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RESUMO 

O factor de libertação da corticotrofina (corticotrophin releasing factor, CRF) é um 

componente essencial na regulação do stresse. No eixo hipotálamo-hipofisário (hypo-

thalamic-pituitary-adrenal, HPA) é libertado do hipotálamo, activando os receptores de 

subtipo CRF1R e CRF2R, que regulam a libertação de corticotrofina pela hipófise. Esta, 

por sua vez, induz a libertação de glucocorticóides das glândulas supra-renais. Findo o 

período de stresse, os glucocorticóides regulam negativamente a libertação de CRF e 

diminuem a activação do eixo HPA, restabelecendo a homeostasia inicial do sistema. 

Recentemente, para além da sua acção no eixo HPA, a presença dos receptores de 

CRF foi observada em neurónios provenientes de outras áreas cerebrais como o cór-

tex ou o hipocampo. O CRF tem funções neuroprotectoras perante vários tipos de 

insulto, como a excitotoxicidade induzida por glutamato, a agregação da proteína        

β-amilóide ou a indução de stress oxidativo. Curiosamente, a adenosina, um neuromo-

dulador, exerce o mesmo tipo de função neuroprotectora em áreas cerebrais seme-

lhantes, por activação dos seus receptores. Enquanto a activação dos receptores de 

adenosina de subtipo A1 (A1R) induz um decréscimo da excitabilidade neuronal, a acti-

vação dos receptores de subtipo A2A (A2AR), na generalidade, aumenta-a. Estes recep-

tores possuem grande afinidade para a adenosina e estão presentes na maioria das 

áreas cerebrais, embora com diferentes níveis de expressão. Assim, para modular a 

excitabilidade neuronal existem estratégias farmacológicas que consistem quer na 

activação dos A1R quer no bloqueio dos A2AR. No entanto, a última abordagem tem 

sido recentemente mais investigada e é largamente usada na prevenção de morte 

celular tanto em modelos in vitro como in vivo.  

Em situações de isquémia, observa-se tanto um aumento dos níveis de CRF como de 

adenosina no cérebro de rato. Este aumento sugere uma acção relevante destes 

mediadores quer na manutenção da viabilidade neuronal quer na regulação da 

expressão de diversos genes importantes para o desenvolvimento e diferenciação 

neuronal. Por outro lado, sugere uma possível interacção entre os receptores do CRF 

e da adenosina. Esta hipótese tornou-se ainda mais provável após a observação, no 

nosso laboratório, que a administração oral de antagonistas dos receptores A2A reverte 

os efeitos do stresse no hipocampo, induzidos por separação maternal em ratos. Esta 

reversão pode ser consequência de regulação dos constituintes do eixo HPA, como os 

glucocorticóides ou o CRF. Adicionalmente, as vias de sinalização intracelular activa-

das pela acção do CRF (através dos receptores CRF1R e CRF2R) e da adenosina 
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(através dos A2AR) são semelhantes. Envolvem activação de proteínas Gs com conse-

quente aumento de actividade de cinases de proteínas, como a cinase A (PKA), a 

cinase C (PKC) e a mitogen-activated protein kinase (MAPK). 

O objectivo deste trabalho foi estudar a acção do CRF na viabilidade celular em condi-

ções de excitoxicidade induzida por glutamato e avaliar a possível interacção com os 

receptores de adenosina do subtipo A2A. 

Foram usadas culturas primárias de neurónios de córtex de embriões de rato com 18 

dias de gestação. Ao oitavo dia, as culturas foram tratadas durante 24 horas com glu-

tamato, nas concentrações de 20 a 1000 µM, em condições de bloqueio ou activação 

dos receptores A2A e do CRF, através da aplicação de agonistas e antagonistas dos 

respectivos receptores. O glutamato é um aminoácido excitatório e um dos responsá-

veis pela excitotoxicidade induzida por eventos isquémicos no sistema nervoso central. 

Ao actuar nos receptores ionotropicos de glutamato induz a entrada de cálcio e sódio 

extracelulares assim como a libertação de cálcio do reticulo endoplasmático. O aumen-

to de cálcio e sódio intracelulares, pode levar à morte celular quer por apoptose quer 

por necrose. A técnica de marcação simultânea com as sondas nucleares iodeto de 

propidio (PI) e Syto-13 foi usada com o objectivo de caracterizar a viabilidade celular 

nas diferentes condições. 

