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Abstract

Current data assimilation systems aim at produce the best possible estimate of the

atmospheric state to be used as initial conditions by a forecasting model. This estimate

is called the model analysis. In the formalism of the Three-Dimensional Variational

Data Assimilation (3D-Var), the analysis should minimize a quadratic cost function

that measures the distance between the estimate and the available information, namely

the observations and the background, taking into account their respective precisions.

Observation error covariances contain information about errors in the observation pro-

cess (measurement and representativeness uncertainties). Background error covariances

are used to filter and propagate the observational information in a spatial multivariate

way. They compose the gain matrix that determines how the analysis increments (that

is to say, the analysis corrections to the background) are obtained from the innovations

(i.e., the differences between observations and background at the observation locations).

However, since the true atmospheric state can not be exactly known, background error

covariances (in particular) can only be estimated.

Nowadays, Numerical Weather Prediction (NWP) centers often use an off-line specifica-

tion of background error covariances. This relies on running an ensemble of perturbed

assimilation cycles during a past period, to simulate the error evolution during the

successive analysis/forecast steps. Moreover, as the full background error covariance

matrix is far too large to be handled explicitly, sparse covariance models are usually

employed, and they are calibrated by using ensemble forecast perturbations. These

sparse covariance models are often based on simplifications such as horizontal homo-
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geneity and temporal stationarity. This is the case of the ALADIN/France regional

system which has been used in this study.

The impact of seasonal and daily variations are studied. Results indicate that specifying

background error covariances corresponding to a one-day sliding average (preceding each

each analysis date) has a positive impact on the short-range forecast quality, compared

to the currently operational static covariances. This positive impact arises to a large

extent from the update of the monthly component of covariance variations. The update

of the daily component contributes to additional positive impacts, which are however

relatively localized and modest during this period. These impacts are illustrated by case

studies for humidity during an anticyclonic situation, and for wind during a cyclonic

event. These results support the idea to consider an on-line updated specification of

background error covariances.

Keywords: limited area model, 3D-Var, ensemble assimilation cycling, time-dependent

background error covariance estimates, operational application
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Resumo

Em previsão numérica do tempo (PNT), um sistema de assimilação de dados tem como

objetivo produzir a melhor estimativa posśıvel do estado da atmosfera num dado ins-

tante utilizando toda a informação relevante dispońıvel. Esta estimativa é conhecida

como ”análise” e visa fornecer condições iniciais de qualidade a um modelo de previsão

numérica. Como informação relevante consideram-se tipicamente as observações e uma

estimativa conhecida a priori que normalmente corresponde a uma previsão de curto

alcance, obtida por integração do modelo numérico a partir de uma análise anterior.

As observações são de dois tipos: as observações in situ (como são as observações de

altitude resultantes de radiossondagens e as observações de superf́ıcie obtidas a partir

de uma rede de estações assentes sobre a superf́ıcie terrestre) e por deteção remota

(como são as radiações medidas a partir de satélites geostacionários ou de órbita po-

lar e ainda as refletividades medidas por radares meteorológicos). No formalismo da

assimilação variacional tri-dimensional conhecido como 3D-Var, a análise resulta da

minimização de uma função custo quadrática que mede a distância da análise às ob-

servações e à estimativa a priori tomando em consideração a precisão com que estas

fontes de informação são conhecidas. Em particular, é utilizada a covariância dos erros

das observações. Esta covariância contêm a informação sobre os erros de medição e de

representatividade que afetam as observações. É também utilizada a covariância dos

erros da estimativa a priori com a função de filtrar e propagar, espacialmente e de forma

multivariada, a informação observada. Estas duas entidades, a matriz de covariância

dos erros das observações e a matriz de covariância dos erros da estimativa a priori,

compõem a chamada ”matriz ganho” da equação da análise. Esta equação determina
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como é que as correções à estimativa a priori (i.e., os incrementos da análise) são obti-

das a partir das inovações (i.e., as diferenças entre as observações e a estimativa a priori

nos locais das observações). Contudo, dado que o estado exato da atmosfera não pode

ser conhecido, também as covariâncias dos erros apenas podem ser estimadas com base

em hipóteses que só podem ser confirmadas, ou não, a posteriori em amostras inde-

pendentes daquelas onde se calibram as estat́ısticas dos erros. Este é um dos principais

desafios cient́ıficos da assimilação de dados na atualidade.

Os centros modernos de PNT usam frequentemente uma especificação da covariância

dos erros da estimativa a priori que é obtida por processos independentes do ciclo de

assimilação em tempo não-real. Dado que não varia ao longo do ciclo de assimilação,

diz-se tratar-se de uma especificação de tipo ”estático”. Além disso, recorrem a técnicas

de ensemble baseadas na perturbação do ciclo de assimilação durante um determinado

peŕıodo de tempo (passado) para simular a evolução dos erros ao longo dos diversos

passos da análise e da previsão (por dizer respeito a estados passados da atmosfera,

esta especificação é vulgarmente designada de ”climatológica”). Como a matriz da co-

variância dos erros da estimativa a priori é demasiado grande para ser manipulada de

forma expĺıcita, os centros de PNT também empregam modelos que envolvem apenas

matrizes esparsas de covariâncias, os quais são calibrados a partir de ensembles de pre-

visões perturbadas usando metodologias mais ou menos simplificadas e eventualmente

sub-optimizadas. Muito frequentemente, estes modelos são baseados em simplificações,

como são as da homogeneidade espacial e a da estacionaridade dos erros, que inibem a

representação da dependência da covariância com a evolução da situação meteorológica.

Em particular, esta inibição é intŕınseca à atual versão operacional do modelo de área

limitada ALADIN/France utilizado neste estudo.

Esta tese em Assimilação de Dados tem como objetivo principal demonstrar, num con-

texto real de PNT, a importância duma representação adequada das variações temporais

da covariância do erro da estimativa a priori que é utilizada num sistema de área li-

mitada. Tendo como base o sistema numérico de área limitada ALADIN/France, este
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estudo evidencia claramente o efeito positivo resultante da utilização de uma especi-

ficação dessas estimativas em tempo-(quasi) real. A simulação dos erros da estimativa a

priori foi efetuada por técnicas de ensemble sob a hipótese de que o modelo de previsão é

perfeito, isto é, de que não existe qualquer erro do modelo (determinista ou estocástico)

e para qualquer membro do ensemble. Os erros assim estimados foram utilizados para

calibrar o modelo de covariâncias esparsas utilizadas no sistema ALADIN/France.

A primeira fase do trabalho, descrita por Monteiro & Berre (2010), visou a generalização

da hipótese de estacionaridade utilizada no cálculo das covariâncias dos erros da esti-

mativa a priori (previsões a 6 horas), através do diagnóstico da sua variação tempo-

ral. Com base nessas estimativas, foram igualmente calculadas escalas integrais de

correlação horizontal e vertical. Foi efetuado o diagnóstico da variação temporal nas

estimativas da covariância em função da mudança da estação do ano (inverno versus

verão), do dia (em conexão com a mudança da situação sinóptica) e da hora (relacionada

com o ciclo diurno). Para tal consideraram-se dois peŕıodos de um mês, um no inverno e

outro no verão, e em cada um destes peŕıodos construiram-se dois sistemas de ensembles

de 6 membros, os quais resultaram da perturbação independente do mesmo conjunto de

observações. Esta duplicação permitiu confirmar a robustez das estat́ısticas. De uma

forma geral, verificou-se que no verão as variâncias dos erros tendem a ser superiores

às que se observam no inverno (para os parâmetros da temperatura, humidade relativa

e vento). Em particular, no verão registaram-se correlações que são mais estreitas ho-

rizontalmente e mais extensas verticalmente e que estão relacionadas com o aumento

da atividade convetiva na região geográfica em estudo (em comparação com a que se

observa no inverno). No que respeita às variações diárias verificou-se (no peŕıodo de

inverno em estudo) que o desvio padrão do erro a priori é em geral maior quando a

situação sinóptica tem maior instabilidade barocĺınica (por exemplo, em situações de

desenvolvimento depressionário) particularmente no inverno, sendo acompanhada de

redução do comprimento de correlação horizontal do erro no caso da humidade e da

temperatura. Além disso, observou-se que as variações diárias da variância do error são

por vezes mais acentuadas do que as variações sazonais (se compararmos covariâncias
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para uma situação anticiclónica de inverno com as de um caso depressionário de inverno,

por exemplo). Finalmente, verificou-se que as variações das covariâncias ao longo de

um ciclo diurno são significativas na camada limite da atmosfera no peŕıodo de verão:

os desvios padrão tendem a ser maiores para as previsões válidas às 18 UTC, quando

a escala do comprimento da correlação horizontal é reduzida (especialmente para os

parâmetros da humidade e da temperatura) e as funções de correlação vertical são

extensas, sendo este um efeito esperado, dado o aumento da atividade convetiva que

acontece com o aquecimento da superf́ıcie terrestre durante a tarde, sobre o domı́nio

geográfico em causa.

Na segunda parte do trabalho, foi estudado o efeito da variação sazonal e diária das

matrizes de covariância do erro a priori sobre a qualidade das previsões do sistema

ALADIN/France ao longo de um mês de inverno. Para tal realizaram-se três ex-

periências separadas. Na primeira consideraram-se as covariâncias calculadas a par-

tir de uma média mensal (estática) ao longo de um peŕıodo passado (esta experiência

reproduz as condições do sistema operacional em que a covariância climatológica é ref-

erente a um peŕıodo de outono); na segunda, as covariâncias foram calculadas a partir

de uma média mensal (estática) sobre o peŕıodo de tempo em estudo (inverno); na ter-

ceira, as covariâncias foram calculadas a partir de uma média diária móvel (precedente

a cada data da análise). Os resultados indicaram que a especificação das covariâncias

dos erros da estimativa a priori correspondente a uma média diária móvel tem um

efeito positivo na qualidade da previsão de curto prazo (para alcances entre as 12 e

18 h, para a temperatura e vento e até às 24 h para a humidade) quando comparada

com a qualidade resultante de uma especificação estática climatológica (a utilizada no

atual sistema operacional). Este efeito positivo resulta principalmente da atualização

sazonal (do mês de outono para o mês de inverno) das covariâncias. A atualização

diária contribui também para um efeito positivo adicional mas este é mais localizado

e modesto. O efeito da variação diária é ilustrado através de dois casos de estudo,

verificados durante o mês de inverno: uma situação anticiclónica em que a melhoria é

ńıtida sobre a humidade e um evento ciclónico em que a melhoria é mais evidente sobre
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o campo do vento. Neste caso, regista-se uma melhoria da previsão extremos espaciais

do vento a prazos até às 36 h.

Em conclusão, os resultados obtidos sustentam a ideia de que é adequado implementar

uma especificação em tempo-(quasi) real das covariâncias do erro da estimativa a pri-

ori , em susbtituição da atual aproximação estática climatológica e, tal como foi visto

na primeira parte do trabalho, um ensemble de 6 membros já permite obter estima-

tivas diárias robustas a um baixo custo computacional, apesar das muitas melhorias

metodológicas que ainda podem ser feitas.

Palavras chave: modelo de area limitada, 3D-Var, assimilação ćıclica de ensemble,

estimativas da covariância do erro da estimativa ensemble com dependência temporal,

aplicação operacional
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Chapter 1

Introduction

The goal of current data assimilation systems is to produce the best possible estimate

of the atmospheric state, using all relevant available information. This estimate is

called the analysis, and it is used to provide accurate initial conditions to a Numerical

Weather Prediction (NWP) model. Available information is typically made of obser-

vations and a background field, which corresponds to a short-range forecast launched

from a previous analysis. Observation types are very diverse, corresponding to either

in situ measurements (such as radiosondes and surface network data) or remote

sensing data (such as radiances from geostationary and polar-orbiting satellites).

These different information sources are combined during the analysis step, and they

are weighted by their error covariances. More precisely, the role of background

error covariances is to spatially filter and propagate observed information. However,

estimating and modelling these error covariances is one the main scientifical challenges

of data assimilation.

In particular, since the true atmospheric state is never exactly known, ensemble tech-

niques based on perturbed data assimilation cycles are nowadays employed to simulate

analysis and forecast errors. Moreover, assumptions of temporal stationarity and

horizontal homogeneity are often used to model background error covariances, whereas

these simplifications are known to prevent the representation of the dependence of

background error covariances with respect to the meteorological situation.
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The main goal of the present data assimilation study is to diagnose time variations

of regionally averaged background error estimates and to study their impact in a real

NWP context. The ALADIN/France system from Météo-France is the experimental

framework for the studies here described.

