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Nota prévia 

Este trabalho foi realizado no âmbito dos projectos SOBREIRO/0036/2009 

“Polymorphism detection and validation”, incluído no Cork Oak ESTs (expressed 

sequence tags) Consortium (COEC), e PTDC/AGR-GPL/104966/20082008 

“Assessment of genetic and genomic resources of Cork Oak: the basis towards a 

prospective management”. 

O trabalho foi escrito em inglês e em forma de artigo para facilitar a posterior 

publicação e divulgação científica. A formatação da bibliografia encontra-se de acordo 

com a revista científica internacional Molecular Ecology. 
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Resumo 

O sobreiro (Quercus suber L.) é uma árvore de folha perene endémica do Oeste da 

Bacia do Mediterrâneo. A sua área de distribuição natural estende-se desde a costa 

atlântica da Península Ibérica e de Marrocos até ao Sudeste da Península Itálica, sendo 

em Portugal que se encontram os maiores povoamentos de sobreiro. É possível também 

encontrar esta espécie na Bulgária, como resultado de introdução humana. O sobreiro 

caracteriza-se principalmente pela cortiça que produz, continuamente e de forma 

renovável, a qual protege a árvore de factores externos agressivos, tais como o fogo. A 

cortiça tem propriedades físico-químicas únicas que lhe conferem um elevado valor 

comercial, contribuindo de modo significativo para a economia dos países onde o 

sobreiro se encontra naturalmente distribuído e onde é comercialmente cultivado e 

explorado. Portugal é o maior produtor mundial de cortiça, tendo por isso o sobreiro um 

grande valor económico e social a nível nacional. Do ponto de vista ecológico, detém 

também uma grande importância, uma vez que o montado de sobro (ou dehesa em 

Espanha) constitui um sistema de características únicas, essencial para a sobrevivência 

de um grande número de espécies nativas de plantas e animais e para a prevenção da 

desertificação. Dada a sua grande relevância nestes vários aspectos, o sobreiro foi 

considerado recentemente “Árvore Nacional de Portugal”, o que expressa a sua enorme 

importância cultural e patrimonial para o país.  

Os povoamentos de sobreiro têm vindo a sofrer um declínio devido à falta de 

regeneração natural, atribuída essencialmente a períodos de seca intensa, à dependência 

de árvores adultas envelhecidas e à má gestão do montado. Para além disso, estão 

previstas para este século grandes alterações climáticas, com especial impacto na Bacia 

Mediterrânica, que podem vir a aumentar a pressão sobre as populações de sobreiro. 

Nesta região, espera-se um grande aumento das temperaturas e períodos de seca mais 

severos e prolongados. Prevê-se que estas alterações ocorram numa escala temporal tão 

curta que as espécies florestais, incluindo o sobreiro, poderão não conseguir 

acompanhá-las. O declínio do sobreiro tem sido também associado a várias pragas e 

doenças, principalmente à doença da tinta, provocada pelo fungo Phytophthora 

cinnamomi. Deste modo, é essencial e premente estudar a variabilidade genética do 

sobreiro, de modo a compreender a sua capacidade adaptativa a factores bióticos e 

abióticos, tendo em vista o delineamento de estratégias de gestão e conservação dos 
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recursos genéticos desta espécie. Assim, o estudo da variabilidade genética adaptativa 

do sobreiro constitui o principal objectivo deste trabalho. 

Num estudo prévio, foi sequenciado o transcriptoma de folhas de sobreiro através da 

tecnologia de pirosequenciação 454, o qual foi subsequentemente analisado para 

detectar single nucleotide polymorphisms (SNPs). Mais de 400 SNPs putativos foram 

encontrados em regiões transcritas do genoma, os quais podem ser de grande interesse, 

uma vez que permitem obter informação sobre mutações em genes funcionais, 

possivelmente sob selecção. No entanto, as sequências obtidas por 454 podem conter 

erros e, para poder explorar os SNPs detectados, é importante proceder primeiro à sua 

validação para confirmar se esta variação corresponde a polimorfismos reais ou se, por 

outro lado, resulta de artefactos da tecnologia 454. O primeiro objectivo deste trabalho 

consistiu assim na validação de 10 a 15 SNPs putativos, de forma a desenvolver 

marcadores moleculares úteis, possivelmente sob selecção. O segundo objectivo 

consistiu em analisar cinco dos SNPs validados, do ponto de vista filogeográfico e da 

genética populacional, compreendendo a realização de vários testes de neutralidade para 

detectar sinais de selecção. Por fim, teve-se como terceiro objectivo testar associações 

entre a variabilidade genética encontrada e variáveis ambientais potencialmente 

relevantes para a adaptação local do sobreiro. A combinação de vários testes de 

neutralidade e métodos de associação ambiental é importante para estudos de selecção e 

adaptação, uma vez que diferentes métodos estatísticos têm diferentes capacidades e 

sensibilidades na detecção de selecção natural. 

Tendo em conta estes objectivos, desenharam-se primers para amplificar fragmentos de 

ADN genómico contendo os SNPs putativos e subsequentemente validá-los através de 

sequenciação Sanger. As amostras utilizadas nesta fase foram as mesmas previamente 

usadas para a pirosequenciação do transcriptoma. Dos SNPs validados, cinco foram 

escolhidos para uma análise mais detalhada dos respectivos fragmentos. Em primeiro 

lugar, foram estimadas as relações entre os haplótipos detectados para cada fragmento 

através da construção de redes haplotípicas. Em seguida foram efectuadas análises de 

variância molecular (AMOVA) com o intuito de aferir a estruturação populacional. A 

variabilidade genética e haplotípica foram estimadas para cada fragmento e vários testes 

de neutralidade foram efectuados, nomeadamente o D de Tajima, o Fs de Fu e o teste 

baseado na comparação entre a taxa de mutações não-sinónimas por posições não-

sinónimas (dN) e taxa de mutações sinónimas por posições sinónimas (dS) implementado 
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pelo software PAML. Por fim, foram feitos testes de associação entre os dados 

genéticos e diversas variáveis ambientais através de regressões logísticas 

implementadas pelo software MatSAM. 

Em relação ao processo de validação dos SNPs putativos, foi possível amplificar e 

sequenciar 59% dos fragmentos testados (19 de 32), um valor superior ao descrito 

noutros estudos similares. Do conjunto de SNPs testados, 11 foram validados, três 

foram invalidados, e para os restantes cinco não foi possível sequenciar todas as 

amostras utilizadas na sequenciação do transcriptoma, pelo que, apesar de ainda não se 

ter encontrado variação, não é possível chegar a qualquer conclusão em relação à sua 

autenticidade. Assim, obteve-se uma percentagem de 79% de sucesso de validação, um 

valor não muito inferior ao reportado em trabalhos anteriores.  

Dos fragmentos validados, cinco foram escolhidos para subsequente análise. Esses 

fragmentos encontram-se nos potenciais genes ortólogos de Arabidopsis thaliana (L.) 

Heynh. RAN3, NPR1, PR1, ARF16 e HSP. Para nenhum dos fragmentos analisados foi 

detectada estruturação geográfica da variabilidade genética, o que pode estar 

relacionado com o facto de os sobreiros serem organismos longevos, submetidos a 

condições ambientais variáveis ao longo da sua vida, e terem uma dispersão de pólen 

pelo vento a longas distâncias, características que normalmente levam a uma baixa 

estruturação entre populações ao nível de marcadores nucleares. 

Em dois dos fragmentos analisados (NPR1 e ARF16) foram encontrados sinais de 

selecção balanceada, tendo sido estimados para ambos valores significativamente 

positivos de D de Tajima e de Fs de Fu. Ambos apresentam ainda padrões 

filogeográficos e de distribuição geográfica da variabilidade genética semelhantes, sem 

estruturação. O NPR1 é um gene envolvido na defesa contra agentes patogénicos, tais 

como P. cinnamomi. As mutações não-sinónimas e não-conservativas (cujo aminoácido 

mutado tem propriedades físico-químicas diferentes) detectadas neste fragmento 

encontram-se no domínio ankirin repeats (ANK), essencial na activação de factores de 

transcrição responsáveis pelo controlo de genes de defesa contra agentes patogénicos. 

Assim, estas mutações podem estar sob pressão selectiva exercida por este stresse 

biótico, sendo por isso mantidos os polimorfismos. Por outro lado, sinais de selecção 

balanceada foram encontrados num estudo prévio no mesmo domínio do NPR1 de A. 

thaliana, corroborando a hipótese deste gene se encontrar sob este tipo de selecção. Em 
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relação ao ARF16, este gene codifica um factor de transcrição envolvido na 

diferenciação da coifa e foi identificado como gene candidato à resistência à seca em 

Quercus robur L. As mutações não-sinónimas e não-conservativas detectadas neste 

fragmento encontram-se no domínio da proteína responsável pela sua acção como factor 

de transcrição, podendo desta forma ter efeitos a nível da transcrição dos genes 

activados pela proteína ARF16. Assim, estas mutações podem estar sob pressão 

selectiva exercida por condições ambientais flutuantes ao longo da vida do sobreiro, 

mantendo o polimorfismo neste gene. 

No fragmento do gene HSP foi detectada uma posição com sinal de selecção positiva 

(análise com PAML). Na mesma posição, a frequência do aminoácido aspartato foi 

positivamente correlacionada com precipitação em Setembro e latitude através dos 

estudos de associação. As proteínas HSP encontram-se geralmente associadas a 

condições de stresse, sendo provável que esta esteja envolvida na resposta a stresse 

hídrico. Setembro é usualmente o primeiro mês após o período de seca mais intensa, 

pelo que a precipitação neste mês será provavelmente importante para as plantas 

recuperarem desse período. Deste modo, árvores detentoras de genótipos com aspartato 

na posição em questão parecem estar mal-adaptadas a períodos de seca prolongada. 

Neste estudo foram desenvolvidos marcadores moleculares úteis para compreender a 

variabilidade genética adaptativa do sobreiro, confirmando-se a utilidade da 

pirosequenciação do transcriptoma de organismos não-modelo para este fim. Além 

disso, com esses marcadores foi possível adquirir novos conhecimentos em relação à 

adaptação do sobreiro ao meio ambiente, o que é essencial para que se possa definir 

estratégias de gestão e conservação dos recursos genéticos desta espécie. 

 

Palavras-chave: adaptação, Quercus suber, selecção balanceada, selecção positiva, 

sobreiro, SNP, validação 
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Abstract 

Cork oak (Quercus suber L.) is an evergreen tree endemic to the Western Mediterranean 

region with great economical, social and ecological relevance. It has a particular 

importance in Portugal, where the largest stands can be found. Cork oak stands have 

been facing a significant decline by the lack of regeneration, mostly due to severe 

drought periods, the dependence on aged adult trees and bad management. In the 

context of the climate changes predicted for this century, drought periods are expected 

to be increasingly longer and more rigorous in the Mediterranean Basin, which can 

enhance this decline. Moreover, several diseases have also been associated with cork 

oak populations’ decay. In this scenario, evaluating how cork oak populations can cope 

with these threats is essential to delineate management and conservation strategies for 

this species. The main goal of this work was therefore to assess cork oak adaptive 

genetic variation. Putative SNPs detected in cork oak transcriptome were validated in 

order to develop useful variable markers in functional genes potentially under selection. 

Five fragments containing validated SNPs were further investigated through a 

population genetics approach. Several neutrality tests were performed as well as 

environmental association tests in order to find selection signatures. Different selection 

signals were detected in the analysed fragments. NPR1, a gene involved in plant defence 

against pathogens, and ARF16, a gene implicated in root cap cell differentiation and 

previously identified as a candidate gene for drought resistance, seemed to be under 

balancing selection. In HSP, a gene possibly involved in response to drought stress, one 

amino acid position was detected as possibly being under positive selection and 

associated with latitude and precipitation in September. Therefore, in this study, useful 

molecular markers for assessing cork oak adaptive genetic variation were developed, 

allowing for the first steps to be taken into gathering important information and insights 

on cork oak adaptation to biotic and abiotic environmental conditions. 

 

Keywords: adaptation, balancing selection, positive selection, Quercus suber, SNP, 

validation 
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1.1. Forest trees as models 

Forests represent approximately 82% of Earth’s biomass (Roy et al. 2001), covering 

approximately 27% of its terrestrial surface. Therefore, it comes as no surprise that they 

harbour more than 50% of terrestrial biodiversity and play an important role in carbon 

sequestration, climate regulation and water quality preservation. Forest trees are also 

very important to humans, providing a variety of essential resources, such as building 

materials, paper products, firewood, energy and tree-crop foods (Neale and Kremer 

2011). Global tree species richness is estimated to range between 60,000 and 100,000 

species (Oldfield et al. 1998, Grandtner 2005). However, deforestation and other human 

induced changes have put more than 10% of these species on the path to extinction 

(Oldfield et al. 1998). In this scenario, understanding adaptive genetic variation in forest 

trees is essential to delineate management and conservation strategies (Krutovsky and 

Neale 2005) and can be helpful for the improvement of economically important species 

in combination with traditional phenotypic selection (Neale 2007).  

Despite their relevance, forest trees are rarely seen as models in most plant biology lines 

of research, as their size and life span make them difficult to use in experimental studies 

(Linhart 1999). However, in recent years they have been gaining attention as non-

classical models in population, evolution and ecological genomics studies (Gonzalez-

Martinez et al. 2006, Neale and Ingvarsson 2008, Neale and Kremer 2011). From an 

evolutionary point of view, forest trees have several features that make them great 

models to study adaptive divergence. They usually have outcrossing populations with 

large effective sizes, high levels of genetic and phenotypic diversity and low population 

structure (Gonzalez-Martinez et al. 2006, Petit and Hampe 2006, Gailing et al. 2009). 

Furthermore, forest trees are long-lived and sessile, growing under temporally varying 

and spatially heterogeneous environmental conditions, which contributes to diversity 

maintenance. This high genetic diversity is essential for adaptation to changing 

environments (Gailing et al. 2009) whereas their life-spans and resilience provide them 

the means to withstand short environmental pulses. In addition, forest trees are unique 

in the way that they can be found in both domesticated and wild forms, which provides 

extensive experimental opportunities and the chance to exploit the genetic diversity 

found within natural populations in selective breeding and genetic improvement (Neale 

and Ingvarsson 2008, Neale and Kremer 2011).  
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1.1.1. The Fagaceae family 

The Fagaceae are a large angiosperm family comprising 8-10 genera and approximately 

900 woody species spread throughout the Northern Hemisphere (Singh 2004). They 

cover large continuous forests and represent important forest resources, with many 

species being economically important. Furthermore, they play a central role in forest 

ecosystems, providing the maintenance of terrestrial biodiversity. In many countries, 

they are also considered important patrimonial and cultural resources (Logan 2005). The 

only genera in Europe are oaks (Quercus), chestnuts (Castanea) and beeches (Fagus) 

(Singh 2004). 

Oaks occur mainly in temperate, subtropical and semiarid biotopes and have been 

divided in two clades (Manos et al. 1999, Bellarosa et al. 2005, Denk and Grimm 

2010). One clade comprises the New World species, with sections Lobatae, 

Protobalanus and the holarctic Quercus s.s., while the other strictly Eurasian clade, 

comprises the Cerris group, that includes species from temperate and semiarid regions 

(e.g. Quercus ilex, Quercus suber) (Denk and Grimm 2010) and Cyclobalanopsis group 

from tropical regions (Deng 2007). The wide ranging distribution and varied life-

strategies of these species, growing under a great range of climatic and edaphic 

conditions offer unprecedented opportunities to investigate the genetic basis of adaptive 

traits. 