Inicialmente, foi investigada a concentração de glutamato (de 20 a 1000 µM) a ser apli-

cada às células em cultura com o objectivo de reproduzir as consequências de um 

insulto neuronal in vivo. Simultaneamente aos ensaios de viabilidade celular, foram 

determinados os níveis de um mediador de morte por apoptose, a caspase-3, pela téc-

nica de Western blotting. Este insulto provocou um decréscimo na viabilidade celular 

que é dependente da concentração de glutamato usada, sendo superior para concen-

trações mais altas. Por seu lado, a activação da via apoptótica ocorre preferencialmen-

te para baixas concentrações de glutamato (até 50 µM). Para o desenvolvimento do 

restante trabalho a concentração seleccionada foi a de 100 µM, que causou uma dimi-

nuição para 76,4±1,63% (n=4) da viabilidade celular, visto originar tanto morte por 

apoptose como por necrose neste modelo. 

A função neuroprotectora do CRF na gama de concentrações de glutamato anterior-

mente descrita foi observada através da aplicação de urocortina (10 pM), um composto 

da família do CRF com semelhante afinidade para os dois receptores de CRF. Embora 

a urocortina aparente ter funções protectoras em todas as concentrações de glutamato 

usadas, o aumento mais significativo na viabilidade neuronal foi observado na presen-
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ça de glutamato 100 µM (de 76,4±1,63% para 90,5±2,23%, P<0,001, n=3). Esta varia-

ção na sobrevivência neuronal, perante um insulto neurotóxico, não apresenta o mes-

mo padrão nos níveis de caspase-3. Para baixas concentrações de glutamato a urocor-

tina aumenta os níveis de caspase-3, enquanto para concentrações de glutamato ele-

vadas, os níveis deste marcador apoptótico parecem diminuir. Esta proteína, caracte-

rística da indução de morte celular por apoptose exclui o dano causado por necrose. 

Durante esta primeira etapa do trabalho conclui-se que a urocortina exerce funções 

protectoras sobretudo na prevenção do processo necrótico induzido pelo glutamato. 

Numa etapa seguinte foram diferenciados os efeitos dos dois tipos de receptores do 

CRF na neuroprotecção. Assim, usando dois antagonistas selectivos, antalarmina 

(10nM) para CRF1R e anti-Sauvagina-30 (10nM) para CRF2R, foi observado que o blo-

queio de cada um dos receptores de forma independente leva à perda da função da 

urocortina (73,9±3,53% bloqueando os CRF1R, P<0,01 n=4, e 76,0±2,80% ao bloquear 

os CRF2R, P<0,01, n=4). Conclui-se que a activação simultânea dos dois receptores 

pela urocortina é necessária para que ela exerça o seu efeito neuroprotector perante 

um insulto de glutamato (100 µM). Durante este processo de bloqueio dos receptores 

de CRF, observou-se uma interacção directa entre os dois fármacos usados, antalar-

mina e anti-Sauvagina-30, que os impede de bloquear eficientemente os receptores de 

CRF, quando usados em simultâneo. Esta interacção foi avaliada através de técnicas 

de fluorescência que permitem observar a diminuição do sinal produzido pelo aminoá-

cido fenilalanina, presente na anti-Sauvagina-30, com a adição de concentrações 

crescentes de antalarmina. Assim, quando introduzidos simultaneamente no meio 

celular, são ineficazes a bloquear o efeito da urocortina. 

Após a observação da função da urocortina na protecção da morte celular induzida por 

glutamato, estudou-se a modulação exercida pelos A2AR nesse efeito. Confirmou-se 

que o bloqueio dos A2AR, através do antagonista SCH 58261 (50 nM) é neuroprotector. 

Por outro lado, a activação deste subtipo de receptores está descrita como nociva para 

este tipo de células. Contudo, a activação directa destes receptores pelo agonista 

selectivo, CGS 21680 (30nM), não alterou a viabilidade celular, provavelmente devido 

à elevada concentração de adenosina no meio extracelular.  

