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ABSTRACT                                             

 

 Malaria, the world’s leading tropical parasitic disease, is caused by protozoan 

parasites of the genus Plasmodium. During its life cycle, Plasmodium inhabits an insect 

vector and a vertebrate host. Liver infection in the vertebrate host is the asymptomatic 

obligatory step before the onset of malaria disease. Cellular and molecular interactions 

between host and parasite play a key role in the establishment of susceptibility to malaria 

infection, and so the identification of relevant host factors is crucial for the rational 

development of new antimalarial strategies. We hypothesized that peroxisomes-less 

Plasmodium may have acquired host-dependency at the level of liver peroxisomes, and that 

it can take advantage of host cell peroxisomal functions and metabolites during liver stage. 

The myriad pathways in which peroxisomes are involved and their abundance in mammalian 

livers seems to place these organelles in a privileged position to be exploited in the context 

of intracellular parasitism. Live fluorescence microscopy and flow cytometry of DsRed-

labeled peroxisomes revealed that the intracellular presence of Plasmodium can alter the 

dynamic properties of the host peroxisomal population. We then focused on the two major 

mammalian peroxisomal functions, fatty acid β-oxidation and detoxification of reactive 

oxygen species. Impairment of fatty acid β-oxidation by a drug inhibitor, knockdown of β-

oxidation enzymes and overexpression of a key peroxisomal thiolase showed that a host-

factor dependency does exist and that it is important for both cell invasion and subsequent 

parasite development. This is probably tied to the parasite’s metabolic requirements for 

membrane biosynthesis during these processes. Catalase inhibition and knockdown of other 

peroxisomal peroxidases showed that this antioxidant network does not play a strong role in 

Plasmodium infection, but fluorescence microscopy revealed that the peroxisomal marker 

enzyme catalase may be recruited by the parasite to complement the functions of its own 

antioxidant systems in the maintenance of redox homeostasis during liver stage. 

 

Keywords: malaria, host-parasite interactions, peroxisomes, β-oxidation, peroxidases 
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ABSTRACT                                             

  

A malária constitui a principal doença parasitária tropical no mundo, sendo causada por 

protozoários do género Plasmodium. O ciclo de vida deste parasita inclui dois hospedeiros: 

um insecto vector e um vertebrado. A infecção do fígado do hospedeiro vertebrado é uma 

etapa obrigatória e precede a manifestação clínica da doença. As interacções celulares e 

moleculares entre parasita e hospedeiro têm um papel determinante no estabelecimento da 

susceptibilidade à infecção e, portanto, a identificação de factores do hospedeiro relevantes 

para o desenrolar da infecção é essencial numa perspectiva de desenvolvimento de novas 

estratégias anti-maláricas. No âmbito deste trabalho formulámos a hipótese de que o 

parasita causador da malária, o qual é desprovido de peroxissomas, poderá, ao longo da 

evolução, ter adquirido a capacidade de subverter as funções e/ou metabolitos 

peroxissomais do hospedeiro vertebrado. De facto, a diversidade de vias metabólicas em 

que os peroxissomas estão envolvidos, bem como a sua abundância no fígado, levantam a 

questão da importância destes organelos num contexto de parasitismo intracelular. 

Começámos por mostrar que a presença de Plasmodium pode alterar as propriedades 

dinâmicas da população peroxissomal da célula hospedeira. Focámo-nos, então, nas duas 

principais funções dos peroxissomas, a β-oxidação de ácidos gordos e a degradação de 

espécies reactivas de oxigénio. Bloqueio da β-oxidação através de um inibidor ou por 

silenciamento da expressão de enzimas-chave desta via metabólica, bem como sobre-

expressão de uma importante tiolase peroxissomal, permitiu-nos demonstrar que existe de 

facto uma dependência entre parasita e hospedeiro e que a β-oxidação peroxissomal é 

importante tanto para a invasão da célula hospedeira como para o subsequente 

desenvolvimento do parasita. Este efeito está provavelmente associado às necessidades 

lipídicas do parasita, nomeadamente para a síntese de membranas durante ambos os 

processos. Por outro lado, inibição da catalase e silenciamento da expressão de outras 

peroxidases peroxissomais revelou que esta rede antioxidante não tem um papel crucial na 

infecção por Plasmodium. Curiosamente, experiências de microscopia de fluorescência 

sugerem que a catalase do hospedeiro poderá ser recrutada pelo parasita, o que poderá 

constituir um mecanismo de homeostase durante a infecção hepática. 

 

Palavras-chave: malária, interacções parasita-hospedeiro, peroxissomas, β-oxidação, 

peroxidases 
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SUMMARY / RESUMO                                          

 

 A malária é a doença parasitária com maior impacto no mundo, sendo responsável 

por cerca de 780.000 mortes por ano, 85% das quais correspondem a crianças com idade 

inferior a cinco anos. A área com maior incidência de malária é, sem dúvida, a África 

subsariana, mas esta doença é também endémica do sudeste da Ásia, da América central, 

da América do sul, do Mediterrâneo leste e de regiões do Pacífico.  

 Os agentes causadores de malária são protozoários do género Plasmodium, filo 

Apicomplexa. Entre as cinco espécies que podem transmitir malária aos humanos, P. 

falciparum é o principal contribuidor para a morbidade e mortalidade associadas à malária. 

Plasmodium possui um ciclo de vida complexo, o qual inclui fases distintas de 

desenvolvimento em dois hospedeiros. O desenvolvimento sexual do parasita ocorre num 

insecto vector enquanto que o desenvolvimento asexual ocorre num hospedeiro vertebrado. 

A manisfestação clínica da malária só se dá quando o parasita inicia a infecção cíclica dos 

eritrócitos em circulação, o que só pode ocorrer após ter completado a primeira fase do seu 

ciclo asexual no fígado do hospedeiro vertebrado. Apesar desta etapa obrigatória no fígado 

ser assimptomática, decorrem durante ela inúmeras interacções moleculares e celulares 

entre parasita e hospedeiro que condicionam fortemente o progresso da infecção. Este forte 

tropismo e associação muito próxima entre o metabolismo do hepatócito hospedeiro e o 

metabolismo do parasita tornam a fase pré-eritrocítica do ciclo de vida de Plasmodium de 

particular interesse para o desenvolvimento de novas estratégias para o combate contra a 

progressão da infecção e o surgimento dos sintomas de malária através do bloqueio do 

estabelecimento do parasita no fígado. Infelizmente, a acessibilidade experimental à fase 

hepática de Plasmodium é ainda bastante limitada, e o estudo da biologia celular e 

molecular das formas hepáticas do parasita da malária ainda se encontra na infância. 

Porém, uma quantidade substancial de investigação in vitro e in vivo tornou-se possível 

devido ao uso de parasitas-modelo que causam malária apenas em roedores, 

nomeadamente P. berghei e P. yoelii. Sistemas in vitro em que linhas celulares de 

hepatoma humano suportam o desenvolvimento de parasitas de roedores são modelos 

práticos e ferramentas excepcionalmente valiosas  para o estudo experimental da fase 

hepática da malária nos mamíferos. Recentemente, um perfil da expressão de genes de 

células de hepatoma infectadas por P. berghei revelou que a infecção por Plasmodium 

induz uma sequência de eventos biológicos coordenados que podem ser divididos em três 

categorias gerais: resposta fisiológica ao stress causado pela presença do parasita, 

recrutamento dos processos metabólicos do hospedeiro e manutenção da viabilidade da 

célula hospedeira ao longo da infecção. 
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A taxa de crescimento de Plasmodium no fígado é uma das mais rápidas alguma 

vez registada entre eucariotas, e como tal, o parasita tem elevadas exigências metabólicas, 

particularmente ao nível da abundância e variedade de recursos lipídicos. Apesar de ter 

capacidade para sintetizar determinadas classes e determinadas quantidades de ácidos 

gordos, sendo um parasita intracelular obrigatório, muitos dos seus recursos são também 

derivados da célula hospedeira. Ao longo da evolução, a selecção natural tem vindo a 

moldar o metabolismo dos parasitas intracelulares no sentido do desenvolvimento de 

mecanismos eficientes na subversão dos recursos da célula hospedeira. Adicionalmente, a 

grande variedade e disponibilidade de metabolitos no citoplasma da célula hospedeira levou 

à redução ou mesmo perda de vias metabólicas centrais dos parasitas. As diferentes 

estratégias metabólicas praticadas pelos patogénios de humanos são influenciadas pelo 

nicho, ou nichos, que cada um ocupa. Enquanto que o refinamento e adaptação do 

metabolismo mitocondrial é um processo evolutivo comum entre os patogénios eucariotas, 

várias linhas de protozoários, incluindo Plasmodium, perderam os seus peroxissomas. 

Apesar de ainda não ser completamente claro se Plasmodium não possui de todo um 

compartimento celular estruturalmente semelhante ao peroxissoma, dados que demonstram 

a inexistência de peroxissomas canónicos são fornecidos por diversos estudos 

bioinformáticos, citológicos e enzimáticos. A ausência dos genes conservados que 

codificam para os factores de biogénese dos peroxissomas (genes PEX) e também a 

ausência da enzima catalase, considerada a enzima representativa dos peroxissomas, é 

deveras conspícua. 

No presente trabalho procurou-se testar a hipótese de que o parasita da malária 

evoluiu no sentido de uma parcial dependência metabólica em relação ao seu hospedeiro, 

tendo adquirido a capacidade de subverter certas vias metabólicas da célula hospedeira 

para suportar o seu desenvolvimento no fígado. Devido às suas propriedades dinâmicas, ao 

seu envolvimento em variadas vias metabólicas importantes, à sua abundância no fígado e 

ao facto de que Plasmodium não os possui, os peroxissomas apresentaram-se como  bons 

candidatos para o estudo de interacções funcionais entre componentes da célula 

hospedeira e o parasita, as quais têm o potencial de providenciar alvos para novas 

estratégias quimioterapêuticas contra a fase hepática da infecção malárica. 

Os peroxissomas são organelos ubíquos que partilham determinadas vias e 

mecanismos com as mitocôndrias, mas cada um destes organelos tem especificidade para 

diferentes substratos e, portanto, estão envolvidos em funções fisiológicas distintas. Os 

peroxissomas são providos de um grande número de enzimas, as quais constituem redes 

interactivas que se estendem além do compartimento do organelo e que são em grande 

parte reguladas por factores exteriores ao organelo. Tendo já sido considerados, durante 

um longo período de tempo, nada mais do que “organelos-fóssil”, os peroxissomas são hoje 
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em dia reconhecidos como componentes celulares dinâmicos e activos e cujas funções 

fisiológicas são indespensáveis à saúde humana. Começámos, então, por avaliar o impacto 

da presença intracelular de Plasmodium na população peroxissomal da célula hospedeira, 

pois sabe-se que a morfologia e propriedades dinâmicas destes organelos podem ser 

reguladas por diversos estímulos intra- e extracelulares, incluindo condições criadas por 

infecção de parasitas, como é o caso de Leishmania donovani. Por meio de microscopia e 

citometria de fluxo de peroxissomas marcados com uma proteína fluorescente, observámos 

que o tamanho da população peroxissomal e/ou de peroxissomas individuais diminui nas 

células infectadas, um efeito que poderá ser directa ou indirectamente regulado pelo 

parasita. 

