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Abstract 
Heavy metal resistant microorganisms are often associated with acidic environments, since metals 

are easily solubilized in acidic milieus. A unique yeast species from the Cryptococcus genus was 

isolated from two sulfur-rich acidic environments: acid mine drainage in the south of Portugal and a 

volcanic river in Argentina. The uniqueness of this species lies on the fact that it is the first acidophilic 

basidiomycetous yeast known to date. Additionally, the two strains chosen for this work (one from 

each environment) are resistant to high levels of heavy metals (arsenic, cadmium, copper and zinc). 

Metal resistance mechanisms are only described for neutrophilic yeasts, and mainly involve thiolated 

peptides and efflux transporters. To unveil the mechanisms that allow this Cryptococcus species to 

resist high levels of heavy metals, physiological, cytological and molecular approaches were 

conducted. Since both isolation sites are sulfur-rich, the possibility that this element influences metal 

resistance was assessed with microscale growth assays by determining minimal inhibitory 

concentrations of the four metals in differential sulfate availability conditions. Assessment of thiol-

mediated resistance mechanisms was achieved by incubating cells (grown with and without metal) 

with the thiol-specific fluorescent probe 5-chloromethylfluorescein-diacetate. Dot blot hybridization was 

applied to detect gene homologues involved in arsenic extrusion, and vacuolar metal-thiol 

accumulation in response to arsenic and cadmium. Also, suppression subtractive hybridization was 

conducted to investigate resistance to cadmium by analyzing transcripts induced upon exposure to 

this metal. Our results indicate that thiolated peptides are involved in resistance to arsenic and zinc in 

the Portuguese strain, cadmium in the Argentinean strain, and copper in both strains. Also, both 

strains presented evidence of an arsenic extrusion mechanism, and of a Cd-induced demand in 

protein synthesis and folding. Thus, the present work allowed unveiling of heavy metal resistance 

mechanisms in two strains of this unique novel yeast species, Cryptococcus sp.. 

 

Keywords: Extremophilic yeasts, Heavy metal resistance mechanisms, Fluorescence microscopy, 

Differential gene expression, DNA hybridization.  
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Resumo 

Existem diferentes critérios para definir ‘metal pesado’ que consideram diferentes características 

dos elementos metálicos. No entanto, o critério mais aceite consiste na comparação da gravidade 

específica do metal em relação à da água: metal pesado é aquele cuja gravidade específica é pelo 

menos cinco vezes superior à da água. Esta qualidade é atribuída a elementos essenciais como o 

cobre e o zinco, e a elementos não essenciais como o arsénio e o cádmio (Lide, 2009). Metais 

pesados, essenciais e não essenciais, podem ser tóxicos para todos os organismos, pelo que ao 

longo da evolução foram desenvolvidas diversas estratégias de destoxificação em resposta à 

presença destes elementos em excesso. Em microorganismos, este tipo de estratégias encontra-se 

principalmente caracterizado em organismos modelo com aplicações clínicas ou na indústria, como 

Escherichia coli, Candida albicans, Saccharomyces cerevisiae e Schizosaccharomyces pombe. No 

entanto, os níveis de resistência a metais pesados que estes microorganismos exibem é baixo em 

comparação com os níveis observados em microorganismos isolados de locais extremos, como por 

exemplo ambientes aquáticos ácidos ricos em metais pesados (Dopson et al., 2003). Em leveduras, 

as principais estratégias descritas em leveduras consistem em mecanismos que levam à 

destoxificação do citoplasma (Perego & Howell, 1997; Tsai et al., 2009). Estes podem ser exercidos 

por transporte dos metais para o exterior da célula, mediado por transportadores específicos, ou por 

acumulação dos metais, normalmente complexados com péptidos tiolados, em organitos como o 

vacúolo (revisto em Tamás & Wysocki, 2010).  

Microorganismos resistentes a metais pesados estão frequentemente associados a ambientes 

acídicos, visto que a solubilização destes metais é facilitada em meios com pH baixo. Um exemplo 

deste tipo de ambiente existe na Faixa Piritosa Ibérica cuja extensão inclui o Rio Tinto, em Espanha, 

e as minas de São Domigos, no sul de Portugal. Dada a exploração de minérios associada a estes 

locais, os depósitos estáveis de minerais associados a diferentes metais foram expostos ao ar e 

água, o que conduziu à lenta reacção espontânea de oxidação desses mesmos minerais (Johnson & 

Hallberg, 2003). Comunidades de microorganismos litotróficos, presentes nas águas associadas a 

estes locais, aceleraram o processo de oxidação de minerais, visto que permitiram a regeneração de 

compostos necessários à reacção de oxidação. Um destes compostos, o ião férrico, em conjunto com 

o pH baixo permitiu uma manutenção da oxidação e lixiviação de metais que, dada a sua solubilidade 

mais facilitada em águas ácidas, ficam mais concentrados (López-Archilla et al., 2001; Johnson & 

Hallberg, 2003). Este tipo de contaminação da água por oxidação de minerais expostos é 

denominado drenagem ácida de minas. A geologia local das minas de São Domingos é dominada por 

depósitos sulfúricos polimetálicos e inclui um lago particularmente extremo na Achada do Gamo, com 

o pH mais baixo de todos os lagos envolventes (pH 1.8) e com concentrações elevadas de enxofre e 

vários metais (Gadanho et al., 2006). Por outro lado, ambientes aquáticos extremos com pH baixo e 

elevada concentração de metais podem ter uma origem relacionada com actividade vulcânica, como 

é o caso do Rio Agrio, localizado na Patagónia Argentina (Pedrozo et al., 2001). Neste caso, a acidez 

da água do rio é uma consequência directa da produção de ácido sulfúrico no interior do vulcão, 

devido à actividade geotérmica e consequente emissão de gases do vulcão. Devido a interacções 

químicas, a acidez das águas leva a um desgaste da geologia vulcânica local e resulta em elevadas 
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concentrações de enxofre e metais na água (Pedrozo et al., 2001; Russo et al., 2008). Na parte 

superior deste rio (mais próxima do vulcão), o pH é de 2.2 e foram observadas concentrações 

elevadas de enxofre e metais pesados como ferro, zinco e arsénio (Russo et al., 2008).  

Uma nova espécie pertencente ao género Cryptococcus foi isolada em dois locais extremos 

distintos: Achada do Gamo, nas minas abandonadas de São Domingos (Gadanho et al., 2006); e Rio 

Agrio, na Patagónia Argentina (Russo et al., 2008). Para realizar o presente trabalho foram escolhidas 

duas estirpes desta espécie – uma de cada local. As estirpes desta espécie requerem pH baixo para 

crescer eficientemente, o que torna Cryptococcus sp. a primeira levedura basidiomicete acidófila 

conhecida até à data (Russo et al., 2008). Adicionalmente, apresentam níveis de resistência a metais 

pesados mais elevadas que as toleradas por microorganismos modelo (Gadanho et al., 2006).  

No presente estudo foram pesquisados mecanismos pelos quais estas duas estirpes conseguem 

resistir a níveis elevados dos metais pesados arsénio, cádmio, cobre e zinco, tendo em consideração 

um eventual papel do enxofre nos mecanismos de resistência aos metais. Para tal, foram usadas 

abordagens experimentais a nível fisiológico, citológico e molecular.  

As metodologias aplicadas incluíram ensaios de crescimento em microescala para determinar 

concentrações mínimas inibitórias para cada metal em diferentes condições de disponibilidade de 

sulfato. Por análise das diferenças nos níveis de resistência a cada metal pesado em condições 

diferenciais de sulfato, foi possível compreender a influência que a disponibilidade de sulfato exerce 

sobre os níveis de resistência a cada metal pesado. Foi também avaliado o eventual papel da forma 

química do composto metálico adicionado ao meio de cultura (arsenato vs. arsenito no caso do 

arsénio, e sulfato de metal vs. cloreto de metal para os outros metais).  

A destoxificação de metais pesados por acumulação de péptidos tiolados está largamente descrita 

na literatura como sendo uma estratégia generalizada de resistência a metais pesados em leveduras. 

Por esta razão, a possibilidade da existência desta estratégia na espécie acidófila foi averiguada. 

Para tal, técnicas citológicas para observação em microscopia de fluorescência foram optimizadas e 

aplicadas nas duas estirpes, para os quatro metais pesados em estudo. As duas estirpes foram 

crescidas em meio com e sem metais pesados, e foram incubadas com uma sonda fluorescente 

específica para grupos tiolados, a diacetato-5-clorometilfluoresceína (CMFDA). A observação destas 

células em microscopia de fluorescência permitiu avaliar variações na intensidade de fluorescência 

provocadas pela presença dos metais. A observação de diferenças nas intensidades de fluorescência 

em condições diferenciais de crescimento (com metal vs. sem metal) foi interpretada como indicação 

de participação de péptidos tiolados nos mecanismos de destoxificação.  

Foram também optimizadas e aplicadas metodologias de biologia molecular para averiguar a 

presença de homólogos de genes envolvidos no efluxo de arsénio, e de homólogos de um gene 

envolvido na acumulação de arsénio e cádmio no vacúolo da célula. A metodologia aplicada para 

este fim foi hibridação de DNA por ‘dot blot’ que consiste na utilização de uma sonda, que 

corresponde ao gene que se pretende detectar, com o DNA genómico das estirpes em análise. Os 

genes pesquisados incluíram dois homólogos de genes envolvidos no transporte de arsénio para o 

exterior da célula (arsA e arsB), e um homólogo de um gene envolvido na acumulação vacuolar de 

iii 



arsénio e cádmio (ycf1). As sondas para esta hibridação foram obtidas por PCR a partir do DNA 

genómico da espécie-tipo do género Cryptococcus, C. neoformans. Para tal, foram desenhados 

primers ‘forward’ e ‘reverse’ para cada um dos três genes, e foram conduzidas reacções de PCR com 

um nucleótido marcado com digoxigenina (DIG-dUTPs). Os produtos de PCR obtidos foram então 

usados como sondas na procura de homologia dos genes indicados nas duas estirpes em estudo.  

Neste trabalho foi também incluída uma abordagem transcriptómica para análise e identificação de 

genes diferencialmente expressos em células crescidas na presença e na ausência de cádmio. Para 

tal, foi extraído RNA de células obtidas em condições diferenciais (com e sem cádmio) em fase 

exponencial de crescimento e o mRNA foi purificado a partir do RNA total. Posteriormente, foi 

realizado um processo de hibridação subtractiva supressiva nas duas estirpes, no qual se obteve uma 

biblioteca de cDNA correspondente a transcritos cuja expressão foi aumentada na presença de 

cádmio. Após sequenciação, estes transcritos foram identificados comparação com bases de dados 

de sequências presentes no ‘National Center for Biotechnology Information’ (NCBI). 

As metodologias aplicadas e consequente análise de resultados permitiram inferir sobre alguns 

aspectos das estratégias que as duas estirpes de Cryptococcus sp. analisadas utilizam na 

destoxificação de metais pesados. Nomeadamente, na estirpe Portuguesa predomina a evidência de 

que se trata de um mecanismo de resistência principalmente mediado por tióis, com possível 

subsequente acumulação no vacúolo da célula. Por outro lado, no caso da resistência ao arsénio na 

estirpe Argentina, o principal mecanismo de destoxificação parece ser mediado por efluxo do metal, 

possivelmente por um homólogo da bomba de efluxo ArsB, associada a uma ATPase homóloga de 

ArsA. Os resultados obtidos na resistência ao cádmio também indicam variabilidade intra-específica, 

uma vez que há indicação de um mecanismo de resistência mediado por tióis para a estirpe 

Argentina. No entanto, com base nos dados obtidos não foi possível sugerir um mecanismo 

específico para a estirpe Portuguesa. No caso da resistência ao cobre, os resultados sugerem a 

existência de um mecanismo mediado por tióis em ambas as estirpes, com a possibilidade de um 

mecanismo adicional que pode operar predominantemente na estirpe Portuguesa. Finalmente, a 

análise dos resultados obtidos sob exposição das leveduras a elevadas concentrações de zinco 

sugerem a possibilidade de acumulação deste metal em compartimentos celulares como o vacúolo. 

Os resultados obtidos neste trabalho demonstram variabilidade intra-específica nos mecanismos 

de destoxificação de metais pesados em Cryptococcus sp., visto que nem sempre a mesma 

estratégia de resistência a metais pesados foi observada nas duas estirpes em estudo. Foi também 

verificada a possibilidade de existência de mais de um mecanismo de resistência a operar em 

simultâneo para apenas um metal, o que pode justificar a elevada resistência a metais pesados 

observada nas duas estirpes estudadas. Os mecanismos de destoxificação nesta levedura única 

deverão, então, ser alvo de análise em maior detalhe em investigação futura. 

Palavras-chave: Leveduras extremófilas, Mecanismos de resistência a metais pesados, 

Microscopia de fluorescência, Expressão diferencial de genes, Hibridação de DNA.  
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1. Introduction 

1.1. Metals and metal resistance 

Classification of metallic elements 

Metallic elements can be classified considering a number of characteristics. In a biological 

perspective, metals are either considered essential or nonessential, taking into account their biological 

function. Essential metals exert functions on biological reactions or are part of the composition of 

biological components, such as metalloproteins (Waldron et al., 2009). These metals usually have 

their cytosolic levels tightly regulated through homeostasis mechanisms and are typically maintained 

within a narrow range. On the other hand, nonessential metals are not necessary for cell function, are 

usually toxic in very low concentrations and lack homeostasis mechanisms. Nevertheless, excessive 

concentrations of both essential and nonessential metals can be cytotoxic and even cause cell death 

(Hall, 2002). 

A different metal classification considers chemical reactivity and relies on the affinity to bind certain 

ligands. Metals that present high affinity to react with sulfhydryl (thiol) groups are considered soft 

metals, in contrast with hard metals, which preferably bind oxygen. A third alternative is considered 

when metals are able to bind sulfur, oxygen or nitrogen atoms (Summers, 2009). In general, the 

abovementioned group of nonessential metals falls under the soft metal category and is highly related 

to cell toxicity, since the reaction with thiol groups may lead to functional impairment of many proteins. 

This chemical property is, nonetheless, explored by cells for metal detoxification (reviewed in Tamás & 

Wysocki, 2010).  

Some metals are considered heavy metals and the difference between heavy and non-heavy 

metals has been subject of discussion (Duffus, 2002). The most used parameter for this classification 

consists in the ratio of specific gravity of the metal vs. the specific gravity of water at 1 to 4ºC. 

Considering this parameter, several thresholds have been used to define what is considered heavy, 

but none is globally accepted (Duffus, 2002). The most accepted and applied threshold is a specific 

gravity ratio >5 to define a heavy metal (Lide, 2009).  

Finally, some elements in the periodic table are considered metalloids (or semi-metals), since they 

present intermediary physiochemical properties between those of metals and nonmetals (Tamás et al., 

2006).  