The thesis structure is as follows. In chapter 2 the principles of data assimilation

and of the 3D-Var formulation are presented. In chapter 3, the basic concepts of the

ALADIN 3D-Var formalism for background error covariance modelling is introduced,

as well as the error covariance calibration using the ensemble method. A diagnosis of

time variations of background error covariances is exposed in chapter 4. The impact of

these time variations on the ALADIN/France limited area model (LAM) is presented

in chapter 5. Finally, some conclusions and a future outlook for this working area are

given in chapter 6.
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Chapter 2

Analysis equations and data

assimilation cycling

2.1 Data assimilation as an inverse estimation pro-

blem

The problem of projecting an instantaneous atmospheric state on the forecasting

model space, using a set of observations irregularly located, can be explained under

the view of the mathematical discrete inversion theory (see e.g. Tarantola (1987) or

Menke (1989)): it is generally classified as an undetermined problem, since the number

of degrees of freedom that define the model state is usually bigger than the number of

independent observations available; the undetermination is usually solved by use of a

priori knowledge on the atmospheric flow.

In modern NWP systems, the a priori knowledge on the atmospheric flow comes

from a short-range forecast (called the background, which is typically a 6 h forecast),

from the knowledge of the statistical structure and amplitude of the observation

and background errors, and from approximations of known balanced features of the

meteorological parameters involved.

The practical problem of finding the projection which gives the best possible estimate
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a model can have in a certain moment, forces us to some abstractions. Firstly, the

atmospheric reality is far more complex than what a model state can represent, for

instance due to its finite spatial resolution; therefore, the best possible atmospheric

representation a model state can give is an approximation of the true atmospheric

conditions. It is called the true model state. Secondly, due to the undetermined nature

of the projection process, we realize that the model state that we seek is an estimate -

the best possible - of the true model state. It is called the analysis. Finally, we look at

the background as a previously determined best model state estimate (known before

using the observations at the analysis time).

Since the middle of the 20th century, several mathematical methods have been used by

different authors to solve the practical problem of the atmospheric objective analysis

estimation. Two different approaches, either deterministic or probabilistic, have been

considered.

In the deterministic estimation theory, the inversion problem is solved by looking for

the parameter estimates that minimise the distance to their true value. This distance

is defined using a meaningful norm. One particular case of this approach is the

least-square analysis estimate (or the minimum variance estimate), where the distance

is measured by a squared (or Euclidian) norm 1 .

Using the Bayesian probabilistic approach, Lorenc (1986) proposed a generalised formu-

lation of the atmospheric analysis, and derived previously used methods. The methods

discussed included variational techniques, successive corrections (Bergthósson & Döos

(1955), Cressman (1959)), and optimal interpolation (OI) (Gandin 1963) amongst

others. Some of these methods are still valuable for low cost applications such as the

surface parameter analysis CANARI (Taillefer 2002) 2 .

1It should be noted that this norm specification is particularly suitable for the case when the

parameters to estimate have probability distribution functions not too dispersive around their average

value, as it happens with Gaussian distributed values.
2As it is described in appendix A, some applications of these methods have been recently used for
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In particular, assuming that the inverse of the analysis problem, the so-called direct

problem 3 , can be represented by a linear approach of a generalised interpolation and

that the background and observation errors have a Gaussian distribution function, it

is possible to prove in a simple way (see e.g. Desroziers (2001)) that the probabilistic

approach, usually called of maximum-likehood, can be reduced to the simplest deter-

ministic least-square approach (i.e the minimum error variance estimate).

2.2 The BLUE analysis equation and the role of B

In this work, we assume that the analysis is a linear combination of the background

and the observations, that the background and the observation errors are unbiased, not

mutually correlated, and have a Gaussian probability distribution function. Besides,

we consider a linear approach of the generalised interpolation. Under these conditions

both the probabilistic and the deterministic methods give the same solution which is

called the Best Linear Unbiased Estimator (BLUE) analysis. The BLUE analysis xa is

the minimum squared error unbiased estimate, and its equation is given by:

xa = (I − KH)xb + Kyo (2.1)

where xb is the background n-dimensional model state vector; yo is the observational

p-dimensional vector;

K = BHT (HBHT + R)−1 (2.2)

is called the gain matrix with n x p dimension; R and B are the observation and

background error covariance matrices with p x p and n x n dimensions, respectively;

H is the observation operator assumed here to be linear. H is the operator which

projects the model state onto the observation state. It can correspond for instance

to spatial interpolations from model grid points to observation points. In the case of

different purposes at the Portuguese Meteorological Service.
3Knowing the true model state we want to obtain the original set of observations that reproduced

the atmosphere conditions.

5



satellite radiances, H contains a radiative transfer model; (.)T is the transpose of (.).

The equation (2.1) is of particular interest along this work when it takes the form:

δx = xa − xb = K(yo − Hxb) = Kd (2.3)

where the difference δx is the n-dimensional vector called the analysis increment. In

this equation, d = yo − H(xb) is a p-dimensional vector called the innovation.

It can be shown (Daley 1991) that the analysis increment, that is, the analysis cor-

rection to the background, can be seen as resulting from a two-step process of the

innovation information, corresponding respectively to a filtering step and to a propa-

gation step, if we write the previous equation under the form

δx = BHT (HBHT )−1(HBHT )(HBHT + R)−1d. (2.4)

The factor responsable for the filtering is (HBHT )(HBHT + R)−1, which corresponds

to the analysis increments produced at the observation points. This filter, that is

proportional to B, penalizes under a differential way the different components of the

innovation vector; the components less penalized are those associated to large back-

ground error variances (e.g. Berre (2001)). Typically, if the background error variance

is large compared to observation error variances in R, the analysis increment will be also

large, which means that the analysis will closely fit the observation values. The factor

responsable for the propagation is BHT (HBHT )−1, which implies that the analysis in-

crements at the observation points are propagated (or interpolated under a muti-variate

way) to the model grid points. Moreover we see that this propagation is proportional

to B. Typically, if spatial correlation functions of background errors specified in B are

large-scale, analysis increments at the observation points will be propagated spatially

to a large extent. We then verify that the information of B is used to filter and pro-

pagate spatially under a multi-variate way the meteorological information contained at

the observation points.
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2.3 3D-Var formulation

The variational method allows the BLUE estimate to be recovered for the above men-

tioned working hypoteses. In the formalism of the Three-Dimensional Variational Data

Assimilation (3D-Var), the analysis xa should minimize a quadratic function that mea-

sures the distance between the estimate and the available information, the observations

and the background, taking into account their respective precisions. This function is

called the cost function. It is represented by J . Under the assumed hypotheses it is

written as (Le Dimet & Talagrand (1986) , Courtier et al. (1998)) 4:

J = Jb + Jo =
1

2
(x − xb)TB−1(x − xb) +

1

2
(yo − H(x))TR−1(yo − H(x)) (2.5)

where x is the estimate n-dimensional model state vector. And the observation operator

is now noted H(.), because it can be non linear here. Jb and Jo are the background and

the observation terms of J , respectively.

Knowing that B and R are positive definite matrices 5 , the cost function is convex

and its minimum is obtained when its derivative reaches zero (see for instance Bocquet

(2009)). That is, when

∇xJ = B−1(x − xb) − HTR−1(yo − H(x)) = 0 (2.6)

where H is the observation operator linearized around the background state, and HT

is the associated adjoint operator, which corresponds to the transpose of H.

The vanishing of gradient (2.6) is obtained for x = xa, and it can be shown that this

corresponds to the BLUE equation of the analysis state xa:

xa = xb + K(yo − H(xb)) (2.7)

4Along this work we will follow as much as possible the notation by Ide et al. (1997).
5A symmetric matrix B is defined to be positive definite if, for any vector x 6= 0, the scalar

x
T
Bx > 0.
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There is an immediate practical advantage of implementing 3D-Var in operations

compared with previously used methods: the computation of K, which obliges to the

manipulation of big matrices or to an a priori data selection, is avoided since the

solution is found globally for all data sources, though an iterative process 6 where

several calculations of equations (2.5) and (2.6) are performed (Bouttier & Courtier

1999).

An incremental formulation of (2.5) is also possible, with the advantage of rendering

the cost function a quadratic function of the increment which has a single minimum:

J = Jb + Jo =
1

2
δxT B−1δx +

1

2
(d− Hδx)TR−1(d− Hδx) (2.8)

where δx = x − xb is the model state increment (which is a n-dimensional vector) so

that at the minimum the resulting analysis increment δxa added to the background xb

to provide the analysis xa = xb + δxa; and the remaining symbols keep their previous

meaning. The gradient of this cost function is:

∇δxJ = B−1δx −HTR−1(d− Hδx) (2.9)

In its general formulation, the minimization by the incremental method is still an itera-

tive procedure. However, in the incremental 3D-Var a fast convergence of the minization

can be achieved by use of a change of variable such that χ = Uδx where U is defined

so that B−1 = UTU (Cholesky transformation).

The expression of the background cost function Jb, in particular, can be expressed

as (we refer here Derber & Bouttier (1999) and Gustafsson et al. (2001) for a deeper

comprehension on this topic):

Jb =
1

2
χT χ (2.10)

In this way, in the space of the transformed analysis increment, χ, the background error

covariance matrix becomes the identity matrix and the incremental formulation of the

6like those of the conjugate gradient or quasi-Newton methods
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total cost function and its gradient are written as follows, respectively:

J =
1

2
χT χ +

1

2
(d− HU−1χ)TR−1(d− HU−1χ) (2.11)

∇χJ = χ − U−THTR−1(d− HU−1χ) (2.12)

This formulation converges more quickly than (2.8), because the second derivative of J

(i.e. its Hessian) is much closer to the identity matrix, which means that the Hessian

is better conditioned. As a final remark we should notice that at the initial iteration,

x = xb so δx = χ = 0 and that at the final iteration the analysis increments are given

by δx = U−1χ.

While this 3D-Var approach has been introduced firstly for global models (e.g.

Courtier et al. (1998)), it has been used more recently for limited area models such

as HIRLAM (Gustafsson et al. 2001) and ALADIN/France (Fischer et al. 2005). It is

the ALADIN/France 3D-Var system which will be used in our study.

2.4 Data assimilation cycling and other analysis

methods

Figure 2.1 is an illustration of the principle of data assimilation cycling. At time t1, a

6 hour data assimilation is done by combining a set of observations valid in the ± 3

h time interval, centered at the analysis time, with a background corresponding to a

6 h forecast issued from the previous analysis valid at time t0. Once the analysis xa
t1

is calculated, a 6 h forecast can be run to provide a background xf = M(xa
t1

) valid at

time t2, to be used for the calculation of the analysis valid at time t2.

The two fundamental equations describing a given analysis/forecast step are thus (when

considering the case where the observation operator is linear):

xa = (I − KH)xb + Kyo (2.13)
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Figure 2.1: Schematic illustration of the data assimilation cycling: yo
ti+1 and xa

ti+1

represent, respectively, the observation vector and the analysis field at instant ti+1 =

ti + 6h; M represents the operator that corresponds to the 6 h integration provided by

the forecast model.

xf = M(xa) (2.14)

where M is the non-linear forecast model. As will be discussed in the next chapter,

these two equations of analysis and forecast states lead to similar equations for the

analysis and forecast errors, respectively.

Although this will not be discussed extensively in the present manuscript, there are

other analysis techniques than 3D-var in order to calculate the BLUE analysis estima-

tion. One of these techniques corresponds to four-dimensional variational assimilation

(4D-Var), which is a generalization of 3D-Var that takes better account of the temporal

dimension of the data assimilation problem, by including the forecast model M as a

part of the observation operator (e.g Le Dimet & Talagrand (1986), and Rabier et al.

(1998b)). Other analysis techniques correspond to Ensemble Kalman filter approaches,

whose different variants are reviewed in Evensen (2003) for instance. Ensemble Kalman

filters are not based on the minimization of a cost function (in contrast with variational

approaches), but they rely more explicitly on the gain matrix formula (equation (2.2)),

which is estimated by using ensemble forecast perturbations. Nowadays, these two

10



different approaches tend to converge towards each other, in the sense that ensemble

forecast perturbations can also be used to calibrate and model the B matrix used in

variational assimilation.
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Chapter 3

Background error covariance

modelling and calibration

Background error covariance specification relies on two main ingredients. A first step

is to use techniques which simulate the error evolution during the successive analy-

sis/forecast steps of the assimilation cycling. A second step is to use these simulated

error data to calibrate a sparse covariance model.