Oaks have been considered good model species to study adaptation of forest trees to 

changing environments (Gailing et al. 2009), since they are widely distributed 

throughout Europe as dominant tree species in many forests. Moreover, genomic 

resources are increasingly becoming available for this genus (e.g. Derory et al. 2006, 

Soler et al. 2007, Ueno et al. 2010). 

 

1.1.2. Cork oak as a case study 

Cork oak (Quercus suber L.) (Figure 1.1) is a Mediterranean slow growth and 

extremely long lived (200-250 years) evergreen tree. It is a monoecious (separate male 

and female flowers on the same plant) wind-pollinated species with a protandrous 

system to ensure cross-pollination. As most oaks, cork oak is propagated mainly via 
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sexual reproduction (natural regeneration) and seed (acorn) (Figure 1.1b) dissemination 

occurs essentially through gravity and zoochory. The striking characteristic of this tree 

is its thick, soft and porous bark, the cork (Figure 1.1c), which is continuously and 

renewably produced, protecting the trees from external damaging factors including 

forest fires (Gil and Varela 2008). 

  

Cork oak current natural distribution is rather discontinuous throughout the Western 

Mediterranean region (Figure 1.2) (Pausas et al. 2009), ranging from the Atlantic Coast 

of North Africa and Iberian Peninsula to southeastern Italy, including the larger west 

Mediterranean islands and coastal regions of Maghreb (Algeria and Tunisia), Provence 

(France) and Catalonia (Spain). In addition, cork oak is present in a somewhat 

naturalized state in Bulgaria, as a result of recent introductions possibly from Portugal 

and/or Spain (Alexandrov et al. 2001). The largest stands of cork oak are located in its 

western distribution limit, particularly in Portugal, where it reaches an area of 736,700 

hectares (http://www.realcork.org/artigo.php?art=401). This restricted distribution when 

compared to other oaks is mainly due to cork oak being highly constrained by soil 

preferences (Serrasolses et al. 2009) and by low winter temperatures (Pausas et al. 

2009). It has a strict acidophilus character, growing mainly on non-calcareous 

substrates, preferring siliceous and lightly structured soils (Serrasolses et al. 2009). 

 

 

a)

b) c)

Figure 1.1 Cork oak (a), its fru it, the acorn (b) and detail of its bark,

the cork (c). Photos by Eduardo Marabuto.
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Cork oak has long been explored for the extraction of cork in the countries where it is 

naturally distributed. This material has unique physic and chemical properties suited for 

various purposes, such as the production of bottle stoppers, thermal and sound 

insulation in floors and walls, decoration, products for military and aviation uses, 

among others. Therefore, cork oak has a great economical and social importance where 

it is produced, particularly in Portugal, which is responsible for 55% of the world cork 

production and processing (http://www.amorim.com/cor_glob_cortica.php). This tree 

also has a great ecological relevance, as its woods are managed by man under a unique 

ecological system in the world, known as montado in Portugal and dehesa in Spain. 

These are open woods with low tree density (50-300 trees/ha) specifically managed for 

cork production, as well as other goods such as cattle and hunting. These systems 

contribute to the survival of many native plant and animal species and prevent the 

desertification of sensitive areas (Gil and Varela 2008). Giving its relevance at these 

several levels, it is not surprising that cork oak has been recently classified as “National 

Tree” in Portugal, revealing also its importance from a cultural and patrimonial 

perspective in this country (Republic of Portugal “Projecto de Resolução N.º 

123/XII/1.ª”). 

Despite its restricted distribution relatively to other oaks, cork oak grows under a wide 

range of climatic conditions. Therefore, different populations are expected to be under 

Figure 1.2. Map of the present geographical distribution of Cork oak (Quercus suber). Full gray represents 

natural distribution; dashed gray represents introduced, somewhat naturalized populations.  
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different selective pressures. Several studies report differences in phenotypic and 

functional traits among distinct populations in common garden experiments (e.g. 

Aranda et al. 2005, Gandour et al. 2007, Ramirez-Valiente et al. 2009b, 2010a). In 

Aranda et al. (2005), differential responses to low temperatures were reported, with 

populations from cold regions displaying more tolerance to this type of stress, whereas 

Ramírez-Valiente et al. (2009) showed that northern populations were not well adapted 

to drought and that continental populations were intermediately adapted to dry 

conditions. Some of the ecophysiological traits correlated with environment variables 

were shown to be heritable, supporting the idea that natural selection has led to local 

adaptation (Ramirez-Valiente et al. 2011). Furthermore, a microssatellite (QpZAG46) 

was found to be correlated with leaf size (Ramirez-Valiente et al. 2009a) and its 

population allelic frequency to be correlated with temperature (Ramirez-Valiente et al. 

2010b), revealing that temperature is an important selective agent in cork oak. From an 

evolutionary perspective, other than these studies, cork oak has only been explored in 

phylogenetic and phylogeographic studies (Magri et al. 2007, Simeone et al. 2009, 

Denk and Grimm 2010, Costa et al. 2011). 

In spite of all these studies, little is still known about adaptive genetic variation in this 

species. However, this information is extremely important to understand the adaptation 

of cork oak, especially in the current context of climate change, which is expected to 

have a great impact in the Mediterranean Basin (IPCC 2007). These changes are 

predicted to occur rapidly, in a way that forest climate zone boundaries may move faster 

than forest tree species are able to migrate (Higgins and Harte 2006). Thus, the survival 

of cork oak will depend primarily on its plasticity and ability to adapt under new 

environmental conditions (Davis and Shaw 2001, Valladares et al. 2007). The scenario 

is more worrying now that cork oak montados are facing a great decline by the lack of 

regeneration, mainly due to severe drought periods and the dependence on aged adult 

trees (Toumi and Lumaret 1998, Soto et al. 2007) because of bad management, which 

puts this entire ecosystem under threat (Quartau and Mathias 2010). Several diseases 

have also been highlighted as important reasons for cork oak decline (Brasier 1996, 

Cabral and Ferreira 1999). Therefore, assessing adaptive genetic variation becomes 

urgent to understand cork oak adaptation to biotic and abiotic conditions in order to 

delineate sustainable conservation strategies for this species.    
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1.2. Natural selection and adaptation 

Natural selection was initially proposed in On The Origin of Species (Darwin 1859) and 

is currently considered a crucial process in species evolution. Natural selection is the 

mechanism that explains the evolution of adaptations, which are traits that increase the 

survival or reproduction success (fitness) of organisms. It acts upon every trait that 

affects the fitness of a biological entity. Adaptation also refers to the process through 

which the organisms with an advantageous trait will increase in number by the action of 

natural selection, replacing the less suitable organisms, which survive and reproduce in 

a smaller degree (Futuyma 2005).  

Two main types of selection are generally defined (Hughes 2007): positive selection, 

which acts upon advantageous mutations, and negative selection, through which a 

mutation that reduces fitness is selected against and eliminated. Positive selection has 

been the focus of many studies (e.g. Lexer et al. 2004, Chen et al. 2010, Bernhardsson 

and Ingvarsson 2012), arousing a special interest, as it is associated with adaptation and 

evolution of new forms and functions. It can be divided into directional selection, which 

leads to the fixation of an advantageous mutation, and balancing selection, which 

maintains polymorphism (Hughes 2007). Negative selection and directional selection 

are generally associated with loss of variation within a population, although directional 

selection can also increase the variation between populations or species. On the other 

hand, balancing selection can maintain polymorphism within populations or species in 

several ways (Nielsen 2005). The most documented type of balancing selection is 

overdominance or heterozygous advantage, where the heterozygous genotype has a 

highest fitness relatively to the homozygous, maintaining both alleles across generations 

(e.g. Banaszek et al. 2009, Briggs et al. 2011). Balancing selection can also occur for 

several other reasons, such as fluctuating environment conditions that may favour 

different genotypes in different generations or different microhabitats/niches, and 

inverse frequency-dependent selection, in which the rarer a phenotype is, the greater its 

fitness (Futuyma 2005). According to the  neutral theory of molecular evolution 

(Kimura 1983) and the nearly-neutral variant (Ohta 1973) most of the functional genes 

are under purifying selection, a type of selection that eliminates new variants, and 

positive selection would be rare, although its importance to adaptation is not denied by 

these theories.  
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Different types of selection leave different molecular signatures, making it possible to 

detect past and present selection events through population genetics and genomics 

studies (Jensen et al. 2007, Ellegren 2008, Strasburg et al. 2012). 

 

1.2.1. Detecting signatures of natural selection 

A number of statistical methods have been developed to detect molecular signatures of 

positive selection. In general, these statistical tests can use polymorphism data, 

divergence data or a combination of both (Nielsen 2005, Jensen et al. 2007).  

Polymorphism based methods involve sampling multiple copies of a genomic region 

within populations, often with an orthologous copy from a closely related species to 

define the ancestral and derived variation states. The site frequency spectrum is assessed 

across the sampled populations to identify patterns of positive selection (Jensen et al. 

2007) and many of the classic neutrality tests are based on this. In Tajima’s D, one of 

the most commonly used test, the average number of nucleotide differences between 

pairs of sequences is compared with the total number of segregating sites (Tajima 

1989). If differences between these two measures are larger than expected on the 

standard neutral model, this is rejected. Under the neutrality model, D is expected to be 

zero. Negative values indicate excess of rare haplotypes and therefore positive selection 

or population growth, while positive values indicate an excess of intermediate frequency 

haplotypes, i.e. balancing selection or population decline. Other commonly used site 

frequency spectrum test is Fu’s Fs. In this test the probability of observing a random 

neutral sample with a number of alleles similar or smaller than the observed value given 

the observed number of pairwise differences is estimated (Fu 1997). A negative Fs will 

indicate an excess of rare alleles and thus genetic hitchhiking or population growth, 

while a positive Fs will indicate a deficit of allele number and therefore balancing 

selection or a bottleneck. Other site frequency based tests are generally used, such as Fu 

& Li (Fu and Li 1993) and Fay & Wu (Fay and Wu 2000). Despite these site frequency 

spectrum statistical tests being popular in selection studies, they are affected by 

demography and fail to distinguish between selection and demographic effects (Nielsen 

2005).  
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Divergence based methods use comparative approaches, involving sequence data from 

multiple species to detect and locate positive selection (Nielsen 2005, Jensen et al. 

2007). For coding sequences, comparisons between the rate of nonsynonymous 

mutations per nonsynonymous sites (dN) and the rate of synonymous mutations per 

synonymous sites (dS) can provide a great measure of the strength and character of 

selection. In a neutral scenario, where there are no functional constrains, synonymous 

and nonsynonymous substitutions would occur at the same rate and thus dN/dS (ω) =1. If 

there are functional constrains and therefore negative selection, we should expect ω<1. 

A ω>1 is interpreted as evidence for positive selection on amino acid changes (Jensen et 

al. 2007). As most proteins are expected to be under strong purifying selection to 

preserve their structure and function, the examination of ω over an entire gene is 

unlikely to detect positive selection acting on a few sites, since the amount of positive 

selection needed to elevate ω above 1 is enormous (Nielsen and Yang 1998, Suzuki and 

Gojobori 1999). In this way, several methods for estimating the distribution of ω in the 

presence of site-to-site variation have been proposed (e.g. Suzuki et al. 2001, Yang et 

al. 2005, Wong et al. 2006). One of the most commonly used methods is the maximum 

likelihood approach implemented in Phylogenetic Analysis by Maximum Likelihood 

(PAML) (Yang 1997, 2007). In maximum likelihood methods, two distinct inferential 

steps are required to identify sites subjected to positive selection. In the first step, it 

must be shown that a given alignment contains any sites likely to be under positive 

selection by means of a model comparison. If a model that includes selection performs 

better than one that does not allow it (the null model), the protein is considered as being 

under positive selection. The null model allows different sites to have different values 

of ω, but not values of ω>1. The alternative model adds a class of sites with ω>1, 

allowing for positive selection. The two models are compared by a likelihood ratio test 

and if the alternative model is better suited for the data than the null model, positive 

selection can be inferred. In the second inferential step, sites under positive selection are 

detected. For each site, the posterior probability is calculated under each ω class in the 

maximum likelihood model. A high posterior probability under the ω>1 class is 

suggestive of positive selection at that site (Yang and Bielawski 2000, Yang et al. 2005, 

Yang 2007). Several studies have used PAML to detect and locate sites under positive 

selection (e.g. Padhi and Verghese 2008, Talianova et al. 2011).  
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Natural selection can be reflected in statistical associations between genetic markers and 

environmental data (Joost et al. 2007, Coop et al. 2010, Manel et al. 2010). This 

approach has the advantage of allowing the identification of loci under selection and the 

establishment of hypotheses about the ecological factors that may be driving the species 

adaptation (Joost et al. 2007). A recently developed software, SAM (Joost et al. 2007, 

2008), has been widely used to perform these associations (e.g. Grivet et al. 2010, 

Nunes et al. 2011, Gao et al. 2012). The method used in this program is based on 

multiple univariate logistic regression models to test for association between allelic 

frequencies at marker loci and environmental variables (Joost et al. 2008). 

 

1.3. Molecular markers in plant evolution research 

Molecular analyses in plants have been traditionally based on chloroplastidial DNA 

(cpDNA) sequences, used mainly for phylogenetic studies (Borsch and Quandt 2009). 

However, cpDNA has low evolutionary rate and is exclusively maternally transmitted in 

Fagaceae, which limits the information that can be withdrawn from this type of markers 

(Mogensen 1996, Borsch and Quandt 2009). On the other hand, nuclear markers, such 

as microsatellites (or simple sequence repeats, SSRs), ITS (internal transcribed spacer 

regions of nuclear ribosomal DNA) or AFLPs (amplified fragment length 

polymorphisms), are biparentally inherited thus overcoming this limitation of cpDNA. 

Analysis of ITS sequences have been proven useful in phylogenetic and 

phylogeography studies (e.g. Manos et al. 1999, Bellarosa et al. 2005, Simeone et al. 

2009), although the existence of paralogue genes may distort the phylogenetic signals in 

plant evolutionary studies (Song et al. 2012). On the other hand, SSRs have high 

mutation rates and therefore high polymorphism, being highly suitable for answering 

population-level questions. However, high mutation rates lead to homoplasy, which 

could limit the biological accuracy of the results, and SSRs have null alleles that bias 

data analysis, in addition to being relatively scarce throughout the genome (Hedrick 

1999). AFLPs have the advantage of being distributed throughout the whole genome 

(Arif et al. 2010), giving information at the genomic level. Furthermore, AFLPs can be 

analysed to find outlier markers possibly under selection (e.g. Manel et al. 2009, Poncet 

et al. 2010), but have the disadvantage of being anonymous and presenting 

reproducibility problems (Arif et al. 2010). 
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Single Nucleotide Polymorphisms (SNPs) are the most recent and promising type of 

molecular markers whose application in plant genetic studies is growing (e.g. Foster et 

al. 2010, Kelleher et al. 2012). They are abundant and widespread in the genomes of 

many species and can be used as neutral markers or as adaptive markers if they are 

located in adaptive genes or adaptive regulating regions (Kirk and Freeland 2011). 

