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Abstract

This thesis consists of four chapters sharing the underlying theme of optimization, though
approached from different perspectives.

In the first chapter, algorithms based solely on gradient information are developed
to address constrained problems of the form minx∈Rn f(x), subject to g(x) = 0, where
f : Rn → R and g : Rn → Rm (m < n) are smooth functions. A linear rate of (local)
convergence is deduced for one of those methods.

The second chapter targets inequality constraints g(x) ∈ ]−∞, 0]m, m ∈ N, by com-
bining the algorithms designed in the first chapter with an active-set strategy. Departing
from this methodology, a special class of nonsmooth problems is then adressed, namely
minimax problems minx∈Rn F (x), where F (x) = max{f1(x), f2(x), . . . , fm(x)}, m ∈ N, or
F (x) = maxy∈Y f(x, y), with Y ⊂ Rp compact. The functions f1, f2, . . . , fm : Rn → R
and f : Rn × Rp → R are supposed smooth. No convergence results are stated.

The third chapter revolves around the properties of certain integral functionals defined
over sets of measurable matrix functions A : Ω → Rn,n, A(x) = A(x)T , where Ω ⊂ Rn is
a bounded domain:

Φ(A) =

∫
Ω
φ(A(x)) dx.

The integrand φ depends only on the eigenvalues (or equivalently, on the invariants) of its
matrix argument. Such functionals typically arise in free material design frameworks, in
the context of structural optimization. Emphasis is placed on lower semicontinuity of Φ
with respect to H-convergence (and its relation to the convexity of φ), but other properties
are investigated, such as subadditivity and positive homogeneity.

The fourth and final chapter introduces a notion of compliance for linearly elastic
structures occupying a bounded domain Ω ⊂ Rn, whose boundary ∂Ω is split into disjoint
parts ΓD and ΓN , and governed by the elliptic partial differential equation

−div[Eε(u)] = f in Ω,

u = ū on ΓD,

Eε(u)ν = g on ΓN ,

where either f or g (eventually both) and ū are nonzero. The proposal is supported by
numerical evidence.

Keywords

Gradient methods, active-set methods, worst-case optimization, homogenization, free ma-
terial optimization, H-convergence, lower semicontinuity, minimum compliance design.
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Resumo

Esta tese consiste de quatro caṕıtulos que partilham o tema recorrente da otimização,
embora abordado de diferentes perspetivas.

A sequência pela qual os caṕıtulos são apresentados não reflete a ordem cronológica
do trabalho. Esta tese foi motivada por problemas de otimização estrutural (por exem-
plo, maximizar a rigidez de uma estrutura elástica sujeita a certos esforços e sob certos
constrangimentos). No seguimento dos resultados conseguidos durante o Mestrado, é
aprofundado no terceiro caṕıtulo o estudo de um tipo particular de funcionais custo que
é usado para impor determinadas restrições quando o principal parâmetro a otimizar é o
próprio material de que a estrutura é constitúıda.

Ao longo deste estudo teve que se enfrentar o problema de como definir a flexibilidade
de uma estrutura em presença de condições de esforço gerais, questão para a qual não
existia uma resposta concreta na literatura à data do ińıcio dos trabalhos. É este o tema
do quarto caṕıtulo.

Estando em causa, como se vê, problemas de otimização com constrangimentos, o passo
natural seguinte foi o de desenvolver algoritmos apropriados, e preferencialmente “baratos”
do ponto de vista computacional, o que foi feito nos primeiro e segundo caṕıtulos.

Segue-se uma descrição mais pormenorizada.

No primeiro caṕıtulo são concebidos algoritmos para encontrar mı́nimos locais de uma
função continuamente diferenciável f : Rn → R, sujeitos a constrangimentos de igualdade
g = 0 expressos por meio de uma função vetorial g : Rn → Rm (m < n), também ela con-
tinuamente diferenciável. Sublinha-se desde já que, regra geral, as iteradas produzidas por
estes algoritmos podem violar (largamente até) a condição g = 0; elas vão gradualmente
aproximando-se do ńıvel zero de g e só assintoticamente satisfazem os constrangimentos.

A abordagem insere-se numa classe de métodos que itera, partindo de um dado inicial
x0 ∈ Rn, segundo um esquema xk+1 = xk + ∆k em que no incremento ∆k podem ser
separados os dois objetivos do problema: minimizar a função f e satisfazer a equação
g = 0. Isto é feito dando, em cada iterada xk, um passo de descida (para f) numa direção
τk tangente em xk à variedade g−1({g(xk)}), conjuntamente com um passo νk de tipo
Newton (para g) ortogonal a τk; mais exatamente, pode escrever-se ∆k = ηkτk + νk, onde
ηk > 0 designa o comprimento do passo dado na direção tangencial.

São exclusivamente considerados métodos em que a direção τk é de “máxima descida”
para f , o que no enquadramento estudado traduz-se por tomar a projeção ortogonal de
−∇f(xk) sobre o espaço tangente à variedade g−1({g(xk)}) em xk.

É provada uma taxa linear de convergência (local) do método obtido com passo cons-
tante ηk ≡ η > 0, para η suficientemente pequeno (Teorema 1.3.4). Este resultado é de



certo modo o equivalente para problemas com constrangimentos de igualdade ao resultado
clássico sobre o método do gradiente para problemas sem constrangimentos.

Seguidamente é desenvolvida uma estratégia a passo variável (isto é, ηk não está fixo)
com base nas ideias dos métodos de gradiente espetral. Nesses métodos, para problemas
sem constrangimentos ou apenas com constrangimentos lineares, o comprimento de passo
ηk (que se determina de uma forma inspirada nos métodos de quasi-Newton) pode ser
interpretado como o inverso de um cociente de Rayleigh para uma matriz hessiana média
da função f . Deste modo conseguem incorporar de forma bastante “barata” alguma in-
formação de segunda ordem na direção δk = −∇f(xk). Esta abordagem é generalizada
a problemas com constrangimentos de igualdade (Secção 1.4), associando à direção τk
um comprimento de passo ηk em que a informação de segunda ordem está ligada a uma
hessiana média, mas de uma “função lagrangiana”. Não são apresentados quaisquer re-
sultados teóricos (esta é ainda uma questão em desenvolvimento).

No segundo caṕıtulo, os algoritmos introduzidos no primeiro são estendidos a proble-
mas com constrangimentos de desigualdade através de uma estratégia de conjunto ativo
(Secções 2.2 e 2.4). Tal estratégia passa por definir a cada iteração, de entre o lote de
desigualdades, aquelas que são consideradas como ativas e as que são inativas; as últimas
são essencialmente ignoradas, enquanto que as primeiras são impostas como constrangi-
mentos de igualdade. Na metodologia proposta, uma desigualdade é ativada assim que é
violada; todavia, a sua desativação dependerá não do facto de deixar de ser violada, mas
exclusivamente do sinal do “multiplicador de Lagrange” que lhe está associado (este tipo
de critério inspira-se nas condições necessárias de otimalidade de Karush- Kuhn-Tucker).

Como já ficou patente na descrição prévia, e tal como no primeiro caṕıtulo, às iteradas
é permitido violarem os constrangimentos. Os métodos obtidos não se destinam portanto
a lidar com constrangimentos ditos essenciais, isto é, cuja violação torne o problema de
otimização mal posto. A exceção a esta regra prende-se com o caso em que as variáveis do
problema estão circunscritas a intervalos fechados, uma situação para a qual é delineado
um procedimento de modo a que as iteradas cumpram esse tipo de restrição (Secção 2.3).

Os algoritmos de conjunto ativo estabelecidos são ainda generalizados a problemas de
otimização robusta em que a função objetivo F do problema é dada pelo máximo entre
múltiplas funções (Secção 2.5). Mais concretamente: pode ser o máximo entre um número
finito de funções, F (x) = max{f1(x), . . . , fm(x)}, ou entre um número infinito de funções,
F (x) = maxy∈Y f(x, y) com Y ⊂ Rp compacto. As funções f1, . . . , fm e f supõem-se
continuamente diferenciáveis (apesar disso, F não é habitualmente diferenciável).

Todos os algoritmos obtidos usam apenas os gradientes das funções envolvidas no
problema, inclusive no enquadramento da otimização robusta! Neste, a minimização de
F é feita recorrendo apenas aos gradientes ∇f1, . . . ,∇fm, ou a ∇xf e ∇yf , conforme o
caso tratado. Ao longo deste segundo caṕıtulo são apenas tocadas questões práticas, não
sendo deduzidos quaisquer resultados teóricos.

No terceiro caṕıtulo é estudada uma classe de funcionais integrais que surge no âmbito
de problemas em otimização estrutural com livre escolha de materiais. Esses funcionais
tomam a forma genérica

Φ(A) =

∫
Ω
φ(A(x)) dx,
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onde A : Ω → R varia num conjunto de funções matriciais mensuráveis e essencialmente
limitadas, A ∈ L∞(Ω;Rn,n), que verificam em quase todos os pontos x de um aberto
limitado Ω ⊂ Rn a condição A(x) = A(x)T . Supõe-se também que dada A ∈ Rn,n
simétrica, o valor φ(A) da função φ : Rn,n → R depende exclusivamente dos valores
próprios (ou de forma equivalente, dos invariantes) da matriz A. Uma outra propriedade
fundamental imposta sobre φ traduz-se por um requisito de “monotonia”: ter-se-á sempre
φ(B) > φ(A) quando a matriz B −A for semidefinida positiva (Secção 3.2).

Em aplicações práticas o funcional Φ costuma refletir constrangimentos sobre os recur-
sos dispońıveis, impostos tipicamente por meio de uma condição do tipo Φ(A) 6 C, onde
C é uma constante positiva. Assim, num problema de otimização, é essencial que Φ seja
semicont́ınuo inferiormente relativamente a alguma topologia de L∞(Ω;Rn,n), sendo prin-
cipalmente em torno deste tema que giram os resultados do caṕıtulo (Secções 3.3 e 3.4). A
topologia adequada para analisar esta questão não é a fraca ∗, mas sim a da convergência
no sentido da homogeneização (ou H-convergência).

Em [1] já tinha sido provado que a convexidade de φ é condição suficiente para Φ ser
H-semicont́ınuo inferiormente (Corolário 3.3.3), e até mesmo necessária no caso particu-
lar em que há apenas dependência do traço (Teorema 3.3.4): φ(A) = ϕ(tr(A)); para além
disso, foram também exclúıdas noções mais fracas de convexidade como condição suficiente
de H-semicontinuidade inferior (Observação 3.3.6). Mostra-se agora que, em geral, a con-
vexidade da integranda não é efetivamente necessária; a confirmação deste facto é feita
com recurso a um exemplo vindo da teoria da homogeneização, nomeadamente o do fun-
cional que representa a mistura mais “barata” entre dois materiais isótropos (Secção 3.4).
O leque de propriedades posśıveis é reduzido a algo estritamente entre a convexidade e a
policonvexidade de φ.

São ainda abordadas algumas propriedades relevantes do ponto de vista prático, a
subaditividade e positiva homogeneidade de Φ (Secção 3.5), especialmente no que concerne
ao supramencionado funcional provindo da teoria da homogeneização (agora no caso em
que se admitem “buracos”, ou seja, as misturas são feitas entre material e “vazio”). Contra
todas as expetativas, prova-se que este funcional é apenas subaditivo no caso bidimensional
(Teorema 3.5.3 e Observação 3.5.5)!

No quarto e último caṕıtulo é generalizada uma grandeza recorrente em otimização
estrutural que se destina a avaliar a flexibilidade de uma estrutura sujeita quer a forças
aplicadas, quer a deslocamentos impostos sobre parte da sua superf́ıcie. O corpo sólido
está confinado a Ω, sendo Ω ⊂ Rn um conjunto aberto e limitado cuja fronteira ∂Ω é
constitúıda por pedaços disjuntos ΓD e ΓN . O estado desse corpo é caracterizado pelo
campo de deslocamentos u que, considerando o modelo da elasticidade linear, satisfaz

−div[Eε(u)] = f em Ω,

u = ū sobre ΓD,

Eε(u)ν = g sobre ΓN .

Nestas equações ε(u) denota a parte simétrica da matriz jacobiana de u, f são forças
(volúmicas) exercidas em Ω, g são forças (superficiais) actuando sobre ΓN (ν é a normal
exterior unitária a ∂Ω) e ū é um deslocamento prescrito sobre ΓD; E denota um tensor de
quarta ordem, representante das caracteŕısticas f́ısicas do material usado.
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Quando o deslocamento imposto ū é nulo, o trabalho efetuado pelas forças aplicadas,

W =

∫
Ω
f · u dx+

∫
ΓN

g · u dx,

é o dobro da energia interna de deformação

E =
1

2

∫
Ω
Eε(u) : ε(u) dx,

sendo que a minimização de qualquer destas quantidades equivale de facto a minimizar a
flexibilidade (ou se quisermos, a maximizar a rigidez) da estrutura.

Por outro lado, quando não existem forças (f = g = 0) e as deformações no corpo
são devidas a um deslocamento ū 6= 0 imposto em ΓD, é conhecido que para maximizar
a rigidez da estrutura deve maximizar-se a energia E ; ou doutra forma, a medida de
flexibilidade é neste caso não E , mas sim −E .

Contudo, quando as forças aplicadas são não nulas e simultaneamente ū 6= 0, é sabido
que qualquer das medidas previamente mencionadas é inadequada para representar flexi-
bilidade. Para obviar a esta situação é proposta uma grandeza, designada por flexibilidade
generalizada (), que combina o trabalho das forças aplicadas com a energia de deformação;
mais precisamente:

C =

∫
Ω
f · u dx+

∫
ΓN

g · u dx− 1

2

∫
Ω
Eε(u) : ε(u) dx,

ou seja, C =W −E . É óbvio que C coincide com as medidas de flexibilidade adotadas nos
dois primeiros casos descritos; para além disso, testes computacionais parecem suportar a
tese de que C é efetivamente a grandeza adequada ao caso geral (Secção 4.4). São ainda
determinados os estados adjuntos necessários para o cálculo das derivadas estruturais de
W, E e C quando f , g e ū são não nulos (Secção 4.3).

Palavras-chave

Métodos de gradiente, métodos de conjunto ativo, projeto robusto, homogeneização, pro-
jeto com livre escolha de materiais, H-convergência, semicontinuidade inferior, projeto de
rigidez máxima.
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Introduction

This thesis touches different aspects of optimization problems, from the design of mini-
mization algorithms to the adoption of adequate measures of a structure’s performance
in applied fields of structural optimization, passing through more theoretical aspects sur-
rounding a particular type of functional.

The chapters unfold in a way that does not reflect the work’s cronological order. This
thesis was motivated by structural optimization problems (for instance, to maximize the
stiffness of an elastic structure subject to certain efforts and under some constraints).
Following the developments achieved during the Master’s thesis, the third chapter deepens
the study of a particular kind of cost functionals used to impose certain restrictions when
the main optimization parameter is the very own material from which the structure is
made of (a framework commonly known as free material optimization).

Through the course of this study the question of how to define the compliance of a
structure in presence of general loading conditions had to be adressed, an issue for which
there was no concrete proposal in the literature by the time the work went underway. This
is the fourth chapter’s motif.

Constrained optimization being involved, the next logical step was to develop appro-
priate algorithms, with a preference for “cheap” ones from the computational point of
view, which is the subject of the first and second chapters.

A more detailed description follows.

In the first chapter a couple of algorithms is designed to find local minimizers of
a continuously differentiable function, which are subject to equality constraints g = 0
expressed by means of an also continuously differentiable vector function g : Rn → Rm
(m < n). It is called to attention that, in general, the iterates produced by these algorithms
may violate (even by a large margin) the equation g = 0; the constraints become satisfied
only asymptotically, after convergence.

The approach falls under a class of methods that, departing from some initial guess
x0 ∈ Rn, iterate according to xk+1 = xk + ∆k, where the increment ∆k may be split in
two components corresponding to the twin goals of decreasing f and fulfiling g = 0. This
can be done, at each iterate xk, by performing a descent step (for f) in a direction τk
tangent at xk to the manifold g−1({g(xk)}), together with a Newton-like step νk (for g)
orthogonal to τk; more precisely, ∆k = ηkτk + νk, with ηk > 0 designating the step length
along the tangential direction.

Only methods in which the direction τk is of “steepest descent” for f are considered.
In the adressed framework this amounts to choose the orthogonal projection of −∇f(xk)
onto the tangent space to the manifold g−1({g(xk)}) at xk.



2

A linear (local) rate of convergence is proven for the method with constant step length
ηk ≡ η > 0, for sufficiently small η (Theorem 1.3.4). This result is in a certain sense,
for equality constrained problems, the equivalent of the classical result for the steepest
descent method in unconstrained optimization.

A variable step size strategy (that is, ηk is not fixed) is then devised, based on the
ideas behind spectral gradient methods. In these methods, when no constraints or only
linear constraints are present, the step length ηk can be interpreted as an inverse Rayleigh
quotient for some average hessian matrix of f . They are thus able to incorporate in a very
“cheap” fashion some second order information into the direction δk = −∇f(xk). This
approach is generalized to problems with equality constraints (Section 1.4) ascribing to τk
a step size ηk in which the second order information is connected to an average hessian of
a “lagrangian function”. No theoretical results are presented (this is ongoing work).

In the second chapter, the algorithms previously introduced are extended to problems
with inequality constraints via an active-set strategy (Sections 2.2 and 2.4). Such a strat-
egy consists of defining at each iteration, among all the inequalities, those to be considered
as active and the ones that are inactive; the latter are essentially ignored, while the for-
mer are imposed as equality constraints. In the proposed methodology, an inequality is
activated as soon as it becomes violated; however, its deactivation depends exclusively on
the sign of the corresponding “Lagrange multiplier” (this kind of criteria draws inspiration
from the Karush-Kuhn-Tucker necessary conditions of optimality).

As it can be perceived from the previous description, and just like in the first chapter,
the obtained methods are infeasible (the constraints are not necessarily satisfied). Hence,
they are not suited to deal with essential constraints, that is, the kind whose violation
renders the problem ill-posed. The exception to this rule is the case where the variables
implicated in the problem are confined to closed real intervals (bound constraints, or
simply bounds), a case in which a procedure is delineated so that the iterates are kept
feasible with respect to this type of restrictions (Section 2.3).

The active-set algorithms established are generalized to worst-case optimization prob-
lems, in which the objective function F is the maximum between multiple functions (Sec-
tion 2.5): it may be the maximum F (x) = max{f1(x), . . . , fm(x)} among a finite number
of functions, or between an infinite number of them, F (x) = maxy∈Y f(x, y) with Y ⊂ Rp
compact. The functions f1, . . . , fm and f are always supposed continuously differentiable
(despite this fact, F is usually not an everywhere differentiable function).

All the designed algorithms use solely gradient information, worst-case optimization
included! In this last setting, the minimization of F is made by resorting to the gradients
∇f1, . . . ,∇fm, or to ∇xf and ∇yf , depending on the case. During the entire chapter only
practical aspects are accounted for and no theoretical results are given.

The third chapter addresses a class of integral functionals arising in applied fields of
structural optimization, namely free material design. These functionals take the form

Φ(A) =

∫
Ω
φ(A(x)) dx,

where A : Ω → R varies in a subset of bounded measurable matrix functions, and so
A ∈ L∞(Ω;Rn,n), which verify for almost every point x of a bounded open set Ω ⊂ Rn
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the condition A(x) = A(x)T . It is also assumed that φ : Rn,n → R is a spectral function,
meaning that given a symmetric matrix A ∈ Rn,n, the value φ(A) depends exclusively on
the eigenvalues (or equivalently, on the invariants) of the matrix A. Another fundamental
property imposed on φ translates as a “monotonicity” requirement: one has φ(B) > φ(A)
whenever B −A is positive semidefinite (Section 3.2).

In practical applications the functional Φ reflects restrictions on the available resources
(“costs”), typically imposed by means of a constraint Φ(A) 6 C, where C is a positive
constant. Therefore, regarding some optimization problem, it is essential that Φ satisfies a
lower semicontinuity property with respect to some topology on L∞(Ω;Rn,n). This is the
main subject in the chapter (Sections 3.3 and 3.4). The proper topology to perform the
analysis is not the weak ∗ topology, but that of convergence in the sense of homogenization
(also known as H-convergence).

In [1] it had already been proved that the convexity of φ is a sufficient condition for Φ
to be lower H-semicontinuous (Corollary 3.3.3), and even a necessary one in the particular
case of trace dependence (Theorem 3.3.4): φ(A) = ϕ(tr(A)); moreover, weaker notions of
convexity, like polyconvexity (and thus quasiconvexity and rank-one convexity as well),
were also excluded as sufficient conditions for lower H-semicontinuity (Remark 3.3.6).
It is now shown that, in general, convexity of the integrand is indeed not necessary;
the confirmation is made by introducing an example from the theory of homogenization,
namely the functional representing the “cheapest” mixture between two isotropic materials
(Section 3.4). The spectrum of possibilities is therefore reduced to some property strictly
between the convexity and the polyconvexity of φ.

Two additional properties, relevant from the practical point of view, are also investi-
gated: subadditivity and positive homogeneity of Φ (Section 3.5), with a special emphasis
on the aforementioned functional from the homogenization theory (in the particular case of
mixtures between material and “void”). Against all expectations, this functional is proved
to be subadditive only in the bidimensional case (Theorem 3.5.3 and Remark 3.5.5)!

In the fourth and final chapter, a recurrent quantity in structural optimization known
as compliance (to be understood as the opposite of stiffness) is generalized. A solid body
(the structure) is confined to Ω, being Ω ⊂ Rn a bounded open set whose boundary ∂Ω
is split into disjoint pieces ΓD and ΓN . The state of that body is described by the field of
displacements u which, considering the framework of linear elasticity, satisfies

−div[Eε(u)] = f in Ω,

u = ū on ΓD,

Eε(u)ν = g on ΓN .

In these equations ε(u) is the symmetric part of the jacobian matrix of u, f and g denote
applied forces, respectively, over Ω and ΓN (ν is the outward unit normal to ∂Ω), ū is a
prescribed displacement on ΓD and E designates a fourth order tensor, representing the
physical properties of the material from which the structure is made of.

When the imposed displacement ū is null (i.e. the structure is clamped on ΓD), the
work done by the applied loads,

W =

∫
Ω
f · u dx+

∫
ΓN

g · u dx,
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doubles the elastic energy stored in the body

E =
1

2

∫
Ω
Eε(u) : ε(u) dx.

In this case, either quantity is a good measure of compliance and their minimization truly
is equivalent to maximizing the structure’s stiffness.

On the other hand, when no applied forces exist (f = g = 0) and the deformation is
caused by a prescribed displacement ū 6= 0 on ΓD, it is known that in order to obtain
a stiff structure one should maximize E ; to put it another way, the quantity measuring
compliance is now, not E , but −E instead.

However, when both the applied forces and the prescribed displacement are nonzero,
it is a well known fact that none of the previous quantities is an adequate measure of
compliance. To overcome this situation a quantity is introduced, termed generalized com-
pliance, that combines the work done by the external loads and the elastic energy stored
in the body; more precisely:

C =

∫
Ω
f · u dx+

∫
ΓN

g · u dx− 1

2

∫
Ω
Eε(u) : ε(u) dx,

that is, C = W − E . Obviously, C coincides with the adopted measures of compliance in
the first two cases described; furthermore, numerical tests seem to support the claim that
C is indeed appropriate to the general case (Section 4.4). Also presented are the adjoint
states necessary for the computation of the structural derivative of W, E and C when f ,
g e ū are all nonzero (Section 4.3).

The first and second chapters of this thesis constitute the preliminary stages of some
(hopefully) successful algorithms in the near future. The content consists of original but,
to date, unpublished work. The third and fourth chapters are based, respectively, on the
work developed in [2, 3] and [4].



Chapter 1

Gradient methods for equality
constrained problems

The present chapter extends a couple of well known methods in unconstrained minimiza-
tion to the framework of equality constrained minimization (an extension to inequality
constraints is dealt with in the next chapter). The approach works in the general case,
meaning that the functions involved may be nonlinear and nonconvex. It is underlined
that just nonessential constraints are adressed, that is, constraints whose violation does
not render the problem ill-posed. In the proposed methods, the constraints are usually
violated during the optimization process, and become satisfied only asymptotically. One
is particularly interested in algorithms with low storage requirements and that rely on
first order information, in the sense that only first derivatives are needed (although for
theoretical purposes higher order differentiability is sometimes assumed). This stems from
the fact that, in several fields of application, gradients are often available at an affordable
computational cost, while second derivatives frequently are not.