3.1 Error simulation techniques for calibration of

error covariances

3.1.1 Error equations and their simulation

In data assimilation, background error covariance estimates have the crucial role of

filtering and propagating the observed information from the observation locations to

the grid points of the atmospheric model. However, background error covariances can

only be estimated approximately because, in particular, the true atmospheric model

state is never exactly known.

The background error eb is defined as the difference between the background state xb

and the true state xt:
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eb = xb − xt (3.1)

There are two fundamental equations which govern the evolution of analysis and back-

ground errors. We will assume that H(.) and M(.) are linear for the sake of simplicity

(see also e.g Desroziers et al. (2009) for the weakly non-linear case), i.e. H(.) = H and

M(.) = M. It may be noticed that (2.7) can be re-written as xa = (I−KH)xb +Kyo.

Moreover, the true state xt can also be written as xt = (I − KH)xt + KHxt. This

implies that the equation of the analysis error ea = xa − xt is:

ea = (I −KH)eb + Keo (3.2)

where eo is the observation error and I is the identity matrix and at the same time,

d = eo − Hef . The error ef of the forecast xf launched from the analysis xa is given

by:

ef = Mea + em (3.3)

where em is the 6 hour accumulated model error. Note that the six-hour forecast

xf is used as a background xb for the next analysis cycle so that eb becames equal to ef .

As outlined by Fisher (2003), there are two basic ways by which we can try to

calibrate background error covariance models: either by use of the available observed

information (innovation statistics), or by using error simulation techniques.

An example of the first approach is the observational method, used for instance by

Hollingsworth & Lönnberg (1986). They have used the innovation statistics over a

data-dense radiosonde network (over the North of America) to diagnose the statistics of

background errors, assuming that observation errors are uncorrelated with background

errors and spatially uncorrelated. It can be shown (e.g. Berre & Desroziers (2010))

that this amounts to applying a low-pass filter F to estimate HBHT from innovation

covariances, namely: ddT ≃ (eo − Heb) (eo − Heb)T ≃ HBHT + R; that is:

13



HBHT ≃ F(HBHT + R) (3.4)

One main disadvantage of the observational method is that these estimates are not

representative of areas with a low data-density observation network; besides, the esti-

mates can only be found for observed quantities and not directly for the model variables.

The second approach relies most often on the generation of forecast difference fields (as

a surrogate of error fields) on the model grid for the model variables. An immediate

advantage of such an approach is that the error statistics will be available on the whole

model domain; a difficulty corresponds to the fact that these quantities can differ in

some aspects from the statistics of background error. The most known example of this

approach is the NMC method (Parrish & Derber 1992). In this method, the surrogate

quantity whose statitics are used to simulate the background errors is the difference

between two forecasts valid at the same analysis time, but for different forecast ranges

(such as 12 and 36 hours, typically). One of the main ingredients of this NMC method is

the accumulation of 4 sucessive analysis increments during the 24 hour differing period.

Such an approach can be seen as relying on the analysis increment equation to simulate

the analysis error equation (3.2) (after noticing that yo − H(xb) ≃ eo − Heb):

ea ≃ δx = −KHeb + Keo (3.5)

which indicates that the operator (I − KH) applied to eb in (3.2) is replaced by the

operator −KH. This analysis increment is then evolved by the forecast model M, to

approximate (3.3):

eb ≃ Mδx (3.6)

by assuming that ea ≃ δx and that em ≃ 0.

This is not an expensive method, which justifies its popularity. However, it has two

conceptual drawbacks in particular. Firstly, the error variance will be under-estimated

in poorly-observed regions because K ≃ KH ≃ 0 and thus δx ≃ 0, whereas ea ≃ eb ≫ 0
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in these regions, i.e. ea ≫ δx (see e.g. Belo Pereira & Berre (2006)). Secondly, since

the forecast length of the two forecasts used to compute the differences is longer than

the forecast range used as background (typically a 6 h forecast), the error spatial

structures are likely to be broader in the vertical and in the horizontal than those of

the exact background errors (Fisher 2003).

Another methodology was proposed by Fisher (2003), based on a conceptualization

by Houtekamer et al. (1996). In this approach, called analysis-ensemble method, an

ensemble of perturbed analysis/forecat steps is calculated, by using observation and

background perturbations that are consistent with associated errors. In common with

the NMC method, this has the advantage of producing global fields of model variables

over the model grid. Moreover, and contrarily to the NMC method, it produces

reasonable estimates of the background error in data-sparse regions in particular.

As shown in Berre et al. (2006), for instance, this is related to the representation of error

equations (3.2) and (3.3) through corresponding equations for the analysis perturbations

εa and for the forecast perturbations εf (where perturbations are constructed as random

differences from the corresponding unperturbed (real) data):

εa = (I −KH)εb + Kεo (3.7)

εf = Mεa + εm (3.8)

where εo are observation perturbations which are randomly drawn from the specified

observation error covariance matrix R, while εa, εb and εf are perturbations implicitly

generated by the cycled application of equations (3.7) and (3.8). εm are model pertur-

bations which are either neglected (εm ≃ 0), or drawn from an estimate of the model

error covariance matrix (often denoted by Q). Because model error covariances are

poorly known in practice, the perfect-model assumption (i.e. εm ≃ 0) is often used in

such ensemble analysis simulations. In order to correct the associated underestimation

of background error variances, a posteriori diagnostics (see e.g. Desroziers et al.
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(2005)) are usually applied to inflate background error standard deviation estimates

by a factor 2 typically. This is the approach which will be used in our study, while

model error representation is also an area of active research (e.g. Raynaud et al. (2011)).

We should note furthermore that in the ensemble technique used in this work we are

trying to get a new and better representation of B by calibrating it using the pertur-

bation of successive analyses and forecasts obtained from a reference system that uses

the original, thought distinct, B matrix. This mechanism is an approximation that in-

troduces imbalances and inconsistencies in the assimilation algorithm, and we say that

the reference B matrix is used under a sub-optimal way. However, as will be seen, this

procedure is still a reasonable first correction to the algorithm and is a commonly used

technique in other contexts as well.

3.1.2 Implementation of an ensemble of perturbed ALADIN

analysis and forecasts

In this section, we will describe more precisely the practical implementation of the

ALADIN ensemble assimilation experiments. The Regional Ensemble Data Assimila-

tion (REnDA) 1 used for the investigation here described was set up as a 6-perturbed

member ensemble of the actual reference 3D-Var ALADIN/France data assimilation

scheme. Figure 3.1 represents the first two 6 hour networks of its cycling for a generic

member [k], k = 1, · · · , 6.

For the very first date, the background is the same for all the members; it is an unper-

turbed 6 h ALADIN/France forecast. During the next data assimilation cycles, a 6 h

model integration from the actual perturbed analysis - an implicitly perturbed back-

ground - is used for the new analysis step. For each REnDA member, the perturbed

analysis is obtained by combination of the perturbed background with randomly per-

turbed observations. These observation pertubations have the same statistical charac-

teristics as the prescribed observation error since they are randomly drawn from the

specified observation error covariance matrix R. Lateral boundary conditions for the 6

1by analogy with the abbreviation used at Isaken et al. (2007)
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Figure 3.1: Schematic illustration of the data assimilation member [k] assimilation

cycling networks which are replicated by the 6 members of the REnDA: yo
ti+1 and

xa
ti+1 represent, respectively, the observation vector and the analysis field at instant

ti+1 = ti+6h; M represents the (linear) operator that corresponds to the 6 h integration

provided by the forecast model, that is the background xb on the next assimilation cycle

(or network). The symbol (̃.) represents a perturbed quantity, ref refers the operational

reference system.

hour ALADIN/France integration are ARPEGE forecasts starting from a correspond-

ing ARPEGE ensemble data set.

The reference background statistics, represented by B(ref) in Figure 3.1, is used in

every 6-hour assimilation cycle. It is a climatological ensemble-based background error

covariance matrix, calculated over a three-week autumnal period, from the 9th of

September to the 4th of October 2007.

Let us consider the model state evolution of an ensemble member which will be referred

by the index k (see Figure 3.1) and compare it with the evolution of the unperturbed

system. In a first step, at the analysis time ti, the difference between the perturbed and

unperturbed analysis is equal to εa
i = x̃a

i [k] − xa
i . Starting from a perturbed analysis

x̃a
i [k], we can produce a 6 h forecast, considering x̃b

i+1[k] = Mx̃a
i [k], whose difference
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with the unperturbed forecast xb
i+1 = Mxa

i is

εb
i+1 = x̃b

i+1[k] − xb
i+1 = Mx̃a

i [k] −Mxa
i = Mεa

i+1 (3.9)

In a second step, at the analysis time ti+1, we can combine the 6 h forecast of member [k]

with its specific set of (independently perturbed) observations, ỹo
i+1[k] = yo

i+1 + εo
i+1[k],

where εo
i+1[k] ∼ N (0,R) are Gaussian random draws of R, and produce a new perturbed

analysis field:

x̃a
i+1[k] = x̃b

i+1[k] + K(ỹo
i+1[k] − H(x̃b

i+1[k])) (3.10)

whereas the equation of the unperturbed analysis is:

xa
i+1 = xb

i+1 + K(yo
i+1 − H(xb

i+1))

The difference between the two last analysis equations leads us to the following expres-

sion for the analysis perturbation at time ti+1:

εa
i+1 = εb

i+1 + K(εo
i+1 − Hεb

i+1) (3.11)

Thus, equations such as (3.9) and (3.10) illustrate the idea that ensemble perturba-

tions are obtained by running perturbed data assimilation cycles, based on explicitly

perturbed observations and implicit background perturbations.

3.2 Background error covariance modelling in

ALADIN

Once these simulated error data have been produced, they are usually not employed to

compare directly a full covariance matrix B as such, because the size of B is much too

large to be stored in memory. On the other hand, these simulated error data can be

used to calibrate a sparse covariance model of B.

The analysis component of the ALADIN/France data assimilation system is based

on the 3D-Var method, and it takes advantage of scientific achievements of the
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ARPEGE/IFS system (Fischer et al. 2005). As explained in section 2.1, it relies on

the incremental approach. Besides, a preconditioning of the variational problem is

applied such that the minimization of the cost function is done through the change of

variable that makes its Hessian closer to the identity matrix.

In the 3D-Var system of ALADIN/France, the background-error covariance model for-

mulation is detailed in Berre (2000), as a bi-Fourier counterpart (to a limited area)

of the global, spherical harmonic formalism proposed by Courtier et al. (1998) and

Derber & Bouttier (1999). The original (global) multivariate formulation, based on the

model variables of vorticity, divergence, temperature and the (logarithm of) surface

pressure, is extended also to humidity. As detailed in Gustafsson et al. (2001) for ins-

tance, the change of variable U = B−1/2 presented in section 2.3 can be designed as

an operator which transforms the background error eb into a variable eb′ = Ueb whose

covariance matrix is the identity matrix:

eb′(eb′)T = Ueb(Ueb)T = Ueb(eb)TUT = B−1/2BB−T/2 = I (3.12)

where (.) represents the ensemble average over a number of identic independent cases.

3.2.1 Cross-covariances and multivariate regressions

The model state increment vector δx is written as the block vector

δx =





















ζ

η

(T,Ps)

q





















where the increment representation δ is dropped from the notation for the sake of

simplicity at the different increment fields that are just mentioned by using its common

physical names, so that ζ is called vorticity; η is divergence; (T,Ps) corresponds to

the temperature and the logarithm of surface pressure, and q is the specific humidity.
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A first step to achieve the appropriate conditioning for the B matrix in ALADIN/France

is to transform the background error of the full 2 model variables (ζ ,η,(T,Ps),q) into a

set of variables (ζ ,ηu,(T,Ps)u,qu) which are mutually uncorrelated. This can be done

by using linear regression operators in order to extract cross-covariances between the

full model variables (ζ ,η,(T,Ps),q):

ζ = ζ

η = Mζ + ηu

(T, Ps) = Nζ + Pηu + (T,Ps)u

q = Qζ + Rηu + S(T,Ps)u + qu (3.13)

where M, N, P, Q, R and S are linear regression matrices which are deduced from cross-

covariances and auto-covariances, as shown for M as an example:

M = Cζ,ηC
−1
ζ,ζ (3.14)

where Cζ,η is the cross-covariance matrix between vorticity and divergence, and Cζ,ζ

is the auto-covariance matrix of vorticity.