 

1.3.1. Single nucleotide polymorphisms 

SNPs are single base differences between DNA sequences and are the most common 

molecular markers found in eukaryotic genomes (Coles et al. 2005, Westermeier et al. 

2009). They are widespread through the genomes and can be found both in coding and 

non-coding regions. There are three different SNP types: transitions (purine to purine or 

pyrimidine to pyrimidine), transversions (purine to pyrimidine or pyrimidine to purine) 

and small insertions/deletions (indels). SNPs can be bi-, tri- or tetra-allelic, but they are 

usually biallelic (Doveri et al. 2008), which can be a disadvantage when compared to 

multiallelic markers. The great abundance of SNPs throughout the genome compensates 

for the little information given by each SNP as they are able to provide a high density of 

markers near or in a locus of interest (Doveri et al. 2008, Duran et al. 2009). SNPs have 

low mutation rates, which makes them very useful for studying complex genetic traits 

and for understanding genome evolution (Syvanen 2001). When in coding or regulatory 

regions, these variations can have a major impact in the development of an organism 

and its response to the environment, being these particular SNPs of great interest when 

trying to understand organisms’ adaptation. 

SNP markers have become popular in ecology and evolution research (Moen et al. 

2008, Namroud et al. 2008, Hao et al. 2011, Keller et al. 2012), especially in non-model 

organisms. These markers can have several applications, such as genome mapping, 

association studies, assessment of genetic diversity, paternity studies, or 

phylogeography (Duran et al. 2009).With genome sequencing becoming more and more 

affordable, the development of SNP markers have become easier, especially with the 

emergence of next generation sequencing (NGS) (e.g. Novaes et al. 2008, Milano et al. 

2011, Bundock et al. 2012). SNPs in coding regions can be particularly useful, 

especially in population genetics, functional genomics, conservation and evolutionary 
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biology studies, as their effects on the protein amino acid composition and function can 

be more easily assessed (Renaut et al. 2010). 

 

1.3.2. NGS: an important tool for molecular markers development  

Next-generation sequencing (NGS) methods have emerged during the last decade and 

are evolving rapidly. They have been having a great impact on genomics research, 

especially in non-model organisms, allowing for the performance of experiments that 

were previously not feasible or economically challenging. NGS enables whole-genome 

sequencing, targeted re-sequencing, metagenomics studies, transcriptome sequencing, 

and mutation detection, among other applications (Voelkerding et al. 2009, Glenn 

2011). It produces large amounts of sequence data and provides very important tools for 

molecular marker discovery (e.g. SNPs, SSRs) in non-model organisms for which no 

genomic tools are available (e.g. Barbazuk et al. 2007, Novaes et al. 2008, Bundock et 

al. 2012). Several NGS platforms are currently available, such as 454 (Roche), Illumina, 

SOLiD (Applied Biosystems), Ion Torrent and Helicos (BioSciences), among others, 

each technology having advantages and drawbacks (Glenn 2011). One of the most 

commonly used technology is 454.  

 

1.3.2.1. 454 pyrosequencing and SNP discovery 

When using 454, sequencing is performed by the pyrosequencing technology. In this 

method, each incorporation of a nucleotide by the DNA polymerase results in the 

release of pyrophosphate, which initiates a series of reactions that ultimately produce 

light by the firefly enzyme luciferase. The amount of light produced is proportional to 

the number of nucleotides incorporated (Mardis 2008, Shendure and Ji 2008, 

Voelkerding et al. 2009).  

454 sequencing has several advantages in relation to other NGS methods, including low 

cost and the production of longer reads (800bp in average) (Shendure and Ji 2008, 

Glenn 2011), although the number of reads obtained is relatively small. Longer reads 

can be assembled more efficiently, which is essential when characterizing a genome or 
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transcriptome without a reference. A further advantage is the relatively easy processing 

and analysis of the output data, which does not require great computational resources. 

Moreover, 454 was the first NGS method commercially available and it is therefore 

greatly used, so that the analysis software is well developed (Glenn 2011).  

Some drawbacks are known for the 454 technology, namely the reported error rates of 

1%, which are higher than those produced by the traditional Sanger sequencing 

(Margulies et al. 2005, Huse et al. 2007). A major limitation of the 454 technology 

relates to homopolymers (sequences formed by the repetition of a single type of 

nucleotide), as these are inferred from signal intensity, which is often difficult to 

resolve. This can result in ambiguity of homopolymer length, particularly for longer 

homopolymers. In addition, insufficient flushing between flows can cause single base 

insertions (carry forward events) usually near, but not adjacent to homopolymers. As a 

consequence, insertions and deletions are the major errors in 454 sequencing (Huse et 

al. 2007, Shendure and Ji 2008).  

The 454 platform has been primarily used for transcriptome characterization, target re-

sequencing and de novo genome sequencing, among other less frequent applications 

(Glenn 2011). Transcriptome sequencing, when performed to provide sufficient 

coverage depth, is a valuable resource for the identification of Single Nucleotide 

Polymorphisms (SNPs) in transcribed regions of the genome (Barbazuk et al. 2007, 

Novaes et al. 2008, Lai et al. 2012), which are of major interest when trying to 

understand how selection acts on functional genes (Vera et al. 2008, Renaut et al. 2010, 

Horton et al. 2012). Polymorphisms within a gene may have different impacts on its 

function or expression depending on their genomic location (intron, exon or 

unstranslated region). Mutations within coding regions are particularly insightful as they 

can affect the amino acid composition of the protein and therefore its structure and/or 

function. Therefore, the discovery of SNP markers in transcriptome sequences can 

facilitate the identification of genes involved in adaptive change (Renaut et al. 2010, 

Bajgain et al. 2011). 
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1.4. Thesis aims 

In a previous study (unpublished data) developed in the scope of the 

SOBREIRO/0036/2009 project (financed by Fundação para a Ciência e Tecnologia – 

FCT), integrated in the Cork Oak ESTs (expressed sequence tags) Consortium (COEC), 

large-scale 454 trancriptome sequencing was carried out. This consortium had the 

objective of sequencing the cork oak transcriptome for several tissues, developmental 

stages and biotic and abiotic stress conditions. In the referred project, the target tissue 

was leaves and transcriptome sequencing was performed using a pool of individuals 

from eigth different populations spread throughout cork oak distribution range. The 

results were then surveyed to identify SNPs with 4pipe4 software (Pina-Martins et al., 

submited). More than 400 putative SNPs were discovered in transcribed regions, 

constituting a resource of major interest as they can provide the ground for 

understanding the selective forces acting on functional genes. 

The central purpose of the present study, developed in the scope of the FCT funded 

Project PTDC/AGR-GPL/104966/2008, was to investigate cork oak adaptive genetic 

variation through the exploitation of the putative SNPs discovered in this species 

transcriptome. However, as 454 reads are prone to sequence errors (Margulies et al. 

2005, Huse et al. 2007) and SNP validation rates reported reach only 85% (Barbazuk et 

al. 2007),  it was first necessary to experimentally validate them. 

Thus, the main goals of this work were the following: 

1. To validate by Sanger sequencing 10 to 15 putative SNPs discovered through 

454 transcriptome pyrosequencing, in order to determine if they represent true 

biological variation or result from technical errors. 

2. To explore 5 of the putative validated SNPs located in functional genes through 

a population genetic diversity analysis in order to assess signatures of selection, 

population structure and patterns of adaptive genetic variation in cork oak.  

3. To test for association between the genetic variation found in the selected genes 

and environmental variables potentially relevant for cork oak local adaptation. 

Combining this approach with neutrality tests will increase the possibility of 

finding genetic markers under selection and assessing different aspects of the 

evolutionary processes acting on cork oak.   
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2.1. Abstract 

Cork oak (Quercus suber L.) is an evergreen tree species of great ecological, 

economical and social relevance throughout its distribution range, the Western 

Mediterranean region. In Portugal, where the largest stands of cork oak are located, this 

tree is particularly important. Cork oak stands have been facing a significant decline by 

the lack of regeneration, mostly due to severe drought periods, the dependence on aged 

adult trees and bad management, as well as susceptibility to several diseases. Drought 

periods are predicted to become even more severe during this century as a result of the 

climate changes expected to occur within cork oak distribution range. The ability of this 

species to deal with such severe climate changes is likely to depend mainly on its 

plasticity and adaptive potential. In this scenario, the assessment of adaptive genetic 

variation is essential to understand how cork oak may cope with these threats and to 

delineate management strategies of its genetic resources. In this work the validation of 

putative SNPs detected in cork oak transcriptome was performed in order to develop 

useful variable markers in functional genes, potentially under selection. Five of the 

validated SNPs were further investigated through a population genetics approach. 

Several neutrality tests were performed as well as environmental association tests 

aiming at finding selection signatures. Two gene fragments seemed to be under 

balancing selection, namely the putative orthologs of Arabidopsis thaliana (L.) Heynh. 

NPR1, involved in plant defence response against pathogens, and ARF16, a gene 

implicated in root cap cell differentiation and previously identified as a candidate gene 

for drought resistance. In another gene fragment, a putative ortholog of an A. thaliana 

HSP, involved in stress response, one amino acid position was found to be possibly 

under positive selection. Moreover, allele frequency in this same position was 

associated with latitude and with precipitation in September, revealing its potential 

relevance in adaptation to local climatic conditions. Therefore, in this study, useful 

molecular markers for assessing cork oak adaptive genetic variation were developed and 

important steps were taken in obtaining information about cork oak adaptation to biotic 

and abiotic environmental conditions. 

 

Keywords: adaptation, balancing selection, environmental association, positive 

selection  
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2.2. Introduction 

Cork oak (Quercus suber L.) is a long-lived evergreen tree species endemic to the 

Western Mediterranean region. It is outcrossing and wind-pollinated and its seed 

dissemination occurs essentially through gravity and zoochory (Gil and Varela 2008). 

Cork oak occurs in a vast variety of climatic conditions and its distribution is rather 

discontinuous, ranging from the Atlantic coast of North Africa and Iberian Peninsula to 

Southeastern Italy (Figure 2.1) (Pausas et al. 2009). In addition to this natural 

distribution, cork oak can also be found as an introduced species, somewhat naturalized, 

in Bulgaria (Figure 2.1, dashed grey) (Alexandrov et al. 2001). Cork oak has a restricted 

distribution when compared to other oaks, mainly due to cork oak being highly 

constrained to acidophilus soils (Serrasolses et al. 2009) and by low winter temperatures 

(Pausas et al. 2009). Cork oak has been long explored for the extraction of its bark, the 

cork, which has a great economical and social importance in the countries where this 

tree is naturally distributed, with special impact in Portugal and Spain (Campos and 

Aronson 2009). In these two countries, cork oak constitutes a unique ecological system, 

known as montado in Portugal and dehesa in Spain, which contribute to the survival of 

many native plant and animal species and to prevent desertification of the areas where 

they are cultivated (Gil and Varela 2008). 

Climate changes are expected to be severe in the Mediterranean Basin, with an increase 

of at least 2-4ᵒC and a great decrease in precipitation during this century (IPCC 2007). 

Therefore, selective pressures exerted by climate within cork oak distribution range are 

expected to increase. If this change happens as fast as predicted, forest climate zone 

boundaries could move quicker than forest tree species are able to migrate (Higgins and 

Harte 2006), so their survival will depend primarily on their plasticity and their ability 

to adapt to new environmental conditions (Davis and Shaw 2001, Valladares et al. 

2007). Cork oak stands are already facing a significant decline by the lack of 

regeneration, mainly due to severe drought periods, the dependence on aged adult trees 

(Toumi and Lumaret 1998, Soto et al. 2007) and inadequate management practices 

(Quartau and Mathias 2010). Therefore, it is essential to conduct studies to understand 

the capacity of cork oak populations to cope with environmental changes, as these may 

aggravate the decline. Additionally, cork oak is also being threatened by several 

diseases, such as the deadly ink disease caused by Phytophthora cinnamomi (Brasier 
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1996). Thus, understanding cork oak adaptive capacity in response to pathogens would 

also be of major interest.  

As cork oak grows under a wide range of rainfall and temperatures, different 

populations are expected to be under distinct selective pressures. Several studies 

reported differences in phenotypic and functional traits in trees from distinct 

populations in common garden experiences (e.g. Aranda et al. 2005, Gandour et al. 

2007, Ramirez-Valiente et al. 2009a, 2010). In Aranda et al. (2005), populations were 

shown to have differential responses to low temperatures, with populations from cold 

regions displaying more tolerance to this type of stress. In another study, it was 

demonstrated that northern populations were maladapted to drought, while continental 

populations were intermediately adapted to dry conditions (Ramirez-Valiente et al. 

2009a). Some of the ecophysiological traits correlated with environmental variables 

were shown to be heritable, supporting the idea that natural selection has led to local 

adaptations (Ramirez-Valiente et al. 2011). Furthermore, a microssatellite (QpZAG46) 

was found to be correlated with leaf size (Ramirez-Valiente et al. 2009a) and its 

population allelic frequency to be correlated with temperature (Ramirez-Valiente et al. 

2010), revealing that temperature is an important selective agent in cork oak. Relatively 

to cork oak molecular defence responses to pathogens, very little is known. In Coelho et 

al. (2006) a cinnamyl alcohol dehydrogenase was associated with defensive response to 

infection by P. cinnamomi, as this gene was up-regulated in infected root seedlings. 

However, no other cork oak candidate genes have yet been studied. In this perspective, 

little is known about adaptive genetic variation of cork oak, despite the high relevance 

of this information to delineate maintenance and conservation strategies for this species. 

The main focus of this study was to assess cork oak adaptive genetic variation. In a 

previous study (unpublished data), 454 trancriptome sequencing was performed, using 

RNA extracted from leaves from 8 different populations, and the results were surveyed 

to identify Single Nucleotide Polymorphisms (SNPs). More than 400 putative SNPs 

were discovered in transcribed regions, which are of major interest as they can be used 

to understand the selective forces acting on functional genes. Since 454 reads are 

described as containing a relatively high rate of sequence errors, detecting variation in 

sequences obtained by this method can lead to erroneous results (Margulies et al. 2005, 

Huse et al. 2007). Thus, validating this variation is a crucial step to further exploit such 

data (Barbazuk et al. 2007, Wiedmann et al. 2008). The aims of this study were 
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therefore: (i) to validate putative SNPs in order to develop useful variable markers 

potentially under selection and (ii) to perform population genetic studies with a set of 

selected SNP markers in order to detect selection signatures in putative functional 

genes. The ability to detect signals of natural selection in population sequence data 

depends on the nature and the strength of the selection events (Nielsen 2005), on the 

evolutionary scale at which they occur (Zhai et al. 2009) and on the sensitivity of the 

methods to discard other evolutionary forces that can mimic selection, such as 

demography and population structure (Biswas and Akey 2006). Therefore, it is 

important to combine several methods in selection and adaptation studies. In this study 

several neutrality tests were used, as well as environmental association analyses to 

detect genetic markers possibly under selective pressure.  

