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Resumo

Palavras chaves: modelos matemáticos, dengue, multi-estirpe, imu-
nidade cruzada temporária, caos deterministico

Ao longo da história, as doenças infecciosas veem causado o enfraquecimento e
morte prematura de grandes parte da população humana, gerando sérias preocu-
pações sociais e econômicas. Muitos são os fatores quem têm contribuido para a
persistência e o aumento na ocorrência de doenças infecciosas, tais como factores
demográficos, mudanças poĺıticas, sociais e econômicas, mudanças ambientais,
adaptação microbiana, etc. Segundo a Organizao Mundial de Saúde (OMS), as
doenças infecciosas são a segunda principal causa de morte no mundo, depois das
doenças cardiovasculares (WHO, 2010).

Dentre as doenças transmisśıveis mais preocupantes, o dengue é, de acordo
com a OMS, um problema de saúde pública internacional, com mais de 55% da
populao mundial vivendo em áreas com risco de transmissão da infecção. O den-
gue, uma infecção viral transmitida por mosquitos, é uma das principais causas
de doença e morte nos trópicos e subtrópicos. A infecção pelo v́ırus do den-
gue pode ser causada por qualquer uma das quatro cepas existentes, designadas
por serotipos DEN − 1, DEN − 2, DEN − 3 e DEN − 4. Estes serotipos são
distintos, porém, antigenicamente relacionados. A infecção gerada por um deter-
minado serotipo confere imunidade total e permanente (ao longo da vida) para
apenas aquele serotipo, e também imunidade cruzada temporária para os outros
serotipos. A imunidade cruzada temporária tem uma duração estimada que varia
de três a nove meses, e está relacionada com os ńıveis de anticorpos gerados du-
rante a resposta imune á uma primeira infecção pelo v́ırus do dengue. Afirma-se
que o alto ńıvel destes anticorpos seria suficiente para a proteção contra outras
infecções causadas por patogenos antigenicamente relacionados.

O dengue pode se manifestar em duas formas cĺınicas: dengue clássico (DC),
uma forma não-fatal da doença, e dengue hemorrágica (DH), que pode evoluir
para uma forma muito grave conhecida como śındrome do choque do dengue
(DSS). Estudos epidemiológicos associam os casos graves da doença (DH) com a
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segunda infecção do dengue. Existem boas evidências relacionando as infecções
sequenciais pelos v́ırus do dengue e o aumento para os riscos do desenvolvimento
do dengue hemorrágico. Esta associação se deve a um processo imunológico cha-
mado de antibody-dependent enhancemet (ADE). O antibody-dependent enhan-
cement ocorre quando os anticorpos pré-existentes, provenientes de uma primeira
infeção do dengue, não neutralizam mas sim realçam a nova infecção pelo v́ırus
do dengue.

Não existe uma medicação espećıfica para a infecção do dengue. O tratamen-
to dos casos de dengue clássico é apenas de suporte e para os casos de dengue
hemorrágico a hospitalização é frequentemente necessária para obtenção de um
tratamento adequado. A vacina contra o dengue ainda não esta dispońıvel, uma
vez que terá que simular proteção para todos os quatro serotipos existentes. Atu-
almente, algumas vacinas candidatas encontram-se em diversos estágios de desen-
volvimento. Até o presente momento, a prevenção na exposição e o controle dos
vetores são as únicas alternativas para a prevenção da transmissão do dengue.

A modelação matemática tornou-se uma ferramenta importante para a com-
preensão da epidemiologia e da dinâmica das doenças infecciosas. Uma série de
modelos deterministicos, tais como o modelo Suscept́ıvel-Infectado (SI) e o mo-
delo Suscept́ıvel-Infectado-Recuperado (SIR), por exemplo, têm sido propostos
com base nos padrões de fluxo para cada um dos compartimentos representan-
do os estágios da doença. O modelo epidemiológico SIR divide a população de
indiv́ıduos em três classes: Suscept́ıveis (S), Infectados (I) e Recuperados (R).
Este tipo de modelo pode ser utilizado para representar, por exemplo, as doenças
infecciosas que não conferem imunidade permanente, possibilitando a reinfecção.
Assumindo que a transmissão da doença se faz de pessoa para pessoa, os in-
div́ıduos suscept́ıveis tornam-se infectados e infecciosos (capazes de transmitir
a doença), se curam e se tornam recuperados (com imunidade temporária ao
patógeno causador da doença). Depois de um determinado peŕıodo tempo, acon-
tece a perda desta imunidade e o indiv́ıduo tornar-se novamente suscept́ıvel, po-
dendo se reinfectar. A dinâmica multi-estirpe é geralmente modelada utilizando
extensões dos modelos do tipo SIR. Para capturar as diferenças entre a primeira
e a segunda infecção é preciso considerar pelo menos dois serotipos diferentes na
composição do modelo do tipo SIR.

A dinâmica da epidemiologia do dengue é particularmente complexa, com
grandes flutuações (variações em quantidade ao longo do tempo) na incidência
da doença. Modelos matemáticos recentes para a transmissão do v́ırus do den-
gue se concentram no efeito ADE e na imunidade cruzada temporária. Estes
modelos apresentam resultados de flutuaç oes cŕıticas com distribuição em lei de
potência para os casos da doença, caos determińıstico e dessincronização caótica,
devido a sua estrutura multi-estirpe. O comportamento caótico é obtido quando
assumindo infectividade muito alta para a segunda infecção do dengue, isto é, as-
sumindo que os indiv́ıduos na segunda infecção pelo v́ırus do dengue transmitem
a doença com uma taxa muita mais elevada do que os indiv́ıduos na primeira
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infecção. Considerações da imunidade cruzada temporária associada ao efeito
ADE gera uma nova janela caótica inesperada e biologicamente mais realistas,
onde a infectividade dos indiv́ıduos na segunda infecção do dengue é reduzida
devido a severidade da doença e a provável hospitalização causada pelo processo
imunológico do ADE.

Nesta tese apresentamos a análise e os resultados obtidos em diferentes ex-
tensões do modelo clássico SIR. Estes modelos foram motivado pela epidemiolo-
gia do dengue e a sua peculiar caracteŕıstica imunológica causada pelo antibody-
dependent enhancement. O nosso estudo se concentra em um modelo mı́nimaĺıstico,
em que pelo menos dois serotipos diferentes são necessários para descrever as di-
ferenças entre as infecções primaria e secundária causadas pelas differentes cepas
do v́ırus do dengue. Os modelos dividem a população humana em suscept́ıveis,
infectados e recuperados, e utiliza ı́ndices para diferenciar cada um dos serotipos.
Os indiv́ıduos podem ser: (1) suscept́ıveis sem nenhuma infecção prévia pelo v́ırus
do dengue, (2) infectados e recuperados pela primeira vez, (3) suscept́ıveis com
um histórico de infecção prévia e (4) infectados pela segunda vez (por uma cepa
diferente da primeira infecção) e, provávelmente hospitalizados devido ao pro-
cesso de ADE. O modelo minimaĺıstico apresenta uma dinâmica estrutural rica
ao incorporar aos modelos já existentes para a transmissão do dengue, o peŕıodo
de imunidade cruzada temporária associada ao processo de antibody-dependent
enhancement capaz de gerar diferenças nas taxas de transmissão para as infecções
primarias e secundárias da doença.

No Caṕıtulo 1 apresentamos as propriedades do modelo básico SIR aplica-
do ao estudo das doenças transmisśıveis. A análise da dinâmica apresentada,
identificando os limites e os pontos de equiĺıbrio, com o objectivo de introduzir a
notação e a terminologia utilizada. Estes resultados são posteriormente generali-
zados para os modelos motivados pela epidemiologia do dengue. No Caṕıtulo 2, o
modelo básico do tipo SIR para dois serotipos diferentes é apresentado e analisa-
do. Este caṕıtulo enfatiza o aspecto multi-estirpe e seus efeitos sobre a população
humana. Os efeitos da dinâmica dos vetores e ou da sazonalidade não são mo-
delados explicitamente, sendo levados em conta apenas pelos parâmetros efetivos
do modelo. No Caṕıtulo 3 apresentamos uma análise detalhada dos pontos de
bifurcações encontrados para os parâmetros de ADE (φ) e de imunidade cruzada
temporária (α).

No Caṕıtulo 4, o modelo sazonal do dengue é apresentado. Com base nos
dados dispońıveis de monitoramento do dengue, o papel da força sazonal e os casos
importados da doença foram considerados como efeitos biologicamente relevantes
para a determinação do comportamento dinâmico do sistema. O comparativo
entre três cenários distintos (não-sazonal, sazonal e sazonal com casos importados
da doença) é apresentado neste caṕıtulo. A adição da sazonalidade e de posśıveis
casos importados da doença institui complexidade á dinâmica e apresenta boa
concordância qualitativa entre os dados emṕıricos dos casos graves da doença
(DH) e o output do modelo.
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Até o momento, apenas esses modelos minimaĺısticos têm a possibilidade
de ser qualitativamente bem compreendido e, eventualmente testados contra os
dados existentes. A simplicidade do modelo (poucos parâmetros e poucas va-
riáveis de estado) oferece uma perspectiva promissora na inferência dos valores
dos parâmetros, utilizando os dados referentes ao numerero de casos de dengue
hemorrágico. A estimação de parêmetros em séries temporais caóticas é noto-
riamente dif́ıcil devido á imprevisibilidade a longo prazo versus previsibilidade
a curto prazo. Recentemente, esta previsibilidade a curto prazo tem sido usada
em inferência estat́ısticapara para abordagens temporalmente localizadas encon-
trandi dificuldades na obtenção de uma resposta final definitiva para a melhor
estimativa dos parâmetros.

A capacidade de prever os futuros surtos do dengue na ausência de intervenção
humana tem como objetivo compreender o efeitos das medidas de controle da
doença, incluindo a implementação de programas de vacinação, quando esta es-
tiver dispońıvel e acesśıvel. Os ensaio com esta vacina deverão ser realizados em
um ano em que o numero de casos da doença for suficientemente altos (e não em
um ano em que o número de casos da doença fossem naturalmente baixos) afim de
facilitar os teste estat́ısticos para a eficácia da vacina. Desta maneira, a previsão
do número de casos da doença com base no balanço determińıstico do número de
indiv́ıduos infectados e indiv́ıduos suscept́ıveis seria de grande utilidade prática.

A propagação de doenças é um fenômeno inerentemente estocástico, mas os
modelos para a propagação do dengue são em sua maioria expressos matema-
ticamente por um conjunto equações diferenciais deterministicas, que são mais
fáceis de analisar. A aproximação do campo médio, uma aproximação utiliza-
da em processos estocásticos para a obtenção de dinâmicas determińısticas, é
uma boa aproximação para ser utilizada a fim de compreender melhor o com-
portamento dos sistemas estocásticos em determinadas regiões de parâmetro. No
entanto, apenas os modelos estocásticos, ao contrário dos modelos deterministi-
cos, podem captar as flutuações observadas em algumas das séries temporais de
dados emṕıricos. No Caṕıtulo 5, a versão estocástica do modelo multi-estirpe
minimaĺıstico é apresentado. Neste caṕıtulo investigamos a interação entre esto-
casticidade, sazonalidade e casos importados da doença. A introdução de estocas-
ticidade é capaz de explicar as flutuações observadas em algumas série temporais
de dados para os casos graves do dengue, revelando um cenário onde o rúıdo e o
esqueleto determińıstico se interagem fortemente. Para uma população suficiente-
mente grande, o modelo estocástico é bem descrito pelo esqueleto determińıstico,
capturando a dinâmica essencial da doença. O modelo estocástico gera, a partir
das informaes topológicas da dinâmica, a percepção sobre os valores relevantes
dos parâmetros do modelo.

O modelo minimaĺıstico do dengue é um sistema com 9 dimensões e, tem boas
chances de poder se utilizado em uma futura inferência estat́ıstica, para estimar
todas as condições iniciais e os poucos parâmetros do modelo. Os dados emṕıricos
dispońıveis para os casos de dengue hemorrágico consistem na incidência mensal
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de casos hospitalizados e, para este tipo de dados, o modelo capaz de gerar in-
fecções primária e secundária causadas por differentes serotipos do dengue (sem a
necessidade de se considerar diferenças nas dinâmicas para cada um dos diferentes
serotipos existentes), apresenta uma boa concordância qualitativa entre os dados
emṕıricos e o output do modelo (ver Caṕıtulo 4 e Caṕıtulo 5). Diferentemente
do modelo minimaĺıstico multi-estirpe para a transmissão do dengue, o modelo
incluindo os quatro serotipos é matematicamente representado por um sistema
com 26 equações diferenciais. Este sistema apresenta uma dimensão elevada (25
dimensões) e dif́ıcilmente poderá ser utilizado em inferência estat́ıstica, devido
ao elevado número de variáveis e condições iniciais.

No Captulo 6, o modelo para a transmissão do dengue incluindo todos os se-
rotipos existentes é apresentado. Com os quatro serotipos, DEN − 1, DEN − 2,
DEN − 3 e DEN − 4, as classes SIR são identificadas por ı́ndices para cada
um dos serotipos. A assimetria epidemiológica entre as cepas continua a não
ser considerada. Os dados serologicos existentes para cada um dos serotipos em
separado são recentes e escassos, não sendo capazes de fornecer informações fide-
dignas ás posśıveis diferenças existentes entre os parâmetros biológicos (tais como
as taxas de infecção e taxas de recuperação) para cada uma das quatro cepas do
v́ırus do dengue. Neste caṕıtulo apresentamos a comparação entre os diagramas
de bifurcação para os dois modelos multi-estirpe, assumindo respectivamente 2
e 4 serotipos diferentes na transmissão da doença. Para a região de interesse
biologico (onde os indiv́ıduos infectados pela segunda vez transmitem menos do
que os indiv́ıduos infectados pela primeira vez, devido a severidade da doença) os
pontos de bifurcação acontecem em regiões similares para o parâmetro do efeito
ADE.

A lei da parcimônia favorece o mais simples dos dois modelos concorrentes
e desta forma, conclúımos que o modelo minimaĺıstico para a transmissão do
dengue (dois serotipos), na sua simplicidade, é um bom modelo para ser ana-
lisado. O modelo minimaĺıstico do dengue é capaz de produzir a complexidade
esperada para explicar as flutuações observadas nos dados emṕıricos da doença
e apresenta, dentro da possibilidade, baixa dimensionalidade. A Inferência es-
tat́ıstica utilizando os dados emṕıricos para estimar os parâmetros básicos de
transmissão, infectividade, a gravidade da doença (parmetro ADE) e peŕıodo de
imunidade cruzada temporária, é de extrema importância e definitivamente ne-
cessária para identificar os eventuais desvios do caso mais simples de simetria,
que foram investigados aqui. O estudo da estimação dos parâmetros utilizando o
modelo minimaĺıstico do dengue está em andamento.

A dinâmica vetorial também pode desempenhar um papel importante na com-
preenç ao da epidemiologia do dengue. As investigações descritas nesta tese sur-
gerem uma série de posśıveis direções para a continuidade desta pesquisa e, em
termos de trabalho futuro, a investigação de extensões do modelo minimaĺıstico
poderá abordar as seguintes questões e problemas: (1) Qual é a real contribuição
das infecções primárias e secundárias para a fora de infecção? Indiv́ıduos na
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segunda infecção transmitem mais ou menos do que a indiv́ıduos na primeira
infecção? (2) Existem diferenças significativas entre as taxas de infecção para
cada um dos serotipos existentes? Até que ponto a estrutura de bifurcação pode
explicar a real contribuição da diversidade viral? (3) Formular hipóteses usando
o mecanismo adequado de imunidade cruzada temporária e a proteção gerada em
infecções recorrentes. (4) Modelar ensaios de vacinas, com base na previsibilidade
a curto prazo em sistemas caóticos, para futura implementação de programas de
imunização, quando a(s) vacina(s) tetravalente estiver dispońıveil e acesśıvel. E
finalmente (5) propor alvos para a intervenção e para o planeamento de medidas
controle, baseando-se no impacto esperado da doença. O Meu interesse especial
se concentra na posśıvel parametrização do modelo a partir dos dados referentes
á incidência da doença grave e na prevalência de infecção. Esta ferramenta epi-
demiológica ajudaria a compreender os efeitos das medidas de controle e, poderia
ser utilizada para orientar as poĺıticas de prevenção e controle da transmissão do
v́ırus do dengue, gerando uma percepção sobre a previsão dos surtos futuros do
dengue.
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Samenvatting

Sinds mensenheugenis hebben infectie ziekten geleid tot slepende ziektes en vroeg-
tijdige sterfte onder grote delen van de wereld bevolking, leidend tot grote sociale
en economische problemen. Vele factoren hebben bijgedragen tot het in stand
houden en de toename van infectie ziekten: demografisch factoren, politieke, so-
ciale en economische veranderingen, verandering van de gezondheidszorg, enz.
Volgens de Wereldgezondheidsorganisatie (WHO), zijn ze wereldwijd de tweede
doodsoorzaak na hart en vaat ziektes (WHO, 2010). De laatste jaren zijn wis-
kundige modellen belangrijke gereedschappen geworden voor het verkrijgen van
kennis over infectieziekten en hebben ze bijgedragen aan de grote vooruitgang in
het maken van strategieën voor het beheersen van ziektes, bijvoorbeeld bij het
opzetten van vaccinatie programma’s.

Knokkelziekte (Eng. dengue) is een door muggen, de tijgermug, overgedra-
gen virale infectieziekte. Deze ziekte is in de laatste jaren een groot internati-
onaal gezondheidsprobleem geworden en een belangrijke ziekte en sterfte bron
in (sub)tropische gebieden. Knokkelkoorts wordt veroorzaakt door vier antigeen
verschillende virussen, bekend als dengue-varianten DENV 1, DENV 2, DENV 3
en DENV 4. Infectie met één serotype geeft levenslange immuniteit voor slechts
dat serotype en maar tijdelijke immuniteit voor de andere serotypes. Tijdens de
reactie op de infectie worden antilichamen gegenereerd. Het duurt drie tot negen
maanden voordat het niveau van die antilichamen voldoende is om bescherming
te bieden tegen infectie door een ander, maar gerelateerd, serotype.

Er zijn twee varianten van de ziekte: knokkelkoorts (dengue fever (DF)) een
vorm zonder fatale afloop en hemorrhagische knokkelkoorts (dengue hemorrhagic
fever (DHF)) die tot een shock kunnen leiden, bekend als een “dengue shocksyn-
droom” (DSS) vaak met fatale afloop.

Epidemiologische studies wijzen erop dat de hemorrhagische dengue eerder
optreedt door een tweede infectie bij iemand die eerder een knokkelkoorts-aanval
door een ander knokkelkoorts-virus heeft doorgemaakt. Een proces beschreven als
“antibody-dependent enhancement” (ADE) is hiervoor verantwoordelijk. Daarbij
kunnen de antilichamen die tijdens een eerdere infectie door een ander serotype
aangemaakt zijn, niet neutraliseren maar zelfs de nieuwe infectie verergeren.
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De behandeling van de milde vorm is alleen symptomatisch en ondersteunend.
De ernstige vorm vereist daarentegen veel aandacht waarbij de patiënt voldoende
moet drinken, en eventueel extra vocht moet krijgen via een infuus. Er bestaat
nog geen vaccin tegen knokkelkoorts omdat een beschermende immuunreactie
gestimuleerd moet worden voor de vier serotypes. Meerdere kandidaten, zoals
tetravalent vaccines, zijn op dit moment in verschillende stadia van ontwikkeling.

Tot nu toe is voorkoming van muggenbeten de enige mogelijke preventie-
ve bestrijdingsmaatregel tegen verspreiding van de ziekte. Muggenbeten kunnen
worden voorkomen door bijvoorbeeld het dragen van bedekkende kleding, het ver-
wijderen van mogelijke besmettingshaarden zoals schoon stilstaand water waar de
muggen bij voorkeur hun eitjes in leggen en het gebruik van verdelgingsmiddelen
tegen de muggen.

Wiskundige modellen zijn een interessant gereedschap geworden voor het leren
begrijpen van de epidemiologie en dynamica van infectieziekten. Er een aantal
deterministische compartimentsmodellen, zoals de SI en SIR modellen, voor het
beschrijven van het verloop van ziektes in een populatie. In het SIR model wordt
onderscheid gemaakt tussen drie klassen: vatbaar (Susceptible), besmettelijk (In-
fected) en genezen (Recovered). Dit model kan gebruikt worden als er levenslange
immuniteit is en waarbij de infectiebesmetting overgedragen wordt van mens op
mens: de vatbaren worden gëınfecteerd en besmettelijk en daarna weer beter.
Men kan dit model ook zo uitbreiden dat na een immuniteitsperiode tijdelijk
genezen personen weer vatbaar worden.

Bij meerdere vormen van de ziekte worden in het algemeen andere uitbreidin-
gen van de SIR-modellen gebruikt. Bijvoorbeeld de verschillen tussen de eerste
knokkelkoorts infectie veroorzaakt door één variant van de virus en een tweede
infectie door een andere variant te bestuderen zijn twee-varianten SIR-modellen
gebruikt. Modellen voor interacties tussen meerdere varianten met ADE maar
zonder een tijdelijke immuniteitsperiode hebben deterministisch chaotisch gedrag
laten zien waarbij de infectiviteit van de tweede infectie. De uitbreiding met een
tijdelijke cross-immuniteitsperiode geeft een nieuw type chaotische gedrag bij
onverwachte maar biologisch realistische parameterwaarden voor de infectiviteit
voor de tweede infectie.

In dit proefschrift worden meerdere uitbreidingen van de klassieke enkel-
variant SIR populatie model bestudeerd. Deze modellen zijn van toepassing voor
het bestuderen van een knokkelkoorts epidemiologie met het kenmerkende ADE
fenomeen. We zijn gëıntereseerd in een minimalistisch model waarbij tenminste
twee varianten nodig zijn om de verschillen tussen de eerste en een tweede infectie
te kunnen beschrijven. In het model worden voor twee populaties de volgende
klassen onderscheiden. Personen kunnen vatbaar zijn zonder ooit gëınfecteerd
geweest te zijn, besmettelijk van de eerste infectie, vatbaar terwijl de persoon al
een keer besmet geweest is voor een tweede infectie, en besmettelijk en genezen
voor de tweede infectie nu door een andere variant en tenslotte volledig genezen.
De personen die voor de tweede keer besmet zijn hebben meer kans in het zieken-
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huis te belanden vanwege het ADE effect en dat leidt tot de ernstige vorm van de
ziekte. De uitbreiding van bestaande knokkelkoorts modellen met een tijdelijke
cross-immuniteit laat een rijk dynamisch gedrag zien met deterministische chaos
voor biologisch meer realistische parameterwaarden.

In Hoofdstuk 1 worden de eigenschappen van het basale SIR epidemiologisch
model voor infectie ziekten beschreven met daarbij een overzicht van de analyse
van het dynamisch gedrag, zoals het identificeren van drempels voor het uitbre-
ken van de ziekte en evenwichten. Daarbij wordt ook meteen de terminologie
ingevoerd. Deze resultaten worden daarna gegeneraliseerd voor geavanceerdere
knokkelkoorts epidemiologie modellen.

In Hoofdstuk 2 wordt het twee-varianten SIR-type model gegeven voor knok-
kelkoorts epidemiologiën. Hoofdstuk 3 geeft een gedetailleerde bifurcatie analyse
van de basale multi-varianten knokkelkoorts model in termen van de ADE para-
meter φ en de parameter voor de tijdelijke immuniteit voor een andere variant
α.

Hoofdstuk 4 behandelt de invloed van seizoensinvloeden waarbij tweede in-
fecties met tijdelijke cross-immuniteit mogelijk zijn. Waarnemingen van inciden-
ties van knokkelkoorts suggereren dat seizoensinvloeden maar ook de import van
ziektes via gëınfecteerde personen mede bepalend zijn voor het dynamisch gedrag
van knokkelkoorts incidenties. Verschillende scenario’s: resp. geen, lage en sterke
seizoensinvloeden met daarbij een beperkte import via gëınfecteerde personen
worden bestudeerd. Deze uitgebreide modellen laten complexe dynamiek zien
die kwalitatief goed overeenstemmen met empirische waarnemingen over DHF
gevallen.

Tegenwoordig is het mogelijk alleen van twee-varianten modellen het gedrag
kwalitatief goed te doorgronden en waarvan de voorspellingen vergeleken kunnen
worden met waarnemingen. De eenvoud van het model (lage aantal parameters en
toestandsvariabelen) maakt het mogelijk parameterwaarden te schatten waarbij
gebruik gemaakt wordt van waargenomen aantallen DHF gevallen. Deze schat-
tingstechnieken zijn notoire moeilijk toe te passen op tijdsreeksen met chaotisch
gedrag. Maar korte termijn voorspellingen zijn mogelijk. Als men de effecten
van beleidsmaatregelen wil begrijpen is het belangrijk toekomstige uitbraken van
knokkelkoorts te kunnen voorspellen. Ook al zou een virus vaccin beschikbaar
komen, dan blijft dit relevant voor de implementatie van vaccinatie programma’s.
Om een voorbeeld te geven: als een proef voor het bepalen van de effectiviteit
van vaccinaties gedaan wordt in een jaar waarin de ziekte alleen voorkomt bij
een beperkt aantal personen dan zijn deze waarnemingenstatistische gezien veel
moeilijker te interpreteren dan wanneer de proef in een jaar uitgevoerd zou wor-
den waarin de ziekte veel vaker voorkomt. Het kunnen voorspellen wanneer de
volgende knokkelkoorts epidemie optreed en hoe groot die is, is dus van groot
praktisch belang.

Ofschoon de overdracht van ziektes een inherent stochastisch fenomeen is zijn
knokkelkoorts modellen meestal geformuleerd met deterministische differentiaal-
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vergelijkingen. De gemiddelde veldbeschrijving (“mean field approximation”)
geeft vaak een goede benadering en kan gebruikt worden om een beter begrip te
krijgen van het gedrag van stochastische systemen voor bepaalde situaties. Daar-
bij worden de gemiddelde hoeveelheden benaderd door correlaties te verwaarlo-
zen. Echter, in sommige gevallen kunnen alleen stochastische in tegenstelling tot
deterministische modellen waargenomen fluctuatie beschrijven.

In Hoofdstuk 5 wordt een stochastische versie van het multi-varianten model
beschreven. Deze formulering houdt rekening met essentiële verschillen tussen de
eerste en de tweede besmettingen in knokkelkoorts epidemiologie. De interactie
tussen stochasticiteit, seizoenen en import wordt onderzocht. Het introduceren
van stochasticiteit is noodzakelijk om waargenomen fluctuaties in beschikbare
gegevens bestanden laat een scenario zien waarbij ruis en de complexe determi-
nistisch gedrag elkaar sterk bëınvloeden. Wanneer de populatie groot genoeg is
kan het stochastisch systeem goed benaderd worden met een deterministisch mo-
del met behoud van de essentiële dynamiek. Daarmee krijgt men inzicht in de
relevante parameterwaarden op grond van enkel topologische informatie over de
dynamiek.

Het twee-varianten knokkelkoorts model is een 9 dimensionaal systeem (d.w.z.
dat er 9 toestandsvariabelen zijn) en daarmee lijken toekomstige parameterschat-
tingen haalbaar waarbij alle beginvoorwaarden (hier 9) naast een beperkt aantal
parameters vastgelegd kunnen worden. Lange termijn epidemiologische waarne-
mingen van maandelijkse ziekenhuisopnamen met DHF zijn beschikbaar. Om dit
soort gegevens te kunnen analyseren zijn modellen noodzakelijk die zowel eerste
als tweede besmettingen met verschillende varianten kunnen voorspellen. Deze
modellen waarbij ADE en tijdelijke cross-immuniteit gemodelleerd zijn maar de
verschillen in het dynamisch gedrag van verschillende samen voorkomende knok-
kelziekte serotypes genegeerd worden, hebben goede kwalitatieve overeenkomst
tussen empirisch waarnemingen en model voorspellingen laten zien (zie Hoofd-
stuk 4 en Hoofdstuk 5).

Het vier-varianten model is een 25 dimensionaal systeem in plaats van 9 di-
mensionaal bij het twee-varianten model. In dit model vormen de verschillende
epidemiologische klassen (zoals vatbaar, besmettelijk en genezen) van de vier
verschillende varianten, DENV 1, DENV 2, DENV 3 en DENV 4 de SIR waar-
bij ook nu weer geen epidemiologische asymmetrie tussen de varianten wordt
aangenomen. Parameters van een systeem met veel dimensies zijn moeilijk te
schatten ondermeer omdat een groot aantal beginwaarden meegeschat moeten
worden. Verder zijn waarnemingen over het serotype alleen van recente gevallen
beschikbaar en daarmee zijn de waargenomen tijdsreeksen te kort om realisti-
sche informatie te verkrijgen over het verschil in biologische parameters zoals
infectieviteit en genezingssnelheid van alle varianten. In Hoofdstuk 6 worden
bifurcatie diagrammen voor het twee-varianten en het vier-varianten model met
elkaar vergeleken waarbij de bijdrage aan de infectieviteit van de tweede infectie
kleiner is dan die van de eerste infectie. Knokkelkoorts patiënten met een tweede
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besmetting door een andere variant worden vanwege het ADE fenomeen ernstig
ziek en opgenomen in het ziekenhuis. Daardoor dragen ze minder bij aan de
infectiekracht (dus φ < 1). Daarom zijn de bifurcaties die optreden bij parame-
terwaarden met φ < 1 erg interessant en niet alleen voor φ ≫ 1 zoals eerdere
modellen suggereerden.

We concluderen dat het twee-varianten model ondanks zijn eenvoud (rela-
tief lage aantal toestandsvariabelen en aantal parameters) een goed model is dat
complexe dynamisch gedrag voorspelt en dat de waargenomen empirische waar-
nemingen kan verklaren. Momenteel wordt dan ook het twee-varianten model
gebruikt om, inclusief de beginwaarden, parameters te schatten.
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English summary

Throughout human history, infectious diseases have caused debilitation and pre-
mature death to large portions of the human population, leading to serious social-
economic concerns. Many factors have contributed to the persistence and increa-
se in the occurrence of infectious disease (such as demographic factors, political,
social and economic changes, environmental change, public health care and infra-
structure, microbial adaptation, etc.). According to the World Health Organiza-
tion (WHO), are the second leading cause of death globally after cardiovascular
diseases (WHO, 2010). In recent years, mathematical modeling became an im-
portant tool for the understanding of infectious disease epidemiology and has led
to great advances in conceiving disease control strategies, including vaccination
programs.

One of the most important infectious diseases is dengue, a major international
public health concern with more than 55% of world population at risk of acquiring
the infection. Dengue is a viral mosquito-borne infection, a leading cause of
illness and death in the tropics and subtropics. Dengue fever is caused by four
antigenically distinct viruses, designated dengue types 1, 2, 3 and 4. Infection
by one serotype confers life-long immunity to only that serotype, and temporary
cross-immunity to other related serotypes. The temporary cross-immunity period
lasts from three to nine months and it is related to antibody levels created during
the immune response to a previous dengue infection. It is stated that such high
antibody levels would be enough to protect the individual against an immediately
new dengue infection caused by a different but related serotype.

Two variants of the disease exist: dengue fever (DF), a non-fatal form of
illness, and dengue hemorrhagic fever (DHF), which may evolve toward a severe
form known as dengue shock syndrome (DSS). Epidemiological studies support
the association of DHF with secondary dengue infection. There is good evidence
that sequential infection increases the risk of developing DHF due to a process
described as antibody-dependent enhancement (ADE), where the pre-existing
antibodies to previous dengue infection cannot neutralize but rather enhance the
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new infection.
Treatment of uncomplicated dengue cases is only supportive, and severe den-

gue cases requires careful attention to fluid management and proactive treatment
of hemorrhagic symptoms. A vaccine against dengue is not yet available, since
it would have to simulate a protective immune response to all four serotypes,
although several candidates of tetravalent vaccines are at various stages of de-
velopment. So far, prevention of exposure and vector control remain the only
alternatives to prevent dengue transmission.

In recent years, mathematical modeling became an interesting tool for the un-
derstanding of infectious diseases epidemiology and dynamics. A series of deter-
ministic compartment models such as Susceptible-Infected (SI) and Susceptible-
Infected-Recovered (SIR) for example, have been proposed based on the flow
patterns between compartments of hosts. The SIR epidemic model divides the
population into three classes concerning the disease stages: susceptible (S), In-
fected (I) and Recovered (R). This model framework can represent infectious
diseases where waning immunity can happen. Assuming that the transmission of
the disease is contagious from person to person, the susceptibles become infected
and infectious, are cured and become recovered. After a waning immunity period,
the recovered individual can become susceptible again to reinfection.