These regression operators are often called balance operators, because they represent

couplings such as geostrophic mass/wind balance in particular. The regression residuals

are often named unbalanced variables, because they can be seen as residual terms

of balance equations. Moreover, it can be shown easily that the resulting regression

residuals are uncorrelated with vorticity, and that they are also mutually uncorrelated:

ηuζT = (η − Mζ)ζT

= ηζT − MζζT

= ηζT − ηζT (ζζT )−1 ζζT

2which correspond to the addition of the physically balanced and the unbalanced parts of the model

fields increments
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= ηζT − ηζT

= 0 (3.15)

The balance operators are calculated in spectral bi-Fourier space in order to represent

the scale dependence of these multivariate couplings, with for instance a lesser degree

of geostrophy for small horizontal scales (e.g.(Derber & Bouttier 1999), (Berre 2000)).

Cross-covariances between different wave vectors are neglected, which corresponds to

an assumption that cross-covariances are horizontally homogeneous.

The mutual uncorrelation between vorticity and regression residuals implies that the

background error covariance matrix Bu in the space of (ζ ,ηu,(T,Ps)u,qu) is block-

diagonal:

Bu =





















Cζ 0 0 0

0 Cηu
0 0

0 0 C(T,ps)u
0

0 0 0 Cqu





















where e.g. Cζ represents now the auto-covariance matrix of ζ (previously represented

as Cζ,ζ) for the sake of simplicity.

Moreover, the regression equations presented in equation (3.13) can be written in ma-

tricial form as corresponding to the application of a balance operator K:

K =





















I 0 0 0

M I 0 0

N P I 0

Q R S I





















This implies that the background error covariance matrix B in the space of the full

model variables (ζ ,η,(T,Ps),q) is written as follows:

B = KBuK
T = U−1(U−1)

T
(3.16)
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where (.)T denotes the transpose of the matrix (.), and U−1 = KB1/2
u .

These last three equations illustrate the fact that B is modelled as the product of sparse

operators. This is crucial because otherwise the size of the full covariance matrix B is

so huge (it is equal to the square of the model dimension) that it can not be stored and

handled explicitly.

3.2.2 Horizontal and vertical auto-covariances

Spatial auto-covariances contained in Bu are modelled using an assumption of horizon-

tal homogeneity and isotropy. This assumption allows the matrix Bu to be represented

as a block-diagonal matrix in bi-Fourier space, with zero covariances between different

wave vectors (e.g. Berre (2000)).

On the other hand, auto-covariances in Bu are allowed to vary with height and hori-

zontal scale. This enables the representation of the increased broadness of horizontal

correlation functions with height and of the increased sharpness of vertical correlations

for small horizontal scales (e.g. Rabier et al. (1998a)).

These different aspects of spatial auto-covariances can be studied by using the following

decomposition of the covariance between two spectral coefficients at levels z and z′,

respectively:

qz
mnq

z′
mn

∗ = σzσz′

√

γz(k∗)γz′(k∗) rk∗(z, z′) (3.17)

where qz
mn and qz′

mn result from the bi-Fourier expansion; m and n are wave numbers

in the zonal and meridional direction respectively; σz, σ
′

z are the averaged standard-

deviations at levels z, z′; γz, γ
′

z are the normalized spectral densities of the variance at

those levels; and rk∗(z, z′) is the vertical correlation between levels z, z′ for the total

horizontal wave number k∗ = Ly

√

( m
Lx

)2 + ( n
Ly

)2 (where Lx and Ly are the zonal and

meridional domain lengths, respectively). (.) is the ensemble average. We should

note here that since q(h, z) values are real numbers, qz
mn is a complex number such that
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qz
−m−n = qz

mn
∗, where (.)∗ denotes the conjugate operator.

3.3 The issue of temporal variations in the current

homogeneous model

The current homogeneous covariance model implies that horizontal variations of cova-

riances are not represented. Although this will not be explored in our studies, it should

be mentioned that investigations are also ongoing in order to represent horizontal

heteorogeneities in alternative sparse covariance models. For instance, horizontal

variations of background error standard deviations can be represented in grid point

space, possibly after applying spatial filtering techniques to reduce sampling noise

effects (e.g Raynaud et al. (2009)). Moreover, horizontal variations of background error

correlations can be represented in wavelet space (e.g Fisher (2003), Deckmyn & Berre

(2005)) for instance. Correlation heterogeneities can also be modelled either by using

recursive spatial filters (Purser et al. 2003) or diffusion techniques (Weaver & Courtier

2001), or by including ensemble perturbations as control variables of the variational

minimization (e.g. Lorenc (2003)).

Regarding the current homogeneous covariance model framework, it can be shown that

the application of the horizontal homogeneity assumption amounts to calculating hori-

zontal averages of covariances over the regional domain of interest (e.g Berre (2000)).

In addition to this spatial average, background error covariances are usually temporally

averaged over a few-week past period (see e.g. Fisher (2003) and Belo Pereira & Berre

(2006)), during which an ensemble of perturbed assimilation cycles has been run off-line.

Once these spatially and temporally averaged covariances have been calculated, they

are usually specified to be static in the covariance model of 3D-Var. This implies that

potential temporal variations of background error covariances, such as those related to

the weather situation dependence, are not represented in the 3D-Var system in this case.
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Note that this issue of temporal variations can already be raised in the current

homogeneous covariance model framework. This is particularly the case for the

regionally averaged covariances used in limited area models such as ALADIN/France.

This is related to the fact that a regional spatial averaged is expected to be more prone

to temporal variations than a global spatial average.

The goal of the present work is thus to diagnose the time variability of regionally-average

covariances (which corresponds to chapter 4), and also to examine their impact in the

ALADIN/France 3D-Var system (which corresponds to 5).
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Chapter 4

A diagnostic study of time

variations of regionally averaged

background error covariances

This chapter corresponds to the follwoing publication, with the addition of a few notes:

Maria Monteiro1 and Löık Berre2 (2010): A diagnostic study of time variations of region-

ally averaged background error covariances, Journal of Geophysical Research, 115, D23203,

doi:10.1029/2010JD014095

1CPPN, Instituto de Meteorologia I.P., Lisbon, Portugal
2CNRM/GMAP, Météo-France, Toulouse, France
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Abstract

In variational data assimilation systems, background error covariances are of-

ten estimated from a temporal and spatial average. For a limited area model

such as the Aire Limited Adaptation Dynamique Développment InterNational

(ALADIN)/France, the spatial average is calculated over the regional compu-

tation domain, which covers western Europe. The purpose of this study is

to revise the temporal stationarity assumption by diagnosing time variations

of such regionally averaged covariances. This is done through examination of

covariance changes as a function of season (winter versus summer), day (in con-

nection with the synoptic situation), and hour (related to the diurnal cycle),

with the ALADIN/France regional ensemble Three-Dimensional Variational

analysis (3D-Var) system. In summer, compared to winter, average error vari-

ances are larger, and spatial correlation functions are sharper horizontally but

broader vertically. Daily changes in covariances are particularly strong dur-

ing the winter period, with larger variances and smaller-scale error structures

when an unstable low-pressure system is present in the regional domain. Diur-

nal variations are also significant in the boundary layer in particular, and, as

expected, they tend to be more pronounced in summer. Moreover, the com-

parison between estimates provided by two independent ensembles indicates

that these covariance time variations are estimated in a robust way from a

6-member ensemble. All these results support the idea of representing these

time variations by using a real-time ensemble assimilation system.

4.1 Introduction

The analysis of meteorological fields, obtained by data assimilation systems, can

be seen as a weighted combination of observations and of a model forecast (called

the background). The weights are determined by specified spatial covariances of

observation errors and of background errors. As discussed by Daley (1991), back-

ground error covariances are used to filter and propagate spatially observed information.
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In the regional operational Aire Limited Adaptation Dynamique Développment

InterNational (ALADIN)/France system, a variational scheme (Fischer et al. 2005)

is used for data assimilation. Background error covariances are estimated by using

an ensemble assimilation approach (Berre et al. 2006) and are calculated from a

temporal and spatial average. In this ALADIN/France system, the spatial average

is calculated over the regional computation domain, which covers western Europe.

The associated homogeneity assumption implies that 3-D spatial covariances can be

calculated and represented as sparse block-diagonal matrices in spectral space (with

one block for each wave vector). The temporal average is usually calculated off-line

over a period of several consecutive weeks (Belo Pereira & Berre 2006, e.g.). A

stationarity assumption is thus introduced when using these time-averaged covariances

in the assimilation scheme. This means that time variations corresponding to changes

related to the season, the synoptic situation, and the diurnal cycle are not represented,

whereas they are likely to be significant.

Therefore, current research efforts are devoted to the relaxation of these ho-

mogeneity and stationarity assumptions. With respect to the first assumption

(i.e. homogeneity), a wavelet representation of background error correlations

is being developed (Deckmyn & Berre (2005); Lindskog et al. (2007); see also

http://www.ecmwf.int/publications/library/do/references/list/14092007), to represent

associated spatial variations. The goal of the present paper is to revise the other

hypothesis (i.e. stationarity). As a first step, this will be examined in the current

operational homogeneous framework. Later on, once a heterogeneous covariance

formulation is available, it is planned to extend the study to time variations in the

wavelet framework (as evoked in Pannekoucke et al. (2008) and Berre et al. (2009) in

a spherical wavelet context).

Compared with a global homogeneous framework, in which covariances are averaged

over the whole globe, diagnosing time variations is likely to be more relevant in

the current regional homogeneous context. This corresponds to the idea that time
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variations are expected to be more pronounced in the regional average over western

Europe than in the global average over the whole sphere.

The paper is structured as follows. The experimental framework is described in section

4.2. The seasonal variation of covariances is studied in section 4.3 by comparing co-

variances in winter and summer periods. Day-to-day covariance changes in the winter

period, related to the synoptic situation, are examined in section 4.4. Section 4.5 shows

results corresponding to diurnal cycle effects in the summer period. Conclusions and

perspectives are summarized in section 4.6.

4.2 Experimental framework

4.2.1 Error simulation with the ALADIN/France 3D-Var sys-

tem

The present study has been carried out in the context of the ALADIN/France

Three-Dimensional Variational analysis (3D-Var) system, which is based on a 6 h

assimilation period and which is described in Fischer et al. (2005). The ALADIN

model is the limited area model (LAM) counterpart of the Action de Recherche Petite

Echelle Grande Echelle/Integrated Forecasting System (ARPEGE/IFS) (Geleyn et al.

1995) global system (Horányi et al. 1996). The ALADIN/France model is spectral

(based on a bi-Fourier representation of the fields), it has a 10 km horizontal resolution

and 60 vertical levels, and its lateral boundary conditions are provided by the

ARPEGE model. To avoid the propagation of spurious gravity waves, a digital filter

initialization method (Lynch & Huang 1992) is applied after the 3D-Var analysis

step. As illustrated in Figure 4.7, the ALADIN/France computation domain covers

France, the Iberian Peninsula, and part of the surrounding countries. The vertical

model levels are hybrid pressure terrain-following coordinates, and their approximate

correspondence with standard pressure levels is shown in Figure 4.1.

ALADIN/France background errors are estimated here by using an error simulation
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Figure 4.1: Standard pressure values of vertical levels in the ALADIN/France model.

technique as done, for example, by Houtekamer et al. (1996), Fisher (2003) and

Belo Pereira & Berre (2006). The experimental framework is based on a regional

ensemble 3D-Var system, made of six members. Each member can be seen as a

perturbed ALADIN/France assimilation experiment. For each member, observa-

tions are explicitly perturbed in accordance with the specified observation error

covariance matrix. Moreover, the background of a given member is implicitly per-

turbed through the previous analysis perturbations, evolved by the model during

the 6 h forecast period. The combination of perturbed observations and of the

perturbed background provides a new perturbed analysis, and so on. During the

forecast step, each member is also coupled to a perturbed global run, provided

by the ARPEGE ensemble assimilation system ((Berre et al. 2007, 2009, see also

http://www.ecmwf.int/publications/library/do/references/list/14092007)), which has

been operational at Météo-France since 2008. This coupling to a global ensemble

allows the effect of lateral boundary errors to be represented in the regional ensemble.

This perturbed assimilation cycling has been run over two monthly periods, one in win-

ter (12 February to 13 March 2008) and the other in summer (3 July to 2 August 2008).

To evaluate the robustness of ensemble covariance estimates, a second set of 6-member
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regional and global ensembles has been run independently during each of these two

periods. The two winter ensemble data sets are denoted by EnW1 and EnW2, and the

two summer ensemble data sets are denoted by EnS1 and EnS2. As discussed by

Berre et al. (2007) in the context of standard deviation estimates (see their section 3),

the difference between the two independent ensemble estimates is a measure of the level

of sampling noise, induced by the finite size of the ensemble. This measure of sampling

noise can be compared to estimated covariance values and to the amplitude of their

temporal variations, to evaluate to which extent such ensemble estimates are robust.

