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 Sumário 

 A infecção por malaria começa com uma picada de um mosquito Anopheles 

infectado, através da transmissão de esporozoítos do protozoário pertencente ao género 

Plasmodium. Uma vez na circulação sanguínea, os esporozóies chegam rapidamente ao 

fígado onde atravessam a camada de células constituída por células endoteliais e células 

de Kuppfer (macrófagos residentes do fígado), acabando por alcançar e infectar os 

hepatócitos do fígado. Uma vez dentro destas células, cada um dos merozoítos inicia 

uma série de ciclos replicativos até se diferenciar numa nova forma parasitária chamada 

merozoíto. São estes merozoítos que uma vez libertados para a corrente sanguínea, vão 

infectar eritrócitos e desencadear a fase simptomática da doença. 

 O principal objectivo deste trabalho é estudar o papel dos macrófagos durante a 

fase hepática da infecção por malária, adoptando a hipótese de que as células de Kupffer 

são suprimidas após infecção pelos esporozoítos. Para isso usou-se Plasmodium berghei 

ANKA obtido por dissecação de glândulas salivares de mosquitos Anopheles infectados, 

bem como o modelo murino C57BL/6 (espécie Mus musculus). A análise foi efectuada 

com recurso a microscopia confocal e ao nível do RNA através do uso de extractos de 

fígado de murganhos infectados e não infectados. 

 Os nossos resultados sugerem que murganhos desprovidos de macrófagos 

induzem após infecção por esporozoítos, um recrutamento massivo de macrófagos para 

o fígado, bem como uma expressão genética substancial de genes pró-inflamatórios. 

Também se verificou que esse recrutamento de macrófagos para o fígado poderá ser 

desencadeado por substâncias presentes nas glândulas salivares de mosquitos e não por 

esporozoítos. 

 Palavras-chave: Plasmodium, malária, esporozoítos, fígado, células de Kupffer 
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 Abstract 

Malaria infection starts with the bite of an infected Anopheles mosquito. 

Plasmodium sporozoites, the parasite form transmitted by mosquitos, are first deposited 

in the skin of the vertebrate host. After entering circulation sporozoites rapidly reach the 

liver, cross the sinusoidal cell layer composed of endothelial cells and Kupffer cells (the 

resident macrophages of the liver) and infect hepatocytes. Inside these cells the parasites 

replicate and develop into thousands of new parasites, called merozoites. When released 

into the blood stream, merozoites infect red blood cells causing the symptomatic stage 

of the disease. 

The main goal of this project is to study the role of macrophages during the liver 

stage of malaria infection, under the hypothesis that Kupffer cells are suppressed upon 

sporozoite infection. To this end we used the rodent model parasite Plasmodium berghei 

ANKA, which was obtained from the dissection of salivary glands of infected 

Anopheles mosquitos, and the rodent host C57BL/6 mice (species Mus musculus). The 

analysis was performed at the confocal microscopy level as well as at the RNA level 

using liver extracts of infected and non-infected animals. Genes of interest were 

screened and analyzed by qRT-PCR. 

Our results suggest that macrophage depleted mice induce upon sporozoite 

infection a massive recruitment of macrophages to the liver blood vessels and a 

substantial expression of pro-inflammatory genes. In addition, the recruitment of 

macrophages to the liver seems to be triggered by components present in salivary gland 

material of mosquitos rather than by sporozoites. 

 Keywords: Plasmodium, malaria, sporozoites, liver, Kupffer cells 
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 Abbreviations 

 

 cDNA: complementary DNA 

 Clo-lip: clodronate liposomes 

 DAPI: 4',6-diamidino-2-phenylindole 

 dH20: diethylpyrocarbonate-treated water 

 DMEM: Dulbecco’s modified Eagle’s medium 

 DNA: desoxyribonucleic acid  

 Hprt: hypoxanthine-guanine phosphoribosyltransferase 

 LPS: lipopolysaccharide 

 mRNA: messenger RNA 

 PBS: phosphate Buffer Saline 

 PCR: polymerase chain reaction 

 PBS-lip: PBS liposomes 

 qRT-PCR: quantitative RT-PCR 

 RNA: ribonucleic acid 

 RT-PCR: real time PCR 

 TRL: toll-like receptor 

 µg: microgram 

 µl: microliter 
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 Historic background 

Malaria is a disease that despite all the scientific and humanitarian efforts 

towards its eradication remains the 21st century world’s most deadly vector-borne 

infectious disease.  

References to conditions that bear several of the hallmarks of malaria such as 

fevers and splenomegaly have been quoted from Chinese records (5.000 years ago), 

Egyptian texts (3,500 to 4,000 years ago) and Indian scriptures (3,500 to 1,900 years 

ago). Around 2,000 years later, in 500 B.C. malaria had already appeared in Greek texts, 

and later in the works attributed to Hippocrates (460 to 377 B.C.) there is reference to 

malaria’s benign tertian and malignant subtertian forms. In 323 B.C., beyond 

Mesopotamia on the route to India, Alexander the Great is said to have died of malaria. 

By the beginning of the Christian era, malaria was widespread around the 

Mediterranean, in southern Europe and southern Asia and it probably began to spread 

into northern Europe in the dark and middle ages. Malaria seems to have coincided with 

human pioneering and land clearing for agriculture. In fact, during the time of the 

voyages of Columbus until the mid-19th century, European trade and colonization in the 

tropics were marked by massive losses of life from infectious disease. It was around this 

time malaria reached its global limits and exacted its highest toll of sickness to the point 

of killing 1 in 10 affected people. Then, from toward the end of the 19th century, 

throughout North America and Northern and Western Europe, malaria started to decline 

toward its present extinction in these regions (Carter and Mendis, 2002). 

 The first malaria parasites were discovered in 1880 in the blood of malaria 

patients by Alphonse Laveran. Seventeen years later, William MacCallum discovers the 

blood stages in birds infected with a related haematozoan, Haemoproteus columbae.  In 

the same year, Ronald Ross elucidates the whole transmission cycle in culicine 

mosquitoes and birds infected with Plasmodium relictum. In 1898 a group of Italian 

malariologists demonstrated that human malaria was also transmitted by mosquitoes, in 

this case anophelines. Henry Shortt and Cyril Garnham discovered that malaria 

parasites developed in the liver before entering the blood in 1948, and the final stage in 

the life cycle, the presence of dormant stages in the liver, was demonstrated in 1982 by 

Wojciech Krotoski (reviewed in Cox, 2010). 
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Epidemiology and global distribution 

The disease is typically transmitted to people by mosquitoes belonging to the 

genus Anopheles, although in rare cases it can be contracted through contaminated 

blood or through pregnancy to the fetus when the mother is infected. Since these 

mosquitoes belong to one of the most abundant arthropod populations in the world, their 

role as vectors for the parasite constitutes one of the main reasons for malaria’s 

prevalence. Anopheles mosquitoes breed in water and while some species feed on both 

humans and other mammals, the primary malaria vectors feed almost exclusively on 

humans. With more than 20 different Anopheles species in nature acting as malaria 

vectors, the transmission essentially depends on climatic conditions such as humidity 

and temperature that may not only affect the survival of mosquitoes but the parasites as 

well. Human immunity is also an important factor since it can provide a moderate 

protection from severe disease if it’s developed throughout the years. For this reason, 

the specific risk groups include young children, semi or non-immune pregnant women, 

people with HIV/AIDS and travelers from non-endemic areas (WHO, 2010. NIAID Science 

Education, 2007. Matuschewski, 2006). 