Multi-strain dynamics, such as dengue epidemiology, are generally modeled
with extended SIR-type models. Dengue fever dynamic is well known to be
particularly complex with large fluctuations of disease incidences. To capture
differences in primary and secondary dengue infections, a two-strain SIR-type
model for the host population has to be considered. Dengue models including
multi-strain interactions via ADE, but without temporary cross-immunity, have
shown already deterministic chaos when strong infectivity on secondary infection
was assumed. The addition of the temporary cross-immunity period in such
models brings a new chaotic attractor in wider and unexpected parameter region.

In this thesis we present different extensions of the classical single-strain SIR
model motivated by modeling dengue fever epidemiology with its peculiar ADE
phenomenology. We focus on a minimalistic model, where the notion of at least
two different strains is needed to describe differences between primary and se-
condary dengue infections. The models divide the host population into suscepti-
ble, infected and recovered individuals with subscripts for the respective strains.
The individuals can be (1) susceptibles without a previous dengue infection; (2)
infected and recovered for the first time; (3) susceptible with an experienced pre-
vious dengue infection and (4) infected for the second time with a different strain,
more likely to be hospitalized due to the ADE effect leading to severe disease.
Our analysis shows a rich dynamic structure, including deterministic chaos in wi-
der and more biologically realistic parameter regions, just by adding temporary
cross-immunity to previously existing dengue models.

In Chapter 1 we present the properties of the basic SIR epidemic model applied
to infectious diseases. A summary of the analysis of the dynamics identifying the
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thresholds and equilibrium points in order to introduce notation and terminology
are presented. These results were then generalized to a more advanced models
motivated by dengue fever epidemiology. In Chapter 2 the basic two-strain SIR-
type model motivated by modeling dengue fever epidemiology is presented. In
this chapter we focused on the multi-strain aspect and its effects on the host
population. The effects of the vector dynamics or seasonality is taken in account
only by the effective parameters of the SIR-type model, but these mechanisms
are not modeled explicitly. In Chapter 3 a detailed bifurcation analysis for the
basic multi-strain dengue model is presented where the ADE parameter φ and
the temporary cross-immunity parameter α are studied.

In Chapter 4 the seasonally forced system with temporary cross-immunity and
possible secondary infection is analyzed. This study was motivated by dengue
hemorrhagic fever monitoring data. The role of seasonality and import of infected
individuals are now considered as biologically relevant effects to determine the
dynamical behavior of the system. A comparative study between three different
scenarios (non-seasonal, low seasonal and high seasonal with a low import of
infected individuals) is presented. The extended models show complex dynamics
and qualitatively a good agreement between empirical DHF monitoring data and
the obtained model simulation.

At the moment only such minimalistic models have a chance to be qualitati-
vely understood well and eventually tested against existing data. The simplicity
of the model (low number of parameters and state variables) offer a promising
perspective on parameter values inference from the DHF case notifications. Such
a technical parameter estimation is notoriously difficult for chaotic time series
due to the long term unpredictability versus short term predictability. Recent-
ly, this short term predictability has been used for temporally local approaches
in statistical inference on the cost of difficulty in obtaining a final definite best
answer to the parameter estimation problem.

Being able to predict future outbreaks of dengue in the absence of human
interventions is a major goal if one wants to understand the effects of control
measures. Even after a dengue virus vaccine has become accessible or available,
this holds true for the implementation of a vaccination program. For example,
to perform a vaccine trial in a year where the disease epidemic generate a low
number of cases, would make the statistical tests of vaccine efficacy much more
difficult compared with the information provided by a vaccine trial performed in
a epidemic year with much higher numbers of cases. Thus predictability of the
next season’s height of the dengue peak, on the basis of deterministic balance of
infected and susceptible, would be of major practical use.

Although the fact that disease propagation is an inherently stochastic phe-
nomenon, dengue models are mainly expressed mathematically as a set of de-
terministic differential equations, which are easier to analyze. The mean field
approximation, an approximation of stochastic processes leading to deterministic
dynamics, is a good approximation to be used in order to understand better the
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behavior of the stochastic systems in certain parameter regions, where the dyna-
mics of the mean quantities are approximated by neglecting correlations. Howe-
ver, it is only stochastic, as opposed to deterministic, models that can capture
the fluctuations observed in some of the available time series data. In Chapter 5
the stochastic version of the minimalistic multi-strain model is presented. In this
chapter we investigate the interplay between stochasticity, seasonality and impor-
ted cases of the disease. The introduction of stochasticity reveal a scenario where
noise and complex deterministic skeleton strongly interact. For large enough
population size, the stochastic system could be well described by the determinis-
tic skeleton, where the essential dynamics are captured, gaining insight into the
relevant parameter values purely on topological information of the dynamics.

The two-strain dengue model is a 9 dimensional system and therefore, future
statistical inference can still attempt to estimate all initial conditions as well as
the few model parameters. Concerning data availability, long term epidemiologi-
cal data consist on monthly incidences of hospitalized DHF cases. For such a data
scenario, models that are able to generate both primary and secondary infection
cases (with a different strain, without the need of considering differences on the
dynamics of different co-circulating dengue serotypes), have shown a good quali-
tative agreement between empirical data and model output (see Chapter 4 and
Chapter 5). These results were obtained just by combining the ADE effect, ge-
nerating difference in transmissibility on primary and secondary infections, with
the temporary cross-immunity aspect. Differently from the minimalistic dengue
model, the four-strain model is mathematically represented by a system of 26
ODE’ s. It becomes a very high dimensional system and obviously very difficult
to be used for parameter inference due to the high number of initial conditions.
In Chapter 6 we present the multi-strain dengue model for the four existing se-
rotypes. For four different strains, 1, 2, 3 and 4, we now label the SIR classes for
the hosts that have seen each one of the possible strains. Again, without epidemi-
ological asymmetry between strains, once the serotype data are recent and very
short to give any realistic information concerning difference in biological parame-
ters (such as infection and recovery rates) for a given strain. In this chapter we
present the bifurcation diagram comparison for both two-strain and four-strain
model. In the relevant parameter region of φ < 1, when dengue patients in a
secondary infection evolving to severe disease due to the ADE phenomenon con-
tribute less to the force of infection, the bifurcation points appear to happen at
similar parameter regions, well below the region of interest φ ≈ 1.

We conclude that the two-strain model in its simplicity is a good model to
be analyzed giving the expected complex behavior to explain the fluctuations
observed in empirical data. Statistical inference to estimate the basic parameters
of transmission, infectivity, disease severity (ADE parameter) and temporary
cross-immunity period using empirical data of incidence of severe disease is needed
to identify eventual deviations from the simplest symmetric case investigated
here. Further work on the parameter estimation using the minimalistic dengue
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model is in progress.
The vector dynamics might also play a role in understanding the final picture

when comparing the model output with the available empirical data. Following
the investigations described in this thesis, a number of research directions could
be addressed, involving the minimalistic dengue model. Future work would be to
investigate extensions of the multi-strain model to address the following questi-
ons and issues: (1) How much (more or less than first infection) does secondary
infection contribute to the force of infection? (2) Does there exist a difference
between the forces of infection for the different strains and to what extent can the
bifurcation structure explain the viral diversity contribution? (3) Formulate hy-
potheses using the mechanism of temporary cross-immunity suitable to recurrent
infections protection. (4) Model the vaccine trials based on short term predic-
tability of chaotic systems to be applied when tetravalent vaccines will become
available. And (5) propose targets for intervention and control design according
to the expected impact of the disease. My special interest would be to get the
model fully parametrized on data referring to incidence of severe disease and pre-
valence of infection. With such a model framework we would be able to give an
insight into the predictability of upcoming dengue outbreaks. This epidemiolo-
gical tool would help to understand the effects of control measures and therefore
to guide the policies of prevention and control of the dengue virus transmission.
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Chapter 1

Introduction

Throughout human history, infectious diseases have caused debilitation and pre-
mature death to large portions of the human population, leading to serious socio-
economic concerns. Many factors have contributed to the persistence and increase
in the occurrence of infectious disease (demographic factors, political, social and
economic changes, environmental change, public health care and infrastructure,
microbial adaptation, etc.), which according to the World Health Organization
(WHO), are the second leading cause of death globally after cardiovascular dis-
eases (WHO, 2010).

Research on basic and applied aspects of host, pathogen, and environmen-
tal factors that influence disease emergence, transmission and spread have been
supported so far, and the development of diagnostics, vaccines, and therapeu-
tics has been greatly increased. In recent years, mathematical modeling became
an interesting tool for the understanding of infectious diseases epidemiology and
dynamics, leading to great advances in providing tools for identifying possible
approaches to control, including vaccination programs, and for assessing the po-
tential impact of different intervention measures.

Epidemiological models are a formal framework to convey ideas about the
components of a host-parasite interaction and can act as a tool to predict, under-
stand and develop strategies to control the spread of infectious diseases by helping
to understand the behaviour of the system under various conditions. They can
also aid data collection and parameter estimation. The purpose of epidemio-
logical models is to take different aspects of the disease as inputs and to make
predictions about the numbers of infected and susceptible people over time as
output.

In the early 20th century, mathematical models were introduced into infec-
tious disease epidemiology, and a series of deterministic compartment models such
as Susceptible-Infected (SI), Susceptible-Infected-Susceptible (SIS), Susceptible-
Infected-Recovered (SIR), and e.g Susceptible-Exposed-Infected-Recovered (SEIR)
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have been proposed based on the flow patterns between compartments of hosts.
In our days, most of the models developed try to incorporate other factors fo-
cusing on several different aspects of the disease, which can imply rich dynamic
behaviour even in the most basic dynamical models. Factors that can go into the
models include the duration of disease, the duration of infectivity, the infection
rate, the waning immunity, and so forth. In such a way, differential equation
models are a simplified representation of reality, which are designed to facilitate
prediction and calculation of rates of change as functions of the conditions or the
components of the system.

There are two common approaches in modeling, the deterministic and the
stochastic one. In the first case, the model is one in which the variable states are
uniquely determined by parameters in the model and by sets of previous states
of these variables. In mathematics, a deterministic system is a system in which
no randomness is involved in the development of future states of the system. In
a stochastic model, randomness is present, and variable states are not described
by unique values, but rather by probability distributions. Stochastic epidemic
models are appropriate stochastic processes that can be used to model disease
propagation. Disease propagation is an inherently stochastic phenomenon and
there are a number of reasons why one should use stochastic models to capture
the transmission process. Real life epidemics, in the absence of intervention
from outside, can either go extinct with a limited number of individuals getting
ultimately infected, or end up with a significant proportion of the population
having contracted the disease in question. It is only stochastic, as opposed to
deterministic, models that can capture this behaviour and the probability of each
event taking place.

Only few stochastic processes can be solved explicitly. The simplest and most
thoroughly studied stochastic model of epidemics are based on the assumption
of homogeneous mixing, i.e. individuals interact randomly at a certain rate. The
mean field approximation is a good approximation to be used in order to un-
derstand better the behaviour of the stochastic systems in certain parameter re-
gions, where the dynamics of the mean quantities are approximated by neglecting
correlations, giving closed ordinary differential equations (ODE) systems, hence
mathematically deterministic systems which are easier to analyse.

In the following section of this chapter we present the properties of the basic
SIR epidemic model for infectious diseases with a summary of the analysis of
the dynamics, identifying the thresholds and equilibrium points. The goal is
to introduce notation, terminology, and results that will be generalized in later
sections on more advanced models motivated by dengue fever epidemiology as an
example of multi-strain systems.
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1.1 The SIR Epidemic Model

The SIR epidemic model divides the population into three classes: susceptible
(S), Infected (I) and Recovered (R). It can be applied to infectious diseases
where waning immunity can happen, and assuming that the transmission of the
disease is contagious from person to person, the susceptibles become infected and
infectious, are cured and become recovered. After a waning immunity period, the
recovered individual can become susceptible again. This model was for the first
time proposed by William Ogilvy Kermack and Anderson Gray McKendrick in
1927 (Weisstein, 2010). The model was brought back to prominence after decades
of neglect by Anderson and May (Anderson & May, 1979).

In the simple SIR epidemics without strain structure of the pathogens we have
the following reaction scheme for the possible transitions from one to another
disease related state, susceptibles S, infected I and recovered R,

S + I
β

−→ I + I

I
γ

−→ R

R
α

−→ S

for a host population of N individuals, with contact and infection rate β, recovery
rate γ and waning immunity rate α. The dynamic model in terms of ordinary
differential equations (ODE) reads,

Ṡ = −
β

N
IS + α(N − S − I) (1.1)

İ =
β

N
IS − γI , (1.2)

where we use the time derivative Ṡ = dS/dt with time t for a constant pop-
ulation size of N = S + I + R individuals. The solution of R(t) is given by
R(t) = N − I(t) − S(t) which can be calculated using the solution of the ODEs.
The susceptible individuals become infected with infection rate β, recover from
the infection with recovery rate γ and become susceptible again after waning
immunity rate α.

In Fig. 1.1 we show the dynamical behaviour of the susceptible, infected and
recovered individuals in a given population N , when solving the above ODE
system.

The basic SIR model has only fixed points as possible stationary solutions,
that can be calculated setting the rates of change Ṡ and İ to zero. For the disease
free equilibrium state, the solution is given by

I∗
1 = 0 (1.3)

S∗
1 = N (1.4)
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Figure 1.1: Time dependent solution simulation for the SIR epidemic model.
With a population N = 100, and starting values I = 40, S = 60 and R = 0, we
fixed β = 2.5, α = 0.1, and γ = 1. In green the dynamics for the susceptibles
S(t), in pink the dynamics for the infected I(t) and in blue the dynamics of the
recovered R(t). Note that N = 100 allows for the interpretation for the class
abundances in percentages.

and for the disease endemic equilibrium state, the solution is

I∗
2 = N

(

1 −
γ

β

)
α

(α + γ)
(1.5)

S∗
2 = N

γ

β
. (1.6)

The epidemic dynamic as a function of the infection rate parameter β and
the recovery rate parameter γ shows the spread of the epidemic when β > γ (see
Fig. 1.2a)), and its extinction when β < γ (see Fig. 1.2b)).
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Figure 1.2: Epidemic dynamics as a function of β. With the same initial values
as used in Fig. 1.1, we plot time dependent solutions I(t) for several β values. In
a)β ∈ [1.5, 2.5], with a resolution ∆β = 0.1 and in b) β ∈ [0, 0.9] where ∆β = 0.2.
In c) the stable stationary states as function of β.

In order to analyse the stability of the equilibrium states, we look at the
Jacobian matrix and its eigenvalues.
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Let the dynamics for the state x := (S, I) be f(x), hence d
dt

x = f(x) which
explicitly gives ∆x := x(t) − x∗ as a small perturbation around the fixed point
x∗. We linearize the dynamic d

dt
∆x = d

dt
(x(t) − x∗) applying Taylor’s expansion

f(x∗ + ∆x) = f(x∗) +
df

dx

∣
∣
∣
∣
x∗

· (∆x) + O((∆x)2) (1.7)

with f(x∗) = 0 for the fixed point and neglecting higher order terms. For our
system we have the following linear differential equation system

d

dt

(
S(t) − S∗

I(t) − I∗

)

=





∂f

∂S

∂f

∂I

∂g

∂S

∂g

∂I





∣
∣
∣
∣
∣
∣

0

@

S
I

1

A=

0

@

S∗

I∗

1

A

·

(
S − S∗

I − I∗

)

(1.8)

where f := (f, g) and the Jacobian matrix is explicitly given by





− β

N
I∗ − α − β

N
S∗ − α

β

N
I∗ β

N
S∗ − γ



 =: A (1.9)

where we have to insert for S∗ and I∗, the respective steady states. In order to
decoupled the linear differential equation system, we diagonalize the matrix A,
(1.9), with the eigenvalue decomposition A u = λ u, u is an eigenvector of A,
and λ is an eigenvalue of A corresponding to the eigenvector u.

The eigenvalues can be calculated setting the determinant of [A − λ I] equal
zero. For the disease free equilibrium state (I∗

1 and S∗
1), Eq. (1.3) and Eq. (1.4),

the eigenvalues are given by

λ1 = β − γ (1.10)

λ2 = −α (1.11)

and for the disease endemic equilibrium state (I∗
2 and S∗

2), Eq. (1.5) and Eq. (1.6),
the eigenvalues are giving by

λ1 = −
α

2

(

1 +
β − γ

α + γ

)

+

√
[
α

2

(

1 +
β − γ

α + γ

)]2

− (β − γ)α (1.12)

λ2 = −
α

2

(

1 +
β − γ

α + γ

)

︸ ︷︷ ︸

−

√
√
√
√

[
α

2

(

1 +
β − γ

α + γ

)]2

− (β − γ)α

︸ ︷︷ ︸

. (1.13)

=: a =: b

Note that if b > 0 the eigenvalues are real numbers, giving the contraction or
expansion of the trajectories near to the considered fixed point. If b < 0, the
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eigenvalues become complex, where the real part a gives the contraction or ex-
pansion, and the imaginary part i

√

|b| gives the frequency of oscillations of the
trajectories spiralling into the fixed point as is shown in Fig. 1.2b).

The fixed point I∗
1 is stable when β < γ, where both eigenvalues are neg-

ative. For β > γ the fixed point I∗
2 is now stable. Here, the real part of the

eigenvalues are negative and the imaginary part of the eigenvalues gives the os-
cillations towards the fixed point. The stability of the system changes when one
of the eigenvalues of the system becomes zero. At this critical point, I∗

1 becomes
unstable and I∗

2 stable. Figure 1.2c) shows the eigenvalues for the disease free
equilibrium state as functions of β. For detailed information on the solution of a
linear two dimensional ODE system, see (Mattheij & Molenaar, 1996).

The stochastic SIR epidemic is modelled as a time-continuous Markov process
to capture population noise. The dynamics of the probability of integer infected
and integer susceptibles, while the recovered follow from this due to constant
population size, can be given as a master equation (van Kampen, 1992) in the
following form

dp(S, I, t)

dt
=

β

N
(S + 1)(I − 1) p(S + 1, I − 1, t) (1.14)

+γ(I + 1) p(S, I + 1, t)

+α(N − (S − 1) − I) p(S − 1, I, t)

−

(
β

N
+ γI + α(N − S − I)

)

p(S, I, t) .

This process can be simulated, e.g., by the Gillespie algorithm giving stochas-
tic realizations of infected and susceptibles in time (Gillespie, 1976, 1978).
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Figure 1.3: Stochastic simulations for the basic SIR epidemic model. Here 10
realizations are plotted. We fixed α = 0.1, γ = 1 and β = 2.5. The deterministic
trajectory is shown (pink line) top of the stochastic realizations for different
population size N . In a) N = 100, in b) N = 1000 and in c) N = 100000.

For mean values of infected 〈I〉 and susceptibles 〈S〉, defined as e.g.

〈I〉(t) :=
N∑

S=0

N∑

I=0

I p(S, I, t) . (1.15)
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one can calculate the dynamics by inserting the master equation into the defini-
tion of the mean values obtaining

d

dt
〈S〉 = α〈R〉 −

β

N
〈SI〉

(1.16)

d

dt
〈I〉 =

β

N
〈SI〉 − γ〈I〉

with 〈R〉 = N − 〈S〉 − 〈I〉. For more details on the calculations see e.g. (Stol-
lenwerk & Jansen, 2011). These equations for the mean dynamics include now
due to the non-linear transition rates in the master equation also higher moments
〈S · I〉. The simplest approximation to obtain a closed ODE system is to neglect
cross-correlations 〈S · I〉 − 〈S〉 · 〈I〉 ≈ 0, the so-called mean field approximation
(originally introduced for spatially extended systems in statistical physics (Stol-
lenwerk et al., 2010)). Hence, the equation system Eq. (1.16), with identifying
the higher moment 〈S · I〉 = 〈S〉 · 〈I〉 by a product of simple moments, gives
again the ODE system for SIR system as it was just presented above. For cer-
tain parameter regions the mean field approximation describes the system well in
terms of its mean dynamics and only small fluctuations around it. Then the pre-
viously shown analysis of the system is appropriate. However, noise can stabilize
transients, a feature which becomes important in parameter regions where in the
deterministic description a fixed point is reached via decreasing oscillations, as
we have observed them in the SIR system. The noisy system would show here
continued oscillations (Alonso et al., 2006).

In Fig. 1.3 we compare the deterministic and stochastic dynamics and we see
that the magnitude of stochastic fluctuations decreases when the population size
increases. However, the good approximation (see Fig. 1.3c)) is only achieved when
the population size is large enough. For small population size, most simulation
die out very quickly (see Fig. 1.3a)). Almost all mathematical models of diseases
start from the same basic premise, that the population can be subdivided into a
set of distinct classes. The most commonly used framework for epidemiological
systems, is still the SIR type model, a good and simple model for many infectious
diseases. Different extensions of the classical single-strain SIR model show rich
dynamic behaviour in measles, e.g. (Stone et al., 2007), or in generalized multi-
strain SIR type models to describe the epidemiology of dengue fever, e.g. (Aguiar
& Stollenwerk, 2007; Aguiar et al., 2008).

1.2 Dengue fever Epidemiology

Dengue is a viral mosquito-borne infection which in recent years has become
a major international public health concern. According to the estimates given
by (PDVI, 2011), 3.6 billion (55% of world population) are at risk of acquiring
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dengue infection (see Fig. 1.4)). It is estimated that every year, there are 70−500
million dengue infections, 36 million cases of dengue fever (DF) and 2.1 million
cases of dengue hemorrhagic fever (DHF), with more than 20.000 deaths per year
(WHO, 2009; PDVI, 2011; CDC, 2011). In many countries in Asia and South
America DF and DHF has become a substantial public health concern leading to
serious social-economic costs.

Figure 1.4: Worldwide Dengue distribution 2010. In red Countries and areas
where dengue has been reported. Data source: World Health Organization
(WHO) & Centers for Disease Control and Prevention (CDC). Adapted from
(Gubler, 2002; Mackenzie et al., 2004).

Dengue fever is transmitted by the female domestic mosquito Aedes aegypti,
although Ae. albopictus and Ae. polynesiensis can also act as transmission
vector (Favier et al., 2005). Virus transmission in its simplest form involves the
ingestion of viremic blood by mosquitoes and passage to a second susceptible
human host. The mosquito becomes infected when taking a blood meal from
a viremic person. After an extrinsic incubation period, the mosquito becomes
infective and remains so during its entire life span (Rigau-Pérez et al., 1998).
As the blood meal stimulates ovoposition, which undergoes at least one, often
more, reproductive cycles there is an opportunity of vertical transmission to the
eggs, passing the virus to the next generation of mosquitoes (Rosen et al., 1983;
Monath, 1994; CDC, 2011).

There are four antigenically distinct dengue viruses, distributed around the
world, designated DEN − 1, DEN − 2, DEN − 3, and DEN − 4 (see Fig. 1.5).
The co-circulation of all four dengue serotypes and their capacity to produce
severe dengue disease was demonstrated as early as 1960 in Bangkok, Thailand
(Halstead et al., 1969). DHF occurred first only in Bangkok, but was dissemi-
nated to the whole region during the 1970s (Gubler, 2002; Halstead et al., 1969;
Chareonsook et al., 1999). Physicians in Thailand are trained to recognize and
treat dengue fever and practically all cases of DHF and DSS are hospitalized. A
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a)

b)

Figure 1.5: Global distribution of dengue virus serotypes. In a) 1970 and in b)
2010. Data source: World Health Organization (WHO) & Centers for Disease
Control and Prevention (CDC). Adapted from (Gubler, 2002).
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system for reporting communicable diseases including DHF/DSS was considered
fully installed in 1974 and the data bank of DHF and DSS is available at the
Ministry of Public Health, Bangkok (Chareonsook et al., 1999).

Infection by one serotype confers life-long immunity to only that serotype and
temporary cross-immunity to other serotypes exists. It lasts from three to nine
months, when the antibody levels created during the response to that infection
would be enough to protect against infection by a different but related serotype
(Halstead, 1994; Matheus et al., 2005; WHO, 2009; SES, 2010; Dejnirattisai et al.,
2010). Two variants of the disease exist: dengue fever (DF), a non-fatal form of
illness, and dengue hemorrhagic fever (DHF), which may evolve toward a severe
form known as dengue shock syndrome (DSS).

Figure 1.6: Scheme of the immunological response on recurrent dengue infections.
In (a.) the first infection with a given dengue virus serotype, in (b.) production
of antibodies (Immunoglobulin M (IgM)), in (c.) inactivation of the virus and in
(d.) production of antibodies (IgG class, the so called memory antibodies). In (e.)
the temporary cross-immunity period, that lasts between 3-9 months. After that
period, the individual can get infected again with another dengue virus serotype,
different from the first one (f.). In (g.) the IgG from the previous dengue infection
binds to the new virus but do not inactivate them. In (h.) the complex antibody-
virus enhances the new infection (i.). In (j.) the late production of antibodies
(IgM class) which is then able to inactivate the new viruses, leading to (l.), an
enhanced immune response, such that hemorrhagic symptoms are observed. In
(m.) production of IgG antibodies.

Epidemiological studies support the association of DHF with secondary dengue
infection (Halstead, 1982, 2003; Nisalak et al., 2003), and there is good evidence
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that sequential infection increases the risk of developing DHF, due to a process
described as antibody-dependent enhancement (ADE), where the pre-existing an-
tibodies to previous dengue infection cannot neutralize but rather enhance the
new infection.

In the first dengue infection virus particles will be captured and processed
by so-called antigen presenting cells. These viruses will be presented to T-cells
causing them to become activated. Likewise, B-cells will encounter their anti-
gen free floating and become activated. The B-cells produce antibodies that are
used to tag the viruses to encourage their uptake by macrophages and inactivate
them. In a second infection, with a different strain, the antibodies from the first
infection will attach to the new virus particles but will not inactivate them. The
antibody-virus complex suppresses innate immune responses, increasing intracel-
lular infection and generating inflammatory citokines and chemokines resulting
in enhanced disease (Halstead, 1982, 1994; Dejnirattisai et al., 2010; Guzmán
et al., 2010). Fig. 1.6 is an scheme to illustrate the immunological response on
recurrent dengue infections.

DF is characterized by headache, retro-orbital pain, myalgia, arthralgia, rash,
leukopenia, and mild thrombocytopenia. The symptoms resolve after 2− 7 days.
DHF is a potentially deadly complication that is characterized by high fever and
hemorrhagic phenomena. DHF develops rapidly, usually over a period of hours,
and resolves within 1 − 2 days in patients who receive appropriate fluid resusci-
tation. Otherwise, it can quickly progress to shock (WHO, 2009; CDC, 2011).
Treatment of uncomplicated dengue cases is only supportive, and severe dengue
cases requires careful attention to fluid management and proactive treatment of
hemorrhagic symptoms (CDC, 2011; WHO, 2009). A vaccine against dengue is
not yet available, since it would have to simulate a protective immune response to
all four serotypes (Stephenson, 2005), although several candidates of tetravalent
vaccines are at various stages of development (WHO, 2011).

Mathematical models describing the transmission of dengue viruses appeared
in the literature early as 1970 (Fischer & Halstead, 1970). More recently, math-
ematical models describing the transmission of dengue viruses have focused on
the ADE effect and temporary cross-immunity trying to explain the irregular
behaviour of dengue epidemics. Such models ultimately aim to be used as a
predictive tool with the objective to guide the policies of prevention and control
of the dengue virus transmission, including the implementation of vaccination
programs when the candidate dengue fever vaccines will be accessible.

In the literature, multi-strain interaction leading to deterministic chaos via
antibody-dependent enhancement effect has been described previously e.g. (Fer-
guson et al., 1999; Schwartz et al, 2005; Billings et al., 2007) but neglecting
temporary cross-immunity. Consideration of temporary cross-immunity is rather
complicated and up to now not in detail analysed. Models formulated in e.g.
(Wearing & Rohani, 2006; Nagao & Koelle, 2008; Recker et al., 2009; Loureço
& Recker, 2010), did not investigate closer the possible dynamical structures. In
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(Aguiar et al., 2008, 2009, 2011 a), by including temporary cross-immunity into
dengue models with ADE, a rich dynamic structure including deterministic chaos
was found in wider and more biologically realistic parameter regions. In the fol-
lowing section of this chapter we present a short review on recent multi-strain
models motivated by dengue fever epidemiology.

1.3 Multi-strain models motivated by dengue

fever epidemiology: a review

Multi-strain dynamics are generally modelled with extended SIR-type models
and have demonstrated to show critical fluctuations with power law distributions
of disease cases, exemplified in meningitis (Stollenwerk & Jansen, 2003 a; Stollen-
werk et al., 2004) and in dengue fever (Massad et al., 2008). Dengue models in-
cluding multi-strain interactions via ADE but without temporary cross-immunity
period have shown deterministic chaos when strong infectivity on secondary in-
fection was assumed (Ferguson et al., 1999). The addition of the temporary
cross-immunity period in such models brings a new chaotic attractor in an un-
expected and more biologically realistic parameter region of reduced infectivity
on secondary infection (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008, 2009,
2011 a), i.e. deterministic chaos was found in a wider parameter regions. This
indicates that deterministic chaos is much more important in multi-strain mod-
els than previously thought, and opens new ways to data analysis of existing
dengue time series, as will be shown below. It offers a promising perspective on
parameter values inference from dengue cases notifications.

To capture differences in primary infection by one strain and secondary in-
fection by another strain we consider a basic two-strain SIR-type model for the
host population, which is only slightly refined as opposed to previously suggested
models for dengue fever (Ferguson et al., 1999; Schwartz et al, 2005; Billings et
al., 2007). The stochastic version of the multi-strain dengue model is now given
in complete analogy to the previously described SIR model, and the mean field
ODE system for the multi-strain dengue model can be read from the following
reaction scheme (1.17), describing the transitions. It describes for first infection
with strain 1 and secondary infection with strain 2, and for the reverse process,
where the first infection is caused by strain 2 and the secondary infection is caused
by strain 1. The same reaction scheme can be used to describe the transitions by
just changing labels.

The basic multi-strain model divides the population into ten classes: sus-
ceptible to both strains, 1 and 2 (S), primarily infected with strain one (I1) or
strain two (I2), recovered from the first infection with strain one (R1) or strain
two (R2), susceptible with a previous infection with strain one (S1) or strain
two (S2), secondarily infected with strain one when the first infection was caused
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by strain two (I21) or for second time infected with strain two when the first
infection was caused by strain one (I12). Notice that infection by one serotype
confers life-long immunity to that serotype. Then the individuals recover from
the secondary infection (R).

S + I1
β

−→ I1 + I1

S + I21
φβ
−→ I1 + I21

I1
γ

−→ R1

R1
α

−→ S1

S1 + I2
β

−→ I12 + I2

S1 + I12
φβ
−→ I12 + I12

I12
γ

−→ R

S + I2
β

−→ I2 + I2

S + I12
φβ
−→ I2 + I12

I2
γ

−→ R2

R2
α

−→ S2 (1.17)

S2 + I1
β

−→ I21 + I1

S2 + I21
φβ
−→ I21 + I21

I21
γ

−→ R

The complete system of ordinary differential equations for the two strain epi-
demiological system is given by system Eq. (1.18) and the dynamics are described
as follows. Susceptibles to both strains can get the first infection with strain one
or strain two with infection rate β when the infection is acquired via an indi-
vidual in his first infection or infection rate φβ, when the infection is acquired
via an individual in his second infection. They recover from the first infection
with a recovery rate γ, conferring full and life-long immunity against the strain
that they were exposed to, and also a short period of temporary cross-immunity
α against the other strain, becoming susceptible to a second infection with a
different strain. The susceptible with a previous infection gets the secondary
infection, again with two possible infection rates, β or φβ depending on whom
(individual on his primary or secondary infection) is transmitting the infection.
Then, with recovery rate γ, the individuals recover and become immune against
all strains. No epidemiological asymmetry between strains is assumed, i.e. infec-
tions with strain one followed by strain two or vice versa contribute in the same
way to the force of infection. Here, the only relevant difference concerning disease
transmissibility is that the force of infection varies accordingly to the number of
previous infections the hosts have experienced. In a primary infection the indi-
viduals transmit the disease with a force of infection βI

N
whereas in a secondary

infection the transmission is given with a force of infection φβI

N
where φ can be

larger or smaller than 1, i.e. increasing or decreasing the transmission rate. The
parameter values are given in Table 1.1, if not otherwise explicitly stated. For
more information on parametrization of the basic two-strain model, see (Aguiar
& Stollenwerk, 2007; Aguiar et al., 2008).

