 

MT Prec 0.61 ns 
 

ns 0.69  ns ns 

ST Prec 0.59 ns 
 

ns 0.71  ns ns 

LT Temp ns ns 
 

ns ns  ns ns 

TColdM 0.52 ns 
 

ns 0.65  ns ns 
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weaker and no correlations are observed with other climatic variables. This 

suggests that cover of annual and facultative biennial species does not vary 

significantly along the climatic gradient. 

Cover of perennial species increases with precipitation and minimum 

temperature of the coldest month, and showed to have higher correlation 

coefficient with short-term precipitation. This is interesting since perennial 

species seem to reflect better the recent climate and thus can act as a responsive 

ecological indicator of more recent conditions. By analyzing relative cover (%) of 

these two groups, it is shown that there is no significant community shift along 

the climatic gradient among annual, biennial and perennial species.  

 

3.2.2.3. Families and life cycle 

It is known that traits may have different responses not only among functional 

groups, but also within groups (Lavorel et al. 1999, de Bello et al. 2005). 

Additionally, studying several traits together can enhance trait-climate 

relationships (Barboni et al. 2004). In this section, it was tested if different life 

cycles would have contrasting responses within families. Although family is not a 

trait or functional group itself, we considered that families gather species with 

similar traits or trade-offs among traits. We analyzed Compositae, Graminae and 

Leguminosae, since those are the families with higher number of species (see Fig. 

9A and Table 3). Grasses are frequently analyzed apart from forbs (Lavorel et al. 

1999, Bonet 2004, de Bello et al. 2006). Among forbs, it was chosen to separate 

legumes, because of their N-fixing ability, and the Compositae family, because its 

large numbers enables this family to be analyzed separately from other forbs with 

lower risk of data deficit.  

In the further following analyses facultative biennials were integrated in the 

annual species group. Thus, the following analyses have three categories: annuals, 
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perennials and “total”. “Total” category joins annuals and perennials, to verify if 

correlations of both groups together are stronger. 

 

 

Compositae 

In general, the Compositae family is poorly related with climatic variables 

(table 8). Richness and cover of annual species are not significantly correlated 

with any climatic variable. Perennial species richness shows a trend to increase 

with long-term precipitation, a pattern that is still verified in the “total” group. 

Perennial species richness and cover decreases with long-term temperature, but 

for the total groups these correlations are not significative.  

 

Table 8: Spearman’s rank correlation coefficients at P<0.05 for species richness and 

plant cover of Compositae species sampled in 14 sites along a climatic gradient in 

Alentejo region. Climatic variables: Arid. Idx= Aridity index (using data from Y1960-

1990); LT Prec= long-term precipitation (mean annual precipitation Y1950-2000); MT 

Prec= medium-term precipitation (mean annual precipitation Y1998-2011); ST Prec= 

short-term precipitation (mean monthly precipitation Oct 2011 to Mar 2012); LT Temp= 

long-term temperature (mean annual temperature Y1950-2000); TColdM= minimum 

temperature of the coldest month (mean Y1950-2000). Life cycle: An = annual; Pn= 

perennial; Tot= total. 

 

 
Nr species 

 
Species cover 

 
An Pn Tot 

 
An Pn Tot 

Arid. Idx ns 0.54 ns 
 

0.56 ns 0.56 

LT Prec ns 0.59 0.55 
 

ns ns ns 

MT Prec ns ns ns 
 

ns ns ns 

ST Prec ns ns ns 
 

ns ns ns 

LT Temp ns -0.63 ns 
 

ns -0.64 ns 

TColdM ns ns ns 
 

ns ns ns 

 

 

It is not clear if life cycle is an important feature among the Compositae 

species, because of the large number of non significant correlations. However, 

these results suggest that different life cycles don’t have contrasting responses to 

climate within this family. In resume it seems that Compositae family as a group 
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does not have the potential to work as an ecological indicator along climatic 

gradients. 

Graminae 

Annual grasses richness and cover do not vary along the climatic gradient 

(Table 9). This group has no significant correlations with any climatic variable. 

On the other hand, perennial species richness and cover increase with increasing 

precipitation. This result is in accordance to what was found by Clary (2012). This 

author studied perennial grass cover at grasslands sites across three latitudinal 

belts, from coastal California inland to the Central Valley, relating perennial 

presence to environmental variables. Sites with greater May–September 

precipitation (i.e., less strongly ‘‘Mediterranean’’ seasonality) showed higher 

perennial cover than the other.  

Among the total group the previously observed correlations are no longer 

significant, suggesting that annual and perennial grasses have contrasting 

response patterns. A possible reason for this difference could be associated with 

plants’ ability to explore water resources: Harris and Wilson (1970) reported a 

faster root development among annual grasses, which would effectively compete 

with slower root growth perennial grasses for water resources.  

 Perennial grasses, both in number of species and in cover, seem to be a 

potential ecological indicator of climatic gradients.  

 

Table 9: Spearman’s rank correlation coefficients at P<0.05 for species richness and 

plant cover of Graminae species, sampled in 14 sites along a climatic gradient in Alentejo 

region. Climatic variables: Arid. Idx= Aridity index (using data from Y1960-1990); LT 

Prec= long-term precipitation (mean annual precipitation Y1950-2000); MT Prec= 

medium-term precipitation (mean annual precipitation Y1998-2011); ST Prec= short-term 

precipitation (mean monthly precipitation Oct 2011 to Mar 2012); LT Temp= long-term 

temperature (mean annual temperature Y1950-2000); TColdM= minimum temperature 

of the coldest month (mean Y1950-2000). Life cycle: An = annual; Pn= perennial; Tot= 

total. 

 
Nr species 

 
Species cover 

 
An Pn Tot 

 
An Pn Tot 

Arid. Idx ns 0.62 ns 
 

ns ns ns 
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LT Prec ns 0.66 ns 
 

ns 0.53 ns 

MT Prec ns 0.70 ns 
 

ns 0.71 ns 

ST Prec ns 0.85 ns 
 

ns 0.74 ns 

LT Temp ns ns ns 
 

ns ns ns 

TColdM ns 0.80 ns 
 

ns 0.64 ns 

 

Leguminosae 

Table 10 shows significant correlations for legumes. Annual legumes have 

many significant correlations with climatic variables. Annual species richness and 

cover respond positively to precipitation and negatively to long-term temperature, 

but stronger correlations are with the aridity index. This may suggest that annual 

legumes are highly associated not only with water availability, but also with other 

site conditions, which could be soil nutrients or seed bank diversity, since this 

association might suggest that legumes are influenced by long-term processes 

that occur at the ecosystem level. 

Perennial herbaceous legumes are not shown because this group was absent 

among the sampled sites. Legume shrubs were rare among the sampled sites, and 

are restricted to 3 species. This explains the non significant responses of this 

group both in species richness and cover.  

 

 

Table 10: Spearman’s rank correlation coefficients at P<0.05 for species richness and 

plant cover of legume species sampled in 14 sites along a climatic gradient in Alentejo 

region. Climatic variables: Arid. Idx= Aridity index (using data from Y1960-1990); LT 

Prec= long-term precipitation (mean annual precipitation Y1950-2000); MT Prec= 

medium-term precipitation (mean annual precipitation Y1998-2011); ST Prec= short-term 

precipitation (mean monthly precipitation Oct 2011 to Mar 2012); LT Temp= long-term 

temperature (mean annual temperature Y1950-2000); TColdM= minimum temperature 

of the coldest month (mean Y1950-2000). Life cycle: An = annual; Sb = perennial shrubs; 

Tot = total. 