4.2.2 Diagnostics of regionally averaged background error co-

variances

Covariance estimates have been calculated and diagnosed for the four main historical

variables of the ALADIN/France model, namely vorticity, divergence, temperature and

specific humidity. In particular, the horizontally averaged background error variance

σb(z)2 has been calculated at each vertical level z for these variables, together with the

associated standard deviation σb(z).

As shown in Berre (2000, section 3.a, and also equation (A3)), this horizontally averaged

background error variance can also be written as the sum of variance contributions from

different horizontal wave numbers k⋆:

σb(z)2 =
K⋆
∑

k⋆=0

p(k⋆, z). (4.1)

where k⋆ is a two-dimensional total wave number defined by:

k⋆ = Ld

√

√

√

√

(

m

Lx

)2

+
(

n

Ly

)2

and where m and n are wave numbers in the zonal and meridional directions, respec-

tively, while Lx and Ly are the corresponding domain lengths. Ld is an arbitrary

scaling factor which defines the wavelength that corresponds to k⋆ = 1. In the case

of ALADIN/France, Ld = Ly = 2780km is used and the maximum horizontal wave
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number is K⋆ = 149.

The contribution of k⋆ to the variance σb(z)2 is p(k⋆, z), and its formula is given by:

p(k⋆, z) =
2πLxLy

L2
d

q(k⋆, z)k⋆,

where q(k⋆, z) is the isotropic average of modal variances |eb
mnz|

2 = eb
mnze

b∗
mnz of back-

ground error spectral coefficients eb
mnz associated to k⋆:

q(k⋆, z) =
1

2π

∫

|eb
mnz|

2dθ,

where (m, n) are wave vectors such that Ld

√

( m
Lx

)2 + ( n
Ly

)2 = k⋆, and θ = tan−1( n/Ly

m/Lx
).

Modal variances |eb
mnz|

2 are calculated from the 6-member ensemble either for a given

date (in the case of section 4.4), or from a temporal average over a monthly period

(in the case of section 4.3). In the first case, the overbar corresponds to an ensemble

average over the 6 members. In the second case, the overbar corresponds to an

ensemble time average over the 6 member and over all days of the monthly period

(corresponding to 180 realizations). Note that equation (4.1) can also be written as

follows (see, e.g., the first equation of Remark 3 in the work of (Berre 2000, p. 664)):

σb(z)2 =
∑

m,n |eb
mnz|

2.

Equation (4.1) is used to evaluate the contribution of different horizontal scales to the

horizontally averaged variance and to its temporal variations. This variance decom-

position is also used to interprete changes in horizontal correlation length scales. As

shown, for example, by Berre (2000), the horizontal correlation length scale Lz, for each

vertical level z, can be calculated from spectral variances as

Lz =
Ld

2π

√

√

√

√

2
∑

m,n |eb
mnz|

2

∑

m,n k⋆2 |eb
mnz|

2
(4.2)

This means that for a given vertical level, the length scale is inversely proportional

to the variance spectrum times the squared wave number k⋆. In particular, when the

increase in the variance spectrum occurs predominantly for large wave numbers, Lz
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decreases.

Another typical statistical quantity to be diagnosed corresponds to vertical correla-

tions ρ(z, z′) between vertical levels z and z′, which can be calculated as follows from

associated vertical covariances cov(z, z′):

ρ(z, z′) =
cov(z, z′)

σb(z)σb(z′)
=

∑

m,n eb
mnze

b∗
mnz′

σb(z)σb(z′)

Both auto- and cross-covariances have been calculated and examined. It has been

found that temporal variations in cross-covariances reflect changes affecting standard

deviations to a large extent. Therefore, for the sake of conciseness, the present study

focuses mostly on standard deviations and spatial auto-correlations.

4.3 Seasonal variation of covariances

4.3.1 Standard deviations and spectral decomposition of vari-

ance

Vertical profiles of standard deviations and associated variance spectra are examined

in this section. They are shown in Figures 4.2 and 4.3, respectively, for 6 h forecasts

valid at 1800 UTC. For a given season and model parameter, the curves obtained for

the two independent ensembles are practically identical (not shown). This indicates

that these average seasonal estimates are quite robust, as expected from the large

temporal and spatial sample size. Therefore, all illustrations in this section are shown

for the first ensemble of each season.

As shown in Figure 4.2, standard deviations are larger in summer than in winter. This

is particularly noticeable for specific humidity (Figure 4.2a), which reflects the larger

water content in summer than in winter, induced by the increased air temperature. For

all variables, the increase of variance occurs mostly in the troposphere (below level 27

roughly, which is around 200 hPa (see Figure 4.1)), and for temperature in particular,

it is more pronounced in the boundary layer. This is likely to correspond to the oc-
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Figure 4.2: Vertical profiles of horizontally averaged standard deviations of

ALADIN/France 6 h forecast errors (issued from the 1200 UTC network and valid

at 1800 UTC), estimated by the first ensemble in winter (solid line) and in summer

(dashed line), for (a) specific humidity, (b) temperature and (c) vorticity.

curence of small-scale convective events, which are more frequent in the summer period.

This interpretation is supported by variance spectra (Figure 4.3), which indicate, for

temperature (Figure 4.3b) and vorticity (not shown), that the increase of variance

is larger in the small-scale part of the spectrum (i.e. for wave numbers larger than

10 typically). For specific humidity (Figure 4.3a), the increase of variance is quite

visible for all scales (and in particular for small and intermediate wave numbers). This

corresponds to the increase of water vapour content in summer, which contributes to

an amplitude increase of error structure at all acales.
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Figure 4.3: Horizontal variance spectra of ALADIN/France 6 h forecast errors (issued

from the 1200 UTC network and valid at 1800 UTC) at 500hPa, estimated by the first

ensemble in winter (solid line) and in summer (dashed line), for (a) specific humidity

and (b) temperature.

These significant seasonal variations in a regional model are interesting to contrast with

previous studies in global models. For instance, Derber & Bouttier (1999) made an ex-

tensive comparison between globally averaged covariances of five periods. As discussed

near the end of their section 2, no significant seasonal differences were found, because

the global spatial average does not distinguish between the Northern and Southern

Hemispheres. Conversely, in the case of a LAM such as ALADIN/France, seasonal

changes in the covariances are visible, as expected from seasonal variations affecting

the regional domain.

4.3.2 Horizontal and vertical correlations

Figure 4.4 shows the vertical profiles of horizontal correlation length scales Lz of

background errors (see equation (4.2)). It reflects the classical increase of length

scale with height (e.g. Rabier et al. (1998a), Berre (2000)), which corresponds to the

stronger contribution of large-scale phenomena in altitude. Moreover, tropospheric

length scales tend to be smaller in summer than in winter, in accordance with increased

small-scale variances found in Figure 4.3a. This is particularly marked for temperature

34



(Figures 4.3b and 4.4b) and specific humidity (Figures 4.3a and 4.4a), while this is

somewhat less pronounced for vorticity and divergence (not shown). This means that

horizontal correlation functions tend to be sharper (i.e. less broad) in summer than in

winter.
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Figure 4.4: Vertical profiles of horizontal length scales of 6 h ALADIN/France forecast

errors (issued from the 1200 UTC network and valid at 1800 UTC), estimated by

the first ensemble in winter (solid line) and in summer (dashed line), for (a) specific

humidity and (b) temperature. Length-scale values larger than 120 km (at high levels)

are not shown.

Figure 4.5 show that the situation is different for vertical correlations. Seasonal

changes are particularly pronounced for divergence, with broader negative lobes in

summer than in winter. This is likely to reflect increased vertical couplings in summer

convective situations. Similar changes are found for other variables (not shown).

Vertical cross covariances have been examined too (not shown). They reflect changes

in the vertical profiles of variance to a large extent (see Figure 4.2). Vertical cross

correlations remain relatively similar between the two seasons.

35



 10

 20

 30

 40

 50

 60
-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

M
o
d
e
l 
le

v
e
ls

Vertical correlation

EnW1 - 500hPa - 12UTC network
EnS2 - 500hPa - 12UTC network

Figure 4.5: Vertical autocorrelations functions of ALADIN/France 6 h forecast errors

at 500 hPa (issued at 1200 UTC network, and valid at 1800 UTC), estimated by the

first ensemble in winter (solid line) and in summer (dashed line), for divergence.

4.4 Day-to-day variations of covariances (winter pe-

riod)

After the previous study of seasonal variations, it is natural to examine daily variations

of covariances in order to study the influence of the varying synoptic situation within

the analysed method. Here this is done essentially for the winter season, for which day-

to-day variations of error covariances are particularly pronounced. Values from 500 and

975 hPa are shown for forecasts valid at 1800 UTC. Relevant conclusions are equally

valid for the other assimilation networks, namely 0000, 0600 and 1800 UTC.

4.4.1 Standard deviations and spectral decomposition of vari-

ance

Figure 4.6 shows the day-to-day variation of background error standard deviations, for

each of the two seasons, and for each of the two independent ensembles. It can be

seen that standard deviation values provided by the two independent ensembles are

in close agreement (for a given season). This indicates that these regionally averaged
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time-dependent standard deviations are estimated in a robust way from a 6-member

ensemble. It may also be noticed that the robustness looks larger for a small-scale

variable such as vorticity (Figure 4.6c) than for a larger-scale variable like temperature

(Figure 4.6b). This is related to the associated larger number of spatially independent

error realizations for vorticity over the ALADIN/France domain, which strengthens

the robustness of the spatially averaged variances estimates. Small scale variable is a

sharpe horizontal autocorrelation.
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Figure 4.6: Time evolution of horizontally averaged standard deviations of

ALADIN/France 6 h forecast errors at 500 hPa (issued from the 1200 UTC network

and valid at 1800 UTC), for each of the two independent ensembles and for each of

the two periods, EnW1 and EnW2 in winter, and EnS1 and EnS2 in summer, for (a)

specific humidity, (b) temperature and (c) vorticity.

One of the first obvious features corresponds to larger humidity error values in summer

than in winter (Figure 4.6a), in accordance with what was found in section 4.3

about seasonal variations. This standard deviation increase in summer remains valid
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(a) (b)

Figure 4.7: Two contrasted weather regimes in February/March 2008 over western

Europe, in terms of geopotential field (in meters) at 500 hPa and associated wind field:

(a) winter anticyclonic flow on 16 February at 1200 UTC; (b) winter short upper air

cutoff flow on 6 March at 1200 UTC. The bold line corresponds to the lateral boundaries

of the ALADIN/France domain.

for each day of the two periods. The situation is somewhat different for the other

variables. Figures 4.6b and 4.6c show that the error increase visible in Figure 4.2 for

summer (compared to winter) hides a temporal variability illustrated by Figure 4.6. In

particular, there are days in winter for which error standard deviations are larger than

some error standard deviations in summer. This is noticeable, for instance, on winter

day 23 (6 March 2008), for which vorticity (Figure 4.6c) and divergence (not shown)

standard deviations reach a well-marked maximum. This error peak corresponds to

the presence of an unstable cutoff low over the ALADIN/France domain (Figure 4.7b).

Conversely, the smallest variance values of wind and temperature variables in winter

occur on day 4 (16 February 2008). This coincides well with the stable anticyclonic

situation illustrated in Figure 4.7(a). In other words, the day-to-day variation of error

standard deviations for wind and temperature reflects expected dependencies with

respect to the synoptic situation.

Figure 4.8 shows the vertical profiles of standard deviations for each of the two dates

of interest (shown in Figure 4.7) and for each of the two ensembles. Figure 4.8, which

illustrates an example of day-to-day variation, is interesting to compare with Figure

4.2, which shows the seasonal variation of time-averaged standard deviations. For
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specific humidity (not shown), the seasonal variation appears to be stronger than the

example of day-to-day variation. This reflects the dependence on the basic water

vapour content of the air mass, which is more related to the season than to synoptic

variations within a given season. On the other hand, the daily variation visible in
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Figure 4.8: Vertical profiles of horizontally averaged standard deviations of

ALADIN/France 6 h forecast errors (issued from the 1200 UTC network and valid

at 1800 UTC), estimated by two independent ensembles (EnW1 and EnW2) on 16

February and 6 March 2008, for (a) temperature and (b) vorticity.
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Figure 4.9: Horizontal variance spectra of ALADIN/France 6 h forecast errors at 500

hPa (issued from the 1200 UTC network and valid at 1800 UTC), estimated by two

independent ensembles (EnW1 and EnW2) on 16 February and 6 March 2008, for (a)

temperature and (b) vorticity.
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Figure 4.8 for temperature and wind is stronger than the seasonal variation in Figure

4.2. In particular, we see in Figure 4.8 that in the cyclonic unstable case (compared

to the anticyclonic situation) there is a tropospheric standard daviation increase by a

factor of around 1.5 for temperature and 2.5 for vorticity.