 

2.3. Materials and Methods 

2.3.1. Sampling and DNA extraction 

Nineteen cork oak populations were sampled spanning the full distribution range of the 

species from an international provenance trial (FAIR I CT 95 0202) established at 

Monte de Fava, Alentejo, Portugal (8°7’ W, 38°00’ N) (Varela 2000), except for the 

native Portuguese and Bulgarian populations, which were collected directly from their 

original locations (Table 2.1, Figure 2.1). Populations were selected considering both 

geographical distribution and environmental heterogeneity between populations, 

prioritizing populations that represent contrasting environments (Table 2.1). Three 

samples from holm oak (Quercus rotundifolia Lam.) were also sampled from the 

original populations, as well as a turkey oak (Quercus cerris L.) sample. The collected 

leaves were stored at –80°C until DNA extraction. Genomic DNA was extracted from 

the liquid nitrogen-grounded leaves using DNeasy Plant Mini Kit (Qiagen), according 

to the manufacturer’s protocol. 
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Figure 2.1. Cork oak (Q. suber) geographical distribution map. Full gray represents natural distribution; 

dashed gray represents introduced, somewhat naturalized populations. Sampling localities used for the 

validation process and gene variation assay are represented in blue; sampling localities used only for the 

gene variation assay are represented in black. GER, Gerês; SIN, Sintra; MON, Monchique; SBA, S. Bras de 

Alportel; HAZ, Haza de Lino; TOL, Montes de Toledo; CAT, Cataluña; KEN, Kenitra; TAZ, Taza; ARG, Guerbès; 

MEK, Mekna; LAN, Landes; VAR, Var; COR, Corse; LAZ, Lazio; SAR, Sardegna; SIC, Sicilia; PUG, Puglia; KAV, 

Kavrakirovo. 

 

Table 2.1. Geographic location and climatic conditions of the cork oak populations used in this study. 

 
 

AMT, annual mean temperature; SMT, summer maximum temperature; WMT, winter minimum temperature; P, annual 

precipitation; Psum, summer precipitation; Ins, insolation. 

 

2.3.2. Spatial and environmental data 

Three spatial variables, corresponding to the original locations of the populations 

established at the provenance trial (as described in Varela 2000), were used for each 

population: altitude, latitude and longitude (Table 2.1). Climatic data was obtained 

Longitude Latitude Altitude (m) AMT (ᵒC) SMT (ᵒC) WMT (ᵒC)  P (mm) Psum (mm) Ins

SIN Sintra Portugal 9°25' W 38°45' N 528 14.95 24.77 6.70 795 45 2097

MON Monchique Portugal 8°34' W 37°19' N 902 16.81 29.00 4.83 950 55 1894

GER Gerês Portugal 8°10' W 41°40' N 381 - - - - - -

SBA S. Bras de Alportel Portugal 7°56' W 37°20' N 485 - - - - - -

LAZ Lazio, Toscany Italy 11°57' E 42°25' N 160 14.47 29.47 3.00 937 125 -

PUG Puglia, Brindisi Italy 17°40' E 40°34' N 45 16.55 29.10 7.90 588 49 2341

SIC Sicilia, Catania Italy 14°30' E 37°07' N 250 17.72 28.00 9.80 448 9 2586

SAR Sardegna, Cagliari Italy 8°51' E 39°05' N 200 16.97 30.80 6.60 883 29 2392

VAR Var, Bomes les Mimoses France 6°15' E 43°08' N 155 13.73 29.30 2.13 1029 111 2714

LAN Landes, Soustons France 1°20' W 43°45' N 20 12.27 23.73 5.60 870 140 821

COR Corse, Sartene France 8°58' E 41°37' N 50 13.91 27.77 5.10 691 55 2631

TOL Montes de Toledo, Cañamero Spain 5°21' W 39°22' N 800 15.21 33.30 3.17 1067 54 2290

CAT Cataluña, Sta Coloma Farnes Spain 2°32' E 41°51' N 500 14.99 29.47 2.50 801 140 1986

HAZ Haza de Lino Spain 3°18' W 36°50' N 1300 12.99 27.42 0.92 738 26 1831

KEN Kenitra, Ain Johra Morocco 6°35' W 34°05' N 160 12.99 26.83 8.17 536 9 -

TAZ Taza, Bab Azhar Morocco 4°15' W 34°12' N 1130 17.86 33.33 6.23 970 29 -

MEK Mekna, Tabarka Tunisia 8°51' E 36°57' N 12 17.87 31.20 8.40 948 27 2341

KAV Kavrakirovo Bulgaria 23°10' E 41°26' N 200 14.43 32.30 0.60 507 123 2428

ARG Guerbès Algeria - - - - - - - - -

Spatial variables Climatic variables
CountryPopulationsCode
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either by consulting Varela (2000) or the website Weather Online 

(http://www.weatheronline.co.uk) for the years comprised between 1996 and 2011 

(Table 2.1). Fifty-four environmental variables were considered: annual mean 

temperature (AMT), summer maximum temperature (SMT), winter minimum 

temperature (WMT), annual precipitation (P), summer precipitation (Psum), insolation 

(Ins) (Table 2.1) and forty-eight monthly variables (mean temperature per month, 

maximum mean temperature per month, minimum mean temperature per month and 

precipitation per month). 

 

2.3.3. SNP selection and validation 

From the wide range of putative SNPs detected in cork oak 454 transcriptome 

pyrosequencing (data not published), 32 were selected to be validated (Table 2.2) 

through Sanger sequencing in order to assess if those SNPs corresponded to real 

biological variation or were the result of 454 technical artifacts. SNPs that potentially 

caused nonsynonymous mutations in putative orthologs of known genes were preferred 

and indels were not considered.  

Primers were designed using PerlPrimer v1.1.10 (Marshall 2004) to amplify small 

fragments, each containing a single selected SNP (supplementary Table S1, Supporting 

Information). For the validation process, the amplified samples were the same as those 

used for the transcriptome 454 sequencing, which was carried out with a pool of 5 

individuals from each of the following populations: Kenitra (Morocco), Mekna 

(Tunisia), Puglia (Italy), Haza de Lino, Cataluña (Spain), Gerês, Monchique and Sintra 

(Portugal).  

PCR reactions were carried out in a total volume of 15 µL, containing 0.4 - 0.75 ng of 

genomic DNA, 0.4 U GoTaq DNA Polymerase (Promega), 1x reaction buffer 

(Promega), 0.4 µM of each primer, 0.1 mM dNTPs mix and 3.2 mM MgCl2. Negative 

controls were included in all sets of PCR reactions. Amplification cycles started with 5 

min denaturation at 94 °C, followed by 35-40 cycles of 30 s at 94 °C, 30 s at variable 

annealing temperatures (supplementary table S2, Supporting Information) and 1 min at 

72 °C, with a final extension step at 72 °C for 15 min. PCR products were visualized on 

1% agarose gels to confirm amplification and subsequently purified using SureClean 



35 

 

(Bioline) purification protocol. PCR products successfully amplified were sequenced on 

ABI PRISM 310 or ABI 3730XL (Applied Biosystems) genetic analyzers. The obtained 

sequences were edited with Sequencher v4.0.5 (Gene Codes Corporation) and aligned 

using ClustalW (Thompson et al. 1994). The samples were gradually sequenced until 

both expected SNP alleles were detected for each fragment or alternatively all the 

samples were sequenced. 

 

2.3.4. Population genetic analysis based on validated SNPs 

From the successfully amplified and validated SNPs, five were selected for further 

population analyses in order to detect signatures of selection and to test for their 

potential involvement in adaptation to the environment. This choice was made based on 

four criteria: (i) the location of the SNP in the genome, with a clear preference for SNPs 

located in annotated genes; (ii) the putative function of the gene; (iii) the presence of 

other SNPs in the same fragment; and (iv) the type of mutations comprised in the 

amplified fragment (synonymous versus nonsynonymous SNPs or conservative versus 

non-conservative amino acid substitutions). Non-conservative mutations result in 

changes to amino acids with different physicochemical properties and are thus more 

prone to cause structural and/or functional modifications in the protein. Therefore, these 

mutations are of particular interest for selection and adaptation studies. The selected 

gene fragments were the putative orthologs of Arabidopsis thaliana (L.) Heynh. RAN3, 

NPR1, PR1, ARF16 and HSP (Table 2.2). The open reading frame (ORF) of each gene 

was confirmed through the translation of the putative ORFs in BioEdit v7.1.3.0 (Hall 

1999) and doing a BLASTp (http://blast.ncbi.nlm.nih.gov) subsequently. Five to six 

individuals from 16 to 19 populations were sequenced for each gene fragment 

(supplementary Table S2, Supporting Information), with the exception of RAN3, for 

which only two to five individuals were sequenced per population due to technical 

difficulties. Two to three samples of Q. rotundifolia were also sequenced for each gene 

fragment as outgroup and to account for introgression between the two species, as well 

as one sample of Q. cerris, which was sequenced for each fragment except for RAN3 

(supplementary Table S2, Supporting Information). Amplification, sequencing, 

sequence editing and alignment were performed as described in 2.3.3.  
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2.3.5. Statistical analyses 

After sequence alignment, the heterozygous phase was determined using the program 

PHASE v2.1.1 (Stephens et al. 2001, Stephens and Scheet 2005), with default 

parameters, for Q. suber and Q. rotundifolia separately. Alignment files were converted 

to NEXUS format using CONCATENATOR v1.1.0 (Pina-Martins and Paulo 2008). 

Median-joining haplotype networks were then constructed for each fragment using 

NETWORK 4.6.1.0 (Bandelt et al. 1999).  

Analyses of molecular variance (AMOVA) were performed employing ARLEQUIN 

v3.5 (Excoffier and Lischer 2010) to assess patterns of genetic differentiation among 

populations and groups of populations. Populations were grouped by latitude, longitude, 

east and west populations and according to the genetic structure described in Magri et 

al. (2007). 

Number of haplotypes, haplotype diversity (H), number of polymorphic sites and 

nucleotide diversity (π) were computed with DnaSP v5.10 (Librado and Rozas 2009). 

Hardy-Weinberg equilibrium tests were performed for each fragment, considering both 

locus by locus and whole haplotype levels using ARLEQUIN v3.5. Tajima’s D (Tajima 

1989) and Fu’s Fs (Fu 1997) neutrality tests were also estimated using ARLEQUIN 

v3.5.  

For site-specific sequence analysis of selective pressures acting on each fragment a 

Maximum Likelihood approach was implemented using CODEML from PAML v4.6 

software package (Yang 2007). This analysis is based on the ω parameter, which 

compares the ratio of nonsynonymous mutations per nonsynonymous sites (dN) to the 

number of synonymous mutations per synonymous sites (dS). If there is no selection, 

synonymous and nonsynonymous substitutions should occur at the same rate, thus ω 

(dN/dS) would be expected to be 1. If there is negative selection, dN/dS should be smaller 

than 1 and in case of positive selection dN/dS should be higher than 1. To test for 

positive selection acting on different sites across the protein sequence, three site models 

were tested: M0, that assumes one site rate for all codon sites, M1, which corresponds 

to neutrality and assumes two values for ω (ω=1 and ω<1), and M2, that estimates three 

values of ω (ω=1, ω<1 and ω>1) and accounts for positive selection. Likelihood ratio 

tests (LRT) were performed to compare the three models and a χ
2
 distribution was used 
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to check for significant differences between the log likelihoods of the models as 

implemented in the software package. Posterior probabilities of the inferred positively 

selected sites were estimated by the Bayes empirical Bayes (BEB) approach that takes 

sampling errors into account (Yang et al. 2005).  

Correlations between genetic data and spatial and climatic variables were tested using 

the program MatSAM v2 (Joost et al. 2007). Four genetic data sets were used: SNPs, 

nonsynonymous mutations only (amino acid data), haplotypes and haplotypes 

accounting only nonsynonymous mutations. Associations between genetic markers’ 

frequencies and the spatial and environmental variables were assessed through series of 

univariate logistic regressions as implemented in the program.  

 

2.4. Results 

2.4.1. SNP validation 

Thirty-two putative SNPs were selected to undergo the validation process resorting to 

Sanger sequencing. Nevertheless, only 19 fragments were successfully amplified and 

sequenced (59%) (Table 2.2). For the remaining fragments, no PCR products were 

obtained (SNPs 9-12 and 18), the amplified fragments were too long to be sequenced 

without designing internal primers (SNPs 5, 14, 21, 23 and 24) or, in a few cases, 

amplifications were unspecific (SNPs 2, 3 and 16) (Table 2.2). From the 19 SNPs, 11 

were validated, confirming the existence of real biological variation, while three SNPs 

were not validated after sequencing all the samples used for the transcriptome 

sequencing, suggesting that those corresponded to technical errors. For the remaining 

five SNPs, variation was not found in the expected positions but it was not possible to 

sequence all the samples used in the 454 study. Consequently, these last five SNPs were 

discarded for the rest of the study, as no conclusions can be withdraw regarding to their 

authenticity. From the 14 SNPs that went through the complete validation process, 79% 

were validated. 

 

 



 

 

SNP BLAST protein Putative protein function SNP Validation Observations

SNP1 Sulfoquinovosyldiacylglycerol 1 (SQD1) sulfolipid biosynthesis CT Not validated Variation not found

SNP2 Gibberellin receptor GID1 plant growth and development CT - Unspecific PCR amplification

SNP3 Dead box ATP-dependent RNA helicase RNA methylation CT - Unspecific PCR amplification

SNP4 Nonexpressor of pathogenesis-related genes 1 (NPR1) plant defense; transcription regulation CG Validated Variation found in expected position

SNP5 V-type proton ATPase catalytic subunit A (V-ATPase subunit A) vacuolar ATP hydrolysis coupled proton transport CT - Amplified fragment too long for sequencing

SNP6 RAS-related nuclear protein 3 (RAN3) nucleocytoplasmic transport CT Validated Variation found in expected position

SNP7 ATP binding protein protein phosphorylation CT Not validated Variation not found

SNP8 Annexin 8 response to stress GT Validated Variation found in expected position

SNP9 Predicted protein unkown AC - No PCR products amplified

SNP10 Ribokinase ribose metabolism CT - No PCR products amplified

SNP11 Predicted protein unkown TC - No PCR products amplified

SNP12 Predicted protein unkown CG - No PCR products amplified

SNP13 Autoinhibited calcium ATPase transmenbrane transport AG Not validated Variation not found

SNP14 S-phase kinase-associated protein 1 (SKP1) meiosis and mitosis regulation GT - Amplified fragment too long for sequencing

SNP15 Pathogenesis-related protein 1 (PR1) plant defense GT Validated Variation found in expected position

SNP16 Aquaporin PIP2;3 response to stress AC - Unspecific PCR amplification

SNP17 MYC2 plant defense; transcription regulation AG Validated Variation found in expected position

SNP18 Methionine synthase (MS2) methionine biosynthesis; response to stress AC - No PCR products amplified

SNP19 Xyloglucan 6-xylosyltransferase xyloglucan synthesis CG - In validation process 

SNP20 Class I small heat shock protein (HSP) response to stress AC Validated Variation found in expected position

SNP21 Glyceraldehyde-3-phosphate dehydrogenase C (GAPC) response to stress; plant defence CT - Amplified fragment too long for sequencing

SNP22 Glutamine synthetase nodule isozyme (GLN) nitrogen fixation GT Validated Variation found in expected position

SNP23 2-methyl-6-phytylbenzoquinone methyltransferase (MPBQ) plastoquinone and vitamin E biosynthesis GT - Amplified fragment too long for sequencing

SNP24 Malate dehydrogenase (MDH) carbohydrate metabolic process AG - Amplified fragment too long for sequencing

SNP25 Triacylglycerol lipase lipid metabolism; regulation of seed germination CT Validated Variation found in expected position

SNP26 Mitogen-activated protein kinase 2 (MPK2) plant defense AT - In validation process 

SNP27 Tubby-like protein 3 (TLP3) response to stress; transcription regulation CT - In validation process 

SNP28 Nuclear transcription factor Y subunit A-7 isoform 1 (NFYA7) response to stress; transcription regulation CT Validated Variation found in expected position

SNP29 Auxin response factor 16 (ARF16) plant growth and development; transcription 

regulation; stress response

AG Validated Variation found in expected position

SNP30 Transcription factor bHLH51 transcription regulation CT Validated Variation found in expected position

SNP31 Protein FRIGIDA-like flowering GT - In validation process 

SNP32 Jasmonate ZIM-domain protein plant defense; transcription regulation AG - In validation process 

Table 2.2. Single Nucleotide Polymorphisms (SNPs) subjected to the validation process, their BLAST protein result, putative protein function, SNP alleles, status of the 

validation process and observations about the validation process. 
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2.4.2. Characterization of selected markers and genetic diversity 

Five of the validated SNPs were selected for further analysis. The fragments chosen 

were located in the putative orthologs of A. thaliana RAN3, NPR1, PR1, ARF16 and 

HSP genes, for which the respective putative function is described in Table 2.2.  

