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Resumo 

 

A descoberta, em 1998, da interferência por RNA (RNAi) revelou que pequenos 

RNAs não codificantes estão envolvidos no controlo da expressão genética. Atualmente, 

várias vias de RNAi são conhecidas em Eucariotas. Apesar de divergirem em muitos 

aspetos, todas possuem complexos regulatórios envolvendo uma proteína Argonauta e um 

pequeno RNA. O complexo Argonauta-pequeno RNA vai ligar-se a RNAs mensageiros 

(mRNAs) com sequência complementar. De seguida, a expressão do mRNA alvo será 

afetada, nomeadamente, o mRNA poderá ser degradado ou poderá ocorrer inibição da sua 

tradução. O silenciamento genético promovido pelas vias de RNAi pode também dar-se ao 

nível da cromatina. Nesse caso, há o recrutamento de complexos enzimáticos capazes de 

modificá-la. Assim, utilizando estas plataformas mecanísticas, as vias de RNAi regulam a 

expressão genética a vários níveis, tendo particular importância no controlo de elementos 

genéticos considerados egoístas ou parasíticos, como os elementos transponíveis (TEs). 

As proteínas Argonautas podem ser divididas em três subfamílias: a subfamília Ago, 

cujos membros são expressos ubiquamente e associam-se a RNAs em cadeia dupla; a 

subfamília Piwi, que são expressas na linha germinal dos metazoários e associam-se a um 

tipo específico de pequenos RNAs de cadeia simples, os piRNAs; e a subfamília Wago, 

cujos componentes estão apenas presentes em Nemátodes, tal como Caenorhabditis 

elegans. 

Em C. elegans, existem cinco classes de pequenos RNAs, divididas de acordo com a 

sua dimensão, alterações químicas e Argonautas às quais se associam: pequenos RNAs 

primários, 22G-RNAs, 21U-RNAs, 26G-RNAs e microRNAs. Os pequenos RNAs primários 

são RNAs de cadeia dupla que, uma vez dentro das células do nemátode, são clivados em 

pequenos RNAs. Posteriormente, estes irão associar-se a uma Argonauta que removerá 

uma das cadeias e o complexo pequeno RNA-Argonauta ligar-se-á a um mRNA alvo. Estes 

pequenos RNAs primários, não justificam, por si, o silenciamento genético robusto que é 

observado. Para um forte silenciamento, é necessário que haja amplificação do sinal. Para 

este efeito, são recrutadas para o mRNA alvo RNA Polimerases dependentes de RNA 

(RdRPs) que sintetizam pequenos RNAs secundários. Estes são denominados 22G-RNAs 

por exibirem um comprimento de 22 nucleótidos e uma forte tendência para guanosina na 

sua extremidade 5’. Por sua vez, os 22G-RNAs vão associar-se a Argonautas da classe 

Wago, exercendo silenciamento genético de formas que ainda não são completamente 

claras. Recentemente, foi descoberta em C. elegans uma Argonauta expressa nas células 

somáticas, denominada NRDE-3, que após a ligação a 22G-RNAs, migra para o núcleo e 

interage com pré-mRNAs com sequência complementar ao 22G-RNA que transportam. 
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Após o reconhecimento de um pré-mRNA complementar, a NRDE-3 recruta os fatores 

nucleares NRDE-1, NRDE-2 e NRDE-4 que, por sua vez, irão inibir a progressão da 

Polimerase de RNA II e recrutar enzimas ou complexos enzimáticos modificadores de 

cromatina, como as metiltransferases de histonas. Estas depositarão marcas na cromatina 

dos genes alvo, provocando silenciamento genético. Um exemplo concreto é a trimetilação 

no nono resíduo de lisina da cauda da histona H3 (H3K9me3).  

Em Eucariotas, as proteínas Piwi, associadas a piRNAs, mantêm TEs silenciados, 

sendo fulcrais para a manutenção da linha germinal. Os 21U-RNAs de C. elegans, assim 

denominados por terem 21 nucleótidos de comprimento e uma forte propensão para uracilo 

na sua extremidade 5’, foram recentemente identificados como piRNAs, pois associam-se às 

proteínas Piwi, dependendo delas para a sua síntese na linha germinal. C. elegans tem duas 

proteínas Piwi, PRG-1 e PRG-2 que são expressas na linha germinal. É de notar que PRG-1 

é preponderante para a atividade dos 21U-RNAs, enquanto PRG-2 não aparenta ser tão 

relevante. Os 21U-RNAs são transcritos principalmente de duas vastas regiões localizadas 

no cromossoma IV. Curiosamente, os 21U-RNAs diferem de piRNAs de outros sistemas por 

serem transcritos como unidades individuais, graças a um motivo conservado, localizado a 

montante do 21U-RNA, que é reconhecido por fatores de transcrição da família Forkhead. 

Após a transcrição de dado 21U-RNA, este é processado de uma forma que não é 

completamente clara, mas que inclui metilação a 3’. Seguidamente, os 21U-RNAs vão 

associar-se à PRG-1 e juntos vão ligar-se a mRNAs alvo que poderão ser transcritos de TEs 

ou de outros genes que codifiquem para proteínas expressas na linha germinal. Esta ligação 

não exige perfeita complementaridade de bases, tolerando algumas bases 

desemparelhadas. O complexo PRG-1- 21U-RNA conduz ao recrutamento de RdRPs o que, 

pela produção de 22G-RNAs e a sua associação a WAGOs, irá reforçar o silenciamento 

genético. Esta via silencia, de forma robusta, TEs na linha germinal. Presumivelmente, 

outros genes importantes para a gametogénese também poderão ser regulados pelos 21U-

RNAs.  

Em C. elegans, o silenciamento genético induzido por RNAi pode ser herdado. No 

entanto, o silenciamento acaba por diluir-se após um número muito curto de gerações. A 

base mecanística e os fatores envolvidos eram, até há pouco tempo, desconhecidos. 

Estudos recentes identificaram os 22G-RNAs e a marca de cromatina H3K9me3 na base de 

silenciamento genético hereditário. Tanto as proteínas NRDE como as WAGO foram 

diretamente implicadas. No entanto, a indução de silenciamento genético transgeneracional 

nunca foi atribuída a piRNAs. 

A caracterização de um novo tipo de silenciamento genético induzido por pequenos 

RNAs, em particular por piRNAs, que tenha capacidade de ser mantido por um número 

indefinido de gerações, foi o foco do trabalho experimental apresentado nesta dissertação. 
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Este silenciamento foi originalmente encontrado em estirpes portadoras de transgenes em 

cópia única no genoma, com expressão específica na linha germinal. Estes transgenes 

foram silenciados espontaneamente e o silenciamento foi transmitido de forma estável e 

totalmente penetrante à sua descendência. Pelo papel dos 21U-RNAs no seu 

estabelecimento, este silenciamento genético foi denominado de silenciamento epigenético 

induzido por RNAi (RNAe). Uma vez estabelecido, o RNAe torna-se independente de PRG-1 

e perpetua-se indefinidamente sem sinais de reversão.  

Os objetivos desta dissertação almejavam a identificação de genes envolvidos na 

manutenção deste novo paradigma de silenciamento genético, que ocorre na linha germinal 

de C. elegans. Para tal, recorri a cruzamentos genéticos, cruzando estirpes portadoras do 

transgene silenciado por RNAe com estirpes mutantes para um gene candidato. Através 

deste sistema experimental, a reativação do transgene indica que o gene candidato está 

envolvido na manutenção do RNAe. Os meus resultados apoiam o envolvimento de 22G-

RNAs na manutenção do RNAe, uma vez que uma mutação no gene mut-7, codificante para 

uma exonuclease putativa e que foi previamente implicado na biogénese de 22G-RNAs, 

anula o RNAe. As WAGOs foram também implicadas, uma vez que wago-9 mutado reativa o 

transgene. Recentemente, outros demonstraram que WAGO-9 está presente no núcleo e 

poderá atuar na linha germinal de forma análoga a NRDE-3. A via NRDE de RNAi nuclear 

foi também implicada, uma vez que mutantes de nrde-1 e nrde-2 não apresentam RNAe. 

Um efeito materno foi igualmente notado, dado que a reativação do transgene foi 

consistentemente observada na segunda geração de homozigotia para o gene candidato. 

Além disso, um mutante defetivo para RNAe foi recuperado após triagens de mutantes. Este 

mutante apresentou sensibilidade a RNAs em cadeia dupla exógenos, indicando que o 

mutante não faz parte da classe RNAi defetivo (Rde). Tomados em conjunto, estes 

resultados apoiam um modelo em que, após o estabelecimento do RNAe, há produção de 

22G-RNAs que se poderão ligar a WAGO-9 e juntos migrarão para o núcleo. No núcleo, o 

complexo 22G-RNA - WAGO-9 irá recrutar as proteínas NRDE1, NRDE-2 e NRDE-4, que 

por sua vez poderão recrutar complexos enzimáticos modificadores de cromatina, 

depositando H3K9me3. Para o restabelecimento de RNAe a cada geração, provavelmente 

ocorrerá deposição materna de 22G-RNAs nos embriões. Por sua vez, estes pequenos 

RNAs herdados irão provavelmente restabelecer as marcas na cromatina. Mais, os 22G-

RNAs presumivelmente serão sintetizados de novo a cada geração. Os resultados aqui 

apresentados elucidam quais as vias e genes necessários para o RNAe, um novo fenómeno 

de regulação estável e duradoura da expressão genética. Estes estudos contribuem para a 

compreensão da regulação da expressão genética por pequenos RNAs. A um nível mais 

amplo, o RNAe poderá ter implicações na compreensão de fenómenos evolutivos e do 

desenvolvimento. 
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Abstract 

 

In metazoans RNAi regulates gene expression and has great importance in the most 

diverse biological processes. The spreading of RNAi-induced gene silencing through multiple 

generations has been described. However such gene silencing events are transient, 

eventually disappearing. The existence of RNAi-induced epigenetic silencing (RNAe), 

capable of stable transmission through numerous generations, is a long-standing question in 

the field. In animals, Piwi proteins and piRNAs control transposons and maintain the integrity 

and functionality of the germline. The C. elegans Piwi protein, PRG-1 and its piRNAs have 

been recently implicated in the induction of RNAe in germline expressed single-copy 

transgenes. Those strains showed stable silencing with no reversion over time. The work 

reported here used those RNAe strains to identify genes involved in the maintenance of 

RNAe. Genetic crosses of RNAe strains with mutant candidate genes revealed that MUT-7, a 

putative exonuclease involved in 22G-RNA biogenesis, is required for RNAe. Moreover, 

WAGO-9, a germline nuclear Argonaute, and proteins belonging to the nuclear RNAi 

pathway, NRDE-1 and NRDE-2, are also required. In those crosses, RNAe was only 

depleted in the second homozygous generation for the candidate gene introduced, revealing 

a striking maternal effect. In parallel, forward genetic screens identified one hit. The hit was 

RNAi-sensitive, indicating that the hit does not belong to the RNAi-deficient (Rde) class. 