Sections 1.1 and 1.2 introduce some indispensable background material. Section 1.3
describes the first of the proposed algorithms, complete with a convergence theorem un-
der the hypothesis that a certain hessian-like matrix is positive definite at the solution.
Section 1.4 presents the second algorithm, for which the convergence theory is currently
motive for research. Several observations are made on possible ways of improving the
method. Numerics are postponed until Section 2.6.

On notations

x ∈ Rn is the vector of variables (also called unknowns or parameters) and the components
of vector or matrix quantities will be denoted with superscripts. The canonical dot product
in euclidean spaces is denoted by 〈 , 〉 and the respective euclidean norm by ‖ ‖, unless
stated or implicitly suggested otherwise; if for some reason one wants to emphasize the
canonical euclidean norm, the subscript “2” will be appended at the lower right end.
Matrix norms that are associated with vector norms, e.g. the `2 norm

‖A‖2 = max
‖x‖2=1

‖Ax‖2, (A ∈ Rm,n)

are denominated natural norms.
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f is the objective function, a scalar function of x that we want to minimize (or maxi-
mize); the constraints will be modelled by a vector function g : Rn → Rm. The jacobian
matrix of a vector function g will be denoted by Jg while its transpose will be denoted
by ∇g. In particular, for a scalar function f , ∇f will be the usual gradient. Regarding
partial derivatives, the comma notation is preferred: if f is a scalar function of x, its
derivative with respect to the variable xi will be denoted by f,i. The hessian matrix of a
scalar function f will be denoted by ∇2f .

1.1 Preliminaries

In this section, some well known and essential concepts related to optimization are re-
viewed. The main algorithms which are central to the understanding of the subsequent
developments along the present chapter will also be revisited.

Rates of convergence

One of the basic measures of an algorithm’s performance is its rate of convergence. The
terminology associated with different kinds of convergence is now recalled.

Let (uk) be a sequence in a Banach space E (with norm ‖ ‖) converging to u∗. The
convergence is said to be Q-linear if there is a constant r ∈ ]0, 1[ such that,

for all sufficiently large k,
‖uk+1 − u∗‖
‖uk − u∗‖

6 r.

When the above condition holds for any r > 0, that is, when

lim
k→∞

‖uk+1 − u∗‖
‖uk − u∗‖

= 0,

the convergence is termed Q-superlinear, while if it holds only for some r > 1 it is called
Q-sublinear. Q-quadratic convergence is obtained if there is a positive constant C (not
necessarily less than 1) such that,

for all sufficiently large k,
‖uk+1 − u∗‖
‖uk − u∗‖2

6 C.

The prefix “Q” stands for “’quotient”, since this type of convergence is defined in terms
of the quotient of successive errors. Obviously, Q-quadratic convergence is the strongest
between the four: it implies Q-superlinear convergence, which in turn implies Q-linear
convergence, that implies Q-sublinear convergence (the weakest of the lot). It is possible
to define higher rates of convergence, but those are less interesting in practical terms.

A slightly weaker type of convergence, denoted with the prefix “R” for “root”, is
concerned with the overall decrease in the error, rather than the decrease over each term
of the sequence. The convergence of (uk) to u∗ is said to be R-linear if there is a sequence
of nonnegative scalars (ak), converging Q-linearly to zero, such that,

for all k, ‖uk − u∗‖ 6 ak.
The sequence of errors (‖uk − u∗‖) is said to be dominated by (αk). Likewise, the conver-
gence is R-superlinear, R-sublinear, or R-quadratic, when the sequence of errors is domi-
nated by a sequence of scalars converging Q-superlinearly, Q-sublinearly, or Q-quadraticly,
to zero, respectively.
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Unconstrained problems

Unconstrained optimization is the minimization (or maximization) of a scalar function f
defined on the whole Rn, or on an open subset of Rn. The best outcome one could hope
for in such a problem is to find a global minimum point, or global minimizer, x∗ of f :

for all x ∈ Rn, f(x∗) 6 f(x).

If the above inequality is satisfied strictly whenever x 6= x∗, then x∗ is called a strict global
minimum point, or strict global minimizer, of f . Such points can be difficult to spot, since
the knowledge of f is usually just local. Most algorithms are able to find only a local
minimum point, or local minimizer, x∗ of f :

for all x ∈ U, f(x∗) 6 f(x),

where U is an open neighbourhood of x∗ (that is, an open set containing x∗). Again, if the
inequality is satisfied strictly whenever x 6= x∗, then x∗ is called a strict local minimum
point, or strict local minimizer, of f .

Minimizers of a function are characterized by what is commonly known as optimality
conditions [5, Sec. 2.1]:

1.1.1 Theorem (First-order necessary conditions). If x∗ is a local minimizer and f is
continuously differentiable in an open neighbourhood of x∗, then ∇f(x∗) = 0.

1.1.2 Theorem (Second-order necessary conditions). Assume that f is a twice con-
tinuously differentiable function in an open neighbourhood of a stationary point x∗, i.e.
∇f(x∗) = 0. Then ∇2f(x∗) is positive semidefinite.

1.1.3 Theorem (Second-order sufficient conditions). Suppose that f is a twice continu-
ously differentiable function in an open neighbourhood of a stationary point x∗. If ∇2f(x∗)
is positive definite, then x∗ is a strict local minimizer of f .

Minimization algorithms require the user to supply a starting point, which will be
denoted by x0. Then, at each iteration, the algorithm chooses a direction δk, the step, and
a positive scalar ηk, the step length, to move along from the current iterate xk towards
a new iterate with a (typically) lower function value. There are two main strategies to
achieve this goal, usually involving a finite number of trials: trust-region methods prescribe
the step length ηk and then search in a ηk-ball (with respect to some norm) for a direction
δk; line search methods are in some sense dual, as they first prescribe the direction and
then determine the distance ηk to move along δk. These kind of procedures are useful for
designing globally convergent algorithms, meaning that convergence to a stationary point
is guaranteed even from remote starting points x0, which will be not the main concern
here (see the book of Nocedal and Wright [5, Chaps. 3,4] for a more in depth analysis).
Besides, once a locally convergent algorithm has been devised, with constant step length,
one can always modify it to encompass line search or trust-region methodology in order
to enhance its convergence properties (this is usually the order things are done anyway).
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The steepest descent method

It will be henceforth assumed that f is at least continuously differentiable. It is then quite
natural to look for a descent direction, that is, a direction δk such that 〈∇f(xk), δk〉 < 0.
The steepest descent direction δk = −∇f(xk) is the most obvious choice, as is the optimal
(but in general forbidding) step size ηk = arg minη>0 f(xk + ηδk), yielding the iteration

xk+1 = xk − ηk∇f(xk), ηk = arg min
η>0

f(xk − η∇f(xk)). (1.1)

This steepest descent method, introduced by Cauchy [6], is the oldest method for multi-
dimensional unconstrained minimization and its poor practical behaviour is well known.
When the level sets of f resemble steep valleys, the sequence (xk) generated by (1.1)
typically exhibits a zigzagging pattern and the speed of convergence becomes very slow.
Even in the simplest case of a strictly convex quadratic f , the method converges to the
solution with a Q-linear convergence rate that approches 1 as the condition number of ∇2f
tends to infinity [5, Sec. 3.3]; hence, despite the eventual strict convexity of the problem,
ill-conditioning is enough to prevent the method of making noticeable progress, or even
to break it down. Nevertheless, the simplicity of iteration (1.1) is still quite attractive,
especially when dealing with large-scale (several variables) problems and if coupled with
“cheaper” step size choices (e.g. fixed), since it requires solely the computation of ∇f(xk).

The following standard results will be used (they can be easily found in textbooks on
Functional Analysis):

1.1.4 Theorem (Banach fixed-point theorem). Assume that K is a nonempty closed set
in a Banach space E (with norm ‖ ‖), and further, that S : K → K is a contractive
mapping (i.e. a Lipschitzian mapping with Lipschitz constant L strictly lower than one).
Then there exists a unique x∗ ∈ K such that x∗ = S(x∗) and, for any x0 ∈ K, the
sequence (xk) defined by xk+1 = S(xk), k ∈ N0, stays in K and converges Q-linearly to
x∗. Furthermore, the following estimate holds: ‖xk − x∗‖ 6 Lk‖x0 − x∗‖, for all k ∈ N0.

1.1.5 Corollary. Let S : E → E be a continuously Fréchet differentiable operator and
x∗ ∈ E a point such that S(x∗) = x∗. If the Fréchet derivative DS(x∗) of S at x∗ has
operator norm strictly lower than one, then the conclusions of the previous theorem hold
with K = {x ∈ E : ‖x−x∗‖ 6 r}, for some r > 0. In the finite dimensional case E = Rn,
this is equivalent to the requirement that ‖JS(x∗)‖ < 1 for some natural norm.

The classical local convergence result for the steepest descent method is now presented.
The assumptions, as well as the proof, are somewhat different than the usual ones in most
of the literature, in the sense that we regard the method as a fixed-point iteration. This
choice suits best our reasoning for the algorithm to come in Section 1.3.

1.1.6 Theorem. Assume that f is a twice continuously differentiable function whose
hessian matrix ∇2f(x∗) at a stationary point x∗ is positive definite. Then there exists
r > 0 such that, given x0 ∈ Br(x∗) = {x ∈ Rn : ‖x − x∗‖2 6 r}, the sequence (xk)
generated by the steepest descent method with constant step size

xk+1 = xk − η∇f(xk), k ∈ N0,

converges Q-linearly to x∗ for sufficiently small step lengths η > 0.



1.1. Preliminaries 9

Proof . Taking S : Rn → Rn defined as S(x) = x− η∇f(x), the steepest descent method
becomes xk+1 = S(xk), k ∈ N0. Since we are not interested in proving global convergence,
the contractivity property will not be needed on the whole Rn, but only locally near x∗.
By Corollary 1.1.5, it suffices to check that ‖JS(x∗)‖ < 1 for some natural norm.

It is clear that JS(x∗) = I − η∇2f(x∗) is a symmetric matrix; then we know that the
`2 norm of JS(x∗) coincides with the spectral radius of this same matrix [7, Sec. 1.4]. The
eigenvalues of JS(x∗) take the form 1 − ηµi∗, where µ1

∗ > · · · > µn∗ are the eigenvalues
of ∇2f(x∗); given that the latter are all positive, we have 1 − ηµi∗ ∈ [1 − ηµ1

∗, 1 − ηµn∗ ]
(1 6 i 6 n) and the choice 0 < η < 2

µ1∗
implies that [1 − ηµ1

∗, 1 − ηµn∗ ] ⊂ ] − 1, 1[. Hence,

one gets ‖JS(x∗)‖2 = ρ(JS(x∗)) strictly lower than one.

Newton and quasi-Newton methods

It was already stressed that the theoretically optimal properties of the steepest descent
direction, δk = −∇f(xk), do not have a corresponding match numerically. In practice,
other directions perform far better.

Newton’s method for unconstrained optimization is a particular case of its counterpart
for solving a nonlinear equation g(x) = 0 [5, Sec. 11.1], which iterates as

xk+1 = xk − [Jg(xk)]
−1g(xk),

being g : Rn → Rn. When applied to g(x) = ∇f(x), one gets the Newton direction
δk = −[∇2f(xk)]

−1∇f(xk); this direction is guaranteed to be of descent if ∇2f(xk) is
positive definite, a property that is usually verified only near a minimizer of f . Hence,
Newton’s method is typically globalized via a line search procedure that modifies the
search direction in order to satisfy the descent property [5, Sec. 3.4]. Methods that use the
Newton direction have usually a Q-quadratic rate of local convergence [5, Sec. 3.3]. The
main drawback is the need for the hessian ∇2f(xk), which can be a highly expensive and
cumbersome computation.

Quasi-Newton methods [5, Chap. 6] offer an interesting alternative to Newton’s method,
since they do not require the computation of second derivatives and still attain a fast rate
of local convergence (typically Q-superlinear). Instead of the true hessian ∇2f(xk), they
use an approximation Bk that is updated after every new iterate in order to incorporate
the knowledge gained during the step. The update of the matrices Bk are based on the
fact that variations in the gradient ∇f give information about the second derivative of f
along the search direction; more precisely, when xk and xk+1 are close to a minimizer of
f (where ∇2f is bound to be positive definite), a simple Taylor expansion shows that

∇2f(xk)(xk+1 − xk) ≈ ∇f(xk+1)−∇f(xk).

Therefore, the new hessian approximation Bk+1 is chosen to mimic the above property,
that is, it is required to verify the following secant equation:

Bk+1sk = yk, (1.2)

where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk); the quasi-Newton direction is then
defined as δk = −B−1

k ∇f(xk). However, for practical purposes, it is much more ad-
vantageous to update the inverse Hk = B−1

k instead, so that δk is obtained by a simple
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matrix-vector multiplication and not through the solution of a linear system. The updated
approximation Hk+1 must satisfy the secant equation (1.2), now written

Hk+1yk = sk. (1.3)

The most effective update formula known is the BFGS formula

Hk+1 = (I − ρkskyTk )Hk(I − ρkyksTk ) + ρksks
T
k , ρk = 〈sk, yk〉−1,

and it can be shown to be symmetry and positive definiteness preserving, provided that
the initial approximation H0 is a symmetric positive definite matrix and if sk and yk satisfy
the so-called curvature condition

〈sk, yk〉 > 0.

This condition, which is clearly necessary because Hk+1 satisfies (1.3), will not hold in
general and must be enforced by imposing restrictions on the line search procedure that
determines the step size ηk.

The spectral gradient method

More than one hundred and forty years after Cauchy having introduced the gradient
method, Barzilai and Borwein provided new insight on gradient methods in their ground-
breaking paper [8]. They discovered that in two dimensions, some choices of ηk (for the
steepest descent method) rendered the sequence (∇f(xk)) R-superlinearly convergent to
zero in the case of a strictly convex quadratic f ! The resulting algorithm, besides being
very inexpensive and having low storage requirements, was globally convergent without
any kind of line search. Even more amazing, they showed that the convergence rate
improved as the ill-conditioning of the problem increased! The conclusion was at once
striking and evident:

“It follows that the performance of the steepest descent method cannot be at-
tributed solely to the choice of the search direction.”
“Clearly, the behaviour of any algorithm depends on the choice of a step size
no less than it depends on the choice of a search direction.”

The belief in an efficient algorithm for large scale minimization, based only on gradient
directions, began to flourish among the optimization community.

The idea behind the method is very straightforward: recall the secant equation (1.2);
now suppose that a matrix Bk+1 with a very simple structure is sought, namely Bk+1 = σI,
σ ∈ R. The equation (1.2) becomes σsk = yk, which in general cannot be solved; however,
if one settles for the choice that minimizes, in euclidean norm, the discrepancy between
both members of this equation, one gets

σ̃k+1 = arg min
σ∈R

‖σsk − yk‖2 =
〈sk, yk〉
〈sk, sk〉

· (1.4)

Observe that being sk = xk+1 − xk and yk = ∇f(xk+1) −∇f(xk), in the particular case
of a quadratic f with a positive definite hessian ∇2f ≡ A, one has

σ̃k+1 =
〈sk, Ask〉
〈sk, sk〉

> 0
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and thus, (1.4) is a Rayleigh quotient for A at the vector sk; σ̃k+1 is then between the min-
imum and maximum eigenvalues of the hessian (hence the terminology spectral method).
Of course, if one emulates equation (1.3) instead, getting σ−1yk = sk, another coefficient
can be derived in the same way:

σ̄k+1 = arg min
σ∈R

‖σ−1yk − sk‖2 =
〈yk, yk〉
〈sk, yk〉

(1.5)

is also a Rayleigh quotient for A, but at the vector
√
Ask. Notice that the Cauchy-

Schwarz inequality yields σ̃k+1 6 σ̄k+1. The iterates are then defined through (1.1), but
using ηk = σ−1

k with either (1.4) or (1.5) generating, respectively, σk = σ̃k or σk = σ̄k
(along with x0, an initial step size η0 must now be given).

The justified attention raised by the Barzilai-Borwein method soon brought further
knowledge to the light of day. Global convergence for strictly convex quadratics in arbi-
trary dimension was proven by Raydan [9]; albeit being not competitive with the conju-
gate gradient method [10, Sec. 7.6] in that case, it was shown to be far superior to classical
steepest descent. That result was subsequentely extended to the (not necessarily strictly)
convex quadratic case, with bounds on the variables, by the same author together with
Friedlander and Martinez [11]. But the hope of obtaining superlinear convergence in arbi-
trary dimensions was basically discarded in view of Fletcher’s work [12, Sec. 4], who argued
that, in general, only R-linear convergence should be expected. Furthermore, a strange
behaviour seemed to detract the prospects of a successful application to general nonlinear
functions: the sequence of values (f(xk)) not only did not decrease monotonically, it in
fact violated monotonicity quite severely from time to time! Actually, this behaviour had
already been pointed out by the authors of the method [8, Sec. 5]:

“Finally, note that, since the two-point algorithms are not descent algorithms,
they have an advantage in that the restriction to descent algorithms often re-
sults in small step sizes for ill-conditioned problems. This may seem, however,
undesirable since it is difficult to control nonmonotone algorithms.”

They even proposed a simple scheme to deal with this issue, probably unaware of the
work by Grippo, Lampariello and Lucidi [13]; in their paper, the authors make the case
in favor of a line search to globalize Newton’s method, in which the objective function is
not forced to decrease in a monotonic fashion. Their motivation arose from the fact that
the pure Newton method, i.e. with unit step size, is sometimes nonmonotone and, despite
this fact, the speed of convergence is much faster than the one observed when imposing
a strict descent at each iteration. The (GLL for short) strategy proposed, that extends
the popular Armijo rule [14], was: given α > 0, β, γ ∈ ]0, 1[ and M ∈ N, the step size is
defined as ηk = βikα, where ik is the first nonnegative integer i satisfying

f(xk + βiαδk) 6 max
06j6mk

f(xk−j) + γβiα〈∇f(xk), δk〉, mk = min{k,M − 1}.

Of course, the choice M = 1 ensures monotone descent; otherwise, descent is enforced
only every M iterations, thus leaving room for occasional increases in function values.

The ground was layed for the implementation of the Barzilai-Borwein method for
general unconstrained minimization. And it was again Raydan [15] who gave the decisive
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push that put spectral gradient methods on the radar thereafter. Using a line search based
on a GLL strategy, he proved a global convergence result and exhibited numerical tests
which showed, somewhat surprisingly, that the method was highly competitive with up-
to-date implementations of conjugate gradient methods for minimizing general functions,
sometimes even outperforming them. Since then many developments ensued, as it will be
timely mentioned thoughout the chapter, but Fletcher’s telling words in a 2001 report [16,
Sec. 4] still carry some truth in them up to this day:

“One thing that I think emerges from this review is just how little we understand
about the BB method.”

1.2 Constrained problems

In constrained optimization, besides the objective function f : Rn → R, a constraint
function g : Rn → Rm is given defining certain equations (or inequations) that the vector
x of unknowns must satisfy. If one is required to minimize f , the optimization problem
can, for instance, be written (considering only equality constraints):

min
x∈C∗

f(x), C∗ = {x ∈ Rn : g(x) = 0}. (1.6)

In coordinate notation:

C∗ = {x ∈ Rn : gi(x) = 0, 1 6 i 6 m}.

The level set C∗ is usually called the set of feasible points, or feasible set. It is assumed
that, besides f , also g is at least continuously differentiable.

Constrained optimization problems arise from models in which constraints play an
essential role, for instance in imposing budgetary and shape constraints in a structural
design problem (see Chapters 4 and 5). They can be reformulated as unconstrained
problems, if the constraints are replaced by “penalization terms” added to the objective
function having the effect of discouraging constraint violations [17, Chap. 13], or by other
means (e.g. by parametrizing the feasible set C∗). This approach will not be followed here.

One of the most often used concepts while designing algorithms is the subject of the
following definition.

1.2.1 Definition. A point x ∈ Rn satisfying the constraint g(x) = 0 is said to be a
regular point if the gradient vectors ∇g1(x),∇g2(x), . . . ,∇gm(x) are linearly independent.
In other words, the jacobian matrix Jg(x) should have full rank (equal to m).

The condition defining a regular point is often termed across the literature as linear
independence constraint qualification (LICQ). It is the most common from a lot of “mini-
mal hypotheses” usually called constraint qualifications [18, Sec. 11.3], which are assumed
to hold when establishing optimality conditions for constrained problems.

The previous definition implies that m 6 n. However, since m = n would yield a
discrete set of feasible points, a situation which is outside the scope of the present text,
it is hereafter assumed that m < n. At a regular point x then, the constraint function g
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is a submersion, thus giving C∗ the appropriate geometrical concept of a submanifold in
Rn [19, Sec. 1.2]. The tangent subspace to C∗ at x [17, Sec. 11.2] is given by

Tx = Ker(Jg(x)) = {τ ∈ Rn : Jg(x)τ = 0}.

The following result, relating the distance to the manifold C∗ and the norm of the
constraint function defining it, will be used in Section 1.3. The statement is that, locally,
those two quantities have the same order of magnitude. Part of the proof relies on the
implicit function theorem, much in the same vein like a standard result about manifolds
defined as inverse images [19, Secs. 1.1, 1.2].

1.2.2 Lemma. Let x∗ ∈ C∗ be a regular point. Then there exist positive constants C1, C2

and r, such that,

for every x ∈ Br(x∗), C1 dist(x, C∗) 6 ‖g(x)‖ 6 C2 dist(x, C∗).

Proof . The second inequality is straightforward: since U ∩ C∗ is compact for every com-
pact neighbourhood U of x∗, given x close enough to x∗ it is always possible to consider
yx ∈ C∗ satisfying ‖x − yx‖ = infy∈C∗ ‖x − y‖ = dist(x, C∗); a simple Taylor expansion
about yx yields g(x) = O(‖x− yx‖), that is, ‖g(x)‖ 6 C2 dist(x, C∗).

The first inequality is far less trivial. Being x∗ a regular point, there is a nonzero
m × m minor of Jg(x∗); for simplicity’s sake, assume that it is the one featuring the
last m columns of that matrix. Then, by the implicit function theorem, there is an open
neighbourhood of x∗ where the last m variables x̃ = (xn−m+1, . . . , xn) are a function of
the first n−m variables x̄ = (x1, . . . , xn−m); more precisely, splitting Rn into Rn−m×Rm,
there are open neighbourhoods U of x̄∗ and V of x̃∗, and a continuously differentiable
function ϕ : U → V , such that (U × V ) ∩ C∗ is the graph of the map x̄ 7→ g(x̄, ϕ(x̄)).

Now, let Jx̃g(x) represent the matrix formed by the last m columns of Jg(x). Using
the fact that (x̄, ϕ(x̄)) ∈ C∗ and the mean value theorem, one can write

‖g(x)‖ = ‖g(x̄, x̃)− g(x̄, ϕ(x̄))‖ = ‖Jx̃g(x̄, ỹ)(x̃− ϕ(x̄))‖,

where ỹ lies in the line segment joining x̃ and ϕ(x̄). Next, define θ : Rn → R in the
following way: θ(x) = minδ̃ ‖Jx̃g(x)δ̃‖, where the minimum is computed over all vectors

δ̃ ∈ Rm such that ‖δ̃‖ = 1. Note that θ is well defined, because the unit sphere is compact
and the map δ̃ 7→ ‖Jx̃g(x)δ̃‖ is obviously continuous. Since Jx̃g(x∗) is an invertible matrix,
θ(x∗) > 0; thus, a property like lower semicontinuity will suffice to ensure that θ is bounded
below away from zero near x∗. The conclusion of Lemma 1.2.2 follows then easily, because

‖Jx̃g(x̄, ỹ)(x̃− ϕ(x̄))‖ > θ(x̄, ỹ)‖x̃− ϕ(x̄)‖ > C1‖(x̄, x̃)− (x̄, ϕ(x̄))︸ ︷︷ ︸
∈C∗

‖ > C1 dist(x, C∗).

For proving that θ is lower semicontinuous,1 let xk → x and take a subsequence (xpk)
such that lim inf θ(xk) = lim θ(xpk) and θ(xpk) = ‖Jx̃g(xpk)δ̃pk‖. Using the compactness
of the unit sphere, pick a subsequence of δ̃pk converging to some δ̃; then, lim inf θ(xk) =
‖Jx̃g(x)δ̃‖ > θ(x).

1Note that θ is obviously upper semicontinuous, since it is the lower envelope of the δ̃-indexed family
of continuous functions given by x 7→ ‖Jx̃g(x)δ̃‖. So, in fact, θ is a continuous function.
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The optimality conditions for constrained optimization problems [17, Secs. 11.3, 11.5]
are, not surprisingly, more complicated than for the unconstrained case.