Prosseguimos o estudo focando-nos nas duas principais funções dos peroxissomas nos 

mamíferos: β-oxidação de ácidos gordos e degradação de espécies reactivas de oxigénio 

(ROS). O núcleo da via de β-oxidação consiste em quatro etapas sequenciais: 

desidrogenação, hidratação, desidrogenação e clivagem tiolítica. Para a maioria dos 

substratos estas estapas são catalizadas pela oxidase ACOX1, pela 

desidrogenase/hidratase D-BP e pela tiolase SCP-x. Inibição específica da β-oxidação 

peroxissomal por tioridazina e o silenciamento da expressão das enzimas-chave já 

mencionadas, bem como sobre-expressão da tiolase que catalisa a última etapa da β-

oxidação, permitiu-nos demonstrar que existe de facto uma dependência entre parasita e 

hospedeiro ao nível dos peroxissomas. A β-oxidação peroxissomal de ácidos gordos 

aparenta ser importante tanto para a invasão da célula hospedeira como para o 

subsequente desenvolvimento do parasita, um efeito que está provavelmente associado às 

necessidades lipídicas do parasita para a síntese de membranas durante ambos os 

processos. 

ROS são um grupo de moléculas altamente reactivas que são naturalmente geradas 

pelo metabolismo celular, mas também por exposição a factores ambientais como choques 

térmicos e radiação ultra-violeta. O termo ROS é um termo geral que inclui radicais livres 

como o anião superóxido e o hidróxido, mas também não-radicais como o peróxido de 

hidrogénio (H2O2). A importância de H2O2 reside na sua capacidade de penetrar facilmente 

membranas biológicas, no seu papel na produção de moléculas ROS mais reactivas, e a 

sua função como molécula de sinalização celular. H2O2 é degradado por três tipos de 

enzimas: catalases, glutationa peroxidases e peroxirredoxinas. A inibição da catalase por 3-

aminotriazole e o silenciamento da expressão de catalase e de duas peroxirredoxinas 

revelaram que a rede antioxidante peroxissomal não parece ter um papel crucial na infecção 

por Plasmodium. Porém, experiências de microscopia de fluorescência sugerem que a 

catalase do hospedeiro poderá ser recrutada pelo parasita, o que poderá constituir um 

mecanismo de homeostase oxidativa durante a infecção hepática. 
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3-AT: 3-amino-1,2,4-triazole 
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Pb-GFPcon / PbGFP-LUCcon / Pb-RFPcon: Transgenic Plasmodium berghei that constitutively expresses GFP, 

GFP-LUC fusion or RFP, respectively 
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PCR: Polymerase chain reaction 

PRDX: Peroxiredoxin 

PTS1: Peroxisomal targeting signal 1 

PVM: Parasitophorus vacuole membrane 

qRT-PCR: Quantitative real-time reverse transcription PCR 
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ROS: Reactive oxygen species 

SCP-x/2: Sterol carrier protein X/2 

siRNA: Small interfering RNA 

VLCFA: Very-long-chain fatty acid 

 



xi 

TABLE OF CONTENTS                                     

Acknowledgements          iv 

Abstract ENG           v 

Abstract PRT           vi 

Summary / Resumo PRT         vii 

Abbreviations           x 

Table of Contents          xi 

 

INTRODUCTION           

Malaria burden worldwide         1 

The fight against malaria         1 

Life cycle of the malaria parasite        2 

Uncovering host factors in malaria liver stage                 4

   

Host peroxisomes in malaria liver stage: hypothesis      5 

 

Structure, biogenesis, and dynamics of mammalian peroxisomes    6 

Peroxisomal fatty acid β-oxidation        8 

Detoxification of reactive oxygen species in peroxisomes     9 

Host peroxisomes in malaria liver stage: aims      11 

 

MATERIALS AND METHODS 

Cell culture           12 

Parasite lines           12 

In vitro infection and culture of liver stages       12 

Luciferase assay          13 

Flow cytometry          13 

Drug tests           14 



xii 

Expression knockdown by siRNA        14 

Quantitative real-time PCR         14 

Cloning           15 

Adenovirus production and cell transduction       16 

DsRed-PTS1 transient transfections        16 

Live imaging and immunofluorescence       16 

ROS detection              17 

 

RESULTS AND DISCUSSION 

Part I: Dynamic properties of host peroxisomes in malaria liver stage   18 

Part II: Role of host peroxisomal FA β-oxidation in malaria liver stage   20 

Part III: Role of host peroxisomal antioxidant system in malaria liver stage   24 

 

CONCLUSIONS          28 

 

REFERENCES          30 

 

ANNEXES            

Annex I: Adenoviral constructs for protein overexpression     37 

Annex II: Drug-induced cytotoxicity        37 

Annex III: Efficiency of siRNA-mediated knockdowns     38 



INTRODUCTION | 1 

INTRODUCTION 

 

Malaria burden worldwide 

In 2009, over 3% of the world’s population suffered from malaria. The estimated 225 

million clinical cases resulted in 781.000 deaths, 85% of which corresponded to children 

under the age of five (WHO 2010a). Half of the world’s population is at risk of contracting 

malaria, and although a decrease in incidence has been witnessed since 2005 (WHO 

2010a), it is still considered to be the fifth leading cause of death in low-income countries 

(WHO 2011). The main impact area is sub-Saharan Africa, where a staggering 90% of all 

malaria deaths occur, but malaria is also endemic to South-East Asia, Central and South 

America, Eastern Mediterranean and Western Pacific regions (Fig. 1) (WHO 2009; WHO 

2010a). Thus, over a century since Alphonse Laveran identified its causative agent (Laveran 

1881), malaria remains by far the world’s leading tropical parasitic disease. 

Figure 1. Malaria incidence worldwide. Malaria-free and malaria-endemic countries in phases of control, pre-

elimination, elimination, or prevention at the end of 2008 (Adapted from WHO 2009). 

 

The fight against malaria 

Increased drug resistance in malaria endemic countries is currently causing cheap and 

widely used antimalarials to fail, and yet, the high financial costs associated with newly 

recommended therapeutic strategies has greatly hindered their wide implementation (WHO 

2010b). Fortunately, the international community has become increasingly aware of the 

unacceptable burden that malaria represents in large parts of the world. Together with strong 

financial support, efforts to better understand the complex biology of the parasite and the 

immunity it induces in the host, to find novel targets and to design new drugs and vaccines, 

will hopefully lead to new trends in the management of malaria and improved global health 

(Greenwood & Mutabingwa 2002; Kappe et al. 2010). 
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Life cycle of the malaria parasite 

Malaria is caused by obligatory intracellular protozoan parasites of the genus 

Plasmodium, phylum Apicomplexa. The species that cause malaria in humans are P. 

falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi. Among them, P. falciparum is 

the top contributor to severe malaria morbidity and mortality (WHO 2009), but there is 

growing evidence that P. vivax may also be responsible for a significant malaria burden 

worldwide (reviewed in Mendis et al. 2001 & Price et al. 2008). 

The life cycle of Plasmodium consists of sexual development in an insect vector (Fig.2A) 

and asexual development in a vertebrate host, which includes a liver stage (Fig.2B) and a 

blood stage (Fig. 2C). Clinical manifestation of malaria arises from blood infection (Laveran 

1881), but before the actual onset of malaria disease in the host, the parasite must undergo 

an intricate developmental program involving a series of molecular and cellular interactions 

(reviewed in Silvie et al. 2008 & Aly et al. 2009). Mosquito species of the genus Anopheles 

are the vectors that transmit malaria to humans (Grassi et al. 1899; Ross 1923). 

Plasmodium asexual development in humans starts with the injection of elongated 

parasite forms called sporozoites by a female Anopheles mosquito under the human host’s 

skin during a blood meal (Ponnudurai et al. 1990). The inoculated sporozoites initiate 

vigorous gliding motility until they enter a dermal blood capillary, but since these forms are 

not competent to directly infect erythrocytes, they are simply transported by circulation 

(Amino et al. 2006). Through interaction of circumsporozoite protein (CSP), which covers the 

surface of sporozoites, with heparin sulfate proteoglycans (HSPGs) on liver cells, sporozoites 

in circulation quickly accumulate in the liver (reviewed in Prudêncio et al. 2006a & Silvie et al. 

2008), and then cross the liver sinusoidal cell layer through membrane disruption and 

transmigration (Mota et al. 2001). Sporozoites eventually switch to productive invasion, which 

occurs without host cell plasma membrane rupture and culminates in the production of a 

specialized compartment in the cytosol of the invaded hepatocyte, the parasitophorus 

vacuole (PV) (reviewed in Prudêncio et al. 2006a). Inside its own PV each sporozoite 

develops into an exoerythrocitic form (EEF) that grows exponentially and replicates by 

schizogony into thousands of infective merozoites over the course of several days (reviewed 

in Mikolajczak & Kappe 2006 & Silvie et al. 2008). The asymptomatic liver stage concludes 

with the release into the bloodstream of merozomes containing thousands of merozoites 

(Sturm et al. 2006). Once released from merosomes, merozoites infect erythrocytes and 

blood stage begins. The minimum time elapsed between sporozoite infection and the first 

detectable wave of merozoites that reaches the bloodstream (i.e. the prepatent period), as 

well as the number of merozoites produced per invading sporozoite, are species-dependent 

(Boyd & Stratman-Thomas 1934; Boyd & Kitchen 1937). P. vivax and P. ovale can also exist 
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as dormant forms in the liver that do not undergo asexual replication, called hypnozoites. 

Malaria caused by these Plasmodium species is characterized by disease relapses, for 

which these latent non-merozoite-like hepatic forms are responsible (Krotoski 1985; reviewed 

in Markus 2011). 

Asexual development of merozoites in erythrocytes consists of three successive 

morphological stages: ring, trophozoite, and schizont stage, each being accompanied by 

specific host cell modifications (Bannister et al. 2000; Grüring et al. 2011). During the 

erythrocytic schizont stage each parasite generates dozens of daughter merozoites that, 

after rupture of the host cell, invade new erythrocytes. Eventually, a few merozoites exit the 

asexual self-propagating cycle and develop into male and female gamete precursors, called 

gametocytes (reviewed in Baker 2010). These sexually reproductive parasite forms are 

responsible for the infection of mosquitoes during blood meals from human hosts (reviewed 

in Sinden 2009).  

 

Figure 2. Life cycle of Plasmodium. (A) A female Anopheles mosquito ingests Plasmodium gametocytes with 

the blood of an infected mammalian host, which develop to gametes in the mosquito’s midgut. Gamete fertilization 

generates a zygote, which differentiates into an ookinete that embeds itself in the basal lamina of the midgut 

epithelium. The resulting oocyst produces sporozoites, which migrate to the salivary glands. (B) Sporozoites in 

the salivary glands are injected into a mammalian host and transported to the liver by circulation. Each sporozoite 

invades a hepatocyte, within which it grows and replicates into thousands of merozoites that are released into the 

blood stream. (C) Merozoites infect erythrocytes and blood stage proceeds through cyclic infection, replication 

and merozoite release. Some merozoites form sexual-stage gametocytes, which can be ingested by a new 

mosquito. The two transmission events between hosts are considered bottlenecks of the parasite life cycle. Boxed 

numbers indicate parasite population size during life cycle progression (Adapted from Kappe et al. 2010). 