Altogether, those results support a model where 22G-RNAs, WAGOs and the NRDE 

pathway act together to maintain RNAe indefinitely. Reestablishment of RNAe in every 

generation may be explained by maternal deposition of 22G-RNAs into embryos, followed by 

reinforcement of chromatin marks. Furthermore, to assure perpetuation of RNAe, 22G-RNAs 

may be synthesized de novo in every generation. The results reported here shed light on the 

requirements of RNAe in the germline of C. elegans. This new paradigm may be of great 

importance to understand the regulation of gene expression, with implications in evolution 

and development. 
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I. INTRODUCTION 

 

The central dogma of molecular biology proposed by Francis Crick (Crick, 1958) 

states that the flow of biological information is linear from DNA to proteins. DNA is conceived 

as the information reservoir, which is transcribed into RNA that it is later translated into a 

protein. RNA was typically regarded as a mere transient intermediate between DNA and 

protein with no relevant regulatory roles in gene expression. The discovery of enzymatic 

activity of RNA (Kruger et al., 1982) was the first suggestion that there was much more to 

know about RNA. However, the scientific community had to wait until 1998 (Fire et al., 1998) 

for the discovery of what we now know to be the event of RNA-mediated regulation of gene 

expression by excellence: RNA interference (RNAi). This discovery changed our 

comprehension on RNA, revealing that it is an important regulatory molecule, key to many 

biological processes, rather than an inert intermediate. In 50 years, the central dogma of 

molecular biology, although not being incorrect, turned obsolete, not contemplating several 

additional layers of complexity.  

 

 

The discovery of RNA interference and regulatory RNAs 

Although antisense RNA was shown to trigger gene silencing (Fire et al., 1991; Guo 

and Kemphues, 1995; Izant and Weintraub, 1984; Rosenberg et al., 1985), silencing could 

not be solely explained by antisense RNA binding to messenger RNA (mRNA). Finally, in 

1998, Fire and colleagues (Fire et al., 1998) showed that double-stranded RNA (dsRNA) is 

the trigger for post-transcriptional gene silencing (PTGS) in the nematode Caenorhabditis 

elegans. Moreover, they demonstrated that just a low amount of dsRNA molecules per cell 

can give rise to sequence-specific gene silencing.  

This breakthrough preluded the swift confirmation of the existence of RNAi in plants 

(Waterhouse et al., 1998), fungi (Volpe et al., 2002) and other metazoans: in the fruitfly 

(Kennerdell and Carthew, 1998), in the zebrafish (Wargelius et al., 1999) and in mammalian 

cells (Elbashir et al., 2001). These studies supported the idea that RNAi is a widespread, 

evolutionarily conserved mechanism for the regulation of gene expression. 

From then on, our understanding of several species of non-coding RNAs as gene 

expression regulatory molecules has increased tremendously. Non-coding RNAs revealed to 

be extremely prolific in terms of quantity, diversity, function and interactions (Ghildiyal and 

Zamore, 2009; Ketting, 2011). This dissertation will focus on non-coding small RNAs 

(sRNAs) involved in RNAi reactions. 
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The Argonaute proteins 

A key commonality of the RNAi pathways that lead to gene silencing is the participation 

of an Argonaute protein, which binds sRNA molecules. In eukaryotes, the Argonaute protein 

family is subdivided into three subfamilies, categorized according to sequence homology: the 

Ago subfamily, the Piwi subfamily, and the worm-specific Wago subfamily (Figure 1A, B) 

(Hutvagner and Simard, 2008). Amongst eukaryotes the Argonaute proteins are conserved, 

but their number varies considerably, ranging from one in the fission yeast to twenty-seven in 

C. elegans (Ender and Meister, 2010; Hutvagner and Simard, 2008). 

The Ago proteins are ubiquitously expressed and associate with dsRNAs, both 

microRNAs and small interfering RNAs (siRNAs). Piwi subfamily proteins are mainly 

expressed in the germline and bind to single-stranded (ss) Piwi-interacting RNAs (piRNAs), 

whereas the Wago subfamily proteins associate with secondary siRNAs in C. elegans (Ender 

and Meister, 2010; Hutvagner and Simard, 2008). All Argonaute proteins possess four 

protein domains (Figure 1C): a N domain, a PAZ domain, a MID domain and a PIWI domain. 

Crystallographic studies increased our understanding on the contributions of each of those 

domains to Argonaute function in gene silencing. The PAZ domain was shown to form a 

specific binding pocket for the 3’-end of ssRNAs (Ender and Meister, 2010; Hutvagner and 

Simard, 2008). The MID domain was reported to be a binding pocket for the 5’-phosphate of 

the small RNA with which the Argonaute binds (Ender and Meister, 2010; Hutvagner and 

Simard, 2008). In turn, the structure of the PIWI domain adopts a RNase H fold, which was 

consequently thought to be responsible for the catalytic activity of the Argonaute-sRNA 

complexes (Song et al., 2004). Specifically, a conserved motif of three aminoacids is 

responsible for cleavage activity, the so-called catalytic triad (Song et al., 2004). This 

catalytic activity is important for both the extraction of one strand from the RNA duplex and 

sequence-specific cleavage of target transcripts (Hutvagner and Simard, 2008). 

Nonetheless, the cleavage activity of Argonaute proteins is not merely explained by the 

presence of a PIWI domain. Some Argonautes, despite having the canonical residues in the 

catalytic site, don’t cleave. This indicates that other factors or sRNAs may be needed 

(Hutvagner and Simard, 2008). Lastly, a function for the Argonaute N domain  has recently 

been found in the unwinding of the small RNA duplexes during RNA-induced silencing 

complex (RISC) assembly (Kwak and Tomari, 2012). 

 

 

 

 

 



I. INTRODUCTION 
 

 

3 
 

 

 

 

 

 

Figure 1. Overview of the Argonaute family proteins. (A) Representative elements of the three Argonaute 

subfamilies in various organisms are shown. In black there is the Ago subfamily, in green the Piwi subfamily and 
orange the worm-specific Wago family. After Hutvagner and Simard, 2008. Sp, Schizosaccharomyces pombe; 
Ce, Caenorhabditis elegans; Dm, Drosophila melanogaster; Hs, Homo sapiens; At, Arabidopsis thaliana. (B) 
Phylogenetic tree focusing on the Wago protein subfamily. Adapted from Gu et al, 2009. (C) Schematics of the 

four Argonaute protein domains. The N domain is involved in duplex unwinding, while the PAZ and MID bind 
respectively the 3’ and 5’-ends of the sRNA. Moreover, Argonaute catalytic activity is mediated by the PIWI 
domain. 

 

Small interfering RNAs 

siRNAs may arise either from exogenous or endogenous sources (Figure 2). In 

exogenous siRNA (exo-siRNA) pathways, an exogenous long dsRNA is cleaved into ds-

siRNAs by Dicer, a RNase III endonuclease with specificity for dsRNAs (Ghildiyal and 

Zamore, 2009; Ketting, 2011). The cleaved products are approximately 21 nucleotides long 

and bear small 3’-overhangs. For target regulation, the siRNAs must be loaded into 

Argonaute proteins, forming the RISC (Ghildiyal and Zamore, 2009; Ketting, 2011). Then, 

together with other auxiliary factors, the RISC will cleave the target mRNA, thereby silencing 

the transcript. 
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Figure 2. Representative siRNA pathways. A typical siRNA pathway is depicted. dsRNA can derive from 
exogenous sources or (*) it can be synthesized from endogenous loci in a variety of ways: from structured loci, 
bidirectional or convergent transcription, etc (Ghildiyal and Zamore, 2009). The dsRNA is subsequently processed 
by Dicer into small dsRNAs. Those will bind to an Argonaute which will slice out one of the strands. The 
Argonaute bound with a siRNA and its auxiliary factors comprises the mature RISC. The latter will cleave target 
mRNAs with sequence complementarity to the siRNA. AGO, Argonaute protein; RISC, RNA-induced silencing 
complex. 

 

The endogenous siRNAs (endo-siRNAs) were first discovered in plants (Hamilton et 

al., 2002) and C. elegans (Ambros et al., 2003). In C. elegans, the production of endo-

siRNAs differs extensively from the biogenesis pathway reported above for exo-siRNAs. It 

relies on RNA-dependent RNA Polymerases (RdRPs) without the participation of Dicer 

(Figure 3). The RdRPs synthesize short RNA molecules that directly bind an Argonaute 

protein (Aoki et al., 2007; Pak and Fire, 2007; Sijen et al., 2007). The discovery of endo-

siRNAs in flies (Aravin et al., 2003; Czech et al., 2008; Ghildiyal et al., 2008) and mammals 

(Watanabe et al., 2008; Yang and Kazazian, 2006) followed, showing that they are 

widespread amongst eukaryotes. However, their biogenesis is mechanistically different from 

the endo-siRNAs of worms and plants, since flies and mammals do not possess RdRPs. For 

example, they can be produced by convergent transcription or structured loci (Ghildiyal and 

Zamore, 2009). However, the downstream steps seem to be identical to exo-siRNA 
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pathways (Figure 2). Genetic studies attributed a role for endo-siRNAs in the silencing of 

transposable elements (TEs) (Chung et al., 2008; Ghildiyal et al., 2008). Another class of 

sRNAs was proven to be crucial for TE control of these in the metazoan germline. Those are 

the piRNAs. 

 

 

piRNAs and the transposon menace  

TEs are mobile DNA elements that are present in most eukaryotic genomes, often 

comprising a large percentage of the genome content (Malone and Hannon, 2009; Slotkin 

and Martienssen, 2007). They are highly mutagenic, since they can insert within protein-

coding genes, leading to changes in gene expression (Slotkin and Martienssen, 2007). TEs 

are considered “selfish” or “parasitic”, because there is a negative correlation between the 

copy number of a certain TE in a genome and the fitness of the host. However, TEs are 

thought to contribute greatly to evolution by introducing raw genetic variation, shaping 

genomic and transcriptomic landscapes (Malone and Hannon, 2009; Slotkin and 

Martienssen, 2007). To avoid detrimental effects to the fitness, organisms must control the 

mobility of TEs. The germline must be especially resistant to TEs to assure that the next 

generation will not have TE-derived defects. In the germline, TEs are silenced mainly by 

epigenetic mechanisms, where RNAi plays an essential role (Malone and Hannon, 2009; 

Slotkin and Martienssen, 2007). It should be noted that, for the purpose of this dissertation, 

by epigenetics it is meant: the structural adaptation of chromosomal regions so as to register, 

signal or perpetuate altered activity states (Bird, 2007). 