1.2.3 Theorem (First-order necessary conditions). Assume that x∗ ∈ Rn is a solu-
tion of (1.6). If x∗ is a regular point, then there exists (a unique) λ∗ ∈ Rm, called the
Lagrange multiplier, such that the following conditions hold:{

∇f(x∗) +∇g(x∗)λ∗ = 0,

g(x∗) = 0.
(1.7)

In coordinate notation:{
f,j(x∗) +

∑m
i=1 λ

i
∗g
i
,j(x∗) = 0, 1 6 j 6 n,

gi(x∗) = 0, 1 6 i 6 m.

These equations are often referred to as Karush-Kuhn-Tucker conditions, or KKT
conditions for short, and they are the equivalent of the stationarity condition ∇f(x∗) = 0
in unconstrained optimization. It should not come as a surprise then, that them alone are
not sufficient to ensure optimality.

In connection with general problems of the form (1.6), it is usually convenient to
introduce the lagrangian function L : Rn × Rm → R, defined as

L(x, λ) = f(x) + 〈g(x), λ〉.

By splitting ∇L = (∇xL,∇λL), the KKT conditions can be rewritten as{
∇xL(x∗, λ∗) = 0,

∇λL(x∗, λ∗) = 0,

i.e. they express stationarity of the lagrangian L at (x∗, λ∗).
As in the unconstrained case, second-order derivatives are required to discern mini-

mum points. Henceforth, whenever f and g are at least twice continuously differentiable
functions, ∇2

xL(x, λ) will denote the matrix ∇2f(x) +
∑m

j=1 λ
j∇2gj(x).

1.2.4 Theorem (Second-order necessary conditions). Suppose that x∗ ∈ Rn is both a
solution to (1.6) and a regular point. Assume that f and g are twice continuously differ-
entiable functions in an open neighbourhood of x∗. If λ∗ is the Lagrange multiplier for
which (1.7) is satisfied, then:

for all τ ∈ Tx∗ , 〈∇2
xL(x∗, λ∗)τ, τ〉 > 0,

that is, the matrix ∇2
xL(x∗, λ∗) is positive semidefinite on Tx∗.

1.2.5 Theorem (Second-order sufficient conditions). Suppose there are x∗ ∈ Rn and a
Lagrange multiplier λ∗ such that the KKT conditions (1.7) hold. Assume that f and g are
twice continuously differentiable functions in an open neighbourhood of x∗. Suppose also
that the matrix ∇2

xL(x∗, λ∗) is positive definite on Tx∗, that is,

for all nonzero τ ∈ Tx∗ , 〈∇2
xL(x∗, λ∗)τ, τ〉 > 0.

Then x∗ is a strict local minimizer of (1.6).
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1.3 A steepest descent approach

A typical case in structural design arises when engineers adjust the parameters (variables)
to optimize the performance of a structure while keeping a prescribed cost. In such a
framework, the constraint function g appearing in (1.6) is thought of as a cost function
(see Chapter 4), a scalar function that (in a broad sense) stands for the structure’s “price”
(or more precisely, the difference between the cost function and a prescribed “price”).
For presentation purposes, the discussion will be initially restricted to this model problem
(m = 1) and subsequently extended to account for multiple constraints.

For the treatment of (1.6) we will try to follow, to a certain extent, some of the
ideas in Section 1.1 (see pages 8–9). The question of which search direction one should
consider does not have an immediate answer. There is more than one aspect to cover
as the iterations progress: decreasing the function value of f while solving the equation
g = 0. The approach proposed by Barbarosie [20] sets up a direction that targets both
goals simultaneously, much in the manner of well known gradient projection methodology
[17, Sec. 12.4], but with two major differences: the iterates do not necessarily satisfy the
constraints and no projection matrices are used.

Given an iterate xk, the direction δk used to define the next iterate, xk+1 = xk + ηkδk,
is the sum of two components: one of them is the step −∇f(xk) corresponding to the
steepest descent method; the other one aims at fulfilling the constraint equation g = 0
and has the form −λk∇g(xk), where λk ∈ R is a sort of Lagrange multiplier:

δk = −∇f(xk)− λk∇g(xk) = −∇xL(xk, λk),

with the lagrangian being now simply L(x, λ) = f(x)+λg(x). The multiplier λk is defined
in a natural way by imposing on the increment ∆k = ηkδk the Newton-type condition

〈∇g(xk),∆k〉 = −g(xk), (1.8)

which is immediately solvable:

λk =
η−1
k g(xk)− 〈∇g(xk),∇f(xk)〉

‖∇g(xk)‖2
· (1.9)

With this choice of the multiplier, the whole procedure amounts to perform a tangential
gradient method to minimize f , together with a unidimensional Newton method to solve
the constraint equation g = 0.

To better understand the last assertion, consider the following reasoning. In the neigh-
borhood of a solution x∗ there are two main directions to consider from xk: the direction
∇g(xk), orthogonal to the level set

Ck = {x ∈ Rn : g(x) = g(xk)},

and the subspace orthogonal to it (whose vectors are tangent to Ck at xk). In this latter
subspace we have to minimize f ; note that, since the solution x∗ should minimize f in
a level set of g, namely C∗, there is no point in decreasing f along directions other than
tangent ones. In the direction∇g(xk) we want to solve the equation g = 0, moving the next
iterate closer to C∗. To clarify things further, take an orthogonal basis of Rn determined
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by the unit vector νk = ‖∇g(xk)‖−1∇g(xk); then we can write ∇f(xk) = τk+αkνk, where
αk ∈ R and τk ⊥ νk. With these notations we get

λk =
η−1
k g(xk)− αk‖∇g(xk)‖

‖∇g(xk)‖2
=

η−1
k g(xk)

‖∇g(xk)‖2
− αk
‖∇g(xk)‖

and therefore

∆k = −ηk∇f(xk)− ηkλk∇g(xk) = −ηkτk −
g(xk)

‖∇g(xk)‖
νk.

The tangential component of ∆k, equal to −ηkτk, is a descent direction for f at xk:

〈∇f(xk),−ηkτk〉 = 〈τk + akνk,−ηkτk〉 = −ηk‖τk‖2 < 0.

The normal component of ∆k, equal to − g(xk)
‖∇g(xk)‖νk, clearly alludes to a one-dimensional

Newton method.

{xk + ∆ : 〈∇g(xk),∆〉 = −g(xk)}

C∗

xk

−ηkτk

xk+1

x∗

∆k

− g(xk)
‖∇g(xk)‖

νk

Ck

Figure 1.1: Structure of the step.

As mentioned at the beginning of this section, the algorithm generalizes naturally to
vector-valued constraint functions g : Rn → Rm (with m < n). In this case λk ∈ Rm, but
the iterates are still defined in a similar fashion by

xk+1 = xk + ηkδk, δk = −∇f(xk)−∇g(xk)λk = −∇xL(xk, λk), (1.10)

where the Newton-type condition (1.8) now reads

Jg(xk)∆k = −g(xk), ∆k = ηkδk = xk+1 − xk, (1.11)

on account of which (1.9) transforms to

Jg(xk)∇g(xk)λk = η−1
k g(xk)− Jg(xk)∇f(xk). (1.12)

In coordinate notation:

xik+1 = xik − ηkf,i(xk)− ηk
m∑
j=1

gj,i(xk)λ
j
k, 1 6 i 6 n,
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where

n∑
i=1

m∑
j=1

gl,i(xk)g
j
,i(xk)λ

j
k = η−1

k gl(xk)−
n∑
i=1

gl,i(xk)f,i(xk), 1 6 l 6 m.

The linear system of equations (1.12) uniquely determines λk if Jg(xk) has full rank
(equal to m); see Definition 1.2.1 and the comments following it. The method can still
be interpreted geometrically as a steepest descent method in the directions tangent to Ck,
combined with a Newton method in the directions normal to Ck.

1.3.1 Remark. Observe that, in view of the KKT conditions (1.7), the solution of (1.12)
computed at a regular point x∗, minimizer of (1.6), is exactly the matching λ∗. Therefore,
if xk ≈ x∗ then λk is roughly equal to the true Lagrange multiplier (see Corollary 1.3.9).

Note also that, despite (1.12) having been obtained in connection with the iteration
(1.10), it can stand on its own as an independent formula. In fact, (1.12) can be regarded
as a particular case of

Jg(xk)∇g(xk)λk = ξkg(xk)− Jg(xk)∇f(xk), ξk > 0, (1.13)

which also contains the well known least-squares multipliers [18, Sec. 12.3], corresponding
to the choice ξk = 0. For practical purposes, while keeping ξk > 0, it is best to ensure
that (ξk) stays bounded, because if ξkg(xk) ≈ 0 when xk ≈ x∗ – and if Jg(xk)∇g(xk) is
not ill-conditioned – one is certain of having λk ≈ λ∗. �

A sketch of the iterative procedure now follows.

1.3.2 Algorithm.
INPUT: initial guess x0, tolerance ε > 0, maximum number of iterations N .
OUTPUT: approximate solution x, or message of failure.
Step 1 Set k = 1.
Step 2 While k 6 N do Steps 3–8.

Step 3 Choose a step size η > 0.
Step 4 Solve Jg(x0)∇g(x0)λ = η−1g(x0)− Jg(x0)∇f(x0).
Step 5 Set x = x0 − η[∇f(x0) +∇g(x0)λ].
Step 6 If ‖x− x0‖ < ε then OUTPUT(x);

STOP.
Step 7 Set x0 = x.
Step 8 Set k = k + 1.

Step 9 OUTPUT(’The method failed after N iterations.’);
STOP.

1.3.3 Remark. Step 3 of the previous algorithm, like the choice of a search direction
and precisely for the same reasons, does not have an easy answer (except if η is fixed
to begin with). The competing goals of decreasing the objective function and satisfying
the constraints have to be balanced, especially when dealing with algorithms that allow
iterates to leave the feasible set (as is the case). Merit functions and filters [5, Sec. 15.4]
are two concepts that provide a suitable framework for achieving that balance. However, it
is an approach that will not be followed here. An alternative course of action is suggested
in the sequel (see Remark 1.3.10). �
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The main theorem concerning the proposed method is now stated and proved.

1.3.4 Theorem. Let f : Rn → R and g : Rn → Rm (m < n) be twice continuously
differentiable functions. Suppose there is a pair (x∗, λ∗) satisfying the KKT conditions
(1.7), x∗ ∈ C∗ being a regular point, and that the matrix ∇2

xL(x∗, λ∗) is positive definite
on Tx∗ = Ker(Jg(x∗)). Then there exists r > 0 such that, given x0 ∈ Br(x∗), the sequence
of iterates generated by

xk+1 = xk − η[∇f(xk) +∇g(xk)λk], k ∈ N0, (1.14)

where λk is determined through

Jg(xk)∇g(xk)λk = η−1g(xk)− Jg(xk)∇f(xk), (1.15)

converges Q-linearly to x∗ for sufficiently small step lengths η > 0.

The reasoning follows the same pattern of the proof of Theorem 1.1.6, but a bit more
care will have to be exercised in this case. First of all, an auxiliary result is established.

1.3.5 Lemma. Let P 6≡ 0 be an orthogonal projection on Rn. If A 6≡ 0 is a self-adjoint
linear operator on Rn, then v 6= 0 is an eigenvector of PA, associated with the eigenvalue
µ 6= 0, if and only if

(i) v ∈ Ran(P ),

(ii) (A− µI)v ∈ Ker(P ).

Hence, the following estimate of the spectral radius holds: ρ(PA) 6 ρ(A
∣∣
Ran(P )

).

Proof . The “if” part of the assertion is trivial. The “only if” part follows basically from
the fact that, P being an orthogonal projection, one has the direct sum decomposition
Rn = Ker(P ) ⊕ Ran(P ). Hence, given an eigenpair u 6= 0 and µ 6= 0 of PA, there are
unique v ∈ Ker(P ) and w ∈ Ran(P ) such that Au = v + w; but then, PAu = µu reads
w = µu. Therefore, it must be u ∈ Ran(P ) and Au− µu = v ∈ Ker(P ).

The last estimate is now obvious, since ρ(PA) = ρ(PA
∣∣
Ran(P )

) and the spectral radius

of an operator is dominated by the `2 norm of that same operator (recall also that ‖P‖2 = 1
and that the spectral radius of a self-adjoint operator equals its `2 norm).

1.3.6 Remark. Another useful result regarding spectral radii and matrix norms is that,
for any square matrix A and ε > 0, there exists a natural norm with the property that
‖A‖ < ρ(A) + ε [7, Sec. 1.4]. Then, recalling the considerations made in Corollary 1.1.5,
one concludes that contractivity properties of differentiable operators S : Rn → Rn are
essentially governed by the spectral radius of their jacobian matrices: if ρ(JS(x)) < 1, it
always exists a vector norm for which S is locally contractive around x. �

Proof of Theorem 1.3.4. We begin by rewriting the algorithm to display its fixed point
nature. Assuming that (1.15) has a unique solution

λk = [Jg(xk)∇g(xk)]
−1[η−1g(xk)− Jg(xk)∇f(xk)],
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putting this expression into (1.14) yields

xk+1 = xk − η
[
I −∇g(xk)[Jg(xk)∇g(xk)]

−1Jg(xk)
]︸ ︷︷ ︸

P (xk)

∇f(xk)

−∇g(xk)[Jg(xk)∇g(xk)]
−1︸ ︷︷ ︸

K(xk)

g(xk);

so xk+1 = S(xk), upon defining S(x) = x − ηP (x)∇f(x) − K(x)g(x). Because x∗ is a
regular point, Jg(x∗) has full rank – the same is true then for Jg(x) at nearby x – and
the operator S is thus well defined locally around x∗. Because of Remark 1.3.6, one is left
to establish ρ(JS(x∗)) < 1.

K(x) is clearly a right inverse of Jg(x) and it is not difficult to prove that P (x) is the
matrix of the orthogonal projection onto the tangent subspace Tx to the level set

Cx = {y ∈ Rn : g(y) = g(x)}

at x. There are some trivial relations involving P (x), K(x) and Jg(x), namely:

K(x)Jg(x) = I − P (x), P (x)K(x) = 0 and P (x)∇g(x) = 0;

in view of this last equality, one can write

S(x) = x− ηP (x)[∇f(x) +∇g(x)λ∗]−K(x)g(x),

and it is now easy to see, due to the KKT conditions (1.7), that the Jacobian matrix of S
at x∗ is given by

JS(x∗) = I − ηP (x∗)∇2
xL(x∗, λ∗)−K(x∗)Jg(x∗)

= I − ηP (x∗)∇2
xL(x∗, λ∗)− [I − P (x∗)] = P (x∗)[I − η∇2

xL(x∗, λ∗)].

Since I − η∇2
xL(x∗, λ∗) is a symmetric matrix and P (x∗) is the orthogonal projection’s

matrix onto Tx∗ , precisely the subspace where ∇2
xL(x∗, λ∗) is positive definite, recalling

Lemma 1.3.5 and the proof of Theorem 1.1.6, the conclusion is now at hand.

1.3.7 Remark. The constraints converge faster than the iterates. In fact, a simple Taylor
expansion about xk yields

g(xk+1) = g(xk) + Jg(xk)(xk+1 − xk)︸ ︷︷ ︸
= 0, by (1.11)

+ O(‖xk+1 − xk‖2);

thus, if L < 1 designates the (local) contractivity constant of the operator S (see the
previous proof), it is clear that ‖xk+1 − xk‖2 = O(L2k). However, notice that this does
not yield Q-quadratic convergence of (g(xk)), but simply an improved R-linear one. �

1.3.8 Remark. In view of Lemma 1.2.2, one can assert that locally around x∗, ‖g(xk)‖
provides a reasonable estimate of dist(xk, C∗). Thus, Remark 1.3.7 implies that the distance
between xk and the manifold C∗, defined by the constraints, converges to zero faster than
the distance ‖xk − x∗‖. �
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1.3.9 Corollary. Under the hypotheses of Theorem 1.3.4, the sequence (λk) generated by
(1.14)-(1.15) is locally R-linear convergent to λ∗: ‖λk − λ∗‖ = O(‖xk − x∗‖).

Proof. The multipliers λk and λ∗ are, respectively, the value at xk and the value at x∗ of
the vector function given by

λ(x) = [Jg(x)∇g(x)]−1[η−1g(x)− Jg(x)∇f(x)],

which is well defined in a neighbourhood of x∗. Since f and g are twice continuously
differentiable functions, λ is continuously differentiable and thus locally lipschitzian.

During the proof of Theorem 1.3.4, it was seen that algorithm (1.14)-(1.15) can be
rewriten as

xk+1 = xk − ηPk∇f(xk)−Kkg(xk), k ∈ N0, (1.16)

where
Kk = ∇g(xk)[Jg(xk)∇g(xk)]

−1 and Pk = I −KkJg(xk), (1.17)

being the latter the matrix of the orthogonal projection onto Tk = Ker(Jg(xk)), the
tangent subspace to the level set Ck = {x ∈ Rn : g(x) = g(xk)} at xk.

Observe that, while under the form (1.16)-(1.17), computational costs have now dou-
bled; the tangential and normal directions τk = −Pk∇f(xk) and νk = −Kkg(xk), respec-
tively, involve the solution of two linear systems, whereas (1.14)-(1.15) requires solely the
one corresponding to the multiplier λk. Notice however, besides the coefficient matrix in
both of those systems being the same, that they are independent of each other and so the
computation of their solutions can be parallelized, resulting in a total CPU time equal to
the one needed by the simpler iteration (1.14)-(1.15).

1.3.10 Remark. Concerning the adoption of an adaptive step size strategy, there is an
advantage in considering (1.16)-(1.17). The twin goals of decreasing the objective function
and of satisfying the constraints, are now clearly split in the increment

∆k = −ηPk∇f(xk)−Kkg(xk) = ητk + νk.

Instead of using a fixed step length η, one can now (for instance) use a line search method
along the tangential direction τk to look for a suitable step size ηk to decrease f . Along
νk the unit step is preferred, since the normal component is not directly related to mini-
mization but with the solution of an equation through a Newton-like method.

1.4 A spectral gradient approach

The Barzilai-Borwein method presented in pages 10–11 is now extended to the general
nonlinear equality constrained case.

Rather surprisingly, there is no literature on spectral gradient methods to deal in a
systematic way with problems like (1.6). Besides the works of Martinez, Pilotta and
Raydan [21], which is restricted to linear constraints anyway, and of Diniz-Ehrhardt et al.
[22], where the spectral method is simply an auxiliary tool in a penalty-like approach, there
is only the recent article by Gomes-Ruggiero, Martinez and Santos [23]. This latter paper
addresses in fact a wider problem than (1.6): the variables x lie in a closed convex polytope
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and the constraints are given under the form of inequalities2. However, and regarding the
spectral aspect of the algorithm, the approach is a generalization of the methods by Birgin,
Martinez and Raydan [24–26], which in turn merge the spectral nonmonotone ideas (see
page 11) with classical projected gradient methods on convex sets.

The approach that will be introduced in the sequel differs from all of the above in the
computation of the spectral parameter ; more precisely, in the choices of vectors sk and yk.

1.4.1 Note. Although the established convergence theory of spectral gradient methods
in the unconstrained case is the same for both Barzilai-Borwein step length choices σ−1

k ,

σk =
〈sk−1, yk−1〉
〈sk−1, sk−1〉

or σk =
〈yk−1, yk−1〉
〈sk−1, yk−1〉

, (1.18)

where sk−1 = xk−xk−1 and yk−1 = ∇f(xk)−∇f(xk−1), computational evidence reported
throughout the literature clearly favours the former as the superior formula. For that
reason it will take the “spotlight” from now on and, unless stated otherwise, σk will
always mean the first of the above spectral coefficients.

As a side note, a remarkable property both formulas share is that they render the
resulting algorithms invariant for rescalings, in both f and the independent variables x
(unlike the steepest descent method). �

Recall that in the unconstrained case and if f is a quadratic function, σk is a Rayleigh
quotient for the actual hessian ∇2f . In the general case of a nonlinear f , only a weaker
statement can be made: since

yk−1 = ∇f(xk)−∇f(xk−1) =

(∫ 1

0
∇2f(xk−1 + tsk−1) dt

)
sk−1, (1.19)

σk is just a Rayleigh quotient for an average hessian matrix. Unless f is convex, the dot
product 〈sk−1, yk−1〉 may be negative; as such, practical implementations always safeguard
the update of ηk. To allow the acceptance of the Barzilai-Borwein step size as frequently
as possible, a small positive value ηmin and a large one ηmax are fixed and it is only when
σ−1
k falls outside this range that a backup formula is activated; popular choices include

ηk = max{ηk−1, η}, η =


1, ‖∇f(xk)‖ > 1,

‖∇f(xk)‖−1, γ 6 ‖∇f(xk)‖ 6 1,

γ−1, ‖∇f(xk)‖ < γ,

(1.20)

(0 < γ � 1) or simply ηk = η alone. This means that when the spectral step size is rejected
(for being either too short, too long, or negative), the decision is to make essentially a
steepest descent step by reusing the previous step length or by prescribing a new one.

The generalization to the constrained case of the Barzilai-Borwein idea is very simple:
one takes the iteration (1.16)-(1.17) and supplies it with the spectral step size ηk = σ−1

k

in the tangent direction τk = −Pk∇f(xk), properly safeguarded with some formula re-
sembling (1.20), but with appropriate choices of sk−1 and yk−1. Clearly, in regard of
Theorem 1.2.4, σk should now be embedded with second order information, not from the

2Equality constraints are accounted for upon being rewritten as a pair of inequality constraints.
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objective f , but from the lagrangian L. Hence, in the first place, a multiplier estimate
λk is needed; for that purpose, the linear system (1.13) is solved. Observe that one can
get rid of (for instance) the linear system related to the direction τk; in fact, a simple
calculation promptly gives

τk = −∇f(xk)−∇g(xk)λk − ξkνk. (1.21)

Only the linear systems associated with the multiplier λk and the normal direction νk
remain, which are independent of each other and can thus be solved in parallel.

So the spectral parameter σk should now be a Rayleigh quotient for an average hessian
of the lagrangian, obviously at a tangent vector. Looking at (1.19), a choice that almost
suggests itself consists of replacing sk−1 by ηk−1τk−1 and ∇2f by ∇2

xL, that is:

yk−1 = ∇xL(xk−1 + ηk−1τk−1, λk)−∇xL(xk−1, λk).

Observe that, for every k ∈ N0, being Pk the matrix of the orthogonal projection onto
Tk = Ker(Jg(xk)) = Ran(Pk), the identity Ker(Pk) = Ran(∇g(xk)) holds and therefore,
for any λ ∈ Rm,

τk = −Pk∇f(xk) = −Pk[∇f(xk) +∇g(xk)λ] = −Pk∇xL(xk, λ); (1.22)

hence, because Pk−1 is a symmetric matrix, the dot product 〈sk−1, yk−1〉 is the same if in
yk−1 the term ∇xL(xk−1, λk) is replaced by ∇f(xk−1), i.e.

sk−1 = ηk−1τk−1, yk−1 = ∇xL(xk−1 + sk−1, λk)−∇f(xk−1). (1.23)

But then the resulting step length is altogether based on information from the tangent
subspace at the previous iterate; this is certainly not an issue near a solution x∗, but it
might degrade the performance at earlier stages. It is perhaps more sensible to gather
information over the tangent subspace at the current iterate. This can be easily achieved
by making the obvious adjustments to (1.23): xk in place of xk−1 and sk−1 ∈ Ran(Pk);
the most handy pick is

sk−1 =
δ

‖τk‖
τk, yk−1 = ∇xL(xk + sk−1, λk)−∇f(xk), (1.24)

where δ is a small positive value in order for yk−1 to measure the change in ∇xL near xk.
Though (1.23) and (1.24) produce true Rayleigh quotients, the resulting algorithms

suffer from the same shortcoming: the need to evaluate gradients at two points per iter-
ation. In this regard they greatly differ from the original methods, which need derivative
computations just at one point per iteration – a feature one would like to carry over to
the new framework. This discussion motivates the following choice:

sk−1 = Pk(xk − xk−1), yk−1 = ∇f(xk)−∇xL(xk−1, λk). (1.25)

Note that near a solution holds xk − xk−1 ≈ sk−1 ∈ Ran(Pk), giving rise to a spectral
coefficient σk that is roughly a Rayleigh quotient, at a tangent vector, for an average
hessian of the lagrangian (as intended). At first it might seem that this option is not
computationally more efficient than the previous ones, since while not requiring gradient
evaluations at additional points beyond xk−1 and xk, it involves the solution of a linear
system to determine sk−1. However, the coefficient matrix of that system is exactly the
same appearing in the systems related with λk and νk (yet again, one should bear in mind
that these three linear systems are independent of one another).
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1.4.2 Remark. As already mentioned, in any of the resulting algorithms corresponding
to the alternatives (1.23), (1.24) and (1.25), the several linear systems involved in an
iteration (two for the first versions, three in the case of the last one) all share the same
symmetric positive definite coefficient matrix. Therefore, when a Choleski factorization is
affordable there may be no need to parallelize at all.