At the moment malaria is a life threatening risk for 3.3 billion people over 100 

countries in the Asian, South American and African continents (Fig.1). Surprisingly 

malaria mortality rates have fallen by more than 25% since 2000, with the largest 

percentage reductions seen in the European (99%), American (55%), Western Pacific 

(42%) and African Regions (33%). Out of 99 countries with ongoing malaria 

transmission, 43 recorded decreases of more than 50% in the number of malaria cases 

between 2000 and 2010. Another 8 countries recorded decreases of more than 25%. The 

European Region could actually be the first to eliminate malaria in the next few years, 

since almost all remaining malaria cases in 2010 were reported from just two countries, 

Azerbaijan and Tajikistan and case numbers are continuing to fall in both countries 

(WHO, 2011). Moreover, malaria has a huge impact on the affected countries’ economy, 

being annually responsible for the reduction of the gross domestic product of as much 

as 1.3% in countries with high levels of transmission, and has consequently lead to 

socioeconomic discrepancies between affected and non-affected countries (WHO, 2010). 
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 Control strategies 

There are different approaches regarding the control of malaria, including the 

development of affordable and efficient malaria vaccines, chemotherapy treatment with 

anti-malarial drugs, and development of insecticides to prevent the vector from 

spreading. Chloroquine and dichlorodiphenyltrichloroethane were used for several years 

as control methods for the parasite and the vectors respectively, but resistance 

eventually emerged, rendering those drugs ineffective. Nowadays, significant advances 

have been made in vector control strategies and especially in parasite control with 

artemisinin based combination therapy. However, a licensed malaria vaccine is still not 

available (Crompton et al, 2010). 

Clinical pathology 

Clinical manifestations of malaria infection are induced by the asexual stages of 

the parasite, when it is developing inside the red-blood cells and during sequestration. 

This phenomenon occurs when the parasites bind to the capillary and venous 

endothelium in various organs. The main symptoms often encountered in malaria are 

periodic fever, abdominal discomfort, headache, chills, joint muscle aches, vomiting 

and fatigue. The periodic fever is commonly named tertian and quartian malaria, which 

refer to the typical feature of an acute febrile episode that returns every three or four 

days. The major complications of severe malaria include splenomegaly, acute renal 

failure, bleeding, severe anemia, pulmonary edema, metabolic disorders (acidosis and 

hypoglycemia), cerebral malaria and placental malaria (reviewed in Trampuz et al, 2003). 

Figure 1: Countries and territories affected by malaria in 2010 
(WHO, 2012).	  
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 The parasite 

Malaria parasites have probably been so almost since there were potential hosts, 

at least half a billion years ago. At an early stage their evolution they acquired an 

asexual and usually intracellular form of reproduction called schizogony thus increasing 

their proliferative potential. Their ancestor is believed to have been a chloroplast-

containing, free-living protozoan. This ancestor would become adapted to live in the gut 

of certain aquatic invertebrates, more specifically aquatic insect larvae including those 

of early Dipterans. As it is shown in Fig.2, these insects first appeared around 150 

million to 200 million years ago, and since then many different lines of malaria and 

malaria-like parasites evolved and radiated (Carter and Mendis, 2002). 

Malaria parasites are protozoans that belong to the Plasmodium genus and to the 

Apicomplexa phylum in which we can find other species such Cryptosporidium parvum 

and Toxoplasma gondii. (Kim and Weiss, 2004) This phylum is characterized by having a 

plastid organelle; the apicoplast (Fig.3).The apicoplast is prokaryotic in origin and 

derived from endosymbiosis of a plastid bearing red algae. During the course of 

evolution, it lost its photosynthetic function and in Plasmodium spp it is important for 

both intraerythrocytic and intrahepatic development in the human host (Yeh and DeRisi, 

2011). 

Figure 2: Phylogeny of the malaria parasites of humans and other species 
(Carter and Mendis, 2002) 
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There are more than 100 species of Plasmodium 

which can infect several animal species such as birds, 

reptiles and many mammals. Nevertheless, they have an 

amazingly restricted host range infecting only related 

vertebrate species. Only four species of Plasmodium 

infect humans; P. falciparum, P. ovale, P. malariae and 

P. vivax (Cowman and Kappe, 2006). However, it has been 

reported that humans have also been infected by a fifth 

species, P. knowlesi, which is a natural parasite of long-

tailed and pig-tailed monkeys from south-east Asia. It 

has also been discovered that P. falciparum can parasite 

a few species of primates such as gorillas and 

chimpanzees (reviewed in Antinori et al, 2012).  

Regarding human infection, P. malariae is frequently clinically silent, although 

it can develop a chronic infection. Although rarely fatal, P. vivax and P. ovale are 

usually just responsible for febrile illness that can result in anemia. P. falciparum is 

responsible for the majority of the cases of severe disease and deaths. Every species 

show evidence of recurrence after treatment with the exception of P. ovale (reviewed in 

Schofield and Grau, 2005). 

Relatively to the two most important human Plasmodium species’ distribution, 

the global area at risk of P. falciparum malaria is distributed between America 

(20.30%), Africa (61.10%) and Asia (18.60%) while the people at risk of P. vivax 

transmission worldwide are distributed with different percentages with the vast majority 

(91%) inhabiting in Asia, 5.5% living in America and 3.4% living in Africa (Guerra et al. 

2010. Hay et al. 2009). 

 

 

 

 

Figure 3: Schematic of a 
Plasmodium spp sporozoite 
with an apicoplast (green) 
(Kappe et al, 2004). 
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 The life cycle 

Plasmodium’s life cycle is very complex, cycling between an invertebrate and a 

vertebrate host, and it is transmitted to humans when infected female Anopheles 

mosquitoes inject elongated parasite forms called sporozoites during blood meals in 

order to carry out their egg production (Fig.4) (Ponnudurai et al. 1990). The survival of the 

malaria parasite in the mosquito depends on several factors, two of them being the 

atmospheric conditions such as temperature and humidity, and whether the Anopheles 

survives long enough to allow the parasite to complete its cycle in its gut.	  The cycle is 

comprised of both sexual and asexual stages. 

