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Resumo 

 

Entre as inúmeras questões relativas à fisiologia dos animais uma das mais prementes 

prende-se com a forma como o metabolismo de um organismo varia de acordo com o 

seu peso. A dependência do metabolismo (Y) face à massa do organismo (M) segue a 

equação alométrica Y = b0M
b
 onde b0 é a constante de normalização, específica para 

cada taxon e b é o coeficiente de escalonamento. A Teoria Ecológica do Metabolismo 

(TEM) postula que a temperatura e a riqueza de espécies estão correlacionadas, uma vez 

que, a temperatura aumenta as taxas de mutação (devido à aceleração de processos 

bioquímicos), acelerando por sua vez a evolução molecular e levando a um aumento da 

taxa de especiação em zonas mais quentes. No entanto, actualmente, diversas premissas 

desta teoria têm sido contestadas. Uma das premissas desta teoria é o facto da existência 

de escalonamento metabólico universal (lei dos 3/4) e os mecanismos que estão 

subjacentes a este, o qual reúne pouco consenso científico. Segundo esta teoria todos os 

organismos têm em comum as mesmas relações de escalonamento alométricas e que o 

modelo geral da origem das taxas metabólicas alométricas descreve como os materiais 

essenciais às células são transportados através da vasta rede ramificada de distribuição 

de energia, como são os vasos capilares, e que é esta rede a responsável pela atribuição 

do coeficiente de escalonamento de três quartos, ou o equivalente logaritmizado para 

massa e taxa metabólica, -0.25. Modelos teóricos baseados nas restrições geométricas 

da rede de abastecimento celular são previsivelmente limitados para animais aquáticos 

de corpo mole, tais como os cefalópodes, uma vez que podem efetuar trocas gasosas e 

de matéria orgânica através da superfície corporal. 

Em resposta à premissa universal da lei dos três quartos, foi proposto que, após a 

correção para a massa corporal e temperatura, todos os organismos de um dado tamanho 

partilham a mesma taxa metabólica. Isto implica que a evolução e a ecologia possuem 

um papel mínimo na variação metabólica. Esta generalização ecológica não é suportada 

nem pela heterogeneidade nos expoentes de escalonamento nem pelas constantes de 

normalização encontradas na literatura. Estas sim, parecem expressar a variação de 

mecanismos biológicos envolvendo considerações evolucionárias e ecológicas. 

A Classe Cephalopoda encontra-se representada na lista de estudos de escalonamento 

metabólico que integram uma elevada heterogeneidade das constantes de normalização 

e coeficientes de escalonamento. Estes invertebrados possuem características que os 

tornam comparáveis a vertebrados, como sistema nervoso altamente desenvolvido, 
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sistema circulatório fechado e um grande repertório de comportamentos. A fisiologia de 

cefalópodes bentónicos e nectobentónicos está amplamente estudada. É um habitat que 

promove estilos de vida menos exigentes a nível energético, uma vez que, oferece 

melhores oportunidades de esconderijo e camuflagem. No que diz respeito à fauna 

teutológica do Oceano Atlântico Este, as espécies mais comuns são o polvo comum 

Octopus vulgaris e o choco comum Sepia officinalis. 

No presente trabalho foi efectuado um estudo ontogenético da variação das taxas 

metabólicas, de ambas as espécies acima referidas, a três temperaturas diferentes, com o 

intuito de aferir se os coeficientes de escalonamento e o modo como o factor extrínseco 

– temperatura - pode afectar o escalonamento metabólico. 

Tal como esperado, registou-se o aumento das taxas metabólicas com o aumento da 

temperatura e alterações metabólicas ontogenéticas significativas, i.e. maiores 

necessidades energéticas dos organismos recém-eclodidos estudados. À nascença, os 

polvos são paralarvas pelágicas, habitando a zona epipelágica do oceano, onde é 

necessária a utilização do modo de locomoção caraterístico dos cefalópodes - propulsão 

a jacto. Este modo de locomoção é energeticamente pouco eficiente quando comparado 

com o modo de locomoção ondulatório/oscilatório dos peixes, requerendo taxas 

metabólicas aproximadamente dez vezes superiores às taxas metabólicas de polvos 

adultos. Aquando do assentamento das paralarvas a taxa metabólica destas decresce, 

uma vez que no ambiente bentónico a necessidade de utilização da propulsão a jacto é 