If the problem’s dimension is such that iterative solvers have to be employed (given
the structure of the coefficient matrix, the best option is a conjugate gradient method,
eventually preconditioned), then there is no choice but to go parallel. Notice that in
this case one can use simple warm-start strategies to speed up the process, like giving
as initial approximation the solution computed at the previous iteration (e.g. λk−1, νk−1

and sk−2 while solving for λk, νk and sk−1, respectively). The observation immediately
after (1.25) suggests also for that choice the suspension of the linear algebra needed to
compute sk−1 = Pk(xk − xk−1), taking simply sk−1 = xk − xk−1 instead, once the iterates
reach the surroundings of a stationary point (which can be recognized through the norm
of ∇xL(xk, λk), or equivalently through the norm of τk). �

A sketch of the algorithm now follows: version (1.25) is preferred and it is assumed
that a Choleski factorization of Jg∇g is affordable (the adjustments if that is not the case
are foreseeable). The first iterate is generated with Algorithm 1.3.2.

1.4.3 Algorithm.
INPUT: initial guess x0, initial step size η0 > 0, tolerances 0 < ε < γ,

step length bounds 0 < ηmin < ηmax, maximum number of iterations N .
OUTPUT: approximate solution x, or message of failure.
Step 1 Solve Jg(x0)∇g(x0)λ0 = η−1

0 g(x0)− Jg(x0)∇f(x0).
Step 2 Set x1 = x0 − η0[∇f(x0) +∇g(x0)λ0].
Step 3 Set k = 2.
Step 4 While k 6 N do Steps 5–13.

Step 5 Compute the Choleski factorization LLT of Jg(x1)∇g(x1).
Step 6 Solve using forward-backward substitution: LLT v = g(x1),

LLTw = Jg(x1)(x1 − x0) and LLTλ = ξg(x1)− Jg(x1)∇f(x1), ξ > 0.
Step 7 Set ν = −∇g(x1)v and τ = −∇f(x1)−∇g(x1)λ− ξν.
Step 8 Set s = x1 − x0 −∇g(x1)w and y = ∇f(x1)−∇f(x0)−∇g(x0)λ.
Step 9 Set η = 〈s, s〉/〈s, y〉.
Step 10 If η 6∈ [ηmin, ηmax] then

η =


1, ‖τ‖ > 1,

‖τ‖−1, γ 6 ‖τ‖ 6 1,

γ−1, ‖τ‖ < γ.

Step 11 Set x = x1 + ητ + ν.
Step 12 If ‖x− x0‖ < ε then OUTPUT(x);

STOP.
Step 13 Set x0 = x1, x1 = x and k = k + 1.

Step 14 OUTPUT(’The method failed after N iterations.’);
STOP.
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When iterative solving is implemented (using parallel computation), Steps 5 and 6 amount
to a single step.

1.4.4 Remark. Nonmonotone methods are a relatively recent development in optimiza-
tion theory. They were triggered in the early eighties by means of watchdog techniques [27]
and nonmonotone line search rules [13]. Possibly their most striking feature, when prop-
erly designed, is the ability to avoid the so-called Maratos effect [5, Sec. 15.5]; this is a
phenomenon that plagues monotonic methods and it consists of good local steps being
rejected, thus preventing the algorithm of making fast progress towards a solution. As
a matter of fact, the Maratos effect alone can, for instance, deprive Newton’s method of
Q-quadratic convergence [18, Sec. 15.3].

Having played a crucial role in the generalization of spectral gradient methods to
nonlinear problems, the GLL line search strategy (see page 11) has nevertheless been
recognized to be undesirably conservative in some cases (for ill-conditioned problems the
performance depends heavily on the parameter M). Accordingly, alternative nonmonotone
rules have been sugested, most notably by Dai and Zhang [28], who designed an adaptive
strategy independent of M , by Grippo and Sciandrone [29], who relaxed monotonicity
even further by combining both nonmonotone watchdog and line search techniques, and
more recently by Shi and Wang [30].

It should be stressed that, although global convergence cannot in theory be guaranteed
without some kind of the aforementioned procedures, spectral gradient methods are often
able to function soundly without them; in fact, the performance of the pure method (even-
tually safeguarded) is often better [16,31] – this was actually the main reason behind the
trend towards monotonicity relaxation over the years. So yet another interesting feature
of spectral methods emerges, and one that can have a significant impact on computational
costs3. For instance, it is very common in practical applications to have objective and/or
constraint functions that depend on the parameters implicitly through a state variable
(the temperature, the displacement, etc.) satisfying some partial differential equation (see
Chapter 5); then each test performed in, say, a line search, will require a finite element
solution of that equation! �

1.4.5 Remark. Since its introduction, the Barzilai-Borwein method has been the subject
of several upgrades over the years.

The need of preconditioning for ill-conditioned problems has been aknowledged and
adressed in several works: for instance Luengo et al. [32], Bello and Raydan [33], Chehab
and Raydan [34]. The latter paper is particularly interesting, since the authors develop a
problem-independent preconditioning theory (this is welcome because problem-dependent
preconditioners require a deep knowledge – which is not always available – of the underlying
problem). Numerical tests are also performed, with encouraging results.

Alternative spectral coeficients have also been proposed. Dai, Yuan and Yuan [35]
observed that the classical Barzilai-Borwein methods could also be obtained from an in-
terpolation point of view and proposed two spectral-like step sizes which gave rise to a
couple of competitive gradient methods, that on several examples superseded well estab-
lished spectral gradient methods. Alternating step size strategies have also been investi-
gated [29, 35]; as the designation suggests, the step length can be generated by different

3One more reason why watchdog, line search or trust-region methodologies are not insisted upon.
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formulas at different iterations: for instance, it could alternate between any of the choices
(1.18), depending on some criteria being fullfield. But maybe one of the most interesting
proposals of all came from Dai et al. [36], who introduced a method for general nonlin-
ear unconstrained minimization in which the Barzilai-Borwein step length is reused during
` ∈ N consecutive iterations. A local R-linear convergence result is proved and, more inter-
esting, numerical evidence indicates that when ` > n/2 > 3, this cyclic Barzilai-Borwein
method is locally R-superlinearly convergent! �

1.5 Final remarks

The methods introduced in the previous section basically emulate (over the tangent space)
the Barzilai-Borwein method for unconstrained minimization. Therefore, Remarks 1.4.4
and 1.4.5 abound with material likely of being extended to the constrained case.

An interesting example would be the one concerning a cyclic procedure, with a safe-
guard along the lines of (1.20). Recall that the increment is defined as ∆k = ηkτk + νk
and that, when the multiplier λk is computed through (1.13), according to (1.21) one has
τk = −∇xL(xk, λk)− ξkνk; hence, if ξk > 0,

−ηk∇xL(xk, λk) = ηkτk + ηkξkνk

is “almost” the increment ∆k; one cannot take ξk = η−1
k , because the computation of the

multiplier precedes the one of the step length, but the choice ξk = η−1
k−1 is possible, thus

yielding exactly ∆k in `− 1 iterations of the ` ones where ηk is the same. This completely
exempts the computation of the increment from the linear algebra associated with νk,
leaving a mere matrix-vector product to evaluate.

Regarding convergence theory, it is a topic that is currently motive for research. Global
convergence results for spectral methods always depend on some sort of nonmonotone
scheme; but it is not completely clear, for instance, how a nonmonotone (tangent) line
search would go in the constrained setting, mainly because the presented algorithms only
produce feasible iterates later in the optimization process. The known theoretical results
[15, 21] do not seem easy to replicate even adopting a direct generalization of the classic
GLL strategy (see page 11), i.e. given M ∈ N and γ ∈ ]0, 1[, find ηk > 0 (starting with
ηk = σ−1

k ) such that

f(xk + ηkτk) 6 max
06j6mk

f(xk−j) + γηk〈∇f(xk), τk〉, mk = min{k,M − 1}.

Besides, the above strategy is admittedly dubious unless the previous M iterates are nearly
feasible. One must also consider that, given the motivation behind the spectral coefficient
σk in the constrained framework, possibly the function subject to tangent decrease should
be, not f , but most likely the “lagrangian” x 7→ L(x, λk),

4 although when feasibility is
approximately reached there may not be much of a difference. As for a local convergence
result, again, what is known for unconstrained problems [37] does not appear to be readily
(if at all) extendable to the constrained case.

4At first glance it may seem a bit awkward to decrease this function along a search direction related
with f ; however, recall that (1.22) is in particular valid for λ = λk.
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To close the section, it is called to attention the fact that several characteristics of
Algorithm 1.4.3 are in stark contrast with quasi-Newton methods for constrained mini-
mization. The latter are somewhat heavier and they pose several technical issues – see, for
instance, the book of Bonnans et al. [18, Sec. 16.3]. Furthermore, as it will be seen in the
next chapter, the extension to inequality constrained problems in the context of active-set
methods will be quite straightforward.



Chapter 2

Active-set methods for inequality
constrained problems

In this chapter, a generalization of the gradient methods introduced in the previous one
is proposed. The aim is to deal with inequality constraints through an active-set strategy.
Again, feasibility issues are not concerned and the iterates are allowed to violate the
constraints (an important exception to this rule is discussed in Section 2.3).

Section 2.1 introduces some generalities on the subject. In Section 2.2 a generalization
of the steepest descent approach (see Section 1.3) is presented. Section 2.3 delineates a
simple procedure to keep the iterates feasible with respect to bounds on the variables, a
recurrent type of inequality constraint appearing in applications. The extension of the
spectral gradient approach (see Section 1.4) is the subject of Section 2.4. Both methods
are further generalized in Section 2.5 to handle (finite and semi-infinite) minimax problems
and in Section 2.6 some numerical tests are performed.

The notations used in the previous chapter, as well as the regularity assumptions made,
carry over to the present one.

2.1 Introductory notes

The problem under consideration is now

min
x∈C

f(x), C = {x ∈ Rn : g(x) 6 0}, (2.1)

the inequality being understood componentwise: C = {x ∈ Rn : gi(x) 6 0, 1 6 i 6 m}.
For simplicity, only inequality constraints are taken; the inclusion of equality constraints
is straightforward, as it will become clear.

2.1.1 Note. The most popular algorithms for general inequality constrained minimization
fall probably under one of two categories: active-set sequential quadratic programming
methods or interior point methods. The latter, as suggested by their very own designation,
are especially tailored to operate within the feasibility paradigm.

Despite the several (and severe) technical challenges posed by both approaches, they
have been considered the most powerful ones in nonlinear programming. However, none
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of them will be pursued in the text, so the interested reader is referred, for instance, to
the book of Nocedal and Wright [5, Chaps. 18,19] for details. �

Local solutions x∗ ∈ C of problem (2.1) usually lie on a level set determined by some
(or eventually all) of the m constraint functions involved:

C∗ = {x ∈ Rn : gi(x) = 0, i ∈ A∗}, A∗ ⊂ {1, 2, . . . ,m},

where A∗ is the set of active indices at x∗. The constraints gi(x∗) 6 0 that are satisfied
with an equality are called active constraints at x∗, as opposed to the inactive ones which
verify the strict inequality gi(x∗) < 0 (this terminology extends to any x ∈ C).

The concept of an active constraint is key, as most clearly the remaining (inactive)
constraints have no say with respect to the characterization of local solutions of (2.1).
Obviously, if some C∗ were known in advance, a solution could be found through an al-
gorithm for equality constrained minimization. These considerations suggest that the
problem could be regarded as having solely equality constraints, provided that the neces-
sary adjustments are made to account for the selection of the active constraints (this is
the philosophy adopted in the sequel).

Like in the algorithms of the previous chapter, the iterates are not necessarily bound
to the feasible set C; in view of this fact, a broader notion of active constraint must
be employed: during the optimization process, an inequality constraint is deemed active
precisely when it is violated (actually there is a bit more to it, as that inequality will
be kept active as long as the associated “Lagrange multiplier” has a specific sign). The
strategy will be a basic one regarding active-set methods: given an iterate xk ∈ Rn, the
constraints are partitioned into those inequalities to be treated as active at xk, which
determine the so-called working surface

Wk = {x ∈ Rn : gi(x) = 0, i ∈ Ak}, Ak ⊂ {1, 2, . . . ,m}, (2.2)

and the ones to be treated as inactive (which are essentially ignored); then, the move from
xk to xk+1 is made via a single iteration of an algorithm applicable to minx∈Wk

f(x).

2.1.2 Remark. The necessary optimality conditions for problem (2.1) are better ex-
pressed in terms of the active constraints at a solution x∗ ∈ C. The KKT conditions (see
Theorem 1.2.3) can in this case be written as follows:

∇f(x∗) +
∑

i∈A∗ λ
i
∗∇gi(x∗) = 0,

gi(x∗) = 0, i ∈ A∗,
gi(x∗) < 0, i 6∈ A∗,
λi∗ > 0, i ∈ A∗,
λi∗ = 0, i 6∈ A∗.

The first two equations are simply the optimality conditions for the equality constrained
problem obtained considering only the active constraints at x∗, that is, for the problem
minx∈C∗ f(x). The third condition ensures that inactive constraints are satisfied and the
last one specifies that they have null Lagrange multipliers attached. The fourth condi-
tion is most important for practical purposes: Lagrange multipliers associated with active
constraints must be nonnegative; this fact lies at the core of informed decision-making
regarding deactivation criteria along the iterations of an algorithm. �



2.2. Extension of the steepest descent approach 29

2.2 Extension of the steepest descent approach

As can be understood from the discussion around (2.2), to define Wk is equivalent to
prescribe the set Ak of active indices at xk. This is accomplished in two stages.

First there is a “prediction phase”, where is checked if any index i 6∈ Ak−1 verifies
gi(xk) > 0; those who do, will join the previous active set Ak−1 to form Ak (in other words,
for the time being, Ak is just a set of eligible indices). A “correction phase” follows, where
to each constraint gi 6 0, i ∈ Ak, a multiplier λik is associated, computed analogously to
(1.12); then, the constraints with attached negative multipliers are “filtered”, according
to some criterion, and Ak is updated (these steps are repeated until one is left with either
no active indices at all, or with a set of indices i for which λik > 0).

The minimization algorithm

In Step 7 of the following scheme, the index associated with the smallest negative multiplier
is deactivated, a strategy frequently recommended in the literature [5, Sec. 16.5]. Some
further comments on this choice are made ahead, but for now one settles for it.

2.2.1 Algorithm.
INPUT: initial guess x0, step size η > 0, tolerance ε > 0,

maximum number of iterations N .
OUTPUT: approximate solution x or message of failure.
Step 1 Set k = 1 and A = ∅ (no active constraints).
Step 2 While k 6 N do Steps 3–10.

Step 3 Set I = {1, 2, . . . ,m} \ A.
Step 4 For i ∈ I do

If gi(x0) > 0 then set A = A ∪ {i}; (Constraint gi 6 0 is set active.)
Step 5 Solve

∑
j∈A〈∇gi(x0),∇gj(x0)〉λj = η−1gi(x0)− 〈∇gi(x0),∇f(x0)〉, i ∈ A.

Step 6 Set i = arg minj∈A λ
j .

Step 7 If λi < 0 then set A = A \ {i}; (Constraint gi 6 0 is set inactive.)
GOTO Step 5.

Step 8 Set x = x0 − η
[
∇f(x0) +

∑
i∈A λ

i∇gi(x0)
]
.

Step 9 If ‖x− x0‖ < ε then OUTPUT(x);
STOP.

Step 10 Set x0 = x and k = k + 1.
Step 11 OUTPUT(’The method failed after N iterations.’);

STOP.

2.2.2 Note. Observe that, although not explicitly stated, the algorithm must be halted
once the number of active constraints equals or tops the number of variables. �

2.2.3 Remark. For large scale problems, the routine comprising Steps 5 to 7 can become
unbearably heavy if many constraints are active, and thus many multipliers must be com-
puted at each cycle (it is stressed that, upon a constraint’s deactivation, the remaining
multipliers are “fake” and must indeed be computed anew). In this regard, it should be
pointed out that Algorithm 2.2.1 does not depend on the specific procedure here adopted
to establish the active set. Other ways of prescribing the active constraints can be imple-
mented without prejudice. A common one [5, Sec. 18.5], especially in sequential quadratic
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programming frameworks, does it by means of an auxiliary linear programming problem,
usually solved efficiently by the simplex method [5, Chap. 13] even if a very large number
of variables is involved. �

Successful active-set algorithms depend a great deal on the method chosen to solve
equality constrained problems, as well as, of course, on the ability to identify the correct
active constraints. In general, convergence cannot be guaranteed and zigzagging1 can
sometimes occur, although experience shows it to be a rare phenomenon.

On deactivation criteria2

Steps 6 and 7 of Algorithm 2.2.1 are quite clear if only one of the multipliers λi becomes
negative. But if several multipliers become negative simultaneously, it seems that a some-
what arbitrary choice was made: to deactivate the constraint associated to the “most”
negative multiplier. Such an option is usually supported by the sensitivity analysis of
the Lagrange multipliers at a solution x∗ [17, Sec. 11.7]. However, decisions about adding
and dropping constraints have to be made long before a stationary point is even found
on the current working surface; the possibility is thus open for alternative choices, like
deactivating at once all the constraints with negative multipliers, or to choose the one(s)
to be deactivated on the basis of some other criterion.

To put things in more precise terms, assume that only two indices, say 1 and 2, are
eligible to become active. Consider the (most popular in the literature) least-squares
multipliers λ1 and λ2, i.e. solution of (1.13) with ξk = 0:{

〈∇g1,∇g1〉λ1 + 〈∇g1,∇g2〉λ2 = −〈∇g1,∇f〉,
〈∇g1,∇g2〉λ1 + 〈∇g2,∇g2〉λ2 = −〈∇g2,∇f〉.

Consider also the least-squares multipliers µ1 and µ2,

〈∇g1,∇g1〉µ1 = −〈∇g1,∇f〉, 〈∇g2,∇g2〉µ2 = −〈∇g2,∇f〉,

obtained if only g1 6 0 or g2 6 0 stays active, respectively; obviously they reflect the
tendency exhibited by one constraint in face of the other one’s deactivation. All four
multipliers can be related through the linear system{

〈∇g1,∇g1〉λ1 + 〈∇g1,∇g2〉λ2 = 〈∇g1,∇g1〉µ1,

〈∇g1,∇g2〉λ1 + 〈∇g1,∇g2〉λ2 = 〈∇g2,∇g2〉µ2.
(2.3)

Now assume that λ1 and λ2 are negative, so that both constraints are candidates for
deactivation; suppose the choice falls (for instance) on g2 6 0 because, according to the
“most negative multiplier criterion”, λ2 < λ1. One would like this to prevent µ1 < 0 and
µ2 > 0 from happening simultaneously (otherwise it means that probably a poor choice
was made), but simple numerical tests show that it does not. However, it is not difficult
to see that if λ2‖∇g2‖ < λ1‖∇g1‖ is satisfied instead, the undesirable situation is avoided.
Effectively, solving (2.3) for λ1 and λ2, that inequality is easily proven equivalent to

µ2(〈∇g1,∇g2〉+ ‖∇g1‖‖∇g2‖)‖∇g2‖ < µ1(〈∇g1,∇g2〉+ ‖∇g1‖‖∇g2‖)‖∇g1‖;
1The set of active constraints changes many times.
2The discussion takes place at an iterate xk which, together with any subscripts, is omitted for simplicity.
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hence, by the Cauchy-Schwarz inequality, it is impossible to have µ1 < 0 and µ2 > 0.

This simple example shows that the “most negative multiplier criterion” is not “opti-
mal” and that there is room for improvement in this aspect.3 Unfortunately, the kind of
analysis just performed for two constraints becomes excruciating and highly confusing in
the general case. A more systematic approach is yet to be devised.

One might think that the situation is simpler if only one multiplier, say λ1, is negative.
In this case, can one safely deactivate the constraint g1 6 0, trusting that the new multi-
plier µ2 is nonnegative? The answer is no (hence the cyclic deletion procedure adopted in
Algorithm 2.2.1), as can be easily verified toying with some numerical examples.

2.2.4 Remark. There may be another way to look at this whole issue. Supposing the
algorithm runs “smoothly enough”, that is, with sufficiently small step lengths, no dra-
matic changes will occur in the quantities defining the step (the gradient of f and the
gradients of the gi, with i an active index). Therefore, it is not expected that more than
one constraint will become inactive at a given iteration; moreover, if this happens (more
than one multiplier becomes negative) it should be taken as a warning sign: the algorithm
is taking too large “strides” and the step length should be reduced. �

2.3 Adding bounds on the variables

There is a particular case when many constraints are likely to become active, but they
have the simple form ai − xi 6 0 or xi − bi 6 0, that is: the vector variable x is confined
to a “rectangular box” R =

∏n
i=1

[
ai, bi

]
in Rn, the cases ai = −∞ and/or bi = +∞ being

not excluded to account for variables where no lower bounds and/or no upper bounds
are imposed. This particular type of constraints can be treated without passing through
the (cumbersome) process of solving the corresponding set of linear equations in order
to obtain the respective multipliers. It suffices to ignore these particular constraints in
Step 5 of Algorithm 2.2.1, computing however the remaining multipliers (if any) as usual,
then compute the new point according to Step 8 of that same algorithm, and finally
“crop” each coordinate towards the range

[
ai, bi

]
. The latter operation can be viewed as

a (trivial) projection onto the cartesian product
∏n
i=1

[
ai, bi

]
. The tricky detail is that

the “blocked” variables xi should be ignored when computing the scalar products between
gradients in Step 5; that is, those “blocked” variables must be treated as if they were no
longer variables but mere parameters, equal to ai or to bi. This approach is equivalent
to solving the full system of linear equations (some comments on this matter are made
further ahead), with the obvious advantage of alleviating the computational burden by
reducing the size of the linear system. The procedure has an additional advantage: since
it is based on a (trivial) projection operation, it is able to deal with essential constraints
of the form xi > ai and/or xi 6 bi, which are very common in applications (for instance,
they can mirror technological restrictions).

2.3.1 Remark. The KKT optimality conditions for problem (2.1), in the presence of
bounds, can be more concisely expressed by considering the set B∗ ⊂ {1, 2, . . . , n} of

3Notice also that the criterion involving the multiplier times the gradient’s norm, of the respective
constraint function, has the advantage of being invariant under constraint rescalings.
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indices corresponding to active bounds ai− xi 6 0 or xi− bi 6 0 at a solution x∗ ∈ R∩C:


f,i(x∗) +

∑
j∈A∗ λ

jgj,i(x∗) = 0, i 6∈ B∗,
f,i(x∗) +

∑
j∈A∗ λ

jgj,i(x∗) > 0, i ∈ B∗ : xi∗ = ai,

f,i(x∗) +
∑

j∈A∗ λ
jgj,i(x∗) 6 0, i ∈ B∗ : xi∗ = bi,


gj(x∗) = 0, j ∈ A∗,
gj(x∗) < 0, j 6∈ A∗,
λj∗ > 0, j ∈ A∗,
λj∗ = 0, j 6∈ A∗.

The computations involved in the discussion following Algorithm 2.3.2 shed some light on
how the first set of conditions turns up. Of course, it is assumed that all the gradients of
active constraints at x∗ (bounds and otherwise) are linearly independent. �

The upgrade from Algorithm 2.2.1 is achieved by making the aforementioned changes.
It is useful to consider, regarding the variables xi, the set F ⊂ {1, 2, . . . , n} of indices cor-
responding to “free” (or “unblocked”) variables, and to incidentally introduce the notation
〈x, y〉F =

∑
k∈F x

kyk for given x, y ∈ Rn.

2.3.2 Algorithm.
INPUT: initial guess x0 ∈

∏n
i=1

]
ai, bi

[
, step size η > 0, tolerance ε > 0,

maximum number of iterations N .
OUTPUT: approximate solution x or message of failure.
Step 1 Set k = 1, F = {1, 2, . . . , n} and A = ∅ (no active constraints).
Step 2 While k 6 N do Steps 3–11.