Gametocytes ingested by Anopheles mosquitoes during an infected blood meal develop 

into gametes in the mosquito midgut lumen. The female gametes are subsequently fertilized 
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by the male gametes, giving rise to motile diploid zygotes called ookinetes, the only 

extracellular developmental stage of the malaria parasite life cycle (Aly et al. 2009). 

Ookinetes migrate to the gut periphery and cross the midgut epithelium, embed beneath the 

basal lamina and further differentiate into oocysts. Through several synchronous endomitotic 

divisions, each oocyst produces thousands of sporozoites, which migrate to the mosquito 

salivary glands for subsequent delivery to the human host (reviewed in Aly et al. 2009; 

Ghosh et al. 2000; Matuschewiski 2006). 

 

Uncovering host factors in malaria liver stage 

Cellular and molecular interactions between host and parasite play a crucial role in the 

establishment of susceptibility to malaria infection. Every stage relies, to different extents, on 

the presence of host molecules that enable parasite development. Thus, the identification 

and characterization of these host factors is crucial for the rational development of effective 

antimalarial drugs and vaccines (Prudêncio et al. 2006b). Due to its strong tropism, unique 

features and close association between host cell and parasite metabolism, the pre-

erythrocytic stage of Plasmodium is of particular interest for the development of new 

strategies that completely prevent infection by impairing parasite development in the liver. 

Unfortunately, the liver stage has limited experimental accessibility, and the study of cellular 

and molecular biology of malaria liver stages is still in its infancy (Kappe & Duffy 2006). 

Nevertheless, a significant amount of in vitro and in vivo research has been conducted on 

this stage by taking advantage of model rodent malaria parasites, most notably P. berghei 

and P. yoelii (Prudêncio et al. 2006b; Bano et al. 2007), which do not pose direct danger to 

man. In vitro systems in which human hepatoma cell lines support the development of rodent 

P. berghei parasites (Hollingdale et al. 1983) are practical models and exceptionally valuable 

tools for the experimental study of mammalian malaria liver stage. Most importantly, these 

parasites are analogous to human and primate malarias in the essential aspects of biology, 

physiology and life cycle (Carter & Diggs 1977). Secondly, there is a wide availability of 

susceptible, genetically-defined and knockout mouse strains and some rodent life cycle 

stages can also be grown in vitro, allowing for direct comparison between in vivo and in vitro 

data. Efficient methodologies for genetic modification of the parasite are already established 

(Janse et al. 2006), and there is an extensive range of well-characterized clones with 

relevant biological phenotypes and also transgenic mutant lines, including several that 

express useful reporter genes (Franke-Fayard et al. 2004; Janse et al. 2006; Sturm et al. 

2009). Finally, an analysis of P. berghei partial genome at 3x coverage has been published 

(Hall et al. 2005) and is publicly accessible in online databases. It is known that genome 

organization and housekeeping genes are conserved between rodent and human parasites. 
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It is relevant to mention a few recent studies that took advantage of rodent malaria in vitro 

systems to gain insight into host-parasite interactions during malaria liver stage. A 

microarray-based transcriptional profile of P. berghei-infected hepatoma cells revealed that 

Plasmodium infection leads to a coordinated and sequential set of biological events in the 

host cell, which can be broadly divided into three categories: initial stress response to the 

presence of the parasite, engagement of host cell metabolic processes, and maintenance of 

host cell viability throughout infection (Albuquerque et al. 2009). A search for interactions 

between host factors and a small transmembrane protein up-regulated in infective 

Plasmodium sporozoites, called UIS3, uncovered an important interaction with mouse liver-

fatty acid binding protein (L-FABP) (Mikolajczak et al. 2007). This suggested that a direct 

pathway for fatty acid (FA) acquisition by liver stage parasites from the host cell is necessary 

for there to be enough membrane synthesis to sustain massive intracellular parasite growth, 

even though the parasite itself is capable of FA synthesis. Additionally, two independent 

studies concluded that host cell class B, type I scavenger receptor (SR-BI), a lipoprotein 

receptor, is a strong regulator of Plasmodium infection. SR-BI significantly boosts host cell 

permissiveness to invasion and intracellular parasite development by being a major provider 

of lipoprotein-derived cholesterol (Rodrigues et al. 2008; Yalaoui et al. 2008). Both of these 

studies point to an important role of host lipid metabolism during Plasmodium infection. 

 

Host peroxisomes in malaria liver stage: hypothesis 

Adaptive evolution has shaped the metabolism of parasites to the point of emergence of 

novel pathways for the subversion of host defenses. Additionally, the large availability of host 

metabolites has often led to abandonment of standard core metabolic pathways by the 

parasite. Unsurprisingly, the loss of some pathways is a driving force in the evolution of 

obligate, as opposed to opportunistic, parasitism (Ginger 2006). 

The different metabolic strategies employed by human pathogens are influenced by the 

environmental niche, or niches, that each parasite occupies. While the adaptation and 

refinement of mitochondrial functions appears to be commonplace among microbial 

eukaryotes, peroxisomes have been lost from several protozoan lineages, including the 

Apicomplexa, with the possible exception of Toxoplasma spp (Ding et al. 2000; Kasch & 

Joiner 2000). Although it is not yet clear if the apicomplexan Plasmodium possesses any 

peroxisome-like structures, evidence that it lacks canonical peroxisomes comes from cell 

cytology studies (McIntosh et al. 2005), the absence of the hallmark peroxisomal enzyme 

catalase (Becker et al. 2005; Ding et al. 2000; Gardner et al. 2002), and also the lack of 

conserved peroxisome biogenesis genes (PEX genes) in the known genome sequences of 

Plasmodium species (Ding et al. 2000; Gardner et al. 2002). Peroxisomes appeared early in 



INTRODUCTION | 6 

eukaryotic evolution and free-living members of Plasmodium’s superphylum have 

peroxisomes (Baldauf 2003). It is, therefore, reasonable to hypothesize that peroxisomes-

less Plasmodium may have acquired a host-dependency at the level of peroxisomes, and 

that it can take advantage of host cell peroxisomal functions and metabolites during its 

development. The myriad pathways in which peroxisomes are involved and their abundance 

in mammalian livers seems to place these organelles in a privileged position to be exploited 

in the context of intracellular parasitism.  

 

Structure, biogenesis, and dynamics of mammalian peroxisomes 

Peroxisomes (Fig. 3) were discovered in 1954 by electron microscopy of mouse kidney 

tissue (Rhodin 1954). Having once been considered to be nothing more than fossil 

organelles, they are now acknowledged as dynamic and metabolically active cellular 

compartments whose physiological role is indispensable for human health (Schader & Fahimi 

2008). This is clear by the severe consequences of mutations that impair peroxisomal protein 

import or that inactivate peroxisomal enzymes, conditions that are known as peroxisome 

biogenesis disorders (PBDs) (reviewed in Steinberg et al. 2006) and single peroxisomal 

enzyme deficiencies (PEDs) (reviewed in Wanders & Waterham 2006b), respectively. 

Figure 3. Mammalian peroxisome morphology. (A) Electron micrograph of rat liver peroxisomes (red arrows) 

with a urate oxidase crystalloid core that is not found in human peroxisomes (Adapted from Fawcett 1981) (B) 

Fluorescence imaging of African green monkey kidney fibroblasts. Peroxisomes in green (GFP-PTS1), nucleus in 

blue (propidium iodide) and microtubules (β-tubulin) in red. Scale bar, 10μm. (Adapted from Wiemer et al. 1997) 

The liver is the mammalian organ with the most peroxisomes, with approximately 200 

per hepatocyte, and these organelles are also much larger in the liver (Pavelka & Roth 2010; 

Khan et al. 2007). The behavior of peroxisomal structures is very dynamic. They exist both in 

the form of roughly spherical individual microperoxisomes and, at a moderate frequency, as 

networks of interconnected tubules called peroxisomal reticulum (Schrader et al. 2000). 

Peroxisomes divide and segregate to daughter cells during cell division, but they can also 

A B 
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divide independently of this process, increasing or decreasing in size and number in 

response to environmental cues (reviewed in Yan et al. 2005). Peroxisome number is 

regulated by three main pathways: division, proliferation and turnover. New peroxisomes can 

arise through growth and fission of preexisting peroxisomes (reviewed in Smith & Aitchison 

2009) or by de novo formation from the endoplasmic reticulum (ER) (Tabak et al. 2003). 

Selective degradation of superfluous peroxisomes is also a major pathway of population 

regulation. Peroxisomal degradation occurs by macropexophagy – sequestration by the 

autophagosome and subsequent delivery to the lysosome; by micropexophagy – direct 

sequestration by the lysosomal membrane; and by 15-lipoxygenase-mediated autolysis – 

peroxisomal membrane is disrupted by 15-lipoxygenase and the organelle contents are 

exposed to cytosolic proteases (reviewed in Platta et al. 2007 & Huybrechts et al. 2009). 

Since peroxisomes are devoid of DNA and transcription/translation machineries, all 

peroxisomal proteins are encoded by the nuclear genome and post-translationally imported 

(Lazarow & Fujiki 1985). Peroxisome biogenesis and division are complex processes that 

involve a network of at least 18 different proteins (in humans), collectively called peroxins or 

Pex proteins. This network controls assembly of peroxisomal membrane proteins, recognition 

of peroxisomal targeting sequences by specific receptors, receptor docking, protein import 

and translocation to the peroxisomal matrix, and receptor recycling (reviewed in Ma et al. 

2011 & Rucktäschel et al. 2011). The targeting of matrix peroxisomal proteins depends on 

amino acid sequences termed peroxisomal targeting signals (PTS). PTS1, the signal that 

most matrix proteins possess, is a C-terminal, non-cleavable tripeptide – serine-lysine-

leucine (SKL) or conserved variants (Gould et al. 1989). A smaller subset of peroxisomal 

matrix proteins are targeted by PTS2, an often cleavable N-terminal or internal nonapeptide 

(Swinkels et al. 1991). 

About 60 peroxisomal matrix enzymes and 45 integral or peripheral membrane proteins 

have been documented so far (Subramani 2004). Several enzymes of the same pathway are 

enclosed within the granular matrix by the peroxisomal single lipid bilayer membrane 

(Pavelka & Roth 2010). The name “peroxisome” is a functional term derived from the fact 

that metabolic enzymes that generate hydrogen peroxide (H2O2) as a by-product of their 

activity co-localize in these organelles with the H2O2-degrading enzyme catalase. In this way, 

toxic peroxides remain sequestered in the same compartment as the enzymes that can 

detoxify them (de Duve 1965). In addition to the detoxification of reactive oxygen species 

(ROS), the other major peroxisomal function is the β-oxidation of long-chain and very-long-

chain fatty acids (reviewed in Wanders & Waterham 2006a). 
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Peroxisomal fatty acid β-oxidation 

Fatty acids (FAs) and their derivatives can originate from exogenous sources or from 

the intracellular breakdown of lipids. The major degradative pathway for FAs is β-oxidation, 

and in mammals it occurs both in peroxisomes and mitochondria. Although the mechanism 

and participating enzymes are similar in both organelles (Fig.4A), mitochondrial and 

peroxisomal FA β-oxidation fulfill distinct physiological functions (Poirier et al. 2006). 