drasticamente reduzida, e os polvos juvenis e adultos utilizam maioritariamente modos 

de locomoção menos dispendiosos. Comparativamente, os chocos, desde a sua eclosão 

até à fase adulta, não sofrem grandes alterações na sua morfologia e fisiologia, 

assemelhando-se a “pequenos” adultos aquando da eclosão, e adoptando imediatamente 

os comportamentos típicos daqueles. Como tal, a exigência metabólica dos chocos 

recém eclodidos é muito inferior à dos polvos recém eclodidos, sendo, no entanto, 

superior à dos chocos juvenis. Isto deve-se ao facto dos cefalópodes serem organismos 

com taxas de crescimento muito elevadas no início da sua vida, sendo estas mais 

elevadas do que no restante ciclo de vida. 

As diferenças entre as taxas metabólicas de juvenis de choco e polvo revela a maior 

necessidade de gasto de energia por parte dos chocos devido ao seu estilo de vida 

nectobentónico, que obriga à manutenção da flutuabilidade através da siba, e do 

constante movimento das aletas. 
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O coeficiente de escalonamento de ambas as espécies revela uma alometria negativa (b 

< 0) que reflecte os seus estilos de vida, menos activos que aquele das espécies 

pelágicas de cefalópodes. No presente estudo os coeficientes de escalonamento 

enquadram-se na gama de valores abrangida pela TEM, apoiando assim a 

universalidade desta Teoria.  

No presente estudo não foi, no entanto, incluída a análise das taxas metabólicas e 

coeficientes de escalonamento da lula europeia Loligo vulgaris devido à impossibilide 

da amostragem de especimens.  

Outros estudos sobre o escalonamento metabólico de cefalópodes permitem verificar a 

existência de diferentes relações de escalonamento entre lulas musculares ativas e os 

cefalópodes do presente estudo. Naquelas, o metabolismo específico (por grama de 

indivíduo) é quase independente do seu tamanho, e por isso, parece estar relacionado 

com o dispêndio massivo de energia na locomoção a jacto.  

Os proponentes da TEM têm vindo a focar demasiada atenção na influência da massa de 

um organismo e temperatura nas taxas metabólicas, deixando de parte a ecologia e 

evolução, factores importantes que moldam o ciclo de vida de qualquer espécie. A 

quantidade de provas disponíveis respeitando o metabolismo de cefalópodes permitem-

nos duvidar da existência de tal lei. No entanto, as evidências referidas abordam 

sobretudo lulas com hábitos pelágicos. Pelo contrário, os resultados aqui discutidos, 

tendo em conta o ciclo de vida de duas espécies de cefalópodes que habitam o bentos 

mostraram expoentes de escalonamento que representam as necessidades energéticas 

deste habitat, apoiando a universalidade da TEM. 

 

Palavras-chave: Teoria Ecológica do Metabolismo, escalonamento metabólico, 

cefalópodes, alometria 
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Is there a universal allometric scaling of metabolism? Cephalopods as a case study. 

 

 

Abstract 

 

The aim of the present study was to follow the ontogenetic metabolic scaling, of two 

coastal cephalopods with different life strategies, the benthic common octopus Octopus 

vulgaris and the nektobenthic common cuttlefish Sepia officinalis. Oxygen consumption 

rates were measured for hatchlings, juveniles and adult stages exposed to three different 

temperatures. Our results show significant differences between the metabolic rates of 

O.vulgaris hatchlings and adults, reflecting the morphological and locomotory changes 

that this species undergoes throughout ontogeny. Significant inter-specific differences 

in the metabolic rates were also obseved, with the nektobenthic cuttlefish exhibiting 

higher metabolic, possibly associated with a more energy demanding life strategy. But 

most importantly, our findings have shown little deviation from the main premise of the 

Metabolic Theory of Ecology, the 3/4-power law, since both species’ scaling exponents 

fell closer to -0.25. 

 

Keywords: Metabolic Theory of Ecology, metabolic scaling, cephalopods, allometry 

 

 

Introduction 

 

Since the early years of modern biology scientists have tried to understand how an 

organism’s metabolism is affected by its body mass. Metabolism is the process by 

which energy is exchanged between the organism and its environment (Gillooly et al. 

2001), also comprising the transformation and allocation of such energy that occurs 

within the organism (Brown et al. 2004). The relationship between metabolic rate (Y) 

and body mass (M) is known to follow the allometric equation Y = b0M
b
 (Rosa et al. 