Step 3 Set I = {1, 2, . . . ,m} \ A.
Step 4 For i ∈ I do

If gi(x0) > 0 then set A = A ∪ {i}; (Constraint gi 6 0 is set active.)
Step 5 Solve

∑
j∈A〈∇gi(x0),∇gj(x0)〉Fλj = η−1gi(x0)− 〈∇gi(x0),∇f(x0)〉F , i ∈ A.

Step 6 Set i = arg minj∈A λ
j .

Step 7 If λi < 0 then set A = A \ {i}; (Constraint gi 6 0 is set inactive.)
GOTO Step 5.

Step 8 Set x = x0 − η
[
∇f(x0) +

∑
i∈A λ

i∇gi(x0)
]
.

Step 9 For i = 1, . . . , n do
If xi < ai then set xi = ai and F = F \ {i};
If xi > bi then set xi = bi and F = F \ {i}.

Step 10 If ‖x− x0‖ < ε then OUTPUT(x);
STOP.

Step 11 Set x0 = x and k = k + 1.
Step 12 OUTPUT(’The method failed after N iterations.’);

STOP.

2.3.3 Note. A similar statement to that of Note 2.2.2 applies: the algorithm is now halted
when the number of active constraints equals or tops the number of free variables. �

To ilustrate the “equivalence” between Algorithms 2.2.1 and 2.3.2 in handling bounds,
one takes x0 in the boundary of

∏n
i=1

[
ai, bi

]
(with no loss of generality, the problem will

be supposed to have upper bounds only). The relative complement of F in {1, 2, . . . , n},
call it B, collecting the indices of blocked variables is introduced, along with the notation
〈x, y〉B =

∑
k∈B x

kyk for given x, y ∈ Rn.
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So Algorithm 2.2.1 iterates according to

xi =

b
i − η

(
f,i +

∑
j∈A g

j
,iλ

j + `i
)
, i ∈ B,

xi0 − η
(
f,i +

∑
j∈A g

j
,iλ

j
)
, i ∈ F ,

(2.4)

where the multipliers λi (associated with active inequalities gi 6 0) and `i (associated
with active bounds xi − bi 6 0) are determined by

∑
j∈A
〈∇gi,∇gj〉λj +

∑
k∈B
〈∇gi, ek〉`k = η−1gi − 〈∇gi,∇f〉, i ∈ A,

∑
j∈A
〈ei,∇gj〉λj +

∑
k∈B
〈ei, ek〉`k = −〈ei,∇f〉, i ∈ B.

(2.5)

From the second lot of equations it follows imediately that `i = −f,i −
∑

j∈A g
j
,iλ

j and,

consequently, xi = bi for all i ∈ B. Furthermore, since

∑
k∈B
〈∇gi, ek〉`k =

∑
k∈B

gi,k`
k =

∑
k∈B

gi,k

−f,k −∑
j∈A

gj,kλ
j


= −

∑
k∈B

gi,kf,k −
∑
j∈A

(∑
k∈B

gi,kg
j
,k

)
λj = −〈∇gi,∇f〉B −

∑
j∈A
〈∇gi,∇gj〉Bλ

j ,

the first lot of equations can be rewritten as∑
j∈A

(
〈∇gi,∇gj〉 − 〈∇gi,∇gj〉B

)
λj = η−1gi − 〈∇gi,∇f〉+ 〈∇gi,∇f〉B , i ∈ A,

that is, ∑
j∈A
〈∇gi,∇gj〉Fλ

j = η−1gi − 〈∇gi,∇f〉F , i ∈ A.

It is precisely the prior linear system of equations that determines the multipliers λi

in Algorithm 2.3.2, which iterates as

xi = min{x̂i, bi}, 1 6 i 6 n, x̂i =

b
i − η

(
f,i +

∑
j∈A g

j
,iλ

j
)
, i ∈ B,

xi0 − η
(
f,i +

∑
j∈A g

j
,iλ

j
)
, i ∈ F .

(2.6)

Because the λi are exactly the same ones yielded by (2.5), this means that all components
xi with i ∈ F are equal in both (2.4) and (2.6) if x̂i 6 bi for every i ∈ F . As for the
other components: having the inequalities xi − bi 6 0 with i ∈ B been considered active
in Algorithm 2.2.1, then `i = −f,i −

∑
j∈A g

j
,iλ

j > 0; hence, x̂i > bi for all i ∈ B and the

projection will ensure that xi = bi holds for each i ∈ B, just like in (2.4).

2.3.4 Remark. The bound constraints are automatically managed by Algorithm 2.3.2
and no additional criteria is required: activation takes place during the projection phase
in Step 9; deactivation occurs naturally in Step 8 once any of the increment’s compo-
nents corresponding to a blocked index has the appropriate sign (recall that, for i ∈ B,
−f,i −

∑
j∈A g

j
,iλ

j is precisely the multiplier `i associated with the bound xi 6 bi in Algo-
rithm 2.2.1). Note that when A = ∅ and B 6= ∅, Algorithm 2.3.2 will act like a classical
gradient method with projection [7, Sec. 8.6] (and like steepest descent if A = B = ∅). �
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To sum up, given η > 0 and x0 ∈
∏n
i=1

]
ai, bi

[
, the iteration of the modified algorithm

takes the following form:

xik+1 = max
{
ai,min

{
x̂ik+1, b

i
}}

, 1 6 i 6 n, x̂k+1 = xk − η [∇f(xk) +∇g(xk)λk] ,

the multipliers λk being determined through

JF gk(xk)∇F gk(xk)λk = η−1gk(xk)− JF gk(xk)∇F f(xk),

where gk is the vector function with components gi, i ∈ Ak, and the subscript F means
that the derivatives are taken with respect to the current free variables.

It is also noted that, by inserting the solution λk of the prior linear system in the step
δk = −∇f(xk)−∇g(xk)λk and upon defining{

τ̂k = −∇f(xk) +∇gk(xk) [JF gk(xk)∇F gk(xk)]
−1 JF gk(xk)∇F f(xk),

ν̂k = −∇gk(xk) [JF gk(xk)∇F gk(xk)]
−1 gk(xk),

(2.7)

the increment ∆k = ηδk can be written equivalently ∆k = ητ̂k + ν̂k.

2.4 Extension of the spectral gradient approach

The generalization of Algorithm 1.4.3, like that of Algorithm 1.3.2, is a very straightfor-
ward one. After prescribing the active set Ak, the iteration is obtained from (1.16)-(1.17)
replacing g by gk, the vector function whose components are the gi with i ∈ Ak:

xk+1 = xk + ηkτk + νk, τk = −Pk∇f(xk), νk = −Kkgk(xk), (2.8)

where

Kk = ∇gk(xk) [Jgk(xk)∇gk(xk)]−1 , Pk = I −KkJgk(xk), (2.9)

and ηk = 〈sk−1, sk−1〉〈sk−1, yk−1〉−1 is an appropriate spectral step length. By introducing
the “lagrangian” Lk(x, λ) = f(x) + 〈gk(x), λ〉 = f(x) +

∑
i∈Ak

λigi(x), choices (1.24) and
(1.25) are accordingly modified to

sk−1 =
δ

‖τk‖
τk, yk−1 = ∇xLk(xk + sk−1, λk)−∇f(xk), (2.10)

and

sk−1 = Pk(xk − xk−1), yk−1 = ∇f(xk)−∇xLk(xk−1, λk), (2.11)

where, similarly to (1.13), λk is computed through

Jgk(xk)∇gk(xk)λk = ξkgk(xk)− Jgk(xk)∇f(xk). (ξk > 0) (2.12)

An option resembling (1.23), which would now include information coming from a possibly
outdated set of constraints, seems blatantly inadequate and is altogether discarded.
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2.4.1 Remark. Common sense suggests (2.10) when Ak 6= Ak−1 and (2.11) if Ak = Ak−1.
Still, in the former case, since an additional linearization is required, it may be tempting to
go with (2.11) just the same, even though it is now a somewhat artificial choice. Observe,
however, that an indiscriminate use of (2.11) increases the storage requirements of the
algorithm: all the gradients ∇g1(xk−1), . . . ,∇gm(xk−1) must be available, and not just
∇gi(xk−1) with i ∈ Ak−1, since the active constraints at xk are not known before hand.
Yet, for large scale problems, this may be preferable to the computational effort in (2.10)
of evaluating ∇gi(xk−1 + sk−1) for all i ∈ Ak. �

Bound constraints can be handled implicitly by taking the directions τ̂k and ν̂k defined
in (2.7) and performing the iteration

xik+1 = max
{
ai,min

{
x̂ik+1, b

i
}}

, 1 6 i 6 n, x̂k+1 = xk + ηkτ̂k + ν̂k,

with a spectral step length ηk “based solely on free variables”. More precisely: the com-
ponents of sk−1 and yk−1 corresponding to blocked variables are null and those associated
with free variables, depending on the adopted strategy, are given by

sFk−1 =
δ

‖τ̂Fk ‖
τ̂Fk , yFk−1 = ∇FLk(xk + sk−1, λk)−∇F f(xk),

or by
sFk−1 = Pk(x

F
k − xFk−1), yFk−1 = ∇F f(xk)−∇FLk(xk−1, λk),

where Pk = I −∇F gk(xk) [JF gk(xk)∇F gk(xk)]
−1 JF gk(xk) and the superscript F signalizes

the “subvector” whose components correspond to free variables; the multipliers vector λk
is the solution of the linear system

JF gk(xk)∇F gk(xk)λk = ξkgk(xk)− JF gk(xk)∇F f(xk), (ξk > 0)

in which case τ̂k = −∇f(xk) − ∇gk(xk)λk − ξkν̂k. It is obvious that relations (2.8) to
(2.12) are recovered when all the variables are free.

In the next scheme it is assumed that Choleski factorizations are affordable (if not,
the linear systems would have to be solved via some iterative method, the best candidate
being the method of conjugate gradients). To keep the notation concise, g will denote the
vector function (gi)i∈A for the most recent update A of the active set.

2.4.2 Algorithm.
INPUT: initial guess x0 ∈

∏n
i=1

]
ai, bi

[
, initial step size η0 > 0, tolerances 0 < ε < γ,

step length bounds 0 < ηmin < ηmax, maximum number of iterations N .
OUTPUT: approximate solution x, or message of failure.
Step 1 Set k = 1, F = {1, 2, . . . , n} and A = ∅ (no active constraints).
Step 2 Obtain x1 by performing one iteration of Algorithm 2.3.2.
Step 3 Set k = 2 and A0 = A.
Step 4 While k 6 N do Steps 5–14.

Step 5 Set I = {1, 2, . . . ,m} \ A.
Step 6 For i ∈ I do

If gi(x1) > 0 then set A = A ∪ {i}; (Constraint gi 6 0 is set active.)
Step 7 If A = ∅ then
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set τ = −∇f(x1) and ν = 0;
set s = xF1 − xF0 and y = ∇F f(x1)−∇F f(x0).

Step 8 If A 6= ∅ then do Steps 8.1–8.9.
Step 8.1 Compute the Choleski factorization LLT of JF g(x1)∇F g(x1).
Step 8.2 Solve LLTλ = ξg(x1)− JF g(x1)∇F f(x1), for some ξ > 0.
Step 8.3 Set i = arg minj∈A λ

j .
Step 8.4 If λi < 0 then set A = A \ {i}; (Constraint gi 6 0 is set inactive.)

GOTO Step 8.1.
Step 8.5 Solve LLT v = g(x1).
Step 8.6 Set ν = −∇g(x1)v and τ = −∇f(x1)−∇g(x1)λ− ξν.
Step 8.7 If A = A0 then

solve LLTw = JF g(x1)(xF1 − xF0 );
set s = (xF1 − xF0 )−∇F g(x1)w;
set y = ∇F f(x1)−∇F f(x0)−∇F g(x0)λ.

Step 8.9 If A 6= A0 then
set s = δ‖τF‖−1τF , for some 0 < δ � 1;
set x2 = x1 and xF2 = xF1 + s;
set y = ∇F f(x2) +∇F g(x2)λ−∇F f(x1).

Step 9 Set η = 〈s, s〉/〈s, y〉.
Step 10 If η 6∈ [ηmin, ηmax] then

η =


1, ‖τ‖ > 1,

‖τ‖−1, γ 6 ‖τ‖ 6 1,

γ−1, ‖τ‖ < γ.

Step 11 Set x = x1 + ητ + ν.
Step 12 For i = 1, . . . , n do

If xi < ai then set xi = ai and F = F \ {i};
If xi > bi then set xi = bi and F = F \ {i}.

Step 13 If ‖x− x0‖ < ε then OUTPUT(x);
STOP.

Step 14 Set x0 = x1, x1 = x, A0 = A and k = k + 1.
Step 15 OUTPUT(’The method failed after N iterations.’);

STOP.

Note that when A = ∅, if F = {1, 2, . . . , n} the algorithm acts like a classical Barzilai-
Borwein method [8, Sec. 2], and if F ( {1, 2, . . . , n} it behaves somewhat like the spectral
projected gradient method (minus the line search) of Birgin et al. [24, Sec. 2].

2.4.3 Remark. It is again reminded that Steps 8.1 to 8.4 can be replaced by some other
procedure to determine the active constraints (see Remark 2.2.3).

The numerous observations about the spectral methods defined in Section 1.4 remain
equally pertinent in the present framework. For instance, the statements in Remark 1.4.2
about iterative solvers still apply, keeping in mind that warm-start strategies have now to
be exercised with care. Ditto for the contents of Remarks 1.4.4 and 1.4.5. �
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2.5 Applications to worst-case optimization

In engineering design, among other fields of application, it is often convenient (or even
mandatory) to express the problem in a way that, faced with several plausible scenarios,
the effects of a worst-case scenario event are minimized [38,39] (think of a high tower sub-
ject to the action of the wind, whose intensity and direction can obviously assume multiple
configurations). Such features can frequently be accomodated by a formulation like

min
x∈Rn

F (x), F (x) = max{f1(x), f2(x), . . . , fm(x)}, (2.13)

termed finite (or discrete) minimax due to the finite number of variables and of objectives,
or more generally by

min
x∈Rn

F (x), F (x) = max
y∈Y

f(x, y), Y ⊂ Rp compact, (2.14)

termed semi-infinite (or continuous) minimax because of the finite number of variables
but infinite number of objectives fy(x) = f(x, y), y ∈ Y .

These are examples of problems implicating functions which are not everywhere dif-
ferentiable. In this case, instead of gradients, subgradients are considered to “emulate”
usual methodology from the field of smooth optimization (worsening of technical issues
notwithstanding). Currently, bundle methods [40] are aknowledged as the most reliable
and effective globally convergent algorithms for nonsmooth optimization. They only as-
sume some mild regularity property on the functions involved, typically (local) lipschitz
continuity. However, minimax formulations are prone to alternative points of view.

Problems of the type (2.13) and (2.14) will be adressed in the sequel, where it is sup-
posed that all the fi : Rn → R and f : Rn×Rp → R are at least continuously differentiable
functions (despite this, of course, the objective function F is usually nonsmooth). Again,
no constraints are considered purely for simplicity, as their handling in either case will
soon became clear.

Since the multiple functions involved are smooth, it is tempting to try and bypass the
nonsmoothness of F in some way. This is the goal presiding the present section.

Finite minimax problems

It is frequent in the literature, with the addition of an artificial variable z ∈ R, to transform
problem (2.13) into an inequality constrained one,

min
(x,z)∈C

z, C = {(x, z) ∈ Rn+1 : fi(x)− z 6 0, 1 6 i 6 m}, (2.15)

from which the following optimality conditions can be obtained:
∑

i∈O∗ λ
i
∗∇fi(x∗) = 0,

fi(x∗) = F (x∗), i ∈ O∗,
fi(x∗) < F (x∗), i 6∈ O∗,


λi∗ > 0, i ∈ O∗,
λi∗ = 0, i 6∈ O∗,∑
i∈O∗ λ

i
∗ = 1,

where O∗ is the set of indices of active objective functions at x∗.
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The equivalence between (2.13) and (2.15) has often been exploited to avert non-
smoothness issues [41–48]. This can also be achieved by producing a smooth approximation
of F . Smoothing techniques have also enjoyed special attention in the literature [49–57].
Both strategies have in common the goal of approaching (2.13) in such a way that usual
methodology from smooth optimization can be applied. The plan introduced in the sequel
trails the same train of thought, but in a more direct way.

Departing from x0 ∈ Rn, suppose it is f2 the maximal function between all the fi; then
one starts minimizing f2, keeping an eye on the inequalities fi 6 f2 for i 6= 2, and continues
doing so while f2 remains maximal. This can be done, for instance, with Algorithm 2.2.1,
A = ∅ for the time being. If at some iterate xk a different function becomes maximal, say
f5 (meaning the inequality f5 6 f2 was violated), then one proceeds with the minimization
of f5 but, and here is the key point, not necessarily dropping f2. More exactly, f5 takes
the place of f2 as the objective function and the previous inequalities are replaced by new
ones, fi 6 f5 for i 6= 5, of which f2 6 f5 is considered active; on other words, unless this
latter inequality gets deactivated in the meanwhile, one is now in fact minimizing f2 and
f5 simultaneously. Recall that, once activated, an inequality becomes inactive only when
the respective multiplier is negative (and not merely when it ceases to be violated, thus
preventing the procedure of becoming an utter chaotic mess). The process continues in
the same fashion thereafter until (hopefully) convergence is observed.

2.5.1 Algorithm.
INPUT: initial guess x0, step size η > 0, tolerance ε > 0,

maximum number of iterations N .
OUTPUT: approximate solution x or message of failure.
Step 1 Set k = 1 and O = ∅ (no active functions).
Step 2 While k 6 N do Steps 3–11.

Step 3 Set l = arg max16i6m fi(x0).
Step 4 Set O = O ∪ {l} (function fl is set active) and A = O \ {l}.
Step 5 For i ∈ A do

gi(x0) = fi(x0)− fl(x0) and ∇gi(x0) = ∇fi(x0)−∇fl(x0).
Step 6 Solve

∑
j∈A〈∇gi(x0),∇gj(x0)〉λj = η−1gi(x0)− 〈∇gi(x0),∇fl(x0)〉, i ∈ A.

Step 7 Set i = arg minj∈A λ
j .

Step 8 If λi < 0 then set A = A \ {i}; (Function fi is set inactive.)
GOTO Step 6.

Step 9 Set x = x0 − η
[
∇fl(x0) +

∑
i∈A λ

i∇gi(x0)
]
.

Step 10 If ‖x− x0‖ < ε then OUTPUT(x);
STOP.

Step 11 Set O = A ∪ {l}, x0 = x and k = k + 1.
Step 12 OUTPUT(’The method failed after N iterations.’);

STOP.

The aforementioned strategy is a sort of “sequential nonlinear programming” approach
to minimax problems. This can be better visualized if instead of constantly changing the
objective function and the constraints, one keeps them fixed as long as possible. To be
more precise, suppose that f1(x0) = F (x0); then, one starts by considering the problem

min
x∈C

f1(x), C = {x ∈ Rn : g(x) 6 0} , (2.16)
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where g : Rn → Rm−1 is defined by gi(x) = fi(x)−f1(x) for all i 6= 1. Next, Algorithm 2.3.2
or 2.4.2 is applied to (2.16), the only difference lying on the activation criterion: gi 6 0
is activated when the function fi becomes maximal. It is only when the inequality gj 6 0
becomes inactive, j being the index of the current maximal function, that a change occurs.
For instance, assume that at some stage Ak−1 = {3, 5, 6} and Ak = {5, 6} (which means
that g3 6 0 has just been deactivated), and suppose one has precisely f3(xk) = F (xk);
then a new problem is considered:

min
x∈C

f3(x), C = {x ∈ Rn : g(x) 6 0} , (2.17)

with g : Rn → Rm−1 defined by gi(x) = fi(x) − f3(x) for all i 6= 3, of which g5 6 0 and
g6 6 0 are currently active (f1 has been “wiped off the picture”). The algorithm is now
applied to (2.17) and so on and so forth.

2.5.2 Remark. The course of action proposed is obviously extendable to other active-
set methods, since the generated “sequence of problems” is open to other techniques in
nonlinear optimization (e.g. sequential quadratic programming).

Notice also that other problems can be adressed, as several nonsmooth functions can be
reformulated as max-functions, a trivial example being F (x) = |f(x)| = max{−f(x), f(x)}.
However, this may prove to be unacceptably expensive at times because the number of
objective functions can grow exponentially, for instance if F (x) =

∑
16i6m |fi(x)|. �

Semi-infinite minimax problems

Besides the already mentioned bundle methods, several ways of adressing continuous min-
imax problems can be found across the literature. See, for instance, the book of Rustem
and Howe [38, Chaps. 2–4]. A particularly attractive proposal comes in the form of dis-
cretization methods [58, Chap. 3]: an approximation of (2.14) is obtained replacing Y
by a discrete subset; the resulting finite minimax problem is then solved via a suitable
algorithm. This process is iterated using increasingly finer discretizations of Y when es-
tablishing convergence theory for such methods [58, Secs. 3.4–3.6] [59, Sec. 5], a procedure
which is in general forbidding from the numerical point of view. Therefore, in practice,
approximate solutions to (2.14) are computed by solving a single discretized problem. The
main drawback, adressed more substantially than ever before in a recent paper by Royset
and Pee [60], is well summarized in the words of the authors:

“The apparent simplicity of discretization algorithms hides a fundamental trade-
off between the level of discretization of Y and the computational work required
to approximately solve the resulting finite minimax problem. One would typi-
cally require a fine discretization of Y to guarantee that the finite minimax
problem approximates (2.14), in some sense, with high accuracy. However, in
that case, the finite minimax problem becomes large scale (in the number of
functions to maximize over) and the computational work to solve it may be
high. A coarser discretization saves in the solution time of the correspondingly
smaller finite minimax problem at the expense of a poorer approximation of
(2.14). It is often difficult, in practice, to construct discretizations of Y that
balance this trade-off effectively.”
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In fact, if the dimension p is sufficiently large, there may be no way at all to acceptably
discretize Y . Discretization methods are thus applied mainly when p is small: Y is a
time interval, a range of temperatures, et cetera. The approach proposed below, although
relying likewise on a subset YN ⊂ Y of finite cardinality N ∈ N, is able to deal with larger
values of p. The “mesh” YN is not used to replace (2.14) by a finite minimax formulation;
its sole purpose is to provide starting points for the maximization, over Y , of the map
y 7→ f(x, y).4 The process goes as follows.

Take some inital guess x0 ∈ Rn and find y0 = arg maxy∈YN f(x0, y); it is likely that
in the surroundings of y0 a true (hopefully global) maximizer of y 7→ f(x0, y) exists; then
an algorithm is employed to maximize this function, departing from y0, until a stationary
point y1 = y1(x0) ∈ Y is computed. One has just found its first objective function:
f1(x) = f(x, y1). Next, departing from x0, perform one (e.g. steepest descent) step to
minimize f1, in this way obtaining the next iterate x1. Note that y1 needs updating:
starting from y1(x0), maximize y 7→ f(x1, y) to get the new y1 = y1(x1) ∈ Y .

Now run through all y ∈ YN to find y0 = arg maxy∈YN f(x1, y); if f(x1, y0) > f1(x1), a
new candidate has been found and as before, starting from y0, one maximizes y 7→ f(x1, y)
to obtain a stationary point y2 = y2(x1) ∈ Y ; here is the second objective function:
f2(x) = f(x, y2). Once multiple objectives arise, the minimization steps are performed via
some algorithm for discrete minimax problems (e.g. the one described earlier).

In general, at an iterate xk one will have objectives f1, f2, . . . , fm indexed, respectively,
by a supposed maximizer y1(xk−1), y2(xk−1), . . . , ym(xk−1) of y 7→ f(xk−1, y). The first
stage consists of determining the updates yi(xk) through maximization of y 7→ f(xk, y),
taking y0 = yi(xk−1) as the initial guess (be aware that these m tasks are independent
from one another and can therefore be parallelized). The second stage evaluates whether
new maximizers arise by checking if max{f(xk, y) : y ∈ YN} > max{fi(xk) : 1 6 i 6 m};
if so, a new objective function fm+1(x) = f(x, ym+1) is considered, ym+1 = ym+1(xk) ∈ Y .
In a third and last stage, a single iteration of a discrete minimax algorithm is applied to
the problem minx∈Rn max{f1(x), . . . , fm+1(x)}. It is during this phase that, eventually,
some of the yi(xk) cease to qualify as maximizers, meaning some objective functions are
deactivated – see Step 8 of Algorithm 2.5.1. When this happens, one judges to be a waste
of time keep tracking those past maximizers and truly deletes them from the lot, trusting
they will be caught again in the “mesh” if justified.