 

In the present work, the four heavy metal(loid)s under study (one heavy metalloid and three heavy 

metals) are considered heavy by the most accepted definition (specific gravity ratio >5) and comprise 

essential and nonessential elements. Metal(loid) toxic effects and detoxification responses in yeasts 

will be analyzed in more detail in the following sections. 
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Metal(loid)-induced cellular damage and toxicity 

Although some metals are necessary as micronutrients for biological activities, all elements are 

toxic when present in excess. As a consequence, living organisms have evolved different strategies of 

metal(loid) detoxification during evolution to cope with metal(loid)-induced toxicity. Metal(loid) toxicity 

can be viewed as a consequence of oxidation state, speciation, complex form, concentration and 

interaction with cellular components (Summers, 2009). Metal(loid) availability is highly important for 

toxicity, since it determines uptake, intracellular distribution and interaction with molecules. In general, 

metal(loid) exposure can lead to oxidative stress, impairment of DNA repair systems, alteration of 

protein function and interference with membrane fluidity (reviewed in Beyersmann & Hartwig, 2008).  

In the present work, the following heavy metal(loid)s were studied: Arsenic (As; metalloid), 

Cadmium (Cd), Copper (Cu) and Zinc (Zn). Some specific toxic effects and cellular targets of these 

heavy metal(loid)s are listed in Table 1.  

 

Table 1 Toxic effects and cellular targets of the metal(loid)s Arsenic (As), Cadmium (Cd), Copper (Cu) and Zinc (Zn). 

Information in Beyersmann & Hartwig (2008), Thorsen et al., (2009) and Tamás & Wysocki (2010). 

Heavy metal(loid) Toxic effects at the cellular level 

As 

Indirect oxidative stress:  
 Indirect Fenton-type reactions 
 Protein oxidation and lipid peroxidation 

Inhibition of tubulin and actin polymerization 
Interference with DNA: 
 Decreased DNA repair  
 Genomic instability 

Cd 

Indirect oxidative stress:  
 Indirect Fenton-type reactions, leading to lipid peroxidation 
 Inhibition of antioxidant enzymes 

Replacement of calcium and Zn ions in proteins 
Iron depletion  
Interference with DNA: 
 DNA mismatch repair system 
 DNA replication 

Cu 

Oxidative stress:  
 Direct Fenton-type reactions 
 Protein oxidation and lipid peroxidation 
 DNA damage 

Iron depletion 

Zn 

Indirect oxidative stress:  
 Indirect Fenton-type reactions 

Iron depletion 

 

Oxidative stress is caused by reactive oxygen species (ROS) formed in the presence of agents 

such as metal(loid)s. When ROS reach toxic levels, nearly all cellular components can be damaged. 

Ultimately, oxidative stress may result in lipid peroxidation, protein oxidation and DNA damage. Some 

metal(loid)s are considered redox active, as they undergo redox-cycling reactions, while others are 
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considered redox inactive. The latter can, however, lead to oxidative stress by indirect mechanisms, 

such as enzyme inactivation and antioxidant pool depletion (reviewed in Beyersmann & Hartwig, 

2008).  

More specifically, As ions are redox active and are able to lead to redox reactions in biological 

systems by indirect Fenton-type reactions, resulting in ROS accumulation in the cell. This indirect 

ROS production induced by As leads to more toxic effects than the direct binding of the metalloid to 

proteins (Samikkannu et al., 2003). Ultimately, oxidative stress induced by As results in lipid 

peroxidation and protein oxidation (reviewed in Tamás & Wysocki, 2010). In addition, the oxidation 

state of this metalloid influences its toxicity, as the pentavalent form arsenate (As(V)) is less toxic than 

the trivalent form arsenite (As(III); Oremland & Stolz, 2003). As(V) is a molecular analog of phosphate 

and becomes cytotoxic by inhibiting oxidative phosphorylation. As(III), on the other hand, is more toxic 

due to its ability to bind to thiol groups and consequently impair the function of many proteins (Haugen 

et al., 2004; reviewed in Tamás et al., 2006).  

Cu is also a redox active metal and frequently leads to the formation of hydroxyl radicals by 

Fenton-type reactions. Cu-related oxidative stress results in lipid peroxidation, oxidative protein 

damage and DNA damage (reviewed in Beyersmann & Hartwig, 2008).  

On the other hand, Cd and Zn are redox inactive and, consequently, do not directly participate in 

redox reactions. The toxic effects of Zn excess, apart from indirect participation in Fenton reactions, 

are not well known in yeasts. The nonessential metal Cd is able to cause oxidative stress indirectly, by 

inhibiting the activity of antioxidant enzymes (reviewed in Beyersmann & Hartwig, 2008, and in Tamás 

& Wysocki, 2010).  

 

Some metal ions present similar physiochemical properties as those of essential ions (e.g. charge 

and radius size). These properties allow the toxic metal ions to replace essential ions in cellular 

components, possibly resulting in functional impairment of those components (reviewed in 

Beyersmann & Hartwig, 2008). Cd ions easily replace calcium (Ca) ions in biological systems, since 

both present the same charge and have similar radius. Despite the higher affinity of Cd to bind sulfur, 

and Ca to bind oxygen, Cd is able to bind to oxygen and replace Ca in proteins, leading to toxic 

effects. Cd can also replace Zn in proteins, despite the difference in radius size. In this case, protein 

function is usually disturbed or abolished, and the most affected proteins are transcription factors. Cd 

may substitute Zn ions in Zn-finger domains of DNA repair proteins, disturbing their correct function 

within the DNA repair complex and potentially leading to the inactivation of DNA repair systems 

(reviewed in Beyersmann & Hartwig, 2008). In addition to sensibility to Cd ions, Zn-fingers are 

potential targets for other toxic metal(loid)s. In Zn-finger domains, Zn is complexed through four 

invariant cysteine (Cys) and/or histidine residues, allowing not only DNA-binding but also protein-

protein interactions. The thiol side chain present in Cys residues is susceptible to oxidation by many 

toxic compounds, such as As(III). In this case, As(III) reacts with thiol groups in Zn-finger domains, 

leading to diminished DNA repair or altered DNA methylation patterns (reviewed in Beyersmann & 

Hartwig, 2008).  
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Overall, it is clear that metal(loid)s lead to toxicity through a number of mechanisms and cellular 

targets. Some of these mechanisms and targets are common to different metallic elements, while 

others are metal(loid)-specific.  

 

 

Metal(loid) uptake and detoxification systems  

Microbes have evolved mechanisms in order to cope with the presence of metal(loid)s. These 

mechanisms can either be directed towards homeostasis for essential metals, or detoxification for 

nonessential and excess essential metal(loid)s. Studies regarding metal(loid) detoxification 

mechanisms in microbes have been conducted in prokaryotes and eukaryotes. In neutrophilic and, 

more recently, acidophilic prokaryotes, detoxification mechanisms have been identified and 

characterized. Most available information refers to neutrophilic prokaryotes, despite the fact that 

microbes surviving in acidic metal(loid)-rich environments should possess the most advanced 

detoxification mechanisms, making them ideal systems to study and improve understanding of 

metal(loid) resistance (Dopson et al., 2003).  

Information available for metal(loid) detoxification mechanisms in yeasts only considers neutrophilic 

yeasts and there is considerably less information available when compared to prokaryotes. In addition, 

the studied neutrophilic yeasts are mainly model organisms, belonging to the ascomycetous group, 

such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans. Literature in 

model yeasts indicates that upon metal(loid) exposure the main goal of the yeast cell is to detoxify the 

cytoplasm by rendering the metal ions unavailable to promote cytotoxic effects. This cytoplasmic 

detoxification can be achieved by metal(loid) transport to the outside of the cell, or to lesser sensitive 

cellular compartments, such as the vacuole (reviewed in Tamás & Wysocki, 2010). An alternative 

mechanism can be observed in these model yeasts where the metallic compounds do not reach the 

cytoplasm: biosorption. This mechanism includes bioaccumulation and the precipitation/chelation of 

the metal at the cell wall, and is highly dependent on cell wall characteristics. The structure and the 

distribution of homopolysaccharides (mannans and glucans), single saccharides and acid 

components, which are good binding agents, dictate the cell wall’s biosorption capacity (reviewed in 

Raspor & Zupan, 2006). Nevertheless, the main metal(loid) detoxification mechanisms in yeast remain 

those that allow cytoplasmic detoxification (reviewed in Tamás & Wysocki, 2010), and are described in 

greater detail in the following paragraphs.  

In general, essential metals enter yeast cells by dedicated transporters, which are often a target of 

negative regulation when the specific metal is present in excess intracellularly. On the other hand, 

nonessential metal(loid)s do not enter yeast cells via dedicated transporters. Instead, these metals are 

able to use some transporters for essential ions (reviewed in Tamás & Wysocki, 2010). More 

specifically, As uptake can be mediated in the As(V) or As(III) chemical form, through different 

transporters: As(V) enters cells through phosphate transporters (Figure 1A); while As(III) enters the 

cell by aquaglyceroporins (Fps1) or hexose permeases. The chemical form As(OH)3 is similar to  
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Figure 1 Schematic representation of heavy metal(loid) uptake and detoxification pathways known to operate in yeasts. 

Nonessential metal(loid)s As (A) and Cd (B) enter the cell through transporters for essential ions, while essential heavy 

metals Cu (C) and Zn (D) enter the yeast cell through dedicated transporters. Detoxification of excess metal(loid)s in 

yeast mainly occurs through cytoplasmic detoxification, which can be achieved by metal(loid) efflux and/or metal(loid) 

transport to lesser sensitive cellular compartments, such as the vacuole. Cytoplasmic detoxification based on chelation 

with thiolated peptides – such as glutathione (GSH), phytochelatins (PC2 and PC) and metallothioneins (MT) – is widely 

observed in yeast. See text for detail. Based on information from Carri et al. (1991), Kneer et al. (1992), Dancis et al. 

(1994), Li et al. (1997), Perego & Howell (1997), Yuan et al. (1997), Clemens et al. (1999), Mukhopadhyay et al. (2000), 

Peña et al. (2000), Weissman et al. (2000), Tamás & Wysocki (2001), Borrelly et al. (2002), Rosen (2002), Sharma et al. 

(2002), Nagy et al. (2006), Tamás et al. (2006), Adle et al. (2007), Pagani et al. (2007a), Prévéral et al. (2006), Simm et 

al. (2007), Prévéral et al. (2009), Tsai et al. (2009), Maciaszczyk-Dziubinska et al. (2010a and 2010b), Tamás & Wysocki 

(2010) and Beaudoin et al. (2011).  

B 

C D 

Main detoxification mechanism 

Not main mechanism 

Energy-dependent Saccharomyces cerevisiae 

Schizosaccharomyces pombe 

Candida albicans 

A 
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glycerol, allowing uptake through the aquaglyceroporin. On the other hand, in the As2O3 form, a 

structure similar to a hexose is formed upon polymerization of three As2O3 molecules. Cd uptake 

systems mostly comprise transporters involved in the uptake of essential cations (Figure 1B), such as 

Zn, Ca, Manganese and Iron (reviewed in Tamás & Wysocki, 2010).  

Essential metal uptake, as mentioned above, occurs through dedicated transporters. For Cu, these 

transporters belong to the Ctr gene family (Figure 1C): in the baker’s yeast, S. cerevisiae, Ctr1 (Dancis 

et al., 1994) and Ctr3 (Peña et al., 2000) are responsible for the uptake of the essential cation as 

Cu(I). Prior to uptake, divalent copper is reduced outside the cell by a Cu(II) reductase in S. 

cerevisiae. In the fission yeast S. pombe, Cu is transported by a Ctr4/5 complex (Beaudoin et al., 

2011). For Zn, two dedicated transporters are described in yeasts (Figure 1D): the high affinity 

transporter Zrt1 and the low affinity transporter Zrt2 (reviewed in Tamás & Wysocki, 2010). 

Once inside the yeast cell, metal(loid)s often react with thiol groups present in Cys residues, and 

these reactions may impair protein function, as described before. However, thiolated peptides can be 

produced to chelate metal(loid)s, reducing their reactivity and availability to exert toxic effects. Such 

thiolated peptides include the enzymatically synthesized glutathione (GSH) and phytochelatins (PC), 

and the gene-coded low molecular weight metallothioneins (MT; reviewed in Tamás & Wysocki, 2010). 

The resulting metal-thiolated peptide complexes may be used as a substrate for metal(loid) extrusion 

to the outside of the cell, or for accumulation in cellular compartments such as the vacuole (Figure 1). 

 

GSH is a tripeptide (L-γ-Glu-Cys-Gly), enzymatically synthesized by two enzymes in the cytoplasm 

in an energy-dependent manner (Suzuki et al., 2011). This peptide the main antioxidant agent inside 

yeast cells and plays a great role in protecting the cell against oxidative stress, which is one of the 

main toxic effects exerted by metal(loid)s in yeast cells (Table 1). GSH detoxifies ROS, is involved in 

the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities 

(Zechmann et al., 2011). Additionally, the thiol group present in the Cys residue of GSH reacts with 

As(III), Cd, and Cu with lower affinity, to form a GS-metal(loid) complex (Figure 1A-C; reviewed in 

Tamás & Wysocki, 2010).  

In S. pombe, the small metal(loid)-binding peptides PC ((γ-Glu-Cys)nGly) are synthesized by the 

constitutively expressed PC synthase (PCS) in the presence of some metal(loid)s. PCS uses GSH as 

a substrate, yielding the enzymatically synthesized Cys-rich small peptides (Clemens et al., 1999). 

Due to the thiol groups present in Cys residues, PCs are able to bind metal(loid)s, in the same fashion 

as GSH. This is mainly the case in detoxification of As(III), Cd (Figure 1A-C; Prévéral et al., 2006; 

reviewed in Tamás & Wysocki, 2010).  

In S. cerevisiae, PC synthesis has also been described. In this case, however, PCS is not involved 

and only two GSH molecules are used, yielding PC2 (Kneer et al., 1992). These PC2 molecules were 

associated with Cd, Cu and Zn detoxification, but were not considered main pathways for 

detoxification of these heavy metals (Figure 1B-D; reviewed in Tamás & Wysocki, 2010). 
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Finally, MTs are gene-coded low molecular weight Cys-rich proteins that protect yeast cells against 

a broad range of metals (reviewed in Tsai et al., 2009). The most described yeast MT is the Cup1 of 

S. cerevisiae, which is mainly associated with Cu detoxification (reviewed in Tamás & Wysocki, 2001). 

Carri et al. (1991) described Cup1 as not being involved in Cd detoxification. However, several 

authors attributed Cd, in addition to Cu, detoxification to chelation by this MT (Perego & Howell, 1997; 

reviewed in Tamás & Wysocki, 2001).  

Furthermore, the MTs Crs5 (S. cerevisiae; Pagani et al., 2007a) and Zym1 (S. pombe; Borrelly et 

al., 2002) are described as the main MTs associated with Zn detoxification. These MTs have also 

been associated to Cd detoxification in yeasts, although not as a main detoxification mechanism 

(Figure 1B; reviewed in Tamás & Wysocki, 2010).  