 
Nr species 

 
Species cover 

 
An Sb Tot 

 
An Sb Tot 

Arid. Idx 0.83 ns 0.82 
 

0.77 ns 0.58 

LT Prec 0.81 ns 0.80 
 

0.69 ns ns 

MT Prec 0.73 ns 0.74 
 

0.56 ns ns 

ST Prec 0.71 ns 0.70 
 

0.60 ns ns 

LT Temp -0.60 ns -0.57 
 

-0.67 ns ns 
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TColdM 0.79 ns 0.80 
 

0.72 ns 0.72 

 

 

In terms of species diversity, response patterns are similar between annuals and 

total groups. However, this pattern was not observed for cover. The total group 

showed much less significant responses than annuals, suggesting that shrub cover 

does not show the same response trend than annuals. Annual legumes, which 

show a strong response pattern along the climatic gradient, have the potential to 

be further analyzed as ecological indicator of climatic gradients.  

 

Considering the overall results of the previous section (3.2.2.4) we hipotyzed 

that a community shift along the climatic gradient could be observed when plant 

community was classified by family and life cycle. Additionally to the previously 

evaluated families (Compositae, grasses and legumes) other relatively abundant 

(Fig. 10) families were shown to vary considerably, namely Plantaginaceae (which 

in this study are all Plantago sp., data not shown) and Caryophillaceae species 

(Fig. 13).  

Figure 13 shows plant community composition of the wettest and the driest 

sites according to long-term precipitation. 
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Figure 13: Plant community composition of the more humid and the driest sites 

according to Medium-term Precipitation, i.e. mean annual precipitation from years 1998-

2011 (MTPrec), using relative cover data of a sampling performed in 14 sites along a 

climatic gradient in Alentejo region. 

 

 

Based on all the previous information and other exploratory analysis we 

proposed an indicator based on community shift between groups of species that 

were shown to significantly related with all climatic variables (Table 13). In 

resume, with increasing aridity also increases relative cover in the community (%) 

of the group composed by annual grasses and Plantago species, while relative 

cover (%) of a group composed of perennial grasses, annual legumes and 

Caryophillaceae species decreases. 

 

Table 11: Spearman’s rank correlation coefficients at P<0.05 for relative cover in the 

community of family and life-cycle groups, sampled in 14 sites along a climatic gradient 

in Alentejo region. Climatic variables: Arid. Idx= Aridity index (using data from Y1960-

1990); LT Prec= long-term precipitation (mean annual precipitation Y1950-2000); MT 

Prec= medium-term precipitation (mean annual precipitation Y1998-2011); ST Prec= 

short-term precipitation (mean monthly precipitation Oct 2011 to Mar 2012); LT Temp= 

long-term temperature (mean annual temperature Y1950-2000); TColdM= minimum 

temperature of the coldest month (mean Y1950-2000). Groups: An Gram= annual 

grasses; Pn Gram= perennial grasses; An Legu= annual legumes; Plantago= Plantago sp.; 

Cary= Caryophillaceae. 

 

 

 

 

 

 

 

 

 

Figure 14 shows community composition along the climatic gradient. In more 

humid sites (higher long-term precipitation) relative cover of annual grasses and 

 
Cover in community (%) 

 
An Gram + Plantago 

Pn Gram +  
An Legu + Cary 

Arid. Idx -0.71 0.69 

LT Prec -0.72 0.68 

MT Prec -0.74 0.85 

ST Prec -0.61 0.79 

LT Temp 0.60 -0.54 

TColdM -0.78 0.77 
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Plantago species is approximatly 40% and relative cover of perennial grasses, 

annual legumes and Caryophyllaceae species is around 30%. 

In drier sites (lower long-term precipitation) relative cover of these two groups 

is more dissimilar: annual grasses and Plantago sp occupy around 60% of plant 

community while perennial grasses, annual legumes and Caryophillaceae species 

occupy only around 10% of the plant community. It is interesting to notice that 

around 600 mm of long-term precipitation the shift in these two groups of plants 

is most obvious (Fig.14). 

 

 

 

Figure 14: Relative cover in the community of functional groups considered in table 

12 along sites with increasing long-term precipitation (mean annual precipitation from 

period 1960-1999). Plant community was sampled in 14 sites along a climatic gradient in 

Alentejo region. Line represents a moving average of two measures. 

 

 

In accordance with results of the present study, Azcarate et al. (2002), in 

Spanish Q. ilex open woodlands with similar climate, found that perennial grasses 

and Trifolium species (legumes) were abundant in more moist sites along an 

altitudinal-moisture gradient with MAP around 450-500mm and MAT of ca. 13ºC. 

A recent work of Collins et al. (2012), which studied the effects of increasing 

precipitation (manipulative approach) over a 19-year long experiment in 
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American grasslands dominated by perennial grasses (natural MAP of 835mm, 

experienced MAP of 1108 mm), found increasing cover of perennial grasses, and 

this increase was more marked in drier upland sites.  

Acosta et al. (2008) studied functional diversity in grasslands with extensive 

grazing land use along an altitudinal gradient of 1100m that leaded to a soil 

moisture gradient, in Spain. In the mentioned study, perennial species (including 

the perennial grass Agrostis castellana Boiss. & Reut., also present in our study) 

and horizontal growth species (in which legumes can be included) were associated 

with high altitude sites, where soil moisture was higher, while annual species 

(including some annual grasses like Vulpia sp,  also present in our study) and 

species with basal rosettes (like Plantago sp), were typical of low altitude, drier 

sites.  

Supporting the annual grass and Plantago species association made in the 

present study Ansquer et al. (2009) found that a set of  weighted plant traits of 

grasses and rosette forbs (a growth form shared among Plantago species) where 

closely related. These traits, namely plant height and plant Nitrogen (N) and 

Carbon (C) content, are related to capture and use of resources and plant 

competitiveness. The mentioned study was performed in grasslands with livestock 

farms, but climatic conditions were different from the present study: sites were 

located in the Pyrennes, with MAP of 1080mm and MAT of 10ºC (5 years’ data). 

The discussion with other works performed in the Montado ecosystem are not 

useful since most studies are related to land-use change and aimed at studying 

the effects of abandonment (cessation of ploughing and sowing) (Lavorel et al. 

1999, Castro and Freitas 2009, Castro et al. 2010, Bugalho et al. 2011). 

The main results concerning functional groups found in this work seem to be 

in accordance to the ones performed in other countries namely the ones with 

Meaditerranean climate. This suggests that there is potential that the selected 

functional groups of species found in the present work, namely perennial grasses, 

annual legumes and Plantago species can be further tested for their universality. 
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3.2.2.4. Non-metric Multivariate Dimensional Scaling 

To test whether plants species associated themselves in relevant functional 

groups a Non-metric Multivariate Dimensional Scaling (NMDS) was performed. 

In the graphical representation, in figure 15, drier sites (sites are represented by 

number sorted in ascending order of long-term precipitation) were placed on the 

left quadrants, with the three driest sites (lower long-term precipitation) located 

under -0.5 in the first axis. The more humid sites were placed in the right 

quadrants, but its location in more scattered.  

 

Figure 15: Non-metric Multivariate Dimensional Scaling (NMDS; first vs. second axes) 

of cover of the 21 most dominant species and sites. Distance measure used was Bray 

Curtis and stress was 0.097.  Numbers indicate sites sorted in ascending order of long-

term precipitation (as in Appendix 1). Simbols were placed manually on the left of the 

species name to indicate species assignment to functional group or family considered in 

previous results. Apour= Agrostis pourretii Willd.; Bdyst= Brachypodium distachyon (L.) 

P.Beauv.; Bhord= Bromus hordeaceus L.; Ccapi= Crepis capillaris (L.) Wallr.; Cdact= 

Cynodon dactylon (L.) Pers.; Cmixtu= Chamaemelum mixtum (L.) All; Crace= Carlina 

racemosa L.; Gfragi= Gaudinia fragilis (L.) P.Beauv.; Hglab; Hypochaeris glabra L.; 
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Lgall= Logfia gallica (L.) Coss. & Germ.; Lrigi= Lolium rigidum Gaudin; Ltara= 

Leontodon taraxacoides (Vill.) Mérat; Ocomp= Ornithopus compressus L.; Pcoro= 

Plantago coronopus L.; Plago= Plantago lagopus L.; Spurp= Spergularia purpurea (Pers.) 