A modulação simultânea dos receptores A2A e de CRF revelou a existência de uma 

interacção entre os mesmos. A neuroprotecção conferida pelo bloqueio dos A2AR é 

dependente da activação dos receptores de CRF do tipo 2 mas independente dos do 

tipo 1, facto que foi observado pelo bloqueio selectivo dos receptores de CRF em con-

dições de antagonismo dos A2AR. A protecção concedida pelo antagonista SCH 58261 
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é suprimida quando os CRF2R se encontram bloqueados (de 88,3±1,53% para 

74,8±4,91%, P<0,01, n=5) revelando-se independente do bloqueio dos CRF1R 

(87,7±3,48%, n=4). 

Simultaneamente, em células PC12 diferenciadas com Nerve Growth Factor (NGF), 

observou-se a modulação dos níveis dos A2AR pelos seus ligandos. A activação dos 

A2AR diminui os seus níveis (48,9±5,5%, P<0,001, n=4), enquanto o bloqueio os 

aumenta (144±15,2%, P<0,01, n=5). Os ligandos dos receptores de CRF não alteram 

os níveis dos A2AR em condições basais. Porém, quando aplicados em simultâneo com 

os ligandos dos A2AR o mesmo não se observa. Concretamente, ocorre uma redução 

nos níveis dos A2AR na presença do seu antagonista quando os receptores CRF1R se 

encontram bloqueados e os CRF2R activados (39,4±14,4% do controlo, P<0,01, n=4). 

Em suma, este trabalho permitiu observar a função neuroprotectora dos receptores do 

CRF em neurónios em cultura perante um insulto de glutamato, quer pela acção direc-

ta nos seus receptores quer pela modulação dos receptores de adenosina do subtipo 

A2A. O modelo usado permite diferenciar as alterações na viabilidade das células em 

cultura por duas vias de promoção da morte celular, apoptose e necrose, respectiva-

mente para baixas e elevadas concentrações de glutamato. A neuroprotecção conferi-

da pelo CRF ocorre sobretudo na prevenção da morte celular por necrose e é depen-

dente da activação simultânea dos dois tipos de receptores, CRF1R e CRF2R. Para 

além dos efeitos directos através dos seus receptores, o CRF exerce uma modulação 

dos A2AR. Estes receptores apresentam expressão diminuída em condições de activa-

ção dos CRF2R e bloqueio dos A2AR. Este fenómeno de regulação dos A2AR por parte 

dos CRF2R constitui uma alternativa à protecção por CRF atrás descrita. Novas abor-

dagens terapêuticas, que incluam a modulação destes dois tipos de receptores podem 

ser futuramente testadas com o objectivo de diminuir a morte neuronal provocada por 

insultos excitotóxicos em eventos isquémicos. 
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ABSTRACT 

In hypoxia, glutamate excitotoxicity induces neuronal death. Simultaneously, adenosine 

is released and is accompanied by an increase of the stress mediator, corticotrophin-

releasing factor (CRF). In vivo modulation of adenosine A2A receptors (A2AR) reverses 

hippocampal stress-induced effects. This raises the question whether A2AR regulate 

CRF actions. We now evaluated the interaction between the blockade of A2AR and the 

activation of CRF receptors (CRFR), upon glutamate insult. 

Primary rat cortical neuronal cultures (9 days in vitro) were challenged with glutamate 

(20-1000µM, 24 hours). The effects of the CRFR and A2AR ligands on cell viability were 

measured using propidium iodide and Syto-13 fluorescence staining. Pro-caspase-3 

fragmentation was used as an apoptotic marker. A2AR levels were quantified in NGF-

differentiated PC12 cells by Western blotting. 

Glutamate decreased cell viability in a concentration-dependent manner. At 100 µM we 

observed a reduction of viability to 76.4±1.63% of control (P<0.001, n=6). Urocortin 

(10pM), a CRFR agonist, increased cell survival to 90.5±2.23% (P<0.001 compared to 

glutamate, n=3). This effect was abolished by blocking either CRF1R or CRF2R with 

antalarmin (10nM) or anti-Sauvagine-30 (10nM), respectively. Activation of A2AR did not 

affect cell death induced by glutamate. However, A2AR blockade with a selective an-

tagonist SCH 58261 (50nM) improved cell viability against the glutamate insult. This 

effect was dependent on CRF2R but not on CRF1R activation. The A2AR levels meas-

ured in PC12 cells were modulated by CRF2R. The A2AR upregulation induced by SCH 

58261 (144±15.2%, P<0.01 n=5; 50 nM) was abolished by CRF2R (P<0.01, n=4) but 

not by CRF1R activation. 