2009). In this equation b0 is the normalization constant, which expresses the energetic 

costs of an organism (Demetrius 2006) to be fitted empirically (Brown et al. 2004), and 

b defined as the scaling exponent, that is, the ratio of variation in metabolic rate 

accompanying changes in body mass (Demetrius 2006). The value of the scaling 
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exponent, often falls near one-quarter power (b= -0.25; Rosa et al. 2009), being widely 

accepted as 3/4 (Hemmingsen 1960; Kleiber 1961; Brody 1945; McMahon and Bonner 

1983; Peters 1983; Schmidt-Nielsen 1984; Blaxter 1989; Brown et al. 2004; Savage et 

al. 2004). The quarter power metabolic scaling (body mass increasing fourfold, while 

log metabolic rate increases only threefold; Glazier 2006) is, to some, a universal 

biological law (West et al. 1997; West and Brown 2004), since in literature there is a 

visible pattern regarding this scaling exponent across habitats and taxa (Hemmingsen 

1960; Gillooly et al. 2001). The belief that this 3/4-power law is universal was 

supported by resource and transportation models that claim to predict universal quarter-

power scaling for metabolic rates and other biological processes (West et al. 1997; 

Banavar et al. 1999; Brown et al. 2004; Savage et al. 2004; West and Brown 2004). 

Nevertheless it has been shown that both, the normalization constant (White et al. 2006; 

Seibel 2007) and the scaling exponent varies widely among different physiological 

states, both within and between species (Bokma 2004; Glazier 2005; 2008; 2009 Niver 

and Scharlemann 2005; Weibel 2005; White and Seymour 2005; White et al. 2006; 

Seibel 2007; Makarieva et al. 2008, Rosa et al. 2009). 

From this commonality of metabolic scaling arose the Metabolic Theory of Ecology 

(MTE), based upon the principle that an organism’s growth, survival and reproduction 

is determined by its metabolic rate and limited by the organism’s capacity of resource 

uptake due to constraints of the fractal-like branching networks of fuel delivery (Brown 

et al. 2004). 

The validity of this proposed single cause (constraints of resource uptake) is not 

consensual among physiologists, since throughout time, such networks have evolved in 

order to meet the cells’ energy requirements, even in maximal effort (Bishop 1999; 

Weibel 2002). Thus, oxygen supply (used as proxy of metabolic rate) does not seem to 

adequately explain the size dependence of an organism’s metabolic rate (Seibel 2007). 

Gillooly et al. (2001), following the universality of the quarter-power law postulated by 

West et al. (1997) proposed that after due correction for body size and temperature, all 

organisms with the same body mass share the same metabolic rate. Yet, the 

commonality of scaling exponents in literature may be misleading, because the 

compilation of allometric relations made by Peters (1983) was mainly (78%) about 

vertebrates, even though most animals are invertebrates (Glazier, 2005). Such fact does 

not support the proposal of Gillooly et al. (2001), since it implies that evolution and 



15 
 

ecology play minor roles in determining an organism’s metabolic rate (Rosa et al. 

2009).  

Amidst the heterogeneity of normalization constants and scaling exponents problematic 

reported by Seibel (2007), lies the cephalopod class. Cephalopods are a very diverse 

group of marine invertebrates inhabiting the ocean from the poles to the tropics, from 

shallow depths to the abyssal trenches, exhibiting varied life strategies, that result in a 

diversity of metabolic rates, unusual in the animal kingdom (Rosa et al. 2008 a, b; 2009; 

Rosa and Seibel 2008, 2010). Cephalopods exhibit features that make them comparable 

to vertebrates, such as a complex behavior repertoire, a highly developed nervous 

system, a closed blood convection system, with low blood volume and a high oxygen 

extraction efficiency resulting from their ability to slow down the ventilatory system 

and maintaining a high oxygen exchange surface and high circulatory rate (Wells and 

Wells 1983, 1985, 1986; Wells 1988; Eno 1994), and also the high concentration of 

hemocyanin in their blood, which is pumped by two branchial and one powerful 

systemic heart (Schipp 1987; Wells and Smith, 1987; Wells 1992; Pörtner and Zielinski 