G.Don; ; Tbarba= Tolpis barbata (L.) Gaertn; Tgutt= Tuberaria gutatta (L.) Fourr.; Vcili= 

Vulpa ciliata Dumort.; Vgeni= Vulpia geniculata (L.) Link; Vmyur= Vulpia myuros (L.) 

C.C.Gmel. 

 

 

Note that the NMDS considered only the 21 dominant species (due to 

graphical/visual issues), while previous results include all species present in 14 

sampled sites. Plantaginaceae species (namely Plantago lagopus L. and P. 

coronopus L.) are located near the dry sites, among several annual grasses (e.g. 

Bromus hordeaceus L., Brachypodium dystachion (L.) P.Beauv.). However, other 

annual grasses (e.g.Vulpia myurus (L.) C.C.Gmel. and Gaudinea fragilis (L.) 

P.Beauv.), are scattered along the first axis as well as Compositae species (e.g. 

Hypochaeris glabra L. and Logfia gallica (L.) Coss. & Germ.), in accordance with 

the non significant results of cover for these two groups (tables 7 and 8). In the 

“humid side” we find an annual legume (Ornithopus compressus L.), a perennial 

grass (Cynodon dactylon (L.) Pers.) and a Cistaceae herb species (Tuberaria 

guttata (L.) Fourr.). However, the Caryophyllaceae species (Spergularia purpurea ) 

is located in the “dry side”, while previous results (table 12) showed that this 

group cover increases with precipitation. Overall, the results for species are in 

accordance with previous results, despite the small number of species considered. 

Shepard plot showed a linear fit of R2=0.949 and non-metric fit R2= 0.991. The first 

axis correlates with all climatic variables considered in this work. Correlations are 

positive with the aridity index, precipitation variables and minimum temperature 

of the coldest month and negative with long-term temperature, as shown in table 

15. The second axis did not correlate with any climatic variable considered.  

 

 

Table 12: Spearman’s rank correlation coefficients at P<0.05 for scores of first and 

second axes of NMDS presented in figure 11.  
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NMDS scores 

 
First axis Second axis 

Arid. Idx 0.79 ns 

LT Prec 0.79 ns 

MT Prec 0.78 ns 

ST Prec 0,67 ns 

LT Temp -0.69 ns 

TColdMonth 0.73 ns 

 

 

Despite some accordance of species assemblage and previous functional groups 

that showed a community shift in table 12, the ordination analyses highlighted 

the fact that species belonging to the same functional group may have different 

distribution patterns along the climatic gradient, and that some functional groups 

made a priori (namely annual grasses and Compositae) may be too 

comprehensive, gathering species with different response patterns and traits. In 

fact, there are annual grasses and annual Compositae species in both sides on the 

first axis. It would be necessary to study more traits to define smaller groups 

within these broad groups.  

These ordination analyses may also enable the opposite approach, with a 

posteriori functional classification based on the assumption that species 

graphically close to each other have similar response pattern, possibly because 

these species have similar traits, and could, therefore, constitute a functional 

group. More time would be needed to disclose the common traits that might 

associate species together. 

 

3.2.3. Measured Traits 

3.2.3.1. Biomass and Height 

Biomass is often referred in literature as an ecosystem property at the 

community level (Roscher et al. 2012) and more seldom, as a trait at the plant 

level (Cornelissen et al. 2003). This is probably due to the fact that it is considered 
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as a hard trait because its laborious measurement, although it has proved large-

scale ecological significance and can provide important information, especially in 

combination with other traits (Cornelissen et al. 2003). Therefore, biomass was 

included in these results both at the specific and functional group level, to enable 

the comparison of functional group’s and dominant species’ response patterns. 

Table 13 summarizes the observed patterns among functional groups and 

dominant species for cover, biomass and height, based on correlations tested for 

long-, medium- and short-term precipitation (see table 1 for further information 

on these climatic variables; see Appendix 3 for Spearman’s rank correlation 

coefficients)  

 

Table 13: Signal of Spearman’s rank correlation coefficients at P<0.05 for cover, 

biomass and height of functional groups and dominant species with long-, medium- and 

short-term precipitation. Simbols: = = non significant correlations; + = positive significant 

correlations. Dominant species: Cmixt= Chamaemelum mixtum (L.) All.; Ltara= 

Leontodon taraxacoides (Vill.) Mérat; Apour= Agrostis pourretii Willd.; Gfrag= Gaudinia 

fragilis (L.) P.Beauv.; Ocomp= Ornithopus compressus L.. 

 
Cover 

 
Biomass 

 
Height 

 
FG 

 
FG Dom Sp 

 
FG Dom Sp 

Annual Compositae 
   

Cmixt Tbarb 
  

Cmixt Tbarb 

= 
 

+ = = 
 

+ + + 

Annual grasses 
   

Apour Gfrag 
  

Apour Gfrag 

= 
 

= = + 
 

+ = + 

Annual legumes 
   

Ocomp 
   

Ocomp 

 + 
 

+ = 
  

= = 
 Perennial grasses + 

 
= 

   
+ 

   

Cover of annual Compositae species does not increase with precipitation, but 

biomass and height do increase. The biomass of dominant species of Compositae 

group (Chamaemelum mixtum (L.) All. and Tolpis barbata (L.) Gaertn.) do not 

increase, which suggests that the biomass increase among the functional group is 

due to other species. 

As seen in previous results, cover of annual grasses does not vary along the 

climatic gradient. Biomass of this group also doesn’t vary, while height increases 

with precipitation. Within the dominant species of annual grasses, Agrostis 
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pourretii Willd., the results show that its biomass and height do not vary along the 

climatic gradient, while Gaudinia fragilis (L.) P.Beauv increases in both these 

traits. These results suggest that species within this group may respond 

differently to precipitation.  

Annual legumes increase with precipitation both in cover and biomass, while 

height doesn’t change significantly. The dominant species, Ornithopus 

compressus L., does not increase in biomass or in height. This suggests that the 

increase in biomass of this functional group with precipitation is due to the 

presence of other less abundant species, in accordance with the observed increase 

in legumes species richness with precipitation. 

Perennial grasses increase their cover and height, while biomass doesn’t 

change. One possible reason for these results could be that, in more humid sites, 

perennial grasses tend to grow preferably in height, with less investment on 

cespitous growth. This is reasonable since in more humid sites plant cover is 

higher (table 4), what could lead a competition for light among plants. Other 

possible reason could be perennial grass species turnover along the climatic 

gradient, and species present in more moist sites would be taller but with less 

biomass when compared with species present in drier sites . In this functional 

group, there was no species present in sufficient number of sites to enable an 

individual species analysis; however, relatively common species within this group 

were Poa bulbosa L. and Agrostis castellana Boiss & Reut. 

 

3.2.3.2. Specific leaf area 

Specific leaf area (SLA) measurements were made for two species, but results 

are shown only for Tolpis barbata which is an annual Compositae species where 

leafs were able to be measure even some time after field work. A total of 104 

leaves were analyzed.  
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Specific leaf area values range between 12.3 and 37.9 m2kg-1. This range is 

within the expected values since herbaceous species in general show SLA higher 

than 10-15 m2kg-1 (Cornelissen et al. 2003), and are similar to SLA values of T. 

barbata found by Castro (2008) – mean of  27.1 m2kg-1 - in sites located in Alentejo 

region with similar land-use and climate. 

To verify if SLA varied significantly along the climatic gradient, correlations 

between SLA and climatic variables were performed. Results in table 14 show that 

SLA of T. barbata significantly increases with precipitation and with minimum 

temperature of the coldest month. Figure 16 shows the biplots between SLA and 

the aridity index (A) and medium-term precipitation (B). 