37



Ṡ = −
β

N
S(I1 + φI21) −

β

N
S(I2 + φI12) + µ(N − S)

İ1 =
β

N
S(I1 + φI21) − (γ + µ)I1

İ2 =
β

N
S(I2 + φI12) − (γ + µ)I2

Ṙ1 = γI1 − (α + µ)R1

Ṙ2 = γI2 − (α + µ)R2 (1.18)

Ṡ1 = −
β

N
S1(I2 + φI12) + αR1 − µS1

Ṡ2 = −
β

N
S2(I1 + φI21) + αR2 − µS2

˙I12 =
β

N
S1(I2 + φI12) − (γ + µ)I12

˙I21 =
β

N
S2(I1 + φI21) − (γ + µ)I21

Ṙ = γ(I12 + I21) − µR ,

Table 1.1: Parameter set, rates given in units per year, ratio without unit

Par. Description Values Ref

N population size 100 (Aguiar et al., 2008)
µ new born susceptible rate 1/65y (UNWPP, 2011)
γ recovery rate 52y−1 (WHO, 2009)
β infection rate 2 γ (Ferguson et al., 1999)
α temporary cross-immunity rate 2y−1 (Matheus et al., 2005)
φ ratio of contribution

to force of infection ∈ [0, 3] (Aguiar et al., 2008)

The time series for φ < 1 shows that the total number of infected I :=
I1 + I2 + I12 + I21 stays quite away from zero, avoiding the chance of extinction in
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stochastic systems with reasonable system size (see Fig. 1.7a)). The parameter
region previously considered to model ADE effects on dengue epidemiology, i.e.
φ > 1, leads to rather low troughs for the total number of infected giving unreal-
istically low numbers of infected (see Fig. 1.7b)). The logarithm of total number
of infected goes as low as −70 for φ = 2.7 in the chaotic region of φ > 1, and
the population fluctuations would, in this case, drive almost surely the system to
extinction.

The state space plots in terms of the variables S and the logarithm of the total
number of infected I show a rich dynamical behaviour with increasing φ from fixed
point to limit cycles, till completely irregular behaviour (see Fig. 1.8). Looking
for higher values of φ, the chaotic attractor becomes unstable, just leaving simple
limit cycles as attractors for large parameter regions beyond φ = 1. Only for
much higher values of φ ≫ 1, another chaotic attractor appears, the classical
chaotic attractor found first by (Ferguson et al., 1999), and then by (Aguiar &
Stollenwerk, 2007; Aguiar et al., 2008).
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Figure 1.7: Time series of the logarithm of the overall infected (ln(I)) comparison:
a) simulation for φ = 2.7 and b) simulation for φ = 0.6 for the same time interval.

Bifurcation diagrams (see Fig. 1.9) were obtained plotting the local extrema
of the logarithm of total number of infected (ln(I)) over the varying ratio of
secondary infection contribution to the force of infection φ. Fixed points appear
as one dot per parameter value, limit cycles appear as two dots, double-limit
cycles as four dots, more complicated limit cycles as more dots, and chaotic
attractors as continuously distributed dots for a single φ value (Ruelle, 1989).
Figure 1.9a) shows two chaotic windows, one for φ < 1, where this dynamical
behaviour has never been described before, and also another one for φ > 1 where
the minimal values go to very low numbers of infected, already described in
previous publications (Ferguson et al., 1999; Schwartz et al, 2005; Billings et al.,
2007). When neglecting the temporary cross-immunity period, i.e. by putting
α → ∞, the new chaotic window disappears and the complex dynamics is now
restricted in a parameter region of φ ≫ 1, as it is shown in Fig. 1.9b). Here,
the recovered individuals can be immediately infected with another strain, and

39



a)
-8

-7

-6

-5

-4

-3

-2

-1

 36  38  40  42  44  46  48  50

ln
(I

1+
I 2

+
I 1

2+
I 2

1)
 (

t)

S(t) b)
-8

-7

-6

-5

-4

-3

-2

-1

 36  38  40  42  44  46  48  50

ln
(I

1+
I 2

+
I 1

2+
I 2

1)
 (

t)

S(t) c)
-8

-7

-6

-5

-4

-3

-2

-1

 36  38  40  42  44  46  48  50

ln
(I

1+
I 2

+
I 1

2+
I 2

1)
 (

t)

S(t)

d)
-16

-14

-12

-10

-8

-6

-4

-2

 0

 24  25  26  27  28  29  30

ln
(I

1+
I 2

+
I 1

2+
I 2

1)
 (

t)

S(t) e)
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 16  18  20  22  24  26  28  30  32

ln
(I

1+
I 2

+
I 1

2+
I 2

1)
 (

t)

S(t) f)
-70

-60

-50

-40

-30

-20

-10

 0

 10

 5  10  15  20  25  30  35  40

ln
(I

1+
I 2

+
I 1

2+
I 2

1)
 (

t)

S(t)

Figure 1.8: Attractors for various values of φ < 1: a) fixed point for φ = 0.1, in
b) limit cycle for φ = 0.4, and in c) chaotic attractor for φ = 0.6. In d) limit
cycle for φ = 1.5, in e) a complicated limit cycle for φ = 1.9 and in f) another
chaotic attractor for φ = 2.7

consideration of temporary cross-immunity brings a new chaotic attractor found
first in (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008).
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Figure 1.9: Bifurcation diagram for the local extrema of the overall infected with
changing parameter φ. In a) α = 2y−1 (six month) and in b) α = 52y−1 (one
week).

This finding encouraged us to look closer to the parameter region of φ < 1,
when dengue patients in a secondary infection evolving to severe disease because
of the ADE phenomenon contribute less to the force of infection, and not more,
as previous models suggested. This assumption is likely to be more realistic for
dengue fever since the possible severity of a secondary infection may hospitalize
people, not contributing to the force of infections as much as people with first
infection.

The attractor structure, fixed point, limit cycle or chaotic attractor can be
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quantified by calculating the Lyapunov exponents, (Ruelle, 1989; Ott, 1993),
using an iterated technique along a trajectory using the QR decomposition algo-
rithm via Householder matrices (see e.g. (Holzfuss & Lauterborn, 1989; Holzfuss
& Parlitz, 1991)). Lyapunov exponents are essentially a generalization of eigenval-
ues determining stability versus instability along trajectories. A negative largest
Lyapunov exponent indicates a stable fixed point as attractor, a zero largest Lya-
punov exponent indicates a stable limit cycle and a positive largest Lyapunov
exponent indicates a chaotic attractor. The largest four Lyapunov exponents as
a function of the parameter φ, the ratio of secondary infection contribution to
the force of infection, are shown in Fig. 1.10a).

a)

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1  1.2

 λ
i 

φ b)

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

H P TR P T

ln
(I

) 

φ

Figure 1.10: In a) spectrum of the four largest Lyapunov exponents with changing
the ratio of secondary infection contribution to the force of infection, parameter φ,
and fixed temporary cross-immunity α = 2y−1. In b) we show the one-parameter
bifurcation diagram with temporary cross-immunity rate of six months (α =
2y−1) and varying the ratio of secondary infection contribution to the force of
infection φ. Solid lines denote stable equilibria or limit cycles, and dashed lines
unstable equilibria or limit cycles.

We observe that for small φ up to φ = 0.1 all four Lyapunov exponents are
negative, indicating the stable fixed point solution. Then follows a region up to
φ = 0.5 where the largest Lyapunov exponent is zero, characteristic for stable
limit cycles. Above φ = 0.5 a positive Lyapunov exponent, clearly separated
from the second largest Lyapunov exponent being zero, indicates deterministic
chaos. In the chaotic window between φ = 0.5 and φ = 1 also periodic win-
dows appear, giving a zero largest Lyapunov exponent. These findings are in
good agreement with the numerical bifurcation diagram shown in Fig. 1.10b). A
further analysis of the bifurcation structure, in the region of interest of φ < 1,
was performed using the numerical software AUTO (AUTO, 2009). Various bi-
furcations were found: Hopf bifurcation H(φ = 0.11326), pitchfork bifurcations
P (φ = 0.41145, 0.99214), torus bifurcation TR(φ = 0.55069) and tangent bifur-
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cations T (φ = 0.49406, 0.53874, 0.93103, 0.97825, 1.05242). In addition to this
main bifurcation pattern we found two isolas, consisting of isolated limit cycles
existing between two tangent bifurcations (see Fig. 1.10b). For more information
on the isolas see (Aguiar et al., 2009).

Dengue fever epidemiology is characterized as a yearly cycle of incidences
(see Fig. 1.11 e.g., the time series of DHF incidence in Thailand), therefore, to
reproduce the yearly cycle in dengue incidence, seasonal forcing and a low import
of infected had to be included in the models.
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Figure 1.11: Time series of DHF incidence in Thailand.

The previously described non-seasonal model was extended by adding seasonal
forcing, mimicking the vectorial dynamics, and also allowing a low import of
infected individuals, giving a more realistic pattern of dengue fever epidemics,
with irregular, yearly and smooth outbreaks (see Fig. 1.13b)). The seasonal multi-
strain model, is represented in Fig. 1.12 by using a state flow diagram where the
boxes represent the disease related stages and the arrows indicate the transition
rates. Likewise described for the non-seasonal model, the population is divided
into ten classes, with constant size N = S+I1+I2+R1+R2+S1+S2+I12+I21+R.
The transition rate µ coming out of the class R represents the death rates of all
classes, S, I1, I2, R1, R2, S1, S2, I12, I21, R, getting into the class S as a birth rate.

The complete system of ordinary differential equations for the seasonal multi-
strain epidemiological model with import of infected can be written as it was
shown in system Eq. (1.18), with the difference that now the parameter β takes
the seasonal forcing into account as a cosine function given explicitly by

β(t) = β0 · (1 + η · cos(ω · t)) , (1.19)

where β0 is the infection rate, and η is the degree of seasonality. In the seasonal
model with import of infected, the susceptible individual can become infected
also by meeting an infected individual from an external population, the so-called
imported infection which is realistic in the dynamics of infectious diseases, (hence
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Figure 1.12: The state flow diagram for the seasonal multi-strain model.

(β/N · S · I) goes to (β/N · S · (I + ρ ·N))) contributing to the force of infection
with an import parameter ρ.

The time series simulation for non-seasonal model show an irregular pattern
of outbreaks that happens every 5 years, the non-seasonal system and its time
series are not able to represent dengue fever epidemiology that is characterized
as a yearly cycle of incidences (see Fig. 1.13a)). By adding only low seasonality
into this system, the epidemic outbreaks appear every year (see (Aguiar et al.,
2011 a)), however, between two large outbreaks there is a very low number of
cases in subsequent years, which is also not data alike. The addition of import
factor into the seasonal system gives a much more realistic pattern of dengue
fever epidemics, with irregular, yearly and smooth outbreaks (see Fig. 1.13b)).
The system has a reasonable size, avoiding the chance of extinction in stochastic
systems. For detailed analysis on the attractors in state space for the seasonal
models, see (Aguiar et al., 2011 a).

For the seasonal model with import auto predicted a torus bifurcation TR
at φ = 0.13, and at φ = 0.522 which are also predicted very well when comparing
with the results given by the Lyapunov exponent calculation. In the limiting case
where the amplitude of the seasonal forcing is zero, the torus bifurcation TR of
the seasonally forced system coincides with the Hopf bifurcation H of the non-
seasonal system. For more information on the bifurcation points comparison, see
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a)

b)

Figure 1.13: Time series simulations. In a) time series simulation for the non-
seasonal model (η = 0). In b) time series simulation for the seasonal model with
a low import of infected. Here, the degree of seasonality is η = 0.35 and the
import factor ρ = 10−10.
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(Aguiar et al., 2011 a).
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Figure 1.14: Qualitative insight into the predictability in the monthly time series.
In a) the Lyapunov spectrum and in b) the time series for the non-seasonal model.
In c) the Lyapunov spectrum and in d) the time series for the seasonal model
with import.

The Lyapunov spectrum for both non-seasonal model and the seasonal model
with import are compared concerning the prediction horizon of the monthly peaks
in the multi-strain dengue model time series (see Fig. 1.14).

In order to get a qualitative insight into the predictability in the monthly
sampled time series, i.e. to show how the original system behaves under a small
perturbation we plot two different trajectories of the same system, where the
perturbed system (black line) is compared with the original model simulation
(red line). To get the trajectory of the perturbed system, we keep the last point
of the transient of the original system and use those values as starting values
to compute the new and perturbed trajectory. The perturbation is given by
S = S +R · ǫ and R = R · (1.0− ǫ), where ǫ = 0.001. For details on the perturbed
system see (Aguiar et al., 2011 a).

We take as an example the Dominant Lyapunov Exponent (DLE) for φ = 0.9
in the region where the system is chaotic (positive DLE). For the non-seasonal sys-
tem, the DLE = 0.04 giving around 25 years of prediction horizon in the monthly
time series (see Fig. 1.14b)), whereas for the seasonal system with import, the
DLE= 0.118 giving around 8.5 years of prediction horizon in the monthly time
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Figure 1.15: Empirical DHF incidence data (in black) matched with the model
simulation (in red).

series (see Fig. 1.14d)).

The inspection of the available DHF incidence data in Thailand shows a
smooth behaviour with a well defined maximum each year of irregular height
for the Northern Provinces. We take the Province of Chiang Mai as a case study
where the empirical DHF incidence data and the time series simulation for the
seasonal model with import are compared (see Fig. 1.15)). The seasonal model
with import shows qualitatively a very good result when comparing empirical
DHF and simulations. However, it is important to mention that the extended
model would need to be parametrized on data referring to incidence of severe
disease.

Although the fact that disease propagation is an inherently stochastic phe-
nomenon and it is only stochastic, as opposed to deterministic, models that can
capture the fluctuations observed in some of the available time series data, dengue
models are often expressed mathematically as a set of deterministic differential
equations which are easier to analyse.

For small population sizes, most simulation die out very quickly (see Fig. 1.3),
and since the demographic events often occur at a much slower rate than the
infection, the disease has to be necessarily maintained by the import of external
infections to avoid the repeated stochastic disease extinction and re-introduction.

For the minimalistic multi-strain dengue model, the individuals can be sus-
ceptibles without a previous dengue infection, infected and recovered for the first
time, susceptible with an experienced previous infection and infected for the sec-
ond time, now with a different strain, and more likely been hospitalized due to
the ADE effect leading to severe disease. The stochastic realizations of infected
in time, shown in Fig. 1.16, were obtained by the Gillespie algorithm (Gillespie,
1976, 1978). The stochastic approach is able to describe both types of the dy-
namics, the smooth data with a well defined maximum each year of irregular

46



a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 1985  1990  1995  2000  2005  2010  2015  2020  2025

I(
t)

t

 simulation 
 empirical 

b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 1985  1990  1995  2000  2005  2010  2015  2020  2025

I(
t)

t

 simulation 
 empirical 

Figure 1.16: Empirical DHF incidence data (in black) matched with one stochas-
tic realization for the seasonal multi-strain dengue model with import (in red).
In a) we show the incidences for Chaing Mai. For the stochastic simulation the
infection rate is β0 = 2γ, the degree of seasonality η = 0.2 and the import factor
ln(ρ) = −15.7. In b) we show the incidences for Bangkok. For the stochastic
simulation the infection rate is β0 = 1.1 ·γ, the degree of seasonality η = 0.06 and
the import factor ln(ρ) = −16.9. The other parameter values are listed Table 1.1
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height, found in the high endemic regions of Thailand, e.g. in the Chiang Mai
Province (see Fig. 1.16a)) and also the noisy data found mainly in low endemic
regions of Thailand, e.g. in Bangkok (see Fig. 1.16b)).

Comparison between the deterministic and the stochastic dynamics show that
the magnitude of stochastic fluctuations decreases when the population size in-
creases, see Fig. 1.17, and for large enough population size, the stochastic system
can be well described by the deterministic skeleton, where the essential dynam-
ics are captured, gaining insight into the relevant parameter values purely on
topological information of the dynamics. For more information on the stochastic
dengue model see (Aguiar et al., 2011 c).
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Figure 1.17: Stochastic and deterministic system’s interaction. For the same
parameter values used in Fig. 1.16, we show the bifurcation diagram for the
import parameter for different population sizes N . In red the deterministic model
and in black the stochastic model. In a) the Chiang Mai population size N = 1.65·
106 and in b) a much larger system size, where the population of some countries
surrounding Thailand, for instance Burma, Laos, Vietnam and Cambodia, were
counted together giving a system where the population size is N = 230 · 106.

The two-strain dengue model is minimalistic in the sense that it can capture
the essential differences of primary versus secondary infection but is not too high
dimensional, it is a 9 dimensional system, so that future parameter estimation can
still attempt to estimate all initial conditions as well as the few model parameters.
Concerning data availability, long term epidemiological information come from
the Ministry of Public Health in Thailand and consist on monthly incidences of
hospitalized DHF cases.

The four-strain model is a 25 dimensional system, dividing the constant pop-
ulation N into twenty six classes. For four different strains, 1, 2, 3 and 4, we now
label the SIR classes, in a similar way to the two-strain model, for the hosts that
have seen the individual strains, again without epidemiological

asymmetry between strains, once the serotype data are recent and very short
to give any realistic information concerning difference in biological parameters
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such as infection and recovery rates for a given strain.

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

ln
(I

) 

φ

Figure 1.18: Bifurcation diagram comparison between the multi-strain models
for the parameter region of φ < 1. In red the two-strain model and in green
the four-strain model. The local extrema of the overall infected with changing
parameter φ are plotted.

The bifurcation diagram comparison, for both two-strain and four-strain model,
in the relevant parameter region of φ < 1, when dengue patients in a secondary
infection evolving to severe disease because of the ADE phenomenon contribute
less to the force of infection, and not more, as previous models suggested is shown
in figure 1.18. Qualitatively, the bifurcation points appear to happen at similar
parameter regions, well below the region of interest φ ≈ 1, and for both mod-
els the chaotic dynamics which are able to explain the fluctuations observed in
empirical data were found at the same parameter region of interest, when the ra-
tio of secondary infection contribution to the force of infection could be slightly
smaller or larger than 1 (see, e.g. (Aguiar et al., 2011 a,d)) and not only when
assuming strong infectivity on secondary infection.

The effective dimension of the two-strain model is 9 while of the four-strain
model 25. The law of parsimony that recommends selecting the hypothesis that
makes the fewest assumptions, implies that the 9 dimensional two-strain model
would be the better candidate than the 25 dimensional four strain model to be
analyzed, capturing the essential differences of primary versus secondary infection
without needing to restrict the ADE effect to one or another region in parameter
space. Moreover, for future parameter estimation which is notoriously difficult
for chaotic time series, only the two-strain model could attempt to estimate all
initial conditions as well as the few model parameters, as opposed of the four-
strain model in the near future. For more information on the four-strain dengue
model see (Aguiar et al., 2011 d).
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1.4 Discussion and conclusions

In this chapter we presented the properties of the basic SIR epidemic model for
infectious diseases with a summary of the analysis of the dynamics, identifying
the thresholds and equilibrium points in order to introduce notation, terminology.
These results were generalized to more advanced models motivated by dengue
fever epidemiology.

The epidemiology of dengue fever was described presenting the relevant bi-
ological features that are taken into the modeling process. Then, multi-strain
models previously described in the literature were presented. We focused in
a minimal model motivated by dengue fever epidemiology, formulated first by
Aguiar et al. (see (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008)), where the
notion of at least two different strains is needed to describe differences between
primary infections, often asymptomatic, and secondary infection, associated with
the severe form of the disease. We discussed the role of seasonal forcing and the
import of infected individuals in such systems, the biological relevance and its
implications for the analysis of the available dengue data. The extended model
(Aguiar et al., 2011 a) shows complex dynamics and qualitatively a good agree-
ment between empirical DHF monitoring data and the model simulation results
obtained by trail and error parameter choice, not by a numerical parameter esti-
mation technique. This suggests that the used parameter set can be the starting
set for a more detailed parameter estimation procedure. Such a technical param-
eter estimation is notoriously difficult for chaotic time series but temporally local
approaches are possible (Ionides et al., 2006; He et al., 2010). At the moment
only such minimalistic models have a chance to be qualitatively understood well
and eventually tested against existing data.

The combination of biological aspects such as temporary cross-immunity and
ADE have been studied by several authors (Wearing & Rohani, 2006; Nagao &
Koelle, 2008; Recker et al., 2009) where four strains are involved, but again limit-
ing the effect of ADE to increase the contribution of secondary cases to the force
of infection. Aguiar et al. (2008) have investigated a two-strain dengue model,
initially suggested and preliminarily analyzed in (Ferguson et al., 1999), where
deterministic chaos was found in a wider parameter regions when including tem-
porary cross-immunity (Aguiar et al., 2008, 2009, 2011 a), not needing to restrict
the infectivity on secondary infection to one or another region in parameter space.

The comparison between the two-strain dengue model, which already captures
differences between primary and secondary infections, with the four-strain dengue
model, that introduces the idea of competition of multiple strains in dengue
epidemics, shows that the difference between first and secondary infections and
temporary cross-immunity drives the rich dynam- ics more than the detailed
number of strains. Qualitatively, the bifurcation points appear to happen at
similar parameter regions, well below the region of interest φ ≈ 1 (Aguiar et al.,
2011 d). We therefore conclude that the two-strain model in its simplicity is a
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good model to be analysed giving the expected complex behaviour to explain the
fluctuations observed in empirical data. For future parameter estimation, the
two-strain model can still attempt to estimate all initial conditions as well the
few model parameters.

The introduction of stochasticity is needed to explain the fluctuations ob-
served in some of the available data sets, revealing a scenario where noise and
complex deterministic skeleton strongly interact (Aguiar et al., 2011 c). Under-
standing the dynamics of stochastic populations, and how they interact with the
deterministic components of epidemiological models have maximum benefit on
the practical predictability of the dynamical system by analysing the available
epidemiological data via mathematical models, since the classical parameter es-
timation and its application are generally restricted to fairly simple dynamical
scenarios. For more information on parameter estimation, see (Aguiar et al., 2011
b).

Being able to predict future outbreaks of dengue in the absence of human
interventions is a major goal if one wants to understand the effects of control
measures. Even after a dengue virus vaccine has become accessible, this holds
true for the implementation of a vaccination program. For example, to perform a
vaccine trial in a year with normally low numbers of cases would make statistical
tests of vaccine efficacy much more difficult than when it was performed in a year
with naturally high numbers of cases. Thus predictability of the next season’s
height of the dengue peak on the basis of deterministic balance of infected and
susceptible would be of major practical use.
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Chapter 2

Epidemiology of dengue fever: A
model with temporary
cross-immunity and possible
secondary infection shows
bifurcations and chaotic behavior
in wide parameter regions

Máıra Aguiar, Bob Kooi and Nico Stollenwerk
Math. Model. Nat. Phenom., 3(4): 48-70, 2008.

Basic models suitable to explain the epidemiology of dengue fever have pre-
viously shown the possibility of deterministically chaotic attractors, which might
explain the observed fluctuations found in empiric outbreak data. However, the
region of bifurcations and chaos require strong enhanced infectivity on secondary
infection, motivated by experimental findings of antibody-dependent enhance-
ment.

Including temporary cross-immunity in such models, which is common knowl-
edge among field researchers in dengue, we find bifurcations up to chaotic attrac-
tors in much wider and also unexpected parameter regions of reduced infectiv-
ity on secondary infection, realistically describing more likely hospitalization on
secondary infection when the viral load becomes high and the hemorrhagic phe-
nomena is more likely to happen.

The model shows Hopf bifurcations, symmetry braking bifurcations of limit
cycles, coexisting isolas, and two different possible routes to chaos, via the Feigen-
baum period doubling and via torus bifurcations.
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2.1 Introduction

Dengue fever is caused by four antigenically distinct viruses, designated dengue
types 1, 2, 3, and 4 (WHO, 2009). Infection by one serotype confers life-long im-
munity to only that serotype and temporary cross-immunity to other serotypes
exists. It lasts from three to nine months, when the antibody levels created dur-
ing the response to that infection would be enough to protect against infection
by a different but related serotype (see (Halstead, 1994; Matheus et al., 2005;
WHO, 2009; SES, 2010; Dejnirattisai et al., 2010)). The empiric time of tempo-
rary cross-immunity is mainly based on detectable antibody levels, however, the
epidemiological period of temporary cross-immunity can be much larger (Welsh
& Selin, 2002; SES, 2010).

Among symptomatic cases dengue fever (DF) is often benign. But a se-
vere form known as dengue hemorrhagic fever (DHF), which may evolve to-
wards dengue shock syndrome (DSS), can also occur. Without proper treat-
ment DHF/DSS case fatality rates can exceed 20% (WHO, 2009). There are
indeed pre-existing antibodies to previous dengue virus that cannot neutralize
but rather enhance infection in vitro, a process described as antibody-dependent
enhancement (ADE). The ADE theory states that cross-reactive, non-neutralizing
antibodies from a previous heterologous dengue virus infection bind to the new
infecting serotype and facilitate virus entry via Fc-receptor-bearing cells such as
monocytes and macrophages. Increased virus replication and antigen presenta-
tion lead to an exaggerated immune response increasing disease manifestation
with plasma leakage and hemorrhagic phenomena (Halstead & Rourke, 1977;
Kliks et al., 1989; Vaughn et al., 2000). Epidemiological studies support the as-
sociation of DHF with secondary dengue infection (Halstead, 1982; Guzmán et
al., 2000; Halstead, 2003; WHO, 2009). However, there is no animal model of
DHF/DSS.

Mathematical models describing the transmission of dengue viruses appeared
in the literature as early as 1970 (Fischer & Halstead, 1970). More recently,
modeling attention has focused on higher viral load of hosts on secondary infection
than on the first infection, due to ADE, hence a higher contribution to the force of
infection of each strain, reporting deterministically chaotic attractors (Ferguson
et al., 1999) and chaos de-synchronization (Schwartz et al, 2005; Billings et al.,
2007) to explain the irregular behavior of dengue epidemics and the co-existence
of the known four dengue viral strains. Temporary cross-immunity against all
strains after a first infection has been included in mathematical models as well,
but again limiting the effect of ADE to increase the contribution of secondary
cases to the force of infection (Wearing & Rohani, 2006). To our knowledge, no
systematic investigation of the attractor structures of simple multi-strain models
with dengue-realistic temporary cross-immunity and decreased contribution of
secondary infection to the force of infection, due to severity of infection with a
second strain caused by higher viral load and eventual hospitalization, has been
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performed so far. Temporary cross-immunity also has to be distinguished from
partial cross-immunity as also modeled for dengue (Adams & Boots, 2006, 2007).

We investigate a basic two-strain model, initially suggested and preliminarily
analyzed in (Aguiar & Stollenwerk, 2007), to capture primary and secondary
infection, with main attention to differences in the force of infection in pri-
mary versus secondary infection (parametrized by φ) and the effect of tempo-
rary cross-immunity between the first and second infection with distinct strains
(parametrized by α). Neglecting the effect of temporary cross-immunity or con-
sidering a very short period of one week (transition rate α = 52y−1 ) we find the
first Hopf bifurcation from a steady state to a limit cycle, hence non-equilibrium
dynamic behavior, for a more that one and a half times higher infectivity on
secondary infection versus primary (ratio φ > 1.5). Whereas including a realistic
value for the temporary cross-immunity of e.g. half a year (α = 2y−1), we find
the first Hopf bifurcation for the infectivity ratio as low a one tenth (φ = 0.1)
and a positive Lyapunov exponent as sign of a deterministically chaotic attractor
around φ = 0.5.

An extremely rich bifurcation structure is observed for φ < 1 when taking
the temporary cross-immunity in a dengue realistic parameter regime for α ∈
[1, 3]y−1. Improving earlier presented results (Aguiar & Stollenwerk, 2007) here
we explore and describe in more detail the rich bifurcation structure around such
low α values, especially α = 2y−1 and φ < 1. In this parameter region the
model shows Hopf bifurcations, symmetry breaking bifurcations of limit cycles,
coexisting isolas, and two different possible routes to chaos, via the Feigenbaum
period doubling and via torus bifurcations. Whereas previous modeling efforts
have concentrated on φ > 1 we find this rich dynamics when in the secondary
infection people are less infectious, i.e. transmitting less the infection, than people
in first dengue infection, hence for φ < 1. This assumption is likely to be more
realistic for dengue fever since the possible severity of a secondary infection may
hospitalize people, not contributing to the force of infections as much as people
with first infection. Nevertheless, the relatively restrictive assumption of much
higher contribution to the force of infection of secondary infectivity previously
necessary for complex dynamics can be relaxed significantly when taking the
temporary cross-immunity into account.

Hence observed fluctuations in dengue outbreak data could now be understood
better considering multi-strain dynamics as significant factor. The more detailed
understanding of possible state space scenarios through bifurcation analysis will
help in future understanding of dengue epidemiological data and its multi-strain
aspects. The basic model structure allows to generalize our findings to other
multi-strain epidemiological systems expecting the same complexity.

55



2.2 Basic two-strain epidemic model

The present model is a basic two-strain SIR-type model dividing the host popu-
lation into susceptible (S), infected (I) and recovered individuals (R). It can be
understood as a mean field approximation of a stochastic system. The simple
SIR epidemics without strain structure of the pathogens reads

Ṡ = αR −
β

N
· I · S + µ(N − S)

İ =
β

N
· I · S − γI − µI (2.1)

Ṙ = γI − αR − µR

for a host population of N individuals, with contact and infection rate β, recovery
rate γ and temporary immunity rate α. Demography is denoted as exits from
all classes S, I and R with rate µ to the new born susceptibles. The system has
only equilibria steady solutions as attractors. Transients under certain parameter
values oscillate into the equilibrium, hence can be already more complex than the
final attractor. Stochastic versions of such models with only fixed points possible
as attractors but oscillating transients are reported to also show stabilization of
the oscillations due to population noise (McKane & Newman, 2005; Alonso et
al., 2006).

To capture differences in primary infection by one strain and secondary infec-
tion by another strain we consider a basic two-strain SIR-type model for the host
population, which is only slightly refined as opposed to previously suggested mod-
els for dengue fever (Ferguson et al., 1999; Schwartz et al, 2005). It is capturing
the effective dynamics of the human host population for the dengue virus, taking
effects of the vector dynamics or seasonality only into account by the effective
parameters in the SIR-type model, but not modeling these mechanisms explicitly.
Instead we focus on the multi-strain aspect and its effects on the host popula-
tion. The complete system of ordinary differential equations for the two-strain
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epidemiological system is given by

Ṡ = −
β1

N
S(I1 + φ1I21) −

β2

N
S(I2 + φ2I12) + µ(N − S)

İ1 =
β1

N
S(I1 + φ1I21) − (γ + µ)I1

İ2 =
β2

N
S(I2 + φ2I12) − (γ + µ)I2

Ṙ1 = γI1 − (α + µ)R1

Ṙ2 = γI2 − (α + µ)R2 (2.2)

Ṡ1 = −
β2

N
S1(I2 + φ2I12) + αR1 − µS1

Ṡ2 = −
β1

N
S2(I1 + φ1I21) + αR2 − µS2

˙I12 =
β2

N
S1(I2 + φ2I12) − (γ + µ)I12

˙I21 =
β1

N
S2(I1 + φ1I21) − (γ + µ)I21

Ṙ = γ(I12 + I21) − µR .

For two different strains, 1 and 2, we label the SIR classes for the hosts that have
seen the individual strains. Susceptibles to both strains (S) get infected with
strain 1 (I1) or strain 2 (I2), with force of infection β1 and β2 respectively. They
recover from infection with strain 1 (becoming R1) or from strain 2 (becoming
R2), with recovery rate γ. In this recovered class, people have full and life-long
immunity against the strain that they were exposed to and infected, and also a
short period of temporary cross-immunity against the other strain. After this,
with rate α, they become again susceptible, now with a previous infection (S1

respectively S2), where the index represents the first infection strain. Now, S1

can be infected with strain 2 (becoming I12), meeting I2 with infection rate β2

or meeting I12 with infection rate φ2β2. Note that secondary infected individuals
contribute differently to the force of infection than primary infected individuals.
In the same manner, the S2 class can be infected with strain 1 (becoming I21)
meeting I1 or I21 with infections rates β1 and φ1β1 respectively.

The parameter φ in our model, as opposed to the previous dengue models,
acts decreasing the infectivity of secondary infection, once people with higher
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viral load and hemorrhagic symptoms are more likely to be hospitalized because
of the severity of the disease (DHF/DSS), and do not contributed to the force of
infection as much as people with first infection do. Finally, I12 and I21 become
recovered (R), immune against all strains. We include demography of the host
population denoting the birth and death rate by µ. For constant population
size N we have R = N − (S + I1 + I2 + R1 + R2 + S1 + S2 + I12 + I21) and
therefore we only need to consider the first 9 equations of system Eq. (2.2). In
our numerical studies we take the population size equals N = 100 so that numbers
of susceptibles, infected etc., are given in percentage.

To take biological information from experiences in dengue into account we fix
the transition rates of the model as far as is known, and only will vary the most
unknown parameter φ. For simplicity, we consider φ1 = φ2 = φ, β1 = β2 = β, i.e,
no epidemiological asymmetry between strains. The parameter values are given
in Table 2.1, if not otherwise explicitly stated.