Overall these data show a protective role of CRF in cortical neurons, against glutamate-

induced death, either directly by CRFR activation or by modulating A2AR actions. The 

neuroprotection achieved by A2AR blockade requires CRF2R activation, which might 

result from CRF2R modulation of A2AR levels. The interaction between these receptors 

may point toward novel pharmacological approaches based on common molecular 

pathways. 

Keywords: Adenosine; A2A receptors; Corticotrophin Releasing Factor (CRF); CRF1R; 

CRF2R; Neuroprotection. 
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ABBREVIATION LIST 

Aβ amiloid-β peptide  

A1R adenosine A1 receptor subtype 

A2AR adenosine A2A receptor subtype 

a-Sau anti-Sauvagine-30 

ACTH adrenocorticotrophin hormone 

AMPA  L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate 

Ant antalarmin 

BDNF brain-derived neurotrophic factor 

cAMP cyclic adenosine monophosphate 

CeA central nucleus of the amygdala 

CNS central nervous system 

CREB cAMP response element-binding 

CRF corticotrophin releasing factor (formerly known by CRH for corticotrophin 

releasing hormone) 

CRF1R CRF receptor of subtype 1 

CRF2R CRF receptor of subtype 2 

CRFR CRF receptors 

CTR control 

DAPI  4',6-diamidino-2-phenylindole 

DIV  days in vitro 

DMEM  Dulbecco’s modified Eagle's medium 

DMSO  dimethyl sulfoxide 

FBS  fetal bovine serum 

GABA  γ-aminobutyric acid 

GFAP  glial fibrillary acidic protein 

Glu  L-glutamic acid 

GSK3β  glycogen synthase kinase 3β  

HBSS  Hanks’ balanced salt solution 

HPA axis hypothalamic-pituitary-adrenal axis 

IP3 inositol trisphosphate 

LTD long-term depression 
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LTP long-term potentiation 

MAP2  microtubule-associated protein 2 

MAPK  mitogen-activated protein kinase 

NF-κB  nuclear factor-κB 

NGF  nerve growth factor 

NMDA  N-methyl-D-aspartic acid 

PFA  paraformaldahyde 

PKA  cAMP-dependent protein kinase A  

PKC  protein kinase C 

PI  propidium iodide 

Urc  urocortin 

Urc2  urocortin 2 

Urc3  urocortin 3 

TrkB  tropomiosine related kinase B receptor 
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1. BACKGROUND 

Adenosine is a modulator in the brain that binds to several G-protein coupled receptors 

(reviewed by Sebastião and Ribeiro, 2000). Among these, the adenosine receptors of 

A2A subtype (A2AR) are captivating targets to pharmacologic modulation. It has been 

shown that their blockade is useful in stroke and stress related episodes (Cunha et al., 

2006). The mechanism by which the blockade of A2AR is able to reverse stress effects 

remains unknown. They could, presumably, interfere either in the regulation of the ac-

tion of the glucocorticoids or alternatively, in the effects of the corticotrophin releasing 

factor (CRF) that are regulators of the Hypothalamic-Pituitary-Adrenal (HPA) axis.  

CRF was described in extrahypothalamic sites (Swanson et al., 1983), where it was 

shown to have a neuroprotective role against several brain insults, as excitatory amino 

acids, hypoxia or amyloid-β25-35 peptide (Aβ) (Fox et al., 1993; Chalmers et al., 1995; 

Pedersen et al., 2001). Curiously, A2AR antagonists have the same properties in neu-

ronal cells (reviewed by Chen et al., 2007). We therefore hypothesised that the estab-

lished neuroprotective effect achieved by blocking A2A receptors upon stress conditions 

could be linked to an action on CRF mediated effects. 