 

Table 14: Spearman’s rank correlation coefficients at P<0.05 for Specific leaf area of 

Tolpis barbata, sampled in 14 sites along a climatic gradient in Alentejo region. Climatic 

variables: Arid. Idx= Aridity index (using data from Y1960-1990); LT Prec= long-term 

precipitation (mean annual precipitation Y1950-2000); MT Prec= medium-term 

precipitation (mean annual precipitation Y1998-2011); ST Prec= short-term precipitation 

(mean monthly precipitation Oct 2011 to Mar 2012); LT Temp= long-term temperature 

(mean annual temperature Y1950-2000); TColdM= minimum temperature of the coldest 

month (mean Y1950-2000). 

 

T. barbata  
SLA 

Arid. Idx 0,75 

LT Prec 0,74 

MT Prec 0,75 

ST Prec ns 

TColdM 0.71 

 

 

The study of (Reich et al. 1998) compared SLA and other leaf traits across 

various functional groups and biomes. This study has a large-scale approach, and 

thus comparisons with the present study are difficult. However, a comparison 

between SLA measurements for several forb species between two sites with 

different MAP shows that the SLA of forbs’ increases from the drier to the more 

humid wet site. The wetter site is a cold temperate forest and prairie with MAP of 

820mm whereas, the drier site is composed of desert  
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grassland, shrubland and woodland with MAP of 222mm. The only forb species 

measured in the wettest site showed an SLA of 3.4 m2kg-1, while the several forb 

species found in the driest one showed SLA ranging between approximately 10 

and 30m2kg-1. Although reflecting a much lower precipitation gradient, our 

results (≈500-650mm) showed a comparable and wide range of variation of SLA 

from 10-40 m2kg-1. 

In previous results, T. barbata showed no significant changes in biomass but a 

significant increase in height with increasing precipitation. It seems that T. 

barbata respond to this gradient of climatic change increasing its physiological 

performance based on phenotypic plasticity, which means increasing its SLA and 

height. Another interesting pattern that is observed from the plot that relates SLA 

with long-term precipitation is that only after ≈600mm the SLA considerable 

increases and reaches values higher than 30 m2kg-1. It seems that only above the 

threshold of 600mm of long-term precipitation this species is able to considerably 

increase its SLA. This threshold is similar to the one found in the shift of 

communities shown in figure 13. 

 

 

Figure 16: Bi-plots between climatic variables and SLA (m2kg-1) of annual forb Tolpis 

barbata sampled along a climatic gradient in Alentejo region. This species was present in 

12 of the 14 sites sampled. A: relation of SLA with the aridity index (calculated using 

climatic data from Y1960-1990); B: relation of SLA with long-term precipitation (mean 

annual precipitation Y1950-2000). 
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Poorter et al. (2009) reviewed that SLA has a positive relation with water 

availability across all types of plant species. More specifically along precipitation 

gradients, Lamont et al. (2002) found decreasing SLA towards drier sites in 

evergreen shrubs. Interpretation of lower SLA with decreasing water availability 

relies on the fact that cells are smaller and more tightly packed, leading to a low 

development of the leaves. Additionally a smaller leaf area leads to a smaller 

transpiring area, reducing water requirements under dry conditions (Poorter et al. 

2009). In addiction, SLA is frequently a good proxy of species potential relative 

growth rate (Cornelissen et al. 2003).  

Specific leaf area is not related only to water resources. In fact, it has been 

widely discussed whether water or nutrients are the main drivers of SLA (Poorter 

et al. 2009). In the present work, soil nutrients were not assessed. Moreover, it is 

expected that soil nutrients co-vary with long-term precipitation and aridity. In 

general term more precipitation corresponds to more productivity and the 

existence of more biomass. More biomass is associated with more litter and 

eventually higher nutrients in the soil. In this work we are not able to disentangle 

the effect of climate and soil nutrients. Nevertheless in nature they co-vary most 

of the times. Maybe an indicator that responds more to precipitation than to soil 

nutrients would be a good choice. Despite this, other authors showed that SLA in 

shrubs, for example, was more closely related to precipitation than to nutrient 

availability (namely P and N) (Lamont et al. 2002). 

Specific leaf area in T. barbata reflected a change of the physiological 

performance and reflecting phenotypic plasticity along a climatic gradient. This 

parameter could be a good ecological indicator if detached from other factors 

such as soil nutrients, something that needs further evaluation. The potential 

application of this indicator worldwide requires that the chosen species has a 

universal distribution, such as Brachypodium distachyon. This species occurs 

everywhere and its genome was completed recently (February 2010) which makes 
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it a model plant where both phenotypic and genotypic differences could be 

assessed at the same time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Final Remarks 

 

Among the 15 sampled sites, total plant cover is ca. 80%. A total of 146 plants 

species were identified. On average there were 36.5 plant species per sampling 

site, ranging between 26 and 52. These results showed higher values than the 
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ones recorded for previous works performed in the region. That could be due to 

differences in the method used or sampling effort and/or in the wider 

geographical range of the sampled area. Plant community is dominated by 

herbaceous species, mainly annuals (64.5% relative cover). Most species identified 

belong to Graminae (37 species), Compositae (29) and Leguminosae (22) families. 

Both plant cover and species richness decrease along the climatic gradient, i.e. 

with increasing aridity. Species richness seems to be highly associated with water 

availability and minimum temperature of the coldest month, while plant cover 

seems to be more associated with site long-term aridity (temperature and 

precipitation), suggesting that it is influenced by more integrated processes. Both 

plant cover and species richness depend on habitat and land-use type, thus we 

suggest that functional diversity has more potential to be universal as an 

ecological indicator of climatic gradients. We are not expecting that long-term 

precipitation and aridity influence directly the vegetation observed in 2012, 

although an indirect relation could be occurring. Aridity index and long-term 

precipitation reflect the long-term effects of climate at the ecosystem level more 

than simply the amount of water available for plant growth during its vegetative 

period. These variables reflect the average  climatic conditions in the last years 

(more than 30) “shaping” that place. Thus, they may be associated with other 

factors such as the amount of soil nutrients and the diversity of the seed bank. 

The amount of soil nutrients depends on several factors among: plant 

productivity (litter), litter quality and rate of decomposition (Castro 2008, 

Fortunel et al. 2009, Dias et al. 2013). Declines in soil structure associated with 

increasing aridity can adversely impact the water holding capacity andas more 

water runs off the land surface, less is retained in the soil and available for local 

recharge and plant establishment and growth. These factors might in turn 

influence the pattern of plant community which will further affect soil properties. 

These cascading effects are an evidence of long-term indirect effects of climate in 

soil properties which in turn model plant community. 
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Soil seed bank is the reflection of past diversity patterns. Although most of 

species present in the sampled sites have an annual life cycle, the percentage of 

species with persistent banks (i.e. species present in the soil seed bank for more 

than 1 year) is usually relatively high. Peco et al. (2003) found that 64% of 

montado ecosystem grassland species (with several species common to our study 

site) had persistent seed banks, as also found in other research (Ortega et al., 

1997), including species absent from the vegetation but present in the seed bank 

(long-term persistent). Some authors have shown that the presence of a reserve of 

dormant seeds in the soil can stabilize population dynamics diminishing large 

fluctuations in response to short-term environmental perturbations (Leishman et 

al. 2000). The presence of these species in the plant community may then vary 

with interannual fluctuations or short-term climatic conditions. However, long-

term perturbations may lead to local extinction of some plants with lower 

capacity to disperse which might not be present due to the lack of viable seeds 

storage at a certain site, reflecting long-term climate effects. 

Among the sampled sites the more abundant life forms were terophyte and 

hemicryptophyte. Species richness of both these functional groups decreased with 

increasing aridity, but only hemicryptophytes’ plant cover seems to be affected by 

decreasing precipitation.  