Table 2.1: Parameter set, rates given in units per year, ratio without unit

Par. Description Values

N population size 100 (Aguiar & Stollenwerk, 2007)
µ new born

susceptible
rate 1/65y (UNWPP, 2011)

γ recovery rate 52y−1 (WHO, 2009)
β1 = β2 = β infection rate 2γ (Ferguson et al., 1999)
α temporary cross

immunity rate 2y−1 (Matheus et al., 2005)
φ1 = φ2 = φ ratio of contrib.

to force of inf. variable (Aguiar & Stollenwerk, 2007)

2.3 Time series analysis

In this section we investigate time series simulations of the present model, system
Eq. (2.2). We performed a detailed analysis of the attractor structure, investi-
gating state space plots for various values of φ. Besides the previously analyzed
region of φ > 1 we also observe a rich dynamical behavior from fixed points to
bifurcating limit cycles and chaotic attractors for φ < 1. Maxima return maps
are evaluated from extremely long time serie, and Lyapunov exponents are cal-
culated. This rich dynamic structure will be analyzed in the next section in more
detail via bifurcation analysis by continuation.
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2.3.1 Time series simulations

In order to classify the dynamic pattern of the model for various parameters,
we discard long transients which would carry information about the initial condi-
tions. In the following simulations we discarded the first 2000 years (see Fig. 2.1).
However, also the transients reflect the dynamic behavior of the system under
the present parameter values.
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Figure 2.1: For temporary cross-immunity period of six months (α = 2y−1) and
ratio of secondary infection contribution to the force of infection φ = 0.6, we
present in a) time series simulations for the susceptibles S, and in b) time series
simulations for the total number of infected I.

The time series for φ < 1, as would be realistic for dengue fever due to more
severe disease upon reinfection and larger chance of people being hospitalized,
shows that the total number of infected

I := I1 + I2 + I12 + I21 (2.3)

stays quite away from zero, avoiding the chance of extinction in stochastic systems
with reasonable system size (see Fig. 2.1b)).

The parameter region previously considered to model ADE effects on dengue
epidemiology, i.e. φ ≫ 1, leads to rather low troughs for the total number of
infected giving unrealistically low numbers of infected. In Fig. 2.2a) the logarithm
of total number of infected goes as low as −70 for φ = 2.7 in the chaotic region of
φ > 1. Population fluctuations would in this case drive almost surely the system
to extinction.

For φ = 0.6, hence the chaotic dynamics in the region of φ < 1, see Fig. 2.2b),
the logarithm of total infected does not pass below −7. This encourages us to
look closer to the parameter region of φ < 1, when dengue patients with severe
disease because of the ADE phenomenon contribute less to the force of infection
due to possible hospitalization, and not more, as previous models suggested.
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Figure 2.2: Time series of the logarithm of the overall infected (ln(I)) compari-
son: In a) simulation for ratio of secondary infection contribution to the force of
infection φ = 2.7 and in b) simulation for ratio of secondary infection contribution
to the force of infection φ = 0.6 for the same time interval.

2.3.2 State space plots

Next, we investigate the state space plots in terms of the variables S and the
logarithm of the total number of infected I, since dengue notification data often do
not distinguish between the circulating strains, whereas the susceptible class S is
N minus every host who ever has experienced an infection, an information which
eventually can be obtained from serological studies. In eventual data analysis the
method of delay coordinates even allows to only work with one time series of I,
and analyzing I(t), I(t + τ) etc., with a time delay τ obtaining full topological
information of the attractor structure (Packard et al., 1980; Farmer & Sidorowich,
1987).

Varying φ, the state space plots show a rich dynamical behavior with bifurca-
tions from fixed point to limit cycles, until completely irregular behavior, which
is the fingerprint of deterministic chaos (see Fig. 2.3).
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Figure 2.3: Attractors for various values of φ < 1: a) fixed point for φ = 0.1, and
b) limit cycle for φ = 0.4, and c) chaotic attractor for φ = 0.6.

Looking for higher values of φ, the chaotic attractor becomes unstable, just
leaving simple limit cycles as attractors for large parameter regions beyond φ = 1
(Aguiar & Stollenwerk, 2007). Only for much higher values of φ ≫ 1, another
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chaotic attractor appears, the classical “ADE chaotic attractor” (Ferguson et al.,
1999; Schwartz et al, 2005; Aguiar & Stollenwerk, 2007).

2.3.3 Maxima return map of I from state space plot

We investigate maxima return maps in order to classify the dynamics for various
parameter values from extremely long time series. For the time tmax, at which
the total number of infected I(t) has a local maximum, we plot the logarithm of
the number of infected at that time ln(I(tmax)) and at the next local maximum
ln(I(treturnmax)) (see Fig. 2.4).
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Figure 2.4: Maxima return maps for α = 2y−1 and 200000 years of transient
discarded. Deterministically chaotic attractors for a) φ = 0.6 and b) φ = 0.99
are observed.

We discarded long transients and plotted 200000 years of simulation. A de-
terministically chaotic attractor was obtained from our basic two-strain model
with temporary cross-immunity in the region of φ < 1, where the secondary in-
fection contributes less than the first infection to the overall force of infection.
We observed that even after 400000 years, the dots never come back to the same
point, so the fingerprint of chaotic attractors is clearly visible now.

2.3.4 Numerical bifurcation diagram

The bifurcation diagram was obtained plotting the local extrema of ln(I) over
the varying parameter φ (see Fig. 2.5). Fixed points appear as one dot per
parameter value, limit cycles appear as two dots, double-limit cycles as four dots,
more complicated limit cycles as more dots, and chaotic attractors as continuously
distributed dots for a single φ value (Ruelle, 1989).

We observe a chaotic window for φ < 1 where this dynamical behaviour has
never been described before, and also another chaotic window for φ > 1, where
the minimal values go to very low numbers of infected, the classical “ADE chaotic
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Figure 2.5: Bifurcation diagram for the local extrema of the logarithm of overall
infected (ln(I)) with changing parameter φ and fixed α = 2y−1 . Here, 2000 years
of transients were discarded.

region”, which already has been described in previous publications (Ferguson et
al., 1999; Schwartz et al, 2005; Billings et al., 2007).

However, to be sure that this unexpected behavior for φ < 1 not just appears
because of this specific α value, i.e. assuming temporary cross-immunity period
of 6 months, we look at the robustness of the findings by varying the temporary
cross-immunity parameter values. For α = 1y−1 e.g (temporary cross-immunity
of 12 months, which is also acceptable for dengue when we realize that because
of seasonality of the disease, people generally do not get sick more than once per
year) , both chaotic windows appear, and surprisingly in the region of φ < 1 this
window is even larger (see Fig. 2.6a)). The bifurcation diagram appears to be
quite robust against changes of parameters around the region under investigation,
in the sense that it shows chaotic windows for φ < 1 and for φ > 1.

For very large values of α → ∞ , we get close to the models found in the
literature, where temporary cross-immunity becomes shorter or unimportant due
to the low resident times in the classes R1 and R2. In this case the chaotic window
for φ < 1 disappears, and then ADE as increasing infectivity on a secondary
infection condition seems to be the only mechanism to observe deterministic
chaos (see Fig. 2.6b)). We observed again that for φ > 1 the number of infected
goes to very low troughs, whereas in the chaotic region for φ < 1 and α = 2y−1

, the overall number of infected stays always sustainably high, i.e. never goes
lower than −15 in logarithmic scale (see Fig. 2.5).

In Fig. 2.6 it becomes clear that for larger α (for vanishing temporary cross-
immunity), there is no other dynamics in the region for φ < 1, than equilibria or
limit cycles, the reason why chaos for φ < 1 has not been observed before.

This observation is further confirmed by a two-parameter bifurcation diagram
where φ and α are the free parameters, see Fig. 2.7. The Hopf bifurcation line in
the φ−α plane only shows Hopf bifurcation to limit cycles in the region of φ < 1
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Figure 2.6: Bifurcation diagram for the local extrema of the logarithm of overall
infected (ln(I)) with changing parameter φ. In a) α = 1y−1 (temporary cross-
immunity period of 1 year) and in b) α = 52y−1 (temporary cross-immunity
period of 1 week) . Only the upper part of the bifurcation diagram is shown.
The minima in ln(I) go down as low as -400 in logarithmic scale.
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Figure 2.7: Line of the Hopf bifurcation from stable fixed point to limit cycle
in the φ − α plane. Here we clearly see that in the region of φ < 1 the Hopf
bifurcation happens when the temporary cross-immunity is considerable (α <
20y−1 or ≈ 2.5 weeks). When the temporary cross-immunity is less significant
(α > 30y−1 or ≈ 1.5 weeks), the Hopf bifurcation point appears only in the region
of φ > 1.

63



until α ≈ 20y−1, i.e. ≈ 2.5 weeks, where the temporary cross-immunity period is
still considerable. For α > 20y−1, i.e. less significant temporary cross-immunity
period, the Hopf bifurcation exists only in the φ > 1 region which was described
in the literature before. There is also a sharp bend of the Hopf bifurcation line for
very small α values close to the origin and the bifurcation curve continues close
to the horizontal axis for increasing φ. However this region is of no biological
importance since here the parameter α is even smaller than the birth and death
rate µ.

2.3.5 Quantifying unpredictability: Lyapunov exponents

We now quantify the attractor structure, fixed point, limit cycle or chaotic at-
tractor etc., by calculating Lyapunov exponents (Ruelle, 1989; Ott, 1993). A
negative largest Lyapunov exponent indicates a stable fixed point as attractor,
a zero largest Lyapunov exponent indicates a stable limit cycle and a positive
largest Lyapunov exponent indicates a chaotic attractor.

As short hand notation for system Eq. (2.2), let the dynamics for the state

x := (S, I1, I2, ..., R) (2.4)

be f(x), hence

d

dt
x = f(x) (2.5)

which explicitly gives the dynamics as written down above. Then we analyze the
stability in all 9 directions of the state space of this ODE system by calculating
deviations ∆x along a numerically integrated solution of Eq. (2.5) in the attractor
with attractor trajectory x∗(t), hence

d

dt
∆x =

df

dx

∣
∣
∣
∣
x∗(t)

· ∆x . (2.6)

Here, any attractor is notified by x∗(t), be it a fixed point, periodic orbit or
chaotic attractor. In this ODE system the linearized dynamics is given with the

Jacobian matrix
df

dx
of the ODE system Eq. (2.5) evaluated at the trajectory

points x∗(t) given in notation of
df

dx

∣
∣
∣
x∗(t)

.

The Lyapunov exponents then are the logarithms of the eigenvalues of the
integrated Eq. (2.6) in the limit of large integration times. Besides for very simple
iterated maps no analytic expressions for chaotic systems can be given for the
Lyapunov exponents. For the calculation of the iterated Jacobian matrix and its
eigenvalues, we use the QR decomposition algorithm (Farmer & Sidorowich, 1986;

Parlitz, 1992) With the matrix A(x∗(t)) := I + ∆t
df

dx

∣
∣
∣
x∗(t)

= Q(x∗(t)) · R(x∗(t)),
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Figure 2.8: Lyapunov exponents measuring chaoticity of the attractor a) along
short trajectory fast converging to qualitatively right behavior, b) along longer
trajectory for higher numerical precision. The five largest Lyapunov exponents
are shown. Parameters are temporary cross-immunity rate α = 2y−1 and ratio of
secondary infection contribution to the force of infection φ = 0.6.

where I is the unit (9 × 9)-matrix, we have

∆x(t0 + (n + 1)∆t) = An · An−1 · ... · A0 · ∆x(t0)

(2.7)

= Qn · Rn · Rn−1 · ... · R0 · ∆x(t0)

for An = A(x(t0 + n ∆t)). From Rn · Rn−1 · ... · R0 =
∏n

ν=0 Rν with the diagonal
elements rii(ν) of the right diagonal matrix Rν the Lyapunov exponents are given
for large t = n∆t by

λi(t) =
1

n · ∆t
ln

(
n∏

ν=0

|rii(ν)|

)

. (2.8)

Plots with λi as function of time t = n∆t are given in Fig. 2.8. For small
integration times, see Fig. 2.8a), the Lyapunov exponents change a lot along
the attractor, but soon settle towards their final size, still showing small oscil-
lations. For long integration times, see Fig. 2.8b), these oscillations also disap-
pear, giving reliable values for the infinity time limit of the Lyapunov exponents
λi = limt→∞ λi(t).

Fig. 2.9 shows the largest four Lyapunov exponents as a function of φ. We
observe that for small φ up to 0.1 all four Lyapunov exponents are negative,
indicating the stable fixed point solution. Then follows a region up to φ =
0.5 where the largest Lyapunov exponent is zero, characteristic for stable limit
cycles. Above φ = 0.5 a positive Lyapunov exponent, clearly separated from the
second largest Lyapunov exponent being zero, indicates deterministically chaotic
attractors. In the chaotic window between φ = 0.5 and φ = 1 also periodic
windows appear, giving a zero largest Lyapunov exponent. These findings are in
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Figure 2.9: Spectrum of the four largest Lyapunov exponents with changing
parameter φ and fixed α = 2y−1 .

good agreement with the numerical bifurcation diagram, and we will now further
investigate this bifurcation structure in the next section.

2.4 Bifurcation analysis by continuation

In this section we give the analytic solution for the equilibria and describe the
further analysis of the bifurcation structure, using numerical software like AUTO
(AUTO, 2009). In this case the bifurcation analysis is done by continuation
techniques, i.e. starting from the equilibrium solution for small φ by following
the solution for increasing φ and simultaneously the eigenvalue spectrum, until
the eigenvalues show a loss of stability. At this point a Hopf bifurcation gives rise
to a stable limit cycle, which subsequently is followed in parameter space, until it
becomes unstable at the next bifurcation point etc. up to bifurcations which do
not give limit cycles any more, like a torus bifurcation. Also accumulated period
doubling bifurcations become increasingly difficult to follow. But first we can
give an analytical solution for the equilibria which also serves as a cross check for
the numerical programs.

2.4.1 Stationary states for the symmetric case

The stationary states can be calculated analytically by setting the time derivatives
in system Eq. (2.2) to zero. For the symmetric case, i.e., β1 = β2 = β and
φ1 = φ2 = φ the stationary states are given by

S∗ =
µN − (γ + µ)(I∗

1 + I∗
2 )

µ
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I∗
21 =

1

φ1

(
N

β1S∗
(γ + µ) − 1

)

I∗
1

I∗
12 =

1

φ2

(
N

β2S∗
(γ + µ) − 1

)

I∗
2

S∗
1 =

(γ + µ)I∗
12

(I∗
2 + φ2I∗

12)

N

β2

(2.9)

S∗
2 =

(γ + µ)I∗
21

(I∗
1 + φ1I∗

21)

N

β1

R∗
1 =

γ

α + µ
I∗
1

R∗
2 =

γ

α + µ
I∗
2 ,

where still the stationary values of I∗
1 and I∗

2 have to be determined.
The solution of coexistence of both strains for I1 = I2 = I∗ is given by the

following expression

I∗
1 = I∗

2 = −





αγ

(α+µ)(γ+µ)
φ +

(
(γ+µ)

β
− 3

)

4 (γ+µ)
µ

(

1 − αγ

(α+µ)(γ+µ)
φ
)



N (2.10)

−

√
√
√
√
√
√

N2

4





αγ

(α+µ)(γ+µ)
φ +

(
(γ+µ)

β
− 3

)

2 (γ+µ)
µ

(

1 − αγ

(α+µ)(γ+µ)
φ
)





2

+




N2µ

(
(γ+µ)

β
− 1

)

2 (γ+µ)2

µ

(

1 − αγ

(α+µ)(γ+µ)
φ
)



 ,

and the solution of the extinction of one of the strains is as follows

I∗
1 =

µN(β − (γ + µ))

(γ + µ)β

(2.11)

I∗
2 = 0 .

Finally, the stationary value of R∗, when host have been recovered from both
strains, is given by the balance equation for the total population size N , explicitly

R∗ = N − (S∗ + I∗
1 + I∗

2 + R∗
1 + R∗

2 + S∗
1 + S∗

2 + I∗
12 + I∗

21) . (2.12)

These analytic results agree well with the numerical results from the time series
analysis for small φ values, where the fixed point solution is stable. We will now
continue with the bifurcation analysis beyond this fixed point solution using the
continuation method.
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2.4.2 Bifurcations analysis beyond equilibria

We investigate in detail the region of interest of φ < 1 for α = 2y−1 . All other
parameter values are fixed and given in Table 2.1. In Figure 2.10a) the bifurcation
diagram by continuation, obtained with the numerical software AUTO (AUTO,
2009), is shown for the interval of 0 ≤ φ ≤ 1.1 for the logarithm of the total
number of infected I. As opposed to the previous bifurcation diagrams (Figs.
2.5 and 2.6), where all local extrema where shown, AUTO only gives the global
extrema for the limit cycles.
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Figure 2.10: a) Equilibria or maximum and minimum values for limit cycles of
the logarithm for the total number of infected (ln(I)). We find a Hopf bifurcation
H at φ = 0.1133, pitchfork (multiplier 1) bifurcations P− at φ = 0.4114 and P+

at φ = 0.9921, torus bifurcation TR at φ = 0.5507 and tangent bifurcation T
at φ = 1.0524. b) Equilibria or maximum and minimum values for limit cycles
for I1 and I2. On the primary branch we have Ĩ1(t) = Ĩ2(t), R̃1(t) = R̃2(t),
S̃1(t) = S̃2(t) and Ĩ12(t) = Ĩ21(t), for times t up to the period length of the limit
cycle. On the secondary branch two stable limit cycles coexist because of the
symmetry.

In Fig. 2.10a) we see that the fixed equilibrium becomes unstable at a super-
critical Hopf bifurcation H where a stable fixed limit cycle originates. The Hopf
bifurcation appears at φ = 0.1133. This stable limit cycle becomes unstable at a
pitchfork bifurcation point P− for a limit cycle at φ = 0.4114. Solid lines denote
stable equilibria or limit cycles, dashed lines unstable equilibria or periodic-one
limit cycles. Thin lines are the secondary limit cycles: long-dashed stable and
dotted unstable.

This point marks the origin of a pair of S-conjugate stable limit cycles besides
the now unstable fixed limit cycle in the following sense: The system Eq. (2.2)
in the symmetric case, hence for β1 = β2 = β and φ1 = φ2 = φ is Z

2-symmetric
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(Kuznetsov, 2004). With a symmetry transformation matrix S

S :=



















1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1



















(2.13)

for an equilibrium point Sx∗ = x∗ holds, the state being defined by Eq. (2.4).
Then this equilibrium is called fixed (see (Kuznetsov, 2004)). For limit cycles a
similar terminology holds. A periodic solution is called fixed (see (Kuznetsov,
2004)) when Sx̃(t) = x̃(t) and the associated limit cycles are also called fixed.
There is another type of periodic solution that is not fixed but called symmetric
when

Sx̃(t) = x̃

(

t +
T

2

)

(2.14)

where T is the period, hence the limit cycle is shifted by half a period length.
Again the associated limit cycles are also called symmetric. Both type of limit
cycles L are S-invariant as curves : SL = L. An S-invariant cycle is either fixed
or symmetric. Two non-invariant limit cycles (SL 6= L) are called S-conjugate if
their corresponding periodic solutions satisfy ỹ(t) = Sx̃(t) for all times t.
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Figure 2.11: Comparison between bifurcation analysis by continuation from
Fig. 2.10a) (colored lines) and the numerical bifurcation diagram (green dots)
as part for φ < 1.1 from Fig. 2.5. The overall bifurcation structure agrees well
between both methods.
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Table 2.2: List of bifurcations.

Bifurcation Description

H Hopf bifurcation
equilibrium becomes unstable
origin of stable limit cycle

T Tangent bifurcation
bifurcation of limit cycle
one multiplier = 1
collision of two limit cycles

P Pitchfork bifurcation
bifurcation of limit cycle
one Floquet multiplier = 1
origin of two secondary stable limit cycle branches

F Flip bifurcation or period doubling bifurcation
bifurcation of limit cycle
one Floquet multiplier = -1
origin of a limit cycle with double period length

TR Torus bifurcation
bifurcation of limit cycle
pair of complex conjugate multipliers with magnitude 1
origin of an invariant torus

Figure 2.10b) gives the results for the infected with a single strain I1 and I2.
Because these two variables are interchangeable this can also be interpreted as
the stable limit cycles for the single variable say I1. The fixed stable equilibrium
below the Hopf bifurcation, where we have I∗

1 = I∗
2 , R∗

1 = R∗
2, S∗

1 = S∗
2 and

I∗
12 = I∗

21, is a fixed equilibrium. At the Hopf bifurcation H the stable fixed
equilibrium point becomes an unstable fixed equilibrium point. The originating
stable limit cycle in the parameter interval between the Hopf bifurcation and the
pitchfork bifurcation is symmetric.

In the parameter interval between the two pitchfork bifurcations, two stable
limit cycles coexist and these limit cycles are S-conjugate. At the pitchfork
bifurcation points the fixed limit cycle becomes unstable and remains fixed, and
two stable S-conjugate limit cycles originate (see (Kuznetsov, 2004, Theorem
7.7)).

The invariant plane I1 = I2, R1 = R2, S1 = S2, I12 = I21 forms the separatrix
between the pair of stable S-conjugate limit cycles x̃(t) and Sx̃(t) for all times t.
The initial values of the two state variables S(0) and R(0) together with the point
on the invariant plane, determine to which limit cycle the system converges.

Continuation of the two stable S-conjugate limit cycles gives a torus bifur-
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cation or Neimark-Sacker bifurcation at the parameter point denoted by TR at
φ = 0.5507. At his point the limit cycles become unstable because a pair of
complex-conjugate Floquet multipliers crosses the unit cycle. Floquet multipli-
ers replace in the stability analysis of limit cycles (Floquet theory) often the
eigenvalues used to analyze fixed point stability (Kuznetsov, 2004). In (Albers &
Sprott, 2006) a sequence of Neimark-Sacker bifurcations into chaos is mentioned
as one possible route to chaos.

Increasing the bifurcation parameter φ along the now unstable pair of S-
conjugate limit cycles leads to a tangent bifurcation T where a pair of two unstable
limit cycles collide. This branch terminates at the second pitchfork bifurcation
point denoted by P+ at φ = 0.9921. Because the first fold point gave rise to a
stable limit cycle and this fold point to an unstable limit cycle we call the first
pitchfork bifurcation super-critical and the latter pitchfork bifurcation subcritical.

These results agree very well with the simulation results shown in the bifur-
cation diagram for the maxima and minima of the overall infected in Figure 2.11.
Notice that AUTO calculates only the global extrema during a cycle, not the
local extrema.
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Figure 2.12: Detailed bifurcation diagram with high resolution in integration,
transients and bifurcation parameter φ, here for α = 2y−1 and for φ between
0.4 and 0.6. Besides chaotic attractors respectively long chaotic transients also
complicated limit cycles appear already for φ values around 0.50, long before the
torus bifurcation for φ around 0.55.

The previous results have been obtained by continuation starting from the
fixed point solutions, system Eq. (2.9), tracking after the first Hopf bifurcation
the limit cycles and their bifurcations, until new dynamical structures like toruses
appear. The main bifurcation structures can be understood in comparison be-
tween the numerical bifurcation diagram and the present results in Figure 2.11.
However, with the time series analysis shown in the previous section, more is
observed, especially positive Lyapunov exponents appear around or even before
the torus bifurcation.
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Figure 2.13: a) State space plot for φ = 0.5504, in the region of previously
unexplained co-existences of limit cycles, torus bifurcations and attractors with
positive Lyapunov exponents. Special initial conditions were taken, to obtain
the simple limit cycle found in numeric bifurcation analysis. b) Same parameter
values, but arbitrarily different initial conditions. The attractor looks chaotic. c)
Calculation of Lyapunov exponent along the limit cycle shown in a). The largest
Lyapunov goes to zero, as do the next two due to closeness to a bifurcation.
d) Same as in c), but with arbitrary initial conditions. The largest Lyapunov
exponent converges to a value significantly larger than zero, the second towards
zero. Hence the attractor in b) is chaotic.
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We investigate in detail a region for temporary cross-immunity rate α = 2y−1

and ratio of secondary infection contribution to the force of infection φ around
0.55 where AUTO found limit cycles and torus bifurcations via continuation
methods from earlier detected limit cycles, but where also more complicated
attractors appear as a more detailed bifurcation diagram with arbitrary initial
conditions reveals in Fig. 2.12.

We then search for the respective state space structures, see Fig. 2.13. In
Fig. 2.13a) the state space plot for φ = 0.5504 shows a limit cycle, as predicted
by the continuation method. This is the region where the bifurcation diagram
by continuation initially gives different results, limit cycles and torus bifurcation,
from the bifurcation analysis by time series methods and the analysis of Lyapunov
exponents, where already a positive Lyapunov exponent appears. For the limit
cycle in Fig. 2.13a) and c) special initial conditions were taken, as obtained from
the analysis with AUTO. For this limit cycle given in Fig. 2.13a) we find a zero
largest Lyapunov exponent, see Fig. 2.13c). The next two Lyapunov exponents
also around zero indicate that we are close to a bifurcation point of this limit
cycle, the soon coming torus bifurcation.
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Figure 2.14: a) Equilibria or maximum and minimum values for limit cycles for
the logarithm of the total infected (ln(I)), now including the new isolas between
tangent bifurcations T at φ = 0.4941, 0.5387, 0.9310, 0.9783 and 1.0524. These
new isolas are found starting at φ values smaller than the torus bifurcation.
b) Isola bifurcations in more detail: tangent bifurcations T at φ = 0.5245 and
0.9491, torus bifurcations TR at φ = 0.9310 and 0.9773 and flip bifurcations F at
φ = 0.5009, 0.5479, 0.9120 and 0.9691. Some of the tangent bifurcations are not
indicated in the plot (namely T at φ = 0.4941, 0.5387, 0.9310, 0.9783, 1.0524).

However, when taking arbitrarily different initial conditions we find for the
same parameter values of the model as used in Fig. 2.13a), especially the same
φ value, the attractor shown in 2.13b). This attractor shows a largest Lyapunov
exponent significantly larger than zero, see Fig. 2.13d). The second largest Lya-
punov exponent converges to zero, as expected for a non-equilibrium attractor.

For values of φ slightly smaller than 0.5504, the same analysis shows co-
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existing limit cycles (from which the attractor in Fig. 2.13b) originates). Tracing
such a limit cycle by AUTO finally gives new isola solutions in the analysis
performed by AUTO, which previously have been missed by continuation starting
at the equilibria and via the first Hopf-bifurcation. An isola is an isolated solution
branch of limit cycles (Golubitsky & Schaeffer, 1985). These isola cycles L are
not S-invariant, that is SL 6= L. The new isolas are shown relatively to the
previously obtained bifurcation diagram by continuation in Fig. 2.14a).

In Fig. 2.14b) we investigate in more detail these isolas, obtaining flip or pe-
riod doubling bifurcations and further torus bifurcations. These period doubling
bifurcation sequences indicate another route to chaos than the previously found
torus bifurcation. These results suggest that for these isolas two classical routes
to chaos exist, namely via the torus or Neimark-Sacker bifurcation where the
dynamics on the originating torus is chaotic, and the cascade of period doubling
route to chaos. Two windows with period solutions within the chaotic windows,
see Fig. 2.11, are filled by the two stable limit cycles of the isola’s shown in
Fig. 2.14. The study of the two windows with zero largest Lyapunov exponent
shown in Fig. 2.9 is beyond the scope of this paper.

In order to obtain further insight into the possible bifurcation structures for
the model under investigation we also looked at other parameter values in the
symmetric, and also briefly, the asymmetric case. For other values of temporary
cross-immunity rate (α ∈ [1, 3]y−1) we found a period doubling route to chaos as
well as the torus bifurcation already mentioned for α = 2y−1 .

The bifurcation analysis presented here was only possible in close compari-
son between the bifurcation analysis by continuation, giving accurate bifurcation
points and classifications due to the analysis of the stability changes via Floquet
multipliers, and direct numerical bifurcation plots, revealing co-existing dynamic
structures which continuation easily misses, and Lyapunov exponent calculations.
The analysis even for the symmetric case with α = 2y−1 is not exhaustive, more
co-existing structures might appear when zooming further into the parameter
space. But we obtained a good agreement between the different methods for the
overall sketch of the dynamic complexity in the region of interest of φ < 1 in the
symmetric case.

We also looked at numerical bifurcation diagrams for some asymmetric cases
φ1 6= φ2 and β1 6= β2, which already indicated similarly if not more complicated
bifurcation structures (not shown here). Future work on the relevant parameters
for dengue epidemiology will be needed to identify eventual deviations from the
simplest symmetric case investigated here.

2.5 Conclusion

Our analysis showed deterministically chaotic attractors for a multi-strain model
in an unexpected parameter region just by adding temporary cross-immunity to
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previously existing dengue models.
Our model is a basic two-strain SIR-type model for the host population and

was motivated by modeling dengue fever epidemiology with its peculiar ADE phe-
nomenology. The simple structure of the model allows to generalize our findings
to other multi-strain epidemiological systems, capturing the effective dynamics
of the human host population. We could find deterministic chaos in a very basic
model with only two strains and one reinfection possible, not needing the strong
ADE mechanism, but rather stating that upon second infection hosts spread a
disease less likely, since it might be more harmful , leading to hospitalization.

In this work, we focused on the multi-strain aspect and its effects on the
host population, taking effects of the vector dynamics or seasonality only in
account by the effective parameters in the SIR-type model, but not modeling these
mechanisms explicitly. Since seasonally forced SIR systems can show already
deterministic chaos (Stone et al., 2007), we expect that rather more complex
dynamics will appear.

For such scenarios new tools of non-linear data analysis like Takens’ em-
bedding are available (Packard et al., 1980; Takens, 1980), and allow to obtain
topological information (fixed points, periodic orbits and the nature of chaotic
attractors) about the whole multi-strain epidemiological system from time series
of overall infecteds only, not needing any single strain data sets.

This indicates that deterministic chaos is much more important in multi-strain
models than previously thought, and opens new ways to data analysis of existing
dengue time series.
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Chapter 3

Torus bifurcations, isolas and
chaotic attractors in a simple
dengue fever model with ADE
and temporary cross-immunity

Máıra Aguiar, Nico Stollenwerk and Bob W. Kooi
International Journal of Computer Mathematics, 86(10-11):1867-1877, 2009.

We analyze an epidemiological model of competing strains of pathogens and
hence differences in transmission for first versus secondary infection due to inter-
action of the strains with previously acquired immunities, as has been described
for dengue fever, known as antibody-dependent enhancement (ADE). These mod-
els show a rich variety of dynamics through bifurcations up to deterministic chaos.
Including temporary cross-immunity even enlarges the parameter range of such
chaotic attractors, and also gives rise to various coexisting attractors, which are
difficult to identify by standard numerical bifurcation programs using continua-
tion methods. A combination of techniques, including classical bifurcation plots
and Lyapunov exponent spectra has to be applied in comparison to get further
insight into such dynamical structures. Here we present for the first time multi-
parameter studies in a range of biologically plausible values for dengue. The
multi-strain interaction with the immune system is expected to also have impli-
cations for the epidemiology of other diseases.

3.1 Introduction

Epidemic models are classically phrased in ordinary differential equation (ODE)
systems for the host population divided in classes of susceptible individuals and
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infected ones (SIS system), or in addition, a class of recovered individuals due
to immunity after an infection to the respective pathogen (SIR epidemics). The
infection term includes a product of two variables, hence a non-linearity which
in extended systems can cause complicated dynamics. Though these simple SIS
and SIR models only show equilibria as stationary solutions, they already show
non-trivial equilibria arising from bifurcations, and in stochastic versions of the
system critical fluctuations at the critical point. Further refinements of the SIR
model in terms of external forcing or distinction of infections with different strains
of a pathogen, hence classes of infected with one or another strain recovered
from one or another strain, infected with more than one strain etc., can induce
more complicated dynamical attractors including equilibria, limit cycles, tori and
chaotic attractors.

Classical examples of chaos in epidemiological models are childhood diseases
with extremely high infection rates, so that a moderate seasonal forcing can
generate Feigenbaum sequences of period doubling bifurcations into chaos. The
success in analyzing childhood diseases in terms of modeling and data comparison
lies in the fact that they are just childhood diseases with such high infectivity.
Otherwise host populations cannot sustain the respective pathogens. In other
infectious diseases much lower forces of infection have to be considered leading
to further conceptual problems with noise affecting the system more than the
deterministic part. This shows even critical fluctuations with power law behavior,
when considering evolutionary processes of harmless strains of pathogens versus
occasional accidents of pathogenic mutants (Stollenwerk & Jansen, 2003 b). In
these circumstances only explicitly stochastic models, of which the classical ODE
models are mean field versions, can capture the fluctuations observed in time
series data (Stollenwerk et al., 2004).