Figure 4.9 shows how these day-to-day variations of error amplitudes change as a func-

tion of horizontal scale. It appears that the variance increase is not uniform spectrally.

It tends to be relatively stronger for an intermediate range of wave numbers, typically

between 5 and 70. This is particularly visible for vorticity (Figure 4.9b) and implies a

change in the shape of the variance spectrum, in which the contribution of intermediate

wave numbers is strengthened. This has some consequences on horizontal correlations,

which is shown in section 4.4.2.

4.4.2 Horizontal and vertical correlations

Figure 4.10 illustrates the vertical profiles of horizontal length scales (eq. 4.2) for each

winter date of Figure 4.7 and for each of the two independent ensembles. In accordance

with changes found in the variance spectra (Figure 4.9), horizontal length scales are

smaller in the cyclonic situation than in the anticyclonic case. This is particularly

visible for tropospheric humidity (Figure 4.10a) and temperature (Figure 4.10b).

Vertical correlations have been examined too, as illustrated for divergence (Figure

4.11a) and vorticity (Figure 4.11b) at 975 hPa. Vertical correlation functions tend

to be broader in the cyclonic situation (than in the anticyclonic case), which reflects

stronger vertical couplings induced by vertical instabilities. Representing such day-to-

day changes of vertical correlations in the data assimilation scheme would thus allow

observed information to be vertically prolongated to a larger extent in the unstable

case.
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Figure 4.10: Vertical profiles of horizontal length scales for 6 h ALADIN/France forecast

errors (issued from the 1200 UTC network and valid at 1800 UTC) estimated by two

independent ensembles (EnW1 and EnW2) on 16 February and 6 March 2008, for (a)

specific humidity and (b) temperature.
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Figure 4.11: Vertical autocorrelation functions of ALADIN/France 6 h forecast errors

at 975 hPa (issued from the 1200 UTC network and valid at 1800 UTC), estimated by

two independent ensembles (EnW1 and EnW2) on 16 February and 6 March 2008, for

(a) divergence, and (b) vorticity.

4.5 Diurnal cycle variations (summer period)

Although seasonal and day-to-day variations appear to be significant, it remains to be

seen to which extent covariances change as a function of hour within a given day. These

potential diurnal variations are studied in this section.
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4.5.1 Standard deviations and spectral decomposition of vari-

ance

Figure 4.12 shows vertical profiles of standard deviations in the summer period for the

four analysis networks: 0000, 0600, 1200 and 1800 UTC. These profiles were plotted

using seasonal averages (as was done in section 4.3) to provide a first synthetic view of

diurnal variations. One of the most pronounced diurnal variations is for temperature in

the planetary boundary layer (PBL), with larger standard deviations for forecasts valid

at 1200 and 1800 UTC (issued from the 0600 and 1200 UTC networks, respectively).

This can be associated to the increased convective activity for these afternoon and

evening hours (e.g. Yang & Slingo (2001)). Diurnal variations are also visible for the

other parameters, with a tendency to have the largest standard deviation values at

1800 UTC.

Associated variance spectra at 975 hPa are shown for temperature (Figure 4.13a)

and vorticity (Figure 4.13b), for forecasts valid at 0600 and 1800 UTC, respectively.

The increase of variance for forecasts valid at 1800 UTC tends to be larger for

intermediate wave numbers, between 5 and 70 typically, although this is somewhat
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Figure 4.12: Vertical profiles of horizontally averaged standard deviations of 6 h

ALADIN/France forecast errors in summer from each of the four daily networks for

(a) temperature and (b) vorticity.
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parameter-dependent.

The full time evolution of standard deviations at 975hPa is shown in Figure 4.14,

for each of the two periods and for each of the two independent ensembles. Diurnal

variations are visible in both seasons, but they have a larger amplitude in summer,

as expected. For such levels in the PBL, diurnal changes have a larger amplitude in

summer than day-to-day variations, whereas it is the reverse in winter. This indicates

that a representation of diurnal variations is particularly important in summer for the

PBL.
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Figure 4.13: Horizontal variance spectra as function of the total horizontal wave num-

ber of 6 h ALADIN/France forecast errors at 975 hPa estimated by the first summer

ensemble at 0000 UTC (solid line, for forecast fields valid at 0600 UTC) and at 1200

UTC (dashed line, for forecast fields valid at 1800 UTC) for the model parameters (a)

temperature and (b) vorticity.

4.5.2 Horizontal and vertical correlations

Figure 4.15 illustrates the full time evolution of horizontal correlation length scales

at 975 hPa. It appears that diurnal variations are significant not only for standard

deviations (as shown by Figure 4.14), but also for correlation length scales. This Figure

4.15 shows also that length-scale variations are parameter-dependent and that they are

influenced by other factors than the diurnal cycle. For instance, length-scale differences
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Figure 4.14: Full time evolution of standard deviation at 975 hPa (including all four

daily networks) for (a) temperature and (b) vorticity.

between the two periods (winter and summer) are larger at the beginning of the two

periods (days 0-15 typically) for specific humidity (Figure 4.15a). In contrast, for diver-

gence (Figure 4.15b), they are larger at the end of the two periods (days 17-30 typically).

Seasonally-averaged vertical profiles of length scales are shown in Figure 4.16 for the

two daily networks in summer. It can be seen that, for humidity and temperature in

particular, the smallest length-scales occur for forecasts valid at 1800 UTC. As shown

by Figure 4.17, vertical correlation functions tend to be slightly broader for forecasts

valid at 1800 UTC This is likely to reflect stronger vertical couplings associated to

convection in particular, although this time-averaged diurnal change is relatively small

in the studied period.
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Figure 4.15: Full time evolution of horizontal length scale at 975 hPa (including all four

daily networks) for (a) specific humidity and (b) divergence.
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Figure 4.16: Vertical profiles of horizontal length scales of ALADIN/France 6 h forecast

errors in summer from two daily networks, 0000 UTC (for forecast fields valid at 0600

UTC) and 1200 UTC (for forecast fields valid at 1800 UTC) for (a) specific humidity

and (b) temperature.
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Figure 4.17: Vertical autocorrelations of ALADIN/France 6 h forecast errors at 320

hPa in summer for specific humidity from two daily networks: 0000 UTC (for forecast

fields valid at 0600 UTC) and 1200 UTC (for forecast fields valid at 1800 UTC).
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4.6 Conclusions

Background error covariances are often estimated by using spatial homogeneity and

temporal stationary assumptions. In the case of the ALADIN/France LAM, the

homogeneity assumption implies that covariances are calculated from a spatial average

over the regional computation domain, which covers western Europe. However, because

of its regional character, this spatial average is likely to be more prone to temporal

variations than spatial averages over the whole globe. Therefore, the purpose of this

study is to revise the temporal stationarity assumption, by diagnosing time variations

of such regionally averaged covariances. This was done with the ALADIN/France

regional ensemble 3D-Var system by examining variations with season (winter versus

summer), day (in connection with the synoptic situation), and hour (related to the

diurnal cycle).

It appears that error variances tend to be larger in summer than in winter, in particular

for specific humidity, vorticity, divergence, and also for temperature in the boundary

layer. Also in summer, correlation functions tend to be sharper horizontally in the

troposphere, whereas they tend to be broader vertically (in comparison with winter).

These three features reflect implications of increased convective activity in summer.

Day-to-day changes are even more pronounced than seasonal variations, if one compares

covariances for a winter anticyclonic situation and for a winter low pressure case. In the

latter case (cutoff situation), error standard deviations are much larger in accordance

with the instability of the situation, and horizontal correlation length-scales are much

reduced for humidity and temperature in particular.

Finally, diurnal variations are also found to be significant, in particular in the boundary

layer and in summer. Error standard deviations tend to be larger for forecasts valid at

1800 UTC. It is also at this hour that horizontal length scales are the smallest ones

and vertical correlation functions are broadest, in accordance with expected effects of

convective activity in the afternoon.

46



Moreover, all these time-dependent covariance estimates appear to be robust with a

6-member ensemble, according to the comparison between estimates of two indepen-

dent ensembles. Therefore, these results support the idea of representing these time

variations by using a real-time ensemble assimilation system.

A first perspective of this work is thus to implement such time-dependent covariance

estimates in the ALADIN/France 3D-Var and to carry out impact studies. Another na-

tural continuation is to extend this study of time variations to heterogeneous covariance

estimates, provided by a wavelet formulation, for instance. It is expected that spatial

filtering properties of these wavelets will help to provide robust space- and time-varying

covariance estimates.
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Abstract

The operational ALADIN/France 3D-Var system is based on static background

error covariances calculated off-line during a few-week past period. In this

study, the impact of an on-line updated specification of background error co-

variances is evaluated in the ALADIN/France system. This evaluation is done

by comparing three experiments, respectively based on (i) covariances calcu-

lated from a monthly average over a past period, (ii) covariances calculated

from a monthly average over the period of study, and (iii) covariances calcu-

lated from a sliding daily average over the period of study. Firstly, it is shown

that updating the monthly average of error covariances has a positive impact

on the short-range forecast quality. This is related to the specification of co-

variances which are more representative of average weather regimes at play

during the period of study. Secondly, additional positive impacts of a daily

update of error covariances are also visible, although they tend to be some-

what localized and modest during this period. These impacts are illustrated

by case studies for humidity during an anticyclonic situation, and for wind

during a cyclonic event. These results support the idea to consider an on-line

updated specification of background error covariances.

5.1 Introduction

Usual data assimilation techniques for Numerical Weather Prediction (NWP) rely on

a combination of observed information and of a background, which corresponds to a

short-range forecast. These two information sources are weighted by their respective

error covariances, and classically (Daley 1991) it can be shown that the role of

background error covariances is to spatially filter and propagate observed information.

In practice, these error covariances are however difficult to estimate, for instance

because the true atmospheric state is never exactly known. Moreover, the size of the

covariance matrix is too large to allow for explicit storage and evolution of covariances.

Due to their important role during the analysis step, research efforts are still ongoing to
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increase the realism of these background error covariance estimates. This includes the

use of error simulation techniques (e.g. Houtekamer et al. (1996)), for instance which

can rely on the addition and evolution of perturbations representative of errors existing

and cycled in the data assimilation system. In addition to these error simulation

techniques, research efforts are devoted to the relaxation of assumptions of temporal

stationarity and horizontal homogeneity which have been often used in background

error covariance modelling (e.g. Fisher (2003)).

The present study is carried out in the framework of the ALADIN/France 3D-Var

regional data assimilation system. The currently operational version of this system

is based on a static and horizontally homogeneous covariance model, and the present

paper focuses on the impact of relaxing the static covariance assumption in this

3D-Var system. This study has been conducted after diagnosing temporal variations

of associated covariances (Monteiro & Berre 2010, reproduced in chapter 4), which

indicates for instance that seasonal and daily covariance changes are significant, and

that they are related to weather situation variations.

The structure of this chapter is as follows. The experimental framework is described in

section 5.2. The impact of seasonal variations is presented in section 5.3, while section

5.4 is about the impact of daily variations. Conclusions are discussed in section 5.5.

5.2 Experimental framework

The operational ALADIN/France system is based on a local version of the regional

ALADIN model (Horányi et al. 1996) and on a 3D-Var data assimilation system

(Fischer et al. 2005), with boundary conditions provided by the Météo-France global

ARPEGE system.

The regional ALADIN model is spectral (based on a bi-Fourier representation of the

fields) and results from a limited area counterpart of the ARPEGE/IFS global system

(Geleyn et al. 1995). The version used in this study is based on a 10 km horizontal
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resolution and 60 hybrid vertical levels over a domain that covers France, the Iberian

Peninsula, part of surrounding countries and of the Mediterranean Sea. The 3D-var

ALADIN/France data assimilation system consists on 6-hourly assimilation cycling (at

the main synoptic hours). It uses surface and upper air conventional observations over

land and over sea (e.g. SYNOP, BUOY, TEMP and PILOT) and also remote sensing

observational data (such as AMSU-A and -B, HIRS, MHS, AMV, SEVIRI, AIRS and

IASI data).

The ALADIN/France background error covariance model is detailed in Berre (2000).

It is based on horizontally homogeneous but scale-dependent covariance estimates.