1.1. FUNCTION OF CORTICOTROPHIN RELEASING FACTOR  

Corticotrophin Releasing Factor (CRF, formerly abbreviated CRH for Corticotrophin 

Releasing Hormone), a 41 amino acid peptide, is an important signalling molecule re-

leased from paraventricular nucleus of hypothalamus (Vale et al., 1981). Together with 

adrenocorticotrophin hormone (ACTH) and glucocorticoids has an important role in 

HPA axis regulation upon stressful events (Vale et al., 1981). Interestingly, CRF is also 

implicated in modulation of anxiety, depression, food intake control, learning and mem-

ory (reviewed by Sarnyai et al., 2001), which can be due to its expression in extrahypo-

thalamic sites, as presented in Figure 1.1.A, like amygdala (central nucleus) and hippo-

campus (GABAergic interneurons, Chalmers et al., 1995). Its basal physiological con-

centration is around 38 pg/mL (approximately 8 pM) in adult human cerebrospinal fluid 

(Kling et al., 1991).  

CRF binds to two families of G-protein-coupled receptors, subtype 1 and 2 (CRF1R and 

CRF2R), which have more than 70% of amino acid sequence similarity and are present 

both in neuronal and glial cells (Kapcala and Dicke, 1992; Lovenberg et al., 1995; 

Hauger et al., 2003). CRF binding activates several excitatory and inhibitory G-proteins 

with an order of potency: Gs≥Go>Gq/11>Gi>Gz (Hillhouse and Grammatopoulos, 2006) 
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which results in an increase or decrease, respectively, of intracellular cyclic-AMP 

(cAMP) and inositol trisphosphate (IP3) levels (Grammatopoulos et al., 2001). These 

molecules have different downstream effects as the increase of activation of cAMP-

dependent protein kinase A (PKA), protein kinase C (PKC) or mitogen-activated protein 

kinase (MAPK, Rossant et al., 1999; Elliott-Hunt et al., 2002; Blank et al., 2003). The 

activation of these pathways increases the levels of glycogen synthase kinase 3β 

(GSK3β) and cAMP response element-binding protein (CREB), as well as its phos-

phorylation (Bayatti et al., 2003) while nuclear factor-κB (NF-κB) is repressed 

(Lezoualc'h et al., 2000). As a consequence, the pattern of gene expression is altered 

(Rossant et al., 1999) which includes the upregulation of the transcription of CRF and 

of brain-derived neurotrophic factor (BDNF) genes (Spengler et al., 1992; West et al., 

2001; Bayatti et al., 2005). 

CRF receptors (CRFR) are widely distributed in the central nervous system (CNS, De 

Souza et al., 1985). CRF1R has an abundant yet selective expression in rat brain as 

described in Figure 1.1.B (Chen et al., 2000). It expression is broadly complementary to 

the distribution of CRF binding sites, with higher expression in cortex, cerebellum, 

amygdala, hippocampus, and olfactory bulb (Potter et al., 1994). CRF2R receptor family 

is composed by three splicing variants, CRF2(a)R, CRF2(b)R and CRF2(c)R (reviewed in 

Dautzenberg et al., 2001) that are expressed in more restricted brain areas compared 

to CRF1R. CRF2R is confined to subcortical structures, with higher levels in the lateral 

septal nucleus and the hypothalamus but also in lower levels in olfactory bulb, amyg-

dala and hippocampus (Chalmers et al., 1995; Van Pett et al., 2000). 

The different CRF receptors have a complementary action in the regulation of HPA axis 

activity. While CRF1R triggers its activation by increasing ACTH release from pituitary, 

CRF2R is required to its gradual attenuation by restablishing the corticosterone levels 

after a stressful situation (reviewed by Reul and Holsboer, 2002). CRF1R is located 

postsynapticaly in dendritic spines, close to excitatory synapses (Chen et al., 2004b; 

Chen et al., 2010) whereas CRF2R is located both in pre- and postsynaptic terminals of 

the central nucleus of the amygdala (CeA) (Liu et al., 2004). In CeA, activation of 

CRF1R depresses while activation of CRF2R facilitate glutamatergic transmission (Liu 

et al., 2004). These opposed actions and localizations suggest different roles of these 

receptors in CRF signalling in the CNS (Chalmers et al., 1995). 
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Figure 1.1 – A) Distribution of mRNA encoding for the CRF and related peptides in rat brain. 