The situation is again different in multi-strain models, which have attracted
attention recently. It has been demonstrated that the interaction of various
strains on the infection of the host with eventual cross-immunities or other in-
teractions between host immune system and multiple strains can generate com-
plicated dynamic attractors. A prime example is dengue fever. A first infection
is often mild or even asymptomatic and leads to life long immunity against this
strain. However, a subsequent infection with another strain of the virus often
causes clinical complications up to life threatening conditions and hospitaliza-
tion, due to antibody-dependent enhancement effect (ADE). More on the biology
of dengue and its consequences for the detailed epidemiological model structure
can be found in Aguiar & Stollenwerk (Aguiar & Stollenwerk, 2007; Aguiar et al.,
2008) including literature on previous modeling attempts. For additional litera-
ture on dengue models see also (Massad et al., 2008). On the biological evidence
for ADE see e.g. (Halstead, 2003). Besides the difference in the force of infec-
tion between primary and secondary infection, parametrized by a so called ADE
parameter φ or ratio of secondary infection contribution to the force of infection,
which has been demonstrated to show chaotic attractors in a certain parameter
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region, another effect, the temporary cross-immunity after a first infection against
all dengue virus strains, parametrized by the temporary cross-immunity rate α,
shows bifurcations up to chaotic attractors in a much wider and biologically more
realistic parameter region.

The model presented in Appendix 3.A has been described in detail in (Aguiar
& Stollenwerk, 2007) and has recently been analyzed for a parameter value of
α = 2y−1 corresponding to on average half a year of temporary cross-immunity
which is biologically plausible (Aguiar et al., 2008). At low ratio of secondary in-
fection contribution to the force of infection (ADE parameter φ) there is a stable
equilibrium. Increasing φ this equilibrium bifurcates via a Hopf bifurcation into
a stable limit cycle and then after further continuation the limit cycle becomes
unstable in a torus bifurcation. This torus bifurcation can be located using
numerical bifurcation software based on continuation methods tracking known
equilibria or limit cycles up to bifurcation points (AUTO, 2009). The continua-
tion techniques and the theory behind it are described e.g. in (Kuznetsov, 2004).
Complementary methods like Lyapunov exponent spectra can also characterize
chaotic attractors (Ruelle, 1989; Ott, 1993), and led ultimately to the detection
of coexisting attractors to the main limit cycles and tori originated from the
analytically accessible equilibrium for small φ. Such coexisting structures are
often missed in bifurcation analysis of higher dimensional dynamical systems but
are demonstrated to be crucial at times in understanding qualitatively the real
world data, as for example demonstrated previously in a childhood disease study
(Drepper et al., 1994). In such a study first the understanding of the determin-
istic system’s attractor structure is needed, and then eventually the interplay
between attractors mediated by population noise in the stochastic version of the
system gives the full understanding of the data.

Here we present for the first time extended results of the bifurcation structure
for various parameter values of the temporary cross-immunity α in the region
of biological relevance and multi-parameter bifurcation analysis. This reveals
besides the torus bifurcation route to chaos also the classical Feigenbaum period
doubling sequence and the origin of so called isola solutions. The symmetry
of the different strains leads to symmetry breaking bifurcations of limit cycles,
which are rarely described in the epidemiological literature but well known in
the biochemical literature, e.g for coupled identical cells. The interplay between
different numerical procedures and basic analytic insight in terms of symmetries
help to understand the attractor structure of multi-strain interactions in the
present case of dengue fever, and will contribute to the final understanding of
dengue epidemiology including the observed fluctuations in real world data. In
the literature the multi-strain interaction leading to deterministic chaos via ADE
has been described previously, e.g. (Ferguson et al., 1999; Schwartz et al, 2005;
Billings et al., 2007) but neglecting temporary cross-immunity and hence getting
stuck in rather biologically unrealistic parameter regions, whereas more recently
the first considerations of temporary cross-immunity in rather complicated and
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up to now not in detail analyzed models including all kinds of interactions have
appeared (Wearing & Rohani, 2006; Nagao & Koelle, 2008), in this case failing
to investigate the possible dynamical structures in more detail.

3.2 Dynamical system

The multistrain model under investigation can be given as an ODE system

d

dt
x = f(x, a) (3.1)

for the state vector of the epidemiological host classes x := (S, I1, I2, ..., R)tr and
besides other fixed parameters which are biologically undisputed the parameter
vector of varied parameters a = (α, φ)tr, with tr for transposed of a vector or
matrix. For a detailed description of the biological content of state variables
and parameters see (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008). The ODE
equations and fixed parameter values are given in the appendix 3.A. The equilib-
rium values x∗ are given by the equilibrium condition f(x∗, a) = 0, respectively
for limit cycles x∗(t + T ) = x∗(t) with period T . For chaotic attractors the
trajectory of the dynamical system reaches in the time limit of infinity the at-
tractor trajectory x∗(t), equally for tori with irrational winding ratios. In all
cases the stability can be analyzed considering small perturbations ∆x(t) around
the attractor trajectories

d

dt
∆x =

df

dx

∣
∣
∣
∣
x∗(t)

· ∆x . (3.2)

Here, any attractor is notified by x∗(t), be it an equilibrium, periodic orbit or
chaotic attractor. In this ODE system the linearized dynamics is given with the
Jacobian matrix (df/dx) of the ODE system Eq. (3.1) evaluated at the trajectory

points x∗(t) given in notation of (df/dx)
∣
∣
x∗(t)

. The Jacobian matrix is analyzed

for equilibria in terms of eigenvalues to determine stability and the loss of it at
bifurcation points, where a negative real part indicate stability. For the stability
and loss of it for limit cycles, Floquet multipliers are more common (essentially the
exponentials of eigenvalues), multipliers inside the unit circle indicating stability,
and where they leave eventually the unit circle determining the type of limit
cycle bifurcations. And for chaotic systems, Lyapunov exponents are determined
from the Jacobian around the trajectory, where positive largest exponents show
deterministic chaos, zero largest exponent shows limit cycles, including tori (at
least 2 zero largest exponents), and largest smaller zero indicate fixed points.

3.2.1 Symmetries

To investigate the bifurcation structure of the system under investigation we first
observe the symmetries due to the multi-strain structure of the model. This be-
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comes important for the time being for equilibria1 and limit cycles. We introduce
the following notation: With a symmetry transformation matrix S

S :=



















1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1



















(3.3)

we have the following symmetry:
If

x∗ = (S∗, I∗
1 , I

∗
2 , R

∗
1, R

∗
2, S

∗
1 , S

∗
2 , I

∗
12, I

∗
21, R

∗)tr (3.4)

is equilibrium or limit cycle, then also

S x∗ = (S∗, I∗
2 , I

∗
1 , R

∗
2, R

∗
1, S

∗
2 , S

∗
1 , I

∗
21, I

∗
12, R

∗)tr (3.5)

with x∗ equilibrium values or x∗ = x∗(t) limit cycle for all times t ∈ [0, T ]. For
the right hand side f of the ODE system Eq. (3.1) the kind of symmetry found
above is called Z2-symmetry when the following equivariance condition holds

f(Sx, a) = Sf(x, a) (3.6)

with S a matrix that obeys S 6= I and S2 = I, where I is the unit matrix. Observe
that besides S also I satisfies Eq. (3.6). The symmetry transformation matrix S in
Eq. (3.3) fulfills these requirements. It is easy to verify that the Z2-equivariance
conditions (Eq. (3.6)) and the properties of S are satisfied for our ODE system.
In Seydel (Seydel, 1994) a simplified version of the famous Brusselator that shows
this type of symmetry is discussed. There, an equilibrium and also a limit cycle
show a pitchfork bifurcation with symmetry breaking.

An equilibrium x∗ is called fixed when Sx∗ = x∗ (see (Kuznetsov, 2004)). Two
equilibria x∗, y∗ where Sx∗ 6= x∗, are called S-conjugate if their corresponding
solutions satisfy

y∗ = Sx∗ (and because S2 = I also x∗ = Sy∗). For limit cycles a similar
terminology is introduced. A periodic solution is called fixed when Sx∗(t) = x∗(t)
and the associated limit cycles are also called fixed (Kuznetsov, 2004). There is
another type of periodic solution that is not fixed but called symmetric when

Sx∗(t) = x∗

(

t +
T

2

)

(3.7)

1Equilibria are often called fixed points in dynamical systems theory, here we try to avoid
this term, since in symmetry the term fixed is used in a more specific way, see below.
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where T is the period. Again the associated limit cycles are also called symmetric.
Both types of limit cycles L are S-invariant as curves : SL = L. That is, in the
phase-plane where time parametrizes the orbit, the cycle and the transformed
cycle are equal. A S-invariant cycle is either fixed or symmetric. Two non-
invariant limit cycles (SL 6= L) are called S-conjugate if their corresponding
periodic solutions satisfy y∗(t) = Sx∗(t), ∀t ∈ R. The properties of the symmetric
systems and the introduced terminology are used below with the interpretation
of the numerical bifurcation analysis results. We refer to (Kuznetsov, 2004)
for an overview of the possible bifurcations of equilibria and limit cycles of Z2-
equivariant systems.

3.3 Bifurcation diagrams for various α values

We show the results of the bifurcation analysis in bifurcation diagrams for several
α values, varying φ continuously. Besides the previously investigated case of
α = 2y−1, we show also a case of smaller and a case of larger α value, obtaining
more information on the bifurcations possible in the model as a whole. The above
mentioned symmetries help in understanding the present bifurcation structure.

3.3.1 Bifurcation diagram for α = 3y
−1

For α = 3y−1 the one-parameter bifurcation diagram is shown in Fig. 3.1a).
Starting with φ = 0 there is a stable fixed equilibrium, fixed in the above men-
tioned notion for symmetric systems. This equilibrium becomes unstable at a
Hopf bifurcation H at φ = 0.16445. A stable symmetric limit cycle originates at
this Hopf bifurcation. This limit cycle shows a super-critical pitch-fork bifurca-
tion P−, i.e. a bifurcation of a limit cycle with Floquet multiplier 1, splitting the
original limit cycle into two new ones. Besides the now unstable branch two new
branches originate for the pair of conjugated limit cycles. The branches merge
again at another supercritical pitch-fork bifurcation P−, after which the limit
cycle is stable again for higher φ-values. The pair of S-conjugate limit cycles
become unstable at a torus bifurcation TR at φ = 0.89539.

Besides this main bifurcation pattern we found two isolas, that is an isolated
solution branch of limit cycles (Golubitsky & Schaeffer, 1985). These isola cycles
L are not S-invariant, that is SL 6= L. Isolas consisting of isolated limit cycles
exist between two tangent bifurcations. One isola consists of a stable and an
unstable branch. The other shows more complex bifurcation patterns. There is
no full stable branch. For φ = 0.60809 at the tangent bifurcation T a stable and
an unstable limit cycle collide. The stable branch becomes unstable via a flip
bifurcation or periodic doubling bifurcation F , with Floquet multiplier (−1), at
φ = 0.61918 which is also pitchfork bifurcation for the period-two limit cycles.
At the other end of that branch at the tangent bifurcation T at φ = 0.89768 both
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Figure 3.1: a) α = 3y−1: Equilibria or extremum values for limit cycles for
logarithm of total infected (ln(I1 + I2 + I12 + I21)). Solid lines denote stable
equilibria or limit cycles, dashed lines unstable equilibria or periodic-one limit
cycles. Hopf bifurcation H around φ = 0.16 two pitchfork bifurcations P− and a
torus bifurcation TR. Besides this main bifurcation structure we found coexisting
tangent bifurcations T between which some of the isolas live, see especially the
one between φ = 0.71 and φ = 0.79. Additionally found flip bifurcations are not
marked here, see text. b) α = 2y−1: In this case we have a Hopf bifurcation H
at φ = 0.11, and besides the similar structure as found in a) also more separated
tangent bifurcations T at φ = 0.494, 0.539, 0.931, 0.978 and 1.052 c) α = 1y−1:
Here we have the Hopf bifurcation at φ = 0.0598 and thereafter many tangent
bifurcations T , again with coexisting limit cycles.

colliding limit cycles are unstable. Close to this point at one branch there is a
torus bifurcation TR, also called Neimark-Sacker bifurcation, at φ = 0.89539 and
a flip bifurcation F at φ = 0.87897 which is again a pitchfork bifurcation P for the
period-two limit cycles. Continuation of the stable branch originating for the flip
bifurcation F at φ = 0.61918 gives another flip bifurcation F at φ = 0.62070 and
one closed to the other end at φ = 0.87897, namely at φ = 0.87734. These results
suggest that for this isola two classical routes to chaos can exist, namely via the
torus or Neimark-Sacker bifurcation where the dynamics on the originating torus
is chaotic, and the cascade of period doubling route to chaos.

3.3.2 Bifurcation diagram for α = 2y
−1

For α = 2y−1 the one-parameter bifurcation diagram is shown in Fig. 3.1b). The
stable fixed equilibrium becomes unstable at a super-critical Hopf bifurcation
H at φ = 0.11329 where a stable fixed limit cycle originates. This stable limit
cycle becomes unstable at a super-critical pitchfork bifurcation point P− at φ =
0.41145 for a limit cycle. This point marks the origin of a pair of S-conjugate
stable limit cycles besides the now unstable fixed limit cycle. Here one has to
consider the two infected subpopulations I1 and I2 to distinguish the conjugate
limit cycles. Because the two variables I1 and I2 are interchangeable this can
also be interpreted as the stable limit cycles for the single variable say I1. The
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fixed stable equilibrium below the Hopf bifurcation where we have I∗
1 = I∗

2 ,
R∗

1 = R∗
2, S∗

1 = S∗
2 and I∗

12 = I∗
21 is a fixed equilibrium. At the Hopf bifurcation H

the stable fixed equilibrium point becomes an unstable fixed equilibrium point.
The originating stable limit cycle in the parameter interval between the Hopf
bifurcation and the pitchfork bifurcation is symmetric. In the parameter interval
between the two pitchfork bifurcations P− at φ = 0.41145 and subcritical P+ at
φ = 0.99214, two stable limit cycles coexist and these limit cycles are S-conjugate.
At the pitchfork bifurcation points the fixed limit cycle becomes unstable and
remains fixed, and two stable S-conjugate limit cycles originate (see (Kuznetsov,
2004, Theorem 7.7)). The invariant plane I1 = I2, R1 = R2, S1 = S2, I12 = I21

forms the separatrix between the pair of stable S-conjugate limit cycles x∗(t) and
Sx∗(t), ∀t ∈ R. The initial values of the two state variables S(t0) and R(t0)
together with the point on the invariant plane, determine to which limit cycle
the system converges. Continuation of the stable symmetric limit cycle gives a
torus or Neimark-Sacker bifurcation at point denoted by TR at φ = 0.55069. At
his point the limit cycles become unstable because a pair of complex-conjugate
multipliers crosses the unit circle. Observe that at this point in the bifurcation
diagram plot (Aguiar & Stollenwerk, 2007, there Fig. 12) and (Aguiar et al., 2008,
there Fig. 5) the chaotic region starts. In (Albers & Sprott, 2006) the following
route to chaos, namely the sequence of Neimark-Sacker bifurcations into chaos,
is mentioned. Increasing the bifurcation parameter φ along the now unstable
pair of S-conjugate limit cycles leads to a tangent bifurcation T at φ = 1.0524
where a pair of two unstable limit cycles collide. This branch terminates at
the second pitchfork bifurcation point denoted by P+ at φ = 0.99214. Because
the first fold point gave rise to a stable limit cycle and this fold point to an
unstable limit cycle we call the first pitchfork bifurcation super-critical and the
latter pitchfork bifurcation subcritical. These results agree very well with the
simulation results shown in the bifurcation diagram for the maxima and minima
of the overall infected (Aguiar & Stollenwerk, 2007, there Fig. 15) and (Aguiar
et al., 2008, there Fig. 5). Notice that AUTO (AUTO, 2009) calculates only the
global extrema during a cycle, not the local extrema. Fig. 3.1b) shows also two
isolas similar to those for α = 3y−1 in Fig. 3.1 a).

3.3.3 Bifurcation diagram for α = 1y
−1

For α = 1y−1 the bifurcation diagram is shown in Fig 3.1c). In the lower φ
parameter range there is bistability of two limit cycles in an interval bounded by
two tangent bifurcations T . The stable manifold of the intermediate saddle limit
cycle acts as a separatrix. Increasing φ the stable limit cycles become unstable
at the pitchfork bifurcation P at φ = 0.23907. Following the unstable primary
branch, for larger values of φ we observe an open loop bounded by two tangent
bifurcations T . The extreme value for φ is at φ = 0.62790. Then lowering
φ there is a pitchfork bifurcation P at φ = 0.50161. Later we will return to
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the description of this point. Lowering φ further the limit cycle becomes stable
again at the tangent bifurcations T at φ = 0.30863. Increasing φ this limit cycle
becomes unstable again at the pitchfork bifurcation P at φ = 0.32532.

Continuation of the secondary branch of the two S-conjugated limit cycles
from this point reveals that the stable limit cycle becomes unstable at a torus
bifurcation TR at φ = 0.42573. The simulation results depicted in (Aguiar &
Stollenwerk, 2007, Fig. 13) and (Aguiar et al., 2008, there Fig. 6a)) show that
there is chaos beyond this point. The secondary pair of S-conjugate limit cycles
that originate from pitchfork bifurcation P at φ = 0.23907 becomes unstable at a
flip bifurcation F . Increasing φ further it becomes stable again at a flip bifurcation
F . Below we return to the interval between these two flip bifurcations. The stable
part becomes unstable at a tangent bifurcation T , then continuing, after a tangent
bifurcation T and a Neimark-Sacker bifurcation TR. This bifurcation can lead to
a sequence of Neimark-Sacker bifurcations into chaos. The unstable limit cycles
terminates via a tangent bifurcation F where the primary limit cycle possesses
a pitchfork bifurcation P at φ = 0.50161. At the flip bifurcation F the cycle
becomes unstable and a new stable limit cycle with double period emanates. The
stable branch becomes unstable at a flip bifurcation again. We conclude that
there is a cascade of period doubling route to chaos. Similarly this happens in
reversed order ending at the flip bifurcation where the secondary branch becomes
stable again.

Fig. 3.2a) gives the results for the interval 0.28 ≤ φ ≤ 0.44 where only the
minima are show. In this plot also a “period three” limit cycle is shown. In a
small region it is stable and coexists together with the “period one” limit cycle.
The cycles are shown in Fig. 3.2b) and c) for φ = 0.294. The one in c) looks like
a period-3 limit cycle. In Fig. 3.2 continuation of the limit cycle gives a closed
graph bounded at the two ends by tangent bifurcations T where a stable and an
unstable limit cycle collide. The intervals where the limit cycle is stable, are on
the other end bounded by flip bifurcations F . One unstable part intersects the
higher period cycles that originate via the cascade of period doubling between
the period-1 limit cycle flip bifurcations F at φ = 0.32816 and φ = 0.41126.
This suggest that the period-3 limit cycle is associated with a “period-3 window”
of the chaotic attractor. We conjecture that this interval is bounded by two
homoclinic bifurcations for a period-3 limit cycle (see (Boer et al., 1999, 2001;
Kooi & Boer, 2002; Kooi et al., 2004)). The bifurcation diagrams shown in
(Aguiar & Stollenwerk, 2007, there Fig. 13) and in (Aguiar et al., 2008, there
Fig. 6a)) show the point where the chaotic attractor disappears abruptly, possible
at one of the two homoclinic bifurcations. In that region the two conjugated
limit cycles that originate at the pitchfork bifurcation P at φ = 0.32532 are the
attractors. These results suggest that there are chaotic attractors associated with
the period-1 limit cycle, one occurs via a cascade of flip bifurcations originating
from the two ends at φ = 0.32816 and φ = 0.41126 and one via a Neimark-Sacker
bifurcation TR at φ = 0.42573.
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Figure 3.2: a) Detail of Fig. 3.1 c), α = 1y−1. We find pitchfork bifurcations
P at φ = 0.239 and 0.325, flip bifurcations F at φ = 0.298, 0.328,0.344,0.346,
0.406, 0.407, 0.411 and 0.422, further tangent bifurcations T at φ = 0.292, 0.346
and 0.422. Four almost coexisting bifurcations, namely F ’s at φ = 0.4112590.
b) and c) state-space plots of susceptibles (S) and logarithm of total infected
(ln(I1 + I2 + I12 + I21)) for α = 1y−1 and φ = 0.294 where two coexisting stable
limit cycles appear.

3.4 Two-parameter diagram

We will now link the three studies of the different α values by investigating a
two-parameter diagram for φ and α, concentrating especially on the creation of
isolated limit cycles, which sometimes lead to further bifurcations inside the isola
region. Fig. 3.3 gives a two-parameter bifurcation diagram where φ and α are the
free parameters. For low φ-values there is the Hopf bifurcation H and all other
curves are tangent bifurcation curves.
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Figure 3.3: Two-dimensional parameter bifurcation diagram with φ and α as pa-
rameters. Only one Hopf bifurcation (dotted line) and many tangent bifurcation
curves for limit cycles (dashed lines) are shown in the range α ∈ [1, 3.8]y−1. The
isolated limit cycles originate above α = 3y−1. For lower values of α periodic
doubling routes to chaos originate.

Isolas appear or disappears upon crossing an isola variety. At an elliptic isola
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point an isolated solution branch is born, while at a hyperbolic isola point an iso-
lated solution branch vanishes by coalescence with another branch (Golubitsky
& Schaeffer, 1985). From Fig. 3.3 we see that at two values of α > 3y−1 isolas
are born. Furthermore, period doubling bifurcations appear for lower α values,
indicating the Feigenbaum route to chaos. However, only the calculation of Lya-
punov exponents, which are discussed in the next section, can clearly indicate
chaos.

3.5 Lyapunov spectra for various α values

The Lyapunov exponents are the logarithms of the eigenvalues of the Jacobian
matrix along the integrated trajectories, Eq. (dynamicsdeltaf), in the limit of large
integration times. Besides for very simple iterated maps no analytic expressions
for chaotic systems can be given for the Lyapunov exponents. For the calculation
of the iterated Jacobian matrix and its eigenvalues, we use the QR decomposition
algorithm (Farmer & Sidorowich, 1986; Parlitz, 1992).
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Figure 3.4: Spectrum of the four largest Lyapunov exponents with changing
parameter φ and (a) fixed α = 4y−1, (b) α = 2y−1 and (c) α = 1y−1.

In Fig. 3.4 we show, for various α values, the four largest Lyapunov exponents
in the φ range between zero and one. For α = 4y−1 in Fig. 3.4a) we see for small
φ values fixed point behavior indicated by a negative largest Lyapunov exponent
up to around φ = 0.2. There, at the Hopf bifurcation point, the largest Lyapunov
exponent becomes zero, indicating limit cycle behavior for the whole range of φ,
apart from the final bit before φ = 1, where a small spike with positive Lyapunov
exponent might be present, but difficult to distinguish from the noisy numerical
background.

For α = 2y−1 in Fig. 3.4b) however, we see a large window with positive largest
Lyapunov exponent, well separated from the second largest being zero. This is
s clear sign of deterministically chaotic attractors present for this φ range. Just
a few windows with periodic attractors, indicated by the zero largest Lyapunov
exponent are visible in the region of 0.5 < φ < 1. For smaller φ values we
observe qualitatively the same behavior as already seen for α = 4y−1. For the
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smaller value of α = 1y−1, in Fig. 3.4c), the chaotic window is even larger than
for α = 2y−1. Hence deterministic chaos is present for temporary cross-immunity
in the range around α = 2y−1 in the range of φ between zero and one.

3.6 Conclusions

We have presented a detailed bifurcation analysis for a multi-strain dengue fever
model in terms of the different ratios of secondary infections contribution to the
force of infection (ADE parameter φ), in the previously not well investigated
region between zero and one, and for the temporary cross-immunity parameter
α. The symmetries implied by the strain structure, are taken into account in
the analysis. Many of the possible bifurcations of equilibria and limit cycles of
Z2-equivariant systems can be distinguished. Using AUTO (AUTO, 2009) the
different dynamical structures were calculated. Future time series analysis of
epidemiological data has good chances to give insight into the relevant parameter
values purely on topological information of the dynamics, rather than classical
parameter estimation of which application is in general restricted to fairly simple
dynamical scenarios.

3.A Epidemic model equations

The complete system of ordinary differential equations for a two-strain epidemio-
logical system allowing for differences in primary versus secondary infection and
temporary cross-immunity is given by system Eq. (3.8). For two different strains,
named 1 and 2, we label the SIR classes for the hosts that have seen the indi-
vidual strains. Susceptibles to both strains (S) get infected with strain 1 (I1)
or strain 2 (I2), with infection rate β. They recover from infection with strain 1
(becoming R1) or from strain 2 (becoming R2), with recovery rate γ, and so on.

With temporary cross-immunity rate α, the R1 and R2 become again suscep-
tible with a previous infection (S1 being immune against strain 1 but susceptible
to 2, respectively S2), where the index represents the first infection strain. Now,
S1 can be reinfected, now with strain 2 (becoming I12), meeting I2 with infec-
tion rate β or meeting I12 with infection rate φβ, secondary infected contributing
differently to the force of infection than primary infected, and so on.

We include demography of the host population denoting the birth and death
rate by µ. For constant population size N we have for the immune to all strains
R = N −(S +I1 +I2 +R1 +R2 +S1 +S2 +I12 +I21) and therefore we only need to
consider the first 9 equations of system Eq. (3.8), giving 9 Lyapunov exponents.

In our numerical studies we take the population size equal to N = 100 so
that mean proportions of susceptibles, infected etc. are given in percentage. As
fixed parameter values we take µ = 1/65y, γ = 52y−1, β = 2 · γ. The parameters
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φ and α are varied. For more information on the parametrization of the basic
two-strain model, see (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008).

d

dt
S = −

β

N
S(I1 + φI21) −

β

N
S(I2 + φI12) + µ(N − S)

d

dt
I1 =

β

N
S(I1 + φI21) − (γ + µ)I1

d

dt
I2 =

β

N
S(I2 + φI12) − (γ + µ)I2

d

dt
R1 = γI1 − (α + µ)R1

d

dt
R2 = γI2 − (α + µ)R2 (3.8)

d

dt
S1 = −

β

N
S1(I2 + φI12) + αR1 − µS1

d

dt
S2 = −

β

N
S2(I1 + φI21) + αR2 − µS2

d

dt
I12 =

β

N
S1(I2 + φI12) − (γ + µ)I12

d

dt
I21 =

β

N
S2(I1 + φI21) − (γ + µ)I21

d

dt
R = γ(I12 + I21) − µR .
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Chapter 4

The role of seasonality and
import in a minimalistic
multi-strain dengue model
capturing differences between
primary and secondary
infections: complex dynamics and
its implications for data analysis

Máıra Aguiar, Sebastien Ballesteros, Bob W. Kooi and Nico Stollenwerk
Journal of Theoretical Biology, 289:181-196, 2011.

In many countries in Asia and South-America dengue fever (DF) and dengue
hemorrhagic fever (DHF) has become a substantial public health concern leading
to serious social-economic costs. Mathematical models describing the transmis-
sion of dengue viruses have focused on the so called antibody-dependent en-
hancement (ADE) effect and temporary cross-immunity trying to explain the
irregular behavior of dengue epidemics by analyzing available data. However,
no systematic investigation of the possible dynamical structures has been per-
formed so far. Our study focuses on a seasonally forced (non-autonomous) model
with temporary cross-immunity and possible secondary infection, motivated by
dengue fever epidemiology. The notion of at least two different strains is needed
in a minimalistic model to describe differences between primary infections, often
asymptomatic, and secondary infection, associated with the severe form of the
disease. We extend the previously studied non-seasonal (autonomous) model by
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adding seasonal forcing, mimicking the vectorial dynamics, and a low import of
infected individuals, which is realistic in the dynamics of dengue fever epidemics.
A comparative study between three different scenarios (non-seasonal, low sea-
sonal and high seasonal with a low import of infected individuals) is performed.
The extended models show complex dynamics and qualitatively a good agreement
between empirical DHF monitoring data and the obtained model simulation. We
discuss the role of seasonal forcing and the import of infected individuals in such
systems, the biological relevance and its implications for the analysis of the avail-
able dengue data. At the moment only such minimalistic models have a chance
to be qualitatively understood well and eventually tested against existing data.
The simplicity of the model (low number of parameters and state variables) of-
fer a promising perspective on parameter values inference from the DHF case
notifications.

4.1 Introduction

Dengue is a viral mosquito-borne infection which in recent years has become a
major international public health concern, a leading cause of illness and death
in the tropics and subtropics. It is estimated that every year, there are 70 − 500
million dengue infections, 36 million cases of dengue fever (DF) and 2.1 million
cases of dengue hemorrhagic fever (DHF), with more than 20.000 deaths per year
(WHO, 2009; PDVI, 2011). Dengue is caused by four antigenically distinct but
closely related viruses, designated by dengue types 1,2,3, and 4, where infection
by one serotype confers life-long immunity to only that serotype and a short pe-
riod of temporary cross-immunity to other serotypes (WHO, 2009; Alcon et al.,
2002; Matheus et al., 2005; SES, 2010; Wearing & Rohani, 2006; Halstead, 2004;
Dejnirattisai et al., 2010). Two variants of the disease exist: dengue fever (DF),
a non-fatal form of illness, and dengue hemorrhagic fever (DHF), which may
evolve towards a severe form known as dengue shock syndrome (DSS). Epidemi-
ological studies support the association of DHF with secondary dengue infection
(Guzmán et al., 2000; Vaughn et al., 2000; Halstead, 1982, 2003; Nisalak et al.,
2003), and there is good evidence that sequential infection increases the risk of
developing DHF, due to a process described as antibody-dependent enhancement
(ADE) (WHO, 2009; Halstead, 2004; Dejnirattisai et al., 2010). The risk for DHF
with a third or fourth dengue infection relative to a first or second exposure is
not known. An analysis of a database of admitted cases to the Queen Sirikit Na-
tional Institute of Child Health and Kamphaeng Phet Provincial Hospital with
suspected dengue illness revealed that the number of dengue admissions caused
by a third or fourth dengue virus infection was extremely low and once admit-
ted, the risk for DHF relative to DF was not different for those experiencing
third or fourth dengue virus infections over those experiencing a second dengue
virus infection (Endy et al., 2002; Gibbons et al., 2007; Halstead, 2008). It is
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suggested that the majority of secondary dengue infections occur at a spacing
of more than 6 months (SES, 2010), and from cohort studies and prospective
seroepidemiological studies of defined populations, the hospitalization rates for
individuals experiencing secondary dengue infections are in the range of 2−3% of
all infected individuals (Halstead, 2003; Rothman et al., 2004). There is no spe-
cific treatment for dengue, and a vaccine is not yet available. So far, prevention
of exposure and vector control remain the only alternatives to prevent dengue
transmission.

Mathematical models describing the transmission of dengue viruses appeared
in the literature as early as 1970 (Fischer & Halstead, 1970). More recently,
mathematical models describing the transmission of dengue viruses have focused
on the ADE effect and temporary cross-immunity trying to explain the irregular
behavior of dengue epidemics. In the literature the multi-strain interaction lead-
ing to deterministic chaos via ADE has been described previously, e.g. (Ferguson
et al., 1999; Schwartz et al, 2005; Billings et al., 2007) but neglecting temporary
cross-immunity. Consideration of temporary cross immunity is rather compli-
cated and up to now not in detail analyzed. Models formulated in (Wearing &
Rohani, 2006; Nagao & Koelle, 2008; Recker et al., 2009; Loureço & Recker, 2010),
did not investigate closer the possible dynamical structures. In (Aguiar & Stol-
lenwerk, 2007; Aguiar et al., 2008, 2009) by including temporary cross-immunity
into dengue models with ADE, a rich dynamic structure including determinis-
tic chaos was found in wider and more biologically realistic parameter regions.
However, in order to be able to reproduce the yearly cycle in dengue incidence
seasonal forcing and a low import of infected have to be included in the models.

In addition to ab-initio simulation techniques to solve the mathematical model
numerically, we use bifurcation analysis to study the dependence of the dynamics
on parameter values. This separates the parameter space in regions with qualita-
tively different long-term dynamics: steady-state solution (equilibrium), periodic
solution (limit cycle) and non-periodic solution (aperiodic or chaotic attractors).
For non-periodic solutions the dynamics is classified further based on Lyapunov
exponents. In the case of sinusoidal forcing the non-autonomous system is, for
analysis purposes, replace by an equivalent autonomous system whereby the origi-
nal model is augmented with the so called Hopf oscillator producing the sinusoidal
forcing.

In this paper, we investigate the extended multi-strain model with temporary
cross-immunity and possible secondary infection, motivated by dengue fever epi-
demiology presented first in (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008)
and (Aguiar et al., 2009). We add seasonal forcing into the previous multi-strain
dengue model, mimicking the vectorial dynamics, and a low import of infected
individuals, which is realistic in the dynamics of dengue fever epidemics. The
complete analysis of the extended models shows complex dynamics and qual-
itatively a very good result when comparing empirical DHF data and model
simulation. The effects of the vector dynamics are only taken into account by
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the force of infection parameters in the SIR-type model, but not modeling this
mechanisms explicitly ( see also (Wearing & Rohani, 2006)). Since vector models
without multi-strain aspects only shows stationary dynamics (Esteva & Vargas,
1998, 2000) and seasonally forced SIR systems can show already deterministic
chaos (Stone et al., 2007), the presented model is minimalistic in the sense that
it can capture the essential differences of primary versus secondary infection un-
der periodic forcing but is not too high dimensional so that future parameter
estimation can still attempt to estimate all initial conditions as well as the few
model parameters.