In Drosophila, an abundant class of endogenous sRNAs was named as piRNAs after 

the discovery of their association with Piwi proteins in the germline (Brennecke et al., 2007; 

Gunawardane et al., 2007; Saito et al., 2006; Vagin et al., 2006). This association of Piwi 

proteins with piRNAs was also observed in mammals (Aravin et al., 2006; Girard et al., 2006; 

Grivna et al., 2006; Lau et al., 2006) and fish (Houwing et al., 2007). Piwi proteins and 

piRNAs are thought to be present in almost all metazoans, since they can be found in phyla, 

like Cnidaria and Porifera, that diverged before the appearance of Bilaterians (Grimson et al., 

2008). 

The major functions of piRNA pathways in animals is to silence TEs in the germline, 

allowing the correct development and the maintenance of germline integrity (Siomi et al., 

2011). piRNAs are also believed to regulate other targets, namely non-repetitive protein-

coding genes (Siomi et al., 2011). For example, pachytene piRNAs (which expression starts 

in the pachytene stage of meiosis) in mice do not seem to directly target TEs (Aravin et al., 

2006; Girard et al., 2006) and their function remains unknown. On the other hand, the 
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mechanism of TE silencing by piRNAs and Piwi proteins reached a reasonable level of 

understanding in flies. The prevailing model of piRNA biogenesis states that there are two 

piRNA biogenesis pathways conserved in animals: a primary processing pathway and the 

so-called ping-pong amplification loop (Brennecke et al., 2007; Gunawardane et al., 2007; 

Lau et al., 2006; Robine et al., 2009). Succinctly, the first provides an initial pool of piRNAs 

that target TEs, while the latter amplifies the number of sequences targeting TEs. For robust 

silencing, a concerted action of both pathways is required (Siomi et al., 2011). 

 

 

The C. elegans RNAi pathways 

Worms can respond to exogenous dsRNA (Fire et al., 1998) and have several 

endogenous sRNA species (Ketting, 2011). Early, forward genetic screens revealed factors 

involved in RNAi (Grishok et al., 2000; Ketting et al., 1999; Tabara et al., 1999b). RDE-1, an 

Argonaute, and MUT-7, a putative exonuclease, were amongst them. Also, it was noted that, 

similarly to other animals, RNAi in C. elegans silences TEs in the germline (Ketting et al., 

1999; Tabara et al., 1999b). 

For effective exo-siRNA-induced gene silencing, an amplification step is necessary 

(Sijen et al., 2001). It is now known that RdRPs are recruited to mRNAs that are bound with 

primary siRNAs, and then synthesize secondary siRNAs. This synthesis occurs in an 

unprimed manner, preferentially in the 5’-to-3’ direction, antisense to the mRNA (Figure 3) 

(Pak and Fire, 2007; Sijen et al., 2007). The secondary siRNAs exhibit 5’-triphosphates, 

while Dicer cleavage products usually display 5’-monophosphates, suggesting that Dicer is 

not involved. Genetic analysis revealed that the RdRPs EGO-1 (Smardon et al., 2000) and 

RRF-1 (Sijen et al., 2001), as well as the helicase DRH-3 (Aoki et al., 2007; Duchaine et al., 

2006) are necessary for secondary siRNA biogenesis in the germline. Upon their production, 

secondary siRNAs associate with WAGO proteins (Figure 1B; Figure 3) (Yigit et al., 2006). 

This amplification step allows few primary siRNA molecules to yield robust gene silencing via 

secondary siRNAs. 
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Figure 3. The C. elegans 22G-RNA and NRDE pathways. 22G-RNA biogenesis can be triggered in various 

ways. After their biogenesis they can associate with different Wago subfamily members. 22G-RNAs associated 
with CSR-1 are involved in chromosome segregation while 22G-RNAs associated with NRDE-3 go to the nucleus 
of somatic cells to induce, in concerted action with other NRDE proteins, deposition of H3K9me3. In the germline, 
other WAGOs may have an analogous role, inducing chromatin modifications. In addition, 22G-RNAs associated 
with WAGOs may induce silencing both co-transcriptionally and post-transcriptionally. RdRP, RNA-dependent 
RNA Polymerase; HMT, histone methyltransferase; RNA Pol II, RNA Polymerase II. 

 

Sequencing and comparative genomics approaches allowed the identification of 

microRNAs and two classes of germline-specific endo-siRNAs in C. elegans (Ambros et al., 

2003; Ruby et al., 2006). Both classes have a strong bias for a 5’-guanosine. One class is 

the 26G-RNAs, which have a length of 26 nucleotides and bear 5’-monophosphates. The 

other class has a length of 22 nucleotides and 5’-triphosphates. Those are identical to 

secondary-siRNAs and were named 22G-RNAs. They are strongly expressed in the germline 
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and are maternally deposited into embryos (Gu et al., 2009). Nowadays, several factors 

involved in their biogenesis are known, including MUT-7 and other Mutator proteins 

(Mutators are genes that, when defective, are characterized by high mutagenic rates 

attributable to TE mobility), DRH-3 and the RdRPs EGO-1 and RRF-1 (Gu et al., 2009; Yigit 

et al., 2006). 22G-RNAs can be functionally divided into two main separate subpopulations: 

one that associates with WAGO proteins (Gu et al., 2009; Yigit et al., 2006) and other that 

associates with CSR-1, another germline-specific Argonaute that is important for 

chromosome segregation (Claycomb et al., 2009; van Wolfswinkel et al., 2009). The 

prevailing model suggests that 22G-RNAs and the WAGOs are involved in a surveillance 

system in the germline, maintaining TEs, aberrant transcripts and other genes silenced (Gu 

et al., 2009). This may be achieved by mechanisms that are not likely to involve cleavage, 

since WAGOs do not possess the catalytic motif (Yigit et al., 2006). On the other hand, CSR-

1-associated 22G-RNAs target thousands of germline-expressed protein-coding genes to 

assure that chromosome segregation occurs in a secure manner (Claycomb et al., 2009; van 

Wolfswinkel et al., 2009). 

26G-RNAs have Dicer-dependent biogenesis and are required for gametogenesis 

(Ketting, 2011). Interestingly, 26G-RNAs have been implicated in synthesis of 22G-RNAs 

revealing the complexity of C. elegans RNAi pathways. Indeed, the exo- and endo-siRNA 

pathways interact extensively, sharing factors, like the 22G-RNAs and the WAGOs 

(Duchaine et al., 2006; Gu et al., 2009; Lee et al., 2006; Yigit et al., 2006). 

 

 

The piRNAs of C. elegans and downstream pathways 

Two Piwi-like proteins were identified in C. elegans by homology and were named 

PRG-1 and PRG-2 (Figure 1A) (Cox et al., 1998). Large-scale sequencing efforts unveiled a 

class of sRNAs with 21 nucleotides-long bearing a strong bias for uridine-monophosphate in 

the 5’-end (Ruby et al., 2006). Soon after, 21U-RNAs were identified as the C. elegans 

piRNAs given their association with PRG-1 (Batista et al., 2008; Das et al., 2008; Wang and 

Reinke, 2008). Similarly to piRNAs in other organisms, 21U-RNAs have, as previously 

mentioned, a 5’-uridine monophosphate and their processing is Dicer-independent (Batista et 

al., 2008; Das et al., 2008; Ruby et al., 2006). Also, 21U-RNAs show methylation on the 2’-

hydroxyl group at the 3’-end. This methylation is deposited by the conserved 

methyltransferase HENN-1 (Figure 4) (Billi et al., 2012; Kamminga et al., 2012; Montgomery 

et al., 2012). There are nearly 16,000 unique annotated 21U-RNA sequences, transcribed 

mainly from two broad regions on chromosome IV. Unlike flies and vertebrates, 21U-RNAs 

are located in-between protein-coding genes and there is no strand bias (Batista et al., 2008; 
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Das et al., 2008; Ruby et al., 2006). Another striking difference to other systems is the 

existence of an upstream conserved motif (UCM) adjacent to all the 21U-RNAs, suggesting 

that 21U-RNAs are transcribed as individual units. The UCM is conserved between C. 

elegans, C. briggsae and C. remanei, while the sequences of the 21U-RNAs per se are not 

(Batista et al., 2008; Das et al., 2008; de Wit et al., 2009; Ruby et al., 2006). Most recently, 

definitive proof of the individual transcription of 21U-RNAs has been found (Cecere et al., 

2012). Indeed, Forkhead (FKH) family transcription factors can bind to the UCM and induce 

expression of 21U-RNAs. In addition, 21U-RNA precursor transcripts are capped and longer 

than 21 nucleotides (Figure 4) (Cecere et al., 2012). 

PRG-1 and PRG-2 proteins are 91% identical and is likely that they were formed after 

a recent duplication event (Cox et al., 1998; Das et al., 2008). Interestingly, 21U-RNAs show 

different interactions to PRG-1 and PRG-2. Indeed, an abundant piRNA, 21UR-1, is depleted 

both in prg-1; prg-2 double mutants and prg-1 mutants (Batista et al., 2008; Das et al., 2008; 

Wang and Reinke, 2008). Conversely, 21UR-1 is present in prg-2 mutants (Batista et al., 

2008; Das et al., 2008). Although a certain level of redundancy might exist, it seems that 

PRG-2 functionally diverged from PRG-1. The requirement for Piwi proteins is specific of 

21U-RNAs, since prg-1 and prg-2 mutants do not downregulate sRNAs from other RNAi 

pathways (Batista et al., 2008; Das et al., 2008). Additionally, in conditional mutants with an 

absent germline, PRG-1, PRG-2 and 21U-RNAs are absent, suggesting that their expression 

is restricted to the germline. Localization studies supported these data (Batista et al., 2008; 

Wang and Reinke, 2008).  

Several fertility problems were identified and quantified in prg-1 mutants such as an 

inferior number of germ-cells, reduced brood size and temperature-sensitive sterility (Batista 

et al., 2008; Cox et al., 1998; Das et al., 2008; Wang and Reinke, 2008; Yigit et al., 2006).  