 

The sexual stage 

This stage occurs inside the mosquito and starts with the uptake of the male and 

female gametocytes during a blood meal. After the gametocytes fusion, the motile 

diploid zygotes are formed. They then endure meiosis and genetic recombination in 

order to originate the motile ookinetes which migrate through the mosquito midgut 

epithelium and start differentiating into sessile oocysts, the only extracellular stage of	  

the parasite. When fully matured, each oocyst undergoes several mitotic divisions to 

form sporoblasts from which thousands of sporozoites start budding and enter the 

hemocoel. Afterwards, the sporozoites migrate into the mosquito’s salivary glands and 

Figure 4: Plasmodium spp life cycle (Mueller et al. 2009) 
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gain access to the salivary duct where they accumulate and finish their maturation (Aly et 

al. 2009 and reviewed in Frevert et al. 2006). Sporozoite migration to the salivary glands is 

mediated by the circumsporozoite protein, a major surface protein of the parasite. This 

protein can be found on the sporozoite’s surface and not only presents homology with 

other apicomplexan parasite proteins but is also highly conserved between the different 

species (Myung, 2004). The mature sporozoites are then injected into the mammalian host 

when the infected mosquito takes it next blood meal, starting the asexual stage of the 

parasite’s life cycle. Although the salivary glands of an infected mosquito can contain 

thousands of sporozoites, less than 100 of these are transmitted in any one bite 

(Rosenberg et al. 1990).  

The asexual stage 

This stage includes a pre-erythrocytic stage, which is the first stage of infection 

in humans where sporozoites are inoculated to infect the hepatocytes, and an 

erythrocytic stage, which is the asexual reproduction of the parasite in the blood that 

causes the clinical symptoms of the disease. 

The pre-erythrocytic or liver stage begins when sporozoites are deposited in the 

avascular dermal tissue of a vertebrate mammalian host where they can stay between 1 

to 3 hours. The injected sporozoites start to move by gliding motility until they reach a 

dermal blood capillary from where they are simply transported by circulation since they 

are not competent to infect erythrocytes in a direct way. However, some sporozoites 

may enter the lymphatic nodes via the lymphatic vessels, where they are eliminated by 

dendritic cells. Others are simply destroyed by phagocytes while in the dermis (Amino et 

al. 2006). They rapidly reach the liver and they cross the liver sinusoidal cell layer 

traversing several hepatocytes, before invading a final hepatocyte. There, they form a 

parasitophorous vacuole, where they undergo a cycle of asexual replication for a period 

of a minimum of 5.5 days for the human malaria species. The migration through several 

hepatocytes leaves the membranes disrupted and although the cells can repair the 

damage and survive, death occurs in some cases. This migration also seems to be 

important for infection since it activates sporozoites for the infection itself and increases 

the susceptibility of host hepatocytes (Mota et al. 2001, Doolan and Good, 1999). Inside de 

parasitophorous vacuole each sporozoite differentiates into an exoerythrocitic form that 

grows and multiplies by schizogony into thousands of erythrocyte-infective merozoites, 
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Figure 5: Detailed schematic of Plasmodium spp blood 
stage with blood cell invasion (a), ring form (b), 
trophozoite (c), schizont (d), and merozoites release (e) 
(adapted from Bannister and Mitchell, 2003). 

without killing the host cell. After maturation, the merozoites are released in the liver 

sinusoid where they enter bloodstream, marking the end of the asymptomatic pre-

erythrocytic stage (reviewed in Vaughan et al. 2008 and Sturm et al. 2006). In P. vivax and P. 

ovale a dormant form that does not undergo asexual replication, called hypnozoite, can 

persist in the liver and can cause disease relapses by invading erythrocytes weeks or 

years later (reviewed in Markus, 2011. Durante et al. 2003).  

The erythrocytic or blood stage starts when the merozoites invade the 

erythrocytes with the formation of a parasitophorous vacuole. After several rounds of 

invasion, growth and division the merozoites develop into three distinct morphological 

stages: the ring stage forms, the trophozoites and the erythrocyte schizonts, leading to 

the formation of new merozoites. When fully matured, these merozoites rupture the host 

cell and start invading other blood cells in order to perpetuate the cycle (Fig.5). This 

process is gradually amplified by repeated cycles of invasion, intracellular growth, 

multiplication and re-invasion, which differs from 24 to 72 hours depending on the 

Plasmodium spp (reviewed in Silvie et al. 2008 and reviewed in Bannister and Mitchell, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 



15	  
	  

 Innate immunity and macrophages 

 Human immunity comprises innate and adaptive responses that collaborate 

together in order to destroy pathogens. The innate immune system employs cells that 

include monocytes/macrophages, dendritic cells, mast cells, natural killer cells and 

neutrophils to provide immediate defense against infection. These cells are then 

responsible for initiating adaptive immune responses, for example via antigen 

presentation or the release of cytokines.  

These innate immune cells are able to recognize pathogen associated molecular 

patterns. These patterns can be components of microorganisms such as 

lipopolysaccharide (LPS), lipoproteins, bacterial desoxyribonucleic acid (DNA) and 

viral ribonucleic acid (RNA). They also recognize endogenous ligands released by 

damaged or necrotic host cells via their pattern-recognition receptors, which include 

receptors for bacterial carbohydrates and toll-like receptors (TLRs). It is the interaction 

between these elements that results in targeted destruction of foreign organisms, 

infected or tumor cells, by the release of cytotoxic agents or phagocytosis (reviewed in 

Liaskou et al, 2012). 

 Even though all macrophages are ultimately derived from the bone marrow, they 

may propagate at the site of their final destination. They are generally grouped in 

subpopulations with different functions depending on the type of activation. The 

classically activated macrophages develop in response to Ifn-γ and microbial products. 

They can be identified through their ability to present antigens, produce pro-

inflammatory cytokines and by their increased endocytic functions. The alternatively 

activated macrophages are responsible for secreting chemokines, recruit eosinophils, 

basophils and T cells to the site of infection and promote anti-inflammatory immune 

responses (Martinez, 2011).  

 Macrophages are important in both cell mediated and humoral mechanisms 

against malaria infection. In fact, as some studies have shown, they can secrete factors 

such as pro-inflammatory cytokines and release nitric oxide or reactive oxygen species. 

On the other hand, data from further studies have shown that their functions appear to 

decrease during malaria infection, more specifically by the production of hemozoin 

generated after hemoglobin degradation by the parasite, which impairs both antigen 

presentation and immunomodulatory functions of the macrophages (Schwarzer et al, 1998). 
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Figure 6: Maturation of 
Kupffer cells (Decker, 
1990). 