4.2 The seasonal multi-strain epidemic model

The seasonal multi-strain model is represented in Fig. 4.1 by using a state flow
diagram, dividing the population into ten classes: susceptible to both strains, 1
and 2 (S), primarily infected with strain one (I1) or strain two (I2), recovered
from the first infection with strain one (R1) or strain two (R2), susceptible with
a previous infection with strain one (S1) or strain two (S2), secondarily infected
with strain one when the first infection was caused by strain two (I21) or for
second time infected with strain two when the first infection was caused by strain
one (I12). Notice that infection by one serotype confers life-long immunity to
that serotype. Then the recovered individuals from the secondary infection (R).
To give more reality to the dynamics of the disease, we also add a low import
factor of infected individuals into the system.

The complete system of ordinary differential equations for the seasonal multi-
strain epidemiological model is shown in system Eq. (4.1), and the dynamics are
described as follows. Susceptibles to both strains can get the first infection with
strain one or strain two with force of infection βI

N
when the infection is acquired

via an individual in his first infection or φβI

N
when the infection is acquired via an

individual in his second infection (for more information on the parametrization of
ADE and secondary dengue infection by φ, see (Ferguson et al., 1999; Aguiar et
al., 2008)). They recover form the first infection with a recovery rate γ, conferring
full and life-long immunity against the strain that they were exposed to, and also
a short period of temporary cross-immunity α against the other strain, becoming
susceptible to a second infection with a different strain. The susceptible with
a previous infection gets the secondary infection with force of infection βI

N
or

φβI

N
depending on whom (individual on his primary or secondary infection) is

transmitting the infection. Then, with recovery rate γ, the individuals recover
and become immune against all strains.

We assume no epidemiological asymmetry between strains (β1 = β2 = β,
φ1 = φ2 = φ), i.e. infections with strain one or strain two contribute in the
same way to the force of infection. Here, the only relevant difference concerning
disease transmissibility is that the force of infection varies accordingly to the

94



Figure 4.1: The state flow diagram for the seasonal two-strain model. The boxes
represent the disease related stages and the arrows indicate the transition rates.
The transition rate µ coming out of the class R represents the death rates of all
classes, S, I1, I2, R1, R2, S1, S2, I12, I21, R, getting into the class S as a birth rate.
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number of previous infections the hosts have experienced. In a primary infection
the individuals transmit the disease with a force of infection βI

N
whereas in a

secondary infection the transmission is given with a force of infection φβI

N
where

φ can be larger or smaller than unit, i.e. increasing or decreasing the transmission
rate.

Ṡ = −
β(t)

N
S(I1 + ρ · N + φI21)

−
β(t)

N
S(I2 + ρ · N + φI12)

+µ(N − S)

İ1 =
β(t)

N
S(I1 + ρ · N + φI21) − (γ + µ)I1

İ2 =
β(t)

N
S(I2 + ρ · N + φI12) − (γ + µ)I2

Ṙ1 = γI1 − (α + µ)R1

Ṙ2 = γI2 − (α + µ)R2 (4.1)

Ṡ1 = −
β(t)

N
S1(I2 + ρ · N + φI12) + αR1 − µS1

Ṡ2 = −
β(t)

N
S2(I1 + ρ · N + φI21) + αR2 − µS2

˙I12 =
β(t)

N
S1(I2 + ρ · N + φI12) − (γ + µ)I12

˙I21 =
β(t)

N
S2(I1 + ρ · N + φI21) − (γ + µ)I21

Ṙ = γ(I12 + I21) − µR

The parameter β takes the seasonal forcing into account as a cosine function
and is given explicitly by

β(t) = β0 · (1 + η · cos(ω · (t + ϕ))) (4.2)
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where β0 is the infection rate, η is the degree of seasonality and ϕ the phase which
becomes important only when considering empirical time series.

Table 4.1: Parameter set, rates given in units per year, ratio without unit

Par. Description Values Ref

N population size 100 —

µ birth and death rate 1/65y (UNWPP, 2011)

γ recovery rate 52y−1 (WHO, 2009)

β0 infection rate 2 · γ (Ferguson et al., 1999)

η degree of seasonality 0.1 to 0.35 (Nagao & Koelle, 2008)

ϕ phase 0 —

ρ import parameter 0 to 10−10 (Nagao & Koelle, 2008)

α temporary cross-immunity rate 2y−1 (Matheus et al., 2005)

φ ratio of secondary infections

contributing to force of infection variable (< 1) (Halstead, 2004)

In this model, a susceptible individual can become infected also by meeting an
infected individual from an external population (hence (β/N ·S ·I) goes to (β/N ·
S · (I +ρ ·N))) contributing to the force of infection with an import parameter ρ.
The parameter φ in our model, is the ratio of secondary infection contribution to
the force of infection. For instance, we study the region of the parameter φ < 1,
which acts as decreasing the infectivity of secondary dengue infection, where the
hospitalization is more likely due to the ADE effect associated with the severity
of the disease. The secondary infected individuals do not contribute to the force
of infection as much as people with first infection do.

The deterministic model formulation is based on the large number assumption.
As a consequence the number of individuals can be used to scale all state variables
of the model. The constant population N = 100 is used for clarity so that all
epidemiological proportions (susceptibles, infected and recovered) are given in
percentage. The demography rate is denoted by µ and the parameter values are
given in Table 4.1.

4.3 Analysis techniques

The previous analysis of the non-seasonal multi-strain dengue model has shown
a rich variety of dynamics through bifurcations up to deterministically chaotic
attractors in an unexpected parameter region of φ < 1, where secondary infected
individual (due to the likely hospitalization) contribute less to overall force of
infection than an individual that is for the first time infected, just by adding
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temporary cross-immunity to a previously existing dengue model. In (Aguiar et
al., 2008) a time series analysis (simulations and calculation of Lyapunov expo-
nents) and a numerical bifurcation analysis were performed. In this manuscript,
we extend the analysis of the non-seasonal model with a two-parameter bifur-
cation analysis where both, the ratio of secondary infection contribution to the
force of infection (parameter φ) and temporary cross-immunity rate (parameter
α) vary simultaneously (see Fig. 4.2c). Two scenarios of seasonally forced sys-
tems are also analyzed. We used the software auto (AUTO, 2009) to calculate
the bifurcation curves presented, and the Lyapunov exponents were calculated
using an iterated technique using the QR decomposition algorithm via House-
holder matrices (see (Aguiar et al., 2008; Ruelle, 1986; Holzfuss & Lauterborn,
1989; Holzfuss & Parlitz, 1991)).

The equilibrium values of the state variables are calculated by solving the
non-linear system Eq. (4.1) equal to zero. Often multiple equilibria coexist. The
stability of each equilibrium is found by linearization, that is calculating the
eigenvalues of the Jacobian matrix evaluated at that point. When all eigenvalues
have negative real parts the equilibrium is stable, otherwise it is unstable.

A bifurcation point is defined as a parameter value where the long-term dy-
namics of the system changes qualitatively at points where one eigenvalue is zero
(or its real part). One important bifurcation is the Hopf bifurcation point where
the real parts of a pair of conjugated eigenvalues are zero. At that point the
equilibrium looses stability and the system starts to oscillate, that is, where a
periodic solution or limit cycle originates when a parameter is varied crossing
that point.

A limit cycle can be found numerically by solving a boundary value prob-
lem, whereby the boundary conditions are cyclic. Observe that the period of
this solution is an additional parameter calculated along with the solution. The
stability of limit cycles is determined by so-called Floquet multipliers. A limit
cycle is stable when all multiplier are inside the unit circle of the complex plane,
and unstable when at least one is outside. At a bifurcation point, the bifurcation
parameter value is such that one multiplier lies on the unit circle of the complex
plane. When this multiplier equals 1, it is a tangent bifurcation while when this
multiplier equals −1, a period-doubling (or flip) bifurcation occurs. Changing a
parameter can give a cascade of period-doubling bifurcation leading to chaotic
dynamics.

Another important bifurcation point is the torus or Neimark-Sacker bifurca-
tion of the limit cycle where two complex conjugate multipliers are on the unit
circle. At such a point, limit cycles or quasi-periodic dynamics on the torus
or chaotic dynamics originate when the bifurcation parameter is varied. For
an introduction into bifurcation analysis we refer the reader to (Guckenheimer
& Holmes, 1985; Kuznetsov, 2004), and for applications in eco-epidemiological
models (Malchow et al., 2008; Stiefs et at., 2009; Kooi et al., 2011).

The Lyapunov exponent is a generalization of both an eigenvalue and a Flo-
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quet multiplier. While for a fixed point the contraction and expansion rates are
given by the eigenvalues and for a limit cycle by Floquet multipliers, for more
complex geometrical objects (torus, chaotic attractors) the contraction and ex-
pansion rates are given by the Lyapunov exponents (Ott, 1993). For instance,
the dynamics on or beyond a torus is classified as periodic, when one Lyapunov
exponent zero, aperiodic when two Lyapunov exponents zero, and chaotic when
one Lyapunov exponent zero and at least one positive. Lyapunov exponents can
be calculated along the trajectory as

λi(n) =
1

n · ∆t
ln

(
n∏

ν=1

|rii(ν)|

)

(4.3)

where ∆t is the time-step, n the (large) number of time steps and rii are the
diagonal elements of the upper triangular matrix R of the ν-th QR-decomposition
at the ν-th time-step.

Just as with the eigenvalues of the Jacobian matrix, the number of Lyapunov
exponents equals the dimension of the system (9 for system Eq. (4.1) and 11
for the augmented system described in Appendix 4.A). The so called Dominant
Lyapunov Exponent (DLE) is the exponent with the largest magnitude. The set
of Lyapunov exponents is called the Lyapunov spectrum which can be calculated
for all parameter values. The situation when all Lyapunov exponents are negative
gives a stable equilibrium, one dominant zero Lyapunov exponent indicates a
stable limit cycle, two dominant zero Lyapunov exponents quasi-periodicity (for
instance on a torus), a positive Lyapunov exponent chaotic behavior and multiple
positive Lyapunov exponent hyperchaos.

Both the bifurcation analysis (for equilibria and limit cycles) and the Lya-
punov spectrum calculation (for chaotic dynamics), can be done for autonomous
and non-autonomous (e.g. seasonally forced) systems. With sinusoidal forcing,
the non-autonomous system (system Eq. (4.1)) can be coupled with the Hopf
oscillator (a set of two ode’s), to get an equivalent autonomous system of di-
mension 11. Notice that the period of the forcing is fixed: equal to 1, and that
a steady-state solution does not exist. The basal dynamics is now a periodic
solution with period equal to the forcing period, which is a limit cycle of the
equivalent autonomous system. Hence the dynamics can be analyzed in the same
way as described above and shown in Appendix 4.A.

4.4 Bifurcation analysis

In this section we start with a bifurcation analysis of the non-seasonal model
and then continue with two scenarios of seasonally forced systems, namely the
low seasonal model and the high seasonal model with a low import of infected
individuals.
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4.4.1 Bifurcation analysis of the non-seasonal model

In this section we show briefly the results for the non-seasonal system published
in (Aguiar et al., 2008, 2009) on which the further results of the present article
are based. First we show in Fig. 4.2a) the Lyapunov exponents in the parameter
range φ ∈ [0, 0.2]. The DLE is negative below and becomes zero at φ = 0.108,
the Hopf bifurcation point which is also predicted by AUTO (AUTO, 2009).

Secondly, we show the one-parameter bifurcation diagram for φ ∈ [0, 1.3] (see
Fig. 4.2b)). At fine grid in this parameter range, system Eq. (4.1) was solved
numerically. We discarded 2000 years of transients and plot the varying ratio of
the secondary infection contribution to the force of infection (φ) over the steady
state or local maxima of logarithm of total number of infected (ln(I), where
I := I1 + I2 + I12 + I21), obtaining the one-parameter bifurcation diagram.

The one-parameter diagram is shown in Fig. 4.2b). Here the logarithm of
total number of infected are shown, where solid lines denote stable equilibria
or limit cycles, and dashed lines unstable equilibria or limit cycles. Various
bifurcations are: Hopf bifurcation H(φ = 0.11326), pitchfork bifurcations P (φ =
0.41145, 0.99214), torus bifurcation TR(φ = 0.55069) and tangent bifurcations
T (φ = 0.4.9406, 0.53874, 0.93103, 0.97825, 1.05242).

In addition to this main bifurcation pattern we found two isolas, consisting
of isolated limit cycles existing between two tangent bifurcations (for more in-
formation on the isolas see (Aguiar et al., 2009)). At the Hopf bifurcation H
(φ = 0.1133) the stable fixed equilibrium becomes an unstable fixed equilibrium
and in the parameter interval between the Hopf bifurcation and the pitchfork bi-
furcation P (φ = 0.4114) there is a symmetric stable limit cycle (for more informa-
tion on the bifurcation analysis by continuation for the non-seasonal multi-strain
model see (Aguiar et al., 2008, 2009), however, in these articles it is wrongly stated
that it is a fixed limit cycle instead of the symmetric limit cycle). At a pitch-
fork bifurcation point, the symmetric limit cycle becomes unstable and remains
symmetric, while two stable S-conjugate limit cycles originate (see (Kuznetsov,
2004), Theorem 7.7). These S-conjugate limit cycles become unstable at a torus
bifurcation TR (φ = 0.5507). At this torus or Neimark-Sacker bifurcation the
dynamics becomes chaotic (positive Lyapunov exponent). Increasing the ratio of
secondary infection contribution to the force of infection (φ) further, this chaotic
behavior disappears at a second pitchfork bifurcation P (φ = 0.9921). At this
pitchfork bifurcation the branch of limit cycles, that was originated at the first
pitchfork bifurcation, terminates after going through a region where two limit
cycles coexist and disappear at a tangent bifurcation. In the small φ interval
between the pitchfork bifurcation and the tangent bifurcation T (φ = 0.931) two
stable limit cycles coexist. This means that the stable manifold of the unstable
intermediate limit cycle forms the separatrix for the two basins of attraction in
the state space. We remark that the sudden disappearance of the chaotic attrac-
tor at the pitchfork bifurcation is similar to the classical intermittency route to
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Figure 4.2: Bifurcation diagram of the non-seasonal model. With temporary
cross-immunity rate α = 2y−1 and varying the ratio of secondary infection con-
tribution to the force of infection φ, in a) we show the Lyapunov spectrum in
the parameter range of φ ∈ [0, 0.2]. In b) we show the one-parameter bifurca-
tion diagram calculated using AUTO, where solid lines denote stable equilibria
or limit cycles, and dashed lines unstable equilibria or limit cycles, on top of the
numerical bifurcation diagram (in green). In c) we show the two-dimensional
parameter bifurcation diagram with temporary cross-immunity rate α and the
ratio of secondary infection contribution to the force of infection φ varying simul-
taneously in the range φ ∈ [0, 1.3] and α ∈ [1, 7]y−1, calculated using AUTO. In
addition to the Hopf bifurcation H (dotted lines) and many tangent bifurcation
T curves (dashed lines), the torus TR and pitchfork P bifurcations are shown.
At the codim-two points P − T the pitchfork and tangent bifurcations for limit
cycles meet and at point TR − T the pitchfork and torus bifurcations.

101



chaos occurring at for instance a tangent bifurcation.
Fig. 4.2c) gives the most important bifurcation curves where both φ and α

vary simultaneously: for an equilibrium the Hopf bifurcation H, and for limit
cycles the torus-bifurcation TR and the pitchfork bifurcation P and a tangent
bifurcation T . At the two codim-two points, P − T and TR − T , the tangent
bifurcation for a limit cycle splits off a pitchfork and a torus bifurcation. This
diagram shows for which φ and α parameter values chaotic behavior can occur,
namely below the torus-bifurcation TR and on the left hand side of the pitchfork
bifurcation P that originates from the P − T point. However, within this region
there are periodic windows such as shown in Fig. 4.2b). We found isolas coexisting
with the attractors of this main bifurcation structure. A stable limit cycle was
calculated by simulation starting from initial values in the state space obviously
outside the basin of attraction of the attractors of the main bifurcation structure.
Continuation starting from this limit cycle gave rise to bifurcations into chaos.
For a detailed analysis of the attractors in state space for the non-seasonal model,
see also Appendix 4.B.1 and (Aguiar et al., 2008, 2009).

Note that by adding a low import factor into the non-seasonal model the
classical ADE chaotic region for φ > 1 found in (Ferguson et al., 1999; Aguiar et
al., 2008) disappears (see Appendix 4.C, Fig. 4.15)

4.4.2 Bifurcation analysis of the seasonal models

In this section we relate and compare the results for the seasonally forced systems
to that of the non-seasonal system discussed in the previous section. First we
compare the bifurcation diagrams obtained for the non-seasonal and seasonal
models. In the special case where η = 0, the seasonal system is decoupled in the
original non-seasonal system studied in (Aguiar et al., 2008, 2009) with β = β0

and the augmented oscillator described in Appendix 4.A, by system Eq. (4.4). It
is easy to show that the augmented system with system Eq. (4.4) is Z2-symmetric
just as the original seasonal model (system Eq. (4.1)). This has consequences for
the type of bifurcations to be expected. If the non-seasonal system possesses a
Hopf bifurcation, the seasonally forced system has a torus bifurcation.

The bifurcation diagrams for the seasonal models are shown in Fig. 4.3a)
and Fig. 4.3b). In Fig. 4.3a) the bifurcation diagram for the system with low
seasonality (η = 0.1) is not very informative since we have many local extrema,
even for the most simple case of the torus. When increasing the ratio of secondary
infection contribution to the force of infection (φ values), the troughs become
very low, with the logarithm of total infected going as low as −160. By adding
a low import of infected (ρ = 10−10) into the seasonal model, the logarithm of
total infected does not pass below −16 (see Fig. 4.3b)), avoiding the chance of
extinction in stochastic systems with reasonable system size.

In order to get more insight about the disappearance of the chaotic behavior
we study a two-parameter diagram (see Fig. 4.4) for each one of the models,
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a) b)

Figure 4.3: Bifurcation diagram comparison between seasonal models.We plot
the varying ratio of the secondary infection contribution to the force of infection
(φ) over the steady state or local maxima of logarithm of total number of infected
(ln(I)). In a) bifurcation diagram for the low seasonal model without import of
infected, where the degree of seasonality η = 0.1 and in b) bifurcation diagram
for the high seasonal model with a low import of infected. Here, the degree of
seasonality η = 0.35 and the import factor ρ = 10−10. These bifurcation diagrams
can be compared with Fig. 4.2b) for the non-seasonal model (η = 0). The other
parameter values are listed in Table 4.1. Notice that for low seasonality without
import factor, the infected go to very low numbers, unrealistically low for any
empirical epidemiological system.

(non-seasonal, low seasonal and high seasonal with import of infected), where
the ratio of the secondary infection contribution to the force of infection φ and
the temporary cross-immunity rate α are varied simultaneously. The time series
simulations (section 4.5) and state space plots (Appendix 4.B) are also analyzed
and the results are compared for the different case scenarios.

Bifurcation analysis of the low seasonal model

For the non-seasonal system, with 6 months of temporary cross-immunity (α =
2y−1), there is a stable equilibrium that becomes unstable at a super-critical Hopf
bifurcation H at (φ = 0.1133) leading to a stable limit cycle for higher φ values
(see Fig. 4.4a)). By adding low seasonal forcing (η = 0.1) into the system, a torus
bifurcation TR appears at φ = 0.1145, slightly above the Hopf bifurcation of the
non-seasonal system (see Fig. 4.4b)). When a low import factor (ρ = 10−10) of
infected is included into the high seasonal system (η = 0.35), the torus bifurcation
TR is predicted by auto at φ = 0.13 (see Fig. 4.4b)).

These results show that on the right-hand side of the torus bifurcation TR
possibly chaotic dynamics can occur. Therefore we continue our analysis with
the calculation of the Lyapunov exponent spectrum in Fig. 4.5.

Figure 4.5a) shows the Lyapunov spectrum in the parameter rage φ ∈ [0, 1.2]
for the low seasonal model where η = 0.1. The DLE in the chaotic area goes
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Figure 4.4: Two-dimensional parameter bifurcation diagram with the ratio of
secondary infection contribution to the force of infection φ and temporary cross-
immunity rate α as bifurcation parameters. In a) the Hopf bifurcation line for
the non-seasonal model, i.e. η = 0, in b) the torus bifurcation line for the low
seasonal model, i.e. η = 0.1, is close to the Hopf bifurcation line for the non-
seasonal model (η = 0) and in c) the torus bifurcation line for the high seasonal
model with low import factor, i.e. η = 0.35 and ρ = 10−10, in comparison with the
Hopf bifurcation line for the non-seasonal model (η = 0). The other parameter
values are listed in Table 4.1
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Figure 4.5: For the low seasonal system, where temporary cross-immunity rate
α = 2y−1, the recovery rate γ = 52y−1, the infection rate β0 = 2 · γ, the degree
of seasonality η = 0.1 and birth and death rate µ = 1/65y, in a) the Lyapunov
spectrum for the ratio of secondary infection contribution to the force of infection
φ ∈ [0, 1.2], the whole parameter region of interest, in b) Lyapunov exponents
for small values of the ratio of secondary infection contribution to the force of
infection φ ∈ [0, 0.2], and in c) Lyapunov exponents for the ratio of secondary
infection contribution to the force of infection φ ∈ [0.3, 0.5], the parameter region
of onset of complexity.
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up to λ = 2 where the prediction horizon of the monthly peaks in the time se-
ries is in the range of half a year. In Figure 4.5b) the Lyapunov exponents are
depicted in the parameter range φ ∈ [0, 0.2]. There is a stable periodic solu-
tion which becomes unstable at a torus bifurcation. Using auto we calculated
a torus bifurcation TR at φ = 0.1145, slightly above the Hopf bifurcation of the
non-seasonal system at (φ = 0.1133). Observe that the torus bifurcation TR in
the seasonally forced system is close to the Hopf bifurcation for the non-seasonal
system. This is reasonable since seasonal forcing adds complexity to the dynam-
ics behavior, i.e. an equilibrium becomes a periodic solution and a limit cycle
becomes a solution on a torus, whether periodic (one Lyapunov exponent zero),
aperiodic (two Lyapunov exponents zero) or chaotic (one Lyapunov exponent
zero and at least one positive). For higher φ values the solution is restricted to
the torus or a chaotic attractor.

In Figure 4.5c) the Lyapunov exponents are depicted in the parameter range
φ ∈ [0.3, 0.5] for the same low seasonal case of η = 0.1. There is a window in the
chaotic region for φ-values above the torus bifurcation TR around φ = 0.44 where
there is a single Lyapunov exponent equal to zero, suggesting the existence of a
stable limit cycle, which implies phase-locking. Continuation of this solution with
φ as free parameter reveals that this cycle, that is a period-13 cycle, possesses
a tangent bifurcation at φ = 0.431 and a torus bifurcation at φ = 0.471. These
two critical points enclose the period-13 window of stable periodic solutions. For
detailed analysis on the attractors in state space for the low seasonal seasonal,
see Appendix 4.B.2.

Bifurcation analysis of the high seasonal model with import

In the analysis of the high seasonal model (η = 0.35) with low import of infected
individuals (ρ = 10−10), auto predicted a torus bifurcation TR at φ = 0.13. In
Figure 4.6a) a little below that point the DLEs become positive, indicating chaos.
The discrepancies between the continuation versus Lyapunov exponents calcula-
tion techniques happen due to long transients and consequently long sampling
times in the Lyapunov exponents calculation near bifurcation points where one
exponent becomes close to zero.

Another interesting range of φ is a window in the chaotic region around φ =
0.44 where a stable limit cycle with period 12 exists. Hence in this region phase-
locking occurs. With auto we calculated a tangent bifurcation at φ = 0.406
and a torus bifurcation at φ = 0.522 . The torus bifurcation is also predicted
very well comparing the results given in Figure 4.6b), where the second zero
Lyapunov exponent appears at φ = 0.522. The position of the tangent bifurcation
at φ = 0.406 is less clear from this figure obviously due to numerical inaccuracies
prone to the detection of bifurcation points via integration in time instead of
the calculation of the limit cycle by using a boundary value problem and the
calculation of the Floquet multipliers.
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Figure 4.6: For the high seasonal system (η = 0.35) with a low import of infected
(ρ = 10−10), in a) Lyapunov exponents for the ratio of secondary infection contri-
bution to the force of infection φ ∈ [0, 0.4]. The second zero Lyapunov exponent
is at φ = 0.128, just before the torus bifurcation point calculated by auto at
φ = 0.13. In b) Lyapunov exponents for the ratio of secondary infection contri-
bution to the force of infection φ ∈ [0.4, 0.6]. In this region a tangent bifurcation
at φ = 0.406 and a torus bifurcation at φ = 0.522 is predicted by auto.

In the limiting case where the amplitude of the seasonal forcing is zero, the
torus bifurcation TR of the seasonally forced system coincides with the Hopf bi-
furcation H of the non-seasonal system. The larger the amplitude of the seasonal
forcing η the higher the effects where the torus bifurcation occurs at higher φ
values. The same effect is found when adding the import factor of infected ρ into
the seasonal system. For detailed analysis on the attractors in state space for the
high seasonal seasonal model with import, see Appendix 4.B.3.

4.5 Time series

This study is completed with a time series analysis where the results are shown,
leading to a discussion on its implications for data analysis. For the seasonal
forcing to be inserted into system Eq. (4.1) we use Eq. (4.2) with ω = 2π · 1

T
and

T = 1 year as monitoring data of dengue suggest. For the moment we assume
perfect sinusoidal forcing without any phase shift, hence ϕ = 0.

In this section, we compare the time series simulations and respective state
space plots for the number of susceptible versus logarithm of the overall in-
fected for the non-seasonal and seasonal scenarios. For a population N = 100,
where the initial conditions are given by S = 70, I1 = 20, I2 = 10, and
R1, R2, S1, S2, I12, I21, R = 0, fulfilling the condition of constant population size
N = S + I1 + I2 + R1 + R2 + S1 + S2 + I12 + I21 + R, we discarded 5000 years of
transients. The following parameters are fixed as shown in Table 4.1, temporary
cross-immunity rate α = 2y−1, recovery rate γ = 52y−1, infection rate β0 = 2 · γ,
seasonality η = 0.35, import factor ρ = 10−10, birth and death rate µ = 1/65y
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and the ratio of secondary infection contribution to the force of infection φ = 0.9,
as initial attempt for the parameter estimation (Aguiar et al., 2011 b).

a)

b)

c)

Figure 4.7: Time series simulations. In a) time series simulation for the non-
seasonal model (η = 0). In b) time series simulation for the low seasonal model,
with seasonality η = 0.1. In c) time series simulation for the seasonal model with
a low import of infected. Here, the degree of seasonality η = 0.35 and the import
of infected ρ = 10−10. The absolute numbers on the y-axes indicate percentage
of the total population.

In Fig. 4.7a) the time series simulation results for the total number of infected
(I1 + I2 + I12 + I21) in the non-seasonal system (η = 0), previously studied in
(Aguiar et al., 2008), is shown. Besides showing an irregular pattern of outbreaks
that happens every 5 years, the non-seasonal system and its time series are not
able to represent dengue fever epidemiology that is characterized as a yearly
cycle of incidences. By adding low seasonality (η = 0.1) into the system, the
epidemic outbreaks appear every year (see Fig. 4.7b)). However, between two
large outbreaks there is a very low number of cases in subsequent years, which is
also not data alike (see Fig. 4.9a), for example).
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In Fig. 4.7c), the time series simulation in the high seasonal (η = 0.35) system
with a low import (ρ = 10−10) of infected contributing to the force of infection
is shown. The addition of import into the seasonal system gives a much more
realistic pattern of dengue fever epidemics, with irregular, yearly and smooth
outbreaks. The system has a reasonable size (the number of infected stays quite
away from zero), avoiding the chance of extinction in stochastic systems. Observe
that very high import of infected only leads to periodic solution, whereas for
import of ln(ρ) ≈ −18 and below, complex behavior is observed (see Appendix
4.D, Fig. 4.16).

4.5.1 Lyapunov exponents and predictability:

In this section, the Lyapunov spectrum for both the non-seasonal model and the
seasonal model with import are shown and compared concerning the prediction
horizon of the monthly peaks in the multi-strain dengue model time series. We
take as an example the DLE for φ = 0.9 in the region where the system is
chaotic (positive DLE). Figure 4.8a) shows the Lyapunov spectrum for the non-
seasonal system previously studied in (Aguiar et al., 2008, 2009). There are only
negative exponents where the ratio of secondary infection contribution to the
force of infection is in the interval φ ∈ [0, 0.106] indicating a steady state point
dynamic. At φ = 0.108 the DLE is zero (up to certain numerical accuracy of
order 10−5), indicating a periodic solution (period one or limit cycle dynamic).
At φ = 0.516 the DLE becomes consistently positive, indicating chaotic behavior
up to φ = 0.994. The low noisy level of the second largest Lyapunov exponent
around its theoretical value of zero, indicates that the DLE is really positive. For
φ in the interval φ ∈ [0.994, 1.2] the system gets stabilized again, showing only
periodic solutions (zero DLE). For the chaotic region of φ = 0.9, the DLE = 0.04
giving approximately 25 years of prediction horizon in the monthly time series
(see Fig. 4.8b)). In order to get a qualitative insight into the predictability in
the monthly sampled time series, i.e. to show how the original system behaves
under a small perturbation, we plot two different trajectories of the same system
(for the non-seasonal model in Fig. 4.8b), and for the high seasonal model with
a low import of infected in Fig. 4.8d)), where the perturbed system (black line)
is compared with the original model simulation (red line). To get the trajectory
of the perturbed system, we kept the last point of the transient of the original
system and use those values as starting values to compute the new and perturbed
trajectory. The perturbation is given by Sp = S + R · ǫ and Rp = R · (1.0 − ǫ),
where ǫ = 0.001.

The same exercise was done for the seasonal model with low import of infected
(see Fig. 4.8c) and Fig. 4.8d)). For the seasonal system with import, the zero
Lyapunov exponent is visible indicating a period one dynamic from φ between 0
to 0.122 where another slightly positive exponent appears (λ = 0.000145). From
φ between 0.122 to 1.2 we have complex dynamics with torus bifurcations (2
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Figure 4.8: Qualitative insight into the predictability in the monthly time series.
In a) we show the Lyapunov spectrum for the non-seasonally forced dengue model
where the first 5 Lyapunov exponents are given. The DLE in the chaotic region
of the ratio of secondary infection contribution to the force of infection φ = 0.9
is λ = 0.04 giving ≈ 25 years of prediction horizon in the monthly time series.
In b) the monthly time series simulation for φ = 0.9 is shown where the original
trajectory (red line) is compared with the perturbed trajectory (black line). In c)
we show the Lyapunov spectrum for the high seasonal model (η = 0.35) with low
import factor (ρ = 10−10) where the first 5 Lyapunov exponents are given. Here,
the DLE in the chaotic region of the ratio of secondary infection contribution to
the force of infection φ = 0.9 is λ = 0.118 giving ≈ 8.5 years of prediction horizon
in the monthly time series. In d) we show the monthly time series simulation for
φ = 0.9 where the original trajectory (red line) is compared with the perturbed
trajectory (black line). For the other parameter values used here see Table 4.1.
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zero exponents) up to hyperchaos (2 positive exponents). The chaotic region
of φ = 0.9, shows the DLE= 0.118 giving approximately 8.5 years of prediction
horizon in the monthly time series. It is clear that the addition of seasonal forcing
into the system by itself decreases the practical predictability (see Fig. 4.5a)),
however, the addition of a low import into the seasonally forced system helps to
get a more complex dynamics and a better prediction horizon in the monthly
time series.

4.5.2 Implications for data analysis:

Physicians in Thailand are trained to recognize and treat dengue fever and prac-
tically all cases of DHF and DSS are hospitalized. A system for reporting com-
municable diseases including DHF/DSS was considered fully installed in 1974
and the data bank of DHF and DSS is available at the Ministry of Public Health,
Bangkok (Chareonsook et al., 1999). Thailand is the world’s 50th largest country
in terms of total area, and the 20th most-populous country, with approximately
66 million people. Thailand is divided into 75 provinces (changwat) plus the
capital Bangkok which is a special administrative area. The provinces are geo-
graphically grouped into 6 regions, North, North-East, West, Central, East, and
South (Wikipedia, 2011). The inspection of the available DHF incidence data in
Thailand shows a smooth behavior with a well defined maximum each year of
irregular height, for the North, North-East, and West Provinces (see Fig. 4.9a)
for example, the DHF incidence data for Chiang Mai Province) whereas for the
Central, East, and South Provinces the data is very noisy linked with a low en-
demicity of DHF cases. We take the Province of Chiang Mai as a case study
where the empirical DHF incidence data and the time series simulation for the
seasonal model with import (see Fig. 4.9b)) are compared (see Fig. 4.10).