1998). The physiology of some benthic and nektobenthic cephalopods has been well 

studied (Wells and Wells 1982; O'Dor and Wells 1987; Wells 1988; Wells and Wells 

1991; Seibel and Childress 2000; Melzner et al. 2006). The benthic habitat does not 

require high locomotory efficiency, since they have more crypsis and refuge 

opportunities (Seibel and Childress 2000). The benthic Octopus vulgaris (Lamarck, 

1798) is the most studied species of the Octopus genus. It inhabits mostly shallow 

coastal habitats of the temperate, subtropical and tropical Atlantic, Indian and Pacific 

Oceans, occurring also in the Mediterranean Sea (Mangold 1998). The nektobenthic 

Sepia officinalis Linnaeus 1758 is found on the continental shelf of the Eastern Atlantic 

Ocean and also Mediterranean Sea (Boletzky, 1983; Guerra and Castro 1988) being the 

most common species of the Sepia genus occurring in these waters. 

No ontogenetic studies on metabolic scaling have ever been performed on O.vulgaris, 

and S. officinalis. Hence, the aim of this study is to investigate, for the first time, the 

ontogenetic metabolic scaling of coastal cephalopods with two distinct life strategies, 

namely the benthic common octopus O. vulgaris and the nektobenthic common 

cuttlefish S. officinalis in order to test the universality of the 3/4-power law and to 

investigate how extrinsic effects, such as temperature may affect metabolic scaling. 
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Materials and Methods 

 

Specimen collection and stocking conditions 

Egg clutches of O. vulgaris and S. officinalis eggs were collected near Cascais, in April 

2012 (cuttlefish) and July (octopus) and brought to Guia’s Marine Laboratory. Eggs 

were placed in aquaria at 20ºC until hatching.   

Juvenile and adult octopuses ranging from 37 to 283 g total weight were acquired from 

local fishermen between December 2011 and October 2012. Juvenile cuttlefish ranging 

from 3.8 and 26 g total weight were captured in Sado estuary during October 2011 and 

July 2012. During transportation, organisms were kept in 60 L containers filled with 

seawater aerated through the use of portable air pumps. Upon arrival at the laboratory, 

they were placed and acclimated into 540 L rectangular tanks, within a recirculating 

aquaculture system (RAS), equipped with mechanic, biologic and physical filtration as 

well as UV disinfection until they were used for metabolic rates quantification. A total 

of 22 octopus specimens across, three orders of magnitude of mass (wet weight; 0.001-

0.01 g, 10-100 g, 100-1000 g), and 33 cuttlefish specimens, across three orders of 

magnitude of mass (wet weight; 0.1-1.0 g, 1-10 g, 10-100 g) were used. 

. 

Determination of metabolic rates 

 

Metabolic rates (oxygen consumption rates) were performed at different temperatures 

for O. vulgaris (10 ºC, 15 ºC and 20 ºC) and S. officinalis (15 ºC, 20 ºC and 25 ºC).   

The experimental temperatures used to quantify the metabolic rates of hatchlings were 

the same used for juveniles and adults. These temperatures were chosen to reflect the 

normal thermal amplitude that adults face throughout the year. For instance, and 

contrary to octopods, the common cuttlefish is found more offshore during winter and, 

in early spring, it makes extensive horizontal migrations to spawn in neritic zones, 

including the Sado Estuary, where it faces temperatures above 25ºC (Baptista et al. 

2012). 

The metabolic rates of cuttlefish and octopus hatchlings were measured according to the 

methods described in Seibel et al. (2007) and Rosa et al. (2009).  

Hatchlings were placed in gas-tight glass syringes with 3 ml (for octopus) and 10 ml 

(for cuttlefish) of filtered (0.2 µm) and UV sterilized seawater (35 psu). Seawater used 

in the syringes was aerated until saturation, in order to prevent eventual oxygen level 
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decrease, as suggested by Ikeda et al. (2002). Simultaneously and for each experiment, 

a control syringe (containing only the previously mentioned water) was used to detect, 

and if necessary, correct any possible bacterial respiration. 

A total of 8 syringes were used at each experimental temperature, and these were placed 

in a temperature controlled water bath (Lauda, Lauda-Königshofen, Germany), with the 

duration of respiratory runs varying between 90 and 360 minutes for octopus and 40 and 

60 minutes for cuttlefish.  