These covariances are usually calculated off-line from a few-week average of forecast

perturbation covariances, which are obtained by running an ensemble of perturbed as-

similation cycles (e.g. (Houtekamer et al. 1996), (Fisher 2003), (Belo Pereira & Berre

2006)). This ensemble assimilation method is based on the explicit addition of

observation perturbations to real observations in order to simulate the effect of

observation errors. It also relies on implicit background perturbations which are

provided by the previous analysis perturbations, and explicit model perturbations

may also be added to represent model error contributions. The ALADIN/France

ensemble assimilation cycle is coupled to the global ARPEGE ensemble assimilation

system Berre et al. (2007), which allows lateral boundary condition (LBC) errors to

be simulated through the use of perturbed ARPEGE boundary conditions. Apart

from these LBC perturbations, the current version of the ALADIN/France ensemble

assimilation system is nevertheless based on a perfect model assumption (i.e. no explicit

model perturbations are added), and resulting background error variance estimates are

increased by a factor 2 typically, to account for unrepresented model error contributions.

The version of the ALADIN/France 3D-Var which has been operational in 2008 is

based on covariance estimates which have been temporally averaged off-line over a

three-week period in Autumn 2007 (9 September - 4 October 2007) from a 6-member

ensemble. This operational run will be refered to by using the acronym AUT07S
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(where the final letter S refers to the use of static covariances). In order to evaluate

the impact of relaxing this static covariance approach, this operational version will be

compared with two other experimental versions during a one-month winter period (13

February - 14 March 2008).

The first experimental run is based on covariance estimates which are temporally

averaged off-line over the winter period of study (13 February - 14 March 2008) from

a 6-member ensemble. This experiment will be denoted by WIN08S. The comparison

between WIN08S and AUT07S allows for the evaluation of the impact of monthly

variations affecting covariance estimates during the winter 2008 period compared to

the autumn 2007 period.

The second experimental run is based on covariance estimates which are temporally

averaged in a sliding way over each day preceding each analysis network. For instance,

for the analysis calculated on 13 February at 0000 UTC, background error covariances

are estimated from a temporal average over samples of 6h perturbed forecasts produced

from perturbed analyses calculated on 12 February at 0000, 0600, 1200 and 1800 UTC.

In order to compensate the decrease of sample size when using such 4-network averages

(instead of a few-week average), a 12-member ensemble has been used to estimate

these daily covariances (instead of a 6-member ensemble in WIN08S and AUT07S) in

a total of 48 realizations. The experiment using these daily covariances will be denoted

by WIN08D (where the final letter D refers to the daily approach). The comparison

between WIN08D and WIN08S allows the impact of daily changes of covariances to be

evaluated.

The impact of monthly and daily variations of covariances will be assessed in particular

by calculating root-mean squared errors and biases of AUT07S, WIN08S and WIN08D

of forecasts up to 48 h with respect to TEMP and SYNOP observations, and also with

respect to the ECMWF analysis.

52



5.3 Impact of monthly covariance variations

5.3.1 Impact on the forecast quality

As described in the previous section, comparing experiments AUT07S and WIN08S

allows for the evaluation of the forecast quality impact of monthly covariance variations

between the two considered few-week periods used for covariance estimation.

The impact on the 12 hour forecast average quality is illustrated in Figures 5.1 and

5.2. While the impact is fairly neutral above 300 hPa, positive impacts of WIN08S are

noticeable (although modest) in the middle and low troposphere, for both temperature

(Figure 5.1) and wind (Figure 5.2).
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Figure 5.1: Vertical profiles of statistics of the departures from radiosonde observations

of 12 h ALADIN/France temperature forecasts (valid at 1200 UTC, on the period

20080213-20080313), for different monhtly-averaged background error covariances.

Examination of associated temporal variations are shown for 500 hPa temperature

in Figure 5.3 and for 500 hPa wind in Figure 5.4. These Figures indicate that

improvements are relatively frequent over the whole period. This is also supported

for instance by Figure 5.5, which corresponds to the impact on 24 hour forecasts of
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Figure 5.2: Vertical profiles of statistics of the departures from radiosonde observations

of 12 h ALADIN/France wind forecasts (valid at 1200 UTC, on the period 20080213-

20080313), for different monhtly-averaged background error covariances.

relative humidity at 700 hPa.

These results suggest that using covariance estimates averaged during the one-month

period of study has a positive impact on the short-range forecast quality. The impact

is rather neutral beyond the 24 hour forecast range (not shown). This is likely to be

related to the influence of the lateral boundary conditions, which are identical in the

two experiments, and whose impact on the regional forecast increases when the forecast

range is larger.

5.3.2 Changes in analysis fit and in vertical correlations

In order to understand the positive impact of WIN08S on short range forecasts, the

analysis fit to observations has been compared between experiments WIN08S and

AUT07S. A general increase of the analysis fit to observations can be noticed in

WIN08S compared to AUT07S. This is illustrated in Figure 5.6 for the analysis fit to

TEMP observations of temperature at 500 hPa. This suggests that the short range
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Figure 5.3: Time evolution of statistics of the departures from radionsonde observations

of 12 h ALADIN/France 500 hPa temperature forecasts (valid at 1200 UTC, on the pe-

riod 20080213-20080313), for different monthly-averaged background error covariances.

positive impact arises from an increased analysis fit to observations (believing that the

observations are of good quality).

These analysis fit changes between WIN08S and AUT07S arise from differences in

the background error covariances that are specified respectively in these experiments.

While specified standard deviations and horizontal correlations of background errors

are similar in the two experiments (not shown), vertical correlation diagnostics indicate

that the increased analysis fit is likely to be connected with the use of sharper vertical

correlations in WIN08S compared to AUT07S. The increased sharpness of vertical

correlations in WIN08S is illustrated at 500 hPa in Figure 5.7 for specific humidity

(top panel) and for divergence (bottom panel). These vertical correlation differences

reflect the fact that vertical mixing processes were relatively less prevailing during the

winter 2008 period than in the autumn 2007 time interval.

These results support the idea that using background error covariances that are repre-
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Figure 5.4: Time evolution of statistics of the departures from radiosonde observations

of 12 h ALADIN/France 500 hPa wind forecasts (valid at 1200 UTC, on the period

20080213-20080313), for different monthly-averaged background error covariances.

sentative of prevailing weather regimes during the impact study can be beneficial to the

short range forecast quality.

5.4 Impact of daily covariance variations

As described in the section 5.2, comparing experiments WIN08S and WIN08D allows

for the evaluation of the forecast quality impact of daily covariance variations within

the considered February-March 2008 period.

5.4.1 Global impact

Examination of time-averaged forecast scores indicates that the average impact of daily

variations of covariances is nearly neutral for the considered period. This is illustrated

in Figure 5.8 for the time series of surface pressure RMSE of 6 hour forecasts with

respect to SYNOP data. It appears that the RMSE values are very close between
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Figure 5.5: Time evolution of statistics of the departures from radiosonde observations

of 24 h ALADIN/France 700 hPa relative humidity forecasts (valid at 0000 UTC, on

the period 20080214-20080313), for different monthly-averaged background error cova-

riances.

the two experiments, although a tendency to have local positive impacts of WIN08D

(compared to WIN08S) can be noticed, for instance at the beginning of the period,

and also during the March part of the period.

To some extent, the global neutral impact is expected in the sense that daily covarian-

ces in WIN08D are relatively similar on average to those in WIN08S, since they are

calculated from the same February-March period. On the other hand, one could also

expect that the local impact of WIN08D may be daily-varying and somewhat larger

for dates during which daily covariances are relatively different from the one-month

average used in WIN08S. This expectation tends to be supported by the somewhat

larger positive impact of WIN08D visible in Figure 5.8 at the beginning of the period,

which is anticyclonic, and in the March part which is cyclonic.

This kind of local positive impacts will be further illustrated by two case studies.
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Figure 5.6: Time evolution of statistics of the departures from radionsonde observations

of ALADIN/France 500 hPa temperature analysis (valid at 0000 UTC, on the period

20080213-20080313), for different monthly-averaged background error covariances.

5.4.2 Impact on humidity during the anticyclonic period

Figure 5.9 corresponds to the time evolution of horizontally averaged background error

standard deviation estimates of specific humidity near 500 hPa which are specified

in WIN08D. It can be noticed in particular that there is a relatively large contrast

between small values (around 0.15 g/kg) in the first six days of the period (during

the anticyclonic period) and larger values (up to 0.25-0.3 g/kg) during the next days

(during a transition situation to the cyclonic period). The static horizontally averaged

background error standard deviation of WIND08S is also illustrated to contrast with

the daily flutuations of the on-line approach.

This is related to the fact that the first six days correspond to a winter anticyclonic

situation with relatively cold and dry air, while the next days are affected by a zonal

regime with a warmer and moister atmosphere. This dependence of moisture error

standard deviations on the weather situation is also visible for instance in the time
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Figure 5.7: Vertical autocorrelation functions of 6 h ALADIN/France 500 hPa forecast

errors (issued from the 1200 UTC network and valid at 1800 UTC), for :(a) specific

humidity and (b) divergence.

series of 12 hour forecast RMSE of relative humidity at 500 hPa. This is shown in

Figure 5.10, which corresponds to a zoom over the first 10 days over the period, in

order to illustrate changes between the first 5-6 anticyclonic days (with values around

15 %) and the next dates (with values up to 30 %).

It can also be noticed in Figure 5.10 the 12 hour forecast RMSE is smaller for WIN08D

than in WIN08S during the anticyclonic 6 day beginning of the period. This suggests
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Figure 5.8: Time evolution of statistics of the departures from surface observations of 6

h ALADIN/France mean sea level pressure forecasts (valid at 0600 UTC), for different

time averaged background error covariances.
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Figure 5.9: Time evolution of horizontally-averaged standard deviation of background

errors for specific humidity near 500 hPa.

that this may be a good example to illustrate local positive impacts of representing

daily variations of background error standard deviations.
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Figure 5.10: Time evolution of statistics of the departures from radiosonde observa-

tions of 12 h ALADIN/France 500 hPa relative humidity forecast (valid at 1200 UTC),

for different time-averaged background error covariances. Zoom over the anticyclonic

period.

To examine this more in detail, respective analysis increments are plotted in Figure

5.11 (for the 13th of February 2008). While the spatial structure of increments is

relatively similar between the two experiments, it can be seen that the amplitude of

increments is smaller in WIN08D than in WIN08S. This is a direct effect of specifying

smaller daily-varying humidity background error standard deviations in WIN08D than

the monthly-averaged values used in WIN08S, as shown in Figure 5.9. This shows that

specifying daily-varying humidity background error variances that are consistent with

the weather situation and with the associated water content of the air mass can be

beneficial to the forecast quality.

This tends to be supported by Figures 5.12 and 5.13 which correspond to differences

between ALADIN/France 6 hour forecasts and the ECMWF analysis taken here as a

reference. It can be seen in Figure 5.12 that the amplitude of departures is smaller

in WIN08D than in WIN08S, for instance over Denmark, England, and also in the
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Figure 5.11: Spatial distribution of analysis increments of ALADIN/France relative

humidity at 500 hPa, on the 20080213 at 0000 UTC, for the experiments: (a) WIN08S

and (b) WIN08D. Zoom over the north-east part of the domain.

surrounding oceanic areas. This coincides well with areas where the amplitude of

analysis increments has been reduced in WIN08D compared to WIN08S.

These effects are also visible in Figure 5.13, which indicate that the amplitude of de-

partures from the ECMWF analysis is noticeably reduced during the anticyclonic first

five days.
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(b)

Figure 5.12: Spatial distribution of departures from ECMWF analysis of

ALADIN/France 500hPa relative humidity analysis on the 20080213 at 0000 UTC,

for the experiments: (a) WIN08S and (b) WIN08D. Zoom over the north-east part of

the domain.

5.4.3 Impact on wind during the cyclonic period

Figure 5.14 corresponds to the time-averaged RMSE vertical profile of 24 hour forecast

with respect to radiosondes taken as a reference. An average slight positive impact of

WIN08D can be noticed at 850 hPa in particular. Examination of time series indicates

that this kind of average slight positive impact tends to be more pronounced during

the March cyclonic period. This is illustrated in Figure 5.15, which corresponds to 36

hour forecast RMSE for wind at 850 hPa, zoomed over the March cyclonic period. The
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Figure 5.13: Time evolution of statistics of the departures from ECMWF analysis of

ALADIN/France 500 hPa relative humidity analysis (valid at 0000 UTC), for different

time-averaged background error covariances. Zoom over the anticyclonic period.

positive impact of WIN08D is particularly noticeable for the 36 hour forecast valid on

11 March at 1200 UTC, which has been launched from the analysis calculated on 10

March at 0000 UTC. It is interesting to investigate whether this may correspond to

specific daily changes in the background error covariances specified in WIN08D.