The seasonal model with import shows complex dynamics and qualitatively
a very good result when comparing empirical DHF data and simulation results
(see Fig. 4.10). However, the extended model needs to be parametrized on data
referring to incidence of severe disease (Aguiar et al., 2011 b). The ability to
predict the future of the dengue outbreaks by analyzing the available epidemio-
logical data via mathematical models ultimately aims to provide a tool to guide
policies of prevention and control of the dengue virus transmission, including the
implementation of vaccination programs when the dengue fever vaccine will be
accessible.

4.6 Discussion and conclusions

In this manuscript a comparative study between three different scenarios (non-
seasonal, low seasonal and high seasonal with a low import of infected individuals)
was performed. The role of seasonality and import of infected individuals in such
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Figure 4.9: In a) we show the time series of DHF incidence in the Province of
Chiang Mai in the North of Thailand. The population size is 1649457 (Chare-
onsook et al., 1999). In b) we show a simulation for the seasonal dengue model
with import. We plot the secondary infections (I12 + I21) over time. The initial
conditions and parameters were fixed as it follows. N = 1650000, S = 1.250.000,
I1 = 250000. 5000 years of transients were discarded. The temporary cross-
immunity rate is α = 2y−1, the recovery rate γ = 52y−1, the infection rate
β0 = 2 · γ, the ratio of secondary infection contribution to the force of infection
φ = 0.9, the birth and death rate µ = 1/65y, seasonality η = 0.35, the phase
ϕ = 0, and the import factor ρ = 10−10.
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Figure 4.10: Empirical DHF incidence data are matched with the seasonal two-
strain model with import simulation.
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systems were considered as biologically relevant effects determining the dynamical
behavior of the system.

We integrated the use of numerical bifurcation analysis and time series anal-
ysis techniques for the study of the long term dynamics of the non-autonomous
system. Then the Lyapunov exponent, which is a generalization of both an eigen-
value and a Floquet multiplier being used for the stability analysis of respectively
equilibria and limit cycles, were used directly for the determination of aperiodic
or chaotic attractors.

Different extensions of the classical single-strain SIR model show a rich dy-
namic behavior. Multi-strain dynamics has previously been demonstrated to
show critical fluctuations with power law distributions of disease cases, exem-
plified in meningitis epidemiology (Stollenwerk & Jansen, 2003 a; Stollenwerk et
al., 2004). Dengue models including multi-strain interactions via ADE but with-
out temporary cross-immunity period e.g. (Ferguson et al., 1999; Schwartz et al,
2005; Billings et al., 2007) have also shown deterministic chaos when strong infec-
tivity on secondary infection was assumed (φ ≫ 1). The addition of temporary
cross-immunity period in such models, shows also a new deterministically chaotic
attractor in an unexpected parameter region of reduced infectivity on secondary
infection (φ < 1) (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008, 2009), i.e.
deterministic chaos was found in a wider parameter regions. When a low import
of infected individuals is introduced into this system, the chaotic dynamics for
φ > 1 disappears, whereas for the parameter region of φ < 1 the chaotic dynamics
remains (see Appendix 4.C, Fig. 4.15).

In (Stone et al., 2007) the seasonally forced SIR system can show already
deterministic chaos. Similarly, the introduction of seasonally forcing widens the
parameter range of φ where chaotic dynamics occurs, again also for φ > 1. There-
fore, it is clear that the addition of seasonal forcing into the system decreases the
practical predictability of the dynamical system (see subsection 4.5.1). However,
in order to be able to reproduce signals of a yearly cycle in dengue incidence,
the addition of seasonal forcing is essential. Using the same parameter set as
in (Aguiar et al., 2008) and including a seasonal forcing and a low import of
infected individuals into our previous model (Aguiar et al., 2008) we get already
a qualitatively very good result when comparing empirical DHF data and simu-
lation results. Together with an import of ln(ρ) ≈ −18 and below, the system
shows the expected complex dynamics (see Appendix 4.D, Fig. 4.16) to explain
the fluctuations observed in the available empirical data (see Fig. 4.10).

This suggests that this parameter set can be the starting set for a more de-
tailed parameter estimation procedure. Such a technical parameter estimation is
notoriously difficult for chaotic time series but temporally local approaches are
possible (Ionides et al., 2006; He et al., 2010).

Being able to predict future outbreaks of dengue in the absence of human
interventions is a major goal if one wants to understand the effects of control
measures. Even after a dengue virus vaccine has become accessible, this holds
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true for the implementation of a vaccination program. For example, to perform a
vaccine trial in a year with normally low numbers of cases would make statistical
tests of vaccine efficacy much more difficult than when it was performed in a year
with naturally high numbers of cases. Thus predictability of the next season’s
height of the dengue peak on the basis of deterministic balance of infected and
susceptible would be of major practical use.

4.A Seasonal forcing

In order to be able to use computer packages for autonomous systems such as
AUTO (AUTO, 2009), the ODE equation system (4.1) can be augmented with
the following two equations

ẋ = −ωy + c · x(η2 − (x2 + y2))

(4.4)

ẏ = ωx + c · y(η2 − (x2 + y2))

hence, a Hopf oscillator. The stable periodic solution of system Eq. (4.4) reads

x(t) = η · cos(ωt) , y(t) = η · sin(ωt) (4.5)

and is without shift (ϕ = 0) when choosing appropriate initial conditions (x(t0) =
η, y(t0) = 0). This sinusoidal signal x(t) is fed into the epidemic model (system
Eq. (4.1)) as

β(t) = β0 · (1 + x(t)) . (4.6)

The system Eq. 4.1) augmented with system Eq. (4.4) is Z2-symmetric just
as the original non-seasonal and seasonal system.

The constant c > 0 in the Hopf oscillator does not influence the solution
(x(t), y(t)) in stationarity, but only the convergence toward it, hence controls the
stability of the Hopf oscillation and leaves the system Eq. (4.1) unchanged. The
Hopf oscillator can be solved explicitly in polar coordinates, hence x = r · cos(ϑ)
and y = r · sin(ϑ), or inverted r =

√

x2 + y2 and ϑ = arctan(y/x).
The ODE system is in polar coordinates given by

ṙ = c · r(η2 − r2) (4.7)

ϑ̇ = ω (4.8)

and solutions are

r(t) = η

(

1 −

(

1 −
η2

r2
0

)

e−2η2c(t−t0)

)− 1

2

(4.9)

ϑ(t) = ϑ0 + ω(t − t0) . (4.10)
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From this we can get the solution in Cartesian coordinates

x̃(t) = η · cos(ϑ(t)) ỹ(t) = η · sin(ϑ(t)) (4.11)

with 0 ≤ t ≤ T where T = 2π. This periodic solution is stable because we have
limt→∞ r(t) = η, independent of r0 > 0.

In AUTO (AUTO, 2009) the stability of the periodic solution x̃(t), ỹ(t), 0 6=
t ≤ T , may be analyzed within the framework of Floquet theory by calculation
of the multipliers, the eigenvalues of the so called monodromy matrix. For a
detailed discussion the interested reader is referred to (Kuznetsov, 2004). We
continue with the analysis of the so called Poincaré map. Since the system is
periodically forced this map is also called a stroboscopic map. The analytical
expression reads

rn+1 = η
(

1 −
(

1 − η2

r2
n

)

e−4πη2c
)− 1

2

(4.12)

where n ∈ N and initially for n = 0 we have r0 > 0. Asymptotically we get for
large n: rn ≈ η and therefore the multiplier equals the derivative evaluated at
r = η

λ = ηe−4πη2c . (4.13)

This single multiplier is less than 1 and therefore the periodic solution is stable.
Since this Hopf-system is decoupled from the system (4.1)
and therefore the Lyapunov exponents of the augmented system are those of

the original system (4.1) together with zero (Haken, 1983) and expression (4.13).
For the Lyapunov spectrum of the seasonal dengue models with parameter φ
between φ = 0 and φ = 1.2, we plot the first 6 exponents coupled with the
Hopf oscillator where the parameters are η = 0.1, ω = 2 · π and contraction
rate c = 5000, hence from the Hopf oscillator the Lyapunov exponent are λ1 =
−2cη2 = −100 and λ2 = 0.

4.B Attractors in state space

In this section we show the transitions between different attractors in state space
plot for the three studied scenarios, the non-seasonal model (see 4.B.1), the low
seasonal model (see Appendix 4.B.2) and the seasonal model with import of
infected (see Appendix 4.B.3). The parameters are given in Table 4.1. We plot the
susceptibles S over the logarithm of total number of infected ln(I1+I2+I12+I21).

4.B.1 Attractors in state space for the non-seasonal multi-
strain dengue model

Figures 4.11 and 4.12 show the attractors in state space plot for the non-seasonal
model.
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Figure 4.11: In a) the state space plot for φ = 0.1133, the Hopf bifurcation
point calculated by AUTO. 2000 years of transients were discarded, insufficient
to obtain the expected simple limit cycle. In b) the attractor for φ = 0.1133. It
is really a limit cycle after discarding a sufficiently long transient of 40000 years.
In c) the attractor for φ = 0.4115 with 2000 years of transients discarded, the
pitchfork bifurcation point calculated by AUTO. In d) a chaotic attractor, and
in e) a torus attractor both found for φ = 0.5507. Those attractors were stable
for very long transients of 10000 years suggesting a coexistence of attractors.
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Figure 4.12: In a) the chaotic attractor from the main bifurcation branch, and
in b) a coexisting attractor for in the isola region, both when φ = 0.71. The
coexistence of attractors was found when changing the initial conditions. In c)
the chaotic attractor, in d) the coexisting attractor at φ = 0.934. The coexistence
of attractors was found when changing the initial conditions. In e) attractor
with two limit cycles coexisting in φ = 0.9921, the pitchfork bifurcation point
calculated by AUTO.
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4.B.2 Attractors in state space for the low seasonal multi-
strain dengue model

Figure 4.13 shows the attractors in state space plot for the low seasonal model.
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Figure 4.13: Attractors in state space plot for the low seasonal model. In a) the
period one attractor for φ = 0.1, in b) the torus attractor for φ = 0.114535, the
torus bifurcation point calculated by AUTO. In c) the torus attractor for φ = 0.3.
In d) the attractor for φ = 0.431, in e) the period 13 attractor for φ = 0.44 and
in f) the torus attractor for φ = 0.471. In g) the chaotic attractor for φ = 0.5, in
h) the chaotic attractor for φ = 0.8 and in i) the chaotic attractor for φ = 1.
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4.B.3 Attractors in state space for the seasonal multi-
strain dengue model with import of infected

Figure 4.14 shows the attractors in state space plot for the the seasonal model
with import of infected.
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Figure 4.14: Attractors in state space plot for the the seasonal model with import
of infected. In a) the torus attractor for φ = 0.13, the torus bifurcation point
calculated by AUTO. In b) and in c) the torus attractor for φ = 0.3 and φ = 0.4
respectively. For those φ values, the Lyapunov spectrum shows a slightly positive
exponent indicating chaos in the torus. In d) the attractor for φ = 0.5, in e) torus
attractor for φ = 0.522165, the torus bifurcation calculated by AUTO, and in f)
the chaotic attractor found in the region of φ between 0.5 to 1. Here for φ = 0.6.
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4.C The non-seasonal model with import factor

versus the low seasonal model with import

factor

In this section we show the bifurcation diagram comparison between the original
non-seasonal model Aguiar et al. (2008), the non-seasonal model with import and
the low seasonal model with import. The addition of a low import factor into
the original non-seasonal system gives a stable limit cycle as the unique attractor
(see Fig. 4.15b)), in contrast with the results for the original non-seasonal models
analyzed in (Ferguson et al., 1999; Aguiar et al., 2008, 2009), where two chaotic
windows were found (see Fig. 4.15a)) just by assuming temporary cross-immunity
period between recurrent dengue infections. Adding low seasonality to this sys-
tem brings the chaotic attractors back for even larger parameter regions (see
Fig. 4.15c)). These results are important since we expect complex dynamics to
explain the fluctuations observed in empirical data, when the ratio of secondary
infection contribution to the force of infection could be slightly smaller or larger
1, not needing to restrict the ADE effect to one or another region in parameter
space.

4.D Lyapunov exponents and import factor

In this section we extend the analysis of the seasonal model with import of
infected by presenting a bifurcation analysis where the import parameter ρ is
varying. The Lyapunov spectrum together with the bifurcation diagram confirm
the importance of adding import into the dynamical model. An import factor
ln(ρ) = −18 or less leads to complex behavior while with a very high import fac-
tor of infected periodic solutions are observed (see Fig. 4.16). The understanding
of such complex scenario opens possibilities to analyze the available data.
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a)

b) c)

Figure 4.15: Bifurcation diagram comparison between the non-seasonal model,
the non-seasonal model with import and the low seasonal model with import. In
a) we show the bifurcation diagram for the original non-seasonal model previously
studied in (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008, 2009), where two
chaotic windows were found. A new chaotic window in a φ region where the
ratio of secondary infection contribution to the force of infection is smaller than
1 and also the classical chaotic window found previously in (Ferguson et al.,
1999; Aguiar et al., 2008), where the ratio of secondary infection contribution to
the force of infection is much larger than 1, actually ≈ 3. In b) we show the
bifurcation diagram for the non-seasonal model described in (Aguiar et al., 2008)
with addition of a low import of infected. Here we see that the import removes
the complex dynamics in the region of φ lager 1 where the stable limit cycle
(crossing the right boundary of Fig. 4.2b) is the unique attractor. In c) we show
the bifurcation diagram for the extended multi-strain model, the low seasonal
(η = 0.1) model with import (ρ = 10−10), where the chaotic attractors are back
for even larger parameter regions.
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Figure 4.16: Bifurcation diagram for the import parameter and its Lyapunov
spectrum. Here we vary the import factor ρ (in log scale). The other parameters
are fixed as it follows: temporary cross-immunity α = 2y−1, recovery rate γ =
52y−1, secondary infection contribution to the force of infection φ = 0.9, the
infection rate β0 = 2 · γ, degree of seasonality η = 0.35, and birth and death rate
µ = 1/65y.
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Chapter 5

Scaling of stochasticity in dengue
hemorrhagic fever epidemics

Máıra Aguiar, Bob W. Kooi and Nico Stollenwerk (2011)
Submitted.

In this paper we analyze the stochastic version of a minimalistic multi-strain
model, which captures essential differences between primary and secondary infec-
tions in dengue fever epidemiology, and investigate the interplay between stochas-
ticity, seasonality and import. The introduction of stochasticity is needed to
explain the fluctuations observed in some of the available data sets, revealing a
scenario where noise and complex deterministic skeleton strongly interact. For
large enough population size, the stochastic system can be well described by the
deterministic skeleton gaining insight on the relevant parameter values purely
on topological information of the dynamics, rather than classical parameter es-
timation of which application is in general restricted to fairly simple dynamical
scenarios.

5.1 Introduction

Recently, we have investigated an epidemic multi-strain model motivated by
dengue fever epidemiology, which shows deterministic chaos in wide parameter
regions (Aguiar et al., 2008, 2009). The addition of seasonal forcing, mimicking
the vectorial dynamics, and a low import of infected individuals, which is realistic
in the dynamics of infectious diseases epidemics, showed complex dynamics and
qualitatively a good agreement between empirical DHF monitoring data and the
obtained model simulation (Aguiar et al., 2011 a).

Classical examples of chaos in epidemiological models are childhood diseases
with extremely high infection rates so that a moderate seasonal forcing can gen-
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erate Feigenbaum sequences of period doubling bifurcations into chaos. In other
infectious diseases, much lower forces of infection have to be considered leading
to further conceptual problems with noise affecting the system more than the
deterministic part, leading even to critical fluctuations with power law behavior,
when considering evolutionary processes of harmless strains of pathogens versus
occasional accidents of pathogenic mutants (Stollenwerk & Jansen, 2003 b). Only
explicitly stochastic models, of which the classical ODE models are mean field
versions, can capture the fluctuations observed in time series data (Stollenwerk
et al., 2004).

In this paper, we investigate the role of dynamic noise in understanding epi-
demiological systems, such as dengue fever, by deriving a stochastic version of
ordinary differential equations from Markov processes for discrete populations.
Our model has the minimal degree of complexity to generate both primary and
secondary dengue infections. The introduction of stochasticity is needed to ex-
plain the fluctuations observed in some of the available data sets, revealing a
scenario where noise and complex deterministic skeleton strongly interact. For
large enough population size, the stochastic system gives rise to the observed time
series incidences. The classical parameter estimation and its application are gen-
erally restricted to fairly simple dynamical scenarios and therefore a qualitative
analysis of epidemiological data would have good chances to give insights into
the relevant parameter values purely on topological information of the dynamics.

5.2 Modeling dengue fever epidemiology

According to the estimates giving by (CDC, 2011), dengue infection is a leading
cause of illness and death in the tropics and subtropics. More than one-third of
the world’s population are living in areas at risk of acquiring dengue infection
and it is estimated that every year, there are 70− 500 million dengue infections,
generating 36 million cases of dengue fever (DF) and 2.1 million cases of dengue
hemorrhagic fever (DHF) that without proper medical care the fatality rates can
exceed 20% (PDVI, 2011; WHO, 2009). There are four antigenically distinct but
closely related dengue viruses, belonging to the family Flaviviridae, designated by
DEN-1, DEN-2, DEN-3, and DEN-4. Infection by one serotype confers life-long
immunity to only that serotype and a short period of temporary cross-immunity
to a subsequent infection with other serotypes (Halstead, 1994; Matheus et al.,
2005; WHO, 2009). Field researchers in dengue have found that severe disease is
15 − 80 times more likely in secondary then in primary infections and was pos-
itively associated with antibody-dependent enhancement (ADE) of infection of
mononuclear phagocytes. Infection by an antibody-virus complex suppresses in-
nate immune responses, increasing intracellular infection and generating inflam-
matory citokines and chemokines that, collectively, result in enhanced disease
(Halstead, 1982, 1994, 2003; Mackenzie et al., 2004; WHO, 2009; Dejnirattisai et
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al., 2010; Guzmán et al., 2010). Treatment of uncomplicated dengue cases is only
supportive, and severe dengue cases require hospitalization and careful attention
to fluid management and proactive treatment of hemorrhagic symptoms (CDC,
2011; WHO, 2009). At present, there is no vaccine for dengue viruses, although
several candidates are at various stages of development.

Dengue epidemiology dynamics is well known to be particularly complex with
large fluctuations of disease incidences. Mathematical models describing the
transmission of dengue viruses have focused on the ADE effect and temporary
cross-immunity trying to explain the irregular behavior of dengue epidemics. Be-
sides the fact that disease propagation is an inherently stochastic phenomenon,
dengue models are mainly expressed mathematically as a set of deterministic dif-
ferential equations which are easier to analyze. The mean field approximation is
a good approximation to be used in order to understand better the behavior of
the stochastic systems in certain parameter regions, where the dynamics of the
mean quantities are approximated by neglecting correlations. However, it is only
stochastic, as opposed to deterministic, models that can capture the fluctuations
observed in some of the available time series data.

5.3 The stochastic model

The various multi-strain models currently investigated are essentially of SIR-type.
In the simple SIR epidemics without strain structure of the pathogens we have
the following reaction scheme for the possible transitions from one to another
disease related state, susceptibles S, infected I and recovered R,

S + I
β

−→ I + I

I
γ

−→ R (5.1)

R
α

−→ S

for a host population of N individuals, with contact and infection rate β, recovery
rate γ and temporary immunity rate α. The determinstic ODE model

Ṡ = αR −
β

N
· I · S

İ =
β

N
· I · S − γI (5.2)

Ṙ = γI − αR

describes in mean field approximation 〈S ·I〉 ≈ 〈S〉·〈I〉 the dynamics of the mean
values, e.g. 〈I〉 :=

∑N

S=0

∑N

I=0 I p(S, I, t), where the initial values determine
the time course of the system for all times. For more details on the calculations
see e.g. (Stollenwerk & Jansen, 2011).
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For the SIR model, the dynamics of probabilities in the form of a master
equation (van Kampen, 1992) reads

dp(S, I, t)

dt
=

β

N
(S + 1)(I − 1) p(S + 1, I − 1, t) (5.3)

+ γ(I + 1) p(S, I + 1, t)

+ α(N − (S − 1) − I) p(S − 1, I, t)

−

(
β

N
SI + γI + α(N − S − I)

)

p(S, I, t) .

This process can be simulated by e.g. the Gillespie algorithm (Gillespie, 1976,
1978) giving stochastic realizations. Only few stochastic processes can be solved
explicitly, however, the mean field approximation is a good approximation to be
used in order to understand the behavior of the stochastic systems in certain
parameter regions.

Multi-strain dynamics are generally modeled with more extended with SIR-
type models, dividing the host population into susceptible, infected and recovered
individuals with subscripts for the respective strains. The stochastic version of the
multi-strain dengue model is now in complete analogy to the previously described
SIR model, and the mean field ODE system for the multi-strain dengue model
can be read from the following reaction scheme

S + I1
β(t)
−→ I1 + I1

S + I21
φβ(t)
−→ I1 + I21

I1
γ

−→ R1

R1
α

−→ S1 (5.4)

S1 + I2
β(t)
−→ I12 + I2

S1 + I12
φβ(t)
−→ I12 + I12

I12
γ

−→ R

describing the transitions for first infection with strain 1 and secondary infection
with strain 2. For the reverse process, where the first infection is caused by strain
2 and the secondary infection is caused by strain 1, the same reaction scheme can
be used to describe the transitions by just changing labels. The demographic
transitions are S, I1, I2, R1, R2, S1, S2, I12, I21, R

µ
−→ S defining the system of two

strains completely (for more information on the deterministic ODE system and
its parametrization, see (Aguiar et al., 2008, 2011 a)). The parameter β takes the
seasonal forcing into account as a cosine function, β(t) = β0(1+η cos(ωt)), where
β0 is the basic infection rate and η is the degree of seasonality. The parameter
γ is the recovery rate, α is the temporary cross-immunity rate and φ is the ratio
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of secondary infection contribution to the force of infection. A low import factor
is also included (S

ρ
−→ I) where S can be any susceptible like S, S1 or S2 and

I respectively I1, I2, I12 or I21. In the simple SIR system, system Eq. (5.2), this
gives Ṡ = αR − β

N
S(I + ρN) etc.

We assume no epidemiological asymmetry between strains, i.e. infections
with strain one followed by strain two or vice versa contribute in the same way
to the force of infection. Here, the only relevant difference concerning disease
transmissibility is that the force of infection varies accordingly to the number
of previous infections the hosts have experienced. In a primary infection the
individuals transmit the disease with a force of infection βI

N
whereas in a secondary

infection the transmission is given with a force of infection φβI

N
where φ can be

larger or smaller than unit, i.e. increasing or decreasing the transmission rate.
For the stochastic simulations the parameter values are given in Table 5.1, if not
otherwise explicitly stated.

Table 5.1: Parameter set, rates given in units per year, ratio without unit

Par. Description Values Ref

µ new born susceptible rate 1/65y (UNWPP, 2011)

γ recovery rate 52y−1 (WHO, 2009)

β0 infection rate ∈ [γ, 2γ] (Ferguson et al., 1999)

α temporary cross-immunity rate 2y−1 (Matheus et al., 2005)

φ ratio of contrib. to force of inf. 0.9 (Aguiar et al., 2011 a)

η degree of seasonality ∈ [0, 0.2] (Aguiar et al., 2011 a)

ln(ρ) import factor ∈ [−17,−15.5] (Aguiar et al., 2011 a)

The first recorded epidemic of DHF in Thailand (population of approxi-
mately 66 million people (Wikipedia, 2011)) was in 1958 (WHO, 2009). The
co-circulation of all four dengue serotypes and their capacity to produce severe
dengue disease was demonstrated as early as 1960 in Bangkok, Thailand (Hal-
stead et al., 1969). DHF occurred first only in Bangkok, but was disseminated to
the whole region during the 1970s (Gubler, 2002; Halstead et al., 1969; Chare-
onsook et al., 1999). Physicians in Thailand are trained to recognize and treat
dengue fever and practically all cases of DHF and DSS are hospitalized. A system
for reporting communicable diseases including DHF/DSS was considered fully in-
stalled in 1974 and the data bank of DHF and DSS is available at the Ministry
of Public Health, Bangkok (Chareonsook et al., 1999).

The inspection of the available DHF incidence data in Thailand shows a
smooth behavior with a well defined maximum each year of irregular height for
the Northern Provinces as opposed to the Central and Southern Provinces where
the data is very noisy linked with a low endemicity of DHF cases. In (Aguiar et
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al., 2011 a) the Province of Chiang Mai was taken as a case study and the empir-
ical DHF incidence data was compared with the time series simulation obtained
from the seasonal multi-strain model with import giving qualitatively a very good
result, suggesting that the used parameter set could be the starting set for a more
detailed parameter estimation procedure. However, in order to describe the noisy
dynamics in Bangkok for example the introduction of stochasticity is even more
important.
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Figure 5.1: Empirical DHF incidence data (in black) matched with one stochastic
realization (in red) for the seasonal multi-strain dengue model with import. In
a) we show the incidences for Chaing Mai. For the stochastic simulation the
infection rate is β0 = 2γ, the degree of seasonality η = 0.2 and the import
ln(ρ) = −15.7. In b) we show the incidences for Bangkok. For the stochastic
simulation the infection rate is β0 = 1.1 ·γ, the degree of seasonality η = 0.06 and
the import ln(ρ) = −16.9. The other parameter values are listed in Table 5.1

In Fig. 5.1a) we show the DHF incidences for Chaing Mai (in black), one of
the Northen Provinces of Thailand, with population size N = 1650000 (UNWPP,
2011) compared with one stochastic realization for the multi-strain dengue model
(in red) where the infection rate β0 = 2γ, the degree of seasonality η = 0.2 and the
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import ln(ρ) = −15.7. In Fig. 5.1b) the DHF incidences for Bangkok (in black),
the capital of Thailand, with population size N = 6600000 (UNWPP, 2011) is
compared with one stochastic realization for the multi-strain dengue model (in
red) where the infection rate β0 = 1.1, the degree of seasonality η = 0.06 and
the import ln(ρ) = −16.9. The stochastic approach is able to describe both
types of the dynamics, the smooth data with a well defined maximum each year
of irregular height, found in the high endemic regions of Thailand, e.g. in the
Chiang Mai Province (see Fig. 5.1a)) and also the noisy data found mainly in
low endemic regions of Thailand, e.g. in Bangkok (see Fig. 5.1b)).

Using the same values for the biological parameters given in (Aguiar et al.,
2008, 2011 a), the fluctuations observed in the empirical data were qualitatively
well described in the stochastic model. Under population noise low seasonal
forcing was needed to represent the DHF incidences in the Province of Chiang Mai
as opposed to the deterministic approach where the combination seasonality and
import showed complex dynamics. For the representation of the DHF incidences
in Bangkok, only the stochastic model could capture the noisy behavior where
even lower seasonal forcing was needed as well a low infection rate. A value of
β0 = 1.1 · γ is qualitatively in good agreement with the data (see Fig. 5.1b)) and
hence the import factor ρ is here, more than the direct infectivity β, the driving
force of the epidemic pattern in such a low endemic region.

5.4 The role of import

In our model, the parameter ρ is the import factor, related with the possibility
of an individual to get infected outside the studied population and then bring
the infection into the population that this individual belongs to, mimicking the
imported cases of the disease in a defined population. Equivalently an infected
visitor to the region under consideration who passes the infection to a susceptible
in the population of size N has the same effect on the studied population. Hence,
we do not need to distinguish this two scenarios of susceptibles traveling outside
or infected traveling inside the region under consideration. In total, this captures
the imported infection that comes from an external source.

In Figure 5.2 we present the bifurcation diagram comparison between the non-
seasonal model, the non-seasonal model with import and the seasonal model with
import. The bifurcation diagram for the original non-seasonal model previously
studied in (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008, 2009), shows two
chaotic windows, a new chaotic window in a φ region where the ratio of secondary
infection contribution to the force of infection is smaller than 1 and also the
classical chaotic window found previously in (Ferguson et al., 1999; Aguiar et
al., 2008), where the ratio of secondary infection contribution to the force of
infection is much larger than 1, actually around φ = 3 (see Fig. 5.2a)). The
bifurcation diagram for the non-seasonal model described in (Aguiar et al., 2008)
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with addition of a low import of infected shows that the addition of import in
such a system removes the complex dynamics in the region of φ larger 1 where
the stable limit cycle is the unique attractor (see Fig. 5.2b)). The bifurcation
diagram for the seasonal model with import described in (Aguiar et al., 2011 a),
shows that the combination of seasonality and import brings back the chaotic
attractors for even larger parameter regions (see Fig. 5.2b)).

These results are important since we expect complex dynamics to explain the
fluctuations observed in empirical data, when the ratio of secondary infection
contribution to the force of infection could be slightly smaller or larger 1, not
needing to restrict the ADE effect to one or another region in parameter space.
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Figure 5.2: Bifurcation diagram comparison between the non-seasonal model, the
non-seasonal model with import and the seasonal model with import. Here, the
local maxima of the logarithm of the total number of infected ln(I) = ln(I1 +
I2 + I12 + I21) are plotted against the ratio of the contribution of the secondary
infections φ to the force of infection. In a) we show the bifurcation diagram for
the original non-seasonal model previously studied in (Aguiar et al., 2008, 2009),
in b) we show the bifurcation diagram for the non-seasonal model described in
(Aguiar et al., 2008) with addition of a low import of infected and in c) we show
the bifurcation diagram for the seasonal model with import described in (Aguiar
et al., 2011 a).

In the multi-strain dengue model the susceptible individuals without a pre-
vious dengue infection can get infected with two different infection rates, due to
the ADE effect leading to severe disease requiring hospitalization. Individuals in
the first infection would then transmit more than individuals in the secondary
infection. For more information on the parametrization of the two-strain dengue
model, see (Aguiar et al., 2008, 2011 a). Individuals infected for the first time
become recovered and life long immune to that strain and, after a period of
temporary cross-immunity, are again susceptible, however with an experienced
previous infection. The second infection can only happen with a different strain.
Individuals infected for the second time would more likely need to be hospital-
ized due to the severity of the disease. They recover and then become life long
immune to the other strain. There is no epidemiological asymmetry between
strains, i.e. infections with strain one followed by strain two or vice versa con-
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tribute in the same way to the force of infection, so the notion of two different
strains is enough to describe differences between primary infections, often asymp-
tomatic, and secondary infection, associated with the severe form of the disease.
The death rates coming out of all classes go into the class of susceptible without
experiencing previous dengue infection as a birth rate. Since the demographic
events often occur at a much slower rate than the infection, the disease has to
be necessarily maintained by constant external infections to avoid the repeated
stochastic disease extinction and re-introduction (Alonso et al., 2006; Keeling &
Ross, 2008)).
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Figure 5.3: Numerical simulations for the province of Chiang Mai with population
size N = 1650000. The parameter values are fixed as follows: Temporary cross-
immunity α = 2y−1, infection rate β0 = 2γ, recovery rate γ = 52y−1, ratio of the
contribution of the secondary infections to the force of infection φ = 0.9, seasonal
forcing η = 0.2 and import ln(ρ) = −15.85. In a) the bifurcation diagram
varying the import parameter is shown. In b) the Lyapunov spectrum varying
the import parameter, in c) the time series simulation and in d) the state space
plot are shown. The torus attractor is visible here.

For the deterministic system a torus bifurcation TR was the first bifurcation
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happening for a region of import factor ln(ρ) = −15.85 (see Fig. 5.3a)). Lyapunov
exponents were calculated along the trajectory and the Lyapunov spectrum is
shown in Fig. 5.3b), where two dominant zero Lyapunov exponents at ln(ρ) =
−15.85 shows a quasi-periodicity (for instance on a torus). The appearance of
this bifurcation for ln(ρ) = −15.84 is also predicted by AUTO (AUTO, 2009). In
order to illustrate the infected dynamics on the deterministic approach we show
the time series and its state space plot in Fig. 5.3c) and Fig. 5.3d).

Using the same parameter values as used for the deterministic simulations,
the quasi-periodicity becomes more irregular resembling a chaotic behavior in the
stochastic modeling approach. Figure 5.4a) shows one stochastic realization for
the multi-strain dengue model which could describe very well the dynamics of
the DHF incidences in Chiang Mai Province, North of Thailand (see Fig. 5.1a)).
Such pattern would be most likely be described as being the chaotic transients
towards the quasi-periodic torus of the deterministic skeleton (see 5.4b)) that got
stabilized due to the noise.
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Figure 5.4: Stochastic and deterministic system’s comparison. In a) One stochas-
tic realization for a population size N = 1650000, temporary cross-immunity
α = 2y−1, infection rate β0 = 2γ, recovery rate γ = 52y−1, ratio of the con-
tribution of the secondary infections to the force of infection φ = 0.9, seasonal
forcing η = 0.2 and import ln(ρ) = −15.85. In b) the deterministic time series
simulation as shown in Fig. 5.3c), scaled up to be properly compared with the
stochastic time series simulation in Fig. 5.4a).