 

Metalloid detoxification, in the case of As(V), involves reduction to As(III) by an As(V) reductase in 

the cytoplasm (Figure 1A; Mukhopadhyay et al., 2000). Three families of arsenate reductases have 

been described and all involve binding of As(V) to thiol groups in Cys residues followed by 

participation of a sulfate intermediate to yield As(III) (reviewed in Rosen, 2002). Consequently, despite 

the As chemical form that enters the cell, an As(III) pool can be viewed as the target for As 

detoxification. In S. cerevisiae, a predominant As(III) detoxification mechanism consists in transport of 

As(GS)3 complexes to the vacuole through the transporter Ycf1 (Prévéral et al., 2006). Alternatively, 

As(III) may be extruded from the cell by the aquaglyceroporin Fps1, in a concentration gradient 

manner (Maciaszczyk-Dziubinska et al., 2010a), or by the As(III)-specific transporter Arr3 (also known 

as Acr3; Maciaszczyk-Dziubinska et al., 2010b). The latter transporter facilitates the efflux of the 

As(OH)2O- anion, coupled to the membrane potential (reviewed in Tamás & Wysocki, 2010). Recently, 

an additional mechanism has been proposed for S. cerevisiae. In this mechanism, GSH is extruded to 

the outside of the cell, by an unknown transporter, and As(GS)3 complexes are formed, as As(III) exits 

the cell through Arr3. As a result, these As(GS)3 complexes cannot re-enter the cell by the Fps1 

transporter. Additionally, this extracellular metalloid chelation would alter the concentration gradient of 

As(OH)3, the substrate of Fps1. As a consequence, this aquaglyceroporin would be able to extrude 

As(OH)3 form the cell (unpublished data reviewed in Tamás & Wysocki, 2010).  

In S. pombe, the presence of the metalloid in the cytoplasm binds to the constitutively expressed 

PCS and lowers its turnover rate. As a consequence, PC is synthesized and As(III)-PC complexes are 

formed, resulting in the main form of As(III) detoxification in the fission yeast (reviewed in Tamás & 

Wysocki, 2010).  

 

Cd detoxification mechanisms in yeasts are highly associated with thiolated peptides (Figure 1B). 

In fact, Cd(GS)2 complexes have been described as a substrate for transport to the outside of the cell, 

by the Yor1 transporter in S. cerevisiae (Nagy et al., 2006) and to the vacuole, by different 

transporters. In this yeast, the vacuolar transport of Cd(GS)2 by Ycf1 has also been described (Li et 

al., 1997), operating in a similar way to As(GS)3 detoxification (see above). To a lesser extent, the 
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same substrate is transported by Bpt1 in the baker’s yeast (Sharma et al., 2002; reviewed in Tamás & 

Wysocki, 2010). In the fission yeast S. pombe, however, vacuolar accumulation of Cd-thiolated 

peptides complexes occurs through Hmt1. This transporter has been associated with vacuolar 

accumulation of Cd(GS)2 complexes (reviewed in Tsai et al., 2009) and was recently shown to be a 

polyvalent transporter, in the sense that Hmt1 can also transport Cd-PC complexes (Prévéral et al., 

2009).  

An additional Cd detoxification mechanism by efflux has been identified in S. cerevisiae, where 

thiols are not implicated. In this case, Cd extrusion is accomplished by the plasma membrane 

transporter Pca1, a Cd efflux pump. In the presence of this toxic metal, the turnover rate of Pca1 is 

decreased and the transporter is directed to the plasma membrane (Adle et al., 2007). Interestingly, 

Pca1 is usually nonfunctional in common laboratory strains of the baker’s yeast, since these strains 

generally harbor a missense mutation in a conserved residue that results in loss of function (Adle et 

al., 2007; reviewed in Tamás & Wysocki, 2010). 

 

As denoted above, thiolated peptides in general play a significant role in Cd detoxification 

mechanisms in yeasts. In fact, the presence of this heavy metal in S. cerevisiae cells was described 

as being responsible for a phenomenon called sulfur sparing (Figure 2; Fauchon et al., 2002). Upon 

exposure to Cd, the yeast cells respond by converting most of the intracellular sulfate pool into GSH, 

thus causing a decline in the sulfate available for protein synthesis. Cells adapt to this vital metabolite 

requirement by reducing the production of abundant sulfur-rich proteins, as protein synthesis becomes 

highly conditioned by the necessity to produce considerable amounts of GSH (Fauchon et al., 2002).  

In sulfur sparing, some abundant glycolytic enzymes are replaced by sulfur-depleted isozymes. 

The difference in amino acid occurrence is specific to methionine and Cys and is more pronounced for 

Cys residues, as the synthesized sulfur amino acids are mostly used for GSH biosynthesis. This 

adaptation works mainly on the most abundant proteins, regardless of their function, as expected for a 

significant sulfur saving (Fauchon et al., 2002; and reviewed in Tamás & Wysocki, 2010).  

 

 

 

 

 

 

Figure 2 Schematic representation of Cd-induced sulfur sparing. In the left panel, in normal cell metabolism in yeast, the 

greater portion of the intracellular sulfate pool is used in the synthesis of sulfur-rich proteins. Upon exposure to elevated 

concentrations of Cd (right panel) the intracellular sulfate pool suffers a deviation from the synthesis of sulfur-rich 

proteins to the synthesis of GSH. Additionally, some abundant sulfur-rich enzymes are replaced by sulfur-poor isozymes. 

Based on information available in Fauchon et al. (2002); representation adapted from Tamás et al. (2006).  
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Cu detoxification in S. cerevisiae is highly associated with the Cu-induced MT Cup1 (Figure 1C). 

This MT protects the yeast cell from oxidative stress and toxic levels of metallic ions (reviewed in 

Tamás & Wysocki, 2010). An additional intracellular detoxification mechanism for Cu relies on the 

activity of the P-type ATPase Ccc2 in S. cerevisiae and in S. pombe (Weissman et al., 2000). 

However, Cu transport by Ccc2 is described as restricted to the Golgi compartment, as part of the 

secretory pathway, not being considered to play a significant role in Cu detoxification (Yuan et al., 

1997). 

Cu detoxification may also be achieved by the Cd transporter Pca1. However, the detoxification 

mechanism for this metal does not depend on metal translocation, which was the case for Cd. A Cys-

rich region located in the N-terminus of Pca1 sequesters Cu and detoxification is achieved in this 

sense (Adle et al., 2007). Nevertheless, Cu detoxification may be accomplished in yeasts by metal 

translocation through the plasma membrane. This is accomplished by Crp1, identified in C. albicans, 

which resists higher Cu levels than the S. cerevisiae (Weissman et al., 2000).  

 

As denoted by Pagani et al. (2007a), in contrast with the large amount of knowledge gathered on 

the response to zinc depletion, little is known about the molecular responses triggered by zinc 

overload beyond the participation of the vacuolar-sequestering pathway. In S. cerevisiae, Zn 

detoxification requires two vacuolar transporters, Zrc1 and Cot1 (Figure 1D; Simm et al., 2007). These 

authors observed a capacity for vacuolar accumulation of 100 mM of this cation, which is considered 

to be close to the maximum Zn tolerated concentration for the baker’s yeast. On the other hand, the 

fission yeast S. pombe accumulates surplus Zn intracellularly, in the endoplasmic reticulum, through 

the Zhf1 transporter (Borrelly et al., 2002).  

An alternative intracellular Zn detoxification mechanism was identified in yeast and is mediated by 

Zn-induced MTs: Crs5 in S. cerevisiae (Pagani et al., 2007a) and Zym1 in S. pombe (Borrelly et al., 

2002). 

 

 

1.2. Extreme acidic environments  

Acidic water bodies are a type of extreme environment characterized by low pH and often 

associated with elevated metal(loid) concentrations, since low pH promotes the solubilization of 

metallic compounds. These extreme environments may have a natural or an anthropogenic origin and 

the latter is frequently related to mining activities (Johnson & Hallberg, 2003).  

The Iberian Pyrite Belt (IPB) is a vast mining area that comprises the south of Spain and Portugal. 

The IPB is one of the most important pyrite (FeS2) regions in the world due to its complex polymetallic 

sulfide deposits. In the south of Portugal, the IPB includes the São Domingos’ mines (SDM). These 

abandoned copper-iron mines represent an example of acid mine drainage (AMD), a well-known type 

of extreme acidic environment.  
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AMD is a consequence of the oxidative solubilization of exposed minerals, especially sulfides, in 

the presence of ferric iron (Fe3+). This compound acts as an oxidant and is of major importance in 

mineral oxidation in AMD generation. Some minerals, such as FeS2, are stable when both water and 

oxygen are excluded. However, the unearthing of geological formations, as a result of mining 

activities, exposes the minerals to water and oxygen (Figure 3A). Very slowly, spontaneous abiotic 

reactions oxidize minerals, using Fe3+ as an oxidant, yielding reduced inorganic sulfur compounds 

(RISCs; e.g. S2O3
2-). Proton acidity increases as a by-product of the previous reaction and facilitates 

the solubilization of metallic compounds. The resulting conditions allow the establishment of acid-

tolerant and/or acidophilic prokaryotes that are able to thrive in metal(loid)-rich waters.  

 

 

 

Figure 3 Schematic representation of the establishment and maintenance of acidic pH and high metal concentration in 

AMD waters. A Initial and slow establishment of an extreme environment, as a consequence of mining activities and 

spontaneous abiotic reactions. First, the presence of ferric iron (Fe3+) allows mineral oxidation, acting as an oxidant. As 

a result, reduced inorganic sulfur compounds (RISCs, e.g. S2O3
2-) are formed and proton acidity increases as a by-

product of the mineral oxidation reaction. Slowly, an acidic environment is established which facilitates the solubilization 

of metallic compounds. B The previously settled extreme environment allows the establishment of a microbial 

community of lithotrophic prokaryotes. Iron oxidizing bacteria (IOB) present in this community regenerate Fe3+, allowing 

faster mineral oxidation reactions. Sulfur oxidizing bacteria (SOB) use RISCs as a substrate for sulfuric acid production, 

further contributing to an acidic environment. Based on information in López-Archilla et al. (2001), and reviewed in 

Johnson & Hallberg (2003). 

 

 

A 

B 
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Upon establishment of this community of lithotrophic prokaryotes, the mentioned reaction of RISCs 

oxidation is highly accelerated (Figure 3B). This enhanced efficiency of mineral oxidation reactions is 

especially due to the fact that iron oxidizing bacteria (IOB; López-Archilla et al., 2001) in the 

community are able to perform cycles of Fe3+ regeneration, which is required for further mineral 

oxidation. Additionally, sulfur oxidizing bacteria (SOB) present in the microbial community are able to 

produce sulfuric acid, using RISCs as a substrate. In summary, the presence of this microbial 

community allows the establishment of a much more extreme environment and the maintenance of the 

extreme conditions (reviewed in Johnson & Hallberg, 2003).  

 

Naturally acidic environments can be found in water bodies near volcanic activity. An example of 

this type of extreme environment is the Lake Caviahue in the Argentinean Patagonia. The nearby 

Copahue volcano releases metals as naturally existing minerals through volcanic activity (Pedrozo et 

al., 2001). This natural process of volcanic geothermal activity and consequent gas expulsions are 

responsible for the acidity verified in Lake Caviahue, since sulfuric acid is originated in the headwaters 

of the river in the volcano. In a parallel to the AMD situation, the acidic waters weather the local 

volcanic geology and lead to elevated concentrations of different metal(loid)s. The microbial 

community present in this naturally acidic environment also allows the enhancement and maintenance 

of the extreme characteristics (Pedrozo et al., 2001; Russo et al., 2008).  

 

 

Succinctly, extreme acidic environments with different origins can lead to the same results: low pH 

and elevated concentrations of metal(loid)s. In the first given example, the Portuguese AMD site, there 

is one particularly acidic pond, named Achada do Gamo, which presents pH=1.8 (Gadanho & 

Sampaio, 2006). In the example of a natural acidic environment, a main inflow of Lake Caviahue, the 

Upper region of the River Agrio (URA) presents a similar acidity value, with pH=2.2 (Russo et al., 

2008). Both sites present elevated concentrations of sulfur and different metal(loid)s, as described in 

Table 2. 

 

Table 2 Metal and sulfur concentrations (mM) from two extreme sites: acid mine drainage in Achada do Gamo, Portugal 

(PRT; Gadanho & Sampaio, 2006, and Gadanho, personal communication) and upper River Agrio in Argentina (ARG; 

Russo et al., 2008).  

 
Arsenic Cadmium Copper Zinc Iron Sulfur¥ 

PRT 0.64 0.04 10.07 0.006 160.98 306.25 

ARG 12.29† n. d. b. d. l. 0.12 1.24 74.85 

n. d. – not described. b. d. l. – below detection level. 
†Information available in Pedrozo et al., 2001.  
¥Sulfur was measured as total sulfur in the PRT site and as sulfate in the ARG site. 
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Considering the extreme nature of the described AMD and volcanic sites, the organisms that are 

able to live in these conditions must have evolved metal resistance mechanisms. Interestingly, despite 

the highly important role that the prokaryote community plays in the maintenance of the above 

described extreme environments, studies conducted in acidic waters of the IPB revealed that 

eukaryote microbes, such as yeasts, are the main biomass contributors (Zettler et al., 2002; Gadanho 

& Sampaio, 2006).  

 

Taking into account the impact that elevated metal concentrations may have on the environment 

and public health, the study of metal resistance mechanisms is of great importance.  

 

 

1.3. An extremophilic yeast: Cryptococcus sp.  

An undescribed species of the Cryptococcus genus has been isolated from the two extreme 

environments described above: Achada do Gamo in SDM in Portugal (Gadanho et al., 2006) and URA 

in Argentinean Patagonia (Russo et al., 2008).  

 

Gross & Robins (2000) suggested that fungi living in acidic habitats should be regarded as acid-

tolerant rather than acidophilic, since they are also able to grow under neutral or even alkaline pH 

conditions. However, isolates from this Cryptococcus species require low pH for optimal growth 

(Gadanho et al., 2006; Russo et al., 2008), a physiological requirement that has only been observed in 

a species of Candida, C. sorbophila, which presents an optimum growth ah pH 2.5-3 (De Silóniz et al., 

2002). Consequently, these species should be considered acidophilic, and the yeast species under 

study in the present work represents the only acidophilic basidiomycetous yeast discovered to date. 

The ascomycetous yeast C. sorbophila was found to resist Zn to higher levels than the model yeast 

S. cerevisiae (De Silóniz et al., 2002). However, strains from the Cryptococcus species under study 

resist high concentrations of several metals, higher than those presented by model organisms 

(Gadanho et al., 2006).  