Analyzing both life cycle and family-based functional groups seems to be a 

step further in finding potential indicators of climate change. Among grasses, 

different life cycles showed clear contrasting response patterns: while cover of 

annual grasses remained unchanged, cover of perennial grasses significantly 

decreased with increasing aridity. Cover and species richness of annual legumes 

also significantly decreased with increasing aridity. Compositae species correlated 

poorly with the climatic gradient. Among these a priori functional groups 

perennial grasses and annual legumes seem to be promising ecological indicators 

of climate change.  
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Analyzing relative cover in the community (%) enables the perception of a 

community shift along the climatic gradient. There is a clear community shift 

between two groups that consider both family and life cycle: a group composed of 

annual grasses and Plantaginaceae species, which increase with aridity, while a 

group composed of perennial grasses, annual legumes and Caryophillaceae 

species decrease with increasing aridity. Relative cover of the first group varies 

from ca. 40 to 60%, and relative cover of the second group varies from ca. 30 to 

10% from the more humid to drier sites. Functional groups based on life form 

also showed a community shift: hemicryptophytes increased in relative cover with 

increasing precipitation, while relative cover of other life forms present (namely 

terophytes, chamaephytes and one geophyte) decreased with increasing 

precipitation.  

The latter conclusions were based on a priori knowledge about plant traits. It is 

also important to test whether plants associated themselves in groups which have 

functional relevance. A multivariate analysis of species distribution along the 

climatic gradient grouped species in a manner consistent with a priori functional 

groups classification, although species included in the same group did not always 

respond in the same way as functional groups. The results suggest that further 

analyses of plant community compositional changes along the gradient might be 

useful to better study potential indicator groups responding to the climatic 

gradient. 

Biomass and height changed along the climatic gradient, but the response 

pattern is different between a priori functional groups and dominant species of 

the same group. Height decreased with increasing aridity among all functional 

groups, except for annual legumes, which decreased in biomass. Specific leaf area, 

which was analyzed only for the Compositae species Tolpis barbata, decreased 

with increasing aridity. Considering that height of this species also decreased, this 

suggests a change in physiological performance along the climatic gradient. 

Moreover it reflects the phenotypic plasticity of this species. In sum, measuring 
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specific traits in the same species seems to have a potential to be an ecological 

indicator of climate change, especially if these traits are measured in a species 

with global distribution. 
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Appendix 1 

Table A1: Sampled sites characterization. Coordinates expressed in UTM. Altitude=altitude above sea level (m); LTTemp=long-term temperature (mean 

annual temperature); TWarmM=maximum temperature of the warmest month; TColdM=mean temperature of the coldest month; T. Annual 

range=temperature annual range; LTPrec=long-term precipitation; PWarmQ=precipitation of the warmest quarter; PColdQ=precipitation of the coldest 

quarter; MTPrec=medium-term precipitation (mean annual precipitation Y1998-2011); STPrec=short-term precipitation (mean monthly precipitation October 

2011 to March 2012). Temperatures are expressed in Celsius and precipitation in mm. Climatic variables are a mean of the period 1950-2000, except for 

MTPrec and STPrec 

.  

ID Coordinates City Soil Altitude Aridity Index LTTemp TWarmM TColdM Annual range LTPrec PWarmQ PColdQ MTPrec STPrec 

1 38°10'52.96"N   7°18'51.09"W Moura Litosoil 163 0.45 17.0 32.6 5.8 26.8 521 29 204 472.1 91.7 

2 38° 9'15.10"N   7°17'30.04"W Moura Litosoil 158 0.46 16.9 32.5 5.7 26.8 522 29 204 474.6 95.9 

3 38° 9'47.82"N   7°18'10.74"W Moura Litosoil 171 0.44 16.9 32.5 5.7 26.8 526 29 206 473.9 94.4 

4 38°16'46.93"N   7°12'36.84"W Mourão Litosoil 199 0.47 16.8 32.8 5.5 27.3 531 30 205 473.8 82.3 

5 38°14'8.52"N 7°21'12.81"W Moura Luvisoil 165 0.48 16.8 32.5 5.7 26.8 532 29 209 469.3 80.3 

6 38°11'46.82"N   6°57'15.99"W Barrancos Litosoil 262 0.49 16.5 32.8 4.8 28.0 542 30 208 468.9 100.3 

7 38° 2'25.94"N   7°9'22.63"W Moura Litosoil 276 0.52 16.4 32.0 5.1 26.9 548 30 213 446.8 108.3 

8 38°19'8.33"N   7°49'58.54"W Portel Luvisoil 209 0.53 16.3 31.6 6.1 25.5 579 30 237 494.0 136.4 

9 38°23'43.88"N   7°49'16.19"W Évora Luvisoil 235 0.54 16.2 31.4 6.0 25.4 594 31 242 487.9 71.7 

10 38°21'18.15"N   7°50'39.19"W Évora Luvisoil 280 0.58 16.0 31.2 5.8 25.4 604 31 247 499.7 125.0 

11 38°29'9.63"N   8°4'43.15"W Évora Luvisoil 194 0.62 16.4 30.8 6.6 24.2 607 31 252 535.8 173.9 

12 38°27'48.60"N   8°8'9.45"W Viana do Alentejo Luvisoil 185 0.67 16.4 30.7 6.7 24.0 607 31 253 548.3 184.3 

13 38°26'27.37"N   8°13'59.94"W Viana do Alentejo Luvisoil 163 0.64 16.5 30.6 6.9 23.7 611 30 257 547.6 184.1 

14 38°29'42.00"N   8°12'58.31"W Montemor-o-Novo Luvisoil 187 0.70 16.5 30.5 6.9 23.6 617 31 258 540.3 177.0 



66 

 

15 38°31'35.53"N   8°3'41.12"W Évora Luvisoil 262 0.69 16.0 30.4 6.4 24.0 634 34 262 523.7 154.2 
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Appendix 2 

Table A2: Traits searched in the literature. 

Traits Description 

Whole-plant traits Habit 

 
Growth form 

 
Life form 

 
Life cycle 

 
habitat_preferences 

 
height 

 
Stress tolerance 

 
Drough tolerance 

 
Fire strategy 

 
Clonality 

Leaf traits Leaf type 

 
Photosynthetic pathway 

 
Photosynthetic rate 

 
Water use efficiency 

 
Leaf pubescence 

 
Leaf phenology type 

 
Leaf size 

 
Leaf longevity 

 
Leaf anatomy 

 
Leaf absorbance 

 
Specific leaf area (SLA) 

 
Leaf dry matter content 

 
Leaf Carbon content 

 
Leaf Nitrogen content 

 
Leaf Phosphorus content 

 
Stomatal conductance 

Regenerative traits Flowering period 

 
Onset of flowering  

 
Flower height 

 
Reproductive maturity 

 
Pollination mode 

 
Resprouting capacity 

 
Dispersal mode 

 
Seed mass 

 
Seed size 

 
Seed longevity 

Below-ground traits Root type 

 
Root depth 

 
Root shoot ratio 

 
Nutrient uptake 

Other traits Soil type 

 
Litter decomposability 
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Appendix 3 

Table A3: Spearman’s rank correlation coefficients at P<0.05 for no plant points 

percentage and standard deviation (SD), plant cover and number of species (Nr sp) in 14 

sites sampled along a climatic gradient, in Alentejo region. Climatic variables: LT Prec = 

long-term precipitation; Arid. Idx = aridity index; Pseasonality = precipitation seasonality; 

PWetM = mean precipitation of the wettest month; PDryQ = mean precipitation of the 

driest quarter; MT Prec = medium-term precipitation (mean from Y1998-2011); ST Prec = 

short-term precipitation (mean from October 2011–March 2012); LT Temp = long-term 

temperature; Diurnal range = diurnal range; Isothermality = isothermality; Annual 

range = annual range; TColdM =nminimum temperature of the coldest month; TWarmQ 

= mean tempretature of the warmest quarter; %OM = organic matter percentage. Long-

term variables refer from years 1950-2000. 