Figure 7: Electron micrograph 
(x9800) of a hepatic sinusoid, a 
Kupffer cell (KC) and an endothelial 
cell (EC) (adapted from Widmann et 
al, 1972). 

 The Kupffer cells 

These liver macrophages are named after the pathologist C. von Kupffer who 

was the first to identify this non-parenchymal cell type. They are recruited from the 

stem cells of the bone marrow and mature through differentiation under the influence of 

specific signals such as interleukin-3 and macrophage colony stimulating factor, until 

they reach the liver sinusoids (Fig.6) (reviewed in Decker, 1990). 

Kupffer cells are the largest and functionally most important population of fixed 

tissue macrophages of the body (Phillips et al, 1987). However, there is evidence that they 

can migrate along sinusoidal walls with a mean speed of 4.6 microns/min. (McPhee et al, 

1992). They can be found in the periportal area of the lobule (43%) as well as in the 

midzonal areal (28%) and in the central area (29%). They account for 15% of the total 

liver cell population, being constantly in contact with a perfusion of oxygenated arterial 

blood (20%) and venous blood rich in nutrients and bacterial endotoxins (80%) (reviewed 

in Liaskou et al, 2012). 

They are involved in liver metabolism, homeostasis, innate immune defense, 

liver injury and portal vein tolerance (continuous inflammatory response with anti-

inflammatory cytokines, as well as pro-inflammatory responses) (reviewed in Frevert et al, 

2006). In fact, aided by their strategic position in the liver sinusoid (Fig.7), these resident 

phagocytes efficiently clear the bloodstream from foreign substances such as 

microorganisms and toxic agents since they are the first cells to be exposed to materials 

absorbed from the gastrointestinal tract (Klotz and Frevert, 2008. Kolios et al, 2006). 
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During local liver injury or infection, resident Kupffer cells and 

monocyte/macrophages initiate an immune response. Upon phagocytosis of the 

pathogenic material, phagocytes release a variety of chemical messengers such as tumor 

necrosis factor alpha (Tnf-𝛼), interleukin-1 (Il-1), and interleukin-6 (Il-6) that initiate 

the acute-phase response and inflammation (reviewed in Liaskou et al, 2012). 

Kupffer cells can also phagocyte damaged, senescent or even parasitized red 

blood cells during malaria infection. It is believed that this extensive 

erythrophagocytosis leads to an increased physical load of red blood cells in the 

cytoplasm of Kupffer cells, to macrophage toxicity caused by the parasite or to an 

excessive iron and free radicals release after hemoglobin is broken down. Ultimately, 

Kupffer cell’s organelle motion is decreased, compromising the host defenses (Bellows et 

al, 2010). 

As it is shown in Fig.8, to infect hepatocytes sporozoites must cross the 

sinusoidal cell layer through Kupffer cells and the space of Disse. Moreover, they start 

to accumulate in the hepatocytes through the interaction of circumsporozoite protein 

with heparin sulfate proteoglycans, which are present in the basolateral pole of the liver 

cells (reviewed in Frevert et al, 2006. Silvie et al 2008). It was proposed that the parasites could 

pass through the fenestrations on the liver endothelial cells, but it was shown the gaps 

were not wide enough (Mota, 2002). 

In addition, osteopetrosis mutant mice, which are deficient for macrophages 

including Kupffer cells, are significantly more resistant to sporozoite liver infection 

(Klotz and Frevert, 2008). These data further support the hypothesis that Kupffer cells are 

used by sporozoites to enter hepatocytes. 

Figure 8: Sporozoites (green) traversing through 
Kupffer cells as they reach the liver sinusoids (adapted 
from Prudêncio et al. 2006). 
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Another ex vivo study, showed that Kupffer cells from mice challenged with 

irradiated sporozoites are able to induce the expression of pro-inflammatory cytokines, 

Major Histocompability Complex class I and co-stimulatory molecules. In contrast, 

their expression was suppressed in mice infected with infectious live sporozoites 

compared to naïve mice (Steers et al, 2005). Thus, by suppressing the pro-inflammatory 

response and Major Histocompability Complex class I expression, the parasites down-

modulate the antigen presenting cell function of these macrophages and avoids 

recognition by the immune system. Strikingly, live sporozoites are not eliminated inside 

Kupffer cells (reviewed in Frevert et al, 2006). In fact, sporozoites seem to have mechanisms 

to suppress Kupffer cell activation. An in vitro study by Usynin et al showed that the 

circumsporozoite protein, which is a constitutively secreted protein by sporozoites, 

blocks the production of reactive oxygen species – a powerful macrophage defense 

mechanism (Usynin et al, 2007). 
 

Altogether, sporozoites seem to be able to selectively recognize and traverse 

Kupffer cells, without being killed due their capacity to modulate basic anti-microbial 

macrophage function thus supporting the enormous growth of its liver stages, 

culminating with the release of thousands of merozoites into the blood (Baer et al, 2006. 

Klotz and Frevert, 2008).  

  

 Theoretical aspects of Quantitative Real-Time PCR (qRT-PCR) 

The polymerase chain reaction (PCR) is a genetic technique that allows the 

specific enzymatic amplification of DNA or complementary deoxyribonucleic acid 

(cDNA) sequences (amplicons). It is most used for quantitative analysis of DNA copy 

number or gene expression. Quantitative Real-Time PCR is an extension of the PCR 

methodology. The basic principle of real-time PCR (RT-PCR) is the monitoring of the 

PCR product accumulation at each cycle during the reaction, instead of at the end point 

detection which happens with conventional quantitative PCR. Some of its advantages 

include the absence of post-PCR manipulation which reduces the contamination risk 

and the fact it can be graphically monitored. It just requires minimal amounts of DNA 

and it is faster, since there’s no need to examine the fluorescence of products of the 

PCR amplification reaction via the staining of the sample separated by gel 
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electrophoresis. The reaction can be measured by a great number of fluorescent 

detection methods such as the generic double-stranded DNA binding dye SYBR®Green, 

sequence-specific probes such as TaqMan®, or adjacent hybridization probes to name a 

few. While SYBR®Green labeling can be applicable to any PCR product, the lack of 

specificity means that fluorescence from an unintended product is indistinguishable 

from that generated from the intended target sequence thus potentially resulting in 

inaccurate quantitation (Walker, 2000. Arya et al, 2005). Real-time PCR assays have the 

potential to detect low levels of parasitemia, identify mixed infections, and allow for 

precise differentiation of species via melting curve analysis. Thus, it becomes easier to 

identify a given infection of a person without the need for multiple blood specimens or 

even microscopic analysis (Mangold et al, 2005). 