2.5.3 Algorithm.
INPUT: initial guess x0, step size η > 0, tolerance ε > 0,

“grid” YN = {p1, . . . , pN}, maximum number of iterations Nmax.
OUTPUT: approximate solution x or message of failure.
Step 1 Set k = 1 and O = ∅ (no maximizers).
Step 2 While k 6 Nmax do Steps 3–14.

Step 3 For i ∈ O do
yi = arg maxy∈Y f(x0, y); (Update the maximizers.)
fi(x0) = f(x0, yi) and ∇fi(x0) = ∇xf(x0, yi).

Step 4 Set fN = max16i6N f(x0, pi).
Step 5 If k = 1 then set fmax = −∞; else set fmax = maxi∈O fi(x0).

4This maximization procedure is somewhat related to the so-called direct search methods [61], though
here it is based on derivatives.
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Step 6 If fN > fmax then
set O = O ∪ {k};
set yk = arg maxy∈Y f(x0, y); (A new maximizer.)
set fk(x0) = f(x0, yk) and ∇fk(x0) = ∇xf(x0, yk).

Step 7 Set l = arg maxi∈O fi(x0) and A = O \ {l}.
Step 8 For i ∈ A do

gi(x0) = fi(x0)− fl(x0) and ∇gi(x0) = ∇fi(x0)−∇fl(x0).
Step 9 Solve

∑
j∈A〈∇gi(x0),∇gj(x0)〉λj = η−1gi(x0)− 〈∇gi(x0),∇fl(x0)〉, i ∈ A.

Step 10 Set i = arg minj∈A λ
j .

Step 11 If λi < 0 then set A = A \ {i}; (Maximizer yi is deleted.)
GOTO Step 9.

Step 12 Set x = x0 − η
[
∇fl(x0) +

∑
i∈A λ

i∇gi(x0)
]
.

Step 13 If ‖x− x0‖ < ε then OUTPUT(x);
STOP.

Step 14 Set O = A ∪ {l}, x0 = x and k = k + 1.
Step 15 OUTPUT(’The method failed after N iterations.’);

STOP.

2.5.4 Remark. The level of discretization remains an issue. The use of a coarse “mesh”
YN increases the possibility of missing a good starting point to find the global maximizer
of y 7→ f(xk, y) over Y , though one might argue that this side effect may be dimmed
by the maximization phase itself. In this respect, the algorithm has a better chance of
withstanding “unfortunate” choices of YN than the more common discretization methods.

On the other hand, too fine a discretization will burden the algorithm with a large
number of evaluations of y 7→ f(xk, y) at each iteration, although this is by far a less
serious handicap than the one afflicting usual discretization algorithms under similar cir-
cumstances (recall the previous quote). It can also easily give rise to the same maximizer
being caught more than once.

It is not hard to imagine the latter case, where at least two of the yi(xk) become
“equal”, occurring naturally as a result of the optimization process as well (a situation
depicted in Figure 2.1). A judgement on whether to supress some maximizers could be

Figure 2.1: Merging maximizers.

made, for example, by testing ‖yi(xk) − yj(xk)‖ against a prescribed tolerance based on
the “diameter” of YN . But there is another case worth considering: while undergoing
minimization, some maximizers may exhibit a tendency to “vanish” (as suggested in Fig-
ure 2.2). The handling of such situations should probably rely on a slope-based criterion.

These (and possibly other) aspects point towards a “filtering” of maximizers, or more
accurately: to the adoption of additional deactivation criteria beyond those already con-
tained in the finite minimax algorithm employed. �



42 2. Active-set methods for inequality constrained problems

Figure 2.2: A fading maximizer.

2.6 Numerical tests

The following examples, though standard in the literature, are admittedly small scale
and serve merely to corroborate the methodology developed in these first chapters. To
be given a chance of competing in difficult problems with existing specialized software,
the discussed algorithms will require a thoughtful implementation including (among other
aspects): parallel computing, the adoption of strategies to deal with ill-conditioning issues
and proper line search rules.

Smooth problems

For convenience, the variables in the following descriptions will be denoted with subscripts.
The initial guess is denoted by x0 and the objective’s optimal value (or more accurately,
the best known value) is denoted by f∗.

Example 1 [62, Prob. 56]

f(x) = −x1x2x3, x ∈ R7,
g1(x) = x1 − 4.2 sin2(x4) = 0,
g2(x) = x2 − 4.2 sin2(x5) = 0,
g3(x) = x3 − 4.2 sin2(x6) = 0,
g4(x) = x1 + 2x2 + 2x3 − 7.2 sin2(x7) = 0,
x0 = (0.4, 2.4, 2.3, 0.1, 1.5, 1.5, 0.4),
f∗ = −3.456.

Example 2 [62, Prob. 64]

f(x) = 5x1 + 50000/x1 + 20x2 + 72000/x2 + 10x3 + 144000/x3, x ∈ R3,
g1(x) = 4/x1 + 32/x2 + 120/x3 − 1 6 0,
xi > 10−5, i = 1, 2, 3,
x0 = (10, 8, 12),
f∗ = 6299.842428.

Example 3 [62, Prob. 71]

f(x) = x1x4(x1 + x2 + x3) + x3, x ∈ R4,
g1(x) = x1

2 + x2
2 + x3

2 + x4
2 − 40 = 0,

g2(x) = 25− x1x2x3x4 6 0,
1 6 xi 6 5, i = 1, 2, 3, 4,
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x0 = (2.4, 2.3, 2.1, 2.4),
f∗ = 17.0140173.

Example 4 [62, Prob. 77]

f(x) = (x1 − 1)2 + (x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6, x ∈ R5,
g1(x) = x1

2x4 + sin(x4 − x5)− 2
√

2 = 0,
g2(x) = x2 + x3

4x4
2 − 8−

√
2 = 0,

x0 = (2.2, 2.3, 2.1, 2.1, 2.2),
f∗ = 0.24150513.

Example 5 [62, Prob. 78]

f(x) = x1x2x3x4x5, x ∈ R5,
g1(x) = x1

2 + x2
2 + x3

2 + x4
2 + x5

2 − 10 = 0,
g2(x) = x2x3 − 5x4x5 = 0,
g3(x) = x1

3 + x2
3 + 1 = 0,

x0 = (−4, 3, 4,−3,−4),
f∗ = −2.91970041.

Example 6 [62, Prob. 81]

f(x) = exp(x1x2x3x4x5)− 0.5
(
x1

3 + x2
3 + 1

)2
, x ∈ R5,

g1(x) = x1
2 + x2

2 + x3
2 + x4

2 + x5
2 − 10 = 0,

g2(x) = x2x3 − 5x4x5 = 0,
g3(x) = x1

3 + x2
3 + 1 = 0,

−2.3 6 xi 6 2.3, i = 1, 2,
−3.2 6 xi 6 3.2, i = 3, 4, 5,
x0 = (−0.1, 2.2, 3.1,−1.5, 2),
f∗ = 0.0539498478.

Example 7 [62, Prob. 100]

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x3
4 + 3(x4 − 11)2 +

10x5
6 + 7x6

2 + x7
4 − 4x6x7 − 10x6 − 8x7, x ∈ R7,

g1(x) = 2x1
2 + 3x2

4 + x3 + 4x4
2 + 5x5 − 127 6 0,

g2(x) = 7x1 + 3x2 + 10x3
2 + x4 − x5 − 282 6 0,

g3(x) = 23x1 + x2
2 + 6x6

2 − 8x7 − 196 6 0,
g4(x) = 4x1

2 + x2
2 − 3x1x2 + 2x3

2 + 5x6 − 11x7 6 0,
x0 = (1, 2, 0, 4, 0, 1, 1),
f∗ = 680.6300573.

Example 8 [62, Prob. 113]

f(x) = x1
2 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 +
2(x6 − 1)2 + 5x7

2 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45, x ∈ R10,
g1(x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 6 0,
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g2(x) = 10x1 − 8x2 − 17x7 + 2x8 6 0,
g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 6 0,
g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x3

2 − 7x4 − 120 6 0,
g5(x) = 5x1

2 + 8x2 + (x3 − 6)2 − 2x4 − 40 6 0,
g6(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x5

2 − x6 − 30 6 0,
g7(x) = x1

2 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 6 0,
g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 6 0,
x0 = (12, 12,−2, 15,−9, 12,−8, 20,−3, 18),
f∗ = 24.3062091.

Numerical results

The previous examples were tested with both Algorithm 2.3.2 and 2.4.2, using a prescribed
tolerance ε = 10−5. In Algorithm 2.4.2 it was also set ηmin = 10−10 and ηmax = 1010; the
value of δ taken in Step 8.9 varies, but tipically δ ∈ {10−1, 10−2, 10−3}; the backup step
size η = ‖τ‖−1 was preferred in Step 10, as it generally yielded better results.

Ex./Alg. k |f(xk)− f∗| ‖∇FLk(xk)‖2 ‖gk(xk)‖2
1/2.3.2 134 6.95765× 10−9 0.000102522 2.99615× 10−12

1/2.4.2 46 1.25002× 10−11 5.15917× 10−7 1.94915× 10−11

2/2.3.2 116 7.84785× 10−8 3.71591× 10−7 2.34405× 10−16

2/2.4.2 23 7.77245× 10−8 7.62577× 10−7 3.30561× 10−13

3/2.3.2 64 6.75526× 10−9 9.90508× 10−5 1.28359× 10−10

3/2.4.2 20 1.08911× 10−8 1.72894× 10−6 9.80891× 10−11

4/2.3.2 77 1.38292× 10−9 6.22216× 10−5 2.56196× 10−11

4/2.4.2 29 1.22061× 10−9 6.20603× 10−7 2.24908× 10−10

5/2.3.2 36 4.07426× 10−7 9.78667× 10−5 7.89035× 10−11

5/2.4.2 8 4.12986× 10−7 3.11388× 10−8 6.13538× 10−9

6/2.3.2 64 2.58336× 10−10 9.69671× 10−6 1.1081× 10−10

6/2.4.2 19 3.00706× 10−11 3.52191× 10−9 8.37372× 10−12

7/2.3.2 73 7.47049× 10−8 0.00020038 1.22189× 10−10

7/2.4.2 28 7.15255× 10−8 3.7884× 10−5 2.43876× 10−9

8/2.3.2 49 3.0732× 10−8 6.97803× 10−5 4.17926× 10−12

8/2.4.2 18 2.76816× 10−8 2.15806× 10−5 7.28042× 10−9

Table 2.1: Results for Algorithms 2.3.2 and 2.4.2.

The notation Lk stands for the “lagrangian” x 7→ f(x) + 〈gk(x), λk〉, where gk is the
vector function whose components are the gi associated to equality constraints, plus the
ones associated with active inequality constraints at xk.

As in the unconstrained case, the spectral gradient version revealed a much better per-
formance. The expectation is that, once properly implemented, it will be able to emulate
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(in constrained problems) the behaviour of its counterpart for unconstrained optimiza-
tion: a “cheaper” method than most, but still able to equal (and sometimes outperform,
in terms of clock time) more renowned solvers. It remains to be seen.

2.6.1 Remark. A curious fact emerged during numerical trials: taking ξ = 0 or ξ 6= 0
in Step 8.2 can produce truly diverse scenarios. Recall that ξ = 0 corresponds to the
popular least-squares multipliers; ξ 6= 0, especially ξ = 1/η0 (η0 designates the step length
η at the previous iteration), resembles the choice in Step 5 of Algorithm 2.3.2 (note that
ξ = 1/η is not an option, since λ predates η). The latter choice proved superior among
the two in the sense that, in some examples, it was the only one for which convergence
was observed, and in cases where both choices work, the discrepancy in the number of
iterations is negligeable. Moreover, some tests with “remote” initial guesses show that,
often, a significantly lesser number of iterations is required with ξ = 1/η0 than with ξ = 0.

Of course, one cannot draw definitive conclusions based on so few examples, but this
may be symptomatic of a more general trend. The reason must lie on the additional term
featuring the scaled values of the active constraints, which appears to “marry” particularly
well with infeasible methods, such as the ones introduced, at least more than the usual
least-squares multipliers. This aspect probably deserves further research, the main goal
being that of identifying “optimal” choices of the parameter ξ. �

Nonsmooth problems

The next problems are solved according to the strategy described in Section 2.5, relying
on Algorithm 2.5.1 (implementation of a spectral gradient version is currently underway).
In the last two problems, the maximization over Y is performed with the spectral projected
gradient method of Birgin et al. [24, Alg. 2.2]. No criteria in the terms of Remark 2.5.4
were implemented. For convenience, the variables in the problems’ description will be
denoted with subscripts.

Example 9 [63, Prob. 2.5]

F (x) = max{f1(x), f2(x), f3(x), f4(x)}, x ∈ R4,
f1(x) = x1

2 + x2
2 + 2x3

2 + x4
2 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10(x1
2 + x2

2 + x3
2 + x4

2 + x1 − x2 + x3 − x4 − 8),
f3(x) = f1(x) + 10(x1

2 + 2x2
2 + x3

2 + 2x4
2 − x1 − x4 − 10),

f4(x) = f1(x) + 10(2x1
2 + 2x2

2 + x3
2 + 2x1 − x2 − x4 − 5),

x0 = (0, 0, 0, 0),
F∗ = −44.

Example 10 [63, Prob. 2.23]

F (x) = max{f1(x), f2(x), . . . , f10(x)}, x ∈ R11,
fi(x) =

∑10
j=0(i+ j)−1 exp

(
[xj+1 − sin(i− 1 + 2j)]2

)
, 1 6 i 6 10,

x0 = (1, 1, . . . , 1),
F∗ = 261.08258.
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Example 11 [63, Prob. 3.14]

F (x) = x1x2x3x4x5 + 10(|f1(x)|+ |f2(x)|+ |f3(x)|), x ∈ R5,
f1(x) = x1

2 + x2
2 + x3

2 + x4
2 + x5

2 − 10,
f2(x) = x2x3 − 5x4x5,
f3(x) = x1

3 + x2
3 + 1,

x0 = (−2, 1.5, 2,−1,−1),
F∗ = −2.9197004.

Example 12 [63, Prob. 3.17]

F (x) = max{f1(x), f2(x), f3(x)}, x ∈ R10,

f1(x) =
∑10

i=1(xi − 1)2 + 10−3
∑10

i=1

(
xi

2 − 0.25
)2

,

f2(x) =
∑30

i=2

[∑10
j=2 xj(j − 1)( i−1

29 )j−2 −
(∑10

j=1 xj(
i−1
29 )j−1

)2
− 1

]2

+x1
2+(x2−x1

2−1)2,

f3(x) =
∑10

i=2

[
100

(
xi − xi−1

2
)2

+ (1− xi)2
]
,

x0 = (−0.1,−0.1, . . . ,−0.1),
F∗ = 9.7857721.

Example 13 [64, Sec. 3 – Prob. 1]

F (x) = max{x1
2, x2

2, . . . , xn
2}, x ∈ Rn,

x0 = (1, 2, . . . , n/2,−n/2− 1,−n/2− 2, . . . ,−n),
F∗ = 0.

Example 14 [38, Sec. 5.4 – Prob. 12]

F (x) = max{f(x, y) : y ∈ [−2, 2]3}, x ∈ R4,
f(x, y) = y1

2+y2
2+y3

2+y1

(
x1

2 − x2 + x3 − x4 + 2
)
+y2

(
−x1 + 2x2

2 − x3
2 + 2x4 − 10

)
+

y3

(
2x1 − x2 + 2x3 − x4

2 − 5
)

+ 5
(
x1

2 + x2
2 + x3

2 + x4
2
)
,

x0 = (10, 1, 1, 10),
F∗ = 43.40816.

Example 15 [38, Sec. 5.4 – Prob. 14]

F (x) = max{f(x, y) : y ∈ [−2, 2]4}, x ∈ R4,
f(x, y) = y1

2 + y2
2 + y3

2 + y4
2 + y1

(
x1

2 − 2.2x2 + x3 − 10x4 + 10
)

+
y2

(
−2x1 + 2x2

2 − x3
2 + 3x4 − 10

)
+ y3

(
2x1 − x2 + 6x3 − x4

2 − 5
)

+
5y4

(
x1

2 + x2
2
)

+ 5
(
x3

2 + x4
2
)
,

x0 = (0, 0, 0, 0),
F∗ = 42.56435.

Numerical results

The tolerance used in Algorithm 2.5.1 was ε = 10−5. Example 13 is ran with n = 100. In
Examples 14 and 15, the cell Y was discretized by considering the two endpoints and the
middle point of the interval [−2, 2].
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In Table 2.2, Ok designates the set of indices of active functions at xk; Lk stands for
the “lagrangian” x 7→ fi(x) + 〈gk(x), λk〉, being gk the vector function with components
fj − fi (i, j ∈ Ok, i 6= j), where i is the index of the maximal function at xk. In Table 2.3
the last column lists the maximizers of y 7→ f(xk, y) found on the cell Y .

Ex. k |F (xk)− F∗| Ok ‖∇Lk(xk)‖2
9 9 1.32601× 10−10 1, 2, 4 8.14538× 10−6

10 276 7.26219× 10−6 1, 4 9.69559× 10−5

11 289 1.42476× 10−7 1, 3, 4, 5 0.000955112

12 1402 0.00020687 1, 2, 3 0.00536328

13 652 2.41032× 10−9 1, 2, . . . , 100 9.81901× 10−6

Table 2.2: Results for Algorithm 2.5.1.

Ex. k |F (xk)− F∗| yk

14 46 3.26652× 10−6 (2,−2,−2)

15 12 5.81677× 10−6 (2,−2,−2, 2); (−2,−2,−2, 2)

Table 2.3: Results for Algorithm 2.5.3.

In Examples 14 and 15 the results are in accordance with the ones produced by the
quasi-Newton algorithms tested in [38, Sec. 5.4], though in Example 15 the latter finish
with two more maximizers: (2,−2,−2,−2) and (−2,−2,−2,−2).

2.6.2 Note. Some examples exhibit a somewhat slow convergence speed. It is expected,
like in Examples 1–8, that the number of iterations will be greatly cut once the algorithm
with spectral choice of step length is employed. �

2.7 Final remarks

Encouraging results have been obtained in some preliminary tests for equality and/or
inequality constrained problems. A theoretical study of the algorithms’ performance (with
special emphasis on deactivation criteria) is object of future work.

“Smooth algorithms” for (discrete and continuous) minimax problems were obtained,
in a simple way, by facing the problem directly without resorting to artifices for circum-
venting the nonsmoothness of the objective function. The fact that the methods are based
on an active-set strategy also plays in their favour: only the gradients of active functions
are evaluated at each iteration, which is not a negligeable aspect in large scale applications.

Though several refinements are still required, particularly in the algorithm for con-
tinuous minimax problems, it is felt that the presented methodologies can produce some
competitive methods. These methodologies are also very flexibile, in the sense that they
can clearly integrate diverse courses of action at its different stages. The ones proposed
reflect only a personal preference.
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Chapter 3

Properties of cost functionals in
free material optimization

This chapter focuses on the study of a certain type of integral functional arising in some
fields of structural optimization, particularly the so-called free material design.

Section 3.1 introduces the fundamental notions and results to develop the analysis, and
in Section 3.2 the mathematical framework is set. Sections 3.3 and 3.4 are the chapter’s
core: they deal with lower semicontinuity and its relation to convexity. The last sec-
tion addresses two additional concepts, subadditivity and positive homogeneity, and their
significance in practical terms is investigated, as well as their mathematical implications.

On notations

Throughout the chapter, S ⊂ Rn,n (n > 2) denotes the set of symmetric matrices and
S+ ⊂ S the cone of (symmetric) positive semidefinite matrices. If A ∈ S, λ(A) denotes the
n-tuple of eigenvalues of A sorted nonincreasingly: λ1(A) > λ2(A) > · · · > λn(A) – this is
convenient because A 7→ λ(A) is then a well defined map from S into Rn.

Given A,B ∈ Rn,n one writes A 4 B, or B < A, to mean that B − A is positive
semidefinite. For positive real numbers α < β, one puts

Sα,β = {A ∈ S : αI 4 A 4 βI},

and being Ω ⊂ Rn a bounded domain, one further defines

Sα,β(Ω) = {A ∈ L∞(Ω; S) : A(x) ∈ Sα,β for a.e. x ∈ Ω},

i.e. the set of bounded measurable matrix functions A : Ω→ S which, almost everywhere,
take values in Sα,β; the symbol “

?
⇀” is used to denote weak ∗ convergence.

Finally, ε = (εk) will denote a strictly positive sequence converging to zero.

3.1 Preliminaries

Composite materials (materials made up of more than one substance) play a significant
role in many applied fields of science (engineering, mechanics, physics, etc.). The physical
parameters in such materials are discontinuous, as they oscillate between the different
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values characterizing each of its components. When these components are mixed at a
very small “length” scale ε, the parameters oscillate rapidly and the microscopic structure
becomes very complicated. Such an intricate mixture will surely possess very different
properties from the ones of each constitutive substance, and it is not a far stretch of the
imagination to think that it behaves in fact as a new material at the macroscopic level.1

The way to get a good approximation of this macroscopic behaviour, is by letting the
parameter ε tend to zero in the equations describing the physical phenomena in question.
This limit process is described by the theory of homogenization.

A good model for the intended asymptotic analysis is provided by the equation{
−div(A∇u) = f in Ω,

u = ū on ∂Ω,
(3.1)

where the matrix (or second order tensor) A can be interpreted as a conductivity tensor,
meaning: it models properties like the ability to carry heat or electricity of a given physical
material – reason why the terminology material tensors is common in such frameworks.
The function u is the temperature or the electric potential, which is prescribed to be a
given ū over the boundary of the (bounded) domain Ω ⊂ Rn, and f is a given source term.

Since the intent is to model oscillatory behaviour, the material A is supposed to be
heterogeneous, i.e. it varies pointwise (as opposed to a homogeneous one, which is con-
stant); hence, the natural assumption on the coefficients of A is that they belong to L∞(Ω).
Therefore, the functions u, ū and f are to be taken in appropriate Sobolev spaces and
(3.1) is to be understood in the weak sense. Existence and uniqueness results are standard
in the literature [65, Secs. 6.4–6.5]. For now, suffice it to say that if A ∈ Sα,β(Ω), then the
above problem is well-posed.

In the early 1970s, Murat and Tartar identified the appropriate type of convergence,
H-convergence (or convergence in the sense of homogenization), that formalizes the limit
procedure mentioned in the introductory discussion. The content for the rest of the section
(and much more) can be found with more detail in their work [66–68].

3.1.1 Definition. Let (Aε) be a sequence of matrix functions in Sα,β(Ω). One says that

(Aε) H-converges to some A0 ∈ Sα,β(Ω), denoted Aε
H
⇀ A0, when for all f ∈ H−1(Ω) and

ū ∈ H1/2(∂Ω), the sequence of functions uε ∈ H1(Ω) satisfying{
−div(Aε∇uε) = f in Ω,

uε = ū on ∂Ω,
(3.2)

converges, weakly in H1(Ω), to the function u0 ∈ H1(Ω) satisfying{
−div(A0∇u0) = f in Ω,

u0 = ū on ∂Ω,
(3.3)

(Dirichlet conditions are considered solely for simplicity, as H-convergence is independent
of the boundary conditions considered on ∂Ω.)

1If one looks at a chessboard from sufficiently far a distance, one ceases to discern the black and white
squares only to see a grey blob instead.
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The matrix A0 appearing in the “limit problem” (3.3) is a homogenized (or effective)
tensor, a material whose behaviour is equivalent, from a macroscopic perspective, to the
highly heterogeneous one of Aε when ε ≈ 0. This makes all the difference regarding a
numerical solution of (3.2); a finite element approximation of uε has unaffordable compu-
tational costs for small ε, while (3.3) is often easy to solve numerically.

3.1.2 Remark. The set Sα,β(Ω) is a compact metrizable space when endowed with the
H-topology, that is, the topology associated with the previous notion of convergence. �

3.1.3 Remark. Sα,β(Ω) is also compact and metrizable with respect to the weak ∗ topo-

logy of L∞(Ω;S). However, if Aε
?
⇀ A+, the sequence (uε) of solutions verifying (3.2)

converges, weakly in H1(Ω), to some u0 which is not necessarily the solution of the problem
corresponding to A+. �

In general there are no explicit formulae for the H-limit of a given sequence of tensors.
Two exceptions to this rule are: the case of materials with a periodic structure, and the
case of layered (or laminated) materials which is presented next (it will play a crucial role
in the results of Section 3.3).