To examine this, an example of respective analysis increments of WIN08S and of

WIN08D is plotted in Figure 5.16 for zonal wind at 850 hPa. This Figure 5.16

corresponds to increments produced on 10 March at 0000 UTC, zoomed over the

southern part of France and surrounding areas. It can be seen for instance that

the amplitude of increments is much larger for WIN08D than for WIN08S near the

South-East coast of France. Figure 5.17 shows that this is consistent with larger

specified vorticity background error standard deviations in WIN08D than in WIN08S

for this date, which belongs to the cyclonic part of the period of study. Figure 5.18

indicates that this leads to smaller departures with respect to the ECMWF analysis

(taken as a reference here) for the WIN08D analysis than for the WIN08S analysis.
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Figure 5.14: Vertical profiles of statistics of the departures from radiosonde observations

of 24 h ALADIN/France wind forecasts (valid at 0000 UTC, on the period 20080213-

20080313), for different time-averaged background error covariances.

This is visible for instance in the area corresponding to the dark blue departure

structure that is elongated meridionally near the middle of Figure 18, for instance with

maximum values of 8-10 m/s in WIN08S reduced to 6-8 m/s in WIN08D.

This is a case that illustrates the mechanism through which specifying daily-varying

background error standard deviations in cyclonic situations can lead to daily-varying

analysis increment amplitudes and potentially more realistic analysis estimates.

5.5 Conclusions

In this study, the impact of temporally updating specified background error covariances

has been studied for the ALADIN/France 3D-Var system during a one-month winter

period. This has been carried out by comparing an operational 3D-Var version, which

uses covariances that are estimated off-line from a few-week average over September

2007, with two experimental versions in which updated background error covariance
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Figure 5.15: Time evolution of statistics of the departures from radiosonde observations

of 36 h ALADIN/France 850hPa wind forecasts (valid at 1200 UTC), for different time-

averaged background error covariances. Zoom over the cyclonic period.

estimates are specified.

The first experimental version uses specified background error covariances estimated

from a one-month average corresponding to the period of study. This allows for using

time-averaged covariances that are consistent with average weather regimes prevailing

over the period of study. Results indicate that using such updated covariances has a

positive impact on the short-range forecast quality of temperature, wind and humidity.

This is connected to an increased analysis fit to observations, which arises from

sharper vertical correlations for the updated winter covariances than in the operational

September covariances.

The second experimental version uses specified background error covariances es-

timated from one-day sliding averages preceding each analysis date. Compared

to the first experimental version, this allows also daily covariance variations (in
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Figure 5.16: Spatial distribution of analysis increments of ALADIN/France zonal wind

at 850 hPa, on the 20080310 at 0000 UTC, for the experiments: (a) WIN08S and (b)

WIN08D. Zoom over the central part of the domain, at the south coast of France.

addition to monthly variations) to be taken into account in the 3D-Var system.

Results indicate that, during our period of study, these daily variations have more

modest and localized positive impacts than the monthly variation impact which has

been studied by comparing the operational and first experimental version. Case

studies have been shown to illustrate local positive effects of daily-varying back-

ground error standard deviations for humidity during an anticyclonic situation and for

wind during a cyclonic period. For temperature there were no significant improvements.
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Figure 5.17: Vertical profiles of temporal and spatially averaged standard deviation

of 6 h ALADIN/France vorticity estimated forecast errors (issued from the 1200 UTC

network and valid at 1800 UTC), used on the 20080310 assimilation at 0000 UTC.

Moreover, it may be underlined that the daily-varying experimental version also

has a better forecast quality than the operational version, in a similar way as for

the off-line monthly-updated experimental version compared also to the operational

version. This implies that the on-line daily-varying covariance approach may be

envisaged for operational applications, as a replacement to the current off-line static

approach (corresponding to the calibration over September 2007). This would allow

both monthly and daily variations of background error covariances to be represented.

While this kind of impact studies could be carried out during other periods, there are

also other aspects that could be examined. For instance, the impact of diurnal varia-

tions of covariances could be evaluated by using a larger ensemble than in the current

study. Moreover, while the present study has focused on temporal variations within

the currently operational homogeneous covariance framework, the effect of horizontal
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Figure 5.18: Spatial distribution of departures from ECMWF analysis of

ALADIN/France 850 hPa zonal wind analysis on the 20080310 at 00UTC, for the

experiments: (a) WIN08S and (b) WIN08D. Zoom over the central part of the domain,

at the south coast of France

heterogeneities could also be studied in addition.
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Chapter 6

Conclusions and future outlook

Time variations of regionally averaged background error estimates have been diag-

nosed in a robust way, using an off-line ensemble technique. Their impact on the

ALADIN/France forecasting system was studied, foreseeing a possible operational im-

plementation of an on-line specification of time-dependent background error covariance

estimates. Historically, background error covariances of the ALADIN/France system

are estimated using spatial homogeneity and temporal stationarity assumptions.

However, while the homogeneity assumption implies the calculation of covariances

from a spatial average over the regional computational model domain, this regional

average is expected to be prone to temporal variations.

The first part of our study consisted on the revision of the temporal stationar-

ity assumption, by diagnosing time variations of regionally averaged covariances.

ALADIN/France background errors were estimated by using an ensemble technique

based on perturbations of the data assimilation cycling. In our technique, the

perfect model assumption was used and therefore only observations were perturbed

explicitly (the background was perturbed implicitly). Time variations of covariance

estimates resulted from different time averages of spectral covariances of the simulated

background errors. The diagnosis of time variations of covariance estimates, was done

by examining their variations with season (winter versus summer), day (in connection

with the synoptic situation), and hour (related to the diurnal cycle). Larger error
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variances were found when changing from winter to summer; sharper horizontal

and broader vertical correlation functions were found to be related to the increased

convective activity in summer (when compared to winter conditions). Concerning

day-to-day variation of the covariances, it was seen that during a winter season changes

were done in accordance with the instability of the situation: error standard deviations

were generally much larger and horizontal correlation length scales were much reduced

(for humidity and temperature in particular) when passing from an anticyclonic to

a low-pressure situation. Besides, these day-to-day changes were sometimes more

pronounced than seasonal variations. Finally, it was also found that diurnal variations

were significant for the boundary layer during the summer period: error standard

deviations tend to be larger, horizontal length scales tend to be smaller and vertical

correlation functions tend to be broader for forecasts valid at 18UTC, in accordance

with expected effects of convective activity in the afternoon.

In the second part of our work, two particular specifications of the diagnosed co-

variance estimates have been tested on the ALADIN/France system for a winter

period. Their impact was analysed through the quality assessment of the respective

forecasts in comparison with the actual operational products, and also through the

examination of the relation between the analysis increments and the covariance

changes on a case by case situation. In the first specification, the background error

covariance estimates were obtained from a one-month average, corresponding to the

winter period of study; in the second specification, these estimates were obtained

from a one-day sliding average preceding each analysis date, representing the daily

covariance variations in addition to monthly variations. It was found that seasonally

updated covariances, from an autumnal to a winter period, have a positive impact

on the short-range forecast quality of temperature, wind and humidity (up to 24

h for humidity and up to 18 h for temperature and wind). The diagnosis of the

covariances for the autumnal and winter periods has shown furthermore that this

is connected to an increased analysis fit to observations, which arises from sharper

vertical correlations in winter (when compared to autumnal vertical correlations, as
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expected from the seasonal variation diagnosis done in the first part of our study).

Moreover, it was found that the daily variations have a modest and localized posi-

tive impact when compared with the monthly variation impact. Positive effects of

daily-varying background error standard deviations were found, in particular for humi-

dity during an anticyclonic situation and for wind (up to 36 h) during a cyclonic period.

A first continuation of this work is thus to implement an on-line daily-varying

covariance approach as a replacement of the current off-line static approach. As seen in

the first part of the work, robust daily-varying covariance estimates are obtained from

an ensemble with a small number of members (6, typically), at a reasonable low cost:

there is a significant variability in the statistics structure linked to the meteorological

situation over the model domain. This would allow both monthly and daily variations

of background error covariances to be represented.

In addition to these extensions of the sparse covariance model, the ensemble simulation

technique is also considered to be generalized. This is related in particular to the

representation of model error contributions, as a replacement of the current perfect

model assumption. This could be achieved for instance by adding random draws of

a model error covariances estimate, which can be derived by comparing ensemble

assimilation estimates with innovation-based estimates (e.g.Raynaud et al. (2011)).

Another aspect which would deserve further studies in the future corresponds to the

four-dimensional aspect of the data assimilation problem, for instance within the cur-

rently considered 6 hour window. 4D-Var and ensemble techniques may also be useful in

this area. For instance, Liu et al. (2008) and Buehner et al. (2010) recently suggested

the possibility to use four-dimensional ensemble trajectories within the minimization, as

an alternative to tangent linear and adjoint models. These new applications of ensmeble

and variational approaches will certainly continue to be explored in the future.
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Appendix A

Objective analysis applications at

the Portuguese Meteorological

Service
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At the Portuguese Meteorological Service several methods of objective analysis have

been used for the development of operational applications to support surveillance

activities. A short chronologic characterization of such low-cost applications takes

place in here as an example of valuable implementations of the first methods of

objective analysis. This description only mention activities related to the actual group

of NWP, founded in 1993, although some of these local applications have already been

discontinued.

In 1994, a successive corrections scheme (see for instance Daley (1991)) was imple-

mented, for a limited area which included the east part of Europe, Iberian Peninsula

and the adjacent Atlantic Ocean (Monteiro 1994). The objective analysis built from

this scheme was the support for the surface synoptic diagnosis of the mean sea level

pressure field done each 6-hour for weather surveillance purposes. It was based on

surface conventional data over land and over sea. At running time, the first available

ECMWF short-range forecast, valid at the analysis hour (tipically a 6 h or a 12 h

long forecast), was used as initial estimate of an iterative scheme that lead to the

analysis solution. Its variance was known a priori. The influence of each observation

information on each gridpoint was given by an analytic formula, as a function of the

distance to the gridpoint, after Barnes (1964). This function was then weighted by an

a priori factor that was a function of the forecast error variance and of the observation

instrumental error variance.

Later, in 1997, a limited area upper air univariate optimal interpolation scheme

was also created and validated (Monteiro 1997). The initial motivation for its

implementation was to provide information for diagnosis purposes on the upper air

levels of the troposphere, however it was used only in testing mode. The domain

covered by this scheme included the east and north parts of Europe, Iberian Peninsula

and the adjacent Atlantic Ocean. It provided the analysis for the parameters of

geopotential, temperature, relative humidity and the zonal and meridional wind com-

ponents at standard pressure levels. As background used the 6 h ECMWF forecasts;
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as observational data it used radiosondes over land. The background error estimates

were calculated by the observational method (Hollingsworth & Lönnberg 1986) from

the innovation statistics (observation - background), during a time period of a few

months over the analysis domain, and were modulated using a series of Bessel functions.

In 2001, after the entrance of Portugal to the ALADIN project

(http://www.cnrm.meteo.fr/aladin/), the surface analysis scheme CANARI, re-

cently documented by Taillefer (2002), was installed and validated over the Portuguese

mainland domain used to run the ALADIN model, as described by Oliveira (2001).

This application is based on a multivariate optimal interpolation method which means

that several observational parameters are used to perform the analysis of each model

field. It provides, in particular, the analysis of the parameters of 2 m temperature,

2 m relative humidity, 10 m wind, mean sea level pressure, sea surface temperature

and snow depth. It is assumed that the background error has a Gaussian probability

distribution and that the different error fields follow the geostrofic and hydrostatic

balances. Moreover, the separability of the horizontal and vertical components of

its spatial correlation is assumed. In the implementation done by Oliveira (2001)

surface observations over land and over sea were used. As background, an ARPEGE

analysis was dynamically adapted to the ALADIN/Portugal geometry (12,7 km). The

validation of this application was carried out on an assimilation framework, through

the assessment of the impact that the CANARI analysis had on the ALADIN forecasts

up to 48 h when used as initial conditions for the ALADIN model integrations. The

results did not show improvements on the ALADIN/Portugal quality when compared

with a normal dynamical adaptation initialization directly from an ARPEGE analysis,

besides a slightly improvement on temperature fields at low levels and at 2 m. Further

experiences and studies were then suggested, among then the calibration of background

errors, by tunning a statistics stretching factor. In December 2007, after a second

implementation effort and validation (carried our under a subjective way on a case

studies base), the CANARI application was set up into operational mode for the

analysis of 2 m temperature and 2 m relative humidity, according with Lopes (2008).
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This application is used now just for surface diagnostic purposes, however, it is

expected to have a valuable role near future by providing a surface assimilation once

set up a new 3D-var assimilation system to ALADIN/Portugal.
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