 

   
No plant  Plant 

Climatic variables 
 

Cover (%) SD  Cover (%) Nr sp 

P
re

ci
p

it
at

io
n

 

Long-term LT Prec -0.70 -0.6  0.76 0.72 

 
Arid. Idx -0.73 -0.56  0.79 0.69 

 
Pseasonality -0.7 ns  0.71 0.60 

 
PWetM -0.73 -0.56  0.78 0.75 

 
PDryQ ns ns  ns ns 

Medium-term MT Prec ns ns  ns 0.72 

Short-term ST Prec -0.53 ns  0.66 0.75 

Te
m

p
er

at
u

re
 

Long-term LT Temp 0.61 ns  -0.62 ns 

 
Diurnal Range 0.74 0.58  -0.71 -0.64 

 
Isothermality -0.63 ns  0.55 0.58 

 
Tseasonality 0.54 ns  -0.52 -0.59 

 
Annual Range 0.55 ns  -0.53 -0.62 

 
TColdM ns ns  ns 0.64 

 
TWarmQ  0.71 0.58  -0.72 -0.63 

Soil 
 

% OM 0.74 ns  -0.85 -0.67 
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Table A4: Spearman’s rank correlation coefficients at P<0.05 for functional groups 

based on life form, in 14 sites sampled along a climatic gradient, in Alentejo region. 

Climatic variables: LT Prec = long-term precipitation; Arid. Idx = aridity index; 

Pseasonality = precipitation seasonality; PWetM = mean precipitation of the wettest 

month; PDryQ = mean precipitation of the driest quarter; MT Prec = medium-term 

precipitation (Y1998-2011); ST Prec = short-term precipitation (October 2011–March 

2012); LT Temp = long-term temperature; Diurnal range = diurnal range; Isothermality 

= isothermality; Annual range = annual range; TColdM =minimum temperature of the 

coldest month; TWarmM = maximum tempretature of the warmest month; %OM = 

organic matter percentage. Long-term variables refer from years 1950-2000. Life form: 

TR = terophyte; HM = hemicryptophyte; PN = phanerophyte; vrb = species classified as 

variable. 

 

   
Nr species 

 
Cover 

  
  

TR
 

H
M

 

TR
/H

M
 

P
N

 

 
TR

 

H
M

 

TR
/H

M
 

TR
/H

M
+v

rb
 

P
N

 

TR
/H

M
+P

N
 

P
re

ci
p

it
at

io
n

 

Long-term LT Prec 0.77 0.76 ns ns 
 

ns 0.62 ns ns ns ns 

 
Arid. Idx 0.73 0.72 ns ns 

 
0.55 0.61 ns ns ns ns 

 
Pseasonality 0.71 0.70 ns ns 

 
ns 0.58 ns ns ns ns 

 
PWetM 0.78 0.79 ns ns 

 
0.53 0.70 -0.55 ns ns ns 

 
PDryQ ns 0.61 ns ns 

 
ns 0.53 ns ns ns ns 

Medium-term MT Prec 0.69 0.61 ns ns 
 

ns 0.75 -0.73 ns ns -0.59 

Short-term ST Prec 0.70 0.78 -0.53 ns 
 

ns 0.71 -0.55 ns ns ns 

Te
m

p
er

at
u

re
 

Long-term LT Temp ns -0.69 0.57 ns 
 

ns ns ns ns ns ns 

 

Diurnal 
Range -0.73 -0.68 ns ns 

 
ns -0.63 0.52 ns ns ns 

 

Isothermalit
y 0.56 0.68 ns ns 

 
ns 0.68 -0.63 ns ns -0.52 

 
Tseasonality -0.63 -0.59 ns ns 

 
ns -0.65 0.60 ns ns ns 

 

Annual 
Range -0.67 -0.57 ns ns 

 
ns -0.61 0.58 ns ns ns 

 
TWarmM -0.73 -0.70 ns ns 

 
ns -0.63 0.52 ns ns ns 

 
TColdM 0.62 0.56 ns ns 

 
ns 0.66 -0.65 ns ns -0.62 
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Table A5: Spearman’s rank correlation coefficients at P<0.05 for functional groups 

based on life cycle in 14 sites sampled along a climatic gradient, in Alentejo region. 

Climatic variables: LT Prec = long-term precipitation; Arid. Idx = aridity index; 

Pseasonality = precipitation seasonality; PWetM = mean precipitation of the wettest 

month; PDryQ = mean precipitation of the driest quarter; PWarmQ  MT Prec = medium-

term precipitation (Y1998-2011); ST Prec = short-term precipitation (October 2011–March 

2012); LT Temp = long-term temperature; Diurnal range = diurnal range; Isothermality 

= isothermality; Annual range = annual range; TColdM =minimum temperature of the 

coldest month; TWarmM = maximum tempretature of the warmest month; %OM = 

organic matter percentage. Long-term variables refer from years 1950-2000. Life cycle: 

An = annual; Bn = biennial; Pn = perennial; Sb = shrub. 

 

   
Nr species 

 
Cover (%) 

  
  An Bn An+Bn Pn Pn+Sb 

 
An Bn An+Bn Pn 

P
re

ci
p

it
at

io
n

 

Long-term LT Prec 0.59 ns 0.66 ns ns 
 

ns ns ns 0.52 

 
Arid. Idx 0.55 ns 0.62 ns ns 

 
0.55 ns 0.53 ns 

 
Pseasonality 0.58 ns 0.56 ns ns 

 
ns ns ns 0.53 

 
PWetM 0.61 ns 0.69 ns ns 

 
0.53 ns ns 0.55 

 
PDryQ Ns ns ns ns ns 

 
ns ns ns ns 

Medium-
term MT Prec 0.61 ns 0.61 ns ns 

 
ns -0.54 ns 0.69 

Short-term ST Prec 0.55 ns 0.59 ns ns 
 

ns ns ns 0.71 

Te
m

p
er

at
u

re
 

Long-term LT Temp Ns ns ns ns ns 
 

ns ns ns ns 

 
Diurnal Range -0.56 ns -0.6 ns ns 

 
ns ns ns -0.56 

 
Isothermality Ns ns ns ns ns 

 
ns ns ns 0.58 

 
Tseasonality Ns ns ns ns ns 

 
ns ns ns -0.64 

 
Annual Range -0.54 ns -0.56 ns ns 

 
ns ns ns -0.59 

 
TColdM 0.53 ns 0.52 ns ns 

 
ns -0.56 ns 0.65 

 
TWarmM -0.53 ns -0.59 ns ns 

 
ns ns ns -0.58 
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Table A6: Spearman’s rank correlation coefficients at P<0.05 for the Compositae 

family, sampled in 14 sites along a climatic gradient, in Alentejo region. Climatic 

variables: LT Prec = long-term precipitation; Arid. Idx = aridity index; Pseasonality = 

precipitation seasonality; PWetM = mean precipitation of the wettest month; PDryQ = 

mean precipitation of the driest quarter; MT Prec = medium-term precipitation (Y1998-

2011); ST Prec = short-term precipitation (October 2011–March 2012); LT Temp = long-

term temperature; Diurnal range = diurnal range; Isothermality = isothermality; Annual 

range = annual range; TColdM =minimum temperature of the coldest month; TWarmM 

= maximum tempretature of the warmest month; %OM = organic matter percentage. 

Long-term variables refer from years 1950-2000. Life cycle: An = annual; Pn = perennial; 

Tot = total. 