These fertility defects were associated with spermatogenesis and oogenesis (Batista et al., 

2008; Das et al., 2008; Wang and Reinke, 2008). Also, unc-130 mutants, a germline-

enriched FKH transcription factor strongly involved in 21U-RNAs expression, shows a similar 

fertility phenotype as prg-1 mutants (Cecere et al., 2012). This further supports the idea that 

21U-RNAs and factors associated to their biogenesis may have other, still unidentified, roles 

in gametogenesis. Altogether these data suggest that both Piwi proteins, but predominantly 

PRG-1, are necessary for proper gametogenesis. 
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Figure 4. The 21U-RNA pathway in C. elegans. 21U-RNAs are transcribed in the germline after the recognition 

of the UCM by FKH proteins. The precursor transcript is capped and longer than 21 nucleotides. After export to 
the cytoplasm, mature 21U-RNAs are further processed and will associate with PRG-1. In turn, the complex PRG-
1-21U-RNA will target TE transcripts and other protein-coding genes. After binding to a complementary sequence, 
RdRPs are recruited and start synthesizing 22G-RNAs. 21U-RNAs also bind to sequences that only have partial 
complementarity. Other factors are involved in their biogenesis. Afterwards, the 22G-RNAs will associate with 
WAGOs and will provoke TE silencing, germline maintenance and proper gametogenesis. * The silencing may be 
in the form of chromatin modifications, co-transcriptional or PTGS. FKH, Forkhead family of transcription factors; 
RNA Pol II, RNA Polymerase II; UCM, upstream conserved motif. 
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Not surprisingly, like piRNAs and Piwi in other animals, 21U-RNAs and PRG-1 are 

involved in TE silencing. Only two out of the 16,000 21U-RNAs found were perfectly 

complementary to the sequences of one TE, termed Tc3, and Piwi mutants showed 

increased levels of Tc3 transposase mRNA (Das et al., 2008). Recent work has showed that 

21U-RNAs actually bind to targets with mismatches (Bagijn et al., 2012; Lee et al., 2012). In 

this way, assuming up to three mismatches, the possible number of targets increases to 

700,000. Moreover, 21U-RNA activity was associated with silencing of numerous TEs and 

protein-coding genes in the germline, besides Tc3 (Bagijn et al., 2012; Lee et al., 2012). 

Although no evidence for the existence of a ping-pong amplification loop was found in 

C. elegans (Bagijn et al., 2012; Das et al., 2008), there would certainly be some form of 

amplification of the 21U-RNA pathway, to achieve effective silencing. Upon Tc3 upregulation 

in prg-1 mutants, a loss of endo-siRNAs targeting Tc3 was observed. The presence of those 

endo-siRNAs is dependent on MUT-7 (Das et al., 2008). It is now known that there is an 

endo-siRNA pathway downstream of the 21U-RNA pathway (Bagijn et al., 2012; Das et al., 

2008). This downstream pathway comprises the amplification mechanism to the 21U-RNAs. 

A battery of RNAi-related genes required for this process have been identified and the endo-

siRNAs implicated in this process are the 22G-RNAs (Bagijn et al., 2012). The prevailing 

model for the combined action between the 21U-RNA and the 22G-RNA pathways is 

depicted in Figure 4.  

 

 

Transgenerational epigenetic inheritance in C. elegans 

Previously, RNAi-induced effects spreading through a finite number of generations 

have been observed in C. elegans (Alcazar et al., 2008; Grishok et al., 2000). For 

multigenerational RNAi-induced gene silencing, it is required that some silencing signal must 

be transferred, via the germline, to the progeny. Other than RNA, chromatin modifications 

pose as an appealing hypothesis. RNAi screens in worms revealed that several factors with 

possible roles in chromatin binding and remodeling were implicated in RNAi (Dudley et al., 

2002; Kim et al., 2005; Robert et al., 2005; Vastenhouw et al., 2006). Also, Vastenhouw and 

colleagues found a RNAi-induced, not fully penetrant gene silencing event that was 

transmitted indefinitely, for several generations, in the absence of the trigger dsRNA 

(Vastenhouw et al., 2006). Chromatin factors were implicated, which led the authors to 

propose that the silencing was occurring at the transcriptional level (Vastenhouw et al., 

2006). Also, transgenerational epigenetic inheritance of longevity (Greer et al., 2011) and 

antiviral immunity (Rechavi et al., 2011) were observed in C. elegans. Virus-derived siRNAs 
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(Rechavi et al., 2011) and defective elements of a chromatin modifier complex (Greer et al., 

2011) were reported to underlie those phenomena. 

Recently, Guang and colleagues described NRDE-3, a worm-specific Argonaute 

protein (Figure 1B) that is involved in nuclear RNAi in the soma, in C. elegans (Guang et al., 

2008). After RNAi, NRDE-3 is loaded with a 22G-RNA and shuttled to the nucleus (Figure 

3). The conserved protein NRDE-2 is required for the association of NRDE-1 with pre-

mRNAs (Burkhart et al., 2011; Guang et al., 2010). Also, NRDE-2 and NRDE-4 are required 

for the association of NRDE-1 to chromatin (Burkhart et al., 2011). Together, the NRDE 

proteins elicit co-transcriptional silencing of pre-mRNAs by reducing RNA Polymerase II 

occupancy (Burkhart et al., 2011; Guang et al., 2010; Guang et al., 2008). Moreover, NRDE-

1 probably interacts with histone methyltransferases to deposit histone H3 lysine-9 

trimethylation (H3K9me3) reinforcing silencing of sites targeted by RNAi (Figure 3) (Burkhart 

et al., 2011). Thus, the NRDE pathway acts downstream of 22G-RNAs, linking co-

transcriptional silencing with H3K9me3, a chromatin modification typically associated with 

repressive chromatin states (Kouzarides, 2007). 

Two recent studies reported a transgenerational RNAi-induced gene silencing, where 

NRDE-induced H3K9me3 deposition was observed in genes targeted by dsRNA (Burton et 

al., 2011; Gu et al., 2012). siRNAs against the gene targeted by RNAi were also observed 

across generations. Nevertheless, this silencing was brief. siRNAs were depleted and 

H3K9me3 reverted to background levels after 2-3 generations (Burton et al., 2011; Gu et al., 

2012). Altogether, these observations in C. elegans, linking RNAi and chromatin 

modifications, provide a cornerstone for the occurrence of inheritable RNAi-induced gene 

silencing events that can be transferred across generations. However, inheritable silencing 

events, whereby sRNAs and chromatin modifications can induce robust gene silencing that 

surpasses generational boundaries indefinitely, have not been reported so far. 

 

 

The silence of the sensor 

A recently developed experimental system has been described in which a single-copy 

transgene can be silenced by a specific abundant 21U-RNA - 21UR-1 (Bagijn et al., 2012). 

This is achieved by the presence of a fully complementary 21UR-1 binding-site in the 

transgene 3’-UTR. egfp is also included in the transgene, thereby providing a tractable 

system that can be used as a sensor for piRNA activity in C. elegans (Figure 5A). For 

simplicity, this sensor will henceforth be addressed as 21Usensor. EGFP is not observed in 

germline nuclei in worms carrying the 21Usensor – in a wild-type background -, 

demonstrative of a fully functional piRNA pathway (Figure 5B, C). On the other hand, when  
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21Usensor

prg-1; 21Usensor

prg-1; 21Usensor (RNAe)
 

Figure 5. RNAe strains do not show transgene expression even in the absence of prg-1. (A) Schematics of 
the single-copy transgene, designated as 21Usensor, used in this study. It consists of egfp fused to an homolog 
of histone H2B (his58) controlled by a germline-specific promoter. The mRNA has a binding site for a single 
abundant 21U-RNA. See Materials and Methods for further details. (B) and (C) show worms carrying the 

21Usensor in a wild-type background. The piRNA pathway is fully functional and, as such, the transgene is 
silenced. In (D) and (E), worms carrying the sensor and a prg-1 mutation show EGFP expression, since the 21U-
RNA pathway is defective. Strains where RNAe was found show silencing of the transgene even when prg-1 
mutations are present, as can be seen in (F) and (G). Images (B), (D), (F) were acquired with differential 
interference contrast (DIC), whilst images (C), (E) and (G) were acquired with fluorescence microscopy. 

Arrowheads pinpoint germline nuclei. Scale bars represent 25 µm. 
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a certain component of the piRNA pathway is impaired, the 21Usensor is expressed. This 

can be observed in prg-1 mutants (Figure 5D, E).  

In mutants for the methyltransferase henn-1, EGFP is expressed in lower levels, 

indicating that the 21U-RNA pathway is not completely abrogated (Kamminga et al., 2012). 

In these mutants, 21U-RNAs can still be detected, so the low levels of EGFP expression 

might be explained by the lack of stability of sRNAs without the methylation in the 3’-end (Li 

et al., 2005). Most curiously, henn-1; 21Usensor strains had the tendency to show silencing 

of the transgene every generation, in a considerable number of individuals (Luteijn et al., 

2012). Once worms showing such silencing were singled and allowed to reproduce by 

selfing, the transgene remained silenced in all progeny and propagated through several 

generations, without signs of reactivation (Luteijn et al., 2012). By removing the henn-1 

mutation and crossing-in a prg-1 mutation, the sensor remained silenced (Figure 5F, G). A 

prg-1 mutation should reactivate the sensor, because the 21U-RNA pathway is not functional 

(compare Figure 5D, E with F, G). Similarly, RNAi against prg-1 should also reactivate the 

21Usensor, but that does not occur (Luteijn et al., 2012). Those observations suggest that 

there must be signals, other than 21U-RNAs, that are able to perpetuate the silencing even 

in the absence of the initial trigger. For simplicity, this extremely stable form of dominant 

gene silencing will be designated throughout this dissertation as RNA-induced epigenetic 

silencing (RNAe). Strains with transgenes silenced by RNAe will be addressed as 21Usensor 

(RNAe).  

 

 

Objectives 

The purpose of the work presented here was to find the pathways involved and the 

factors required for the maintenance of RNAe across generations. To do this, prg-1; 

21Usensor (RNAe) worms were used and crossed with worm strains carrying mutations in 

candidate genes, aiming to observe reactivation of the 21Usensor, i.e. EGFP expression in 

germline nuclei. Several factors that were previously shown to be involved in, or related to, 

RNAi pathways were tested, as well as several worm-specific Argonautes. Another approach 

was to mutagenize worms with ethyl methanesulfonate (EMS) and screen for mutants that 

reactivated the 21Usensor.  
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II. MATERIALS AND METHODS 

 

 

Worm strains  

Nematode populations were cultured according to standard procedures (Brenner, 

1974) in solid nematode growth medium (NGM) with a lawn of OP50 E. coli strain. All the 

strains used in this study, including the 21Usensor strain, have the Bristol N2 strain genetic 

background. The strains produced in this work are derived from prg-1 (pk2298); 21Usensor 

(RNAe) worms, thus having the N2 genetic background. Consult Table A in the appendix for 

a detailed list of the strains used in this study as well as its sources. Also, a detailed list of 

the strains produced during this study is presented in Table B in the appendix. 