The amplified fragment from RAN3 includes part of an intron, followed by a small 

exon, a second intron, a second exon with a stop codon and the following non-coding 

region. These exons correspond to the C-terminal region of the protein. The putative 

ORF detected in the 454 transcriptome analysis was not the real ORF, which was 

identified by running BLASTp against the translated nucleotide sequence. For this 

reason, the putative nonsynonymous SNP was in fact in the non-coding region after the 

stop codon. Other SNPs were found in the amplified fragment: 10 in the introns and two 

synonymous mutations in the exons. Therefore, a total of 13 polymorphic sites were 

detected and a total of 12 haplotypes were found (Table 2.3). 

For NPR1 gene, the amplified fragment comprises a partial exon that includes a 

segment of the ankirin repeats (ANK) domain and a segment of the C-terminal of the 

protein encoded. In addition to the validated SNP (nonsynonymous and non-

conservative) four polymorphic sites were found, giving a total of five SNPs (Table 

2.3). One is a synonymous mutation, another one is a nonsynonymous conservative 

mutation and the remaining two are nonsynonymous and non-conservative mutations. A 

total of four haplotypes were detected. 

The amplified PR1 fragment comprises an extracellular SCP-like domain known as 

“PR1-fold” that is believed to contribute to maintain the protein structure in 

extracellular environment (Van Loon et al. 2006). Besides the validated SNP, four 

additional polymorphic sites were found (Table 2.3), corresponding to a total of one 

synonymous mutation and four nonsynonymous and non-conservative mutations. A 

total of five haplotypes were found. 

ARF16 amplified fragment is likely to correspond to the central non-conserved domain 

of the protein, which is responsible for its transcriptional activation/repression function. 

Four polymorphisms were detected in this fragment (Table 2.3), including the validated 

SNP. One is a synonymous mutation and three are nonsynonymous, two of which are 

non-conservative. Five haplotypes were detected in total. 
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Table 2.3. Fragments chosen for population genetic studies, length of the amplified fragments and 

diversity indexes and neutrality tests estimated for these fragments. 

 
 

H, haplotype diversity; π, genetic diversity. * P < 0.05; *** P < 0.001. 

 

For HSP, the amplified fragment comprises part of the C-terminal alpha crystalline 

domain (ACD) and the non-codifying sequence after the stop codon. In the coding 

region, six polymorphic sites were detected (including the validated SNP), 

corresponding to two synonymous and four nonsynonymous and non-conservative 

mutations. In the non-coding region, four SNPs were found. In this way, a total of 10 

SNPs and 14 haplotypes were detected in this fragment (Table 2.3). 

In general, low genetic diversity was found (Table 2.3). The number of haplotypes 

found is lower for NPR1, PR1 and ARF16 than for RAN3 and HSP, which included non-

coding regions. 

 At the whole haplotype level analysis, all gene fragments were found to be in Hardy-

Weinberg equilibrium (supplementary table S3, Supporting Information), except for 

HSP (P<0.001). In this fragment, the locus by locus analysis detected that positions 4 

(which corresponds to a nonsynonymous and non-conservative mutation) (P<0.001) and 

8 (mutation in the non-coding region) (P<0.001) had excess of heterozygotes. In RAN3, 

two positions were also detected as in Hardy-Weinberg disequilibrium, positions 9 

(synonymous mutation) (P<0.001) and 13 (mutation in the non-coding region) 

(P<0.05), both with heterozygote deficit. 

 

2.4.3. Phylogeography and population genetic structure 

The haplotype networks constructed for the five fragments demonstrated a lack of 

phylogeographic structure, with haplotypes being frequently shared by geographically 

distant populations (Figures 2.2 and 2.3, Table 2.4 and supplementary Figure S1, 

Supporting Information).  

Fragment
Length 

(bp)

Number of 

haplotypes

Polymorphic 

sites

Synonymous 

mutations

Nonsynonymous 

mutations

Mutations in 

non-coding 

regions

H π Tajima's D Fu's Fs

RAN3 627 12 13 2 - 11 0.597 0.00681 2.00000 1.90400

NPR1 270 4 5 2 3 - 0.566 0.00688 2.30457* 5.19204***

PR1 257 5 5 1 4 - 0.609 0.00519 1.06458 2.03902

ARF16 234 5 4 1 3 - 0.648 0.00672 2.31433* 2.78844*

HSP 374 14 10 2 4 4 0.836 0.00619 0.81103 -1.66710



 

Gene

N H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 N H1 H2 H3 H4 N H1 H2 H3 H4 H5 N H1 H2 H3 H4 H5 N H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

Sintra 2 5 5 3 3 1 8 4 6 4 1 1 3 9 1 2 4 2 1 2 1 4

Gerês 2 3 5 3 3 1 6 - - -

Monchique 3 1 4 5 3 4 3 5 2 10 2 4 3 2 2 5 7 2 3 2 1 1 1 2

S. Bras Alportel 4 1 1 1 1 2 3 7 - - -

Kenitra 2 1 7 2 4 8 3 4 5 3 2 6 6 4 4 1 3 2

Taza 6 1 1 3 1 1 1 3 3 1 8 4 7 2 2 1 2 7 5 6 1 1 4 1 1 4

Montes Toledo 2 4 6 2 6 6 4 4 5 1 2 4 5 2 2 3 5 2 3 1 5 1

Haza de Lino 2 6 4 2 6 6 3 9 2 1 2 8 4 6 4 2 1 2 2 1

Guerbès - 3 2 2 2 - - -

Landes 4 1 1 3 1 3 1 4 7 3 9 2 1 3 3 4 5 4 2 4 1 5

Cataluña 2 2 4 3 5 3 4 3 6 5 1 2 10 2 3 1 5 6

Var 2 3 1 2 9 3 3 5 4 3 3 1 1 10 5 1 1 4 4 2

Lazio 4 3 4 1 2 2 3 9 3 2 9 1 3 8 1 3 5 1 3 3 1 4

Corse 1 4 2 1 11 3 9 2 1 3 8 1 3 6 1 1 3 5 1 1

Sardegna - 3 3 1 6 3 5 6 1 4 3 4 1 4 7 1 2 1 3 1 3 1

Mekna 2 3 7 3 2 1 9 3 5 4 1 3 7 3 2 6 2 3 1 2 1 3

Sicilia 2 2 4 2 5 7 5 7 2 1 1 1 3 4 1 7 6 4 1 2 1 2 2

Puglia 2 1 7 3 3 1 8 3 2 4 4 4 8 2 1 1 8 1 5 1 1 1 1 1 1

Kavrakirovo 4 3 4 2 1 3 5 3 5 2 9 3 4 6 2 3 1 6 4 1 3 1 2 1

- 2 1 1 38 1 76 2 1 3 3 2 2 - 67 1 24 125 - 99 61 6 3 19 - 96 25 15 1 55 - 21 10 51 4 4 18 2 1 46 2 3 2 23 1

ARF16 HSP

Populations

Total

RAN3 NPR1 PR1

Table 2.4. Number of haplotypes (N) and haplotype distribution throughout the sampled populations for RAN3, NPR1, PR1, ARF16 and HSP fragments. 
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NPR1 analysis revealed three common haplotypes spread through almost every 

population (Table 2.4, Figure 2.2a and b). Haplotype 1 is the second most common 

haplotype and differs from haplotype 2 only by one synonymous mutation, from 

haplotype 3 by two nonsynonymous and non-conservative mutations, and from 

haplotype 4, the most common one, by three nonsynonymous mutations (Figure 2.2a). 

The most common haplotype is therefore the most derived one (haplotype 4) and is 

shared with one Q. rotundifolia individual, although this haplotype is very distant from 

the other Q. rotundifolia haplotypes, while haplotype 1, the most ancestral one, is 

shared with Q. cerris. 

For ARF16, the most ancestral haplotype (haplotype 1) is more common than the others 

and distributed throughout the analyzed populations (Table 2.4, Figure 2.2d). Two other 

haplotypes are also rather common and dispersed through almost every population 

(haplotypes 2 and 5). Haplotype 2 diverges from haplotype 1 by one synonymous 

mutation. On the other hand, haplotype 1 differs from haplotype 3 by two 

nonsynonymous mutations, one of them non-conservative. Haplotype 5, the most 

derived and second most common one, differs from haplotype 3 by one nonsynonymous 

and non-conservative mutation. One Q. rotundifolia individual was found to share 

haplotype 5 with cork oak (Figure 2.2c), although the other Q. rotundifolia haplotypes 

are very distant. Haplotype 1 is shared with cork oak both by Q. rotundifolia and Q. 

Cerris.  

The haplotype network obtained for HSP was much more complex than the other gene 

networks (Figure 2.2e). However, no evident geographic structure was found (Table 

2.4, Figure 2.2f). Two haplotypes are more common and dispersed throughout almost 

all the analyzed populations (haplotypes 3 and 9). These two haplotypes differ by one 

synonymous and one nonsynonymous and non-conservative mutation. Haplotypes 1, 6 

and 13 are also rather spread throughout cork oak populations, without any apparent 

geographic structure. Haplotypes 1 and 6 differ from haplotype 3 only by synonymous 

mutations, while haplotype 13 differs by one nonsynonymous and non-conservative 

mutation from haplotype 9 and two nonsynonymous and non-conservative mutations 

from haplotype 3, besides the synonymous mutations. Other rarer haplotypes are also 

scattered through the analyzed populations without evident structure. Haplotype 3 is 

shared with Q. cerris (Figure 2.2e) and with one Q. rotundifolia individual, while 

haplotype 13 is also shared with Q. rotundifolia.  



 

Figure 2.2. Median Joining haplotype networks for NPR1 (a), ARF16 (c) and HSP (d) fragments. Each haplotype is represented by a different colour. Haplotype geographical distribution is 

represented in maps b) NPR1, d) ARF16 and f) HSP, with haplotype colours corresponding to the ones in the networks. Q. rotundifolia haplotypes are represented in black; Q. cerris 

haplotypes are represented in grey. 
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For RAN3 (Figure 2.3a), two of the detected haplotypes are common to almost every 

population (Table 2.4, and supplementary Figure S1a, Supporting Information) and 

other rare haplotypes are spread throughout the populations without any apparent 

geographic structure. 

Likewise, two of the PR1 haplotypes are very common and were found in all the 

analyzed populations (haplotypes 1 and 2) (Table 2.4, supplementary Figure S1b, 

Supporting Information). Haplotype 1, the most common, is the most ancestral one and 

haplotype 2, the second most common, diverges from it by two nonsynonymous and 

non-conservative mutations. Haplotype 5 was also found in almost every population and 

is shared with Q. cerris (Figure 2.3b), while the other haplotype detected in this species 

differs from it by one mutation. The remaining haplotypes are rare and more scarcely 

distributed throughout cork oak populations, without any evident geographic structure 

(supplementary Figure S1b, Supporting Information). 

 

The same lack of genetic structure seems to be evident for all 5 fragments from the 

analysis of molecular variance (AMOVA), at least for the tested groups of population 

(Table 2.5). For all analyses, the overall source of variation was within populations and 

not among populations within groups or among groups. 

 

Figure 2.3. Median Joining haplotype networks for RAN3 (a) and PR1 (b) fragments. Each haplotype is 

represented by a different color. Haplotype geographical distribution is represented in maps in supplementary 

Figure S1, Supporting Information, with haplotype colors corresponding to the ones in the networks. Q. 

rotundifolia haplotypes are represented in black; Q. cerris haplotypes are represented in grey. 