 

   
Nr species 

 
Cover 

  
  An Pn Tot 

 
An Pn Tot 

P
re

ci
p

it
at

io
n

 

Long-term LT Prec ns 0.59 0.55 
 

ns ns ns 

 
Aridity ns 0.55 ns 

 
0.53 ns 0.53 

 
Pseasonality ns ns ns 

 
ns ns ns 

 
PWetM ns 0.6 0.59 

 
ns 0.52 0.51 

 
PDryQ ns 0.64 ns 

 
0.58 0.6 0.56 

Medium-term MT Prec ns ns ns 
 

ns ns ns 

Short-term ST Prec ns ns ns 
 

ns ns ns 

Te
m

p
er

at
u

re
 

Long-term LT Temp ns -0.63 ns 
 

ns -0.64 ns 

 

Diurnal 
Range ns ns ns 

 
ns ns ns 

 
Isothermality ns 0.52 ns 

 
ns 0.55 ns 

 
Tseasonality ns ns ns 

 
ns ns ns 

 

Annual 
Range ns ns -0.52 

 
ns ns ns 

 
TColdM ns ns ns 

 
ns ns ns 

 
TWarmM ns ns -0.52 

 
ns ns ns 
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Table A7: Spearman’s rank correlation coefficients at P<0.05 for the Graminae family 

sampled in 14 sites along a climatic gradient in Alentejo region. Climatic variables: LT 

Prec = long-term precipitation; Arid. Idx = aridity index; Pseasonality = precipitation 

seasonality; PWetM = mean precipitation of the wettest month; PDryQ = mean 

precipitation of the driest quarter; MT Prec = medium-term precipitation (Y1998-2011); 

ST Prec = short-term precipitation (October 2011–March 2012); LT Temp = long-term 

temperature; Diurnal range = diurnal range; Isothermality = isothermality; Annual 

range = annual range; TColdM =minimum temperature of the coldest month; TWarmM 

= maximum tempretature of the warmest month; %OM = organic matter percentage. 

Long-term variables refer from years 1950-2000. Life cycle: An = annual; Pn = perennial; 

Tot = total. 

 

   
Nr species 

 
Cover 

  
  An Pn Tot 

 
An Pn Tot 

P
re

ci
p

it
at

io
n

 

Long-term LT Prec ns 0.66 ns 
 

ns 0.53 ns 

 
Arid. Idx ns 0.64 ns 

 
ns ns ns 

 
Pseasonality ns 0.79 ns 

 
ns 0.62 0.6 

 
PWet ns 0.69 ns 

 
ns 0.6 ns 

 
PDryQ ns ns ns 

 
ns ns ns 

Medium-term MT Prec ns 0.7 ns 
 

ns 0.71 ns 

Short-term ST Prec ns 0.85 ns 
 

ns 0.74 ns 

Te
m

p
er

at
u

re
 

Long-term LT Temp ns ns ns 
 

ns ns ns 

 
Diurnal Range ns -0.73 ns 

 
ns -0.60 ns 

 
Isothermality ns 0.68 ns 

 
ns 0.59 ns 

 
Tseasonality ns -0.66 ns 

 
ns -0.61 ns 
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Annual Range ns -0.67 ns 

 
ns -0.59 ns 

 
TColdM ns 0.71 ns 

 
ns 0.64 ns 

 
TWarmM ns -0.71 ns 

 
ns -0.60 ns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A8: Spearman’s rank correlation coefficients at P<0.05 for the Leguminosae 

family sampled in 14 sites along a climatic gradient, in Alentejo region. Climatic 

variables: LT Prec = long-term precipitation; Arid. Idx = aridity index; Pseasonality = 

precipitation seasonality; PWetM = mean precipitation of the wettest month; PDryQ = 

mean precipitation of the driest quarter; MT Prec = medium-term precipitation (Y1998-

2011); ST Prec = short-term precipitation (October 2011–March 2012); LT Temp = long-

term temperature; Diurnal range = diurnal range; Isothermality = isothermality; Annual 

range = annual range; TColdM = minimum temperature of the coldest month; TWarmM 

= maximum tempretature of the warmest month; %OM = organic matter percentage. 

Long-term variables refer from years 1950-2000. Life cycle: An = annual; Sb = shrubs; Tot 

= total. 

 

   
Nr species 

 
Cover 

  
  An Sb Tot 

 
An Sb Tot 

P
re

ci
p

it
at

io
n

 

Long-term LT Prec 0.81 ns 0.80 
 

0.69 ns ns 

 
Arid. Idx 0.84 ns 0.83 

 
0.74 ns 0.57 

 
Pseasonality 0.67 ns 0.65 

 
0.58 ns 0.57 

 
PWetM 0.82 ns 0.81 

 
0.69 ns ns 

 
PDryQ 0.64 ns 0.66 

 
0.55 ns ns 

Medium-Term MT Prec 0.73 ns 0.74 
 

0.56 ns ns 
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Short-Term ST Prec 0.71 ns 0.70 
 

0.60 ns ns 

Te
m

p
er

at
u

re
 

Long-Term LT Temp -0.60 ns -0.57 
 

-0.67 ns ns 

 
Diurnal Range -0.77 ns -0.76 

 
-0.66 ns -0.58 

 
Isothermality 0.78 ns 0.78 

 
0.71 ns 0.61 

 
Tseasonality -0.71 ns -0.71 

 
-0.57 ns ns 

 
Annual Range -0.70 ns -0.71 

 
-0.56 ns ns 

 
TColdM 0.72 ns 0.75 

 
0.54 ns 0.55 

 
TWarmM -0.75 ns -0.74 

 
-0.67 ns -0.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A9: Spearman’s rank correlation coefficients at P<0.05 for relative cover in the 

community of functional groups based on life cycle, sampled in 14 sites along a climatic 

gradient, in Alentejo region. Climatic variables: LT Prec = long-term precipitation; Arid. 

Idx = aridity index; Pseasonality = precipitation seasonality; PWetM = mean precipitation 

of the wettest month; PDryQ = mean precipitation of the driest quarter; MT Prec = 

medium-term precipitation (Y1998-2011); ST Prec = short-term precipitation (October 

2011–March 2012); LT Temp = long-term temperature; Diurnal range = diurnal range; 

Isothermality = isothermality; Annual range = annual range; TColdM =nminimum 

temperature of the coldest month; TWarmQ = mean tempretature of the warmest 

quarter; %OM = organic matter percentage. Long-term variables refer from years 1950-

2000. Life cycle: An = annual; Bn = facultative biennial; Pn = perennial. 

 

   
Relative cover (%) 

   
An Bn Pn 
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P
re

ci
p

it
at

io
n

 

Long-term LT Prec ns ns ns 

 
Arid. Idx ns ns ns 

 
Pseasonality ns ns ns 

 
PDryQ ns ns ns 

 
PWetQ ns ns ns 

Medium-term MT Prec ns ns ns 

Short-term ST Prec ns ns ns 

Te
m

p
er

at
u

re
 

Long-term LT Temp ns ns ns 

 
Dirnal Range ns ns ns 

 
Isothermality ns ns ns 

 
Tseasonality ns ns ns 

 
Anual Range ns ns ns 

 
TColdM ns ns ns 

 
TWarmQ ns ns ns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A10: Spearman’s rank correlation coefficients at P<0.05 for relative cover in the 

community of functional groups based on life form, sampled in 14 sites along a climatic 

gradient in Alentejo region. Climatic variables: LT Prec = long-term precipitation; Arid. 

Idx = aridity index; Pseasonality = precipitation seasonality; PWetM = mean precipitation 

of the wettest month; PDryQ = mean precipitation of the driest quarter; MT Prec = 

medium-term precipitation (Y1998-2011); ST Prec = short-term precipitation (October 

2011–March 2012); LT Temp = long-term temperature; Diurnal range = diurnal range; 

Isothermality = isothermality; Annual range = annual range; TColdM =nminimum 
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temperature of the coldest month; TWarmM = maximum tempretature of the warmest 

month; %OM = organic matter percentage. Long-term variables refer from years 1950-

2000. HM = hemicryptophyte; Other = other life forms present, which includes 

terophytes, camephytes, nanophanerophytes, geophytes and species classified as variable. 