 Theoretical aspects of Immunofluorescence 

 Immunofluorescence is an immunohistochemistry technique used to search for 

cell or tissue antigens ranging from amino-acids and proteins to infectious agents such 

as parasites. It relies on fluorescent dyes that are conjugated with antibodies which in 

turn bind to the antigen of interest allowing its detection. The fluorescence can then be 

quantified and visualized using several imaging techniques such as confocal 

microscopy. There are two labeling methods: direct, in which the antibody against the 

molecule of interest is conjugated to a fluorescent dye, and indirect. In the indirect 

method, the antibody specific for the molecule of interest (called the primary antibody) 

is unlabeled, thus requiring a second anti-immunoglobin antibody (called secondary 

antibody) tagged with the fluorescent dye to be directed to the first antibody (Fig.9). 

The indirect method is more sensitive and allows amplification of the signal because 

more than one secondary antibody can attach to each primary antibody. However, it can 

lead to cross-reactivity and requires more stages of antibody incubation as well as the 

need to find primary antibodies from different species when performing multiple-

labeling experiments (reviewed in Matos et al, 2010. Robinson et al, 2010). 

Figure 9: Schematic of direct and indirect 
immunofluorescence (adapted from Robinson et 
al, 2010) 
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Figure 11: Mechanism of macrophage depletion 
with clodronate (red squares) (adapted from 
ClodronateLiposomes.org). 

Theoretical aspects of macrophage depletion with clodronate 

Macrophages can be depleted using 

dichloromethylene bisphosphonate, or clodronate 

liposomes, which are artificially made spheres of 

concentric phospholipid bilayers divided by aqueous 

solution (Fig.10). This method is based on the natural 

process of phagocytosis of liposomes by macrophages: 

once ingested by a macrophage, it instantly recognizes the 

clodronate liposomes as foreign particles and proceeds 

with their destruction. Once inside, the liposomes are 

engulfed into a phagosome which later fuses with a 

lysosome forming a phagolysosome. The lysosome 

contains many enzymes such as phospholipases and its 

membrane has proton pumps that will lower the internal 

pH of the phagolysosome.  

The phospholipid bilayers of the liposomes are then disrupted under the 

influence of the lysosomal phospholipases and the low internal pH, releasing the 

clodronate. As a result, clodronate accumulates in the cell because it’s unable to cross 

the cell membranes (Fig.11) (Rooijen and Sanders, 1994).  

Once in the cytosol and as it starts 

to accumulate, clodronate is mistakenly 

metabolized into to a β-ɣ-methylene 

(AppCp-type) analog of ATP. The β-ɣ-

methylene inhibits mitochondrial oxygen 

consumption by a mechanism that 

involves competitive inhibition of the 

ADP/ATP translocase. This causes the 

collapse of the mitochondrial membrane 

potential, loss of the inner membrane integrity and the release of a series of molecular 

signals that initiate cell death via apoptosis. Clodronate released in the circulation from 

dead macrophages or by leakage from liposomes cannot cross cell membranes neither 

penetrate vascular barriers and has an extremely short half-life in circulation and body 

Figure 10: Schematic of a 
liposome with encapsulated 
clodronate (squares) (Rooijen 
and Sanders, 1994). 
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fluids (Lehenkari et al, 2002 and Frith et al, 1997). Therefore it represents an advantageous 

alternative to genetic approaches for macrophage depletion that theoretically not only 

deplete macrophages at the site of interest but also on any tissue that contains 

macrophages.  

Clodronate liposomes are usually dosed intravenously to mice about 1% of their 

body weight regardless of the injection site. This large volume dosage along the fact 

that the suspension is slightly viscous increases the risk of adverse reactions during 

experimental procedures. That risk is increased in cases when the animals become 

immunosuppressed after treatment. Although free clodronate is hydrophilic and 

therefore rapidly cleared by the renal system, encapsulated clodronate cannot leave the 

bloodstream through veins and arteries and some of it is actually destroyed upon 

entering the bloodstream. The sinusoidal capillaries of the liver, bone marrow and 

spleen are the only areas where the liposomes can interact with cells outside the 

vascular system since most of the liposomes will be filtered out by these organs (Patrakka 

and Tryggvason, 2010. Rooijen and Sanders, 1994). 

 

Aims 

The main goal of this project was to study the role of macrophages during the 

liver stage of malaria infection, under the hypothesis that Kupffer cells are suppressed 

upon sporozoite infection. To this end, the main aims were to further investigate if 

macrophage function is suppressed by the parasite, explore if the host responds to 

infection when the liver macrophages are depleted, and decipher what could be 

specifically inducing the immune response when liver macrophages are depleted. 
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 Mice models 

 Many strains of mice can be used to study the basic biology of the malaria 

parasite or the immune mechanisms it elicits. Despite the numerous mouse strain-

parasite combinations that can be used in malaria research, previous studies have shown 

that infection of C57BL/6 strain mice with Plasmodium berghei is the optimal model 

for investigating the malaria liver stage. In fact, this model is the most susceptible to 

sporozoite invasion and development into microscopically detectable hepatic schizonts 

in the liver since it shows a delayed onset of cellular responses against these 

exoerythrocitic stages, compared to other strains (Scheller et al, 1994). 

 For every experiment, pathogen-free C57BL/6 mice were purchased from 

Charles River Laboratories, and maintained in the animal facilities of Instituto de 

Medicina Molecular on 12h light/12h dark cycle with access to water and food ad 

libitum, and at the appropriate biosafety level. Experiments were generally performed 

with mice with ages ranging from 6 to 10 weeks. Mice were anesthetized with 

Isoflurane (IsoFlo®, Esteve) and injected via the orbital venous sinus. Infected animals 

were injected with 5x104 sporozoites in 200µl of Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Gibco/Invitrogen). For the salivary gland controls, animals were injected 

with salivary gland material from uninfected mosquitoes in 200µl DMEM. Uninfected 

animals were injected with 200µl of DMEM. All the work was conducted at Instituto de 

Medicina Molecular and was approved by the Animal Care Committee.	  

	  

	   Sporozoites extraction and purification 

 Although several species of rodent malaria parasites have been described, only 

P. berghei, P. yoelii, P vinckei and P. chabaudi have been used as valuable models in 

malaria research even though none of them is a natural pathogen of the laboratory 

mouse. Despite the phylogenetic distance, these murine parasites are analogous to 

human parasites in many biochemical and genetic aspects with the advantage of also 

being good models for genetic manipulation (Déchamps et al, 2010).  

 Plasmodium berghei (ANKA strain) sporozoites were obtained from 4-8 day old 

laboratory-reared female Anopheles stephensi mosquitoes previously kept in mesh 

nylon cages at 27oC with constant access to a sucrose solution on filter paper. 