 

% var FST P % var FSC P % var FCT P

RAN3 [VAR,MEK,COR,PUG,LAZ,SIC][TAZ,CAT,HAZ,TOL,SIN,MON,KEN,LAN,GER,SBA] 96.94 0.031 0.1971 -0.16 -0.002 0.5336 3.22 0.032 0.0025

[TAZ,CAT,HAZ][VAR,MEK,COR][PUG,LAZ,SIC][TOL,SIN,GER,MON,KEN,LAN,SBA] 98.58 0.014 0.1858 1.42 0.014 0.1900 0.01 0.000 0.5188

[KAV,PUG,COR,CAT,GER][SIN,TOL][MEK,HAZ,SIC,MON,SBA][KEN,TAZ][LAZ][LAN,VAR] 98.67 0.013 0.3483 -3.46 -0.036 0.9654 4.79 0.048 0.0000

[SIN,MON,GER,SBA][TAZ,HAZ,KEN,TOL][LAN,CAT][VAR,LAZ,COR,MEK][SIC][PUG][KAV] 99.66 0.003 0.3503 1.88 0.018 0.2016 -1.54 -0.015 0.8992

NPR1 [VAR,MEK,COR,SAR,PUG,LAZ,SIC,ARG][TAZ,CAT,HAZ,TOL,SIN,MON,KEN,LAN,GER,SBA] 94.04 0.060 0.0004 6.83 0.068 0.0000 -0.87 -0.009 0.7722

[TAZ,CAT,HAZ][VAR,MEK,COR,SAR,ARG][PUG,LAZ,SIC][TOL,SIN,GER,MON,KEN,LAN,SBA] 94.04 0.060 0.0000 7.77 0.076 0.0000 -1.82 -0.018 0.9254

[KAV,PUG,COR,CAT,GER][SAR,SIN,TOL][MEK,HAZ,SIC,MON,SBA][KEN,TAZ][LAZ][LAN,VAR] 94.05 0.060 0.0005 7.52 0.074 0.0000 -1.57 -0.016 0.8439

[SIN,MON,GER,SBA][TAZ,HAZ,KEN,TOL][LAN,CAT][VAR,LAZ,COR,SAR,MEK][SIC][PUG][KAV] 94.19 0.058 0.0005 8.77 0.085 0.0005 -2.96 -0.030 0.9348

PR1 [VAR,MEK,COR,SAR,PUG,LAZ,SIC][TAZ,CAT,HAZ,TOL,SIN,MON,KEN,LAN] 93.48 0.065 0.0079 3.29 0.034 0.0376 3.23 0.032 0.0267

[TAZ,CAT,HAZ][VAR,MEK,COR,SAR][PUG,LAZ,SIC][TOL,SIN,MON,KEN,LAN] 94.88 0.051 0.0084 4.98 0.050 0.0074 0.14 0.001 0.4126

[KAV,PUG,COR,CAT][SAR,SIN,TOL][MEK,HAZ,SIC,MON][KEN,TAZ][LAZ][LAN,VAR] 94.46 0.055 0.0030 1.60 0.017 0.1912 3.94 0.039 0.0366

[SIN,MON][TAZ,HAZ,KEN,TOL][LAN,CAT][VAR,LAZ,COR,SAR,MEK][SIC][PUG][BUL] 94.46 0.055 0.0030 1.92 0.020 0.1685 3.62 0.036 0.0771

ARF16 [VAR,MEK,COR,SAR,PUG,LAZ,SIC][TAZ,CAT,HAZ,TOL,SIN,MON,KEN,LAN] 95.77 0.042 0.0000 5.70 0.056 0.0020 -1.47 -0.015 0.9335

[TAZ,CAT,HAZ][VAR,MEK,COR,SAR][PUG,LAZ,SIC][TOL,SIN,MON,KEN,LAN] 95.32 0.047 0.0049 5.66 0.056 0.0064 -0.98 -0.010 0.7194

[KAV,PUG,COR,CAT][SAR,SIN,TOL][MEK,HAZ,SIC,MON][KEN,TAZ][LAZ][LAN,VAR] 95.52 0.045 0.0099 2.45 0.025 0.1215 2.03 0.020 0.1349

[SIN,MON][TAZ,HAZ,KEN,TOL][LAN,CAT][VAR,LAZ,COR,SAR,MEK][SIC][PUG][BUL] 95.36 0.046 0.0109 1.61 0.017 0.2614 3.03 0.030 0.0721

HSP [VAR,MEK,COR,SAR,PUG,LAZ,SIC][TAZ,CAT,HAZ,TOL,SIN,MON,KEN,LAN] 100.57 -0.006 0.8375 -1.99 -0.020 0.9496 1.42 0.014 0.0148

[TAZ,CAT,HAZ][VAR,MEK,COR,SAR][PUG,LAZ,SIC][TOL,SIN,MON,KEN,LAN] 101.22 -0.012 0.8434 -1.31 -0.013 0.8058 0.09 0.001 0.4308

[KAV,PUG,COR,CAT][SAR,SIN,TOL][MEK,HAZ,SIC,MON][KEN,TAZ][LAZ][LAN,VAR] 101.10 -0.011 0.7846 -0.21 -0.002 0.5366 -0.89 -0.009 0.8646

[SIN,MON][TAZ,HAZ,KEN,TOL][LAN,CAT][VAR,LAZ,COR,SAR,MEK][SIC][PUG][BUL] 100.69 -0.007 0.7826 -2.55 -0.026 0.9793 1.86 0.019 0.0272

Variation within populations Variation among populations Variation among groups
GroupsGene

Table 2.5. Results of the analysis of molecular variance (AMOVA) for each fragment. Four groups of populations were tested in the following order: East and West 

populations; populations grouped according to the genetic structure described in Magri et al. (2007); populations grouped by latitudes; and populations grouped by 

longitudes. Negative values must be interpreted as zero (Long 1986) in the AMOVA model. 
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2.4.4. Neutrality tests 

Both Tajima’s D and Fu’s FS neutrality tests rejected the null neutral model on two of 

the fragments, NPR1 and ARF16 (Table 2.3). Positive D values indicate an excess of 

intermediate frequency alleles, consistent with balancing selection or population 

decline. Positive values of Fu’s FS indicate a deficit of alleles, suggesting also balancing 

selection or a bottleneck.  

PAML analyses were performed for all fragments except for RAN3, as no 

nonsynonymous mutations were found in this fragment. The selection model (M2) was 

not significantly more adjusted to the data than the neutral model (M1) for any of the 

five fragments investigated. However, for HSP, M2 likelihood was higher than M1, 

even though not significantly, and the selection model detected three positions 

potentially under positive selection, one of them with P<0.05 (amino acid position 17) 

(Figure 2.4). For NPR1 and PR1 similar results were obtained, as M2 likelihood was not 

significantly higher than M1 likelihood and a few positions were detected as possibly 

being under selection, although none of them had significant P-values. For NPR1, the 

position detected was amino acid position 29, corresponding to the conservative 

mutation found in this fragment, while for PR1 four positions were detected (amino acid 

positions 1, 56, 68, 70), corresponding to all four nonsynonymous mutations comprised 

in this fragment.  
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Figure 2.4. Posterior probability distribution of three classes of ω (ω0, ω1 and ω2) across the transcribed HSP 

fragment inferred from M2 model of PAML. The proportion of each site class with overall ω0 = 0.0, ω1 = 1.00 

and ω2 = 7.65, are p0 = 0.914, p1 = 0.000 and p2 = 0.086, respectively. 
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2.4.5. Association with environmental variables 

Although several genetic data sets were used for the environmental associations, 

significant associations were found for the amino acid data set only. Two associations 

were found in HSP fragment: a positive correlation between aspartate frequency in the 

amino acid position 17 and latitude (Figure 2.5a), found to be significant by the 

dynamic null hypothesis analysis for G test (P<0.05), and also a positive correlation 

between aspartate frequency in position 17 and precipitation in September (Figure 

2.5b), found to be significant both by dynamic null hypothesis analysis for G test and 

Wald Beta 1 test (P<0.1). Therefore, the probability of position 17 having aspartate 

increases with latitude and precipitation in September. It is also evident from the data 

that precipitation in September increases with latitude (Figure 2.5c) and populations 

under higher precipitation tend to have higher aspartate frequency (Figure 2.5c and d). 
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Figure 2.1. Results from MatSAM logistic regressions. On the left are the graphs of the significant correlations 

detected by the program: a) correlation of the probability of finding aspartate (D) on position 17 and latitude; 

b) correlation of the probability of finding aspartate (D) on position 17 and precipitation in September (P_Set). 

On the right, bar graphs representing precipitation in September (mm) (c) and aspartate frequency (d) in 

sampled populations sorted by increasing latitudes. KEN, Kenitra; TAZ, Taza; HAZ, Haza de Lino; MEK, 

Mekna; SIC, Sicilia; MON, Monchique; SIN, Sintra; TOL, Montes de Toledo; SAR, Sardegna; PUG, Puglia; 

KAV, Kavrakirovo; COR, Corse; CAT, Cataluña; LAZ, Lazio; VAR, Var; LAN, Landes. 
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2.5. Discussion 

2.5.1. SNP validation 

For many of the putative SNPs selected for the validation process, the attempts to 

amplify the corresponding fragments were unsuccessful. Low levels of success have 

been reported in other studies when amplifying genomic DNA with primers designed 

from expressed sequence tags (ESTs) (e.g. Zhu et al. 2003, Coles et al. 2005). However, 

in the present study higher levels of success were obtained than in the referred studies 

(59% versus 43%).  Amplification failure can be attributed mostly to variation at primer 

annealing site and the presence of large introns within PCR amplicons. Accordingly, the 

amplified fragments for some of the investigated putative genes were too long to be 

sequenced, probably due to the presence of large introns. 

Three of the SNPs analyzed could not be validated (Table 2.2), since the expected 

variation was not found even after sequencing all the samples used for the transcriptome 

sequencing, suggesting that these SNPs do not correspond to biological variation, 

resulting rather from 454 technical errors. In previous works (Huse et al. 2007, Kunin et 

al. 2010), the presence of homopolymers, i.e. repetitive sequences of identical bases 

(e.g. AAAA), have been reported as being associated with some errors in 454 

pyrosequencing, resulting from difficulties to resolve the intensity of luminescence 

produced when a homopolymer is encountered. Errors caused by homopolymer effects 

include extensions (insertions), incomplete extensions (deletions) and carry-forward 

errors (insertions and substitutions). Carry-forward errors occur when an incomplete 

flush of base flow results in a premature incorporation of a base, usually near but not 

adjacent to the homopolymer (Margulies et al. 2005). The three putative SNPs that were 

not validated were located upstream from short homopolymers composed by a repeat of 

the base that was not found by Sanger sequencing. Therefore, these putative SNPs are 

most likely the result of carry-forward errors. Nonetheless, most of the successfully 

amplified and sequenced SNPs were validated (79%), results that are not very different 

from those obtained in another study where validation was carried out with Sanger 

sequencing (85%) (Barbazuk et al. 2007), supporting that transcriptome pyrosequencing 

is a useful tool to find and develop new genetic markers, particularly for non-model 

organisms, for which genetic tools are scarce.  



49 

2.5.2. Diversity, plylogeography and genetic structure 

The low number of  haplotypes found for NPR1, PR1 and ARF16 is comparable to what 

was found in another study involving cork oak nuclear DNA (ITS) (Simeone et al. 

2009). However, in the present study, higher numbers of haplotypes were found in 

fragments that included non-coding regions (RAN3 and HSP), revealing that the low 

number of haplotypes found for NPR1, PR1 and ARF16 might be due to mutational 

constraints in coding regions, as this may disrupt protein function. 

For all analyzed fragments, low population genetic structure was detected, although in 

previous works using chloroplastidial and nuclear neutral markers geographical 

structure was detected (e.g. Lumaret et al. 2005, Magri et al. 2007, Simeone et al. 

2009). Cork oaks are long-lived organisms, experiencing varying environmental 

conditions throughout its lifespan, and are outcrossing trees, with long-distance pollen 

dispersal. These life-history traits usually result in low differentiation among 

populations at nuclear markers (Austerlitz et al. 2000). 

In the haplotype network analysis for NPR1 fragment, cork oak haplotype 4 was shared 

with one Q. rotundifolia individual, although the other Q. rotundifolia haplotypes were 

very distant from this one (Figure 2.2a). Likewise, for ARF1 and for HSP two 

haplotypes (haplotypes 1 and 5 and haplotypes 3 and 13 respectively) (Figure 2.2c and 

e) were shared with Q. rotundifolia, even though the other Q. rotundifolia were 

separated by several mutations. These results suggest the occurrence of hybridization 

events between cork oak and lineages from Q. rotundifolia. Hybridization events and 

haplotype sharing between these two species were not surprising, as they are well 

described in the literature (e.g. Jimenez et al. 2004, Lopez-de-Heredia et al. 2007, 

Magri et al. 2007, Costa 2011, Costa et al. 2011).  

In NPR1, ARF16 and HSP, the ancestral haplotypes were shared with Q. cerris (Figure 

2.2a, c and d). Since this species are closely related to cork oak this is probably due to 

incomplete lineage sorting, although the occurrence of hybridization events cannot be 

completely excluded. For PR1, haplotype 5 was also shared with Q. cerris (Figure 

2.3b), although the other Q. cerris haplotype differed from it for one mutation. 

Therefore, it is not clear in this case if this is due to incomplete lineage sorting or a 

hybridization event between cork oak and a lineage of Q. cerris. 
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2.5.3. Fragments under putative balancing selection  

Neutrality tests for NPR1 (Tajima’s D and Fu’s Fs) were significant and positive, 

suggesting that either this fragment is under balancing selection or cork oak populations 

are declining. However, demographic effects should affect all the tested fragments. 

Since this signal was detected for only two of them, NPR1 is likely to be under 

balancing selection. Moreover, the few haplotypes found for this fragment presented no 

geographical structure. PAML results provide an indication that one nonsynonymous 

conservative mutation may be under positive selection, which suggests that even 

conservative mutations may have an impact on fitness. However, the values were not 

significant, which suggests that this result is a false positive or that positive selection 

signal is weak.  

NPR1 fragment has three nonsynonymous mutations in the amplified region 

corresponding to the ANK domain, two of which are non-conservative. Non-

conservative mutations can affect the structure and therefore also the function of the 

protein, as the original amino acid is replaced by one with different physicochemical 

properties. Conservative mutations are expected to have smaller effects, although when 

combined with other nonsynonymous mutations, significant effects may occur. NPR1 is 

a well studied protein in A. thaliana, being a critical signalling protein for the systemic 

acquired resistance (SAR), which is involved in the response to several pathogens, such 

as Phytophthora sp., and in the cross-communication between all of the plant defence 

pathways (Pieterse and Van Loon 2004). Therefore, changes in this protein are expected 

to have an impact in the plant capacity to respond to pathogens. The domain in which 

the mutations were found in cork oak orthologous NPR1 is responsible for the 

interaction with TGA transcription factors and consequently their activation. This 

interaction enhances the DNA binding activity of TGA factors to the promoter elements 

of Pathogenesis-related (PR) genes and is, therefore, thought to be critical for defence 

gene activation. In this way, natural variation within ANK domain is expected to affect 

the expression profile of PR genes in response to pathogens by altering the affinity of 

NPR1 for TGA transcription factors. In Caldwell and Michelmore (2009), evidences of 

balancing selection were also revealed in ANK domain in A. thaliana NPR1, as reported 

here for the cork oak orthologous NPR1, suggesting that this gene may be under 

balancing selection in several plant species. 
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Polymorphism can be maintained in populations through several evolutionary scenarios, 

such as heterozygote advantage, fluctuating environment conditions and inverse 

frequency-dependent selection. No deviations from Hardy-Weinberg equilibrium were 

found in the data, excluding the heterozygote advantage hypothesis. As selective 

pressure acting on this gene is probably maintained by pathogens, both fluctuating 

environment conditions or inverse frequency-dependent selection might be the cause of 

polymorphism maintenance observed in NPR1gene in cork oak populations. 

No environmental associations were detected for this fragment, as it should be expected, 

since variation is probably more dependent on biotic interactions than abiotic factors.  

NPR1 haplotypes can have different effects that need to be further investigated. 

Different haplotypes may induce the expression of different PR genes, as they may have 

different affinities with different TGA transcription factors, which might allow a 

specialized defence against specific pathogens. On the other hand, pathogen effector 

proteins may interfere with defence pathways signalling proteins directly, exerting 

direct selective pressure in NPR1 (Caldwell and Michelmore 2009). Furthermore, the 

mutations in ANK domain may have some effect in the cross-talk between SAR and the 

other defence pathways, although it is not known which NPR1 domain is involved in 

this cross-talk (Pieterse and Van Loon 2004). 

ARF16 (Auxin Response Factor) is the second gene fragment showing signs of 

balancing selection in cork oak. This gene codes for a transcription factor involved in 

root cap cell differentiation and is regulated by the microRNA mir160 (Axtell and 

Bartel 2005, Ding and Friml 2010). In Quercus robur L., this gene has been identified 

as a candidate gene involved in drought resistance (Spiess et al. 2012). As in NPR1, 

Tajima’s D and Fu’s Fs were significantly positive for ARF16 sequences, which suggest 

that this fragment is also probably under balancing selection. Furthermore, no genetic 

structure was found, supporting the idea of polymorphism maintenance among cork oak 

populations. No environmental associations were detected for this gene, probably 

because this fragment is under balancing selection. 