The bulk dietary intake of FAs is metabolized by mitochondria, some FAs are 

metabolized by both organelles, and others, such as very-long-chain FAs (VLCFAs) are 

solely metabolized by peroxisomes (Singh et al. 1984; Wanders & Waterham 2006a; Poirier 

et al. 2006). Peroxisomal β-oxidation, unlike what occurs in mitochondria, is not a complete 

process of FA degradation. Peroxisomes can only chain-shorten FAs but cannot degrade 

them into acetyl-CoA units. Chain-shortened products must be exported to mitochondria 

(Bieber et al. 1981; Vamecq 1987) in order to be degraded to carbon dioxide (CO2) and 

water (H2O) in the citric acid cycle, which peroxisomes lack (review in Wanders et al. 2000 & 

Wanders et al. 2001). 

FAs destined for β-oxidation must be activated in order to enter peroxisomes as acyl-

CoA esters. The core pathway of peroxisomal β-oxidation of activated FAs consists of four 

sequential steps: dehydrogenation, hydration, dehydrogenation and thiolysis (Fig4B). The 

first reaction is catalyzed by an acyl-CoA oxidase (ACOX) and is considered to be the rate-

limiting enzymatic step (Infante et al. 2002). Humans have two functional ACOX proteins. 

Palmitoyl-CoA/straight-chain acyl-CoA oxidase (ACOX1) catalyzes the oxidation of straight 

chain FAs, and branched-chain acyl-CoA oxidase (ACOX2) participates in the degradation of 

branched substrates. Unlike mitochondrial dehydrogenases, which transfer electrons from 

FADH2 and NADH to the electron transport chain in order to generate chemical energy in the 

form adenosine triphosphate (ATP), ACOX proteins transfer electrons from the FADH2 that is 

produced during β-oxidation directly to molecular oxygen (O2), thus producing H2O2 that must 

be detoxified by peroxisomal peroxidases (Poirier et al. 2006). Unlike mitochondria, 

peroxisomes lack an electron transport chain and a citric acid cycle. Consequently, 

peroxisomal β-oxidation by itself does not yield ATP (Fig.4A). The second and third reactions 

of the pathway are catalyzed by two multifunctional enzymes (MFEs), MFE-1 or L-

bifunctional protein (LBP) and MFE-2 or D-bifunctional protein (DBP), each of which displays 

both enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities. Although both 

MFEs show broad substrate specificity (Poirier et al. 2006), it is well established that D-BP is 

the main enzyme involved in the β-oxidation of peroxisome-specific FA substrates (Wanders 

& Waterham 2006a). The last step of peroxisomal β-oxidation is the thiolityc cleavage of 3-

ketoacyl-CoA to acetyl-CoA and acyl-CoA shortened by two carbons. Human peroxisomes 
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A B 

have two 3-ketoacyl-CoA thiolases, the straight-chain thiolase ACAA1 and the branched-

chain thiolase SCP-x (Wanders et al. 1997). SCP-x protein houses an N-terminal thiolase 

domain and a C-terminal non-specific lipid transfer protein domain (SCP-2) (Seedorf et al. 

2000). Approximately half of SCP-x proteins are cleaved to yield separate thiolase and SCP-

2 proteins after import into peroxisomes (Gallegos et al. 2001). SCP-2 can also arise by 

transcription from an alternative promoter of the SCP2 gene which encodes SCP-x. While 

SCP-x appears to be exclusively peroxisomal, over half of total SCP-2 is extraperoxisomal 

and diffusely distributed in the cytoplasm (Schroeder et al. 2000).  

 

 

 

 

 

 

 

 

 

 

Figure 4. Fatty acid β-oxidation. (A) In each cycle of β-oxidation four 

enzymatic reactions convert a fatty acyl-CoA molecule to acetyl-CoA and 

a fatty acyl-CoA shortened by two carbon atoms: dehydrogenation (1), 

hydration (2), dehydrogenation (3), and thiolysis (4). In mitochondria, 

ATP is generated through the electron transport chain and the citric acid 

cycle. In peroxisomes, acetyl-CoA oxidases (5) transfer electrons directly to O2 and the resulting H2O2 is 

degraded by catalase (6) (Adapted from Nelson & Cox 2004). (B) Core peroxisomal β-oxidation enzymes in the 

degradation of different fatty acid substrates. VLCFA, very-long-chain-fatty acids; C24:6 tetracosahexaenoic acid; 

PRIS, pristanic acid; D/THCA, di- and trihydroxycholestanoic acid; DCA, long-chain dicarboxylic acid; CoASH, 

free unesterified coenzyme A (Adapted from Wanders & Waterham 2006). 

 

Detoxification of reactive oxygen species in peroxisomes 

 

Reactive oxygen species (ROS) are a group of highly-reactive oxygen-containing 

molecules generated by normal cellular metabolism, as well as by exposure to environmental 

oxidants and stresses like heat shock and UV radiation. ROS is a broad term that includes 

free radical species (i.e. with unpaired electrons), such as superoxide anion (O●
2
-), hydroxyl 

(●OH), peroxyl (RO2
●) and alkoxyl (RO●) radicals, but also non-radical species like hydrogen 

peroxide (H2O2) (Circu & Aw 2010). Reactive nitrogen species (RNS) have many functions in 

common with ROS. RNS include the free radical nitric oxide (NO●) and the highly cytotoxic 

peroxynitrite (ONOO-), which results from a reaction between NO and O●
2
- (Nordberg & Arnér 

2001). Intracellular oxidative stress arises from a significant increase in ROS or from 
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impairment of their detoxification mechanisms (Schrader & Fahimi 2006). The effects of ROS 

are dose-dependent. At low and moderate concentrations they have a physiological role in 

responses to noxia, including defense against infectious agents and mediation of cellular 

signaling pathways (Valko et al. 2007). High levels of ROS exert damage on biomolecules, 

including DNA, proteins and lipids, leading to an accumulation of oxidative damage in diverse 

cellular locations and to the deregulation of ROS-mediated metabolic and signaling pathways 

(Finkel 2011). Along with ER monooxygenases and plasma membrane NADPH oxidases, 

peroxisomal oxidases (including acyl-CoA oxidases of the FA β-oxidation pathway) are a 

source of cytosolic ROS under physiological conditions (Circu & Aw 2010). To sustain 

equilibrium between production and scavenging of ROS, as well as to respond to the 

diffusion of ROS generated in other intra- and extracellular locations, peroxisomes harbor 

several antioxidant enzymes (Fig.5) (reviewed in Schrader & Fahimi 2006). The peroxisomes 

are only a small part of a larger interacting network of ROS/RNS-detoxifying enzymes and 

low molecular weight antioxidant molecules that preserve the several levels of intracellular 

redox homeostasis (Circu & Aw 2010). 

Although not a free radical, H2O2 is highly important due to its ability to penetrate 

biological membranes, its role in the production of more reactive ROS molecules, and its 

functions as an intracellular signaling molecule (Nordberg & Arnér 2001). H2O2 is removed by 

three types of enzymes: catalases, glutathione peroxidases and peroxiredoxins. Catalase is 

a heme-containing enzyme and the classical marker enzyme of peroxisomes. Its major 

function is the dismutation of H2O2 to H2O and O2, but it also detoxifies other substrates such 

as phenols and alcohols through coupled reduction of H2O2, and lowers the risk of ●OH 

formation from H2O2 via the Fenton reaction catalyzed by metal ions (Nordberg & Arnér 

2001). Glutathione peroxidases (GPx) are present in virtually all cellular compartments, but 

are primarily cytosolic. These enzymes catalyze the degradation of H2O2 with concomitant 

conversion of reduced glutathione (GSH), a key intracellular antioxidant molecule, to 

glutathione disulfide (GSSG). There are four mammalian GPxs (GPx1-4), all of them with a 

selenocysteine-containing active site (Ursini et al. 1995). Peroxiredoxins (PRDXs) are a 

recently characterized family of thioredoxin-dependent peroxidases capable of degrading 

H2O2 and different alkyl-hydroperoxides, and in which conserved cysteine residues (Cys) are 

the primary site of oxidation (Rhee et al. 2001; Rhee et al. 2005). Mammalian cells express 

six distinct peroxiredoxin isoforms: PRDX1-6. These can be divided into three groups: typical 

2-Cys PRDXs (PRDX1-4), atypical 2-Cys PRDXs (PRDX5) and 1-Cys PRDXs (PRDX6). This 

classification is based on the Cys residues required for catalytic function (reviewed in Rhee 

et al. 2005). PRDXs make up a dynamic network spread out over different sub-cellular 

localizations and, among them, PRDX1 and PRDX5 are peroxisomal (Rhee et al 2005; 

Immenschuh et al. 2003), but also found in the cytoplasm, nucleus and mitochondria of 
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mammalian cells. PRDX1 is highly homologous to the cytoplasmic and mitochondrial 

PRDX2, but their subtle structural differences give PRDX2 a more efficient peroxidase 

activity, while PRDX1 is more sensitive to inactivation by H2O2 (overoxidation) and a better 

molecular chaperone (Lee et al. 2007). These two PRDXs are the most abundant in most 

types of mammalian tissues and cultured mammalian cells (Rhee et al. 2001). 

 

Figure 5. ROS detoxification 

in peroxisomes. H2O2 and 

hydroperoxides are degraded 

by catalase (CAT), glutathione 

peroxidase (GPx) and 

peroxiredoxins (PRDX1, 

PRDX5) or converted to 
●
OH 

by Fenton reactions catalyzed 

by metal ions. 
●
OH reacts 

strongly with biomolecules and 

damages membranes by lipid 

peroxidation. O
●

2
-
 is scavenged by manganese (MnSOD) and copper/zink (Cu/ZnSOD) superoxide-dismutases. 

Nitric oxide synthase (NOS) oxidizes L-arginine (L-Arg) to nitric oxide (NO
●
), which can react with O

●
2

-
 to form the 

highly toxic ONOO
-
 (Adapted from Schrader et al. 2006 & PeroxisomeDB 2.0). 

 

Host peroxisomes in malaria liver stage: aims 

 

The rapidly developing Plasmodium EEF has heavy lipid requirements, specifically for 

FAs, in order to support membrane biogenesis during liver stage (Prudêncio et al. 2006a; 

Vaughan et al. 2009). Although Plasmodium possesses a FA synthesis pathway (Waller et 

al. 1998) which is crucial for late liver stage development (Vaughan et al. 2009), host lipid 

metabolism also seems to be very important to the EEF (Mikolajczak et al. 2007; Rodrigues 

et al. 2008). Peroxisomes, abundant liver organelles where β-oxidation of specific FA 

substrates occurs (Wanders & Waterham 2006), are conspicuously absent in Plasmodium 

(Ding et al. 2000; Gardner et al. 2002; McIntosh et al. 2005). Thus, the hypothesis of a 

possible host-dependency at the level of peroxisomal lipid metabolism was formed. 