Mosquitoes were dissected under a workbench magnifier lamp after they had taken an 
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infectious blood meal. The salivary glands were separated from the rest of the body, 

collected in DMEM, and then transferred to an Eppendorf tube and lysed mechanically 

in order to release the sporozoites. Afterwards, the solution was filtered through a 70µm 

pore diameter cell strainer into a Falcon tube and centrifuged for 3 minutes at 700 rpm. 

After diluting (1:5) the solution, the sporozoites were counted in a Neubauer improved 

counting chamber that was previously kept in a moist chamber for 10 minutes. The final 

concentration was estimated by the average of sporozoites per quadrant x 104 x dilution 

factor. Irradiated sporozoites were treated in an Irradiator Gammacell® 3000 ELAN 

(Best Theratronics). 

 

 Liver extraction and homogenization 

 To obtain the livers for RNA extraction, the mice were anesthetized with 

Isoflurane and sacrificed by cervical dislocation 42 hours post-infection. After being 

secured on their backsides with pins, their belly fur sprayed with 70% ethanol, the 

animals were opened and their livers were removed into phosphate buffer saline (PBS). 

The livers were mechanically homogenized with a manual homogenizer in 3 ml of 

denaturating solution (4 M guanidine thiocyanate; 25 mM sodium citrate pH 7; 0,5 % 

N-Lauroyllsarcosine; and 0,7% of freshly added β-mercaptoethanol in 

diethylpyrocarbonate-treated water, dH20). Two plastic beakers containing dH20 were 

used to wash the manual homogenizer and finally at least one aliquot of 1000µl was 

made for each homogenate. 

 

 RNA isolation and quantification 

 RNA extraction was made using the RNeasy MiniKit (250) from Qiagen. 100µl 

of liver lysates were resuspended in 900µl RLT solution and mixed with 900µl of 70% 

ethanol. 600µl of each sample was loaded in an RNeasy mini kit column and washed 

with Buffer RW1 and RPE, always discarding the flow-through after each wash. The 

RNA was resuspended in 50µl of DNase/RNAse free water. The RNA concentration 

was estimated spectrophotometrically by 260/280 absorbance, measured in a 

NanoDrop-1000 Spectrophotometer (Thermo Scientific). 
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 Quantitative Real-Time PCR 

 For every experiment, the first strand cDNA was synthesized from the total 

RNA templates using random hexamers and the Transcriptor First Strand cDNA 

Synthesis kit (Roche) according to the manufacturer’s protocols and the amplification 

programme: 25ºC/10 min, 55ºC/30 min and 85ºC/5 min. Relative quantification of 

messenger ribonucleic acid (mRNA) by real-time PCR was done on an ABI Prism 7500 

Fast Real-Time System (Applied Biosystems) using the DyNAmoTMHS SYBR®Green 

qPCR kit (Finnzymes), according to manufacturer’s instructions. Thermal cycling 

conditions were 50ºC/2 min and 95ºC/10 min, followed by 50 cycles of 95ºC/15 sec and 

60ºC/1 min, and one cycle of 95ºC/15 sec, 60ºC/1 min, 95ºC/30 sec and 60ºC/15 sec. 

Data was normalized using the expression of hypoxanthine-guanine 

phosphoribosyltransferase (Hprt) housekeeping gene as an endogenous reference and 

analyzed by the comparative CT method (ΔΔCT) to produce relative gene expression 

levels. Parasite load was calculated as the relative amount of P. berghei’s 18S cDNA 

copies against Hprt cDNA copies. Primer sequences for every gene used in RT-PCR 

assays using SYBR®Green are displayed next: 

PbA	  18S	   F	   AAGCATTAAATAAAGCGAATACATCCTTAC	   Hprt	   F	   TTTGCTGACCTGCTGGATTAC	  

	  
R	   GGAGATTGGTTTTGACGTTTATGTG	   	   R	   CAAGACATTCTTTCCAGTTAAAGTTG	  

	   	   	   	   	   	  Saa3	   F	   AGAGACATGTGGCGAGCCTAC	   Mcp-‐1	   F	   CTTCTGGGCCTGCTGTTCA	  

	   R	   CAGCACATTGGGATGTTTAGG	   	   R	   CCAGCCTACTCATTGGGATCA	  

	   	   	   	   	   	  Cd68	   F	   ACTCATAACCCTGCCACCAC	   F4/80	   F	   CCCCAGTGTCCTTACAGAGTG	  

	   R	   GATTTGAATTTGGGCTTGGA	   	   R	   GTGCCCAGAGTGGATGTCT	  

	   	   	   	   	   	  Clec4f	   F	   TGAGTGGAATAAAGAGCCTCCC	  	   	   	   	  

	   R	   TCATAGTCCCTAAGCCTCTGGA	   	   	   	  

	   	   	   	   	   	   

 Immunofluorescence 

Livers were fixed with 4% paraformaldehyde for 3 hours and washed with PBS. 

Each liver was sectioned with a 50µm thickness in a Vibratome 1000S (Leica 

Microsystems). The sections were labeled indirectly. The slices were blocked at room 

temperature with a solution of 0.5% Triton® X-100 (Sigma-Aldrich) and 1% albumin 

from bovine serum (Sigma-Aldrich) in PBS for 1 hour to avoid unspecific reactions. 

Each slice was incubated with primary antibodies Pan Tissue Fixed Macrophage and 

Monocytes/Macrophages (F4/80) during an entire day at 4ºC and washed with blocking 
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solution, followed by an overnight incubation with secondary antibodies 4',6-diamidino-

2-phenylindole (DAPI) and anti-GFP 488 at 4ºC in the dark. Every stained section was 

finally washed with PBS and mounted between 2 glass slides with Fluoromount-G 

(Southern Biotech). DAPI (1:1000) was obtained from Sigma, anti-GFP AF488 (1:100) 

from Invitrogen (Molecular Probes), Pan Tissue Fixed Macrophage (1:400) from 

Fitzgerald and Monocytes/ Macrophages F4/80 (1:200) from RPI. 

 

 Imaging 

 The fixed immunofluorescent slices were examined under a Zeiss LSM 510 

META laser point-scanning confocal microscope. Images were taken with LSM 5 

software and were acquired using a 40x oil objective. Fluorescence was excited by a 

405-nm diode laser, a 488-nm argon laser and a 594-nm diode laser. Every section of 

each slice was analyzed for parasite and macrophage presence. Image processing such 

as image merging was performed with Image J software and in a few cases the contrast 

and brightness levels were optimized using Adobe Photoshop CS3. Images were only 

enhanced as a whole and no other alterations were done. 
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Figure 12: Relative expression of macrophage 
gene markers was assessed by real time PCR in 
uninfected animals treated with PBS-lip or Clo-lip. 