3.1.4 Theorem. If the coefficients Aijε of a sequence (Aε) in Sα,β(Ω) depend only on one

coordinate, say x1, then Aε
H
⇀ A0 is equivalent to:

(a)
1

A11
ε

?
⇀

1

A11
0

;

(b) for i 6= 1,
Ai1ε
A11
ε

?
⇀

Ai10
A11

0

;

(c) for i 6= 1 and j 6= 1,

Aijε −
Ai1ε A

1j
ε

A11
ε

?
⇀ Aij0 −

Ai10 A
1j
0

A11
0

·

The following result provides a more accurate “bound” on the H-limit of sequences
belonging to the set Sα,β(Ω).

3.1.5 Theorem. Consider a sequence (Aε) in Sα,β(Ω) such that Aε
H
⇀ A0, Aε

?
⇀ A+ and

A−1
ε

?
⇀ A−1

− . Then A−(x) 4 A0(x) 4 A+(x) for a.e. x ∈ Ω.

Actually, the issue of “bounds” is one of the most important (and toughest) in ho-
mogenization theory. The goal is to characterize the matrices A0 that can be obtained as
H-limits of sequences (Aε) belonging to a proper subset of Sα,β(Ω). One of the few cases
where an optimal result can be established is now introduced.

For each θ ∈ [0, 1] define the numbers
µ+(θ) = (1− θ)α+ θβ,

µ−(θ) =

(
1− θ
α

+
θ

β

)−1

,
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and the set Kθ ⊂ Rn by

µ ∈ Kθ ⇐⇒



µ−(θ) 6 µi 6 µ+(θ), i = 1, . . . , n,
n∑
i=1

1

µi − α
6

1

µ−(θ)− α
+

n− 1

µ+(θ)− α
,

n∑
i=1

1

β − µi
6

1

β − µ−(θ)
+

n− 1

β − µ+(θ)
;

(3.4)

define also the set Gθ ⊂ Sα,β of matrices A whose n-tuple of eigenvalues belongs to Kθ:

Gθ = {A ∈ S : λ(A) ∈ Kθ}. (3.5)

The next theorem identifies all the attainable materials, through homogenization, by
mixtures of two materials (αI and βI).

3.1.6 Theorem. Assume that Aε
H
⇀ A0 and that Aε(x) = aε(x)I, where aε takes only

values α and β. Assume also that, for some θ ∈ L∞(Ω; [0, 1]),

aε
?
⇀ (1− θ)α+ θβ. (3.6)

Then holds:

A0(x) ∈ Gθ(x) for a.e. x ∈ Ω. (3.7)

Conversely, if A0 ∈ Sα,β(Ω) and θ ∈ L∞(Ω; [0, 1]) satisfy (3.7), a sequence (aε) of

measurable functions exists, evaluating only to α or β, such that (3.6) holds and aεI
H
⇀ A0.

3.1.7 Note. The set of homogenized tensors Gθ is also commonly known as G-closure;
one usually writes aε(x) = (1 − χε)(αI) + χε(βI), where χε designates the characteristic
function of the subset ωε ⊂ Ω filled with material βI, whose pointwise proportion in the
effective material A0 is given by the function θ (of course, αI then fills Ω\ωε and is present
in A0 with pointwise proportion 1− θ). �

3.2 Setting of the problem

A basic problem in structural engineering is to design the strongest (or more accurately,
the stiffest) structure capable of withstanding a given set of external loads. By structure is
here meant an elastic body2. The framework is that of linear elasticity, different from the
one of the previous section: the algebraic entities that model material properties are no
longer matrices (second order tensors), but fourth order tensors instead (see Section 4.1).

For symplicity’s sake, the analysis is restricted to the conductivity setting (a fourth
order tensor is a much more complicated object, as are several underlying concepts). Yet,
one may sometimes find it easier to employ terminology from the field of elasticity, not
only because that is where the meaningful and interesting case for applications lie, but
also because it conveys a clearer physical meaning.

2Roughly, a deformable body undergoing reversible changes of shape in response to applied forces. For
instance, a metallic spring stretches when pulled, but reverts back to its original state when let loose.



3.2. Setting of the problem 53

Optimization of structures is usually performed by varying size and shape parameters
(e.g. the thickness of a plate, the boundary of a solid body, etc.). With the advent of
composites and other advanced manufactured materials, it was a natural step to consider
the material tensor itself as the main optimization parameter. This approach, which ulti-
mately searches for the best structure among all possible ones, became commonly known
as free material design. The concept was introduced by Ringertz [69] and subsequently
developed with more detail in the paper by Bendsøe et al. [70], where it was suggested to
represent materials as positive semidefinite tensors.

Let M be a subset of S+. An example is the set Sα,β; another example is the set
G, defined in Section 3.4, consisting of all homogenized materials which can be obtained
by mixing the materials αI and βI. Now let Ω be a bounded domain in Rn. Since
the material tensor is supposed to vary pointwise over Ω, the functions involved in a
free material optimization problem are usually defined on the set M(Ω) of measurable
functions A : Ω→M . Available resources in real world applications are not unlimited; to
reflect such a modelling aspect, a constraint is considered on the material tensors in terms
of a cost function Φ :M(Ω)→ R, defined by

Φ(A) =

∫
Ω
φ(A(x)) dx, (3.8)

where φ : M → R is a spectral (or isotropic) function, that is:

φ(QTAQ) = φ(A) for all Q ∈ O and A ∈M, (3.9)

O ⊂ Rn,n being the set of all orthogonal matrices. Equivalently, φ should depend only on
the eigenvalues of the matrix A; this is mandatory in free material design, as it ensures
that a structure’s “price” (which is what, in a broad sense, a cost function stands for) is
independent of reference frame. Note that M must be a spectral set : given A ∈ M , then
{QTAQ : Q ∈ O} ⊂M .

The properties of the functional Φ are thus of great importance in the free material
approach and they depend, of course, on properties of the integrand φ. Besides (3.9),
natural requirements include a certain degree of smoothness of φ (continuity at least), as
well as the following monotonicity property:

for all A,B ∈M, B < A =⇒ φ(B) > φ(A); (3.10)

this requirement translates the practical fact that a stronger material must not be “cheaper”
than a weaker one.

A free material optimization problem, in its simplest form, deals with the minimiza-
tion of some objective functional Ψ : M(Ω) → R, which measures the performance of
the structure according to some criteria, within a range of materials not exceeding some
prescribed “price” (i.e. on a sublevel set of Φ). The lower semicontinuity of Φ is thus
crucial, and it is related to the convexity of its integrand φ.

3.2.1 Note. Ψ depends on A through the solution u = u(A) of some elliptic problem in
Ω, like (3.1) for instance, with A representing the material coefficients. No particular form
of that elliptic problem is chosen because, although the objective functional itself should
be lower semicontinuous in order for the optimization problem to be well-posed, the study
is focused on the properties of the cost functional Φ. �
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3.3 Lower semicontinuity

Some literature [71, Subsec. 5.2.1] address the issue of lower semicontinuity with respect to
the weak ∗ topology. This is usually sufficient to ensure well-posedness of the underlying
optimization problem, and also convenient because it is easy to characterize integrands φ
which turn the integral functional Φ lower semicontinuous [72, Th. 4]:

3.3.1 Theorem. The functional Φ defined by (3.8) is lower weak ∗ semicontinuous on
Sα,β(Ω) if and only if the integrand φ is a convex function on Sα,β.

But as stated in Section 3.1, the notion that best describes the limit behaviour of
oscillating material coefficients is H-convergence (see also Remark 3.1.3). Unfortunately,
it is not easy to prove lower semicontinuity with respect to the H-topology. Under the
monotonicity assumption, one can prove easily one implication:

3.3.2 Theorem. Suppose that φ is a continuous nondecreasing function on Sα,β, in the
sense of (3.10). If the functional Φ defined on Sα,β(Ω) by (3.8) is lower weak ∗ semicon-
tinuous, then Φ is also lower H-semicontinuous.

Proof. Consider a sequence (Aε) in Sα,β(Ω), H-converging to A ∈ Sα,β(Ω). Taking
into account that Sα,β(Ω) is compact with respect to the weak ∗ topology, consider a
subsequence ε′ of ε such that (Aε′) converges weakly ∗ to some A+ ∈ Sα,β(Ω), fulfilling
also the condition lim inf φ(Aε) = limφ(Aε′). By Theorem 3.1.5 follows that A 6 A+, so
φ(A) 6 φ(A+) 6 lim inf φ(Aε′) and the assertion follows.

Theorems 3.3.1 and 3.3.2 imply the following:

3.3.3 Corollary. If φ is a continuous convex function on Sα,β, nondecreasing in the sense
of (3.10), then the functional Φ defined on Sα,β(Ω) by (3.8) is lower H-semicontinuous.

In general, there is no simple characterization of the lower semicontinuity of Φ with
respect to the H-topology of Sα,β(Ω). However, in the particular case when φ depends
only on the trace of the coefficient matrix,

φ(A) = ϕ(tr(A)) for all A ∈ Sα,β, (3.11)

and assuming also the monotonicity property, one can prove that lower H-semicontinuity
of Φ on Sα,β(Ω) is equivalent to the convexity of ϕ.

3.3.4 Theorem. Let ϕ : [nα, nβ]→ R be a continuous nondecreasing function. Define

φ : Sα,β → R, φ(A) = ϕ(tr(A))

and

Φ : Sα,β(Ω)→ R, Φ(A) =

∫
Ω
φ(A(x)) dx =

∫
Ω
ϕ(tr(A(x))) dx.

Then, Φ is lower H-semicontinuous on Sα,β(Ω) if and only if ϕ is convex.
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Proof. for n = 2 (n > 2 is similar):
The sufficiency follows immediately from Corollary 3.3.3, since A 7→ tr(A) is linear and

nondecreasing in the sense of (3.10).
The necessity is proven by building a specific sequence of laminates. Consider γ, x and

y arbitrary numbers in [α, β]. Define

Aε = χε

[
γ 0
0 x

]
+ (1− χε)

[
γ 0
0 y

]
, (3.12)

where χε
?
⇀ θ in L∞(Ω), θ being a constant value in [0, 1]. According to Theorem 3.1.4,

this sequence of laminates H-converges to[
γ 0
0 θx+ (1− θ)y

]
,

and the lower semicontinuity condition reads

ϕ(γ + θx+ (1− θ)y) 6 θϕ(γ + x) + (1− θ)ϕ(γ + y).

Thus, ϕ is convex in the interval [γ + α, γ + β]. Since γ is arbitrary in [α, β], we obtain
the desired convexity of ϕ in [2α, 2β].

It is only under the hypothesis (3.11) that one has an explicit characterization of the
lower semicontinuity of Φ with respect to the H-topology of Sα,β(Ω).

Convexity of ϕ is also necessary when φ depends solely on the determinant of the
coefficient matrix: φ(A) = ϕ(det(A)). One takes precisely the laminates (3.12) and a
similar reasoning leads now to the convexity of ϕ on the interval [α2, β2]. However, it is easy
to prove that functions depending only on the determinant of A are not admissible costs:

3.3.5 Theorem. Let ϕ : [αn, βn]→ R be a differentiable convex function. Define

φ : Sα,β → R, φ(A) = ϕ(det(A))

and

Φ : Sα,β(Ω)→ R, Φ(A) =

∫
Ω
φ(A(x)) dx =

∫
Ω
ϕ(det(A(x))) dx.

If Φ is lower H-semicontinuous on Sα,β(Ω), then ϕ is constant.

Proof. for n = 2 (n > 2 is similar):
Consider four arbitrary points a, b, c, d ∈ [α, β]. Building the laminates

Aε = χε

[
a 0
0 b

]
+ (1− χε)

[
c 0
0 d

]
and applying the lower semicontinuity hypothesis, one obtains the inequality

ϕ

(
θb+ (1−θ)d
θ
a + 1−θ

c

)
6 θ ϕ(ab) + (1−θ)ϕ(cd)

with equality for θ = 0.
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Now, differentiating the above inequality in θ = 0:

c2ϕ′(cd)
[
(b− d)

1

c
− d

(1

a
− 1

c

)]
6 ϕ(ab)− ϕ(cd),

that is,
c

a
ϕ′(cd) (ab− cd) ≤ ϕ(ab)− ϕ(cd).

Take λ ∈ ]α, β[ and choose c = d = λ, a ∈ [λ
2

β , λ[∩ [α, β]; define bδ = λ2+δ
a , where δ > 0

is a small parameter. One checks easily that, for sufficiently small δ, bδ ∈ [α, β]. Taking
into account that abδ = λ2 + δ and cd = λ2, the last inequality is rewriten as

λ

a
ϕ′(λ2) 6

ϕ(λ2 + δ)− ϕ(λ2)

δ

to let δ ↘ 0, recalling that a < λ, in order to conclude ϕ′(λ2) 6 0.

Choosing now a ∈ ]λ, λ
2

α ], the same c = d = λ and bδ = λ2+δ
a , the inequality above

implies ϕ′(λ2) > 0.
It was proved that ϕ′(λ2) = 0 for all λ ∈ [α, β]; hence, ϕ is constant in [α2, β2].

3.3.6 Remark. Theorem 3.3.5 also shows something else: reminding that φ(A) = det(A)
is a polyconvex function, and thus quasiconvex and rank-one convex as well, all these
weaker types of convexity [73, Chap. 5] are excluded as sufficient conditions. In order for
Φ to be lower semicontinuous on Sα,β(Ω) with respect to H-convergence, the integrand
φ has to be either convex or something strictly between convex and polyconvex. In the
following section it will be shown that φ may indeed be not convex. �

3.3.7 Remark. Note that the proofs of Theorems 3.3.4 and 3.3.5 use sequences of lami-
nates. This means that the conditions therein described are necessary for lower semicon-
tinuity in a weaker convergence than the one of the H-topology: they are necessary for
the lower semicontinuity of Φ with respect to the convergence of laminates [74]. �

To close the section, some simple examples of lower semicontinuous cost functionals
(with respect to the H-topology) are presented. The monotonicity property (3.10) follows
easily from a well known result in matrix analysis [75, Cor. III.2.3]:

3.3.8 Theorem (Weyl’s monotonicity theorem). Let A,H be n × n matrices, with A
hermitian and H positive semidefinite. Then

λi(A+H) > λi(A) for all i ∈ {1, 2, . . . , n}.

The first example is one of the most common choices in free material optimization:
φ(A) = tr(A). Lower semicontinuity of the corresponding cost functional Φ is a direct
consequence of Theorem 3.3.4.

The other popular example in free material settings, together with the previous one,
is the Frobenius norm: φ(A) = ‖A‖F =

√
tr(ATA), which equals

√
tr(A2) since A is sym-

metric. It is spectral because the trace itself is a spectral function. Lower semicontinuity
of Φ is immediate from Corollary 3.3.3 since φ (being a norm) is a convex function.

The last example, φ(A) = max‖ξ‖=1〈Aξ, ξ〉, is the spectral radius (isotropy is thus
guaranteed), since only positive definite matrices are dealt with. Being the pointwise
supremum of the family {φξ}‖ξ‖=1, with φξ(A) = 〈Aξ, ξ〉, it is surely a convex function.
Lower semicontinuity of the resulting cost functional Φ is again due to Corollary 3.3.3.
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3.4 An example from homogenization theory

In the previous section, convexity of φ was shown to be a sufficient condition for the lower
H-semicontinuity of Φ, while polyconvexity was ruled out (and therefore quasiconvexity
and rank-one convexity as well); in fact, when φ depends solely on the trace of its argument,
convexity is also seen to be a necessary condition for lower semicontinuity with respect
to H-convergence (Theorem 3.3.4). In the present section, it will be shown that such an
assertion cannot be expected to hold for the case of a general integrand φ.

Consider the sets Kθ and Gθ introduced in (3.4) and (3.5), respectively. Kθ is a convex
and symmetric set : if µ ∈ Kθ, then µσ = (µσ(1), . . . , µσ(n)) ∈ Kθ for each permutation
σ of {1, . . . , n}. Hence, the inverse image Gθ = λ−1(Kθ) is a spectral set. The same
observation holds true for the sets

K =
⋃

06θ61

Kθ, G =
⋃

06θ61

Gθ = λ−1(K); (3.13)

furthermore, it is not difficult to prove that K is convex.

3.4.1 Note. As mentioned in Section 3.1, for a given θ ∈ [0, 1], Gθ is the set of material
tensors attainable through homogenization by mixtures of αI and βI, in proportions 1−θ
and θ, respectively; thus, G is the set of all such homogenized materials. �

One now defines φ : G→ R by

φ(A) = min{θ ∈ [0, 1] : A ∈ Gθ}, (3.14)

which gives rise to the “cheapest” mixture between αI and βI producing the material
A [76]. One obtains a cost functional Φ defined not on the entire Sα,β(Ω), but only on the
subset of those matrix functions taking values in G:

G(Ω) = {A ∈ L∞(Ω;S) : A(x) ∈ G for a.e. x ∈ Ω}.

It is a simple exercise to prove that such a set is compact for the H-topology.

3.4.2 Remark. Of course, φ(A) = min{θ ∈ [0, 1] : λ(A) ∈ Kθ}; an explicit expression,
in terms of eigenvalues, is found by taking the equality in the third relation of (3.4) and
solving for θ:

φ(A) = ϕ(λ(A)), ϕ(µ) = 1− nβ(β − α)−1 − 1

β
∑n

i=1(β − µi)−1 − 1
(3.15)

with ϕ(β, β, . . . , β) = 1, where ϕ : K → R is obviously a symmetric function, that is,
ϕ(µ) = ϕ(µσ) for every µ ∈ K and each permutation σ of {1, . . . , n}. �

In view of (3.15), the function φ is isotropic and continuous on G. Monotonicity is
once again easy to establish thanks to Theorem 3.3.8. Furthermore:

3.4.3 Theorem. Take Φ : G(Ω) → R defined by Φ(A) =
∫

Ω φ(A(x)) dx, with φ : G → R
given in (3.14). Then Φ is lower H-semicontinuous.
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Proof. Let Aε
H
⇀ A in G(Ω); the “local costs” θε(x) = φ(Aε(x)) can be supposed to con-

verge weakly ∗, say θε
?
⇀ θ0, because L∞(Ω; [0, 1]) is weak ∗ compact. From Theorem 3.1.6

it is known that each Aε is a H-limit of a sequence χεη(βI) + (1− χεη)(αI), with χεη
?
⇀ θε.

Since L∞(Ω; [0, 1])×G(Ω) is a metrizable space, a diagonal sequence (χεηε) can be extracted
such that

χεηε
?
⇀ θ0 and χεηε(βI) + (1− χεηε)(αI)

H
⇀ A;

again from Theorem 3.1.6, this means precisely that A(x) ∈ Gθ0(x) for a.e. x ∈ Ω. By
definition of θ(x) = φ(A(x)), it is then obvious that∫

Ω
θ(x) dx 6

∫
Ω
θ0(x) dx = lim inf

∫
Ω
θε(x) dx,

thus proving the assertion.

However, φ is not a convex function! To show this it suffices to use the following result
(see the paper of Daniilidis et al. [77, Sec. 1] and the references therein):

3.4.4 Theorem. Let K ⊂ Rn be convex and symmetric and suppose ϕ : K → R is a
symmetric function. Then the set λ−1(K) is convex and the spectral function φ = ϕ ◦ λ is
convex if and only if ϕ is convex.

To prove that φ defined by (3.14) is not convex, one just has to show that ϕ given in
(3.15) is itself a nonconvex function. To see this, observe that the set K defined in (3.13)
contains the line segment with endpoints (α, α, . . . , α) and (β, β, . . . , β); therefore, if ϕ
were convex on K, the function defined by

ψ(t) = ϕ(t, t, . . . , t) =

 1− nβ(β − α)−1 − 1

nβ(β − t)−1 − 1
, t 6= β,

1, t = β,

would be convex on [α, β]; but for every t ∈ ]α, β[

ψ′′(t) = −2nβ[nβ(β − α)−1 − 1]

[(n− 1)β + t]3
< 0,

being ψ in fact concave.

3.4.5 Remark. The actual property that completely characterizes the lower semicon-
tinuous functionals – with respect to the H-topology of Sα,β(Ω) – defined by (3.8), with
integrand satisfying (3.9) and (3.10), still remains an open question, but it is now cornered
strictly between convexity and polyconvexity. �

3.4.6 Remark. The functional Φ defined by (3.8) with integrand φ given by (3.14), or
equivalently by (3.15), is an interesting example of an integral functional that is lower
H-semicontinuous, but not lower weak ∗ semicontinuous (the integrand is not convex). �
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3.5 Subbaditivity and positive homogeneity

The most frequent cost functionals, used by engineers in free material optimization, feature
an integrand φ that is either the trace or the Frobenius norm. On top of verifying properties
(3.9) and (3.10), they also satisfy two additional ones: subadditivity,

for all A,B ∈M, A+B ∈M =⇒ φ(A+B) 6 φ(A) + φ(B), (3.16)

and positive homogeneity (of degree one),

for all t > 0 and A ∈M, tA ∈M =⇒ φ(tA) = t φ(A), (3.17)

where M is a subset of S+ (actually, the trace is a linear function). These properties can
be given an intuitive mechanical motivation, showing them to be acceptable requisites
for a cost functional. The first one basically states that the price of a material built by
superimposing two base materials should not be higher than their combined prices. The
second one implies, for instance, that upon halving the strength of some material, its price
is also halved.

We now retrieve the example of the previous section, but with α = 0, that is, mixtures
between material and void; hence, (3.14) is simply the smallest proportion of material
which produces A and (3.15) reduces to

φ(A) = ϕ(λ(A)), ϕ(µ) = 1− n− 1

β
∑n

i=1(β − µi)−1 − 1
· (3.18)

Note that, in this case, the set Kθ (respectively, Gθ) increases with θ and ultimately
K1 = [0, β]n = K (respectively, G1 = {A ∈ S+ : A 4 βI} = G).

3.5.1 Remark. The passage from α > 0 to α = 0 is mathematically delicate [78,79]. The
case α = 0 is nevertheless highly relevant, since in most industrial applications it is much
easier to build a perforated material than a mixture of different materials. Also, this case
(involving only one material and void) is conceptually simpler. �

It is expected of (3.18) to define a subadditive function; otherwise, it would imply that
for the manufacture of a given material A ∈ G, a proportion of material smaller than φ(A)
could be spent by producing first some A1, A2 ∈ G and then superimposing them!

3.5.2 Remark. This operation of superimposing two (previously manufactured) materials
is quite natural in two dimensions (n = 2): it suffices to glue two sheets of material one on
top of the other. It is less intuitive in three dimensions. However, if the volume fractions
are low, one can imagine two foam-like materials interpenetrating each other. �

The subadditivity property of the function φ, defined in (3.18), has been investigated
using both analytic and numerical tools. The conclusion was that it is fulfilled in two
dimensions, but not in the three (or higher) dimensional case.

3.5.3 Theorem. Let n = 2, K = [0, β]2, G = λ−1(K) = {A ∈ S+ : A 4 βI} and
ϕ : K → R, φ : G → R be defined by (3.18), with ϕ(µ1, β) = ϕ(β, µ2) = 1 for every
µ1, µ2 ∈ [0, β]. Then φ is subadditive.
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The proof makes use of the well known Weyl inequalities for eigenvalues [75, Th. III.2.1]
(recall that λ1 > λ2 > · · · > λn):

3.5.4 Theorem. Let A,B be n× n hermitian matrices. Then,

λj(A+B) 6 λi(A) + λj−i+1(B) for i 6 j,

λj(A+B) > λi(A) + λj−i+n(B) for i > j.

Proof of Theorem 3.5.3. The subadditivity condition (3.16) reads: for A,B ∈ G such
that A+B ∈ G,

1 +
n− 1∑n

i=1
β

β−λi(A+B) − 1
− n− 1∑n

i=1
β

β−λi(A) − 1
− n− 1∑n

i=1
β

β−λi(B) − 1
> 0; (3.19)

we begin by rewriting this condition in a more convenient way by introducing the quantities
r =

∑n
i=1 ri, s =

∑n
i=1 si and t =

∑n
i=1 ti, where for every i ∈ {1, 2, . . . , n}

ri =
β

β − λi(A)
− 1 =

λi(A)

β − λi(A)
, si =

λi(B)

β − λi(B)
, and ti =

λi(A+B)

β − λi(A+B)
·

In terms of the (nonnegative) scalars r, s and t, (3.19) writes

rst+ 2(n− 1)rs+ (n− 1)2(r + s− t)
(r + n− 1)(s+ n− 1)(t+ n− 1)

> 0; (3.20)

since the denominator on the left is obviously nonnegative, one must show that the nu-
merator is also nonnegative. That is the case in two dimensions.