Microarray and proteomics data from Dr. M. Mota’s lab (IMM, Lisbon) revealing changes in 

peroxisome-related pathways during infection supported this hypothesis, and further 

suggested an anti-oxidative stress-related role. The major aim of the present project was to 

uncover interactions between Plasmodium and host peroxisomes, which could potentially 

provide targets for new chemotherapeutic strategies against liver stage malaria. The effects 

of infection on the general properties of the host peroxisomal population and the contribution 

of the two major peroxisomal pathways, β-oxidation and ROS detoxification, were studied. 
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MATERIALS AND METHODS 

 

Cell culture 

Adherent human hepatoma cells (Huh7) were cultured at 37ºC 5% CO2 in Roswell Park 

Memorial Institute medium (RPMI-1640) with phenol red and supplemented with 10% fetal 

bovine serum (FBS), 1% HEPES pH 7, 1% Minimum Essential Medium-Eagle with Non-

Essential Amino Acids (MEM-NEAA), 1% L-Glutamine, 1% Penicillin/Streptomycin 

(Pen/Strep). Only Huh7 passaged at least 3 times and no more than 12 times after thawing 

from -80ºC storage were used for infection assays. Cells passaged on 10cm Petri dishes 

were washed with phosphate buffer saline (PBS), detached with the trypsin-like TrypLE 

Express for 5min at 37ºC 5% CO2 and collected in supplemented RPMI. After 5min of 

centrifugation at 290 x g, cells were resuspended, counted by microscopy in a Neubauer-

Improved chamber, appropriately diluted in RPMI and plated for assays. In general, 8x103–

104 cells were plated on 96-well plates, 4x104–5x104 on 24-well plates and glass coverslips, 

and 3x105–4x105 on 35mm glass bottom dishes. Medium, supplements and trypsinization 

reagent were purchased from Gibco and Neubauer-Improved chamber from LO – Laboroptik. 

 

Parasite lines 

Rodent malaria parasite Plasmodium berghei ANKA (PbA) wild-type clone 2.34 (PbWT) 

(Sinden et al. 2002) and three transgenic parasite lines created by genetic modification of 

PbA clone cl15cy1 were used in this study. Each modified line constitutively expresses a 

transgene under the control of the elongation factor 1-alpha (eef1α) promoter during the 

entire life cycle, without compromising parasite viability and infectivity. Line 259cl2 

expressing Green Fluorescent Protein (GFP) (Pb-GFPcon, RMgm-5, Franke-Fayard et al. 

2004) and line 733cl1 expressing the Red Fluorescent Protein derivative RedStar (Pb-

RFPcon, RMgm-86, Sturm et al. 2009) were used for flow cytometry analysis, while line 

676m1cl1 expressing a GFP-firefly luciferase fusion protein (PbGFP-LUCcon, RMgm-29, 

Janse et al. 2006) was used for luciferase assays. All four lines were used for 

immunofluorescence stainings followed by confocal fluorescence microscopy. 

 

In vitro infection and culture of liver stages 

Cells were infected in vitro by exposure to P. berghei sporozoites freshly extracted from the 

salivary glands of female Anopheles stephensi mosquitoes (Mota & Rodriguez 2000). 

Mosquitoes were infected by feeding on the blood of infected mice and dissected after 21-35 

days. The salivary glands of dissected mosquitoes were collected into Dulbecco’s Modified 
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Eagle’s Medium (DMEM, Gibco), mechanically homogenized to release the sporozoites 

within and filtered through a 70μm strainer. Sporozoites were counted in a Neubauer-

Improved chamber, diluted in supplemented RPMI medium containing the antimycotic 

solution Fungizone (Gibco), and added to cells. After 5min centrifugation at 1810 x g, to allow 

invasion by the sporozoites, cells were cultured at 37ºC 5% CO2 for the duration of the 

infection. The number of sporozoites used for a single infection varied between 8x103 and 

104 in 96-well plates for luciferase assay, between 2x104 and 4x104 in 24-well plates for 

fluorescence microscopy or flow cytometry, and between 105 and 1,5x105 in 35mm glass 

bottom dishes for live imaging. 

 

Luciferase assay 

Infection with PbGFP-LUCcon parasites in 96-well plates was quantified by measuring the 

bioluminescence resulting from luciferase activity (Ploemen et al. 2009) with Firefly 

Luciferase Assay Kit (Biotium). A fluorescence-based cell viability assay was routinely 

performed before each infection, as well as before each luciferase assay. Plated cells were 

incubated with supplemented RPMI medium containing alamarBlue (Invitrogen) for 1h30m, 

and fluorescence emission at 590±20nm after excitation at 520±9nm was measured by an 

Infinite M200 microplate reader. Between 44 to 48 hours after cell invasion, after the second 

cell viability assay, cells were washed with PBS and vortexed in lysis buffer for 20min. The 

96-well plate was centrifuged to pellet cell debris, and a portion of the lysate of each well was 

pipetted to an opaque white 96-well plate. Firefly Luciferase Assay Buffer (FLAB) containing 

the luciferase substrate D-luciferin at 20µg/mL was added to each well, and luminescence 

was immediately quantified by microplate reader. 

 

Flow cytometry 

Taking advantage of the green and red fluorescent proteins constitutively expressed by Pb-

GFPcon and Pb-RFPcon parasites, respectively, the effects of different experimental conditions 

on infection were analyzed by flow cytometry (FCM) (Prudêncio et al. 2008). Cells seeded 

and infected in 24-well plates were washed with PBS and detached with TrypLE Express at 

certain time-points after invasion. Detached cells were collected in PBS 10% FBS, 

centrifuged 5min at 200 x g, and resuspended in PBS 10% FBS. When quantification of total 

cell number was necessary, a fixed number of fluorescent beads (Flow-Count Fluorospheres 

from Beckman Coulter) was added to each sample. Cells were analyzed in BD LSRFortessa 

(Pb-GFPcon infections) or FACSAria III (Pb-RFPcon infections and Pb-GFPcon infections of 

DsRed-PTS1-transfected cells). Signal bleed-through between channels was appropriately 
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compensated and in DsRed-PTS1 quantification experiments fluorescence intensity was 

normalized by cell size (geometric mean of forward scatter). Flow cytometry data was 

processed with FlowJo software. 

 

Drug tests 

The effects of the peroxisomal fatty acid β-oxidation inhibitor thioridazine hydrochloride 

(thioridazine, Sigma) and of the catalase inhibitor 3-amino-1,2,4-triazole (3-AT, Sigma) on 

infection were tested by luciferase assay and flow cytometry. Thioridazine was resuspended 

in dimethyl sulfoxide (DMSO Hybri-Max, Sigma), while 3-AT was resuspended directly in 

culture medium. Plated cells were incubated with different concentrations of drug and with 

different incubation schedules. Concentrations in the range of 0–15µM for thioridazine and 

0–10mM for 3-AT were tested for cytotoxicity by alamarBlue assay. Thioridazine at 5µM and 

3-AT at 1mM were used for luciferase assay and flow cytometry analysis.  

 

Expression knockdown by siRNA 

Single-sequence (Ambion, kindly provided by Dr. Michael Hannus) and SMARTpool four-

sequence pools (Dharmacon) of exogenous small interfering RNA (siRNA) duplexes against 

several human genes – CAT, PRDX1, PRDX2, ACOX1, HSD17B4, SCP2 – were used to 

evaluate the effects of host gene expression knockdown on infection (Prudêncio et al. 2008). 

Briefly, siRNAs were incubated in an Opti-MEM I (Gibco)-Lipofectamine RNAiMAX 

(Invitrogen) solution for 20min at room temperature. Cells were detached and collected as 

described in a previous section, but using Pen/Strep-free RPMI. Cells were then reverse 

transfected by being plated on wells containing 30nM final concentration of siRNA, or a 

multiple of 30nM in the case of simultaneous knockdown of different targets. Cells 

transfected with siRNA not targeting any annotated genes in the human genome were used 

as negative control, while cells transfected with siRNA targeting the SR-BI-coding gene 

SCARB1 were used as positive control (Rodrigues et al. 2008; Yalaoui et al. 2008). Before 

infection, the transfected cells were incubated at 37ºC, 5% CO2 for 36 to 48 hours, with the 

medium being changed to fully supplemented RPMI with antibiotics 16 to 24 hours after 

transfection. Cell viability assay, infection and posterior analysis by luciferase assay and flow 

cytometry were performed as previously described. 

 

Quantitative real-time PCR 

Knockdown efficiency by RNAi was assessed through quantitative real-time reverse 

transcription polymerase chain reaction (qRT-PCR). DNase I-treated RNA extracted from 
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siRNA-transfected cells was reverse transcribed with random primers into cDNA through the 

following RT-PCR program: 25ºC for 10min, 55ºC for 30min, 85ºC for 5min, cooling to 4-

10ºC. This cDNA was amplified by quantitative real-time PCR with incorporation of SYBR 

Green reagent. The qPCR program consisted of a holding stage of 20sec at 50ºC and 10min 

at 95ºC, a cycling stage with 50 cycles of 15sec at 95º and 1min at 60ºC, and a melting curve 

stage of 1min at 60ºC, 30sec at 95ºC and 15sec at 60ºC. To avoid the amplification of 

genomic DNA remnants, qPCR primer pairs were designed to span exon-exon junctions or to 

flank an intron with a minimum of 900 nucleotides. Data was normalized by the expression of 

hypoxanthine-guanine phosphoribosyltransferase (HPRT1) housekeeping gene and 

analyzed by the comparative CT method (∆∆CT) to produce relative gene expression levels. 

High Pure RNA Isolation Kit and Transcriptor First Strand cDNA Synthesis Kit were 

purchased from Roche, and DyNAmo HS SYBR Green qPCR Kit from Finnzymes. 

 

Cloning 

Invitrogen’s ViraPower Adenoviral Expression System coupled to Gateway Technology was 

used to clone and overexpress mouse cDNA sequences coding GFP-tagged SCP-x and SR-

BI. RNA extracted from livers of BALB/c or C57BL/6 mice was reverse transcribed to total 

liver cDNA, which was used as template for amplification with restriction-site containing 

primers. When possible, proof-reading Pfu DNA polymerase (Fermentas) was used to 

guarantee a low chance of amplification errors, but in some instances the use of Taq DNA 

polymerase (Fermentas) with higher amplification rate was necessary to assure the 

production of enough insert for cloning. Each cDNA insert was first cloned in-frame with 

EGFP in a pEGFP-C1 or pEGFP-N2 vector (Clontech), depending on the desired GFP-tag 

position, by ligating digested vector and insert with T4 DNA Ligase (Roche) and transforming 

E. coli DH5α competent bacteria (Invitrogen) by heat-shock at 42ºC. GFP-tagged clones 

were selected with kanamycin, purified at a small scale and sequenced. Each GFP-tagged 

insert was sub-cloned in the entry vector pENTR1A by another round of PCR, digestion, 

ligation, DH5α transformation, purification, and sequencing. The selected pENTR1A-GFP-

tagged constructs were recombined with the adenoviral destination vector pAd/CMV/V5-

DEST by Gateway Clonase II enzyme mix, and the final pAd-GFP-tagged clones were 

purified at a large scale from transformed DH5α. PCR products and digested inserts and 

vectors extracted from 0.8% agarose gels were purified with High Pure PCR Product 

Purification Kit from Roche, minipreps of plasmid DNA were performed with Wizard Plus SV 

Minipreps DNA Purification System from Promega, and maxiprep of the final adenoviral 

constructs were performed with JETSTAR 2.0 Plasmid Purification Kit from GenoMed. 