At the end of each run, oxygen levels were measured through the extraction of a water 

sample from the incubation syringes using a Hamilton gas-tight 500 ml syringe, and 

subsequent injection into a micro-respiratory chamber Mc 100 Microcell (Strathkelvin, 

North Lanarkshire, Scotland) where oxygen concentrations were recorded using a 

Clarke-type O2 electrode connected to a multi-channel oxygen interface (Model 928, 

Strathkelvin, North Lanarkshire, Scotland). The oxygen electrode and the micro-

respiratory chamber were always kept at the experimental temperatures (Marsh and 

Manahan 1999; Seibel et al. 2007). 

Regarding the juvenile and adult stages, the metabolic rates were quantified in a flow-

thru respirometry system consisting of a 73 L column connected to respirometer 

chambers with different volumes (from 0.25 to 6.8 L capacity), selected to 

accommodate differently sized animals. Specimens were allowed to acclimate during an 

initial period of 2 h before starting the actual measurements of their oxygen 

consumption (Rosa and Seibel 2008c; 2010). The seawater used in the experimental 

procedures was mechanically filtered (0.2 µm), UV sterilized and continuously aerated 

to maintain oxygen saturation. Depending on the size of the chamber, a peristaltic pump 

(Masterflex L/S, Model no 7524-45, Cole-Parmer Instrumental Company, IL, USA) or a 

water pump (used for larger chambers) was used to circulate water within the flow-thru 

(column-chamber-column) system. 

Oxygen concentrations were recorded at the exit of each chamber with a Clarke-type O2 

electrode connected to a 929 Oxygen Interface (Strathkelvin Instruments). Additionally 

one electrode directly connected to the column (i.e. not connected to a chamber) was 

used as a control for oxygen concentration. The system was calibrated using oxygen-

saturated seawater before each run and at each experimental temperature (using the 

correspondent maximum dissolved oxygen concentration value; Rosa and Seibel 2010). 

The experimental temperatures used to quantify the metabolic rates of the juvenile and 

adults were the same used for hatchlings. 
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After the animal’s stress phase, the duration of the runs (and data recording) was 

variable, but a minimum duration of 6 hours was established for every specimen tested. 

After the experimental runs, all specimens were weighed. 

 

Statistical analysis 

Oxygen consumption rates were evaluated in relation to wet weight using simple linear 

regressions. Regression slopes were considered to be significant when their slopes 

differed from 0 at the 95% confidence level. ANCOVA was also used to compare 

energy expenditure rates of O. vulgaris and S. officinalis throughout their ontogeny and 

at the different temperatures used. All statistical analyses were performed with the 

software STATISTICA
TM

 6.1. (Statsoft, Inc., Tulsa, OK 74104, USA). 

 

 

Results 

The regression analysis showed that the mass-specific metabolic rates of O. vulgaris 

were negatively affected by body mass in all three temperatures used (Fig. 1, Table 1). 

When controlling the effect of size on mass-specific metabolic rates, temperature was 

shown to be a significant factor, affecting the routine metabolic rates of octopus 

specimens (ANCOVA: F = 87.24; p = 0.000).  

The smallest O. vulgaris (i.e. a hatchling) weighed 1.89 x 10
-3

 g and had an oxygen 

consumption rate of 11.989 µmol O2 g
-1

 h
-1

 at 10 ºC, 16.956 µmol O2 g
-1

 h
-1

 at 15 ºC and 

23.979 µmol O2 g
-1

 h
-1

 at 20 ºC. The largest specimen of O. vulgaris weighed 238.0 g 

and had an oxygen consumption rate of 0.978 µmol O2 g
-1

 h
-1

 at 10 ºC, 1.866 µmol O2 g
-

1
 h

-1
 at 15 ºC and 3.295 µmol O2 g

-1
 h

-1
 at 20 ºC. However, temperature did not affect 

the scaling relationship between mass-specific metabolic rate and body mass 

(ANCOVA: F = 2.46; p = 0.098).  

Regression analysis performed on S. officinalis showed that their mass-specific 

metabolic rates were affected by body mass in all three temperatures used (Fig. 2, Table 

1).  
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Figure 1. Mass-specific oxygen consumption rates (µmol O2 g
-1

h
-1

) as a function of body size of 

O. vulgaris at the three experimental temperatures. Different letters represent significant 

differences between temperatures (p  <  0.05). The equations for the regressions are presented in 

Table 1.  