 

 

 21Usensor  

The 21Usensor was produced and provided by the Eric Miska laboratory in 

Cambridge and it has already been described (Bagijn et al., 2012). A depiction of the in vivo 

piRNA sensor used in this study can be seen in Figure 5A. The sensor is comprised by the 

coding sequence of egfp fused to the coding sequence of histone H2B (his-58 in C. elegans) 

and their transcription is controlled by the promoter of a germline-specific gene, mex-5. 

Furthermore, the mRNA has the 3’-UTR of the C. elegans homolog of β-tubulin (also named 

tbb-2), which is not known to be regulated by any small RNA pathways. Finally, the 

component which allows the semi-quantitative analysis of piRNA activity is a sequence 

complementary to one abundant endogenous piRNA, the 21UR-1. This target-site is just 

upstream of the tbb-2 3’-UTR. The histone H2B will allow EGFP localization to the germline 

nuclei (Bagijn et al., 2012). To genotype the worms regarding the presence of the 

21Usensor, PCR with two sets of primers was done (Table C in the appendix). One pair of 

primers targeted sequences inside the 21Usensor, while the other pair binds to the regions 

flanking the 21Usensor. The latter could only amplify successfully when the 21Usensor is not 

inserted in the genome. Strains homozygous for the 21Usensor are designated throughout 

this dissertation and in the appendix as “21Usensor”. 

 

 

Mutagenesis screen 

Mutagenesis was done on prg-1; 21Usensor (RNAe) worms to find mutants showing 

reactivation of the 21Usensor. For this, worms were rinsed off their plates and washed 
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several times with M9. Next, the worms were bleached to achieve synchronization of the 

individuals for the following generation. After bleaching, eggs were thoroughly washed with 

M9 and left to hatch overnight. The following day L1 worms were plated on fresh medium. 

When those worms reached the adult stage, they were washed off the plates with M9 and 

incubated for 4 hours in 0,24 mg.μL-1
 EMS. After incubation and subsequent washes, healthy 

looking young adults were picked to new plates and incubated at room temperature. 

Between 150 and 200 F1 worms were individualized and scored for EGFP as adults under a 

Zeiss M2Bio epifluorescence microscope. Following two individual mutagenesis experiments, 

after which no hit was found, the screen was extended to the F3 generation. In this set-up, 

F2 worms instead of F1 worms were individualized and both the F2 and F3 progenies were 

scored for EGFP. Once found, the hits were isolated to fresh medium and cultured for future 

analysis.  

 

 

RNAi assay 

The RNAi experiment was conducted as previously reported (Kamath et al., 2003). 

The strategy used was to deliver the dsRNA to C. elegans by feeding them with E. coli 

strains, which contain a plasmid that is responsible for the production of dsRNA against the 

gene of interest. The dsRNA is produced by base-pairing after bidirectional transcription from 

two flanking T7 promoters. Furthermore, the vector has a resistance marker to Ampicillin. E. 

coli strains were inoculated in LB with 50 mg.μL-1
 Ampicillin and incubated at 37oC overnight. 

The promoters are inducible with Isopropyl β-D-1-thiogalactopyranoside (IPTG), therefore 0,2 

mg.μL-1
 IPTG was added 3 hours before plating. The medium in the Petri dishes also 

contains Ampicillin and IPTG in the same concentrations. dsRNA targeting pos-1 was 

chosen for this experiment, because it is expressed in the maternal germline and is required 

for proper embryonic development (Tabara et al., 1999a). As a result, the eggs laid by worms 

that fed pos-1 dsRNA do not hatch. 21Usensor and prg-1; 21Usensor (RNAe) strains were 

used as positive controls, while RNAi-resistant mut-7 mutants were used as a negative 

control (Ketting et al., 1999). 10 young L4 worms were picked per strain to 6 cm Petri dishes 

with E. coli expressing dsRNA targeting pos-1. Other 10 young L4s per strain were placed in 

plates seeded with E. coli carrying an empty vector (EV), i.e. with no dsRNA expression. The 

next day, each of the adults was individualized into 3 cm plates seeded with the same E. coli 

they were in previously. After 24 hours of laying eggs, adults were removed and the total 

amount of eggs laid was counted. The next day, for the EV progenies, the dead eggs were 

counted. For pos-1 progenies, the hatched L1s were counted, except for mut-7 worms, 

where the dead eggs were totaled instead. Results are presented as survival percentages 
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mean ± standard error of the mean. Statistical significance between pos-1 and EV treatments 

was determined by student’s T-test, using Microsoft Office Excel 2010 ™. p-value < 0.05 was 

considered as statistically significant.  

 

 

Genetic crosses  

To increase the number of males of a certain worm strain, L4 hermaphrodites were 

heat-shocked for 6 hours at 32 oC, or 1 hour at 37 oC. This method increases the probability 

of chromosome non-disjunction events in meiosis, leading to the X0 karyotype in some 

embryos and the consequent development of males in the next generation. Crosses were 

set-up with approximately a 2:1 sex-ratio (males/females), according to male availability. 6 

cm Petri dishes with just 20 μL of E. coli were used for the crosses to increase the chance of 

mating. F1 plates with approximately 50% of males were selected and L4s picked to lay eggs 

for the next generation. After 24 hours of laying eggs, the worms were lysed and an allele 

present in the strain from which males were used was genotyped, to confirm that the next 

generation was indeed cross-progeny. The allele used for genotyping depended on the 

males used in each cross. Next, F2 adults were scored for EGFP expression on a Zeiss 

M2Bio microscope, lysed and genotyped by conventional PCR for the 21Usensor and the 

mutant allele introduced. Moreover, Sanger sequencing was used to genotype prg-1 

(pk2298). F2 worms homozygous for the 21Usensor and the mutant allele introduced were 

selected to proceed to the F3. Scoring for EGFP expression and genotyping was repeated 

on the F3. For a complete list of the primers used in this study for genotyping, consult Table 

C in the appendix. Chromatograms from sequencing were analyzed using FinchTV version 

1.4.0 software developed by the Geospiza Research team (http://www.geospiza.com). The 

smg-2 and smg-5 alleles were not genotyped by PCR. Instead, homozygosity was assessed 

by the characteristic protruded vulva phenotype (Hodgkin et al., 1989). 

Complementation crosses were set with preferentially the same sex-ratio mentioned 

above (2 males per 1 female) according to male availability. Germline EGFP expression was 

scored in F1 worms from plates with approximately 50% males, indicative of cross-progeny. 

 

 

Image acquisition and processing 

Images were acquired with a Leica DM6000 epifluorescence microscope equipped 

with EGFP fluorescence filters and with differential interference contrast microscopy (DIC). 

The same exposure times and illumination were applied to all the pictures taken. Worms 

were sedated directly on the slide, with 0.01 M sodium azide (NaN3). Acquiring and 
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processing was done using Leica LAS software. Also, ImageJ version 1.45s, NIH was used 

to process the fluorescence and DIC pictures (http://imagej.nih.gov/ij).  
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III. RESULTS 

 

Requirements for RNAi-related factors in the maintenance of RNAe 

Several factors previously implicated in RNAi pathways were tested for involvement in 

RNAe. This was done by crossing prg-1; 21Usensor (RNAe) worms (Figure 5F, G and 

Figure 6A) with strains carrying mutations in genes of interest. Table 1 shows which genes 

were tested and which did reactivate the sensor.  

 

Table 1. RNAi-related factors involved in the maintenance of RNAe.  

Genotype Gene function 
Germline 

EGFP 

mut-7 (pk204)
1
 

3’-to-5’ exonuclease; 22G biogenesis ++
2
 

mut-7 (pk204); prg-1 (pk2298)
1
 

nrde-1 (gg088) 
Nuclear RNAi 

+
3
 

nrde-1 (gg088); prg-1 (pk2298) ++
3
 

nrde-2 (gg091); prg-1 (pk2298) Nuclear RNAi ++
2
 

hpl-2 (ok916) 
HP1 homolog - 

hpl-2 (ok916); prg-1 (pk2298) 

smg-2 (e2008) Component of the NMD pathway; 22G 
biogenesis 

- 
smg-2 (e2008); prg-1 (pk2298) 

smg-5 (r860) 
Component of the NMD pathway; 22G 

biogenesis 
- 

The alleles used are between parentheses. NMD, nonsense-mediated decay. 

1
Both reciprocal crosses were done and showed the same result. 

2
EGFP expression detected in the second homozygous generation. 

3
EGFP expression detected in the F3. The F2 was not scored for EGFP. 

 

MUT-7, a putative 3’-to-5’ exonuclease was shown to be required for TE silencing 

(Ketting et al., 1999) and 22G-RNA biogenesis (Bagijn et al., 2012; Das et al., 2008; Gu et 

al., 2009). As expected, MUT-7 is required for the maintenance of RNAe (Figure 6B and C). 

NRDE-1 and NRDE-2, factors involved in nuclear RNAi (Burkhart et al., 2011; Guang et al., 

2010), are also required for RNAe (Figure 6D-F). HPL-2, is one of the C. elegans 

Heterochromatic protein 1 (HP1) homologs that was shown to be required for RNAi in the 

soma (Grishok et al., 2005), silencing of repetitive sequences in the germline (Robert et al., 

2005) and germline development (Couteau et al., 2002). Unexpectedly, hpl-2 mutants did not 

revoke RNAe. Also, smg-2 and smg-5, two genes involved in the nonsense-mediated decay 

pathway that were shown to be involved in RNAi (Domeier et al., 2000; Gu et al., 2009), 

namely in the synthesis of 22G-RNAs, did not reactivate the sensor. 
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Figure 6. Different degrees of 21Usensor reactivation after RNAe loss. (A) prg-1; 21Usensor (RNAe) strain 
showing that the 21Usensor is silenced in the germline. (B-F) Representative fluorescence images of adult worms 

from strains that lost RNAe, showing reactivation of the 21Usensor. In those cases, reactivation was observed 
after crossing-in mutant alleles into the prg-1; 21Usensor (RNAe) background. Each of the pairs (B) and (C), (E) 
and (F), (G) and (H) was obtained from the same cross. In those cases, an enhanced expression can be seen in 
the worms that also bear the prg-1 mutation. Scale bars represent 25 µm. 