Schematics of the adenoviral constructs generated can be found in Annex I, Fig.S1. 
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Adenovirus production and cell transduction 

To remove bacterial sequences and to expose the viral Inverted Terminal Repeat (ITR) 

sequences for proper viral replication and packaging, prior to cell transfection the pAd-GFP-

tagged clones were digested with Pac I and purified with High Pure PCR Product Purification 

Kit (Roche). For each construct a 6-well plate well with 5x105 293A cells was plated and 

transfected the next day with Lipofectamine 2000 (Invitrogen). Transfected cells were 

incubated in the 6-well plate for 48 hours at 37ºC, 5% CO2, and each well was trypsinized 

and transferred to a 10cm Petri dish. Culture medium was replaced with fresh supplemented 

medium every 2 or 3 days for a period of 7-10 days, until small regions of cytopathic effect 

were observed. Medium was replenished and 2-3 days later, when approximately 80% 

cytopathic effect was observed, adenovirus-containing cells were harvested in the spent 

medium into a 15mL Falcon tube. A crude lysate was prepared by 3 freeze/thaw cycles 

consisting of 30min incubation in dry ice followed by 15min in a 37ºC water bath. To pellet 

cell debris the lysate was centrifuged at 1810 x g for 15min, at room temperature, and the 

resulting supernatant of viral particles in spent medium was aliquoted into cryovials and 

stored at -80ºC. Each aliquot of viral particles was never thawed and refrozen more than 5 

times. For overexpression assays by flow cytometry or live fluorescence microscopy, plated 

cells were transduced by simply adding adenoviral particles diluted in supplemented RPMI 

medium and incubating for 36-48 hours at 37ºC 5% CO2 before infection with P. berghei.  

 

DsRed-PTS1 transient transfections 

To study the dynamics of the peroxisomal compartment, infected cells transiently transfected 

with a plasmid coding for DsRed-Serine-Lysine-Leucine (DsRed-PTS1) were imaged 

(Wiemer et al. 1997; Schrader et al. 2000). Briefly, cells in suspension or plated on the 

previous day were transfected with plasmid DNA using FuGENE 6 Transfection Reagent 

(Roche), and incubated for 24-48 hours at 37ºC 5% CO2 before infection. 

 

Live imaging and immunofluorescence 

For live imaging of adenoviral transductions and transient transfections, cells were cultured in 

35mm glass bottom dishes with 10mm microwell (MatTek Corp). Cells were either imaged in 

culture medium or, when using Hoechst 3342 (Invitrogen) to stain nuclei, culture medium 

was replaced with RPMI without phenol red but containing Hoechst (1:1000) 30 min prior to 

imaging. For immunostainings, infected and non-infected cells on glass coverslips were fixed 

for 10min with 4% paraformaldehyde (PFA) at 24 or 48 hours post-infection, permeabilized 

with 0.5% Triton X-100 in PBS for 20-30 min and blocked with 0.1% Triton X-100 1% BSA in 
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PBS for 1 hour. Fixed cells were incubated with primary antibodies for 1-2 hours and washed 

with blocking solution, followed by 30min incubation with secondary antibodies coupled to 

Alexa Fluor (AF) 488, 555, 568, 594, 633 or 647 fluorophores. Finally, cells were washed 

with PBS, incubated 10-15min with 4',6-diamidino-2-phenylindole (DAPI) in PBS, and 

mounted on glass slides with Fluoromount-G (SounthernBiotech). Vibratome sections of 

infected mouse liver, 50μm thick, were fixed with 4% PFA, washed with PBS and 

permeabilized/blocked overnight at 4ºC with 0.5% Triton 1% BSA  in PBS. They were 

incubated with primary antibodies overday at 4ºC and washed with blocking solution, 

followed by incubation with secondary antibodies, DAPI, and Phalloidin-AF660 overnight at 

4ºC. Stained sections were washed with PBS and mounted between 2 glass slides with 

Fluoromount-G. Rabbit anti-bovine catalase (1:2500) was obtained from Rockland, mouse 

anti-human catalase (1:100) from Santa Cruz, rabbit anti-human PRDX2 (1:500) from Sigma, 

rabbit anti-GFP-488 (1:50) from Santa Cruz, DAPI (5μg/mL) from Sigma, and phalloidin-

AF660 (1:100) from Molecular Probes. Mouse anti-PbHsp70/2E6 (1:500) was produced in-

house (M. Mota’s lab, IMM, Lisbon, Portugal), while chicken anti-PbEXP1 (1:500) and rabbit 

anti-UIS4 (1:500) were kindly provided by Dr. Volker Heussler and Dr. Stephan Kappe, 

respectively. Live and fixed samples were examined under a Zeiss LSM 710 laser point-

scanning confocal microscope (live cells at 37ºC). Image processing was performed with 

ImageJ software. 

 

ROS detection 

The general oxidative stress indicator 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein 

diacetate (C400 from Molecular Probes) is a nonfluorescent molecule that becomes 

fluorescent when its acetate groups are removed by intracellular esterases and oxidation 

occurs within the cell. This reagent was used to detect ROS by flow cytometry in FACSAriaIII 

(Eruslanov & Kusmartsev 2010). Immediately prior to use, C400 was resuspended in DMSO 

to a final concentration of 100mM and diluted to a working concentration of 10µM in warm 

supplemented RPMI without phenol red or FBS. Cells plated with FBS-containing medium 

were washed with warm HBSS and incubated for 45min with the freshly-prepared 10µM 

C400 solution. Cells were washed again and incubated with H2O2 (Sigma), sodium azide 

(Sigma), or sodium pyruvate (Sigma and Gibco) in RPMI without phenol red or FBS. The 

treatments lasted 45min, after which the cells were washed, tripsinized and resuspended in 

PBS 10% FBS for analysis. C400 was excited by the 488nm laser and emitted fluorescence 

was detected by the FITC detector, while RFP-expressing parasites were excited by the 

561nm laser and detected by PE. Due to C400’s high sensitivity to light and oxygen, these 

assays were, as much as possible, sheltered from excessive exposure to light and air. 
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RESULTS AND DISCUSSION                                                       

PART I: Dynamic properties of host peroxisomes in malaria liver stage 

 

The conditions established within a hepatocyte during infection by intracellular 

trypanosomatid parasites of the genus Leishmania have been observed to significantly alter 

the morphology and dynamics of the host peroxisomal population (Raychaudhury et al. 

2003; Gupta et al. 2009). To assess if the presence of the developing liver stage 

Plasmodium parasite can also affect host peroxisomal population properties, hepatoma cells 

transiently transfected with a DsRed-PTS1 plasmid were infected with Pb-GFPcon and 

analyzed by live confocal fluorescence microscopy and flow cytometry. Exclusive labeling of 

peroxisomes by DsRed-PTS1, comparable to the GFP-PTS1 construct already established 

for mammalian cells in vitro (Wiemer et al. 1997; Schrader et al. 2000), was confirmed by co-

localization of DsRed-PTS1 with known peroxisomal matrix proteins. DsRed-PTS1-

transfected cells were fixed and immunolabeled for catalase, the most common peroxisomal 

marker enzyme (Fig.6A), or imaged live after transduction with AdGFP-SCP-x, an 

adenoviral construct that overexpresses the peroxisomal fatty acid thiolase SCP-x (Fig.6B). 

The general spatial distribution of peroxisomes observed by live fluorescence 

microscopy of DsRed-PTS1 appeared unaltered in infected cells at different time-points 

post-infection (Fig.6C) when compared to non-infected cells (Fig.6D). Although peroxisomes 

were observed in relatively close proximity to the exoerythrocytic form of the parasite (EEF) 

(Fig.6C), this appears to be a consequence of the random distribution of dynamic structures 

within the smaller space that is available in the infected cell cytosol, and not a particular 

accumulation around the parasite. No Dsred-PTS1 signal was seen to co-localize with the 

EEFs, indicating that internalization of intact host peroxisomes by the parasite does not 

occur. The possibility of interactions between the peroxisomal membrane and the parasite’s 

parasitophorus vacuole membrane (PVM), however, cannot be excluded. 

The geometric mean of DsRed-PTS1 fluorescence intensity in cells infected with Pb-

GFPcon was analyzed by flow cytometry at two time-points post-infection (Fig.6E). While at 2 

hours post-infection there is no difference between DsRed-positive infected and non-infected 

cells, at 16 hours post-infection a 30% reduction in the geometric mean of the DsRed-PTS1 

signal is observed in infected cells when compared to non-infected cells. Although the 

evolution of DsRed-PTS1 signal at later time-points post-infection needs to be assessed, this 

result already suggests that in infected cells the number and/or size of peroxisomes 

decreases as infection progresses. 

It thus seems that Plasmodium EEFs may affect some properties of the host cell 

peroxisomal dynamics. Compilation of more fluorescence microscopy data is underway in 
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order to quantify the changes in number or size that are suggested by the flow cytometry 

results. Further detailed characterization of these changes will be carried out through an 

immunoelectron microscopy study of peroxisome morphology and distribution in infected 

cells (Funato et al. 2006). 

 

Figure 6. Host peroxisomal population may be altered in Plasmodium infected cells. (A) DsRed-

PTS1-transfected cells were fixed and immunolabeled for catalase. DsRed-PTS1-labeled 

peroxisomes (red) co-localize with the most common peroxisomal marker enzyme, catalase (blue). 

(B) DsRed-PTS1-transfected AdGFP-SCP-x-transduced cells were imaged live. DsRed-PTS1 (red) 

also co-localizes with the FA β-oxidation thiolase SCP-x (green). (C-D) Live confocal microscopy of 

DsRed-PTS1-transfected cells. The DsRed-PTS1-labeled peroxisomal population (red) appears 

unaltered in (C) infected cells (EEFs in grey) at different time-points when compared to (D) non-

infected cells. (E) Quantification of DsRed-PTS1 in infected (grey) and non-infected (black) cells by 

flow cytometry. A 30% decrease is observed at 16 hours post-infection (t-test, p<0.05). N denotes 

nuclei. Scale bar, 10μm. 
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RESULTS AND DISCUSSION                                                       

PART II: Role of host peroxisomal fatty acid β-oxidation in malaria liver stage 

 

Impairment of host peroxisomal FA β-oxidation affects Plasmodium liver stage 

Following the observation that Plasmodium infection may interfere with peroxisome 

population dynamics of hepatocytes, host-parasite interactions at the functional level of 

peroxisomes were sought out. Firstly, peroxisomal fatty acid β-oxidation, one of the two 

major pathways of mammalian peroxisomes, was studied. Thioridazine, a drug of the 

phenothiazine group, has been shown to selectively inhibit hepatic peroxisomal β-oxidation 

in isolated hepatocytes (Leighton et al. 1984), as well as in vivo (Van den Branden, C. & 

Roels 1985). In order to assess the effects of host peroxisomal β-oxidation inhibition on 

infection, cells were exposed to thioridazine for different periods of time, with the drug being 

added before or after in vitro host cell invasion by Plasmodium (Fig.7A). The cytotoxicity of 

increasing thioridazine concentrations was measured, and 5µM was chosen as the highest 

concentration that is not excessively cytotoxic (Annex II, Fig.S2A). Infection levels after 

exposure to 5µM of drug were quantified by luciferase assay (Fig.7B) and flow cytometry 

(Fig.7C). 