Three nonsynonymous mutations were found in the non-conserved domain of the 

ARF16 gene, which is essential for its transcription factor function. Therefore, these 

mutations may have an effect on transcription regulation of the genes activated by 

ARF16 protein.  



52 

As mentioned before, there are several types of balancing selection. As no deviations 

from Hardy-Weinberg equilibrium were found for ARF16, it is unlikely that 

heterozygote advantage is the type of balancing selection acting on this gene. ARF16 

protein function is not well characterized yet, although in Spiess et al. (2012) ARF16 

gene expression was associated with response to drought. In this way, drought might be 

the selective pressure acting upon this gene, maintaining polymorphism due to 

fluctuating environment conditions. The results here obtained are in accordance with 

other studies in which drought is pointed out as an important selective agent in the 

modulation of cork oak adaptive genetic variation (Ramirez-Valiente et al. 2009a, 

2009b, 2011). However, definite conclusions cannot be taken until ARF16 protein 

function is better studied. 

 

2.5.4. Putative positively selected fragment 

HSP encodes for a small Heat Shock Protein class I, which are generally involved in 

response to stress. The amplified fragment corresponds to the alpha crystalline domain 

(ACD) and contains 27 conserved residues common to A. thaliana HSP15.7, which is 

involved in heat and oxidative stress responses (Ma et al. 2006). The HSP fragment was 

found to be in Hardy-Weinberg disequilibrium at the haplotype level in two positions at 

the locus by locus level. This may indicate that this gene is under selection and 

specifically that positions four and eight of this fragment may have heterozygote 

advantage. As the mutation at position four corresponds to a nonsynonymous and non-

conservative mutation, it is plausible that it is under selection. However, neither both 

Tajima’s D and Fu’s Fs results were significant for this fragment nor PAML analysis 

was significant for those positions. Other reasons can account for deviation from Hardy-

Weinberg equilibrium, such as genetic drift, migration or sampling effects. 

Although the haplotype network for HSP is more complex than the ones estimated for 

the other fragments, no structure was evident either. Most of the variation between 

haplotypes is due to SNPs in the non-coding region and synonymous mutations. Only 

three nonsynonymous (and non-conservative) mutations were detected in the ACD 

domain. Mutations in this domain have been shown to have great impact in HSP protein 



53 

structure and its chaperone function (MacRae 2000). This is indicative that these 

mutations can have great importance and be under the effect of selection.  

The analysis with PAML revealed that one of the three nonsynonymous mutations may 

be under positive selection. This same position was associated with precipitation in 

September and latitude by MatSAM analysis, correlating positively with aspartate 

frequency. In fact, precipitation in September increases with increasing latitude. 

Therefore, it seems that precipitation in September is the variable that affects directly 

the amino acid frequency in this position and latitude is correlated with this variable. As 

HSP encodes for a protein involved in response to stress, drought is expected to have an 

impact in this gene’s variability distribution. Therefore, precipitation in September is 

likely to influence HSP adaptive variation. September follows a period during which 

most of the populations are submitted to a certain degree of drought (July and August). 

It seems plausible that precipitation in this month may be important for the recovery 

from the drought period and that different alleles may confer varying degrees of long-

term drought resistance. In this way, individuals with aspartate in the amino acid 

position detected by both PAML and MatSAM are probably maladapted in southern 

populations, characterized by longer drought periods and low levels of precipitation in 

September. In Ramírez-Valliente et al. (2009a) northern cork oak populations were 

shown to be poorly adapted to drought, through the analysis of population divergence in 

quantitative traits in a common garden experiment, which is concordant with the results 

here reported.  

The fact that the same position was detected by two different approaches, despite the 

low significance values, indicates that it is probably under positive selection. These 

significance values can be explained by low selective pressure. 

 

2.5.5. Fragments that revealed no selection signals 

RAN3 encodes a Ras-related nuclear protein involved in mRNA export from the nucleus 

and protein import into the nucleus and may also be involved in cell cycle progression 

(Haizel et al. 1997, Meier and Brkljacic 2010). Two positions were found to be in 

Hardy-Weinberg disequilibrium, by a deficit of heterozygotes. This may indicate that 

those positions are under selection, although other reasons that seem more plausible in 
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this case can account for a deviation from Hardy-Weinberg equilibrium, such as genetic 

drift, migration or sampling effects (Wahlund effect).  None of the neutrality tests were 

significant and no associations were found with spatial or environmental variables. In 

this gene, only synonymous mutations were found in the coding region and additional 

mutations were found in the non-coding region. These types of mutations are expected 

to be neutral, so these results are not surprising. RAN3 is a protein with a crucial 

function in nucleocytoplasmic transport, so it is probably under strong purifying 

selection, as any change in its structure could disrupt its function.  

PR1 (Pathogenesis-related gene 1) encodes for a protein involved in salicylic acid-

mediated pathogen defence and it is induced by salicylic acid defence pathway, in 

which NPR1 is a key signalling protein. Its biological function is still unclear, but there 

is substantial evidence for PR1 acting as a defence protein in plant–pathogen 

interactions and several studies demonstrated that antifungal activity is associated with 

purified PR1 proteins (Niderman et al. 1995, Rauscher et al. 1999). PR1 fragment also 

did not present any significant statistical selection signatures. PAML detected three 

positions that might be under positive selection (not significant values). However, 

PAML has been described as prone to false positive detection (Hughes 2007), so these 

results should be seen as merely indicative for future studies, as no conclusions can be 

draw from them. Since the PR1 protein is involved in defence against pathogens, it is 

possible that it is under some kind of selective pressure. However, this pressure may be 

weak, thus justifying the non-significant results, be stronger in another region of the 

PR1 gene or may be acting at a regulatory level. 

 

2.5.6. Neutrality tests and environmental correlations 

The different approaches used in this study suggest that different genes may be under 

selection. This is probably associated to the specificities of each of the statistical 

methods used. Site-frequency based methods, such as Tajima’s D and Fu’s Fs, try to 

identify patterns consistent with positive selection. These tests can only detect single, 

recent selective sweeps. Therefore, if selective pressure is low and does not produce a 

sweep pattern or if the selective sweep is historical and the typical pattern begins to be 

less clear, these tests will fail to detect positive selection. Moreover, this type of tests is 
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prone to be affected by demography, although it does not seem to be the case in this 

study as no genetic structure was detected (Jensen et al. 2007).  

Unlike the two statistical methods mentioned, divergence-based methods, as 

implemented in PAML, are site specific, which is an advantage, allowing to detect 

specifically which positions are under positive selection (Jensen et al. 2007). However, 

these methods are based on phylogeny and assume that the inferred phylogeny is 

completely accurate when phylogenies are difficult to reconstruct under a selection 

scenario. Moreover, a dN>dS pattern can be achieved by chance and codons identified 

as being under positive selection can in this way be false positives. Therefore, small 

dN>dS values should be interpreted with special caution (Hughes 2007).  

None of these selection detecting methods provide insights into selection drivers. 

Methods based on correlation between genetic and environmental variables are of great 

interest, as they allow the identification of loci under selection and the establishment of 

hypotheses about the ecological factors that may be driving the species adaptation 

(Joost et al. 2008). However, correlations have also limitations, as it may be difficult to 

find the environmental factors that are relevant for each species adaptation. 

Furthermore, environmental variables can be influenced by each other, which can lead 

to false associations of environmental variables with a certain allele frequency when in 

fact the relevant environmental variable is simply correlated to the detected one. 

Therefore, it is important to adopt a pluralistic approach, since neutrality tests and 

environmental associations complement each other by looking at different evolutionary 

scales and types of selection. 

 

2.6. Conclusion 

In this study, different selection signatures were detected for three of the analyzed gene 

fragments, which support the idea that studying SNPs in functional genes can be a good 

approach for detecting natural selection. The findings here reported are relevant to 

understand cork oak adaptation to conditioning biotic and abiotic factors, as one gene 

involved in plant defence response to pathogens, NPR1, and two genes putatively 

implicated in drought response, ARF16 and HSP, were detected as being under selective 



56 

pressure. However, further studies are needed to draw more definitive conclusions about 

the adaptive value of the mutations identified in these genes. Therefore, it would be 

relevant to further investigate the functional and ecological implications of the detected 

variation. This knowledge is essential to delineate sustainable management practices 

and conservation strategies for cork oak. 

 

2.6. References  

Alexandrov AH, Genov K, Popov E (2001) Country reports: Bulgaria. In: 

Mediterranean Oaks Network, Report of the first meeting, 12-14 October 2000, 

Antalya, Turkey (eds. Borelli S, Vare MC). IPGRI, Rome, Italy. 

Aranda I, Castro L, Alia R, Pardos JA, Gil L (2005) Low temperature during winter 

elicits differential responses among populations of the Mediterranean evergreen 

cork oak (Quercus suber). Tree Physiology 25, 1085-1090. 

Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of 

colonization processes on genetic diversity: Differences between annual plants 

and tree species. Genetics 154, 1309-1321. 

Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. 

Plant Cell 17, 1658-1673. 

Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring 

intraspecific phylogenies. Molecular biology and evolution 16, 37-48. 

Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 

transcriptome sequencing. Plant Journal 51, 910-918. 

Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends in Genetics 

22, 437-446. 

Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. 

Environmental constraints including climate change. Annales Des Sciences 

Forestieres 53, 347-358. 

Caldwell KS, Michelmore RW (2009) Arabidopsis thaliana genes encoding defense 

signaling and recognition proteins exhibit contrasting evolutionary dynamics. 

Genetics 181, 671-684. 



57 

Campos P, Aronson J (2009) Economic Analysis. In: Cork Oak Woodlands on the Edge 

(eds. Aronson J, Pereira JS, Pausas JG), pp. 127-128. Island Press, Washington 

DC, USA. 

Coelho AC, Horta M, Neves D, Cravador A (2006) Involvement of a cinnamyl alcohol 

dehydrogenase of Quercus suber in the defence response to infection by 

Phytophthora cinnamomi. Physiological and Molecular Plant Pathology 69, 62-

72. 

Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-

Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an 

expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the 

discovery of single nucleotide polymorphisms. Plant Science 168, 439-447. 

Costa J (2011) Differentiation and genetic variability in cork oak populations (Quercus 

suber L.). Msc thesis, Faculdade de Ciências da Universidade de Lisboa. 

Costa J, Miguel C, Almeida H, Oliveira MM, Matos JA, Simões F, Veloso M, Pinto 

Ricardo C, Paulo OS, Batista D (2011) Genetic divergence in Cork Oak based 

on cpDNA sequence data. IUFRO Tree Biotechnology Conference 2011: From 

Genomes to Integration and Delivery, BMC Proceedings 5, (Suppl 7), 13. 

Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate 

change. Science 292, 673-679. 

Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis 

roots. Proceedings of the National Academy of Sciences of the United States of 

America 107, 12046-12051. 

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to 

perform population genetics analyses under Linux and Windows. Molecular 

Ecology Resources 10, 564-567. 

Fu YX (1997) Statistical tests of neutrality of mutations against population growth, 

hitchhiking and background selection. Genetics 147, 915-925. 

Gandour M, Khouja ML, Toumi L, Triki S (2007) Morphological evaluation of cork 

oak (Quercus suber): Mediterranean provenance variability in Tunisia. Annals of 

Forest Science 64, 549-555. 

Gil L, Varela MC (2008) Cork oak (Quercus suber). In: Technical guidelines for 

genetic conservation and use (ed. EUFORGEN). IPGRI, Rome, Italy. 



58 

Haizel T, Merkle T, Pay A, Fejes E, Nagy F (1997) Characterization of proteins that 

interact with the GTP-bound form of the regulatory GTPase ran in Arabidopsis. 

Plant Journal 11, 93-103. 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and 

analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 

95-98. 

Higgins PAT, Harte J (2006) Biophysical and biogeochemical responses to climate 

change depend on dispersal and migration. Bioscience 56, 407-417. 

Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for 

positive selection at the nucleotide sequence level. Heredity 99, 364-373. 

Huse SM, Huber JA, Morrison HG, Sogin ML, Mark Welch D (2007) Accuracy and 

quality of massively parallel DNA pyrosequencing. Genome Biology 8, 143. 

IPCC (2007) Climate Change 2007: The physical science basis. Contribution of 

working group I to the fourth assessment report of the intergovernmental panel 

on climate change. IPCC Secretariat, Geneva, Switzerland. 

Jensen JD, Wong A, Aquadro CF (2007) Approaches for identifying targets of positive 

selection. Trends in Genetics 23, 568-577. 

Jimenez P, de Heredia UL, Collada C, Lorenzo Z, Gil L (2004) High variability of 

chloroplast DNA in three Mediterranean evergreen oaks indicates complex 

evolutionary history. Heredity 93, 510-515. 

Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A 

spatial analysis method (SAM) to detect candidate loci for selection: towards a 

landscape genomics approach to adaptation. Molecular Ecology 16, 3955-3969. 

Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software 

tool combining molecular and environmental data to identify candidate loci for 

selection. Molecular Ecology Resources 8, 957-960. 

Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare 

biosphere: pyrosequencing errors can lead to artificial inflation of diversity 

estimates. Environmental Microbiology 12, 118-123. 

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA 

polymorphism data. Bioinformatics 25, 1451-1452. 

Long JC (1986) The allelic correlation structure of Gainj and Kalam speaking people. I. 

The estimation and interpretation of Wright's F-statistics. Genetics 112, 629-

647. 



59 

Lopez-de-Heredia U, Carrion JS, Jimenez P, Collada C, Gil L (2007) Molecular and 

palaeoecological evidence for multiple glacial refugia for evergreen oaks on the 

Iberian Peninsula. Journal of Biogeography 34, 1505-1517. 

Lumaret R, Tryphon-Dionnet M, Michaud H, Sanuy A, Ipotesi E, Born C, Mir C (2005) 

Phylogeographical variation of chloroplast DNA in cork oak (Quercus suber). 

Annals of Botany 96, 853-861. 

Ma CL, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and 

characterization of a stress-inducible and a constitutive small heat-shock protein 

targeted to the matrix of plant peroxisomes. Plant Physiology 141, 47-60. 

MacRae TH (2000) Structure and function of small heat shock/alpha-crystallin proteins: 

established concepts and emerging ideas. Cellular and Molecular Life Sciences 

57, 899-913. 

Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone 

MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast 

haplotypes matches the palaeogeographical history of the western 

Mediterranean. Molecular Ecology 16, 5259-5266. 

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, 

Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, 

Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, 

Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz 

SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna 

MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, 

Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt 

KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, 

Rothberg JM (2005) Genome sequencing in microfabricated high-density 

picolitre reactors. Nature 437, 376-380. 

Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, 

bisulphite and real-time PCR. Bioinformatics 20, 2471-2472. 

Meier I, Brkljacic J (2010) The Arabidopsis nuclear pore and nuclear envelope. The 

Arabidopsis book / American Society of Plant Biologists 8, 139. 

Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E 

(1995) Pathogenesis-related PR-1 proteins are antifungal - Isolation and 

characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of 



60 

tobaco with inhibitory activity against Phytophthora infestans. Plant Physiology 

108, 17-27. 