Urocortin 1 (Urc), Urocortin 2 (Urc2) and Urocortin 3 (Urc3) are recently discovered peptides 

that bind to CRF receptors with different selectivity. B) Distribution of mRNA encoding for the 

CRF receptors in rat brain (CRF1R in red and CRF2R in blue). 7, facial nucleus; 12, hypoglossal 

nucleus; Amb, ambiguus nucleus; AON, anterior olfactory nucleus; AP, area postrema; Apit, 

anterior pituitary; ARC, arcuate nucleus; Basal G, basal ganglia; BLA, basolateral amygdala; 

BNST, bed nucleus of the stria terminalis; CA1–3, fields CA1–3 of Ammon's horn; CC, corpus 

callosum; CeA, central nucleus of the amygdala; Cereb, cerebellum; CingCx, cingulate cortex; 

CoA, cortical nucleus of the amygdala; DBB, diagonal band of Broca; Deep N, deep nuclei; DG, 

dentate gyrus; FrCx, frontal cortex; IC, inferior colliculi; IO, inferior olive; IPit, intermediate pitui-

tary; LC, locus coeruleus; LDTg, laterodorsal tegmental nucleus; LS, lateral septal nucleus; 

LSO, lateral superior olive; MeA, medial nucleus of the amygdala; MePO, median preoptic area; 

MS, medial septum; NTS, nucleus tractus solitarii; OB, olfactory bulb; OccCx, occipital cortex; 

PAG, periaquaductal gray; ParCx, parietal cortex; PFA, perifornical area; PG, pontine gray, PPit, 

posterior pituitary; PPTg, pedunculopontine tegmental nucleus; PVN, paraventricular nucleus of 

hypothalamus; R, red nucleus; RN, raphe nuclei; SC, superior colliculi; SN, substantia nigra; 

SON, supraoptic nucleus; SP5n, spinal trigeminus nucleus; SPO, superior paraolivary nucleus; 

Thal, thalamus; VMH, ventromedial nucleus of hypothalamus. Adapted from Reul et al. (2002). 

1.1.1. EXTRAHYPOTHALAMIC ROLE OF CORTICOTROPHIN RELEASING FACTOR 

The hippocampus is a brain area crucial for learning and memory and particularly sus-

ceptible to stress effects (Foy et al., 1987). In hippocampus, CRF has modulatory ac-

tions, particularly excitatory. CRF increases the frequency of spontaneous discharges 

of hippocampal neurons (Aldenhoff et al., 1983). It also promotes a long-lasting en-

hancement in synaptic efficacy given by an increase of amplitude and slope of popula-

A) 

B) 

CRF1 receptor 

CRF2 receptor 

CRF 
Urc 
Urc2 
Urc3 
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tion excitatory postsynaptic potentials (Wang et al., 1998). CRF is also involved in neu-

ronal plasticity both in long-term potentiation (LTP) and long term depression (LTD) 

(Wang et al., 1998; Miyata et al., 1999). However, the CRF receptor subtype involved in 

this hippocampal plasticity is still unknown. 

These synaptic actions reveal both an immediate as well as a delayed gene dependent 

effect of CRF in the brain. 

CRF is released during an hypoxic or ischemic event and acts as a neuroprotective 

factor at nanomolar or even picomolar concentrations, in hippocampal slice or using 

hippocampal or cortical primary cultures, respectively (Fox et al., 1993; Pedersen et al., 

2001). In primary culture neuronal cells, death induced by neurotoxic insults, as FeSO4, 

4-hydroxynonenal (HNE), amyloid-β25-35 peptide (Aβ) or glutamate, can be almost com-

pletely reverted with exogenous CRF application (Pedersen et al., 2001; Elliott-Hunt et 

al., 2002). This effect is consistent in several brain areas (cerebral cortex, hippocampus 

and cerebellum, Bayatti et al., 2003). CRF also provides moderate protection against 

an hypoxia insult in a brain slices preparation (Fox et al., 1993). It is speculated that 

this neuroprotection is due to an increased expression of BDNF, or other neurotrophins, 

triggered by CRFR activation (Bayatti et al., 2005; Hauger et al., 2009). CRF neuropro-

tective actions can still be observed during or a few hours after a glutamate insult 

(Elliott-Hunt et al., 2002), which could have therapeutic implications in patients with 

cerebral ischemia. 