Exposure to 5µM of thioridazine during the 2-hour period of invasion (Fig.7B ‘Inv’) 

exerted no effect on the subsequent progress of infection, which suggests that this time-

window is too limited and that thioridazine does not target the parasite itself directly. All the 

remaining schedules of exposure, from the pre-invasion 4-hour schedule (Fig.7B 

‘Preinv+Inv’) to the post-invasion 46-hour schedule (Fig.7B ‘Postinv+46h’) resulted, 

without significant difference, in a 30-45% decrease of infection. When analyzed by flow 

cytometry, the pre-invasion 48-hour exposure schedule lead to a 35% decrease in parasite 

development (Fig.7C), supporting the previous luciferase assay results. Thus, it seems that 

thioridazine’s effect is not dependent on the duration of exposure or the moment during 

infection when drug exposure starts. Although significant, the negative effect on infection is 

not cumulative and does not cross the 30-45% plateau. This suggests that host peroxisomal 

β-oxidation is somehow important, but not crucial for parasite survival. 

The effects of FA β-oxidation impairment on infection were also studied through 

siRNA-mediated knockdown of peroxisomal enzymes active at different levels of this 

pathway (Fig.7D-E). The knockdown target genes were ACOX1, HSD17B4 and SCP2, 

which respectively code for the acyl-CoA oxidase ACOX1; the hydratase/ dehydrogenase 

known as D-bifunctional protein (D-BP); and two proteins which function as a thiolase and a 

lipid transfer protein, SCP-x and SCP-2. Additionally, PEX14, a gene that codes for a 
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peroxin involved in peroxisomal biogenesis, was also targeted. Scrambled siRNA sequences 

that do not have targets in human cells were used as negative controls in these experiments, 

and the targeting of scavenger receptor class B member 1 (SR-BI), which is known to 

decrease Plasmodium liver stage infection (Rodrigues et al. 2008; Yalaoui et al. 2008), was 

used as positive control. Both single-sequence siRNAs (Fig.7D) and siRNA pools of 4 

sequences (Fig.7E) were tested. Of the three single-sequences tested for each target, only 

the less cytotoxic with an appropriate target knockdown is shown. Knockdown efficiencies 

were confirmed at the mRNA level by qRT-PCR (Annex III, Fig.S3A-B), and will also be 

assessed at the protein level by Western Blot in the near future. 

Knockdown of SR-BI resulted in 65% reduction of infection when compared to the 

negative control, whereas the targeting of PEX14 and D-BP lead to 40% and 60% reduction, 

respectively (Fig.7D). The siRNA pools targeting ACOX1 and SCP-x/2 resulted in 40% and 

15% reduction, respectively, in contrast to the 60% reduction obtained with SR-BI 

knockdown (Fig.7E). It seems that peroxisomal β-oxidation enzymes may play a significant 

role in the mediation between host cell peroxisomal β-oxidation and the parasite. The fact 

that SCP-2 knockdown had a very small effect on infection can be explained by the 

existence of several other peroxisomal enzymes that possess SCP-2 domains as part of 

their multifunctional structure (including D-BP), and therefore non-specific lipid transport in 

the absence of SCP-2 could be carried out by one of the other functionally redundant 

proteins. The analysis of additional peroxisomal β-oxidation enzymes, as well as double and 

triple simultaneous knockdowns, will be performed to further complement this data and 

assess the relevance of different branches of the pathway. 

To overcome the functional redundancy of SCP-2, overexpression of GFP-tagged 

SCP-x through adenoviral transduction (Ad-GFP-SCP-x) was conducted in order to evaluate 

if increased levels of this key peroxisomal thiolase have any effect on Plasmodium infection 

(Fig.7C-D), since expression knockdown did not. Overexpression of GFP-tagged SR-BI was 

the positive control and overexpression of GFP alone in the same adenoviral vector as the 

other constructs was the negative control. At 2 hours post-infection (Fig.7F), it is clear that 

overexpression of SR-BI and SCP-x increases the percentage of infected cells by 55% and 

30%, respectively. At 48 hours post-infection, the percentage of infection is still higher by 

50% in the case of AdSR-BI-GFP, when compared to control, and by 45% in the case of Ad-

GFP-SCP-x (Fig.7G). No change in parasite development, quantified as the geometric mean 

of RFP signal emitted by the Pb-RFPcon transgenic parasite was observed (Fig.7G). 

The evidence gathered from inhibition by thioridazine, siRNA knockdown and 

enzyme overexpression points to a relevant, although not crucial, role for peroxisomal β-

oxidation during Plasmodium host cell invasion and development. It can be speculated that 

this role does not consist of a direct interaction between host proteins and the parasite, but 
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probably arises from the substantial part that peroxisomes play in the overall intracellular 

lipid metabolism of the host. 

Figure 7. Impairment of host peroxisomal fatty acid β-oxidation affects Plasmodium liver stage 

development. (A) Overview of thioridazine exposure schedules. Green arrows indicate the addition of drug to 

the medium and red arrows indicate drug removal. (B) Quantification of infection by luciferase assay in cells 

subjected to treatments of 5µM of thioridazine. Drug exposure during invasion only has no effect, whereas all 

other treatment schedules decrease infection by 30-45%, without significant difference between them (t-test, 

p>0.05). (C) Flow cytometry analysis of 5µM thioridazine treatment on a pre-incubation 48-hour exposure 

schedule. Percentage of infected cells is not significantly affected by thioridazine (t-test, p>0.05), but EEF 

development decreases by 35% (t-test, p<0.05). (D) Quantification by luciferase assay of the effects on infection 

of knockdown of β-oxidation enzymes with single-sequence siRNA and (E) siRNA pools. All knockdowns 

significantly decreased infection by 40-60% (t-test, p<0.05), with the exception of SCP-x/2. (F) Quantification of 

the effects on infection of Ad-GFP-SCP-x overexpression by flow cytometry at 2 hours and (G) 48 hours post-

infection. Both SR-BI and SCP-x overexpression increase percentage of infection by 30-50% (t-test, p<0.05) 

without affecting EEF development. 
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SCP-x localization does not correlate with Plasmodium EEFs 

 

 Once SCP-x overexpression increases infection, the localization of this enzyme in 

relation to the EEF was analyzed by fluorescence microscopy (Fig.8). No co-localization 

between Ad-GFP-SCP-x and the EEF was observed, not even between Ad-GFP-SCP-x and 

the PVM, at the level of which direct host-parasite interactions could occur. This observation 

supports the previously mentioned speculation that the role of host peroxisomal β-oxidation 

enzymes during Plasmodium infection does not lie in direct interaction, but is probably 

related to the setting-up of favorable intracellular metabolic conditions for the parasite at the 

level of general lipid and fatty acid availability or even the production of specific classes of 

lipid metabolites. 

 

 

Figure 8. Ad-GFP-SCP-x does not co-localize with 

Plasmodium EEFs in vitro. Cells transduced with the 

adenoviral construct Ad-GFP-SCP-x were fixed at (A) 

24 hours and (B) 48 hours post-infection. Samples 

were stained for the EEF (magenta), the 

parasitophorus vacuole membrane as revealed by 

PbUIS4 staining (PVM, red), and nuclei (blue). GFP-

SCP-x (green) was not seen to co-localize with either 

the EEF or the PVM. Scale bar 10µm. 
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RESULTS AND DISCUSSION                                                       

PART III: Role of host peroxisomal antioxidant system in malaria liver stage 

Impairment of host peroxisomal peroxidases does not affect Plasmodium liver stage 

The second major pathway of mammalian peroxisomes is the detoxification of 

reactive oxygen species (ROS). For this purpose, peroxisomes harbour many antioxidant 

enzymes, particularly those that degrade hydrogen peroxide (H2O2). In order to assess if this 

peroxisomal function also plays a role in Plasmodium infection, the approaches previously 

described for FA β-oxidation were applied again. 

Firstly, 3-amino-1,2,4-triazole (3-AT), a heterocyclic organic compound that 

specifically and covalently binds to the active centre of catalase (Margoliash & Novogrodsky 

1957; Margoliash et al. 1959; Chang & Schroeder 1972), was used to study the effects of 

H2O2-detoxification inhibition. Cells were submitted to different schedules of exposure to 

1mM 3-AT, before and after Plasmodium invasion (Fig.9A). This concentration was chosen 

due to being the highest 3-AT concentration that is not excessively cytotoxic (Annex II, 

Fig.S2B). None of the 3-AT exposure schedules, from the shortest 4-hour exposure (Fig.9B 

‘Preinv+Inv’) to the longest 50-hour exposure (Fig.9B ‘Preinv+48h’), significantly affected 

infection. The longest schedule was also tested by flow cytometry, yielding the same result 

(Fig.9C). 

Two key peroxisomal peroxidases, catalase and the peroxiredoxin PRDX1, where 

knockdowned along with PRDX2, a cytosolic peroxiredoxin of the same antioxidant network 

and that is known to be uptaken by blood stage forms of Plasmodium (Koncarevic et al. 

2009). Catalase knockdown by siRNA pool resulted only in a 25% decrease in infection, 

despite the 90% knockdown efficiency. Although both single-sequence (Fig.9D) and pooled 

siRNAs (Fig.9E) knockdowned the expression of these enzymes by 85% (Annex III, 

Fig.S3C-D), single-sequences targeting PRDX1 and PRDX2 decreased infection by 50% 

and 70%, respectively (Fig.9D), whereas four-sequence siRNA pools lead only to a 20% 

decrease (Fig.9E). Two possible and mutually exclusive conclusions can be drawn from 

these results. Either the strong decrease in infection after single-sequence siRNA 

knockdown of PRDX1 and PRDX2 is real and the siRNA pools yielded false negatives 

(Brown et al. 2005; reviewed in Smith 2006), or the single-sequence siRNAs yielded false 

positives but the siRNA pools did not because they have less off-target effects (reviewed in 

Smith 2006; Dharmacon RNAi Technologies 2010). Considering that inhibition by 3-AT 

(Fig.9B) did not affect infection and that only a 25% decrease was observed by expression 

knockdown of catalase (Fig.9E), the most abundant peroxisomal peroxidase, it is perhaps 
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more reasonable to lean towards the latter possibility. This also seems to be supported by 

the fact that intracellular ROS levels, as revealed by the sensitive general ROS indicator 

C400 (Fig.9F) and quantified by flow cytometry, are not significantly higher in infected cells 

at 24 hours post-infection when compared to non-infected cells (Fig.9G). Thus, managing 

oxidative stress may not be a severe problem faced by liver stage Plasmodium, in contrast 

to its blood stage counterpart (reviewed in Postma et al. 1996 & Becker et al. 2004), and so 

EEFs may not need to take significant advantage of host peroxisomal peroxidases. 