 

In the present work, two strains of Cryptococcus sp., one from each isolation effort described 

above, were chosen for the study of heavy metal resistance mechanisms: MSD44 (from Achada do 

Gamo) and CRUB1564 (from URA). These strains were chosen as a result of their pH requirements, 

high metal resistance levels and accentuated geographical separation. Accordingly, the study of these 

strains could provide an insight into the intraspecific variation in metal(loid) detoxification mechanisms 

of a unique acidophilic basidiomycetous yeast species.  
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2. Objectives 

The main goal in this work consisted in unveiling heavy metal(loid) resistance mechanisms in two 
strains from the unique acidophilic yeast Cryptococcus sp.. To achieve this main goal, intermediary 
aims were established and studied by applying the following approaches: 

 

A. Physiological approach to assess the influence of sulfate availability on heavy metal(loid) 
resistance. 

As mentioned before, sulfur metabolism appears to play a central role in metal(loid)-induced 
response. Also, this subject is of particular importance since high sulfur/sulfate concentrations 
were detected in the natural habitats of the two chosen strains.  

 

B. Cytological approach to evaluate the involvement of thiolated peptides in metal(loid) 
detoxification mechanisms. 

Since the thiol groups present in Cys side chains are often involved in metal(loid) 
detoxification in yeasts, the possibility of accumulation of thiolated peptides in response to 
metal(loid) exposure was assessed in optimal sulfate conditions, determined in the 
physiological approach. 

 

C. Molecular approach to identify genes and gene products involved in metal(loid) detoxification 
mechanisms.  

Gene homologues of transporters involved in metal(loid) detoxification were identified in the 
type species of the Cryptococcus genus, C. neoformans. The presence of homologues of 
these genes was evaluated in the genome of both selected Cryptococcus sp. strains.  

Gene products associated with a Cd-induced response were analyzed at a molecular level. To 
do so, a transcriptomic approach was conducted by applying suppression subtractive 
hybridization. 
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3. Experimental workflow 

 

The following illustration represents the experimental workflow conducted in the present work. 
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4. General methodologies 

Strains and growth conditions 

Two strains of Cryptococcus sp. were studied in this work: MSD44 and CRUB1564. Both are 

considered acidophilic (optimum pH for growth 2.5-4) and were maintained in acidic (pH=3) solid Malt 

Yeast Peptone (MYP; composition and preparation in Annex I) growth medium. Microbiological 

experiments with these strains were performed with cells grown in MYP medium at room temperature 

(RT) for three days.  

The Saccharomyces cerevisiae strain used in the present work belongs to the Yeast Portuguese 

Culture Collection (PYC3507). This strain was maintained in MYP media (pH=5-5.5) and incubated 

overnight at 30ºC to obtain biomass for microbiological assays. The same incubation conditions were 

applied for Cryptococcus neoformans, provided by the Instituto de Higiene e Medicina Tropical. 

 

Liquid Yeast Nitrogen Base (YNB; composition and preparation in Annex II) was used in several 

assays and it was prepared in two variants: Sulfate-YNB and Chloride-YNB, when the added 

ammonium salt was ammonium sulfate or ammonium chloride, respectively. For the acidophilic 

strains, the pH of the media was adjusted to 3.0 with H2SO4, and incubation occurred at RT. For the 

neutrophilic strains, the pH of the media was adjusted to 5-5.5 and yeast cells were incubated at 30ºC. 

Medium agitation was kept constant throughout the incubation periods.  

 

 

Heavy metal(loid) solutions 

In the present study, two chemical forms of each metal(loid) were tested: As was tested as As(V) 

and As(III); Cd, Cu and Zn were tested as metal sulfate and metal chloride.  

As(V) ((Na2HAsO4)7H2O), As(III) (NaAsO2), Cd sulfate (3(CdSO4)8H2O) and chloride (CdCl2), Cu 

sulfate (CuSO45H2O) and chloride (CuCl22H2O), Zn sulfate (ZnSO47H2O) and chloride (ZnCl2) stock 

solutions were prepared by adding sterilized ultra-pure water (supw) to the respective metal(loid) 

conjugates and adjusting pH to 3.0 with H2SO4.  

 

The solutions were then sterilized by filtration with syringe filters (with a pore diameter of 0.22 µm) 

and stored in falcon tubes at RT. 
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5. Physiological approach 

Determination of minimal inhibitory concentration in differential sulfate availability conditions 

Microscale growth assays were conducted to establish minimal inhibitory concentrations (MIC) of 

the four tested metal(loid)s in different conditions of sulfate availability. These assays were performed 

using 10 by 10 well honeycomb sterile plates containing a working volume of 300 µL per well. 

Microbial growth was monitored with the automated turbidimeter Microbiology Reader Bioscreen C 

(Growth Curves USA, New Jersey, USA; Begot et al., 1996).  

In these metal(loid) resistance assays, five concentrations of each metal(loid) were tested in 2-fold 

dilution series, from 1:2 to 1:32. These dilution series and corresponding metal(loid) concentrations 

are shown in Table 3. Liquid YNB medium was used in these assays, in two variants: Sulfate-YNB and 

Chloride-YNB. These two YNB media were combined with two chemical forms/salts of each 

metal(loid): As(V) vs. As(III) for As, and metal sulfate vs. metal chloride for all other metals. As a 

result, two sulfate availability conditions were tested for As, and four were tested for the other metals, 

for each strain. A schematic representation for the Cd resistance assay is depicted in Figure 4. The 

same principle was applied to the other metal(loid)s under study.  

 

Table 3 Two-fold metal(loid) concentrations tested in metal(loid) resistance assays. Concentrations are given in mM and 

denote metal(loid) concentration, not the metal salt.  

 1:2 1:4 1:8 1:16 1:32 

As 17 8.5 4.3 2.1 1.1 

Cd 54.5 27.3 13.6 6.8 3.4 

Cu 54.2 27.1 13.6 6.8 3.4 

Zn 230 115 57.5 28.8 14.4 

 

Each assay included adequate metal(loid)-free controls. A negative control (Cneg) with supw and 

medium, without inoculum, was used to ensure there were no contaminants in the medium. A positive 

control (Cpos) with supw and medium, with inoculum, was used to ensure inoculum viability. After 

medium preparation in each well, a cell suspension with OD600=0.9 U (equivalent to 9x106 cells mL-1) 

was prepared for each strain. With the exception of Cneg controls, each well was inoculated with 1 µL 

from this suspension using a calibrated inoculation loop, which corresponded to approximately 9x103 

cells. 

 

Parameters for growth assays were set in Bioscreen C software Research Express (Transgalactic 

Ltd, Helsinki, Finland). The microplates were incubated at 22ºC with a pre-heating step of 10 minutes, 

with continuous and intensive shaking. The corrected optical density (ODc, where the first OD 

measurement is considered 0.001 U) was measured for each well, every two hours for 5 days, with a 

wide band filter to determine turbidity, resulting in 60 OD measurements per well.  
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Figure 4 Schematic representation of the Cd resistance assay for one strain. Each square represents one well in the 10 

by 10 honeycomb plate. Each metal concentration was tested in triplicate for each sulfate availability condition, resulting 

in 3x20 determinations per metal, per strain. The depicted Cd concentrations refer to the metal ion, not the metal salt. 

1:2 to 1:32 relates to the metal dilution series performed in each well. Controls were performed at least in duplicate. 

Cpos corresponds to the positive control, containing supw and medium, with inoculum. Cneg corresponds to the 

negative control, containing supw and medium, without inoculum.  

 

 

Data analysis 

The parameter area under the curve represents ODc as a function of time and was determined 

automatically for each well by the Research Express software. Data for AUC for all wells was exported 

to an Excel working sheet (Microsoft Software) and analyzed for each condition (AUCݔ) as follows:  

 

	ݔܥܷܣ = 	
ܥܷܣ	݁݃ܽݎ݁ݒܣ

ݏܥ	ܥܷܣ	݁݃ܽݎ݁ݒܣ
	−  ݃݁݊ܥ	ܥܷܣ	݁݃ܽݎ݁ݒܣ	

 

The average Cneg value for each YNB medium was used as a correction factor, to subtract the 

background in microbial growth readings. The average Cpos value for each YNB medium was used as 

a normalization factor in data analysis, to allow comparison between assays. As a result, AUCݔ 

represents the corrected normalized average AUC for each condition (n=3). The threshold for positive 

growth was established at AUC0.05 ≤ ݔ (i.e., 5% of the average growth of the Cpos), as it presented a 

good correspondence with visible growth on the microplate (data not shown) and with maximum ODc 

≥ 0.1 (ODc threshold previously established by Gadanho, M., personal communication).  

 

MIC was defined as the lowest metal(loid) concentration tested in which AUC0.05 > ݔ. Accordingly, 

the maximum tolerated concentration determined by microscale assays, mMTC, was obtained. This 

concentration corresponds to the one immediately below MIC, i.e., the highest metal(loid) 
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concentration tested that allowed detectable growth (AUC0.05 ≤ ݔ). To assess the influence of sulfate 

availability on resistance to each metal(loid), yeast growth was statistically analyzed by comparing 

AUCݔ values at the mMTCs in the four sulfate availability conditions.  

 

First, F-test was applied to determine homocedasticity. Then, a t-Student test was performed, 

considering a confidence level of 95%, assuming equal or unequal variances, depending on F-test 

results (Zar, 1999). For each strain and for each metal(loid), comparisons were performed between 

average AUCݔ for the mMTC determined in: (i) Sulfate-YNB vs. Chloride-YNB and (ii) As(V) vs. As(III) 

or metal sulfate vs. metal chloride within the same YNB variant.  

 

 

Results and discussion  

The determined MIC, mMTC and corresponding AUCݔ values are displayed in Table 4. MIC 

determinations are also represented in Figure 5.  

 

Table 4 Minimal inhibitory concentrations (MIC), maximum tolerated concentrations (mMTC) and corresponding AUC࢞ 

values, determined with Bioscreen C turbidimeter. +SO4 and –SO4 refer to the type of YNB medium: Sulfate-YNB and 

Chloride-YNB, respectively. Metal(loid) concentrations are given in mM.  

 
MIC (mM) mMTC (mM) AUC࢞ in mMTC 

 MSD44 CRUB1564 MSD44 CRUB1564 MSD44 CRUB1564 
 +SO4 -SO4 +SO4 -SO4 +SO4 -SO4 +SO4 -SO4 +SO4 -SO4 +SO4 -SO4 

As(V) 17 17 17 17 8.5 8.5 8.5 8.5 0.60 0.52 0.87 0.64 

As(III) 8.5 8.5 8.5 8.5 4.3 4.3 4.3 4.3 0.93 0.99 0.83 1.04 

CdSO4 54.5† 54.5† 54.5† 54.5† 54.5 54.5 54.5 54.5 0.23 0.31 0.10 0.10 

CdCl2 54.5† 54.5† 54.5† 54.5 54.5 54.5 54.5 27.3 0.25 0.23 0.09 0.19 

CuSO4 54.2 27.1 6.8 3.4¥ 27.1 13.6 3.4 3.4 0.25 0.33 0.38 0.01 

CuCl2 27.1 27.1 6.8 3.4¥ 13.6 13.6 3.4 3.4 0.42 0.26 0.44 0.00 

ZnSO4 230† 230 230 115 230 115 115 57.5 0.13 0.14 0.10 0.18 

ZnCl2 230 115 115 115 115 57.5 57.5 57.5 0.14 0.41 0.24 0.18 
†The real MIC for the corresponding metals was not determined, as the corresponding strains presented AUC0.05 < ݔ for the highest metal 

concentration tested. 
¥AUC0.05 > ݔ for all tested metal concentrations for the corresponding strain. 

 

As showed in Figure 5A, results for the microscale growth assays with As show that the MIC values 

for As(V) are higher than those presented for As(III) in both strains. This result is in accordance with 

the previously described higher toxicity of As(III) (Oremland & Stolz, 2003).  

Statistical assessment of average growth upon exposure to different As chemical forms showed 

that the average growth obtained in the corresponding mMTCs is equivalent (Table 4). The same 
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result was obtained upon comparison of average growth in Sulfate-YNB vs. Chloride-YNB media. The 

latter result suggests that As resistance is not influenced by sulfate availability in either strain.  

 

 

 

 

 

 

 

Figure 5 Representation of MIC determination results for MSD44 and CRUB1564, for As, Cd, Cu and Zn in different 

sulfate availability conditions: with Sulfate-YNB (+SO4) and with Chloride-YNB (-SO4). For each YNB medium, two 

chemical forms of each metal(loid) were tested. The values next to the axis represent metal(loid) concentration in mM. 

 

Results for microscale growth in the presence of Cd (Figure 5B) showed that the Cd MIC was the 

same in both strains (54.5 mM; Table 4) in all tested sulfate availability conditions. However, statistical 

analysis of average growth within the obtained mMTC revealed that CRUB1564 reaches higher AUCݔ 

in Chloride-YNB medium in the presence of CdSO4 when compared to growth with Sulfate-YNB 

(p=0.005; Table 4).  

 

MIC determination for Cu (Figure 5C) shows an overall higher level of resistance for MSD44 than 

for the Argentinean strain. In fact, there was no detectable growth for CRUB1564 in Chloride-YNB 

(Table 4). This result suggests a sulfate dependency and will be analyzed further in detail.  

Statistical analysis of growth in the presence of CuSO4 revealed that sulfate availability influences 

the growth of MSD44, since AUCݔ was higher in Sulfate-YNB medium (Table 4; p=0.012).  

 

Finally, average growth in the presence of Zn (Table 4) was statistically analyzed. For this metal, 

the results showed that MSD44 reaches higher AUCݔ in the presence of Sulfate-YNB, regardless of 

the metal chemical form (p=0.002 for ZnSO4 and for ZnCl2).  

 

 

  

A B C D 
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To understand the apparent sulfate dependence for Cu resistance in the Argentinean strain, two 

additional microscale growth assays were performed. In these assays, four Cu concentrations were 

tested: as described above, with metal dilutions from 27.1 to 3.4 mM (Table 3).  

The first assay was conducted in order to evaluate the yeast response to increasing concentrations 

of sulfate, by assessing the minimum sulfate concentration necessary to obtain growth. To achieve 

this goal, sulfate in MgSO4 form was added to the metal-containing medium in three concentrations 

(mM): 520, 416 and 312, where the first concentration (520 mM) corresponds to the sulfate 

concentration present in Sulfate-YNB medium.  

A second assay was performed to understand whether the addition of magnesium (Mg) to the 

medium influenced growth. Three Mg concentrations (as MgCl2) were tested with the same Cu 

concentrations tested before (27.1 to 3.4 mM). The Mg concentrations used in this assay were 

equivalent to the Mg concentrations added in the assay with MgSO4.  

 

Results from these additional assays are presented in Table 5 and Figure 6.  

 

Table 5 Minimal inhibitory concentrations (MIC), maximum tolerated concentrations (mMTC) and corresponding AUC࢞ 

values for the two additional microscale growth assays, determined with Bioscreen C turbidimeter. MgSO4 and MgCl2 

refer to what was being tested in the additional microscale growth assay: different sulfate concentrations and different 

magnesium concentrations, respectively. Concentrations are given in mM.  