Some interesting observations were done regarding the way RNAe is lost. Indeed, 

EGFP expression was only detected in the F3 progeny of F2 homozygous mutants for mut-7 

or nrde-2. All the F2s were still positive for RNAe, even the mut-7 or nrde-2 homozygous 

mutants carrying at least one copy of the 21Usensor (one copy of the 21Usensor is enough 

to detect EGFP expression). Also, the reactivation was independent of the prg-1 mutation. F3 

worms that showed EGFP expression, upon the loss of RNAe, were homozygous for mut-7 

or nrde-2 but their prg-1 genotype varied. The F2 parents of F3 worms that reactivated the 

21Usensor also had variable prg-1 genotypes. The EGFP expression was not scored in the 
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F2s of the nrde-1 cross, but it seems likely that it followed the same pattern of reactivation of 

mut-7 and nrde-2, therefore being silenced by RNAe in the F2. 

The first cross set (mut-7 x prg-1; 21Usensor (RNAe)) used mut-7 males. Early 

studies with mut-7 identified a parental effect in RNAi resistance and TE activation (Ketting et 

al., 1999). When a mutant mut-7 allele was transmitted maternally, TEs were derepressed 

and RNAi resistance was enabled immediately in the first homozygous generation. If the 

mutant allele was transmitted by the male, the phenotypic effect would only appear in the 

second or third homozygous generation. Thus, to see if such effect happens in RNAe, the 

reciprocal cross was done. This cross also showed a loss of RNAe in the F3, the second 

generation homozygous for the mutant allele, indicating that such parental effect is not 

occurring in RNAe (Table 1). 

 

 

Worm-specific Argonaute requirements for the maintenance of RNAe 

It is very likely that Argonautes would be involved in RNAe. As such, we sought to 

identify, by genetic crosses, which WAGOs were involved in this process. The Argonautes 

with high aminoacid similarity to NRDE-3, which are also thought to have nuclear functions, 

were chosen to test if they are required for the maintenance of RNAe (NRDE-3 clade in 

Figure 1B). Previously, these WAGOs were shown to act together with 22G-RNAs exerting 

gene silencing (Figure 3 and Figure 4) (Gu et al., 2009; Guang et al., 2008; Yigit et al., 

2006). From the wago mutant alleles tested, only wago-9 reactivated the 21Usensor, thereby 

depleting RNAe (Table 2 and Figure 6G, H). Similarly to what was observed for mut-7 and 

nrde-2, EGFP expression was only observed in the F3, the second homozygous generation 

for wago-9. Again, prg-1 did not influence the reactivation. Furthermore, loss of functional 

NRDE-3 did not deplete RNAe (Table 2). This was expected because NRDE-3 was shown to 

be expressed in somatic nuclei and not in the germline (Guang et al., 2008). 
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Table 2. Requirements for Worm-specific Argonautes in RNAe.  

Genotype Gene function 
Germline 

EGFP 

wago-9 (tm1200) Germline nuclear 
WAGO 

+/-
1
 

wago-9 (tm1200); prg-1 (pk2298) +
1
 

wago-10 (tm1332) 
Nuclear WAGO - 

wago-10 (tm1332); prg-1 (pk2298) 

wago-11 (tm1127); prg-1 (pk2298) Nuclear WAGO - 

C04F12.1 (tm1637) WAGO - 

wago-10 (tm1332); wago-11 (tm1127); prg-1 (pk2298) Nuclear WAGOs - 

nrde-3 (gg066) Somatic nuclear 
WAGO 

- 
nrde-3 (gg066); prg-1 (pk2298) 

 The alleles used are between parentheses. 

1
EGFP expression detected in the second homozygous generation. 

 

The 21Usensor is reactivated in different degrees after RNAe loss 

In all crosses wherein the 21Usensor showed reactivation, this reactivation per se 

was independent of the prg-1 genotype. However, the 21Usensor was reactivated in different 

degrees, i.e. different levels of EGFP expression were observed, depending on the presence 

or absence of functional PRG-1. This relationship is illustrated in Figure 6B-H and is 

conceptually organized in the Tables 1 and 2 according to a relative hierarchy of expression 

levels (+/- < + < ++). The mut-7 strains comprised an exception in the sense that both mut-7; 

21Usensor and mut-7; prg-1; 21Usensor showed, approximately, the same levels of EGFP 

(++, Figure 6B, C). nrde-1;prg-1;21U, nrde-2; prg-1;21Usensor and both mut-7 strains 

showed the strongest expression (++, Figure 6B-D, F). nrde-1; 21Usensor worms showed a 

slightly inferior level of expression (+, Figure 6E). Unfortunately, no nrde-2; 21Usensor 

worms with functional PRG-1 could be isolated and consequently no such strain was 

founded and used for comparison with Figure 6D. Given that NRDE-1 and NRDE-2 belong 

to the same nuclear pathway, it seems likely that EGFP expression levels would have been 

similar between nrde-1; 21Usensor (+, Figure 6E) and nrde-2; 21Usensor, comparable to the 

relation of nrde-1; prg-1; 21Usensor (++, Figure 6F) to nrde-2; prg-1; 21Usensor (++, Figure 

6D). Finally, wago-9 strains showed lower EGFP expression levels (Figures 6G, H). In 

wago-9; prg-1; 21Usensor (Figure 6H), the expression levels resemble those of nrde-1; 

21Usensor (+, Figure 6E), while wago-9; 21Usensor show the lowest EGFP expression 

levels (+/-, Figure 6G). Altogether, these results suggest that, after depletion of RNAe, 

different factors may contribute differently to the 21U-RNA and downstream pathways.  
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RNAi-sensitive hit found in a mutagenesis screen  

To find other factors involved in RNAe, prg-1; 21Usensor (RNAe) worms were 

mutagenized with EMS and scored for EGFP expression in the F2. After two independent 

experiments, after which no hit was found, the screens were further extended into the F3 

generation. Then, both the F2 and F3 generations were scored for EGFP. Consistent with 

the results reported above for the genetic crosses about 21Usensor reactivation in the F3, as 

soon as the screen was extended, worms depleted of RNAe were found. Overall, six 

independent mutagenesis experiments retrieved eight RNAe-depleted mutants from over 660 

progenies screened. From experiment III, six hits were picked and the other two hits were 

isolated from experiments IV and V. Lamentably, three of the hits were not fertile. The five 

remaining hits are all derived from the III experiment and show stable EGFP expression in 

the germline. They were designated as EMSIII S1; EMSIII S3; EMSIII S4; EMSIII 261 and 

EMSIII 274. It should be noted that the hits also bear the prg-1 mutation and the 21Usensor, 

because the worms that were mutagenized were prg-1; 21Usensor (RNAe). Next, 

complementation crosses between the hits were done. For this, males and females from 

different hits were put together to mate and the F1 generation was scored for EGFP 

expression. All the crosses between the hits did not show complementation, since EGFP 

expression was also observed in the F1. These crosses indicate that the hits either carry 

different mutations in the same gene, or the different hits are indeed the same mutation 

(Table 3). The latter hypothesis is more likely, because the hits were recovered from the 

same mutagenesis experiment, and five hits with different mutations in the same gene would 

be most unlikely. The hits were subsequently frozen for posterior analyses and the following 

experiments were done only in EMSIII S3; prg-1; 21Usensor. For simplicity it will be 

addressed from now on as hit S3; prg-1; 21Usensor.  
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Table 3. Complementation crosses.  

Cross F1’s Germline EGFP 

Hit S1; prg-1; 21Usensor  x  Hit S3; prg-1; 21Usensor + 

Hit S4; prg-1; 21Usensor  x  Hit S3; prg-1; 21Usensor + 

Hit 274; prg-1; 21Usensor  x  Hit S3; prg-1; 21Usensor + 

Hit 261; prg-1; 21Usensor  x  Hit 274; prg-1; 21Usensor + 

Hit 261; prg-1; 21Usensor  x  Hit S4; prg-1; 21Usensor + 

Hit S1; prg-1; 21Usensor  x  Hit 274; prg-1; 21Usensor + 

Hit 261; prg-1; 21Usensor  x  Hit S3; prg-1; 21Usensor + 

All hits  x  21Usensor - 

Hit S3; prg-1; 21Usensor  x  mut-7 (pk204) - 

Hit S3; prg-1; 21Usensor  x  wago-9 (tm1200) - 

Hit S3; prg-1; 21Usensor  x  nrde-2 (gg091) - 

Hit S3; prg-1; 21Usensor  x  nrde-4 (gg129) - 

  
The alleles used are between parentheses. 

 

More complementation crosses were done to exclude possible candidates. An 

overview of such crosses is shown in Table 3. Since RNAe does not seem to follow 

conventional Mendelian inheritance, as a control for the complementation crosses, the hits 

were crossed with 21Usensor worms – with wild-type background – and EGFP was scored in 

the F1. As expected, complementation was observed (Table 3), validating further 

complementation crosses. The complementation crosses with selected genes indicate that, 

in principle, the hit is not mutated in mut-7, wago-9, nrde-2 or nrde-4 (Table 3). Next, to 

address the sensitivity of the hit to RNAi, an experiment using pos-1 dsRNA was done. RNAi 

against pos-1 arrests embryogenesis and as a consequence the eggs don’t hatch (Ketting et 

al., 1999). This experiment would indicate in which RNAi pathway the mutant allele belongs. 

Figure 7 shows clearly that hit S3; prg-1; 21Usensor worms are RNAi-sensitive. Ten 

separate hit S3; prg-1; 21Usensor worms fed on pos-1 RNAi laid a total of 807 eggs and 

remarkably, not even one egg hatched. This suggests that the hit does not belong to the 

RNAi defective (Rde) class, since worms carrying the hit can respond to dsRNA. Further 

experiments should be done to elucidate if the hit is hypersensitive to dsRNA. Also, Northern 

Blots to specific sRNA species and chromatin immunoprecipitation would be of great interest 

to this matter. 



 

29 
 

  

 

Figure 7. Hit S3; prg-1; 21Usensor worms are sensitive to RNAi. Experiment to assess RNAi resistance of hit 
S3; prg-1; 21Usensor worms. 21Usensor and prg-1; 21Usensor (RNAe) were used as positive controls, while 
mut-7 mutants are RNAi-resistant and as such were used as a negative control. Blue bars represent survival 
percentage of the eggs laid by worms fed on E. coli with an empty vector (EV), while the red bars indicate the 
survival of eggs laid by worms that fed on pos-1 RNAi. The progenies of 10 worms fed on EV and 10 worms fed 
on pos-1 RNAi were counted for each strain.  Error bars represent the standard error of the mean. *** p-value < 
0,001. 
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IV. DISCUSSION 

 

Here I describe part of the genetic requirements for the maintenance of a new 

germline gene silencing phenomenon in C. elegans, termed RNAe. Once established, it is 

absolutely dominant and can be propagated indefinitely for a great number of generations 

without any observable signs of reversion (Luteijn et al., 2012). During the course of this 

work, others also reported this kind of dominant and heritable multigenerational gene 

silencing (Ashe et al., 2012; Shirayama et al., 2012). Similar reporter transgenesis-based 

experimental set-ups were used in those studies. RNAe was proven to be initiated by two 

elements: 1) exogenous dsRNA (Ashe et al., 2012) and 2) PRG-1 (Ashe et al., 2012; Lee et 

al., 2012; Luteijn et al., 2012; Shirayama et al., 2012). Wild-type PRG-1 was found to trigger 

the initiation of RNAe, since prg-1 mutants did not initiate silencing. On the other hand, once 

RNAe is established, it becomes independent of prg-1, as can be seen in Figure 5D-G (Ashe 

et al., 2012; Luteijn et al., 2012; Shirayama et al., 2012).  