However, it is not truly possible to conclude that H2O2-detoxification is not one of the 

functional roles of host peroxisomes during malaria liver stage without first assessing the 

effects of simultaneous knockdown of the different peroxidases, which is currently underway. 

Catalase, but not PRDX2, co-localizes with Plasmodium EEFs 

The localization of two host peroxidases regarding the developing EEF was also 

assessed by immunofluorescence microscopy (Fig.10). A substantial amount of catalase 

was seen to localize inside EEFs at different developmental stages in vitro (Fig.10A), and 

also at 48 hours post infection in mouse liver slices (Fig.10C). Fluorescence microscopy of 

infected cells after catalase knockdown by siRNA was carried out to confirm the specificity of 

catalase staining. Catalase knockdown with siRNA pool was quantified to be 90% by qRT-

PCR (Annex III, Fig.S3D). However, when compared to samples subjected to scramble 

siRNA (Fig.10A), some staining for catalase was still clearly visible in the catalase 

knockdown samples (Fig.10B), although the overall staining was greatly reduced. 

Interestingly, after catalase knockdown some of the staining that was previously observed to 

be inside EEFs remains, apparently only as reduced as the overall signal (Fig.10B). This 

suggests that co-localization between host catalase and the developing EEF indeed occurs. 

Further confirmation is being obtained by Western Blot for mammalian catalase in infected 

cells and sporozoite samples. It seems inconsistent that catalase knockdown does not yield 

stronger negative effects on infection if this host enzyme is recruited by the parasite during 

its liver development. Plasmodium has two complex redox systems of its own, and it may be 

that, like it was observed for PRDX2 in blood stage (Koncaveric et al. 2009), the parasite 

only takes advantage of host redox enzymes in order to save resources, but is not truly 

dependent on them for its survival and can use other functionally redundant proteins when 

necessary. In contrast, immunostaining for PRDX2 shows the cytosolic distribution of this 

peroxiredoxin and that it does not co-localize with EEFs at 24 or 48 hours post infection 

(Fig.10D). 
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Figure 9. Impairment of host peroxisomal H2O2-detoxification does not affect Plasmodium liver stage 

development. (A) Overview of 3-AT exposure schedules. Green arrows indicate the addition of drug to the 

medium and red arrows indicate drug removal. (B) Quantification of infection by luciferase assay in cells 

subjected to treatments of 1mM of 3-AT. Drug exposure during Plasmodium invasion leads to a drastic 80% 

decrease of infection (t-test, p<0.05), whereas all other treatment schedules have none (t-test, p>0.05). (C) Flow 

cytometry analysis of 1mM 3-AT treatment on a pre-incubation 48-hour exposure schedule. Neither percentage 

of infected cells nor EEF development are significantly affected by 3-AT (t-test, p>0.05). (D) Quantification by 

luciferase assay of the effects on infection of knockdown of host peroxidases with single-sequence siRNA and 

(E) siRNA pools. Although single-sequence siRNAs targeting PRDX1 and PRDX2 appear to affect infection (t-

test, p<0.05), siRNA pools offer the opposite result (t-test, p>0.05). Catalase knockdown by siRNA pool yielded 

only 25% reduction of infection (t-test, p<0.05). (F) Quantification of intracellular ROS levels by flow cytometry. 

The general ROS indicator used, C400, responds well to ROS scavengers such as sodium pyruvate (20mM) and 

ROS promoters such as H2O2 (200µM) and the highly toxic sodium azide (5mM). (G) Intracellular ROS levels, as 

revealed by C400 and quantified by flow cytometry at 24 hours post-infection, are not significantly increased in 

infected cells when compared to non-infected cells (t-test, p>0.05). 
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Figure 10. Catalase, but not PRDX2, localizes with Plasmodium EEFs in vitro and in vivo. (A) 

Immunostaining for host catalase in cells transfected with scramble siRNA. Substantial catalase signal (red) is 

observed inside EEFs at 12, 24 and 48 hours post-infection. A representative 24-hour EEF is shown (gray). (B) 

The same staining was performed for cells transfected with a siRNA pool targeting catalase. Overall levels of 

catalase (red) were greatly reduced, but a proportional degree of staining remained visible within the 24-hour 

EEF. (C) Catalase staining (red) also co-localizes with 48-hour EEFs (contoured in green by PbEXP1 staining) in 

liver slices of infected mice. Cell contours were revealed by filamentous actin staining by fluorochrome-

conjugated phalloidin. (D) PRDX2 staining does not co-localize with EEFs at 24 or 48 hours post-infection. A 

representative 48-hour EEF is shown. Nuclei in blue in all merged panels. Scale bar, 10 µm. 
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CONCLUSIONS                                                                                                      

 

The study of host-pathogen interactions in liver stage malaria remains a key 

approach for the uncovering of novel targets for preventive and therapeutic antimalarial 

strategies with potential to arrest the onset of malaria disease (reviewed in Mota et al. 2004; 

Prudêncio et al. 2006). The role played by the host in sustainment of Plasmodium infection is 

revealing itself to be multi-faceted and complex, much as the intracellular parasite itself. 

Plasmodium seems to be completely self-sufficient in certain aspects of its biology and life 

cycle, while in other cases it is opportunistically or strictly dependent on its host. Taking into 

account the metabolic landscape of hepatocytes and the parasite’s major requirements 

during liver stage development, the present work proposed to uncover functional interactions 

between two compartmentalized host pathways – peroxisomal FA β-oxidation and ROS 

detoxification – and the growing intracellular parasite. 

Peroxisome labeling with the DsRed-PTS1 construct revealed that the intracellular 

presence of Plasmodium can influence the properties of the mammalian hepatic peroxisomal 

population. Peroxisomes are highly plastic and dynamic organelles which can be regulated 

by many extracellular and intracellular cues (reviewed in Smith & Aitchison 2009 & Yan et al. 

2005). The effect over peroxisome size and/or number that the results suggest can be 

mediated by the host cell or by the parasite. In the former case, the cell can be purposefully 

changing aspects of its metabolism as part of its defense mechanism against the presence 

of the parasite, in order to save resources or to funnel them to the most crucial cellular 

functions in a time of need. It the latter case, the parasite-mediated effect can be direct or 

indirect. Either the parasite provides a signal that directly regulates peroxisomal behavior 

(proliferation, turnover, matrix protein import and enzymatic activity) or the variation in 

intracellular resources and metabolic conditions due to host-cell subversion by the parasite 

gives rise to a signal that regulates peroxisome population and metabolism. 

Results also showed that host peroxisomal functions at the level of fatty acid (FA) β-

oxidation, and possibly also anti-oxidative stress, can contribute in different degrees to the 

successful progress of Plasmodium liver stage infection. The moderate dependency that the 

parasite seems to have regarding peroxisomal β-oxidation is probably tied to its metabolic 

requirements for membrane biosynthesis during growth and replication in the liver. The exact 

lipid requirements of Plasmodium are not known, but it probably needs a plentiful supply of 

FAs (Vaughan et al. 2009). The parasite itself possesses a prokaryotic type II FA synthesis 

pathway, through which it is able to synthesize FAs from derivatives of acetate and malonate 

(Waller et al. 1998; Vaughan et al. 2009). However, considering that Plasmodium can 

achieve one of the fastest growth rates among eukaryotic cells (Prudêncio et al. 2007), it 
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may not be able to produce the quantity of FAs that it needs or its requirements in terms of 

specific FA classes may go beyond its synthetic ability. Thus, breakdown of very-long-chain 

fatty acids (VLCFAs), which are peroxisomal-specific substrates (Wanders & Waterham 

2006a), into chain-shortened FAs may be a source of particular classes of FAs for 

Plasmodium. The composition of the plasma membrane and the ability of the host cell to 

grow in order to accommodate the developing parasite are also other aspects that can be 

considered when it comes to specific lipid requirements. Plasma membrane extension and 

turnover in infected cells certainly demands more from the intracellular lipid resources and 

probably biases lipid breakdown and production toward specific substrates. While inhibition 

by thioridazine and expression knockdown results suggest that FA β-oxidation is important 

for parasite growth, increased percentage of infection after SCP-x overexpression also 

suggests that β-oxidation may improve host cell permissiveness to invasion. Perhaps by 

providing great amounts of particular FAs, increased peroxisomal β-oxidation may lead to 

changes in the lipid composition of the host plasma membrane, from which the parasite’s 

PVM derives (Vaughan et al. 2009). Thus, the regulation of host FA metabolism in order to 

alter plasma membrane composition and allow for fruitful parasitic interactions and host cell 

subversion could be another reason why host peroxisomal FA β-oxidation is relevant in 

Plasmodium infection. 

Regarding peroxisomal anti-oxidative stress systems, results seem to indicate that 

this antioxidant network does not play a strong functional role in Plasmodium infection, but 

that specific proteins such as the peroxisomal marker enzyme catalase may be recruited by 

the parasite to complement its own antioxidant systems in the maintenance of redox 

homeostasis during extremely rapid growth. 

Overall this first set of data concerning host peroxisomes during Plasmodium liver 

stage infection is promising and can give rise to many other lines of questioning to be further 

studied, perhaps involving other host cell organelles. The dissection of the contribution of 

peroxisomal and possibly also mitochondrial β-oxidation as sources of specific classes of 

FAs, the characterization of the mechanisms employed by the parasite in order to take 

advantage of metabolic pathways that are tightly regulated and confined within host 

organelles, and profiling of enzymatic activity of lipid metabolic pathways in infected cells are 

particularly interesting future research perspectives.  
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ANNEX I                                                       

Adenoviral constructs for protein overexpression 

 

 

 

 

 

 

 

Figure S1. Adenoviral overexpression constructs. (A) GFP, (B) SR-BI-GFP and (C) GFP-SCP-x DNA inserts 

were generated in Clontech pEGFP-C1/pEGFP-N2 vectors and sub-cloned into the pAd/CMV/V5-DEST 

adenoviral vector for in vitro protein overexpression in mammalian cells (Adapted from Invitrogen’s Gateway-

adapted destination vectors User Manual 2010). 

 

 

 

 

 

ANNEX II                                                       

Drug-induced cytotoxicity 

 

 

 

 

 

 

 

Figure S2. Drug-induced cytotoxicity. The effects of increasing concentrations of (A) thioridazine and (B) 3-AT 

inhibitors on cell viability, as quantified by alamarBlue assay, were tested. 5µM of thioridazine and 1mM of 3-AT, 

the highest concentrations without excessive cytotoxicity, were chosen for further study. 
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ANNEX III                                                       

Efficiency of siRNA-mediated knockdowns 

 

 

 

 

 

 

 

 

  

 

 

 

Figure S3. Efficiency of siRNA-mediated knockdowns. The efficiency of expression knockdown of (A-B) 

peroxisomal FA β-oxidation enzymes and (C-D) peroxisomal peroxidases was quantified by qRT-PCR. (A, C) 

Single-sequence siRNAs against each target. (B,D) Pools of four siRNA sequences against each target. 
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