Little is known about the role of liver macrophages, such as Kupffer cells, 

during the malaria liver stage. Preliminary results in the host laboratory, indicated that 

macrophage depleted mice induce, after infection with Plasmodium sporozoites, a 

strong expression of pro-inflammatory genes in the liver.  

 I started my master thesis project first by confirming the efficiency of 

macrophage depletion in uninfected mice. I injected Clodronate liposomes (Clo-lip) into 

mice and PBS liposomes (PBS-lip) into the control animals. 42h after the injection I 

measured the expression of two macrophage cell marker genes (Cd68, F4/80) and one 

Kupffer cell receptor marker gene (Clec4f), in liver extracts by qRT-PCR. Expression of 

all three genes was strongly reduced in Clo-lip injected mice (Fig. 12). 

 Next, I sought to measure the 

efficiency of macrophage depletion in P. 

berghei sporozoite infected mice. For this 

purpose I included another two groups of 

mice which were injected with Clo-lip or 

PBS-lip two days prior to infection with 

5x104 P. berghei sporozoites. 42h after 

infection I determined the expression of 

all three macrophage markers in liver 

extracts by qRT-PCR. In agreement with 

the first experiment, expression of all 

three mRNAs was strongly reduced in 

uninfected mice. 

In sporozoite infected mice depletion of macrophages also led to a dramatically 

reduced expression of Clec4f. However, surprisingly, we found that Cd68 and F4/80 

mRNA expression in sporozoite infected animals depleted of macrophages was not 

impaired (Fig.13).  

 Interestingly, qRT-PCR analysis of parasite liver load in mice treated with clo-

lip was not significantly different compared to controls treated with PBS-lip (Fig. 14)  
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Figure 13: Relative gene expression of macrophages 
markers assessed by real time PCR in uninfected and 
infected animals treated with PBS-lip and Clo-lip. 

Figure 15: Immunofluorescence images of 
macrophages (anti-F4/80 antibody, red) in liver sections 
of uninfected and infected mice. Note the difference in 
macrophage numbers between Clo-lip and PBS-lip 
treated mice (40X objective). 

  

 To further explore the possibility that macrophages are recruited to the liver 

during the infection, we decided to visualize these innate immune cells in liver sections 

of uninfected and infected mice using confocal microscopy. The macrophages were 

stained with antibodies directed against a macrophage-specific marker (anti-F4/80 

antibody). We found a significant reduction in macrophages in mice treated with Clo-lip 

compared to PBS-lip treated mice. Strikingly, in infected animals treated with Clo-lip, 

we observed massive macrophage accumulation in the liver blood vessels (Fig.15).  

 

 

 

 

 

 

 

 

 

 

  

Figure 14: Parasite load in the liver accessed 
by real-time PCR in infected animals treated 
with PBS-lip and Clo-lip. 
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Figure 16: Relative gene expression of two 
pro-inflammatory markers assessed by real 
time PCR in uninfected and infected 
animals, treated with PBS-lip or Clo-lip. 

 

 Next I decided to monitor whether 

transcript expression of one chemokine 

(Mcp-1) and one acute phase protein (Saa3) 

is altered in infected mice treated with 

clodronate. Expression of Saa3 and Mcp-1, 

in uninfected animals was similar in both 

PBS-lip and Clo-lip treated groups (Fig. 16). 

However, in the infected mice, the 

expression of both genes was considerable 

higher in Clo-lip than in PBS-lip treated 

animals. Their expression was also 

significantly higher when compared to 

uninfected animals treated with Clo-lip. 

 

Is the response specifically activated by sporozoites? 

In the second phase of the project we decided to monitor whether the induction 

of this innate response is specifically induced by sporozoites in clodronate treated mice. 

For this, I decided to measure the response in PBS-lip and Clo-lip treated mice in three 

additional experimental conditions. The first group of mice was injected with salivary 

gland material from uninfected mosquitoes, a second group of mice was injected with 

heat-killed sporozoites, which do not reach the liver and do not infect hepatocytes, and a 

third group of mice was challenged with irradiated sporozoites, which are unable to 

replicate in hepatocytes. By injecting uninfected salivary gland material, I wanted to see 

if the innate response could be caused by microbes, such as bacteria or viruses present 

on and inside the mosquitos. By injection of heat inactivated sporozoites, I wanted to 

determine if the sporozoites need to be alive to trigger the inflammatory response, and 

finally by injecting irradiated sporozoites I wanted to determine whether parasite 

replication and development inside hepatocytes is required to induce the response. 

Depletion of macrophages led to a dramatically reduced expression of Clec4f 

mRNA in all conditions. Expression of Cd68 and F4/80 in animals depleted of 

macrophages was strongly impaired in mice injected with medium. However, their 
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expression was not impaired in mice injected with salivary glands, heat-killed	  

sporozoites, irradiated sporozoites nor live sporozoites (Fig.17). 

 

 

 

 

 

 

 

 

 I also found that injection of uninfected salivary gland material in clodronate 

treated animals led to substantial macrophage recruitment to liver blood vessels 

(Fig.18). 

  

Figure 18: Immunofluorescence images of macrophages (anti-F4/80 antibody, red) 
in liver sections of uninfected mice and mice injected with salivary gland material 
from uninfected mosquitoes. Note the difference in macrophage numbers between 
Clo-lip and PBS-lip treated mice (40X objective). 

Figure 17: Relative gene expression of three macrophage markers assessed by 
real time PCR in animals injected with medium, salivary gland material from 
uninfected mosquitoes, heat-killed and live sporozoites, and treated with PBS-
lip and Clo-lip. 
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Figure 19: Relative gene expression of two pro-inflammatory markers 
assessed by real time PCR in animals injected with medium, salivary 
gland material from uninfected mosquitoes, heat-killed and live 
sporozoites, treated with PBS-lip or Clo-lip. 

 Finally, expression of Mcp1 and Saa3 was strongly up-regulated in clodronate 

treated mice that were injected with salivary gland material from uninfected mosquitoes 

(Fig.19) 

 

 

 

 

 

 

 

 

 

Is the response triggered by LPS? 

 In the last part of this project I tried to determine what could be the ligand that 

triggers this response. LPS is a major component of the bacterial cell wall and is able 

trigger innate immune responses by binding to TLR4. Since mosquitoes do not live 

under sterile condition in the insectary, it is very likely that they are contaminated with 

bacteria and LPS. Therefore, we tested next whether we could reproduce this innate 

immune response simply by injecting LPS into mice depleted of macrophages. Two 

groups of mice each treated with PBS-lip or Clo-lip were injected either with medium 

(control) or different concentrations of LPS. 