 

 

Maintenance of RNAe requires 22G-RNAs, WAGOs and NRDE proteins 

The results presented in this dissertation strongly indicate that 22G-RNAs, WAGOs 

and the NRDE pathway components are involved in the maintenance of RNAe. Explicitly, 

MUT-7, WAGO-9, NRDE-1 and NRDE-2 are implicated (Table 1 and Table 2). Others have 

also sought for genetic factors involved in the maintenance of RNAe and their results are 

similar to the results described here (Ashe et al., 2012; Shirayama et al., 2012). Moreover, a 

mutagenesis screen designed to find factors involved in RNAi inheritance identified wago-9 

(Buckley et al., 2012). The authors renamed wago-9 as hrde-1 for heritable RNAi defective 1. 

WAGO-9 is expressed in germline nuclei (Buckley et al., 2012; Shirayama et al., 2012). It is 

thought to have a function paralleled to NRDE-3 in the soma: associating with 22G-RNAs 

and engaging the NRDE pathway, thereby promoting gene silencing (Ashe et al., 2012; 

Bagijn et al., 2012; Buckley et al., 2012; Luteijn et al., 2012; Shirayama et al., 2012).  

Curiously, the non-requirement for HPL-2 was divergent from parallel studies which 

demonstrated a requirement for HPL-2 in RNAe (Ashe et al., 2012; Shirayama et al., 2012). 

However, Shirayama and colleagues noted that transgenes reactivated in hpl-2 mutants 

showed low EGFP expression levels, in the germline (Shirayama et al., 2012). On the other 

hand, they note that hpl-2; hpl-1 double mutants show higher EGFP levels. Indeed, those two 

HP1 homologs are known to act redundantly in the germline, although hpl-2 activity seems to 

be preponderant (Couteau et al., 2002). Two different hpl-2 deletion alleles were used to test 

the requirement for hpl-2 in RNAe: in the present study hpl-2 (ok916) was used while 
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Shirayama et al. and Ashe et al. used hpl-2(tm1489). hpl-2(tm1489) deletes the upstream 

region of the gene, probably deleting essential cis-regulatory elements. On the other hand, 

hpl-2(ok916) deletes the C-terminal portion of the protein (the features of both alleles can be 

found on http://www.wormbase.org). The different outcomes on the requirement of hpl-2 for 

RNAe can be due to allelic differences. While in hpl-2(tm1489) there may not even be an hpl-

2 transcript, in hpl-2(ok916) there may be a transcript and a truncated form of the HPL-2 

protein. Assuming that the truncated protein can fold properly, it could still have an 

hypomorphic effect that would be partially rescued by redundancy with HPL-1. This 

hypothesis is further supported by the predicted existence, in hpl-2(ok916), of a N-terminal 

Chromo-Domain that is not included in the deletion.  

Mutations in the smg genes did not reactivate the 21Usensor (RNAe). Probably they 

are only required for the biogenesis of a specific subclass of endogenous, genomic-encoded 

22G-RNAs (Gu et al., 2009). This observation highlights the existence of shared and 

particular factors for each subpopulation of 22G-RNAs. 

The genetic requirements assessed here (Table 1, Table 2, Figure 6) shed some 

light on the mechanistic basis of the maintenance of RNAe and a working model is proposed 

(Figure 8). This model depicts the events that maintain RNAe in C. elegans germ-cells, 

highlighting an extensive interplay between cytoplasmic and nuclear reactions. In the 

cytoplasm, a RdRP is recruited to the transcript of the gene/transgene initiating formation of 

22G-RNAs. MUT-7 is presumably involved in a processing step of 22G-RNAs. WAGO-9 is 

thought to shuttle the 22G-RNAs to the nucleus and may subsequently act similarly to 

NRDE-3 in somatic nuclei, recruiting NRDE-1 and NRDE-2 to nascent transcripts (Burkhart 

et al., 2011; Guang et al., 2010; Guang et al., 2008). In turn, the NRDE proteins engage 

chromatin remodelling factors that reinforce H3K9me3. It is hypothesized that RNA 

Polymerase II elongation may also be disturbed. In agreement with this hypothesis is the 

RNAe requisite for SET and MES proteins (Ashe et al., 2012; Shirayama et al., 2012). Those 

proteins deposit repressive chromatin marks. In addition, NRDE-4, the other known protein 

involved in the NRDE pathway, was also implicated in the maintenance of RNAe (Ashe et al., 

2012). 
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Figure 8. A model for the maintenance of RNAe in the germline of C. elegans. Transcripts of sequences 

under RNAe will lead to 22G-RNA synthesis by a RdRP. MUT-7 is involved in processing the 22G-RNAs, which 
are subsequently loaded into WAGO-9 that will go to the nucleus. There, it will recruit NRDE factors to prompt 
H3K9me3 deposition. Other WAGOs may also act redundantly together with WAGO-9. It should be noted that 
PRG-1 is required for complete RNAe. The 22G-RNAs are transmitted by the mother and will, in turn, re-create 
RNAe in the next generation by H3K9me3 reinforcement. 22G-RNAs are probably synthesized de novo and once 
again transmitted to the progeny. HMT, histone methyltransferase; RdRP, RNA-dependent RNA Polymerase; 
RNA Pol II, RNA Polymerase II. 

 

 

Transmission and reestablishment of RNAe in every generation 

The molecular interplay described above only portrays events happening in a single 

generation. However, there must be maintenance of the silencing in the next generations. 

This implies the existence of, at least, one signal that should be able to be propagated 

through the developing germ-cells without any kind of dilution effect (by dilution effect it is 

meant the partition in meiosis of a diffusible silencing signal to every daughter cell). This may 

be achieved by the segregation of 22G-RNAs through the mother (Figure 8). Accordingly, 

these sRNA species were previously reported to be maternally deposited in the embryos (Gu 

et al., 2009). Those 22G-RNAs would reinitiate RNAe in every generation, thereby 
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reinforcing H3K9me3. This is supported by the loss of 21Usensor-targeting 22G-RNAs and 

H3K9me3 in nrde-1 and wago-9 mutant backgrounds concomitant to the loss of RNAe 

(Luteijn et al., 2012). Also, transmission of sRNA species to the next generation was shown 

to prelude deposition of H3K9me3 (Burton et al., 2011; Gu et al., 2012). In those studies 

RNAi-induced H3K9me3 eventually disappears after 2-3 generations. However, in the 

present study, we show that RNAe lasts for an indefinite number of generations. This means 

that in every single generation the signal – 22G-RNAs – must be made de novo in order to 

avoid a “dilution” effect after oogenesis.  

No differential reactivation of the 21Usensor was observed in two reciprocal crosses 

of mut-7 mutant alleles (Table 1). This was unexpected given previous observations of 

differential phenotypic effects of mut-7 depending on the sex segregating the mutant allele 

(Ketting et al., 1999). Even though no such parental effect was found, the consistent 

reactivation of the 21Usensor in the F3 generation (Table 1 and Table 2) is demonstrative of 

a striking maternal effect inherent to this system. For nrde-1, EGFP expression in the first 

homozygous generation was not addressed, but it seems likely that it followed the same 

pattern as mut-7, wago-9 and nrde-2. Upon the impairment of RNAe, there is the cessation 

of de novo 22G-RNA biogenesis and deposition of repressive chromatin marks (Luteijn et al., 

2012). According to this reasoning, after crossing-in a mutant allele for a component of 

RNAe, the heterozygous F1 still shows RNAe due to the inherited 22G-RNAs. Those are 

antisense to the 21Usensor and will reinforce H3K9me3 in the 21Usensor. Also, due to 

heterozygoty, there would still be de novo synthesis of 22G-RNAs and their transmission to 

the next generation. In the homozygous mutant F2, the inherited 22G-RNAs would restart 

RNAe. On the other hand, there would be no de novo generation of 22G-RNAs, thereby 

disabling the reestablishment of RNAe for the next generation. The recurrent reactivation of 

the 21Usensor in the second homozygous generation supports the model whereby 

maternally inherited and synthesized de novo 22G-RNAs assure maintenance and 

transmission of silencing across generations. 

 

 

Diverse RNAi pathways may act redundantly in RNAe 

Indications of functional redundancy have been found in the C. elegans RNAi 

pathways. Specifically, 22G-RNA biogenesis seems to depend on redundant activities of two 

RdRPs, EGO-1 and RRF-1 (Gu et al., 2009). Also, the WAGOs seem to act, together with 

the 22G-RNAs, in an extremely redundant way. Interestingly, the WAGOs must somehow 

contribute to 22G-RNA biogenesis, because in multiple WAGO mutants 22G-RNAs seem to 

be depleted (Gu et al., 2009; Yigit et al., 2006). There are several observations that point out 

for extensive crosstalk between the cytoplasm and the nucleus, during RNAe. WAGO-1 was 
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previously reported to locate to the cytoplasm adjacent to the nucleus, in germ-cells (Gu et 

al., 2009). Shirayama and colleagues showed that WAGO-1 is required for the maintenance 

of RNAe in a specific transgene (Shirayama et al., 2012) together with WAGO-9 (Table 2, 

Figure 6G, H) (Ashe et al., 2012; Shirayama et al., 2012). So, both nuclear and cytoplasmic 

Argonautes seem to be involved in RNAe. Furthermore, after RNAe depletion, wago-9 shows 

very weak EGFP levels (Figure 6). This shows that WAGO-9 is probably not the only WAGO 

performing the shuttling of 22G-RNAs from cytoplasm to the nucleus. It also should be noted 

that MUT-7 was previously found in nuclear extracts and as such, nuclear functions are not 

ruled out (Tops et al., 2005). Given the profound involvement of MUT-7 in 22G-RNA 

biogenesis, it would be interesting to see if 22G-RNA biogenesis occurs also in, or in close 

association with, the nucleus. 