 
MIC (mM) mMTC (mM) AUC࢞ in mMTC 

 MgSO4 MgCl2 MgSO4 MgCl2 MgSO4 MgCl2 
 520 416 312 520 416 312 520 416 312 520 416 312 520 416 312 520 416 312 

CuSO4 27.1 27.1† 27.1† 3.4¥ 3.4¥ 6.8 13.6 13.6 13.6 3.4 3.4 3.4 0.35 0.40 0.41 0.00 0.03 0.12 

CuCl2 27.1† 27.1† 27.1† 3.4¥ 3.4¥ 3.4¥ 13.6 13.6 13.6 3.4 3.4 3.4 0.32 0.41 0.27 0.00 0.03 0.03 
†The real MIC for the corresponding metals was not determined, as the corresponding strains presented AUC0.05 < ݔ for the highest metal 

concentration tested. 
¥AUC0.05 > ݔ for all tested metal concentrations for the corresponding strain. 

 

 

Figure 6 Results of MIC determination for CRUB1564 with Cu in Chloride-YNB medium supplemented with different 

sulfate (as MgSO4) and Mg concentrations (as MgCl2). The values next to the axis represent Cu concentration in mM. 
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Although the minimum sulfate concentration necessary to ensure yeast growth upon exposure to 

Cu was not determined with these assays, the MICs obtained clearly show that the addition of sulfate 

as MgSO4 to Chloride-YNB medium allows CRUB1564 to grow in the presence of this metal (Figure 

6). Statistical analysis of AUCݔ in the mMTCs (Table 5) showed that average growth with CuSO4 was 

equivalent in the three sulfate concentrations tested. However, for CuCl2, the average growth was 

significantly reduced in the lowest sulfate concentration tested (312 mM; p=0.048), which also reflects 

an influence of sulfate availability.  

In the case of the microscale growth assay testing different Mg concentrations, detectable growth 

(AUC5<ݔ%) was only observed for the condition with 3.4 mM of CuSO4 and 312 mM of MgCl2 (Table 

5). Statistical analysis showed that growth in this condition is much lower than for CuSO4 with 312 mM 

of MgSO4 (p=0.007), suggesting that sulfate was necessary for the higher MIC values observed in the 

first additional assay.  

Considering the results obtained in these additional assays, Cu resistance in CRUB1564 was 

clearly influenced by sulfate (as MgSO4) availability. MIC values for CuSO4 resistance increased from 

6.8 mM with Sulfate-YNB (Table 4 and Figure 5C) to 27.1 with the same theoretical sulfate 

concentration (520 mM; Table 5 and Figure 6). This suggests that the addition of sulfate may not have 

been the only factor responsible for the improved Cu resistance, as a synergistic effect of Mg and 

sulfate could be taking place. The possibility of Mg participation on Cu resistance in this strain was not 

further assessed in the present study. 

 

 

In summary, this physiological approach allowed assessment of the influence of sulfate in 

metal(loid) resistance for both acidophilic strains. AUCݔ analysis showed that the sulfate availability 

positively influences the Portuguese strain’s resistance to Cu, when added as CuSO4, and Zn in both 

metal forms. A different outcome was observed for the Argentinean strain for CdSO4 resistance, since 

growth was enhanced when sulfate was absent from the YNB growth medium. CRUB1564 showed, 

however, sulfate dependency for Cu resistance, as this strain does not present detectable growth 

upon expose to Cu unless sulfate is provided in the medium, as Sulfate-YNB or as MgSO4. Overall, 

the obtained results suggest that sulfur availability, as sulfate, plays a role in resistance to some of the 

tested metal(loid)s.  

 

In the following cytological approach, the participation of thiolated peptides in metal(loid) response 

will be assessed. As mentioned in the Introduction section, these peptides possess Cys residues 

which have sulfur in the thiol (GS) groups. As a consequence, analysis of the variation of intracellular 

thiol content should allow further enlightenment on the role that sulfur plays in metal(loid) 

detoxification. 

 



22 

Adjustment of growth conditions for cytological and molecular approaches 

To proceed to the cytological and molecular approaches in this study, it was necessary to obtain a 

large amount of biomass to successfully conduct the experiments. Accordingly, the conditions used for 

yeast growth were optimized.  

Overall, the results from the microscale growth assays showed that the growth conditions with the 

highest sulfate concentrations allowed better microbial growth. In accordance with these results, the 

YNB medium used in subsequent approaches was Sulfate-YNB and the metal chemical form was the 

metal sulfate. In the case of As, the chemical form As(V) was used since it presented itself as being 

less toxic than the trivalent form.  

Yeast growth cultures were produced in 5 mL volumes and the inoculum was optimized in order to 

obtain a sufficient amount of biomass in a short period of time. Accordingly, the inoculum for 5 mL of 

growth culture was established at 1.5x107 cells mL-1, which corresponded to a OD600=1.5 U. The 

growth conditions were as stated in the General methodologies section.  

Finally, the metal(loid) concentrations used for yeast growth were also optimized. This was 

necessary since the metal(loid) concentrations that allowed detectable growth in microscale assays 

(mMTC; AUC5<ݔ%) were too elevated to allow sufficient biomass for the execution of cytological and 

molecular experiments. Several growth assays were then conducted to determine the maximum 

tolerated concentrations of the metal(loid)s in these scale up conditions (suMTC). These assays were 

performed with both acidophilic strains and with S. cerevisiae, since this model yeast was used as a 

control in cytological experiments. The results for the obtained suMTCs are listed in Table 6. 

 

Table 6 Maximum tolerated concentrations determined in scale up growth assays (suMTC) with Sulfate-YNB medium 

(pH=3 for MSD44 and CRUB1564; pH=5 for S. cerevisiae). The depicted concentrations, given in mM, refer to 

concentration of the metal(loid) (As, Cd, Cu and Zn), not the metal salt.  

 
MSD44 CRUB1564 S. cerevisiae 

As(V) 4.3 8.5 n. d. 

CdSO4 27.3 13.6 0.2 

CuSO4 6.8 3.4 n. d. 

ZnSO4 28.8 28.8 n. d. 

n. d. – not determined. 
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6. Cytological approach 

Protocol optimization and sample preparation 

The hypothesis of thiol accumulation in response to the presence of metal(loid)s was evaluated in 

MSD44 and CRUB1564 cells using the fluorescent CellTracker Green CMFDA (5-

chloromethylfluorescein-diacetate) probe from Invitrogen (California, USA). This reagent passes freely 

through membranes and, once inside the cell, is cleaved by nonspecific esterases. The chloromethyl 

group of CMFDA reacts with thiol groups in thiolated peptides and the resulting dye-protein conjugate 

is cell-impermeant. Additionally, the excess unconjugated dye exits the cell by passive diffusion. To 

assess the possibility of thiol accumulation in response to metal(loid)s, the CMFDA fluorescence 

intensity observed for cells grown in the presence of the metal(loid) was compared to the intensity for 

cells grown without metal (control condition).  

The protocol for sample preparation and staining was adapted and optimized from the Invitrogen 

CellTracker manual for Probes for Long-Term Tracing of Living Cells. Considering the lack of 

information on settings for this protocol in yeasts, three parameters were optimized: (i) initial inoculum, 

(ii) CMFDA concentration, and (iii) CMFDA incubation time. Optimization was conducted using S. 

cerevisiae as a control, grown with and without Cd. This model yeast was used with Cd since it is 

described in the literature as accumulating thiolated peptides in response to exposure to this metal 

(reviewed in Tamás & Wysocki, 2010). After optimization, a control using S. cerevisiae cells was 

performed in all assays as an experimental control to ensure the success of the experimental protocol.  

The optimized protocol was performed as follows: yeast growth obtained in scale up conditions with 

and without metal(loid) was harvested in exponential phase by centrifugation (5 min at 4000 rpm). 

2x106 of these cells were then transferred to 15 mL falcon tubes containing 1 µM CMFDA in Sulfate-

YNB (final volume 2 mL) and incubated for 25 min. The incubation conditions used for incubation 

periods in this protocol were the same as those applied for yeast growth (see General methodologies).  

From this point forward, all samples were protected from light. After CMFDA incubation, the cells 

were harvested by centrifugation (10 min at 4000 rpm), ressuspended in fresh Sulfate-YNB medium 

without CMFDA and without metal(loid)s, and incubated for 30 min. Then, the samples were washed 

with phosphate saline buffer (PBS; 5 min, 4000 rpm) and fixed with 3.7% formaldehyde prepared in 

PBS (30 min; 100 rpm) to crosslink the amines in peptides-dye conjugates. After washing twice with 

PBS, the cells were ressuspended in 200 µL PBS and transferred to 1.5 mL eppendorf tubes. 

Afterwards, 10 µL aliquots were placed on microscope glass slides and allowed to dry for 30 min at 

37ºC. A drop of an antifade reagent (Molecular Probes ProLong Gold antifade reagent, Invitrogen, 

California, USA) was added on top of the dried sample. Finally, a cover slip was placed on top of the 

samples.  

The samples were observed in an inverted fluorescence microscope (Olympus IX50) considering 

the absorption and emission wave lengths indicated for CMFDA: 492 nm (blue) and 517 nm (green), 

respectively. Images were captured with the Sensicam PCO camera with an exposure time of 0.4 

seconds using the software Image-Pro Plus Version 6.0 (Media Cybernetics, Inc, Maryland, USA). 
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Data analysis  

The fluorescence intensity of each pair of control vs. presence of metal(loid) conditions was 

compared. For each condition, the fluorescence intensity of the highest possible number of cells was 

measured to provide accurate mean fluorescence intensity values. Consequently, sample sizes (n) 

were different for each condition and are listed in Table 7.  

 

Table 7 Sample sizes (n) for MSD44 and CRUB1564 in cytological assays for all tested conditions.  

 Control sample size Metal(loid) and sample size 

MSD44 

52 As(V), n=113; CuSO4 n=404 

260 CdSO4, n=619 

73 ZnSO4, n=199 

CRUB1564 
129 As(V), n=360; CuSO4 n=609 

199 CdSO4, n=253; ZnSO4, n=415 

 

Relative fluorescence intensity (RFI) for the tested conditions was calculated as: 

 

	ܫܨܴ = 	
݊݅ݐ݅݀݊ܿ	ℎܿܽ݁	݊݅	ݏ݈݈݁ܿ	ݎ݂	ݕݐ݅ݏ݊݁ݐ݊݅	݁ܿ݊݁ܿݏ݁ݎݑ݈݂	݁݃ܽݎ݁ݒܣ

ݏ݈݈݁ܿ	݈ݎݐ݊ܿ	ݎ݂	ݕݐ݅ݏ݊݁ݐ݊݅	݁ܿ݊݁ܿݏ݁ݎݑ݈݂	݁݃ܽݎ݁ݒܣ
 

 

As a consequence, RFI for control conditions was always 1, and >0 for presence of metal(loid) 

conditions. The RFI values for each pair of control vs. presence of metal(loid) conditions were 

statistically analyzed. First, a F-test was performed to assess homocedasticity, and then a t-Student 

test was applied considering a confidence level of 95%, assuming equal or unequal variances, 

depending on F-test results (Zar, 1999). Additionally, a confidence interval with a 95% confidence 

level was obtained for each RFI value.  

 

 

Results and discussion  

Thiol probing results for all tested metal(loid)s in optimal sulfate availability conditions, and 

corresponding RFI values, are displayed in Figure 7A and 7B, respectively.  

 

The images captured for CMFDA staining with and without As(V) clearly showed a differential 

staining for the Portuguese strain, but not for the Argentinean one (Figure 7A, As(V)). These 

observations are supported by the RFI values: 1.36 for MSD44 with As, and 0.96 for CRUB1564 with 

As (Figure 7B, As(V)).  
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 MSD44 CRUB1564 
 Control Metal(loid) Control Metal(loid) 

As(V) 

    

CdSO4 

    

CuSO4 

    

ZnSO4 

    
 

 

 

 

 

 

 

 

 
Figure 7 Results for the cytological assays for the acidophilic strains MSD44 and CRUB1564, with and without 

metal(loid)s. A Images obtained for CMFDA staining in control vs. presence of metal(loid) conditions. Samples were 

observed under the fluorescence microscope (Olympus IX50) with 100x magnification. Images were captured with 

(Sensicam PCO) using the software Image-Pro Plus Version 6.0 (Media Cybernetics, Inc, Maryland, USA). All images 

were adjusted using the same software, by applying a display range of fluorescence intensity from 150 to 750 units.       

B RFI values for control vs. presence of metal(loid) conditions for MSD44 and CRUB1564. The error bars represent 

confidence intervals with a 95% confidence level.  

A 

B 
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Upon statistical analysis of RFI values, the difference in fluorescence intensity was significant for 

MSD44 (p=2.86E-56). Accordingly, results point to an As-induced response in this strain that consists 

in intracellular accumulation of thiolated peptides. For the Argentinean strain, the obtained results 

show that thiol accumulation does not change in the presence of As (Figure 7). However, the 

statistical analysis provided a p-value of 0.003, which, although considered significant at the applied 

confidence level, is much higher than that obtained for a clearly significant differential staining 

(p=2.86E-56 for MSD44). This statistically significant difference in RFI values for CRUB1564 may be 

attributed to a very small variation in average fluorescence intensity (<0.014; data not shown) and, as 

a consequence, a variation of 0.04 (i.e., 4%) in RFI is considered statistically significant. As a 

consequence of the abovementioned considerations, the fluorescence intensity in the presence of As 

was considered to be similar to that of the control condition for CRUB1564.  

The results for CMFDA staining for control vs. Cd staining show a differential staining for the 

Argentinean strain, but not for the Portuguese strain (Figure 7A, CdSO4). This difference is reflected in 

the obtained RFI values: 1.83 for CRUB1564, and 1.06 for MSD44 (Figure 7B, CdSO4). Statistical 

analysis of these results confirmed the significant differences observed for CRUB1564 (p=2.49E-83). 

For MSD44, statistical analysis provided a p-value of 2.18E-8. For the same reasons as presented 

above for the statistical analysis for CRUB1564 in the presence of As, the intracellular thiol content 

upon exposure to Cd for MSD44 was considered equivalent to the control condition.  

For Cu, results for CMFDA staining suggest thiol accumulation for both strains (Figure 7A, CuSO4). 

Statistical analysis of RFI values confirmed the observed differential staining: RFI=1.17 for MSD44 

(p=4.54E-16), and RFI=1.26 for CRUB1564 (p=9.04E-56) in the presence of Cu (Figure 7B, CuSO4).  

Finally, neither strain showed thiol accumulation upon exposure to Zn (Figure 7A, ZnSO4). In fact, a 

decrease in fluorescence intensity was observed in the Portuguese strain in the presence of Zn. 

Statistical analysis for RFI in MSD44 (RFI=0.77; Figure 7B, ZnSO4) confirmed the significance of this 

decrease in fluorescence intensity (p=8.86E-25). For the Argentinean strain, statistical analysis of RFI 

values (RFI=0.97) provided a p-value of 0.008 which, as justified before, was considered as not having 

biological significance. 