1.2. ADENOSINE INFLUENCE ON NEUROPROTECTION: MODULATION BY ADENOSINE RECEP-

TORS 

Adenosine receptors are another pharmacological target to achieve neuroprotection in 

the brain. Adenosine is present in all cells as an important molecule in cellular metabo-

lism (Levene and Tipson, 1931). However, the roles of adenosine are beyond it, acting 

in brain cells as a neuromodulator, either directly by modulating postsynaptic re-

sponses or by modulating the response of other receptors (Sebastião and Ribeiro, 

2009). 

The biological role of adenosine is carried by widespread and high affinity receptors, 

A1R and A2AR, and low affinity receptors, A2BR and A3R (Fredholm et al., 2001). These 

are G-protein coupled receptors that decrease or increase intracellular cAMP levels, 

respectively if adenosine is bound to either to A1R or A2AR. The major G-proteins in-

volved in this signal transduction are the inhibitory Gi and Go and the excitatory Gs and 

Golf (Linden, 2001). Intracellular signalling is mediated by PKA, PKC and MAPK path-
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ways with consequent activation of CREB (Cunha and Ribeiro, 2000). Different types of 

K+, Na+ and Ca2+ channels are also regulated by adenosine receptors (for review see 

Ribeiro et al., 2003b). 

The neuronal modulation by adenosine depends on a balance between A1R and A2AR 

activation. Since extracellular adenosine is enough to tonically activate both receptors, 

their selective activation is directly related to their levels in the different brain areas. 

A1R that are pre-, post- and non-synaptic (Schubert et al., 1994) have a widespread 

distribution, with higher levels on hippocampus, cerebral cortex and cerebellum 

(Reppert et al., 1991). In the hippocampus, A1R act either pre-synaptically by inhibiting 

glutamate release from nerve terminals (Dunwiddie and Haas, 1985) and post-

synaptically through NMDA receptors inhibition (de Mendonca et al., 1995; Rebola et 

al., 2003). 

In an opposed pattern, as showed in Figure 1.2, A2AR are less expressed in those ar-

eas but with abundant distribution in striatum and olfactory blub (Jarvis and Williams, 

1989; Ribeiro et al., 2003b). A2AR are located both pre- and post-synaptically within 

these brain areas but also in cortex and hippocampus (Li and Henry, 1998; Hettinger et 

al., 2001). 

 

Figure 1.2 - Distribution of adenosine receptors in the main regions of the rat central nervous 

system. Higher levels of expression are indicated by bigger font sizes (from Ribeiro et al., 

2003b). 

Adenosine is continuously formed in intracellular and extracellular medium. When pro-

duced intracellularly, adenosine is exported by specific transporters, reaching nanomo-

lar values in normal conditions (40 to 110 nM, Ballarin et al., 1991). Besides this con-

tinuous release, extracellular adenosine levels are increased by specific neurotransmit-

ters action (Carswell et al., 1997; Delaney and Geiger, 1998). As an example, adeno-
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sine nucleotides are coreleased with glutamate to extracellular medium (Schousboe et 

al., 1989) and consequently hydrolysed to adenosine by extracellular nucleotidases 

(reviewed by Zimmermann, 1992). During excitotoxic events, as ischaemia, excitatory 

amino acids are over released and extracellular adenosine levels rises more than 20 

fold (Andine et al., 1990). The extracellular concentration of adenosine also affects its 

modulatory function. In cortex or hippocampus, if adenosine reaches elevated levels, 

like in ischemic insult, it would desensitize the inhibitory A1R while the excitatory A2AR 

remain active (Fernandez et al., 1996; Fredholm, 1997), leading to an exacerbated cell 

death. Additionally, in in vitro experiments, glutamate insult to cultured cortical neurons 

increases both A1R and A2AR levels (Castillo et al., 2010), leading to a new different 

ratio between these two receptors that was already shown to alter receptor signalling 

pathways (Lopes et al., 1999a, 1999b).  