Altogether, those observations indicate that redundancy may be observed mainly at 

two levels during RNAe: 1) between cytoplasmic and nuclear RNAi pathways and 2) between 

concurrent WAGOs within the same RNAi pathway. Thus, it seems that redundancy is a 

recurrent theme in RNAi pathways in worms. 

 

 

RNAe and the immortal germline 

The germline can be considered as an immortal cell lineage for its potential of being 

transmitted indefinitely from generation to generation. Forward genetic screens identified 

mortal germline mutants (Ahmed and Hodgkin, 2000). Those mutants can reproduce for 

several generations but eventually become sterile. This is thought to occur due to defective 

germ-cell development. Several defects will accumulate over generations, until an 

evolutionary dead-end is reached – sterility (Ahmed and Hodgkin, 2000; Buckley et al., 

2012). Genes described in this dissertation as being involved in RNAe also share a mortal 

germline phenotype. nrde-1, nrde-2 and wago-9 mutants have been reported to become 

sterile after 4-5 generations, showing a mortal germline phenotype (Buckley et al., 2012). 

Taking into account the shared factors between RNAe and germline immortality, it is 

plausible to argue that RNAe may be important for the maintenance of germline immortality. 

If true, this link establishes a role for RNAe components with great evolutionary and 

developmental importance.  

 

 

Evolutionary implications of RNAe 

Given the importance of the germline, it is believed that genome and transcriptome-

wide surveillance mechanisms must be very active in order to maintain germline integrity. 
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piRNAs and RNAe seem to play a critical role. Others proposed that 21U-RNAs and PRG-1 

provide a platform for transcriptome-wide surveillance in the germline that will scan for 

foreign sequences, binding them in a mismatch-tolerating way (Bagijn et al., 2012; Lee et al., 

2012). Consequently, the WAGO and NRDE pathways will stably silence such foreign 

sequences, thus providing a molecular memory of such sequences (Ashe et al., 2012; Lee et 

al., 2012; Luteijn et al., 2012; Shirayama et al., 2012). Another pathway is proposed to act in 

parallel, providing a molecular memory of the self, recognizing and protecting endogenous 

sequences. CSR-1 and its associated 22G-RNAs were proposed to exert this anti-silencing 

effect to RNAe (Lee et al., 2012; Shirayama et al., 2012). Worm populations with single-copy 

transgenes show phenotypic heterogeneity, i.e. some worms show transgene silencing, while 

others do not (Ashe et al., 2012; Luteijn et al., 2012; Shirayama et al., 2012). So, RNAe 

appears to be established in a partly stochastic way. One of two alternative outcomes, either 

being silenced or expressed, may arise after the resolution of a balance between the self- 

and nonself-recognizing pathways. In this scenario, the transgene would be silenced if the 

PRG-1 effect, binding to foreign sequences like egfp, would surpass the effect of CSR-1, 

binding to self-sequences like the endogenous sequences in the transgene. Conversely, 

active transgenes will arise after superiority of CSR-1 over PRG-1. (Lee et al., 2012; 

Shirayama et al., 2012).  

RNAe provides a mechanistic basis for the control of foreign sequences, as TEs and 

viruses. Foreign nucleic acids can have potentially harmful consequences for the organisms, 

so their stable and permanent silencing is important. It should be noted that the stochasticity 

inherent to the initiation RNAe may have adaptive value. It reflects that the system is not 

completely refractory to foreign sequences, i.e. the licensing of foreign sequences could be 

beneficial under some specific circumstances, e.g. stress. In this sense, testing initiation of 

RNAe under different stress conditions could be informative. Much like plants, RNAi has 

been implicated in viral defense in C. elegans (Lu et al., 2005; Rechavi et al., 2011; Schott et 

al., 2005; Wilkins et al., 2005) and in one of those cases, a transgenerational inheritance of 

sRNAs was observed (Rechavi et al., 2011). RNAe, especially the PRG-1 pathway targeting 

foreign sequences, may provide the mechanistic basis for the defense against viruses. Also, 

it should be noted that RNAe is similar in some extent to paramutation, a phenomenon where 

some alleles can be heritably silenced after interactions with other alleles or spontaneously 

(Erhard and Hollick, 2011). Similarly to RNAe, RNA is thought to be subjacent to 

paramutation. It will be interesting to check if Piwi proteins are responsible for paramutation 

and viral defense. 
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Concluding remarks 

The recent findings on RNAe in C. elegans, including the results described in this 

dissertation, establish a germline surveillance function for Piwi proteins and piRNAs, which 

yields an extremely stable gene silencing. This form of gene silencing is singular in many 

biological aspects. It has implications in the most diverse subjects, such as evolutionary 

biology, development, immunity and molecular biology. By taking advantage of the C. 

elegans genetic toolkit, further developments can be expected in our understanding of RNAe. 

Some areas of focus for future research could include the search for more factors involved in 

RNAe and the overlap between RNAe and germline immortality. Also, further confirmation 

and elaboration of the self/nonself memory model, as well as its consequences on the long-

term and immunity will be valuable. The evolutionary conservation of RNAe should also be 

addressed. Mammal pachytene piRNAs appear as good candidates for transcriptome-wide 

surveillance in the germline, given their great numbers and lack of obvious targets (Aravin et 

al., 2006; Girard et al., 2006). It will be interesting to see whether pachytene piRNAs can 

trigger stable transgenerational silencing of foreign sequences. 
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VI. APPENDIX 

Table A. Worm strains used in this study. 

Genotype Name Supplied by 

Wild-type N2 Bristol Inhouse 

21Usensor II mjls144 Eric Miska 

prg-1 (pk2298) I; 21Usensor II; RFK0049 Inhouse 

prg-1 (pk2298) I; 21Usensor (RNAe) II - Inhouse 

mut-7 (pk204) III NL917 Inhouse 

nrde-1 (gg088) III YY160 CGC 

nrde-2 (gg091) II YY186 CGC 

nrde-3 (gg066) X YY158 CGC 

nrde-4 (gg129) IV YY453 CGC 

smg-2 (e2008) I; him-5 (e1490) V CB4043 CGC 

smg-5 (r860) I TR1335 CGC 

hpl-2 (ok916) III RB995 CGC 

wago-9 (tm1200) III - Craig Mello 

wago-10 (tm1332) V - Craig Mello 

wago-11 (tm1127) II WM157 CGC 

C04F12.1 (tm1637) I WM153 CGC 

 

Table B. Strains created in this study. 

Genotype Germline eGFP 

21Usensor II; mut-7 (pk204) III + 

prg-1 (pk2298) I; 21Usensor II; mut-7 (pk204) III + 

21Usensor II; wago-9 (tm1200) III + 

prg-1 (pk2298) I; 21Usensor II; wago-9 (tm1200) III + 

21Usensor II; wago-10 (tm1332) V - 

prg-1 (pk2298) I; 21Usensor II; wago-10 (tm1332) V - 

prg-1 (pk2298) I; wago-11 (tm1127) II; 21Usensor II - 

C04F12.1 (tm1637) I; 21Usensor II - 

prg-1 (pk2298) I; wago-11 (tm1127) II; 21Usensor II; wago-10 (tm1332) V - 

C04F12.1 (tm1637) I; wago-11 (tm1127) II; 21Usensor II - 

21Usensor II; nrde-1 (gg088) III + 

prg-1 (pk2298) I; 21Usensor II; nrde-1 (gg088) III + 

prg-1 (pk2298) I; nrde-2 (gg091) II; 21Usensor II + 

21Usensor II; nrde-3 (gg066) X - 

prg-1 (pk2298) I; 21Usensor II; nrde-3 (gg066) X - 

smg-5 (r860) I; 21Usensor II - 

smg-2 (e2008) I; 21Usensor II - 

21Usensor II; hpl-2 (ok916) III - 

prg-1 (pk2298) I; 21Usensor II; hpl-2 (ok916) III - 
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Table C. Primers used in this study 

 

Sequence Use 

CTGCTTCAAAGACGTTTTCTCG Genotype 21Usensor. Forward 

GCATGACGTCTCTTCTTTCCG Genotype 21Usensor. Reverse 

TTCTTGAAGACGACGAGCCACTTG Genotype wild-type without 21Usensor. Forward 

ACGCCCAGGAGAACACGTTAGTTT Genotype wild-type without 21Usensor. Reverse 

TGTAAAACGACGGCCAGTCCCATCCTTCACGAATTCAC Genotype prg-1 (pk2298) by sequencing. Forward 

TCAACTGGGGAGATTCTCGT Genotype prg-1 (pk2298) by sequencing. Reverse 

TGTGTTGGGGCTAGGGATAC Genotype wago-10 (tm1332). Forward 

GGATGGCCGAATTTTCATAA Genotype wago-10 (tm1332). Reverse 

CCCTTGTCGTCCTTCATCAT Genotype wago-9 (tm1200). Forward 

TTCGTGTCGAAGTTGTCTCG Genotype wago-9 (tm1200). Reverse 

GGAGGAGAGCGTCAATTCAG Genotype wago-11 (tm1127). Forward 

TCTCTGTGGACCCATTTTCC Genotype wago-11 (tm1127). Reverse 

TCACGCCACCATACTTCAGA Genotype C04F12.1 (tm1637). Forward 

GCACACTTGGTCATGGACTG Genotype C04F12.1 (tm1637). Reverse 

TGCAGAAAATTTGTCGATGC Genotype mutant hpl-2 (ok916). Forward 

CAGTCGGTGAGTTTGGGAAT Genotype hpl-2 (ok916). Reverse 

TCCTCAATCGAACGCTTCTT Genotype wild-type hpl-2. Forward 

AGCAAATATCCGTCATTGCA Genotype wild-type nrde-1. Forward 

AGCAAATATCCGTCAAAGTA Genotype mutant nrde-1 (gg088). Forward 

CGTTTTCGGCATTGGTAAAT Genotype nrde-1 (gg088). Reverse 

ACCACGTACAAATGTTACGG Genotype wild-type nrde-3. Forward 

ACCACGTACAAATGTTTCAG Genotype mutant nrde-3 (gg066). Forward 

AGTTCAAAGCGACGTCCATC Genotype nrde-3 (gg066). Reverse 

GATATTATCTAGATTCTACC Genotype wild-type nrde-4. Forward 

GATATTATCTAGATTCAATC Genotype mutant nrde-4 (gg129). Forward 

CAAATATTCGAAACCCTTAGTCC Genotype nrde-4 (gg129). Reverse 

TGAGAATCCAGATCTTATTA Genotype wild-type nrde-2. Forward 

TGAGAATCCAGATCTTTTAA Genotype mutant nrde-2 (gg091). Forward 

ATTTTCGCGTCTCTCCTGAA Genotype nrde-2 (gg091). Reverse 

  