 

Regarding S. officinalis, and at 15 ºC, the smallest hatchling tested weighed 0.182 g and 

had an oxygen consumption rate of 8.623 µmol O2 g
-1

 h
-1

 and the larger specimen 

weighed 26.0 g and had an oxygen consumption rate of 6.360 µmol O2 g
-1

 h
-1

. At 20 ºC, 

the smallest specimen weighed 0.156 g and had an oxygen consumption rate of 16.676 

µmol O2 g
-1

 h
-1

 and the largest weighed 18.0 g and had an oxygen consumption rate of 

5.209 µmol O2 g
-1

 h
-1

. At 25 ºC, the smallest weighed 0.098 and had an oxygen 

consumption rate of 16.062 µmol O2 g
-1

 h
-1

 and the largest weighed 13.0 g and had an 

oxygen consumption rate of 8.299 µmol O2 g
-1

 h
-1

 at 20 ºC. When controlling the effect 

of size on mass-specific metabolic rates, temperature was shown to be a significant 

factor, affecting the routine metabolic rates of cuttlefish specimens (ANCOVA: F = 

39.93; p = 0.000). However temperature did not affect the scaling relationship between 

mass-specific metabolic rate and body mass (ANCOVA: F = 2.09; p = 0.142).  



20 
 

 

Figure 2. Mass-specific oxygen consumption rates (µmol O2 g
-1 

h
-1

) as a function of body size of 

S. officinalis at the three experimental temperatures. Different letters represent significant 

differences between temperatures (p  <  0.05). The equations for the regressions are presented in 

Table 1. 

 

Table 1. Size range, mass-specific oxygen consumption rates (µmol O2 g
-1

 h
-1

) as a function of 

body size and regression parameters for O. vulgaris and S. officinalis at the different 

experimental temperatures. 

Oxygen consumption O. vulgaris 
 

S. officinalis 

(MO2 = aM
b
) 10 ºC 15 ºC 20 ºC 

 

15 ºC 20 ºC 25 ºC 

Mass (g) 0.002 - 283 0.002 - 283 0.002 - 283 
 

0.182 - 26 0.156 - 18 0.098 - 13 

Rate (µmol O2 g
-1 

h
-1

) 0.978 - 11.989 1.866 - 16.956 3.295 - 23.979 
 

6.360 - 8.623 5.209 - 16.676 8.299 - 16.062 

a 3.6567 5.8659 8.4412 
 

5.573 9.6231 11.429 

b -0.192 -0.168 -0.166 
 

-0.182 -0.192 -0.134 

n 16 17 17 
 

12 10 13 

r
2
 0.974 0.946 0.972 

 
0.901 0.934 0.884 

p-value 0.000 0.000 0.000 
 

0.007 0.004 0.000 

 

When controlling the effect of size on the mass-specific metabolic rates of each species 

(Fig. 3), it was shown that species identity affects mass-specific metabolic rates 
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(ANCOVA: F = 8492.72; p = 0.000), and that species identity also affects the 

relationship between mass-specific metabolic rates and body mass (ANCOVA: F = 

14.63; p = 0.001). 

  

Figure 3. Comparison of the mass-specific oxygen consumption rates (µmol O2 g
-1

 h
-1

) as a 

function of body size between O. vulgaris and S. officinalis at 15 ºC and 20 ºC. Different letters 

represent significant differences between metabolic rates of both species by controlling the 

effect of size. Asterisks represent significant differences regarding scaling exponents of both 

species.  



22 
 

Discussion 

 

The universality of the Metabolic Theory of Ecology (MTE) has long been debated. As 

otherwise noted by Rosa et al. (2009) several animals, both terrestrial (Darveau et al. 

2002; Brown et al. 2004; Glazier 2005) and aquatic (Gillooly et al. 2001; Clarke 2006; 

Glazier 2005) exhibit metabolic scaling to the power of -0.25. Concordantly, the scaling 

exponents derived from both species of the present study fall within the same range (i.e. 

O. vulgaris: 10 ºC, b = -0.192; 15 ºC, b = -0.168; 20 ºC, b = -0.166; S. officinalis: 15 ºC, 

b = -0.182; 20 ºC, b = -0.192; 25 ºC, b = -0.134). Seibel and Drazen (2007) found that 

the variation in normalization constants among the benthic species within a phylum is 

not as pronounced as the variation of the normalization constants among the pelagic 

species of the same phyla reflecting the more limited range of activity levels on the 

benthos (Seibel and Childress 2000).   