 

In summary, results for the cytological approach for MSD44 point to a thiol accumulation in 

response to As and Cu. However, upon exposure to Zn, the thiol pool is diminished. For the 

Argentinean strain, the results obtained with this approach show that the heavy metals Cd and Cu 

lead to thiol accumulation.  

 

Considering the contrasting results between strains for the nonessential metal(loid)s As and Cd, 

and taking into account the available information on detoxification mechanisms for these elements, a 

series of experiments involving molecular approaches were designed and conducted.  
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7. Molecular approach 

7.1. Metal(loid) transporters 

To further comprehend metal(loid) detoxification mechanisms in the acidophilic yeasts at study, the 

presence of homologues involved in these mechanisms was assessed in silico in basidiomycetous 

yeasts. To do so, the sequences of proteins involved in metal(loid) detoxification, from the original 

microbes, were used as a protein query in a search in a non-redundant protein database (blastp; 

Altschul et al., 1990) in National Center for Biotechnology Information (NCBI), using the default 

settings. Gene homologues of transporters involved in As and Cd detoxification were identified in the 

genome of C. neoformans, the type species of the genus. These transporters include the As(III) efflux 

transporter complex ArsAB (Tsai et al., 2009) and the vacuolar transporter Ycf1 (see Introduction).  

 

The As(III) efflux mechanism conducted by the ArsAB pump was first identified and described in 

bacteria and is constituted by two components: the actual As(III) pump (ArsB) and an optional ATPase 

(ArsA). According to the available literature, ArsB is able to confer As(III) resistance by itself, however, 

when ArsA is co-expressed, the ArsAB pump transports As(III) more efficiently (reviewed in Tsai et al., 

2009). The genes found in C. neoformans present homologies with ArsA (accession number 

XM_767623.1) and ArsB (XM_569061.1) described in the bacterial ars operon, and were not 

homologues of genes in other yeasts (information available in NCBI database). Considering the 

results obtained for As detoxification with the previous approaches, the possibility of As(III) efflux 

should be evaluated. As mentioned in the Introduction section, Ycf1 transports As(GS)3 and Cd(GS)2 

conjugates to the vacuole, and was first described in S. cerevisiae (Li et al., 1997; Prévéral et al., 

2006). Since thiolated peptides appear to be involved in As and Cd detoxification for MSD44 and 

CRUB1564, respectively, the search for evidence of the presence of this transporter (accession 

number XM_569810.1) is of great importance in both strains.  

 

Homology for the As(III) transporter Arr3 (see Introduction) was also found in C. neoformans (in 

NCBI database; accession number XP_772635.1). This transporter is implied in As(III) detoxification in 

model yeasts, which are not related with very high resistance levels (see Introduction). Accordingly, its 

presence by homology search was not assessed in the genome of the acidophilic strains.  

 

Considering this information, the first molecular approached applied aimed to assess the presence 

of arsA, arsB and ycf1 gene homologues, found in C. neoformans, in the genomes of the acidophilic 

strains MSD44 and CRUB1564. 
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DNA extraction and sample preparation  

Homologue gene search was conducted to assess the presence of homologue genes of metal(loid) 

transporters in the genomes of MSD44 and CRUB1564. To do so, DNA was extracted from both 

acidophilic strains and from the neutrophilic yeasts C. neoformans and S. cerevisiae to use as controls 

during the experiments.  

DNA extraction was conducted according to the following protocol: cells grown in solid MYP 

medium (see General methodologies) were recovered into an eppendorf tube containing Tris EDTA 

Buffer (TE, 1 mL) and washed by centrifugation (5 min, 4000 rpm). After ressuspending in Lysis Buffer 

(composition in Annex III) and adding approximately 200 µL of glass beads (acid-washed 425-600 µm 

glass beads, Sigma-Aldrich, Missouri, USA), cells were lysed by vortexing for 2 min at maximum 

speed. The samples were then incubated for 1 hr at 65ºC and further lysed by repeating the vortexing 

step. Proteins were removed by phenol extraction (1x vol; 10 min, RT, 13000 rpm) followed by a 

chloroform-isoamyl alcohol 24:1 purification (1x vol; 10 min, RT, 13000 rpm). The aqueous phase was 

transferred to a new eppendorf tube and nucleic acid was precipitated with salt (NaAc, 0.3 M final 

concentration) and cold absolute ethanol (-20ºC, 2.5x vol) on ice for 30 min. The resulting pellet was 

washed with cold 70% ethanol (1 mL). Finally, the extracted nucleic acid was ressuspended in PCR 

grade water and treated with RNase (working concentration 50 µg mL-1) overnight at 4ºC.  

 

DNA quality was determined by gel electrophoresis of the DNA extracts (5 µL from each sample), 

using 1% agarose and TBE buffer (0.5x). DNA quantification was assessed by a fluorescence-based 

method using Qubit dsDNA High Specificity Assay Kit, according to the manufacturer’s 

recommendations, with Qubit fluorometer (Invitrogen, California, USA).  

 

 

Probe synthesis by PCR 

To assess the presence of the mentioned homologue genes in the genomes of the acidophilic 

strains MSD44 and CRUB1564, three DNA probes were synthesized by PCR. The resulting PCR 

products corresponded to homologue genes identified in C. neoformans as being involved in 

metal(loid) detoxification by transport: arsA, arsB and ycf1.  

To produce these probes, forward and reverse primers were designed with Primer-BLAST, a tool in 

NCBI, according to the available sequences. The conditions for PCR amplification were optimized for 

each primer set and the optimized settings are displayed in Table 8.  

 

After amplification, the resulting PCR products were purified using the Jetquick PCR product 

Purification Spin Kit (Genomed GmbH, Germany), according to the manufacturer’s instructions, and 

sequenced using the laboratory sequencing services. The resulting sequences were submitted to a 

visual correction with Chromas Lite 2.01 software (Technelysium Pty, Australia) and used as a 
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nucleotide query in a search in nucleotide databases (blastn) in NCBI, using the default settings. The 

results of this search confirmed that the three PCR products corresponded to the gene homologues at 

study. 

 

Table 8 Optimized settings for PCR amplification of arsA, arsB and ycf1 in C. neoformans.  

Temperature (ºC) Time (min) Number of cycles 

94 3 1 

94 1 

34 65 1 

72 1 
72 3 1 

 

The homology search for the three mentioned genes was first conducted by PCR amplification in 

the genomic DNA of MSD44 and CRUB1564, with the forward and reverse primers described above. 

However, this approach resulted in amplification of unrelated products, even using different annealing 

temperatures (data not shown), which could be attributed to sequence differences between the type 

species and the tested strains of Cryptococcus sp.. As a consequence, dot blot hybridization was 

performed to search for gene homologues in the acidophilic strains.  

 

The probes for dot blot hybridization were synthesized by PCR, using the abovementioned primer 

sets and amplification settings (Table 8), according to the PCR DIG-labeling Mix protocol from Roche 

(Mannheim, Germany). The DIG-labeling mix contains DIG-conjugated dUTPs that are incorporated 

into the PCR products as the PCR takes place. Accordingly, the resulting PCR products correspond to 

DIG-labeled probes, containing DIG-dUTPs.  

 

 

Dot blot hybridization 

For this approach, positively charged nylon membranes were used (from Roche Diagnostics, 

Mannheim, Germany). One membrane for each probe was prepared by adding dots of yeast DNA (5 

µL per dot), from C. neoformans, MSD44, CRUB1564 and S. cerevisiae, as represented in Figure 8. 

DNA from the type species C. neoformans was used as control for the presence of the homologue 

gene.  

 

The amount of DNA present in each dot was normalized according to the genome size of the 

tested yeasts, in an effort to ensure the same number of genome copies in the different dots. 

However, since this information is not available for the acidophilic strains, the genome size was 

assumed to be approximately the same as the type species C. neoformans (Table 9). 
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Figure 8 Schematic representation of a membrane in a dot blot hybridization assay. The letters under the dots represent 

the following yeasts: a: C. neoformans, b: MSD44, c: CRUB1564, d: S. cerevisiae.  

 

Table 9 Approximate genome size and DNA quantity applied in each dot in dot blot hybridization assays.  

 
Approximate genome size (Mb) DNA in dot (ng) 

C. neoformans 18.5 200 
MSD44† 18.5 200 

CRUB1564† 18.5 200 
S. cerevisiae 12.1 135 

† Genome size of both Cryptococcus sp. strains was assumed to be approximately the same as the genome of the type species C. neoformans.  

 

The protocol for dot blot hybridization was adapted and optimized from the DIG Application Manual 

for Filter Hybridization from Roche Molecular Biochemicals: genomic DNA and DIG-labeled probes 

were denatured by boiling for 10 and 5 min, respectively, and immediately placed on ice. For each dot 

the corresponding genomic DNA sample volume (5 µL) was placed on the membrane. The DNA 

samples were allowed to dry and were then fixed to the membrane by baking at 180ºC for 2 hr.  

The membranes pre-hybridized with pre-warmed Pre-Hybridization Solution (10 mL; composition of 

dot blot hybridization solutions is described in Annex IV) for 1 hr at the hybridization temperature (Thyb 

= 60ºC; optimized empirically) in 50 mL falcon tubes, in a hybridization oven. The Pre-Hybridization 

Solution was recovered (3.5 mL) and 7 µL of DIG-labeled probe were added (Hybridization Solution). 

The membranes were allowed to hybridize overnight (approximately 16 hr) at Thyb. Excess and 

nonspecifically bound DIG-labeled probe was washed with Low (2x 5 min at RT) and High Stringency 

Buffer (2x 15 min at Thyb), respectively. The membranes were then washed with Washing Buffer and 

equilibrated in Blocking Solution (40 min at RT). Anti-DIG-AP Antibody (1:5000) was added to 5 mL of 

recovered Blocking Solution and the membranes were incubated for 30 min. Excess Antibody was 

removed with Washing Buffer (2x 15 min). The membranes were then equilibrated with Detection 

Buffer for 3 min and transferred to flat containers. Nitro-blue tetrazolium/5-bromo-4-chloro-3-

indolyphosphate p-toluidine salt (NBT/BCIP) Chromogenic Substrate (150 µL) was added to 7.5 mL of 

Detection Buffer and the membranes were incubated overnight, protected from light. Finally, to stop 

the revelation step, the Detection Solution was replaced by TE Buffer.  

The membranes were then photographed using the UVItec Image System (Cambridge, United 

Kingdom) with the Alliance Software (Blackburn, Australia). Contrast and brightness were adjusted for 

better visualization of the dots, using the same software. Finally, the membranes were analyzed by 

visual assessment of the presence of a positive result (visible dot) or negative result (dot not visible).  
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Results and discussion  

The results of the dot blot hybridization assays are displayed in Figure 9.  

 

Homologue gene C. neoformans MSD44 CRUB1564 S. cerevisiae 

arsA 

 

arsB 

 

ycf1 

 
Figure 9 Dot blot hybridization results for the tested probes. Images were obtained with the UVItec Image System 

(Cambridge, United Kingdom) with the Alliance Software (Blackburn, Australia) and enhanced for contrast and 

brightness using the same software. Arrows were placed at the left of all applied dots from S. cerevisiae to facilitate 

interpretation. 

 

Homology search in the genomic DNA of MSD44 and CRUB1564 showed positive results for all 

screened genes at the tested Thyb (Figure 9). These results point to the presence of homologues of the 

three metal(loid) detoxification associated genes in the genomic DNA of both acidophilic strains.  

 

The results obtained point to the possibility of vacuolar accumulation of thiolated peptides upon 

exposure to As and Cd in MSD44 and CRUB1564, since both strains presented evidence of the 

presence of a homologue of the vacuolar transporter Ycf1. Additionally, evidence of As(III) efflux by 

homologues of the ArsAB complex points to the possibility of As(III) efflux as a detoxification pathway 

for both strains.  

 

An additional approach was conducted to allow further understanding of Cd detoxification 

pathways. In this additional molecular approach Cd-induced up-regulated genes were assessed in 

both acidophilic strains.  
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7.2. Cd-induced response 

RNA extraction and sample preparation  

The present molecular approach was conducted to assess the Cd-induced response at a 

transcriptional level.  

Prior to the RNA extraction protocol, the laboratory material used for the RNA extraction and 

downstream protocols were treated for RNA handling. Metallic spatulas (thoroughly washed) and 

glass beads (acid-washed, with 425-600 µm, from Sigma-Aldrich, Missouri, USA) were baked at 

180ºC overnight (approximately 16h). Supw was treated with 0.01% diethyl pyrocarbonate (DEPC) 

overnight at 37ºC and autoclaved (15 min at 121ºC). Solutions for RNA extraction and downstream 

applications were prepared with DEPC-treated supw and new stock reagent solutions. Eppendorf 

tubes were treated with 0.01% DEPC water overnight at 37ºC and autoclaved.  

 

The protocol used for total RNA extraction was adapted and optimized from the Invitrogen manual 

for TRIzol reagent: cells grown with and without Cd in scale up conditions (Table 6) were harvested in 

exponential phase and ressuspended in TRIzol reagent (1 mL per 4-5x107 cells) in 1.5 mL eppendorf 

tubes. After adding approximately 200 µL of treated glass beads, cells were mechanically lysed by 

vortexing at maximum speed for 2x 2 min. Chloroform purification in the presence of the TRIzol 

reagent allowed protein and DNA removal. The aqueous phase, containing the total RNA, was 

transferred to a new eppendorf tube and RNA was precipitated with isopropanol (10 min, at RT). After 

centrifugation, the resulting pellet was washed with 75% ethanol and allowed to dry before 

ressuspending in 20 µL DEPC-treated supw. The samples were incubated at 55ºC for 10 min to allow 

pellet solubilization and stored at -70ºC. RNA quality was determined by gel electrophoresis of total 

RNA extracts (5 µL from each sample). Total RNA concentration was assessed using a fluorescence-

based method with the Qubit RNA Assay Kit, as recommended by the manufacturer, with Qubit 

fluorometer (Invitrogen, California, USA).  

Messenger RNA was purified from total RNA samples with GenElute mRNA Miniprep Kit (Sigma-

Aldrich, Missouri, USA), as recommended by the manufacturer. Succinctly, the oligo-d(T) polystyrene 

beads added to the samples in the spin columns bind to polyadenylated mRNA and, after washing 

contaminants, the mRNA is recovered in the provided elution solution. After this purification step, the 

mRNA samples are stored at -70ºC. Messenger RNA concentration was also assessed, in the same 

manner as described above for total RNA samples.  
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Suppression subtractive hybridization  

The four mRNA samples obtained were subjected to suppression subtractive hybridization (SSH) 

to allow assessment of differentially expressed transcripts in the presence of Cd. Succinctly, this 

approach allows selective amplification of differentially expressed and normalized double stranded 

(ds) cDNA fragments. The subtraction step in SSH ensures that ds cDNAs that correspond to 

differential transcripts are preferentially present in the final product, as the products commonly 

expressed in the control (driver mRNA) and Cd (tester mRNA) growth conditions are subtracted. 

Additionally, the normalization step in this methodology ensures that low abundance transcripts have a 

higher probability of being represented in the final product.  