 Fig.20 shows the expression levels of Cd68, F4/80 and Clec4f in Clo-lip treated 

mice challenged with either LPS or medium. I found that expression of all three 

macrophage marker genes was impaired in Clo-lip treated mice injected with medium 

but also after injection of different concentrations of LPS. 
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Figure 20: Relative gene expression of three macrophage markers assessed by 
real time PCR in non-infected animals treated with PBS-lip or Clo-lip. Both 
groups had animals injected with medium as a control, and animals injected either 
with 1µg/Kg (L1), 10µg/Kg (L10) or 100µg/Kg (L100) of LPS. 

 

 

 

 

 

 

 

 

 

 

 Inflammatory genes Mcp-1 and Saa3 were also analyzed for this experiment 

(Fig.21) and the expression of these two genes was not induced in LPS Clo-lip treated 

animals compared to LPS PBS-lip treated animals.  

 

 

 

Figure 21: Relative gene expression of two pro-inflammatory markers 
assessed by real time PCR in non-infected animals treated with PBS-lip or 
Clo-lip. Both groups had animals injected with medium as a control, and 
animals injected either with 1µg/Kg (L1), 10µg/Kg (L10) or 100µg/Kg 
(L100) of LPS. 
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Discussion and Conclusion 
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 In this project our main goal was to study the role of macrophages during the 

liver stage of malaria, since their role is not well known in this stage. To reach this goal 

we used a simple approach to explore macrophage cell function by depleting them using 

dichloromethylene bisphosphonate, or clodronate liposomes (Clo-lip), based on the 

natural process of phagocytosis of liposomes by macrophages.  

 After injection of Clo-lip, phagocytes are specifically killed via apoptosis mainly 

in the bone marrow, spleen and the liver (Rooijen and Sanders, 1994). Also, neutrophils and 

lymphocytes do not seem to be affected by it (Feng et al, 2011) and previous data from 

Jordan et al, 2003 suggests that clodronate liposomes are non-selective regarding the 

different macrophage subtypes. This selectivity was confirmed in our results by the low 

expression levels of two macrophage cell marker genes (Cd68, F4/80) and one Kupffer 

cell receptor marker gene (Clec4f) in clodronate treated uninfected mice (Fig.12). 

Interestingly, the expression levels of Cd68 and F4/80 did not show the same decrease 

in infected animals treated with macrophages (Fig.13). This indicates that during a 

malaria liver infection Kupffer cells are efficiently depleted while other motile 

macrophages might be recruited to the liver to respond to the infection. However, 

measurement of the parasite load in the liver was not significantly different in animals 

treated with clodronate compared to control animals treated with PBS (Fig.14). This 

result (i) contrasts to another study where it was shown that in clodronate treated 

animals, Plasmodium infection was enhanced possibly due to the gaps left by removal 

of the Kupffer cells, which would explain why sporozoite microneme protein essential 

for cell traversal (SPECT)-deficient sporozoites are still able to infect (reviewed in Frevert 

et al, 2006. Ishino, 2004), and (ii) also suggests that macrophages do not have an obvious 

impact on the Plasmodium liver. 

 Concerning the macrophage recruitment described above, our F4/80 

immunohistochemistry and subsequent confocal microscopy results showed a great 

accumulation of macrophages in the liver blood vessels of infected animals treated with 

clodronate (Fig.15) This imaging approach not only validated once again the efficiency 

of clodronate to deplete liver resident macrophages, but also further indicated that 

macrophages are indeed recruited to the liver after infection with Plasmodium 

sporozoites. 
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 The immune response was also analyzed by measurement of the expression of 

one chemokine (Mcp-1) and one acute phase protein (Saa3). Results showed a higher 

expression level of these pro-inflammatory markers in infected animals treated with 

clodronate (Fig.16). This supports previous studies where it was shown that sporozoites 

induce a selective suppression in the production of pro-inflammatory markers such as 

Tnf-α, Il-6 and Mcp-1, and enhancement of the anti-inflammatory cytokine, which 

suggests that sporozoites render Kupffer cells insensitive to pro-inflammatory stimuli 

and eventually eliminate these macrophages by forcing them into programmed death 

(Klotz and Frevert, 2008).  

 Altogether, these results indicate that macrophage depleted mice induce upon 

sporozoite infection a massive recruitment of macrophages to the liver blood vessels 

and a substantial expression of pro-inflammatory genes. 

 Results regarding the specific cause for the innate response in clodronate treated 

mice showed that despite the different experiments designed to isolate each possible 

cause, the expression level of Cd68 and F4/80 was only impaired in uninfected animals 

treated with clodronate. Expression of Clec4f was impaired in every group, confirming 

that Kupffer cells were removed (Fig.17). Moreover, the fact the expression level of 

Cd68 and F4/80 was not reduced in clodronate treated animals injected with salivary 

gland material from uninfected mosquitoes, suggests that the recruitment of 

macrophages to the liver is not triggered by sporozoites but by other components 

present in salivary gland material of mosquitos. In agreement with these results, our 

F4/80 immunohistochemistry and following confocal microscopy results showed an 

accumulation of macrophages in the liver blood vessels of mice injected with salivary 

gland material from uninfected mosquitoes (Fig.18). Expression levels of pro-

inflammatory markers Mcp-1and Saa3 were also higher in clodronate treated animals 

injected with salivary gland material from uninfected mosquitoes, which confirmed the 

presence of the acute phase response (Fig.19).  

 Concerning LPS experiments, expression levels of Cd68 and F4/80 were 

impaired in animals treated with clodronate (Fig.20), which contrasts with the higher 

expression levels in clodronate treated animals injected with salivary gland material 

from uninfected mosquitoes (Fig. 17). This shows that there is no macrophage 

recruitment after injection of LPS.  
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 Mcp-1 and Saa3 expression was also analyzed, and again, the results contrasted 

with those observed in clodronate treated animals injected with salivary gland material 

from uninfected mosquitoes (Fig.18), because there was no induction of these pro-

inflammatory markers in LPS clodronate treated animals (Fig.21), thus excluding LPS 

as a trigger for the immune response. 

 In conclusion, understanding the mechanisms of macrophage function during the 

malaria liver stage is important, since is a direct relation with the host’s immune 

response. Our study assessed this, using a simple macrophage depletion technique. One 

interesting result was the recruitment of these phagocytic cells into the liver, as well as a 

higher immune response, after the Kupffer cells had been removed. Also, in our study, 

salivary gland material from uninfected mosquitoes was responsible for a stronger 

immune response and phagocytic cell recruitment when macrophages were depleted, 

pointing out that agents other than parasites and LPS might be acting as triggers. 

 In future experiments, it might be interesting (i) to decipher which ligand 

triggers the induction this response and (ii) to determine from which source of the body 

(e.g. the bone marrow) the macrophages are recruited and whether macrophage 

depletion mobilizes and activates hematopoietic stem cells (HSC). 
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