Large differences in energy expenditure rates were found between the hatchlings and 

adults of O. vulgaris, with hatchlings displaying over ten times higher oxygen 

consumption rates than adults, reflecting higher metabolic rate requirements during the 

critical pelagic paralarvae phase of their lives. O. vulgaris paralarvae rely on jet 

propulsion as the means of locomotion (Bartol 2009; Pimentel et al. 2012) and most 

likely to find prey in the epipelagic zone. Jet propulsion is widely known to be 

energetically inefficient representing a large toll on the species’ energy demand when 

compared to the undulatory/oscillatory swimming of fishes (O’Dor and Webber 1986; 

Rosa and Seibel 2008c; Rosa et al. 2009). Moreover, in cephalopods, a pelagic lifestyle 

has been shown to be associated with a high energetic demand and isometric scaling, as 

observed for gonatid squids (Rosa et al. 2009). Squids are known to be active, highly 

energy demanding predators of the pelagic realm, having high mass independent 

metabolic rates and having isometric metabolic scaling (b ~ 0; Seibel 2007; Rosa et al. 

2009), resulting in an energetically expensive lifestyle throughout ontogeny (Rosa et al. 

2009). The pelagic lifestyle is a very demanding and energetically expensive mode of 

life, when compared to the calmer, with higher refuge opportunities (Seibel and 

Childress 2000), benthic and nektobenthic lifestyle. 

When octopus hatchlings leave the water column and settle, there is no need for regular 

use of jet propulsion (i.e. to maintain buoyancy), which together with the existence of 

more crypsis and refuge opportunities in the benthic environment results in a decrease 

of the metabolic rate (Seibel and Childress 2000).  
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Glazier (2005) resurrected a tentative classification of intraspecific scaling based on 

Bertalanffy’s (1957) notion of different metabolic types. Type III is listed as nonlinear, 

comprising an ontogenetic shift from near isometry in early life to negative allometry in 

adulthood. O. vulgaris, with its distinct life phases would expectedly fit this type. In our 

study, however, we could not find isometry in the early life stage. Even if octopus 

hatchlings don’t undergo major changes, they shift between two very different habitats 

(i.e. migrate from the epipelagic to the benthic realm), a transition naturally associated 

with biochemical changes hence making them suitable for nonlinear metabolism.  

On the other hand, differences in energy expenditure between hatchlings and juveniles 

of S. officinalis were less pronounced given that, as hatchlings, S. officinalis are less 

energetically demanding. Cuttlefish do not show drastic developmental shifts 

throughout ontogeny, spending some periods of time in the water column but also 

dwelling on the bottom (nektobenthic life strategy) with large periods of resting (Aitken 

et al. 2005). Also, cuttlefish possess a cuttlebone, that facilitates their buoyancy 

(Denton and Gilpin-Brown 1961a, b; Webber et al. 2000). 

The extrinsic effect here studied (i.e. temperature) was found to have a significant effect 

on the metabolic rate of the species studied, with increases in temperature resulting in 

increases in the mass-specific metabolic rates of both O. vulgaris and S. officinalis. This 

happens because temperature is one the main factors dictating the metabolic rate of an 

organism, consequently affecting biochemical processes taking place within the body, 

since enzymes are very sensitive to temperature fluctuations, oxygen consumption, and 

even growth (Gillooly et al. 2001; Pörtner and Knust 2007; Seibel and Drazen 2007).  

In this study we did not find any significant effect of temperature on the metabolic 

scaling (i.e. scaling exponent) of these two cephalopod species. Yet, it is worth noting 

that other studies were able to do so, namely in the fish Etheostema olmstedi (Kumai 

2006).  

We argue that proponents of the MTE have focused too much attention on the influence 

of the body size disregarding the role of ecology and evolution, important factors that 

shape the life history of any species. The amount of available evidence concerning 

cephalopod metabolism gives us room to doubt the universality of such a law (Seibel et 

al. 1997; Seibel and Childress 2000; Seibel 2007; Seibel and Drazen 2007; Rosa et al. 

2009; Rosa and Seibel 2010b; Rosa and Seibel 2010c). However, such evidence comes 

mostly from reports on squids with pelagic lifestyles. On the other hand, the findings 



24 
 

reported herein (acknowledging the type of life strategy of two species studied) support 

the universality of the MTE. 
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