SSH was performed with the PCR-Select cDNA Subtraction kit from Clontech (California, USA; 

Diatchenko et al., 1996) and the experimental protocol was conducted as recommended by the 

manufacturer: first, mRNA samples (105 ng for MSD44, 85 ng for CRUB1564) were converted into 

cDNA with AMV Reverse Transcriptase. The second-strand synthesis was performed with an enzyme 

cocktail containing DNA polymerase I, RNase H and E. coli DNA ligase, yielding ds cDNA. Then, the 

nucleic acid was purified with phenol-chloroform-isoamyl alcohol (25:24:1) and NH4OAc/ethanol 

precipitation. Next, tester and driver ds cDNA samples were digested with RsaI, a four-base cutting 

restriction enzyme that generates shorter, blunt-ended ds cDNA fragments. The resulting ends are 

optimal for adaptor ligation prior to hybridization. The samples were purified again, as described 

above.  

The resulting ds cDNA samples from driver mRNA were now ready for the hybridization steps. 

However, the tester ds cDNA fragments had to be ligated to two adaptors (1 and 2R) before the 

hybridization step took place. Each tester sample was ligated to the adaptors with T4 DNA ligase 

(overnight at 16ºC). The resulting adaptor-ligated ds cDNA tester fragments were ready for the 

hybridization steps. Two sequential hybridization steps were performed. In the first, an excess of 

adaptor-free RsaI-digested driver ds cDNA was added to each corresponding adaptor-ligated RsaI-

digested tester ds cDNA. This hybridization occurred by denaturing briefly at 98ºC and annealing for 8 

hr at 68ºC. For the second hybridization, fresh denatured adaptor-free RsaI-digested driver ds cDNA 

and both tester samples were mixed together. This step took place overnight at 68ºC. These 

hybridization steps allowed normalization and enrichment of differentially expressed transcripts.  

The resulting subtracted samples were then subjected to two consecutive PCR amplifications to 

obtain differentially expressed cDNAs in elevated amounts. For the first PCR reaction (settings in 

Table 10), only one primer was used. This ‘PCR Primer 1’, provided in the kit, was complementary to 

the sequence of the adaptors, enabling the exponential amplification of differentially expressed 

transcripts. Prior to the amplification cycles, the adaptors were extended for 5 min at 72ºC. At this 

point, non-differentially expressed hybrid sequences were either not amplified or did not have an 

exponential amplification. Then, a nested PCR was performed, with the adaptor-specific primers 1 and 

2R, and the PCR cycling started immediately: 35 cycles as described in Table 10, except with an 

annealing temperature of 65ºC. The resulting PCR products were enriched for differentially expressed 

ds cDNAs corresponding to Cd-induced up-regulated transcripts.  
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The PCR products were purified using the Jetquick PCR Product Purification Spin Kit (Genomed 

GmbH, Germany) and ligated into the T/A pCR II vector from Invitrogen, using TA Cloning Kit 

(Invitrogen, California, USA) as recommended by the manufacturer. Consequently, two pools of 

recombinant vectors were obtained, one for each acidophilic strain.  

 

Table 10 PCR amplification settings for the first PCR reaction in SSH procedure.  

Temperature (ºC) Time (min) Number of cycles 

94 3 1 

94 1 

34 64 1 

72 1.5 

72 3 1 

 

These recombinant vectors were used to transform chemically competent E. coli XL-1 Blue-MRF’ 

cells by applying the heat shock method. 300 µL aliquots of the ampicillin resistant transformed cells 

were used as inoculum in supplemented Luria Bertani Agar plates (medium composition and 

preparation in Annex V) to select the transformant clones. Cell lysates from both subtracted lybraries 

were prepared in 50 µL of TE with 0.1% of Tween 20, by boiling at 100ºC for 10 min. Then, PCR 

amplification using polylinker-specific primers (settings in Table 11) allowed a screening of the 

selected 150 clones with assessment of insert size.  

 

Table 11 PCR settings for insert amplification of 150 clones from the subtracted lybraries of MSD44 and CRUB1564.  

Temperature (ºC) Time (min) Number of cycles 

94 3 1 

94 1 

34 50 1.5 

72 1 

72 3 1 

 

40 of 150 screened clones were selected for sequencing using insert size as criteria to select 

different products. PCR products were purified with Jetquick PCR Product Purification Spin Kit 

(Genomed GmbH, Germany) and sequencing was conducted using laboratory sequencing services. 

The resulting sequences were submitted to a visual correction with Chromas Lite 2.01 software 

(Technelysium Pty, Australia), and used as a nucleotide query in a search in a non-redundant protein 

database, using a translated nucleotide query (blastx) in NCBI, using the default settings. The results 

of this homology search were analyzed considering cutoff values of 70.0 and 10E-10 for score and 

expected E-value, respectively, as these allowed removal of unspecific homology detection in the 

blastx search, while maintaining results that clearly reflected homology.  
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Results and discussion 

The results obtained for the homology search (blastx) of the sequenced products are summarized 

in Table 12 and further details are provided in Table 13.  

 

Table 12 General results of homology search of the subtracted cDNA library obtained from SSH for MSD44 and 

CRUB1564.  

 
MSD44 CRUB1564 

Number of sequenced products 21 19 

Average read length (bp) 312 335 

Match with known products 5/21 8/19 

Match with products with putative function 2/21 4/19 

No match† 14/21 7/19 
†Includes sequences below cutoff values for score (>70.0) and above cutoff for expected E-value (<10E-10). Lack of match in blastx is also 

considered in these sequences. 

 

Table 13 Putative identification of proteins corresponding to sequences obtained in SSH for both acidophilic strains 
according to blastx results in NCBI. All results presented below showed homology with sequences from Cryptococcus 
neoformans and Cryptococcus gattii. Accession numbers refer to the results for the type species, C. neoformans.  

 Accession 
numbers 

Frequency Score Query length 
(bp) 

Coverage 
(%) 

Max 
id (%) 

E-value 

MSD44        

Functional category        

Protein synthesis 
       

40S ribosomal protein S7 XP_572711.1 2/21 176.0 399 78 87 1E-54 

Protein folding        

Cyclophilin A XP_568796.1 1/21 162.0 372 70 87 1E-49 

Hypothetical proteins 
       

JmjC domain XP_778339.1 1/21 70.1 123 97 67 1E-14 

NADB_Rossmann domain XP_567473.1 1/21 94.7 419 87 50 5E-22 

CRUB1564 
       

Functional category 
       

Protein synthesis 
       

60S ribosomal protein L17 XP_568654.1 1/19 76.3 405 48 63 2E-21 

Translation elongation factor 1-ɑ AAB88586.1 1/19 89.4 246 76 70 6E-20 

Translation elongation factor 2 XP_570549.1 5/19 214.0 379 87 92 8E-64 

Protein folding        

Cyclophilin A XP_568796.1 1/19 162.0 337 79 86 6E-50 

Hypothetical proteins 
       

RNA recognition motif XP_568231.1 4/19 148.0 479 74 66 4E-40 
†When more than one query showed homology with the same predicted protein, only the queries with higher Score and lower E-value are 

presented. 
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Results obtained for homology search with the SSH final products matched sequences from the 

type species C. neoformans and from the related C. gattii. Since score and E-value parameters 

indicated a higher homology to sequences from C. neoformans (data not shown), only the accession 

numbers for the type species are displayed in Table 13.  

 

The results obtained with the SSH methodology and homology search suggest that exposure to Cd 

leads to the up-regulation of different gene products involved in protein synthesis in both strains, as 

reflected by the up-regulation of ribosomal proteins and translation elongation factors (Table 13). 

These results are in agreement with comparative transcriptomic and proteomic studies conducted in 

S. cerevisiae, which showed that several genes involved in protein synthesis are up-regulated upon 

exposure to Cd (Momose & Iwahashi, 2001; Jin et al., 2008). Other studies report that this enhanced 

protein synthesis is highly related to sulfur sparing (see Introduction, Figure 2; Fauchon et al., 2002), 

as enzymes involved in the sulfur amino acid biosynthesis pathway are up-regulated in the presence 

of Cd and mainly directed to the synthesis of GSH (Fauchon et al., 2002; Vido et al., 2001).  

 

Cyclophilin A is involved in protein folding mechanisms and was detected in both acidophilic strains 

(Table 13). Enhanced protein folding and stabilization appears to be a general response mechanism in 

yeasts upon exposure to Cd, as reported by some transcriptomic approaches (Momose & Iwahashi, 

2001; Jin et al., 2008). Additionally, the comparative proteomic study from Vido et al. (2001) showed 

that heat shock proteins are highly associated with Cd-response, since many proteins are damaged in 

the presence of this nonessential metal.  

 

Results from homology search of sequences obtained for the Portuguese strain indicated that 

proteins containing JmjC domains are up-regulated in response to Cd (Table 13). These domains 

have Zn-fingers and are part of the cupin superfamily of metalloenzymes (Mosammaparast & Shi, 

2010). The JmjC domain has been associated with proteins that directly remove histone lysine 

methylation via a hydroxylation reaction (Trewick et al., 2005; Kwon & Ahn, 2011), thus participating in 

histone modifications and regulation of the integrity of the chromatin structure (Clissold & Ponting, 

2001). Chromatin modification has been associated with yeasts response to Cd, as several chromatin 

remodeling complexes were found to be up-regulated upon exposure to this metal (Momose & 

Iwahashi, 2001; Jin et al., 2008; Ruotolo et al., 2008). These chromatin modification complexes were 

reported as being able to influence the expression of genes necessary for recovery after exposure to 

the nonessential metal and. Moreover, these complexes influence DNA reactivity and accessibility to 

DNA repair enzymes (Ruotolo et al., 2008), which are a target of Cd toxicity (Table 1).  
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An additional Cd-induced response was observed for MSD44, which is associated with NADB-

Rossman domains (Table 13). According to the protein annotation resource Conserved Domains 

Database (CDD), this domain is found in numerous dehydrogenases of metabolic pathways such as 

glycolysis, and many other redox enzymes, which typically contain a second domain which is 

responsible for specifically binding a substrate and catalyzing a particular enzymatic reaction. Proteins 

that fit this profile, such as enzymes involved in carbohydrate metabolism, were found to be up-

regulated in the presence of Cd (Fauchon et al., 2002; Jin et al., 2008). Jin et al. (2008) assessed the 

transcriptomic response to different heavy metals and observed the occurrence of a common metal 

response. The latter corresponds to a general and non-specific response activated upon exposure to 

different metals and includes enzymes involved in carbohydrate metabolism. Accordingly, in this 

study, the up-regulation of these proteins in response to Cd may be part of a common response, 

instead of a Cd-specific mechanism.  

 

In addition to enhanced protein synthesis and folding processes, the obtained results for the 

Argentinean strain indicate that gene products harboring domains with RNA recognition motifs (RRM) 

were up-regulated (Table 13). According to CDD, proteins harboring RRM domains are involved in 

post-transcriptional gene expression processes including mRNA and rRNA processing, RNA export 

and RNA stability. Nucleocytoplasmic transport was recently implicated in yeast cell recovery and 

survival mechanisms in response to Cd toxicity by Ruotolo et al. (2008). These authors observed that 

mRNA trafficking is up-regulated upon Cd exposure and suggest that mRNA turnover and 

relocalization are important factors for translational and metabolic reprogramming under metal stress 

conditions. 

 

Both in ours and in the abovementioned studies, a considerable percentage of unknown products 

were up-regulated upon Cd exposure. This reflects how much is still unknown in heavy metal 

response and detoxification in yeasts and reinforces the necessity to conduct more studies on the 

subject. In our study in particular, the high number of unmatched products (Table 12) reflects how 

much is unknown in metal response mechanisms in basidiomycetous yeasts, as the most studied 

microbes within the group are the clinically relevant C. neoformans and C. gattii. More importantly, the 

uniqueness of the species at study suggests that the extreme conditions to which it is constantly 

exposed probably conditioned the mechanisms used to thrive in such an environment, in a parallel to 

what has been observed in prokaryotes (Dopson et al., 2003; see Introduction). Accordingly, at least 

part of the unmatched sequences obtained in this approach may correspond to products related to 

undescribed heavy metal response and resistance mechanisms.  
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8. Global discussion 

In the present work, different approaches were conducted to understand metal(loid) detoxification 

mechanisms in two acidophilic yeasts from a new Cryptococcus species. Considering the results 

obtained and the information available for metal(loid) detoxification mechanisms in yeasts (described 

in the Introduction section), a number of hypotheses for mechanisms operating in these strains are 

proposed below. 

 

 

8.1. Arsenic resistance 

Information available on As detoxification mechanisms describe mainly As(III) detoxification. In fact, 

the only As(V) detoxification mechanism described in yeasts resides in the reduction of As(V) to As(III) 

by an As(V) reductase (Mukhopadhyay et al., 2000). Thiol-mediated As(III) detoxification mechanisms 

include As(III) chelation by thiolated peptides, namely GSH and PC. Subsequently, As(GS)3 

complexes may be transported to the vacuole by Ycf1 (Prévéral et al., 2006; reviewed in Tamás & 

Wysocki, 2010). As(III) detoxification can also be accomplished by metalloid efflux to the outside of the 

cell, through a number of transporters, not involving thiolated peptides (reviewed in Tamás & Wysocki, 

2010). Despite the absence of information in published literature about C. neoformans, evidence of 

homologues of genes related with As(III) detoxification were found in its genome (information based 

on NCBI database). These include the Ycf1 vacuolar transporter, the As(III) efflux pump ArsB and its 

associated ATPase ArsA, and the As(III) permease Arr3.  

 

Results obtained for MSD44 and CRUB1564 showed that As resistance levels are not influenced 

by sulfate availability, and confirmed the higher toxicity of the trivalent chemical form of the metalloid 

(Table 4 and Figure 5A; Oremland & Stolz, 2003). Additionally, both strains present homology with 

genes related to As(III) detoxification: ycf1, arsB and the associated ATPase arsA (Figure 9). Intra-

specific variability was observed in the cytological approach, as the Portuguese strain presented 

higher thiol accumulation levels upon exposure to As, while thiol levels did not change for CRUB1564 

(Figure 7).  

According to the obtained results and the available literature, an As detoxification mechanism 

common to both acidophilic strains could be attributed to a reduction step of As(V) to As(III) with an 

As(V) reductase (reviewed in Tamás & Wysocki, 2010). Since both MSD44 and CRUB1564 present 

homologues of arsA, arsB and ycf1 genes, As(III) detoxification may be accomplished by metalloid 

efflux and vacuolar accumulation simultaneously, as is the case for S. cerevisiae with the Arr3 

permease and Ycf1 (see Introduction). Considering that accumulation of thiolated peptides upon 

exposure to As was only observed for the Portuguese strain, a predominant As(III) detoxification 

mechanism involving the vacuolar sequestration of As(GS)3 conjugates can be suggested for MSD44.  
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Regarding the involvement of thiolated peptides in response to As toxicity, a phenomenon 

equivalent to sulfur sparing was observed in response to As exposure in S. cerevisiae (Haugen et al., 

2004). These authors showed that exposure to As in the baker’s yeast lead to an alteration in sulfur 

and GSH metabolism, resulting in an increased production of GSH. The results observed for the 

Portuguese strain are in agreement with this possibility of alteration in the sulfur and GSH metabolism 

directed towards an oxidative stress response, as the thiol content in MSD44 was increased upon 

exposure to the metalloid.  