Nielsen R (2005) Molecular signatures of natural selection. Annual Review of Genetics 

39, 197-218. 

Pausas JG, Pereira JS, Aronson J (2009) The tree. In: Cork Oak Woodlands on the Edge 

(eds. Aronson J, Pereira JS, Pausas JG), pp. 11-21. Island Press, Washington 

DC, USA. 

Pieterse CM, Van Loon L (2004) NPR1: the spider in the web of induced resistance 

signaling pathways. Current Opinion in Plant Biology 7, 456-464. 

Pina-Martins F, Paulo OS (2008) CONCATENATOR: sequence data matrices handling 

made easy. Molecular Ecology Resources 8, 1254-1255. 

Quartau JA, Mathias ML (2010) Insects of the understorey in Western Mediterranean 

forest landscapes: a rich biodiversity under threat. In: Insect Habitats: 

Characteristics, Diversity and Management (eds. Harris EL, Davies NE), pp. 

133-142. Nova Science Publishers, Hauppauge NY, USA. 

Ramirez-Valiente AJ, Valladares F, Delgado Huertas A, Granados S, Aranda I (2011) 

Factors affecting cork oak growth under dry conditions: local adaptation and 

contrasting additive genetic variance within populations. Tree Genetics & 

Genomes 7, 285-295. 

Ramirez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I (2009a) 

Elucidating the role of genetic drift and natural selection in cork oak 

differentiation regarding drought tolerance. Molecular Ecology 18, 3803-3815. 

Ramirez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I (2010) Natural 

selection on cork oak: allele frequency reveals divergent selection in cork oak 

populations along a temperature cline. Evolutionary Ecology 24, 1031-1044. 

Ramirez-Valiente JA, Valladares F, Gil L, Aranda I (2009b) Population differences in 

juvenile survival under increasing drought are mediated by seed size in cork oak 

(Quercus suber L.). Forest Ecology and Management 257, 1676-1683. 

Rauscher M, Adam AL, Wirtz S, Guggenheim R, Mendgen K, Deising HB (1999) PR-1 

protein inhibits the differentiation of rust infection hyphae in leaves of acquired 

resistant broad bean. Plant Journal 19, 625-633. 

Serrasolses I, Pérez-Devesa M, Vilagrosa A, Pausas JG, Sauras T, Cortina J, Vallejo VR 

(2009) Soil properties constraining cork oak distribution. In: Cork Oak 



61 

Woodlands on the Edge (eds. Aronson J, Pereira JS, Pausas JG), pp. 89-99. 

Island Press, Washington DC, USA. 

Simeone MC, Papini A, Vessella F, Bellarosa R, Spada F, Schirone B (2009) Multiple 

genome relationships and a complex biogeographic history in the eastern range 

of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA 

variation. Caryologia 62, 236-252. 

Soto A, Lorenzo Z, Gil L (2007) Differences in fine-scale genetic structure and 

dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of 

mediterranean open woods. Heredity 99, 601-607. 

Spiess N, Oufir M, Matusikova I, Stierschneider M, Kopecky D, Homolka A, Burg K, 

Fluch S, Hausman J-F, Wilhelm E (2012) Ecophysiological and transcriptomic 

responses of oak (Quercus robur) to long-term drought exposure and rewatering. 

Environmental and Experimental Botany 77, 117-126. 

Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in 

haplotype inference and missing-data imputation. American Journal of Human 

Genetics 76, 449-462. 

Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype 

reconstruction from population data. American Journal of Human Genetics 68, 

978-989. 

Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA 

polymorphism. Genetics 123, 585-595. 

Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W - Improving the sensitivity of 

progressive multiple sequence alignment through sequence weighting, position-

specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 

4673-4680. 

Toumi L, Lumaret R (1998) Allozyme variation in cork oak (Quercus suber L.): the 

role of phylogeography and genetic introgression by other Mediterranean oak 

species and human activities. Theoretical and Applied Genetics 97, 647-656. 

Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic 

plasticity. New Phytologist 176, 749-763. 

Varela MC (2000) Handbook of the EU Concerted Action on cork oak, FAIR I CT 95 

0202. INIA- Estação Florestal Nacional, Oeiras, Portugal. 

Wiedmann RT, Smith TPL, Nonneman DJ (2008) SNP discovery in swine by reduced 

representation and high throughput pyrosequencing. BMC Genetics 9, 81. 



62 

Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Molecular 

biology and evolution 24, 1586-1591. 

Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino 

acid sites under positive selection. Molecular biology and evolution 22, 1107-

1118. 

Zhai W, Nielsen R, Slatkin M (2009) An investigation of the statistical power of 

neutrality tests based on comparative and population genetic data. Molecular 

biology and evolution 26, 273-283. 

Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, 

Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in 

soybean. Genetics 163, 1123-1134. 

 

 

  



 

 

 

 

 

CHAPTER 3 

 

Final Remarks and Future Prospects 

 

 

  



 

 



65 

3.1. Final remarks and future prospects 

This work emphasizes the importance of whole genome scans when assessing genomic 

variability in non-model species, for which no genomic resources are available, as 

highlighted in previous studies (e.g. Namroud et al. 2008, Poncet et al. 2010). More 

recently, NGS methods have greatly impacted genomics research, as these techniques 

allow experiments that were previously impossible or economically unviable. 454 

pyrosequencing, the NGS method in which the present work is based, is particularly 

useful when no reference genome is available, since this NGS technique produces the 

longest reads (Glenn 2011), facilitating downstream work. Furthermore, 454 

pyrosequencing has been successfully used to discover and develop molecular markers, 

such as SNPs and SSRs (e.g. Grattapaglia et al. 2011, Lai et al. 2012).  

In this work, the utility of 454 transcriptome sequencing as a tool to identify useful and 

putatively functional markers in a non-model species was confirmed. In spite of the 

problems in amplifying genomic DNA with primers designed from ESTs data, a good 

percentage of amplification success was obtained comparing to previous studies (e.g. 

Zhu et al. 2003, Coles et al. 2005). Furthermore, regardless the technical errors that are 

known to occur in 454 pyrosequencing (Margulies et al. 2005, Huse et al. 2007), a high 

percentage of the putative SNPs tested (79%) was successfully validated. Mutations 

within coding regions are in general particularly insightful, as they can affect the amino 

acid composition of the protein and therefore its structure and/or function, which means 

that the discovery of SNP markers in transcriptome sequences can facilitate the 

identification of genes involved in several processes, particularly in adaptive change 

(Renaut et al. 2010, Zhou et al. 2012). Accordingly, in the present study 454 

transcriptome sequencing allowed for the development of useful markers to investigate 

cork oak adaptive genetic variation. 

A variety of selection signatures was detected in some of the gene fragments here 

studied. After detecting signals of selection, biochemical, physiological and ecological 

studies should be carried out to test if the detected mutations are in fact adaptive and 

confer fitness advantages (Hughes 2007). For instance, for ARF16 it would be 

interesting to assess if plants with different genotypes present differences in 

development and differentiation of root cap. Moreover, since it was previously 

identified as a candidate gene for drought resistance in Quercus robur (Homolka et al. 
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2012, Spiess et al. 2012), it should be of particular interest to carry out drought stress 

assays and analyze if different genotypes show different levels of tolerance or drought 

recovery. For HSP gene, drought stress assays should also be performed, namely long-

term drought resistance tests, to assess if plants with different amino acids in the 

position associated with precipitation in September during this study have different 

responses towards drought conditions. Differences in drought resistance should be also 

tested for HSP complete genotypes. Since cork oak stands have been facing a significant 

decline much associated with severe drought periods (Toumi and Lumaret 1998, Soto et 

al. 2007), and in the face of the major climate changes expected to occur in the 

Mediterranean Basin, with more severe and long drought periods (IPCC 2007), studying 

these two genes would be of major interest.  

Several pests and diseases have also been implicated in cork oak decline, especially the 

fungus Phytophthora cinnamomi (Brasier 1996, Cabral and Ferreira 1999). The hereby 

reported findings suggesting that NPR1 is under balancing selection may help to better 

understand this species’ defence responses to several pathogens, including P. 

cinnamomi, and host-pathogen interactions. For this gene, it should be investigated if 

different alleles lead to different defence response intensities or if individuals with 

different genotypes have different levels of resistance to pathogens that commonly 

attack cork oak. A possible involvement in the response to herbivory is not to exclude 

either, as NPR1 gene is implicated in the cross-talk between defence responses to 

pathogens (salicylic acid dependent signalling pathway) and defence responses to 

wounds inflicted by herbivorous insects (jasmonic acid dependent signalling pathway) 

(Pieterse and Van Loon 2004). Although no significant selection signal was detected for 

PR1, it would also be interesting to study this gene and its putative role in response to P. 

cinnamomi (and other pathogens) infections, as PR1 protein has been associated with 

antifungal activity (Niderman et al. 1995, Rauscher et al. 1999). Assessing if different 

PR1 alleles confer differential pathogen resistance could enlighten its functional and 

adaptive role in cork oak.  

Furthermore, expression studies should be carried out for all genes, since detecting 

different levels of fitness in the suggested assays do not necessarily mean that these are 

caused by differences in genotypes. It should therefore be ruled out that variations in 

gene expression levels are the cause of the possibly detected differences (Hughes 2007). 
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Finally, it would be interesting to continue the SNP validation process and subsequent 

exploitation of these markers, since useful, putatively functional markers that may be 

involved in cork oak adaptation can be developed in this way. 

In conclusion, in the present work important steps were taken towards gaining new 

knowledge concerning adaptive genetic variation in cork oak, which is of major 

importance for the definition of management and conservation strategies for this 

relevant species. 
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Table S1. SNPs for which the corresponding DNA fragment was successfully amplified, primers (5’-3’) used for their 

amplification, annealing temperatures used (Ta) and length (bp) of the amplified fragments.  

Table S2. Species, populations and number of individuals amplified for each fragment 

for the population genetics study. 

SNP Putative gene Primer F Primer R Ta (ᵒC) Length 

SNP1 SQD1 TCCAATGAACCATCCAAGCC TAGAGTAAGGAGCAGACCGC 59 336

SNP4 NPR1 ACAGAGCTCCTTGATCTTGC GAGATCATCACCTGCCATAGC 53 270

SNP6 RAN3 TATCTTGCCAGGAAGCTTGC GGTCTATGGTCAATAGCCGAC 53 627

SNP7 ATP binding protein GCAGAAGGAGAGGATGTTACTG GAACCCAGGTACTCTGTTACG 53 500

SNP8 Annexin 8 GGTCATCAATGCCTCGAATGG TTGGCCTAGTGACTACTTACCG 54 500

SNP13 ATPase CAGCTTGTAGGAAAGGATGC CATCCATACCAGCTCCTCTC 65 240

SNP15 PR1 CAACCGATGAATGTGCCTCC TGGACCTATAACATGGGACGC 64 257

SNP17 MYC2 GCTTAACCAGAGGTTCTACG CATCCCATCCGATTATCTTCAC 56 300

SNP20 HSP GTGTTCAAAGCTGATCTTCC ACCTTCTGACAAGTAAACCC 56 374

SNP22 GLN GCCCTTCTGTTGGTATATCTGC GTTTCATGTCGGCCAGTGAG 62 600

SNP25 Triacylglycerol lipase ATGCTCCAGATCTTGTTCCT TCCTTCAAACCATCCATTGTC 56 237

SNP28 NFYA7 GCATGAATCTCGACATTTGC GAGAAATCCATCGGAGAAGC 58 397

SNP29 ARF16 GAATATCTTCAGAAGATCTCCACC CATTTAGAAATCTGCTCCTCAGTG 65 234

SNP30 Transcription factor bHLH51 ATGTGAAGGATCTCAAGCGA CCCAACACTTGCTATGTCAG 63 256

Gene

RAN3 NPR1 PR1 ARF16 HSP

Q. suber Sintra (SIN) 5 6 6 6 5

Monchique (MON) 4 6 6 6 6

Gerês (GER) 4 5 - - -

S. Bras de Alportel (SBA) 2 5 - - -

Lazio, Toscany (LAZ) 5 6 6 6 6

Puglia, Brindisi (PUG) 4 6 5 6 6

Sicilia, Catania (SIC) 3 6 6 6 6

Sardegna, Cagliari (SAR) - 5 6 6 6

Var, Bomes les Mimoses (VAR) 2 6 6 6 6

Landes, Soustons (LAN) 3 6 6 6 6

Corse, Sartene (COR) 2 6 6 6 6

Montes de Toledo, Cañamero (TOL) 5 6 6 6 6

Cataluña, Sta Coloma Farnes (CAT) 3 6 6 6 6

Haza de Lino (HAZ) 5 6 6 6 6

Kenitra, Ain Johra (KEN) 4 6 6 6 5

Taza, Bab Azhar (TAZ) 4 6 6 6 6

Mekna, Tabarka (MEK) 5 6 5 6 6

Kavrakirovo (KAV) 5 6 6 6 6

Guerbès (ARG) - 5 - - -

Total 65 110 94 96 94

Q. rotundifolia - 2 3 3 3 3

Q. cerris - - 1 1 1 1

PopulationsSpecies



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fragment SNP position Obs. Het. Exp. Het. P -value

RAN3 1 0.38462 0.44615 0.27514

2 0.38462 0.43518 0.39300

3 0.38462 0.43518 0.39393

4 0.12308 0.11640 1.00000

5 0.36923 0.42934 0.37965

6 0.38462 0.43518 0.39413

7 0.44615 0.47335 0.79132

8 0.38462 0.43518 0.39350

9 0.00000 0.06011 0.00019

10 0.03077 0.03053 1.00000

11 0.04615 0.04544 1.00000

12 0.35385 0.43518 0.15490

13 0.32308 0.44615 0.04671

haplotype - - 0.17565

NPR1 1 0.37273 0.43250 0.18409

2 0.37273 0.43250 0.18320

3 0.47273 0.49166 0.70087

4 0.47273 0.49166 0.70171

5 0.00909 0.00909 1.00000

haplotype - - 0.31341

PR1 1 0.21277 0.20776 1.00000

2 0.06383 0.06212 1.00000

3 0.18085 0.18267 1.00000

4 0.45745 0.44072 0.81513

5 0.45745 0.44072 0.81381

haplotype - - 0.72841

ARF16 1 0.46875 0.46853 1.00000

2 0.36458 0.41094 0.31803

3 0.23958 0.22769 1.00000

4 0.45833 0.46575 1.00000

haplotype - - 0.35428

HSP 1 0.01064 0.01064 1.00000

2 0.27660 0.28399 0.72583

3 0.31915 0.26966 0.11651

4 0.74468 0.46991 0.00000

5 0.07447 0.07208 1.00000

6 0.07447 0.07208 1.00000

7 0.19149 0.17408 1.00000

8 0.84043 0.48987 0.00000

9 0.19149 0.17408 1.00000

10 0.32979 0.29099 0.28852

haplotype - - 0.00000

Table S3. Hardy-Weinberg equilibrium analysis, both locus by 

locus and at the haplotype level, for each of the studied 

fragments. Significant values are at bold. 
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Figure S1. Haplotype geographical distribution of RAN3 (a) and PR1 (b) fragments. Haplotype colours 

correspond to the ones in the networks (Figure 2.3 a and b respectively). 