5.5 Scaling of stochasticity

It is known that stochastic simulations, using a finite size population, involve
extinction phenomena operating through demographic stochasticity which acts
drastically on small populations, as opposed for the deterministic models that
do not handle extinction through population noise, leading to populations with
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Figure 5.5: Stochastic and deterministic system’s interaction. For the same pa-
rameter values used in Fig. 5.4, we show the bifurcation diagram for the import
parameter for different population sizes N . In red the deterministic model and in
black the stochastic model. In a) the Chiang Mai population size N = 1.65 · 106,
in b) North of Thailand population size N = 6·106, in c) Thailand population size
N = 66·106 and in d) a larger system size, where the population of some countries
surrounding Thailand, for instance Burma, Laos, Vietnam and Cambodia, were
counted together giving a system where the population size is N = 230 · 106.
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very few individuals or even fractions of individuals. In Fig. 5.5 we compare
the deterministic and stochastic dynamics and we see that the magnitude of
stochastic fluctuations decreases when the population size increases. We com-
pare the interplay between the stochastic model and the deterministic skeleton in
4 different systems sizes. In Fig. 5.5a) we show the stochastic and deterministic
system’s interaction for a system where the population size N = 1.65 · 106, mim-
icking the Province of Chiang Mai. The system with small population size shows
very large fluctuations around the deterministic skeleton, hence an extreme noise
amplification. In Fig. 5.5b) we show the stochastic and deterministic system’s
interaction for a system where the population size N = 6 · 106, as it would be for
the North of Thailand. In Fig. 5.5c) the system has the population size of Thai-
land, N = 66 · 106 and in Fig. 5.5d) a larger system size, where the population
of some countries surrounding Thailand, for instance Burma, Laos, Vietnam and
Cambodia, were counted together giving a system where the population size is
N = 230 ·106. For such large system, the stochastic fluctuations follow quite well
the deterministic approach, where the noise is not much amplified anymore.

We see that the magnitude of the stochastic fluctuations decreases when the
population size increases and more importantly, that for large enough population
size, the stochastic system can be well described by the deterministic skeleton,
where the essential dynamics are captured.

5.6 Conclusions

Multi-strain dynamics are generally modeled with SIR-type models, dividing the
host population into susceptible, infected and recovered individuals with sub-
scripts for the respective strains. We have considered the stochastic version of a
multi-strain model with a minimal degree of complexity to generate both primary
and secondary infections, motivated by dengue fever epidemiology. Besides the
fact that disease propagation is an inherently stochastic phenomenon, dengue
models are mainly expressed mathematically as a set of deterministic differential
equations which are easier to analyze, however, it is only stochastic, as opposed
to deterministic, models that can capture the fluctuations observed in some of
the available time series data.

For the minimalistic multi-strain dengue model, the individuals can be sus-
ceptibles without a previous dengue infection, infected and recovered for the first
time, susceptible with an experienced previous infection and infected for the sec-
ond time, now with a different strain, and more likely been hospitalized due to
the ADE effect leading to severe disease. Since the demographic events often
occur at a much slower rate than the infection, the disease has to be necessarily
maintained by the import of external infections to avoid the repeated stochastic
disease extinction and re-introduction.

The stochastic realizations of infected in time were obtained by the Gillespie
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algorithm. By considering stochasticity and external infections, we have shown
that the introduction of stochasticity was needed to explain the fluctuations ob-
served in some of the available data sets, revealing a scenario where noise and
complex deterministic skeleton strongly interact. For large enough population
size, the stochastic system could be well described by the deterministic skele-
ton, where the essential dynamics are captured, gaining insight into the relevant
parameter values purely on topological information of the dynamics.

Understanding the dynamics of stochastic populations, and how they inter-
act with the deterministic components of epidemiological models have maximum
benefit on the practical predictability of the dynamical system by analyzing the
available epidemiological data via mathematical models, since the classical pa-
rameter estimation and its application are generally restricted to fairly simple
dynamical scenarios. The ability to predict the future dengue outbreaks via
mathematical models would provide a tool to guide policies of prevention and
control of the dengue virus transmission, including the implementation of vacci-
nation programs when the dengue fever vaccine will be accessible.
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Chapter 6

Irregularity in dengue fever
epidemics: difference between
first and secondary infections
drives the rich dynamics more
than the detailed number of
strains

Máıra Aguiar, Bob W. Kooi, Filipe Rocha and Nico Stollenwerk (2011)
Submitted.

Different extensions of the classical single-strain SIR model for the host pop-
ulation, motivated by modeling dengue fever epidemiology, have reported a rich
dynamic structure including deterministic chaos which was able to explain the
large fluctuations of disease incidences. A comparison between the basic two-
strain dengue model, which already captures differences between primary and
secondary infections, with the four-strain dengue model, that introduces the idea
of competition of multiple strains in dengue epidemics shows that the difference
between first and secondary infections drives the rich dynamics more than the
detailed number of strains to be considered in the model structure. Chaotic dy-
namics were found to happen at the same parameter region of interest, for both
the two and the four-strain models, able to explain the fluctuations observed in
empirical data and showing a qualitatively good agreement between empirical
data and model simulation. Since the law of parsimony favors the simplest of
two competing models, the two-strain model would be the better candidate to
be analyzed, giving the expected complex behavior to explain the fluctuations
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observed in empirical data, and indeed the better option for estimating all initial
conditions as well as the few model parameters based on the available incidence
data.

6.1 Introduction

Dengue is a viral mosquito-borne infection, a leading cause of illness and death
in the tropics and subtropics. There are four antigenically distinct but closely
related dengue viruses, designated DEN-1, DEN-2, DEN-3, and DEN-4. Infec-
tion by one serotype confers life-long immunity to that serotype and a short
period of temporary cross-immunity to other serotypes. Two forms of the dis-
ease exist: (DF) dengue fever, and (DHF) dengue hemorrhagic fever which has
been associated with secondary dengue infection due to the (ADE) antibody-
dependent enhancement process, where the pre-existing antibodies to previous
dengue infection cannot neutralize but rather enhance the new infection. In
the first dengue infection virus particles are captured and processed by so-called
antigen presenting cells. T-cells become activated, likewise B-cells that produce
antibodies used to inactivate the viruses. In a secondary infection the antibodies
from the first infection attaches to the virus particles but does not inactivate
them. The antibody-virus complex suppresses innate immune responses, increas-
ing intracellular infection and generating inflammatory citokines and chemokines
that, collectively, result in enhanced disease (Halstead, 1982; Guzmán et al., 2010;
Dejnirattisai et al., 2010).

Dengue fever dynamics is well known to be particularly complex with large
fluctuations of disease incidences. Several mathematical models found in the lit-
erature have been formulated to describe the transmission of dengue fever. Multi-
strain dengue dynamics are generally modeled with extended SIR-type models,
and have demonstrated to show critical fluctuations with power law distribu-
tions of disease cases Massad et al. (2008) and deterministic chaos via ADE, but
without temporary cross-immunity, Ferguson et al. (1999); Schwartz et al (2005);
Billings et al. (2007), when strong infectivity on secondary infection was assumed.
In these models, the recovered individuals could be immediately infected with an-
other strain.

The combination of biological aspects such as temporary cross-immunity and
ADE have been studied by several authors Wearing & Rohani (2006); Nagao &
Koelle (2008); Recker et al. (2009) where four strains are involved, but again
limiting the effect of ADE to increase the contribution of secondary cases to the
force of infection. Aguiar et al. (2008) have investigated a two-strain dengue
model, initially suggested and preliminarily analyzed in Ferguson et al. (1999),
where deterministic chaos was found in a wider parameter regions when includ-
ing temporary cross-immunity Aguiar et al. (2008), not needing to restrict the
infectivity on secondary infection to one or another region in parameter space.
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The two-strain model captures the essential differences between primary and
secondary infections where the notion of two different strains is enough to describe
primary infections, a mostly harmless form of illness, and secondary infection,
associated with the severe form of the disease. It is a lower dimensional model as
opposed to the multiple strain models, easier to be analyzed and still can attempt
to estimate all initial conditions as well as the few model parameters.

In this manuscript we compare the basic two-strain dengue model, which
already captures differences between primary and secondary infections, with the
four-strain dengue model, that introduces the idea of competition of multiple
strains in dengue epidemics. We perform a qualitative study in order to show
how much complexity we really need to add into epidemiological models to be
able to explain the fluctuations observed in empirical dengue hemorrhagic fever
incidence data.

6.2 Two competing multi-strain models: a di-

mensional problem

A basic n-strain epidemiological model with primary and secondary infections
can be written as follows.

Ṡ = µ (N − S) (6.1)

−
n∑

i=1

β

N
S

(

Ii + ρ · N + φ

(
n∑

j=1,j 6=i

Iji

))

and for i = 1, ..., n

İi =
β

N

(

Ii + ρ · N + φ

(
n∑

j=1,j 6=i

Iji

))

(6.2)

− (γ + µ) Ii

Ṙi = γIi − (α + µ) Ri (6.3)

Ṡi = αRi

−
n∑

j=1,j 6=i

β

N
Si

(

Ij + ρ · N + φ

(
n∑

k=1,k 6=j

Ikj

))

(6.4)

−µSi
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and for i = 1, ..., n and j = 1, ..., n with j 6= i

˙Iij =
β

N
Si

(

Ij + ρ · N + φ

(
n∑

k=1,k 6=j

Ikj

))

(6.5)

− (γ + µ) Iij

and finally

Ṙ = γ

(
n∑

i=1

n∑

j=1,j 6=i

Iij

)

− µR . (6.6)

where the parameter β is given explicitly by

β(t) = β0 · (1 + η · cos((ω · t))) (6.7)

where β0 is the infection rate and η is the degree of seasonality. The parameter ρ is
the import factor, related to the possibility of an individual to get infected outside
the studied population and then bring the infection into the population to which
this individual belongs to, mimicking the imported cases of the disease in a defined
population. Equivalently an infected visitor to the region under consideration
who passes the infection to a susceptible in the population of size N has the
same effect on the studied population. Hence, we do not need to distinguish
these two scenarios of susceptibles traveling outside or infected traveling inside
the region under consideration. In total, this captures the imported infection
that comes from an external source.

For constant population size, the susceptibles individuals without a previous
experienced dengue infection (S) become infected for the first time with a given
dengue strain (Ii) with two possible infection rates, depending on who (individual
on his primary or secondary infection) is transmitting the infection. The relevant
difference concerning disease transmissibility is that the force of infection varies
accordingly to the number of previous infections the hosts have experienced.
Note that the number of dengue cases caused by a third or fourth dengue virus
infection is extremely low and once confirmed, the risk for DHF relative to DF was
not different for those experiencing third or fourth dengue virus infections over
those experiencing a second dengue virus infection Endy et al. (2002); Gibbons
et al. (2007); Halstead (2008). Therefore, individuals in a primary infection
transmit the disease with a force of infection βI

N
whereas in a secondary infection

the transmission is given with a force of infection φβI

N
where φ can be larger or

smaller than unit, i.e. increasing or decreasing the transmission rate, due to
the ADE effect. Individuals infected for the first time become recovered and
life long immune to that given strain (Ri), with a recovery rate γ and after a
period of temporary cross-immunity α, are again susceptible with a previous
experienced infection (Si). Individuals only get infected for the second time with
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a different strain than the one acquired during the first infection (Iij), again with
two possible infection rates, depending on who (individual on his primary or
secondary infection) is transmitting the infection. Finally, they recover from the
secondary infection (R) with recovery rate γ. The death rates µ coming out of
all classes go into the class of susceptible without experiencing previous dengue
infection as a birth rate.

6.2.1 The two-strain model versus the four-strain model

Concerning data availability, long term epidemiological information comes from
the Ministry of Public Health in Thailand and consist on monthly incidences of
hospitalized DHF cases. For such a data scenario, models that are able to generate
both primary and secondary infection cases (with a different strain), without the
need of considering differences on the dynamics of different co-circulating dengue
serotypes, have show a good qualitative agreement between empirical data and
model output Aguiar et al. (2011 a), just by combining ADE and temporary
cross-immunity.

The two-strain model with temporary cross-immunity is a 9 dimensional sys-
tem where the population N is divided into ten classes. For two different strains,
named strain 1 and strain 2, we label the SIR classes for the hosts that have seen
the individual strains, without epidemiological asymmetry between strains, i.e.
infections with strain one followed by strain two or vice versa contribute in the
same way to the force of infection. The complete system of ordinary differen-
tial equations (ODEs) for the two-strain epidemiological model can be written as
follows.

Ṡ = µ(N − S) (6.8)

−
β(t)

N
S(I1 + ρ · N + φI21)

−
β(t)

N
S(I2 + ρ · N + φI12)

İ1 =
β(t)

N
S(I1 + ρ · N + φI21) − (γ + µ)I1 (6.9)

İ2 =
β(t)

N
S(I2 + ρ · N + φI12) − (γ + µ)I2 (6.10)

Ṙ1 = γI1 − (α + µ)R1 (6.11)

Ṙ2 = γI2 − (α + µ)R2 (6.12)

Ṡ1 = αR1 −
β(t)

N
S1(I2 + ρ · N + φI12) − µS1 (6.13)

Ṡ2 = αR2 −
β(t)

N
S2(I1 + ρ · N + φI21) − µS2 (6.14)
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˙I12 =
β(t)

N
S1(I2 + ρ · N + φI12) − (γ + µ)I12 (6.15)

˙I21 =
β(t)

N
S2(I1 + ρ · N + φI21) − (γ + µ)I21 (6.16)

Ṙ = γ(I12 + I21) − µR . (6.17)

The basic two-strain model shows a rich variety of dynamics through bifur-
cations up to deterministically chaotic behavior in wider and more biologically
realistic parameter regions (see Fig 6.1a)) than previously anticipated when ne-
glecting temporary cross-immunity. Two chaotic windows appear, one for φ < 1,
where this dynamical behavior has been described first in Aguiar et al. (2008),
and also the one for φ > 1, see e.g. Ferguson et al. (1999). There is good evi-
dence that sequential infection increases the risk of developing DHF associated
with ADE and since practically all cases of DHF are hospitalized Chareonsook
et al. (1999), the irregular behavior in the parameter region of φ < 1, where
people in a secondary dengue infection do not contribute to the force of infec-
tions as much as people with first infection, was found to be more realistic for
dengue fever epidemiology. The new chaotic window for φ < 1 disappears when
neglecting the temporary cross-immunity, i.e. by putting α → ∞ (see Fig 6.1b)).
For detailed information on the basic two-strain dengue model, see Aguiar et al.
(2008, 2009, 2011 a).

Differently from the minimalistic dengue model, the four-strain model is a 25
dimensional system, dividing the constant population N into twenty six classes.
For four different strains, 1, 2, 3 and 4, we now label the SIR classes for the hosts
that have seen the individual strains, again without epidemiological asymmetry
between strains. The serotype data are recent and too short to give any realistic
information concerning difference in biological parameters such as infection and
recovery rates for a given strain. The four-strain model dynamics is described in
a similar way as the two-strain model, where the relevant difference concerning
disease transmissibility is that the force of infection varies accordingly to the
number of previous infections the hosts have experienced. Since the secondary
infection can only happen with a different strain from the first infection, here
the individuals can get infected for the second time with strain one when the
first infection was caused by strain two, three or four (I21, I31, I41). Individuals
can get infected for the second time with strain two when the first infection was
caused by strain one, three or four (I12, I32, I42). Individuals can get infected for
the second time with strain three when the first infection was caused by strain
one, two or four (I13, I23, I43) and individuals can get infected for the second
time with strain four when the first infection was caused by strain one, two or
three (I14, I24, I34). The model also captures the differences between primary and
secondary infections, however, it is high dimensional so that the investigation of
the possible dynamical structures cannot be easily performed.
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The four-strain epidemiological model can be written as a system of 26 ODEs
(for the complete ODE system, see electronic supplementary material). It can
be simplified to a three or two-strain model only by neglecting the existence of
specific strains. A three-strain model can be obtained by putting I4 = 0 at t0 and
initially no secondary infected for example, where the complete system of ODEs
would be reduced to a system of 17 ODEs, and by putting I3 = 0, I4 = 0 at
t0 and initially no secondary infected, we get back the original two-strain model
without any loss of generality, a system of 10 ODEs.

6.3 Numerical analysis

In this section we start with a numerical bifurcation analysis were we compare
the results for the non-seasonal two-strain model to that of the non-seasonal four-
strain model. First we compare the bifurcation diagrams obtained for both mod-
els when assuming and neglecting the temporary cross-immunity parametrized by
α. This study is completed with a time series analysis in which we compare the
qualitative agreement between the models simulations and empirical DHF data.
The parameter description and respective values for dengue fever epidemiology
are given in Table 6.1.

The bifurcation diagrams were obtained plotting the local maxima of the log-
arithm of the total number of infected ln(I) against the ratio of the contribution
of the secondary infections φ to the force of infection (see Fig. 6.1). Fixed points
appear as one dot per parameter value, limit cycles appear as two dots, double-
limit cycles as four dots, more complicated limit cycles as more dots, and chaotic
attractors as continuously distributed dots for a single φ value Ruelle (1989).

In Fig 6.1a) and Fig 6.1b) we observe only one chaotic window for φ > 1. For
both models, when neglecting the temporary cross-immunity period, the complex
dynamics were restricted to the parameter region φ ≫ 1, where individuals in the
secondary dengue infection would contribute much more to the force of infection
than individuals in the first infection. Consideration of temporary cross-immunity
brings a new chaotic window, (see Fig 6.1c) and Fig 6.1d)), with a rich dynamical
behavior from fixed point to limit cycles until completely irregular behavior for a
more biologically realistic parameter region φ < 1, in addition to the previously
found chaotic window for φ > 1.

Note that the addition of seasonal forcing (see Fig 6.2a)) and/or population
noise brings complex behavior also for the region where only periodic dynam-
ics are observed. It is clear that in order to obtain the complex behavior, the
difference between first and secondary infection combined with the temporary
cross-immunity period is more important then the addition of a detailed number
of strains.

In Figure 6.2b) we present the bifurcation diagram comparison, for both two-
strain and four-strain model, in the relevant parameter region of φ < 1, when
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Figure 6.1: Bifurcation diagram comparison between multi-strain models. In
red the non-seasonal two-strain model and in green the non-seasonal four-strain
model. For neglecting temporary cross-immunity period (α = 52y−1 or one week)
we show in a) the two-strain model and in b) the four-strain model. For assuming
temporary cross-immunity period (α = 2y−1 or six months) we show in c) the
two-strain model and in d) the four-strain model.
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Figure 6.2: Bifurcation diagram comparison between multi-strain models. In red
the non-seasonal two-strain model, in green the non-seasonal four-strain model
and in blue the seasonal (η = 0.1) two-strain model. In a) for the parameter
region of 0 < φ < 3 and in b) for the parameter region of φ < 1.
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Table 6.1: Parameter set for the basic multi-strain models.

Par. Description Values Ref.

N population size 1.6 × 106 –
µ birth and death rate 1/65y UNWPP (2011)

γ recovery rate 52y−1 WHO (2009); CDC (2011)

β0 infection rate 2 · γ Ferguson et al. (1999)
η degree of seasonality ∈ [0, 0.35] Aguiar et al. (2011 a)
ρ import parameter ∈ [0, 10−10] Aguiar et al. (2011 a)
α temporary cross

immunity rate ∈ [2, 52]y−1 (Matheus et al., 2005)
φ ratio of secondary

infections contributing
to force of infection ∈ [0, 3] (Aguiar et al., 2008)

dengue patients in a secondary infection evolving to severe disease because of
the ADE phenomenon contributing less to the force of infection, and not more,
as previous models suggested. For the two-strain model a Hopf bifurcation was
found to occur at φ = 0.1133 and a torus bifurcation, as a route to the chaotic
behavior, was found to occur at φ = 0.551 whereas for the four-strain model the
Hopf bifurcation occurs at φ = 0.267 followed by a torus bifurcation that occurs
at φ = 0.311. Qualitatively, the bifurcation points appear to happen at similar
parameter regions, well below the region of interest φ ≈ 1. For both models the
chaotic dynamics which are able to explain the fluctuations observed in empirical
data were found at the same parameter region of interest and not only when
assuming strong infectivity on secondary infection.

In order to illustrate the similarities on the dynamical behavior of non-seasonal
multi-strain models better, we show in Fig 6.3 the bifurcation diagram where the
temporary cross-immunity period α is the varying parameter, and also the time
series and its state-space plot for φ = 0.6, where chaotic behavior was confirmed
to happen in the non-seasonal models with two, three and four-strains. For more
information on the quantification of unpredictability via Lyapunov exponents,
see Aguiar et al. (2008, 2011 a).

The bifurcation diagram analysis (Fig 6.3a), 6.3b) and 6.3c)) shows that com-
plex dynamics appears at the same parameter region of interest, i.e. when as-
suming temporary cross-immunity period between 3 − 9 months, for all of the
possible non-seasonal multi-strain models, the two, three and four-strain models.
These results confirm the fact that the difference between first and secondary in-
fection (different forces of infections due to the hospitalization of the severe cases
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Figure 6.3: Similarities between non-seasonal multi-strain models. For φ = 0.6, in
a) we show the bifurcation diagram for the two-strain model, in b) the bifurcation
diagram for the three-strain model and in c) the bifurcation diagram for the four-
strain model. Here, the local maxima of the logarithm of the total number of
infected ln(I) is plotted against the temporary cross-immunity period α. By
fixing the temporary cross-immunity period α = 2y−1, in d) we show the state-
space plot for the two-strain model, in e) the state-space plot for the three-strain
model and in f) the state-space plot for the four-strain model. In g) we show
the time series for the two-strain model, in h) the time series for the three-strain
model and in i) the time series for the four-strain model.
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of the disease), combined with temporary cross-immunity aspect (to be assumed
between recurrent infections) are driving the complex dynamics in multi-strain
models more than the specific number of strains to be considered into the model
assumptions. The time series and the respective state-space plots are also shown
(see Fig 6.3d)-6.3f)) for each one of the presented models, where the similarities
on the chaotic parameter region is confirmed.

The addition of seasonal forcing and import of infected have shown a qual-
itatively very good result when comparing empirical DHF data and simulation
results, again for both the two-strain model Aguiar et al. (2011 a) (see Fig 6.4a))
and the four-strain model (see Fig 6.4b)), where patterns of the chaotic data were
similarly found in the models simulations.
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Figure 6.4: Using the same parameter set, empirical DHF incidence data (in
black) for the Province of Chiang Mai in the North of Thailand are matched
with simulations (in red) for the seasonal multi-strain models with import of
infected. In a) two-strain model and in b) the four-strain model. Here, the
degree of seasonality η = 0.35 and the import factor ρ = 10−10. The other
parameter values are given in Table 6.1.

The effective dimension of the two-strain model is 9 while of the four-strain
model 25. The law of parsimony that recommends selecting the hypothesis that
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makes the fewest assumptions, implies that the 9 dimensional two-strain model
would be the better candidate than the 25 dimensional four-strain model to be
analyzed, capturing the essential differences of primary versus secondary infection
without needing to restrict the ADE effect to one or another region in parameter
space.

The two-strain model in its simplicity is a good model to be analyzed, giving
the expected complex behavior to explain the fluctuations observed in empirical
data, and would be indeed the best option to be used for parameter estimation,
which is notoriously difficult for chaotic time series, based on the available in-
cidence data. Only the two-strain model could attempt to estimate all initial
conditions as well as the few model parameters, as opposed of the four-strain
model.

6.4 Discussion and Remarks

In this manuscript we presented the results obtained from a qualitative analysis
of multi-strain dynamical system motivated by dengue fever epidemiology. The
comparison between the basic two-strain dengue model, which already captures
differences between primary and secondary infections, with the four-strain dengue
model, that introduces the idea of competition of multiple strains in dengue
epidemics have shown that the difference between first and secondary infection
combined with the temporary cross-immunity period is driving more the complex
dynamics, which is able to explain the large fluctuations observed in the empirical
DHF incidence data, then the detailed number of strains to be considered into
the model assumptions.

The numerical bifurcation analysis has showed that chaotic dynamics appear
to happen at the same parameter region of interest, i.e. when assuming temporary
cross-immunity period between 3 − 9 months, for all of the considered multi-
strain models, and the addition of seasonal forcing and import of infected have
shown a qualitatively very good result when comparing empirical DHF data and
simulation results, where patterns of the data behavior were similarly found to
happen, for both models, in the time series simulations.

Frequently the time series of empirical data are used as a qualitative check
on model output, however, fitting every chaotic detail of the model to that of the
empirical data is not possible. Parameter estimation based on empirical data to
estimate initial conditions and model parameters have received great attention
and is notoriously difficult for chaotic time series. Temporally local approaches
are possible using iterated filtering algorithms Ionides et al. (2006); He et al.
(2010), and at the moment only minimalistic models would have a chance to be
qualitatively understood well and eventually tested against existing data.

The two-strain model in its simplicity is a good model to be analyzed, giving
the expected complex behavior to explain the fluctuations observed in empirical
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data. It is minimalistic in the sense that it can capture the essential differences of
primary versus secondary infection without needing to restrict the ADE effect to
one or another region in parameter space. For future parameter estimation only
the two-strain model could attempt to estimate all initial conditions as well as the
few model parameters. The two-strain model showed a qualitatively good result
when comparing empirical DHF data and model simulations, giving insights into
the relevant parameter values purely on topological information of the dynamics,
and these relevant parameter values can be used for further refinement in formal
parameter estimation based on the available data.

6.A Unpacking the n-strain model into a four-

strain model

The basic n-strain epidemiological model motivated by dengue fever epidemiology,
capturing difference between primary and secondary infections is shown in system
Eq. (??-??), giving for n = 4 a system with 26 ODEs in total. The complete
system of ordinary differential equations for the four-strain epidemiological model
can be written as follows.

Ṡ = µ(N − S) (6.18)

−
β

N
S(I1 + ρ · N + φ(I21 + I31 + I41))

−
β

N
S(I2 + ρ · N + φ(I12 + I32 + I42))

−
β

N
S(I3 + ρ · N + φ(I13 + I23 + I43))

−
β

N
S(I4 + ρ · N + φ(I14 + I24 + I34))

İ1 =
β

N
S(I1 + ρ · N + φ(I21 + I31 + I41)) − (γ + µ)I1 (6.19)

İ2 =
β

N
S(I2 + ρ · N + φ(I12 + I32 + I42)) − (γ + µ)I2 (6.20)

İ3 =
β

N
S(I3 + ρ · N + φ(I13 + I23 + I43)) − (γ + µ)I3 (6.21)

İ4 =
β

N
S(I4 + ρ · N + φ(I14 + I24 + I34)) − (γ + µ)I4 (6.22)
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Ṙ1 = γI1 − (α + µ)R1 (6.23)

Ṙ2 = γI2 − (α + µ)R2 (6.24)

Ṙ3 = γI3 − (α + µ)R3 (6.25)

Ṙ4 = γI4 − (α + µ)R4 (6.26)

Ṡ1 = αR1 (6.27)

−
β

N
S1(I2 + ρ · N + φ(I12 + I32 + I42))

−
β

N
S1(I3 + ρ · N + φ(I13 + I23 + I43))

−
β

N
S1(I4 + ρ · N + φ(I14 + I24 + I34))

− µS1

Ṡ2 = αR2 (6.28)

−
β

N
S2(I1 + ρ · N + φ(I21 + I31 + I41))

−
β

N
S2(I3 + ρ · N + φ(I13 + I23 + I43))

−
β

N
S2(I4 + ρ · N + φ(I14 + I24 + I34))

− µS2

Ṡ3 = αR3 (6.29)

−
β

N
S3(I1 + ρ · N + φ(I21 + I31 + I41))

−
β

N
S3(I2 + ρ · N + φ(I12 + I32 + I42))

−
β

N
S3(I4 + ρ · N + φ(I14 + I24 + I34))

− µS3

Ṡ4 = αR4 (6.30)

−
β

N
S3(I1 + ρ · N + φ(I21 + I31 + I41))

−
β

N
S4(I2 + ρ · N + φ(I12 + I32 + I42))

−
β

N
S4(I3 + ρ · N + φ(I13 + I23 + I43))

− µS4
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˙I12 =
β

N
S1(I2 + ρ · N + φ(I12 + I32 + I42)) − (γ + µ)I12 (6.31)

˙I13 =
β

N
S1(I3 + ρ · N + φ(I13 + I23 + I43)) − (γ + µ)I13 (6.32)

˙I14 =
β

N
S1(I4 + ρ · N + φ(I14 + I24 + I34)) − (γ + µ)I14 (6.33)

˙I21 =
β

N
S2(I1 + ρ · N + φ(I21 + I31 + I41)) − (γ + µ)I21 (6.34)

˙I23 =
β

N
S2(I3 + ρ · N + φ(I13 + I23 + I43)) − (γ + µ)I23 (6.35)

˙I24 =
β

N
S2(I4 + ρ · N + φ(I14 + I24 + I34)) − (γ + µ)I24 (6.36)

˙I31 =
β

N
S3(I1 + ρ · N + φ(I21 + I31 + I41)) − (γ + µ)I31 (6.37)

˙I32 =
β

N
S3(I2 + ρ · N + φ(I12 + I32 + I42)) − (γ + µ)I32 (6.38)

˙I34 =
β

N
S3(I4 + ρ · N + φ(I14 + I24 + I34)) − (γ + µ)I34 (6.39)

˙I41 =
β

N
S4(I1 + ρ · N + φ(I21 + I31 + I41)) − (γ + µ)I41 (6.40)

˙I42 =
β

N
S4(I2 + ρ · N + φ(I12 + I32 + I42)) − (γ + µ)I42 (6.41)

˙I43 =
β

N
S4(I3 + ρ · N + φ(I13 + I23 + I43)) − (γ + µ)I43 (6.42)

Ṙ = γ(I12 + I13 + I14 + I21 + I23 + I24 + I31 (6.43)

+ I32 + I34 + I41 + I42 + I43) − µR

It divides the population N into twenty six classes, a 25 dimensional dynamical
system due to the constant population size. The dynamics are described in a
similar way as the two-strain model. Susceptible individuals without a previous
dengue infection S can possibly get the primary infection with strain one (I1),
strain two (I2), strain three (I3) or strain four (I4), with two different infection
rates, depending on whom (individual on his primary or secondary infection) is
transmitting the infection. Remember that the relevant difference concerning dis-
ease transmissibility is that the force of infection varies accordingly to the number
of previous infections the hosts have experienced. In a primary infection, individ-
uals transmit the disease with a force of infection βI/N whereas in a secondary
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infection the transmission is given with a force of infection φβI/N , where φ can
be larger or smaller than 1, i.e. increasing or decreasing the transmission rate,
due to the ADE effect. Note that the number of dengue cases caused by a third
or fourth dengue virus infection is extremely low and once confirmed, the risk
for DHF relative to DF was not different for those experiencing third or fourth
dengue virus infections over those experiencing a second dengue virus infection
Endy et al. (2002); Gibbons et al. (2007); Halstead (2008).

Individuals infected for the first time become recovered, with strain one (R1),
strain two (R2), strain three (R3) or strain four (R4), and life long immune to
the given strain, with a recovery rate γ. After a period of temporary cross-
immunity α, the first recovered individuals are again susceptible, however with
an experienced previous infection with strain one (S1), strain two (S2), strain
three (S3) or strain four (S4). The secondary infection can only happen with a
different strain, and therefore, individuals can get infected for the second time
with strain one when the first infection was caused by strain two, three or four
(I21, I31, I41). Individuals can get infected for the second time with strain two
when the first infection was caused by strain one, three or four (I12, I32, I42).
Individuals can get infected for the second time with strain three when the first
infection was caused by strain one, two or four (I13, I23, I43) and individuals
can get infected for the second time with strain four when the first infection was
caused by strain one, two or three (I14, I24, I34). Finally, the individuals recover
from the second infection (R) with recovery rate γ. The death rates µ coming
out of all classes go into the class of susceptible without experiencing previous
dengue infection as a birth rate. The model also captures the differences between
primary and secondary infections, however, it is high dimensional so that the
investigation of the possible dynamical structures cannot be easily performed.
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3. Máıra Aguiar & Ezio Venturino. (2009). Symposium on Biomathematics.
AIP Conference Proceedings, 1168, 1525–1526.

4. Aguiar, M., Kooi, B.W. & Stollenwerk, N. (2009). Multi-strain determin-
istic chaos in dengue epidemiology, a challenge for computational mathematics.
AIP Conference Proceedings, 1168, 1555–1558.

5. Aguiar, M., Ballesteros, S., & Stollenwerk, N. (2010). The influence of sea-
sonality on dengue epidemiology, modeling and data analysis. Proceedings of 10th
Conference on Computational and Mathematical Methods in Science and Engi-
neering, CMMSE, ISBN 978-84-613-5510-5, edited by Jesus V.A. et al., Almeŕıa,
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