Inserting n = 2 in (3.20), one has to prove that rst + 2rs + r + s − t > 0, for which
purpose it suffices to see that

2∑
i=1

[risiti + 2risi + ri + si − ti] > 0 (3.21)

(several terms from rst and rs are missing, but they are all nonnegative). Simple calcula-
tions show that

risiti + 2risi + ri + si − ti =
λi(A) + λi(B)− λi(A+B)

[β − λi(A)][β − λi(B)][β − λi(A+B)]

and therefore (3.21) is equivalent to

λ1(A) + λ1(B)− λ1(A+B)

[β − λ1(A)][β − λ1(B)][β − λ1(A+B)]
>

λ2(A+B)− λ2(A)− λ2(B)

[β − λ2(A)][β − λ2(B)][β − λ2(A+B)]
;

note that both numerators are positive in view of Theorem 3.5.4. The above relation holds,
thus proving the subadditivity of φ, because both members have the same numerator, since

2∑
i=1

[λi(A) + λi(B)− λi(A+B)] = tr(A) + tr(B)− tr(A+B) = 0,

and because the denominator on the left hand side is obviously smaller than the one on
the right hand side – recall that λ1(A) > λ2(A) for any A ∈ S.
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3.5.5 Remark. Quite unexpectedly, a similar statement to Theorem 3.5.3 fails to hold
in general, including for n = 3 (the other physically relevant case)! For instance, if A =
diag(0.4, 0.6, 0.3) and B = diag(0.1, 0.3, 0.1), one has φ(A + B) = ϕ(0.5, 0.9, 0.4) ≈ 0.84;
but φ(A) + φ(B) = ϕ(0.4, 0.6, 0.3) + ϕ(0.1, 0.3, 0.1) ≈ 0.81. This means that “cheaper”
ways exist of producing a mixture than directly through homogenization!

Moreover, numerical experiments suggest that this violation of subadditivity happens
even at low volume fractions (eigenvalues close to zero). As an example, take

λ(A) = (0.0002815, 0.00601019, 0.0305253), λ(B) = (0.00544244, 0.00136686, 0.112491);

then φ(A) +φ(B) ≈ 0.081169239, while φ(A+B) ≈ 0.08259915. See Remark 3.5.2 for the
relevance of low volume fractions. �

3.5.6 Remark. It is also puzzling that, regardless of dimension, φ is not positively homo-
geneous! This is obvious by looking at (3.18) – note that positive homogeneity in terms
of a matrix variable is equivalent to that in terms of eigenvalues; for instance, one would
expect 2A to consume twice the amount of material used for A, but it does not! �

The function φ defined in (3.18), despite appearing naturally in homogenization theory,
has some important drawbacks. One of them is the upper limit on the admissible materials,
A 4 βI, which prohibits concentrations of material. Remarks 3.5.5 and 3.5.6 show two
additional limitations of this functional. These considerations imply that a seemingly
natural cost functional may actually be not appropriate for practical applications.

There are some classic results relating subadditivity with concavity [80, Chap. 7], but
these apply only to real variable functions. A more important result can be found in the
book of Rockafellar [81, Th. 4.7] and promptly yields:

3.5.7 Theorem. Let φ : S+ → R be positively homogeneous. Then φ is subadditive if and
only if it is convex.

To better underline the mathematical implications of the previous result, recall that
lower H-semicontinuous cost functionals Φ whose integrand φ verifies only properties (3.9)
and (3.10) are yet to be completely identified (see Remark 3.4.5). However, when both
subadditivity and positive homogeneity are added to the picture, Theorem 3.5.7 basically
determines all such cost functionals (since according to Corollary 3.3.3, convexity of φ is
sufficient to ensure lower H-semicontinuity of Φ).

3.6 Final remarks

As mentioned earlier, the conductivity framework was preferred mostly for simplification
purposes. This entails no severe loss of generality in the chapter’s results if elasticity is
considered instead; it just would mean that cumbersome calculations had to be performed,
as the algebraic entities involved get more complex.

The one exception are the results of Sections 3.4 and 3.5; more precisely, every as-
sertion depending on the explicit knowledge of Gθ. The reason is that a counterpart of
Theorem 3.1.6 does not exist in elasticity theory: the characterization of the G-closure of
mixtures between two homogeneous isotropic materials (see Section 4.1) is a famous open
problem in homogenization theory.
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Chapter 4

A generalized notion of compliance

It is common in structural optimization to look for stiff structures (i.e. structures that do
not deform much): beams that do not bend much, bridges that can withstand heavy loads,
and so on [71]. This is usually achieved by minimizing a quantity commonly termed in
engineering by compliance (it is to be understood as the opposite of stiffness); the quantity
measuring compliance, however, depends on the conditions imposed on the structure and
situations arise where it is not clear how to define such a measure. It is the purpose of the
present chapter to address this issue.

Section 4.1 sets the framework. Section 4.2 recovers a couple of well known cases and
provides the suitable motivation to the subsequent introduction of the generalized compli-
ance. In Section 4.3 the computation of derivatives with respect to structural parameters
is performed, as they are needed in the numerical simulations which close the chapter.

On notations

Unlike the previous sections, a tensor’s components will be here denoted with subscripts.
The notation for inner products will also change: u · v for given vectors u, v ∈ Rn. This
is to be suggestive of the tensorial order involved (one dot for vectors, which are first
order tensors), as the Frobenius inner product for square matrices (second order tensors)
is written with two dots, A : B = tr(ATB) =

∑n
i,j=1AijBij .

Like in the first chapter, the comma notation for derivatives is kept. If A : Ω → Rn,n
is a matrix-valued function defined on an open set Ω ⊂ Rn, div(A) stands for the vector
field with components div(A)i =

∑n
j=1Aij,j .

4.1 Preliminaries

The equations modelling the physical processes of a deformable body undergoing loading
conditions, unlike the ones considered in the previous chapter, are of a vector nature;
for instance, an applied load is characterized not only by its magnitude, but also by the
direction (a vector) along which it is enforced. Changes of shape being involved, it is not
surprising that meaningful quantities describing physical aspects of such a body depend
on the vector field u of displacements (meaning, for each particle, the difference between
its final and initial positions).
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Owing to deformation, internal forces appear within the body. In general, these stresses
are not uniformly distributed and may differ pointwise; they are discribed by a second order
symmetric tensor, the Cauchy stress tensor σ. Also, a constitutive law must be considered,
that is, an equation describing how the stress relates with the strain (measure of relative
deformation, represented also by a second order symmetric tensor).

A frequent scenario in applications is that of linear elasticity.1 The hypothesis of
infinitesimal strains (“small” deformations) is one of the basic principles in this framework;
the strain tensor is taken to be the symmetric part ε(u) of the displacement’s jacobian
matrix: εij(u) = (ui,j + uj,i)/2, for all i, j ∈ {1, . . . , n}. The other basic principle is that
stresses and strains are linearly related, or in simpler terms: stress is proportional to strain;
the constitutive law is then written

σij =
n∑

k,l=1

Eijklεkl for all i, j, k, l ∈ {1, . . . , n}. (4.1)

The elastic coefficients Eijkl are the components of a fourth order tensor (in this case
playing the role of a linear application on the space of second order symmetric tensors)
and they represent material properties of the substance(s) from which the solid body is
made of; for physical reasons, they must satisfy some symmetry relations:

Eijkl = Eijlk = Ejikl = Eklij .

A tensor E ∈ Rn,n,n,n whose coefficients verify the above set of equalities will be termed
an elastic tensor, and one writes E ∈ E. An important example of elastic tensor is the
one representing a homogeneous isotropic material :

Eijkl = λδikδjl + µ(δijδkl + δilδkj) for all i, j, k, l ∈ {1, . . . , n}, (4.2)

where δij is the Kronecker delta (δij = 1 if i = j, zero otherwise) and the constants λ, µ
are the so-called Lamé coefficients. In this case, (4.1) reads

σ = λ tr(ε)I + 2µε. (4.3)

4.1.1 Note. A material is isotropic when, roughly, it has the same properties in all
directions (otherwise, it is called anisotropic). This is easy to express in conductivity: the
material tensor is just a scalar multiple of the identity, A(x) = a(x)I; in elasticity theory
one needs the more complicated relation (4.2), where eventually λ = λ(x) and µ = µ(x)
in the case of a heterogeneous body. �

Given an open and bounded design domain Ω ⊂ Rn (which may be subject to body
loads), whose boundary ∂Ω is partitioned into disjoint parts ΓN (where some surface
loads may be applied) and ΓD (where some displacements are prescribed), the general
linear elasticity problem can be mathematically formulated as:

−div[Eε(u)] = f in Ω,

u = ū on ΓD,

Eε(u)ν = g on ΓN ,

(4.4)

1Recall that elasticity is the field of mechanics that studies the properties of deformable bodies able to
return to their “rest” shape when external stimuli are withdrawn.
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with ν denoting the outward unit normal to ∂Ω. Like in the previous chapter, this problem
is to be understood in the weak sense; more exactly, given f ∈ L2(Ω;Rn), g ∈ L2(ΓN ;Rn)
and u ∈ H1/2(ΓD;Rn), by solution of (4.4) one means a solution of the variational problemfind u ∈ U such that∫

Ω
Eε(u) : ε(v) dx =

∫
Ω
f · v dx+

∫
ΓN

g · v ds for all v ∈ V, (4.5)

where U is the affine space of functions in H1(Ω) whose trace on ΓD is equal to ū, and V
is the linear space of functions in H1(Ω) whose trace on ΓD is zero.

Existence and uniqueness theory for this kind of problems is very similar to that of
scalar ones in conductivity. The same is true regarding homogenization theory ; in fact,
all the concepts and results in Section 3.1 (with the exception of Theorem 3.1.6) have a
foreseeable counterpart in the current setting. All these aspects and several others can be
found in the book of Oleinik et al. [82].

4.1.2 Note. Even when u ∈ H2(Ω;Rn), since one only has E ∈ L∞(Ω;E), the stresses
Ee(u) do not have a well defined trace on ∂Ω; so, even if Ω has a lipschitzian boundary,
in which case ν ∈ L∞(∂Ω;Rn), the third equation in (4.4) is just a formal way of stating
the Neumann condition implicitly contained in (4.5).

Such regularity issues are bypassed, as they are not essential to the goal pursued in
the chapter; therefore, some of the integrals appearing in the text (and other ones implied
when integration by parts is called for) should be regarded merely in a formal sense. �

4.2 Measuring compliance

The two more familiar situations are described first, as they will serve to motivate the
generalized measure introduced in the bigger picture.

Zero Dirichlet boundary conditions

Start by considering a linearly elastic structure clamped on ΓD:
−div[Eε(u)] = f in Ω,

u = 0 on ΓD,

Eε(u)ν = g on ΓN .

(4.6)

In this formulation, only zero Dirichlet boundary conditions are allowed (or no Dirichlet
boundary conditions appear at all, when ΓD = ∅).

One is interested in optimizing for stiffness a structure defined by the domain Ω and
by the elasticity tensor E. Note that high stiffness is equivalent to low compliance. It does
not matter whether one is talking about shape optimization (when the shape of Ω varies),
free material optimization (when the elastic tensor E is the optimization parameter), or
any other kind of optimization.

The most common way to evaluate the compliance of an elastic structure is through
the work done by the applied loads

W =

∫
Ω
f · u dx+

∫
ΓN

g · u ds
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It is not difficult to see that the smaller the work W, the stiffer the structure. This is so
because f and g are fixed (they are data of the problem); thus, the work done by them is
small if the displacement u is small, that is, if the structure does not deform much.

It is a simple exercise to check that W = 2E , where E is the elastic energy stored in
the body:

E =
1

2

∫
Ω
Eε(u) : ε(u) dx. (4.7)

It suffices to take u as a test function in the variational formulation of (4.6):find u ∈ V such that∫
Ω
Eε(u) : ε(v) dx =

∫
Ω
f · v dx+

∫
ΓN

g · v ds for all v ∈ V.

Structures subject to a prescribed displacement

The extreme opposite case is when no loads are applied at all, the deformation being
caused by nonzero Dirichlet boundary conditions:

−div[Eε(u)] = 0 in Ω,

u = ū on ΓD,

Eε(u)ν = 0 on ΓN .

(4.8)

The description of a stiff structure as one that “does not deform much” is no longer
valid: the displacement is prescribed on ΓD. A structure described by problem (4.8) should
be called “stiff” if the effort it takes to impose the displacement ū on ΓD is large; that is,
the work done by the force g = Eε(u)ν,∫

ΓD

Eε(u)ν · ū ds, (4.9)

should be large. This is quite different from the situation with problem (4.6), where for
a structure to be stiff the work done by the applied loads had to be small. Note that g
cannot be called “applied load” now, since it is not a datum of problem (4.8).

Again, it is easy to check that the quantity (4.9) is equal to twice the elastic energy
E stored in the body. It suffices to integrate by parts in (4.7) and use the boundary
conditions in (4.8).

In this case then, one should maximize the stored elastic energy in order to obtain a
stiff structure, which is the opposite of the first situation described in this section. This
phenomenon has already been observed in the literature [83, Rem. 9] [84, Rem. 11] [85].

Loads and prescribed displacement

Consider now the general case (4.4), when loads are applied (f in Ω, g on ΓN ) and a
nonzero displacement ū is prescribed on ΓD.

How can one define the notion of stiff structure (or its reverse, the compliance) in this
context? Should one minimize or maximize the stored elastic energy E?
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Claim. It is proposed the difference

C =

∫
Ω
f · u dx+

∫
ΓN

g · u ds− 1

2

∫
Ω
Eε(u) : ε(u) dx

as a measure of compliance for structures subject to general boundary conditions, described
by problem (4.4).

The previous quantity will be called generalized compliance. It is clear that C,W/2 and
E are equal for structures governed by (4.6). On the other hand, for structures governed
by (4.8), C and E are equal in modulus and have opposite signs. So, for any boundary
conditions, one should minimize C in order to obtain a stiff structure. It should be noted
that an independent work by Niu, Xu and Cheng [86] points to the same conclusion.

4.3 Computation of sensitivities

In Section 4.4 a comparison will be made (by means of numerical tests) between the ob-
jective functionalsW, E and C, in terms of how adequately they measure the performance
of a structure governed by (4.4). Since a gradient algorithm will be used, the derivative
of the objective functional with respect to some structural parameter – which, for mere
convenience, will be assumed to be the material tensor itself – has to be determined.

Differentiation of functionals depending on a “control” parameter (the elastic tensor E
in this case) through the solution of some differential equation, depends obviously on the
differentiability of that solution itself with respect to the “control”. This kind of results
are well known from optimal control theory and can, for instance, be found in the work of
Chenais [89, Th. 4.2]. The map E 7→ u, which associates to a given tensor E ∈ L∞(Ω;E)
the solution u of (4.5), is henceforth assumed to be differentiable.

Because f and g are data of problem (4.4), hence they do not depend on E, the
derivatives of W, E and C at E in a direction δE are given, respectively, by

δW =

∫
Ω
f · δu dx+

∫
ΓN

g · δu ds, (4.10)

δE =
1

2

∫
Ω
δEε(u) : ε(u) dx+

∫
Ω
Eε(δu) : ε(u) dx (4.11)

and

δC =

∫
Ω
f · δu dx+

∫
ΓN

g · δu ds− 1

2

∫
Ω
δEε(u) : ε(u) dx−

∫
Ω
Eε(δu) : ε(u) dx, (4.12)

where δu stands for the derivative of u at E in the direction δE; note that, because ū is
fixed, it vanishes upon differentiation, thus yielding δu = 0 on ΓD. Of course, to obtain a
final formula in terms of δE only, it is essential to eliminate δu from these expressions since,
being u the solution of (4.5), it depends in a highly implicit manner on E. Amazingly, in
the case of the generalized compliance C, the terms involving δu disappear altogether from
(4.12): multiplication of the state equation in (4.4) by δu and integration by parts gives∫

Ω
Eε(u) : ε(δu) dx =

∫
Ω
f · δu dx+

∫
ΓN

g · δu ds;
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therefore, (4.12) evaluates simply to

δC = −1

2

∫
Ω
δEε(u) : ε(u) dx. (4.13)

However, the same reasoning does not prove to be effective either for the work W of
the applied loads or for the stored energy E ; with those objective functionals one has to
make use of the adjoint method, a method whose technical aspects will be kept aside for
symplicity’s sake; they can be found throughout the literature, for instance in the books
of Allaire [87, Sec. 4.3] and Céa [88, Chap. 5], or in a paper by Chenais [89, Th. 4.1].

The procedures that follow amount basically to the adjoint method, performed in a
somewhat informal (but perhaps more telling) fashion. First observe that by differentiating
(4.5), with respect to E and in a direction δE, one ends up with the variational problemfind δu ∈ V such that∫

Ω
Eε(δu) : ε(v) dx = −

∫
Ω
δEε(u) : ε(v) dx for all v ∈ V.

(4.14)

This problem alone will not suffice to get rid of δu in the derivatives (4.10) and (4.11); to
complete that task, the so-called adjoint problem has to be introduced. The idea is the
following: the terms involving δu can be thought of as the value, at δu, of a linear form
defined over V ; they are thus prone to be rewritten in terms of an auxiliary state variable
p ∈ V , termed the adjoint state. The key aspect is that both p and δu qualify as test
functions; more precisely, δu in the adjoint problem and p in (4.14).

When the work W is considered, the adjoint state p is defined as the solution of:find p ∈ V such that∫
Ω
Eε(p) : ε(v) dx =

∫
Ω
f · v dx+

∫
ΓN

g · v ds for all v ∈ V, (4.15)

which is nothing more than the variational formulation of
−div[Eε(p)] = f in Ω,

p = 0 on ΓD,

Eε(p)ν = g on ΓN .

(4.16)

Since δu and p both belong to V , one concludes, first by (4.15) and then by (4.14), that∫
Ω
f · δu dx+

∫
ΓN

g · δu ds =

∫
Ω
Eε(p) : ε(δu) dx = −

∫
Ω
δEε(u) : ε(p) dx,

that is, the derivative (4.10) writes as

δW = −
∫

Ω
δEε(u) : ε(p) dx. (4.17)

When the stored energy E is to be differentiated, it gives rise to the same adjoint state
p, solution of (4.16). Note that, since u satisfies (4.5), the variational formulation (4.15)
is equivalent tofind p ∈ V such that∫

Ω
Eε(p) : ε(v) dx =

∫
Ω
Eε(u) : ε(v) dx for all v ∈ V.

(4.18)
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Similarly to the previous case, using (4.18) and then (4.14), and because δu and p are in
the space V of test functions, it follows that∫

Ω
Eε(δu) : ε(u) dx =

∫
Ω
Eε(p) : ε(δu) dx = −

∫
Ω
δEε(u) : ε(p) dx;

hence, the derivative (4.11) can be reduced to

δE =

∫
Ω
δEε(u) : ε

(u
2
− p
)
dx. (4.19)

4.3.1 Remark. Regarding the derivative of C, with u solution of (4.4), the adjoint method
can be likewise followed, yielding in this case a null adjoint state p = 0. �

4.3.2 Remark. The only difference between problems (4.4) and (4.16) is the space where
the solutions are to be found (U and V , respectively); in other words, the only differ-
ence lies in the Dirichlet boundary condition. When no displacements are prescribed on
the structure (see Section 4.2), the two problems are identical, which means that the
minimization of either W or E is a self-adjoint problem. �

4.3.3 Remark. It may seem strange that two different quantities, W and E , give rise to
the same adjoint state p, solution of problem (4.16). This is especially queer for structures
with no prescribed displacements, where W = 2E (see Section 4.2). Recall, however, that∫

Ω
f · u dx+

∫
ΓN

g · u ds =

∫
Ω
Eε(u) : ε(u) dx

only when u satisfies problem (4.6). Otherwise, if u is some arbitrary function in V , there
is no reason for the above relation to take place. �

4.4 Numerical tests

The numerical simulations in the paper by Niu, Xu and Cheng [86, Sec. 4.2], demonstrate
that minimizing the work of the applied loads (for a structure subject to loading conditions
only) is equivalent to maximizing the stored elastic energy (for a structure subject to an
equivalent imposed displacement); they also show clearly that both of those formulations
can be recovered from the generalized compliance formulation. The main concern in the
present section is to see what happens when mixed nonhomogeneous boundary conditions
are present, and how each of the three measures W, E and C describe the structure’s
behaviour in that case.

In order to make a comparison in the previous terms, we consider the problem depicted
in Figure 4.1: a rectangular design domain Ω = [0, 6]× [0, 3], clamped at the lower corners
A = [0, 0.3]× {0} and D = [5.7, 6]× {0}. A load g = (0,−0.7) is uniformly distributed on
the segment B = [1.95, 2.05]× {0}, which is roughly equivalent to a concentrated force of
(0,−0.07), and a displacement ū = (0,−1.47) is prescribed on C = [3.95, 4.05]× {0}.

The values of g and ū have been chosen to obtain a similar displacement on the
segments B and C; this is, of course, aimed at mimicking a problem with equal applied
loads on those segments, a case in which one has a clear picture on how a solution looks like.
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A B C D

Figure 4.1: Design domain and boundary conditions of the problem.

As we shall be dealing with optimization via distribuition of isotropic material, the
material tensor E will take the form E = ρE0, where ρ is a material density continuously
varying within the interval [0, 1] and E0 is a fixed isotropic linearly elastic tensor, whose
Lamé coefficients are λ = 0.2 and µ = 0.3; according to (4.3),

E0ε = 0.2 tr(ε)I + 0.6ε.

In this framework, the objective functional W, E , or C, is dependent on the structural
parameter ρ. Formulas (4.13), (4.17) and (4.19), reduce to

δC =

∫
Ω
δρ

[
−1

2
E0ε(u) : ε(u)

]
dx,

δW =

∫
Ω
δρ [−E0ε(u) : ε(p)] dx

and

δE =

∫
Ω
δρ
[
E0ε(u) : ε

(u
2
− p
)]
dx,

respectively. The scalar function between square brackets will then be interpreted as the
gradient of the objective functional with respect to ρ. Also, there is a constraint on the
“volume” of material: it should fill 25% of the design domain, that is,∫

Ω
ρ dx = 4.5;

obviously, the gradient of this constraint with respect to ρ is the constant function 1. An-
other constraint is that the pointwise “density” ρ should stay in [0.01,1]. Having identified
the gradients of both the objective and the constraint, a descent algorithm for constrained
optimization is applied, namely Algorithm 2.3.2.

Note that intermediate densities are not penalized: the algorithm is just set to run
several iterations, until a reasonably well defined picture is obtained; one should then
expect not a black-and-white design, but a greyscale density instead.

The implementation is made in the finite element object oriented language FreeFem++

[90], with a fixed mesh of 16560 triangular elements; ρ0 = 0.25. Visualization of results is
made with the software xd3d [91].



4.4. Numerical tests 71

The numerical results are presented in Figures 4.2–4.4, where the “density” ρ is repre-
sented through different levels of grey (1 is black, 0.01 is white). In Figure 4.2, the stored
energy E is minimized; the obtained value is E = 0.03417205. In Figure 4.3, the work W
is minimized; the final value is W = 0.0617249.

Figure 4.2: Density ρ obtained by minimization of the stored energy.

Figure 4.3: Density ρ obtained by minimization of the work done by the applied loads.

The distinctive feature to retain about both examples concerns the “blindness” of the
functionals W and E towards the presence of the nonzero prescribed displacement! It is
the reason why these measures are completely inadequate to represent compliance in the
case of mixed nonhomogeneous boundary conditions.

Now in Figure 4.4, the generalized compliance C is minimized; its value for the opti-
mized structure is C = −0.0123051.
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Figure 4.4: Density ρ obtained by minimization of the generalized compliance.

Unlike the other two functionals, the generalized compliance C is the only one that
“takes advantage” of the prescribed displacement and gives rise to the expected solution.

4.5 Final remarks

A physical quantity was proposed for measuring the compliance of a structure in face
of general boundary conditions, that is, allowing for nonzero applied loads together with
nonzero prescribed displacements. Furthermore, that measure (the generalized compli-
ance) does not require the computation of any adjoint state regarding its differentiation
with respect to structural parameters (see Remark 4.3.1); this is an interesting feature
from the computational point of view.

Though the “virtues” of the generalized compliance are made clear through a simple
academic example, it would be quite interesting to obtain a design based on its minimiza-
tion for a proper engineering problem and to test the resulting structure.
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[67] F. Murat, L. Tartar, H-convergence, in Progress in Nonlinear Differential Equa-
tions and Their Applications, 31: Topics in the mathematical modelling of composite
materials (A. Cherkaev and R. Kohn, eds.), Birkhäuser, 21–43, 1997.
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