 

   
Relative cover (%) 

   
HM Other 

P
re

ci
p

it
at

io
n

 
Long-term LT Prec 0.57 ns 

 
Arid. Idx 0.54 ns 

 
Pseasonality 0.64 -0.67 

 
PWetM 0.65 -0.55 

 
PDryQ ns ns 

Medium-term MT Prec 0.75 -0.69 

Short-term ST Prec 0.71 -0.62 

Te
m

p
er

at
u

re
 

Long-term LT Temp ns ns 

 
Diurnal Range -0.6 0.63 

 
Isothermality 0.65 -0.59 

 
Tseasonality -0.63 0.63 

 
Anual Range -0.6 0.61 

 
TWarmM -0.61 0.6 

 
TColdM 0.64 -0.70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A11: Spearman’s rank correlation coefficients at P<0.05 for relative cover in the 

community of family and life-cycle groups sampled in 14 sites along a climatic gradient 

in Alentejo region. Climatic variables: LT Prec = long-term precipitation; Arid. Idx = 

aridity index; Pseasonality = precipitation seasonality; PWetM = mean precipitation of the 
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wettest month; PDryQ = mean precipitation of the driest quarter; MT Prec = medium-

term precipitation (Y1998-2011); ST Prec = short-term precipitation (October 2011–March 

2012); LT Temp = long-term temperature; Diurnal range = diurnal range; Isothermality 

= isothermality; Annual range = annual range; TColdM =minimum temperature of the 

coldest month; TWarmM = maximum tempretature of the warmest month; %OM = 

organic matter percentage. Long-term variables refer from years 1950-2000. An Gram = 

annual grasses; Pn Gram = perennial grasses; An Legu = annual legumes; Plantago = 

Plantago spp.; Cary = Caryophyllaceae. 

 

 

   
Relative cover (%) 

   
An Gram + Plantago 

Pn Gram +  
An Legu + Cary 

P
re

ci
p

it
at

io
n

 

Long-term LT Prec -0.72 0.68 

 
Arid. Idx -0.71 0.69 

 
Pseasonality -0.54 0.70 

 
PWetM -0.69 0.74 

 
PDryQ -0.70 0.57 

Medium-term MT Prec -0.74 0.85 

Short-term ST Prec -0.61 0.79 

Te
m

p
er

at
u

re
 

Long-term LT Temp 0.60 -0.54 

 
Dirnal Range 0.73 -0.72 

 
Isothermality -0.81 0.78 

 
Tseasonality 0.74 -0.74 

 
Anual Range 0.74 -0.74 

 
TWarmM 0.74 -0.74 

 
TColdM -0.78 0.77 
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Appendix 4 

Table A13: Spearman’s rank correlation coefficients at P<0.05 for biomass of a priori 

functional groups. Plant community was sampled in 14 sites along a climatic gradient in 

Alentejo region. Climatic variables: Arid. Idx = aridity index (calculated using data from 

years 1960-1990); LT Prec = long-term precipitation (mean annual precipitation from 

years 1950-2000); MT Prec = medium-term precipitation (mean annual precipitation from 

Y1998-2011); ST Prec = short-term precipitation (mean monthly precipitation from 

October 2011–March 2012). 

 
Annual 

 
Perennial 

 
Compositae Grasses Legumes 

 
Grasses 

Arid. Idx 0.55 ns 0.69 
 

ns 

LTPrec 0.60 ns 0.67 
 

ns 

MTPrec 0.52 ns 0.55 
 

ns 

STPrec ns ns 0.57 
 

ns 

 

 

 

Table A14: Spearman’s rank correlation coefficients at P<0.05 for biomass of dominant 

species. Apour = Agrostis pourretii; Bdyst = Brachypodium dystachion; Cmixt = 

Chamaemelum mixtum; Gfrag = Gaudinea fragilis; Lrigi = Lolium rigidum; Ltara = 

Leontodon taraxacoides; Ocomp = Ornithopus compressus; Tbarb = Tolpis barbata; Xgutt 

= Xolantha guttata. Climatic variables: Arid. Idx = aridity index (calculated using data 

from years 1960-1990); LT Prec = long-term precipitation (mean annual precipitation 

from years 1950-2000); MT Prec = medium-term precipitation (mean annual precipitation 

from Y1998-2011); ST Prec = short-term precipitation (mean monthly precipitation from 

October 2011–March 2012). 

 
Apour Bdyst Cmixt Gfrag Lrigi Ltara Ocomp Tbarb Xgutt 

Arid. Idx ns ns ns 0.62 ns ns ns ns ns 

LTPrec ns ns ns 0.64 ns ns ns ns ns 

MTPrec ns ns ns 0.61 ns ns ns ns ns 

STPrec ns ns ns ns ns ns ns ns 0.74 

 

Table A14: Spearman’s rank correlation coefficients at P<0.05 for vegetative height of 

a priori functional groups (mean vegetative height of the species composing each 

functional group). Plant community was sampled in 14 sites along a climatic gradient in 

Alentejo region. Climatic variables: Arid. Idx = aridity index (calculated using data from 

years 1960-1990); LT Prec = long-term precipitation (mean annual precipitation from 

years 1950-2000); MT Prec = medium-term precipitation (mean annual precipitation from 

Y1998-2011); ST Prec = short-term precipitation (mean monthly precipitation from 

October 2011–March 2012). 

 
Annual 

 
Perennial 
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Compositae Grasses Legumes 

  
Grasses 

Arid. Idx 0.65 0.56 ns 
  

ns 

LTPrec 0.60 0.54 ns 
  

ns 

MTPrec 0.62 0.60 ns 
  

ns 

STPrec ns ns ns 
  

0.63 

 

 

Table 18: Spearman’s rank correlation coefficients at P<0.05  for mean vegetative 

height of dominant species  sampled in 14 sites along a climatic gradient in Alentejo 

region. Apour = Agrostis pourretii; Bdyst = Brachypodium dystachion; Cmixt = 

Chamaemelum mixtum; Gfrag = Gaudinea fragilis; Lrigi = Lolium rigidum; Ltara = 

Leontodon taraxacoides; Ocomp = Ornithopus compressus; Tbarb = Tolpis barbata; Xgutt 

= Xolantha guttata. Climatic variables: Arid. Idx = aridity index (calculated using data 

from years 1960-1990); LT Prec = long-term precipitation (mean annual precipitation 

from years 1950-2000); MT Prec = medium-term precipitation (mean annual precipitation 

from Y1998-2011); ST Prec = short-term precipitation (mean monthly precipitation from 

October 2011–March 2012). 

 
Apour Bdyst Cmixt Gfrag Lrigi Ltara Ocomp Tbarb Xgutt 

Arid. Idx ns ns 0.73 0.57 ns 0.62 ns 0.60 ns 

LTPrec ns ns ns ns ns 0.62 ns 0.59 ns 

MTPrec ns ns 0.64 0.60 ns 0.67 ns ns ns 

STPrec ns ns ns ns ns 0.88 ns ns 0.79 
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Outputs 

Oral communication: 

Nunes, A., Matos, P., Pinho, P., Batista, M. & C. Branquinho. Functional diversity 

as ecological indicator of climate change applied to tropical areas. Congresso 

Internacional Saber Tropical em Moçambique: História, Memória e Ciência, 24 –

26 October, IICT- JBT, Lisboa, Portugal. 

 

Poster: 

Nunes, A., Batista, M., Tápia, S., Pinho, P., Correia, O. & Branquinho, C. (2012). 

Plant functional response to desertification and land degradation in 

Mediterranean woodlands – contribution to restoration strategies. 4th 

International Ecosummit – Ecological Sustainability: restoring the planet’s 

ecosystem services. 30 September-5 October, Columbus, Ohio, USA. 

 

Two future outputs of this work are: adding the plant biomass and height 

measurement data to an existing trait database; and to contribute with plant 

presence data to the Flora-on project, an interactive website with updated 

information about the Portuguese flora (Sociedade Portuguesa de Botânica 2012). 
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