 

On the other hand, As-induced intracellular thiol accumulation was not observed for CRUB1564, 

suggesting that this strain predominantly resists As by detoxification mechanisms that do not involve 

accumulation of thiolated peptides, such as As(III) extrusion by the abovementioned ArsAB pump.  

It should be noted that low sensitivity to small variations of fluorescence intensity may represent a 

limitation inherent to the applied cytological methodology. Accordingly, although the results for 

CRUB1564 do not point to an enhanced thiol accumulation induced by As, the possibility of GSH 

production to cope with oxidative stress cannot be excluded, seen as this thiolated peptide is the 

central antioxidant in yeast cells (Zechmann et al., 2011).  

 

Protein activity studies should be conducted in future investigation to confirm As(III) efflux activity 

by ArsAB homologues and vacuolar accumulation by a Ycf1-like transporter in both acidophilic strains.  

 

 

8.2. Cadmium resistance 

Cd detoxification mechanisms described in yeasts highly suggests Cd chelation by the thiolated 

peptides GSH and PCs, resulting in Cd-thiolated peptide complexes (reviewed in Tamás & Wysocki, 

2010), with subsequent vacuolar accumulation through Ycf1 (Li et al., 1997) or Hmt1 (Prévéral et al., 

2006 and 2009), respectively. Additionally, Cd(GS)2 complexes were shown to be the substrate of the 

Cd efflux pump Yor1 (Nagy et al., 2006). Moreover, Cd-induced sulfur sparing was described as 

shifting the intracellular sulfur pool to GSH production to cope with Cd toxicity (Figure 2; Fauchon et 

al., 2002). In fact, only one detoxification mechanism was described in yeasts as not involving 

thiolated peptides: the Cd efflux pump Pca1 (Figure 1B; Adle et al., 2007).  

 

The results obtained for the Argentinean strain highly point to an involvement of thiolated peptides 

in the Cd response: (i) MIC determination results showed that the lowest Cd resistance level was 

associated with the condition with less available sulfate (Table 4 and Figure 5B); (ii) a clear thiol 

accumulation was observed upon Cd exposure in the cytological approach (Figure 7; RFI=1.83); (iii) 

evidence of a homologue of a Cd(GS)2 vacuolar transporter was found (Figure 9). On the other hand, 
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the only evidence found linking Cd detoxification to thiolated peptides in MSD44 is related with the 

positive result for search of a ycf1 gene homologue (Figure 9). Nevertheless, this positive result can 

be related only to As(III) detoxification (as discussed above) and not to Cd detoxification, since Ycf1 

uses As(GS)3 and Cd(GS)2 conjugates as a substrate for transport (reviewed in Tamás & Wysocki, 

2010).  

 

A common Cd response could be present in both acidophilic strains, based on de novo protein 

synthesis and folding, which were found to be involved in the response to this heavy metal by the 

conducted transcriptomic approach. Also, since the Cd resistance levels are very high in MSD44 and 

CRUB1564, an efflux mechanism can be involved in Cd resistance in both strains, possibly through a 

homologue of the transporter Pca1, since this transporter is described as being capable of an efficient 

Cd detoxification (Adle et al., 2007).  

Considering the abovementioned results and background information, Cd detoxification in MSD44 

would mainly operate via a Pca1-like efflux pump, since it is the only mechanism described that does 

not involve thiolated peptides.  

On the other hand, since thiols are clearly involved in Cd detoxification for the Argentinean strain 

and evidence of increased protein synthesis was observed in the SSH approach (Table 13), a possible 

sulfur sparing setting can be involved in the Cd response in this strain. This hypothesis would result in 

an elevated intracellular GSH content which could chelate the nonessential metal, forming Cd(GS)2 

complexes and possibly lead to subsequent vacuolar accumulation through a homologue of Ycf1 

(reviewed in Tamás & Wysocki, 2010) or Hmt1 (Prévéral et al., 2009). Alternatively, GSH could be 

used as a substrate for Cd-induced PC synthesis, resulting in the formation of Cd-PC complexes, with 

possible subsequent vacuolar accumulation through a homologue of the Hmt1 transporter (Prévéral et 

al., 2009).  

 

Further investigation is needed in several aspects to fully assess Cd detoxification mechanisms in 

these acidophilic strains. First, the sulfur sparing possibility proposed for the Argentinean strain should 

be assessed by analyzing alterations in the sulfur metabolism proteins in the presence of Cd. 

Furthermore, the possibility of a Pca1-like transporter should be assessed by homology search and 

subsequent gene expression assays.  

 

 

  



41 

8.3. Copper resistance 

Two main detoxification mechanisms are described in yeasts for Cu detoxification. The first 

associates the production of the Cup1 MT in response to Cu excess (reviewed in Tamás & Wysocki, 

2010). The second mechanism involves Cu transport to the outside of the cell and was described as 

conferring relatively elevated resistance levels to the yeast C. albicans (Weissman et al., 2000).  

Results for the Argentinean strain in the physiological approach clearly reflected sulfate 

dependency upon exposure to Cu (Figure 5C and 6; Table 4 and 5). Results for CMFDA staining in 

this strain also support the involvement of sulfur in Cu detoxification, since thiol accumulation was 

observed in response to the presence of Cu. Subsequently, a thiol-mediated mechanism for Cu 

resistance is in agreement with the obtained results, possibly involving participation of MTs in a Cup1-

like setting (Figure 1C; reviewed in Tamás & Wysocki, 2010). Nevertheless, other thiolated peptides, 

such as GSH and/or PCs may be involved in this response, although not described as being chiefly 

involved with Cu detoxification in yeasts. To understand if this thiol-mediated Cu detoxification 

response is being mediated by a MT, a Northern blot experiment could be performed, using conserved 

sequences as a probe.  

 

The results obtained for the Portuguese strain also point to an influence of sulfate availability and 

the involvement of thiolated peptides in Cu detoxification: (i) MIC determination results and 

subsequent statistical analysis showed that this strain resists higher Cu concentrations in the condition 

with most available sulfate (Figure 5C); (ii) the differential staining in cytological assays pointed to thiol 

accumulation upon exposure to Cu (Figure 7). However, this strain showed much higher resistance to 

this heavy metal (Figure 5C). Considering these results, a basal mechanism involving thiolated 

peptides may be suggested, similar to the one suggested above for the Argentinean strain. 

Nevertheless, taking into account the higher resistance levels observed for MSD44, an additional Cu 

detoxification mechanism, not involving thiolated peptides, can be suggested for this strain. 

Accordingly, further Cu detoxification may be achieved in the Portuguese strain by exporting this metal 

to the outside of the cell through a Crp1-like transporter, as is the case in C. albicans (Weissman et 

al., 2000).  

 

Assessment of MT-mediated Cu detoxification should be assessed as described above for 

CRUB1564. Moreover, the presence of a Crp1-like transporter should be evaluated by homology 

search using conserved regions of this transporter as a probe.  
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8.4. Zinc resistance 

As was denoted before, the main Zn detoxification mechanism identified so far in yeasts consists in 

vacuolar accumulation of this metal (Figure 1D; Simm et al., 2007). An alternative intracellular 

accumulation mechanism was identified in the fission yeast S. pombe and relies on Zn accumulation 

in the endoplasmic reticulum (Borrelly et al., 2002). Additionally, a thiol-mediated mechanism was 

described in different ascomycetous yeasts, where MTs are synthesized in response to exposure to 

excess Zn (Pagani et al., 2007a; Borrelly et al., 2002).  

 

The results obtained in this study revealed that sulfate availability influences Zn resistance levels in 

the Portuguese strain in three different aspects: (i) the lower MIC value observed was obtained for the 

condition with less available sulfate (Figure 5D); (ii) statistical analysis of AUCݔ in the evaluated 

mMTCs showed that yeast growth is superior in Sulfate-YNB medium (Table 4); (iii) a decrease in thiol 

accumulation was observed upon Zn exposure (Figure 7A; ZnSO4), which was reflected by an RFI 

value of 0.77 (Figure 7B; ZnSO4). This Zn-induced thiol pool depletion was observed in yeasts before, 

by Pagani et al. (2007b). These authors reported that the presence of excess Zn induced an oxidative 

stress response in the yeast cell, followed by a consumption of low-molecular weight thiols, namely 

GSH. Considering this information, MSD44 may respond to Zn surplus by consuming thiols, possibly 

GSH as a means to cope with Zn-induced oxidative stress, thus supporting the need for sulfate 

availability in the growth medium. Moreover, an additional Zn detoxification mechanism mediated by 

metal accumulation in an intracellular compartment may be suggested, seen as higher than average 

resistance levels were observed. Such intracellular accumulation could be directed to the vacuole, 

through a Cot1-like or Zrc1-like transporter, or to the endoplasmic reticulum, through a Zhf1-like 

transporter.  

The results obtained for the Argentinean strain only point to the possibility of sulfate availability 

influence upon analysis of the determined MIC values, seen as the MIC determined for the condition 

with most sulfate is double the MICs obtained in all other conditions (Figure 5D). However, statistical 

analysis of average growth revealed that AUCݔ was equivalent in all tested conditions. Considering 

this, the hypothesis of Zn-induced MT synthesis could be evaluated, as it would account for a higher 

demand for sulfate availability in the growth medium. However, differential thiol accumulation was not 

observed upon exposure to Zn in this strain (Figure 7). Accordingly, the predominant mechanism of Zn 

detoxification in CRUB1564 may rely on intracellular accumulation in organelles such as the vacuole 

or the endoplasmic reticulum, through homologues of the abovementioned transporters.  

Considering that the proposed Zn detoxification mechanisms involve different subcellular 

compartments, further understanding of the detoxification mechanism(s) operating in Cryptococcus sp. 

could be explored using fluorescence microscopy with a Zn-specific probe and adequate organelle-

specific probes. This methodology would allow visualization of the subcellular compartment that stores 

Zn upon exposure to elevated concentrations: vacuole, endoplasmic reticulum, both, or neither – the 

latter situation suggesting an alternative mechanism.  
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9. Final considerations 

In the present work, heavy metal(loid) detoxification mechanisms were assessed in two strains 

from geographically distinct backgrounds, belonging to a new and unique acidophilic yeast species.  

Overall, the results obtained suggest intra-specific variability in detoxification mechanisms that 

operate upon metal(loid) exposure. This was particularly observed for Cu resistance, since the 

Argentinean strain revealed a sulfate dependency upon exposure to toxic concentrations of this heavy 

metal. Seen as the Portuguese strain is exposed to very high concentrations of Cu in its natural 

environment (Table 2), it could be hypothesized that the different backgrounds that MSD44 and 

CRUB1564 are exposed to may have influenced the evolution of metal detoxification mechanisms.  

 

Despite the fact that some results obtained throughout this study are in agreement with 

mechanisms already described in neutrophilic yeasts, novel heavy metal(loid) detoxification 

mechanisms may be accountable for the overall higher resistance levels presented by the tested 

strains of Cryptococcus sp.. These high resistance levels may be associated with a higher number of 

copies of genes related to metal(loid) detoxification, enhanced expression of those genes upon 

metal(loid) exposure, or undescribed resistance mechanisms.  

 

Further investigation should be pursued for all tested metal(loid)s, to disclose which mechanisms 

are associated with each metal(loid) and to understand how these microbes thrive in such extreme 

environments.  
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11. Annexes  
Annex I – Solid MYP preparation 

Solid MYP medium was prepared as stated in Table 12 and sterilized by autoclave (15 min at 

121ºC). The pH was then adjusted to 3.0 with H2SO4 for the acidophilic strains. 

 

Table 14 Final concentration (% w/v) for components of solid MYP medium (adapted from Gadanho et al., 2006).  

% w/v Component 

0.7 Malt extract 
0.25 Yeast extract 
1.7 Peptone 
1.7 Agar 

 

 

Annex II – Liquid YNB preparation 

Liquid yeast nitrogen base (YNB) was prepared as stated in Table 13. The pH of the growth 

medium was adjusted to 3.0 with H2SO4. After pH adjustment, the growth medium was sterilized by 

filtration with syringe filters (pore diameter of 0.22 µm) and stored in falcon tubes at RT. 

 

Table 15 Final concentration (% w/v) for components of liquid YNB medium, according to the manufacturer’s instructions 

(Sigma-Aldrich, Missouri, USA). 

% w/v Component  

0.001 L-histidine  
0.002 DL-methionine  
0.002 DL-tryptophan  

0.5 Glucose  
0.17 Yeast Nitrogen Base  
0.66 (NH4)2SO4 Sulfate-YNB 
0.53 NH4Cl Chloride-YNB 

 

 

Annex III – DNA extraction solutions 

Lysis Buffer: 50 mM Tris, 250 mM NaCl, 50 mM EDTA, 0.3% SDS, pH adjusted to 8.0.  

TE Buffer: 10 mM Tris, 1 mM EDTA, pH 8.0. Also used in Dot blot hybridization.  
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Annex IV – Dot blot hybridization solutions 

Pre-hybridization Solution: 5X SSC, 0.1% Sarcosil, 0.02% SDS and 1X Blocking Reagent†. 

Low Stringency Buffer: 2X SSC and 0.1% SDS. 

High Stringency Buffer: 0.5X SSC and 0.1% SDS. 

Maleic Acid Buffer: 0.1 M Maleic acid, 0.15 M NaCl; adjusted to pH 7.5 with solid NaOH. 

Washing Buffer: 0.1 M Maleic Acid Buffer, 0.3% (v/v) Tween 20, 0.15 M NaCl. 

Blocking Solution: 1X Blocking Reagent† in 0.1 M Maleic Acid Buffer.  

Detection Buffer: 0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5. 

Detection Solution: 1:50 NBT/NCIP Chromogenic Substrate† diluted in Detection Buffer. 

TE Buffer: see Annex III. 

†Blocking Reagent and NBT/NCIP Chromogenic Substrates were provided in the DIG High Prime DNA Labeling and 

Detection Starter Kit I from Roche Applied Science (Mannheim, Germany). 

 

Annex V – Luria Bertani solid medium preparation 

Luria Bertani Agar (LBA) medium was prepared as stated in Table 14 and sterilized by autoclave 

(15 min at 121ºC).  

 

Table 16 Final concentration (% w/v) for components of solid LBA medium. 

% w/v Component 

1 Tryptone 
0.5 Yeast extract 
0.5 NaCl 
1.5 Agar 

 

The following supplements were added to sterile liquefied LBA: 

 Ampicillin, 100 µg mL-1 

 Isopropyl-β-D-thiogalactoside (IPTG), 80 µg mL-1 

 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), 80 µg mL-1 

 

 

 

 


	parte1
	parte2