Pharmacologic modulation of adenosine receptors is being pointed as neuroprotection 

in stroke, several degenerative diseases, epilepsy and multiple sclerosis (reviewed by  

Ribeiro et al., 2003a). A notable neuroprotection was acquired by A1R activation 

through a reduction of neuronal excitability but it was dismissed by unwanted peripheral 

effects including sedation, bradycardia and hypotension (reviewed by Fredholm et al., 

2005). In absence of A1R pharmacological modulation, A2AR antagonists are used to 

control the disproportionate release of excitatory amino acids, which is involved in neu-

ronal toxicity (reviewed by Chen et al., 2007). This neuroprotective effect of A1R activa-

tion or A2AR blockade was observed both in vitro and in vivo (Gao and Phillis, 1994; 

Popoli et al., 2002; Dall'Igna et al., 2003; Castillo et al., 2010). 
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2. AIM 

Glutamate excitotoxicity is responsible for neuronal death in hypoxia. The release of 

adenosine that occurs as a consequence of hypoxic events is accompanied by an in-

crease in the levels of the stress regulator, corticotrophin releasing factor (CRF) in the 

brain. In addition, the in vivo modulation of adenosine receptor of A2A subtype (A2AR) is 

responsible for the reversion of stress-induced effects in the hippocampus (Batalha et 

al., 2010). This raises the question whether A2AR regulate the main stress mediators, 

either CRF or glucocorticoids. We now intended to disclose a possible pharmacological 

synergy between the neuroprotective effects of A2AR blockade and the activation of 

CRF receptors (CRFR), under stress conditions as glutamate insult. 

To achieve that purpose, four major tasks were designed: 

1st – Optimize an in vitro glutamate insult model using primary neuronal cultures 

from rat brain cortex. 

2nd - Evaluate the effect of the CRF receptors activation in glutamate-induced cell 

death. Discriminate the CRF receptor subtype involved by selectively blocking the 

CRF1R or the CRF2R.  

3rd - Disclose the functional interaction between A2A and CRF receptors in the pre-

viously established model, by pharmacologic modulation of these receptors. 

4th – Evaluate the ability of CRF receptor activation in modulating the A2AR levels, 

using NGF-differentiated PC12 cells. 
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3. METHODS 

3.1. PRIMARY RAT CORTICAL NEURONAL CULTURES 

Cortical neurons were cultured from 18 to 19 days Sprague Dawley rat embryos     

(E18-E19, adapted from Brewer, 1997; Castro et al., 2004). The pregnant rat was anes-

thetized with Halothane (Sigma, Spain) and decapitated. The embryos were collected 

in HBSS (Hanks’ Balanced Salt Solution, Gibco, UK) medium and rapidly decapitated. 

Meninges and white mater were removed and cortices were incubated 15 minutes in 

HBSS (now with Calcium 1mM and Magnesium 1mM, Gibco/Invitrogen, UK) and 

0.025% trypsine. Cells were centrifuged 3 times and washed with HBSS (with Calcium 

1mM and Magnesium 1mM, supplemented with 10% FBS, Gibco) and resuspended in 

Neurobasal Medium (Gibco/Invitrogen, UK). After counted, cells were plated on      

poly-L-lysine-coated 24-well or 6-well plates at densities of 8x104 cells/coverslip (cell 

viability and immunocytochemistry assays) or 1.2x106 cells/well (Western blotting). 

Neurons were grown for 8-9 days at 37°C in a 5% CO2 humidified atmosphere in 

Neurobasal medium with 2% B-27 supplement (Gibco/Invitrogen, UK), glutamate        

25 µM (Sigma, Spain), glutamine 0.5 mM (Gibco/Invitrogen, UK), and 2 U/mL 

Pen/Strep (Sigma, Spain). Medium was totally replaced by day 4 (without glutamate) 

and 60 minutes before drug treatment (without glutamate and B-27 supplement). 

3.2. PC12 CELLS 

PC12 cells, first described by Greene and Tischler (1976), are derived from a sponta-

neous rat pheochromocytoma. These cells were purchased from Sigma (Spain) and 

used to observe variations in protein levels by Western blotting technique. To minimize 

the risk of mutations, passages between 10 and 20 were used in all procedures. 

Cells were grown at 37°C in a 5% CO2 humidified atmosphere in DMEM (Dulbecco’s 

modified Eagle's medium, Invitrogen 41966-029) supplemented with essential amino-

acids (Sigma M7145, UK), 2 U/mL Pen/Strep (Sigma, Spain), glutamine 0.5mM 

(Gibco/Invitrogen, UK) and 10% of Fetal Bovine Serum (FBS). Cells were splitted each 

14 days and cell medium changed weekly. A new set of cells was prepared by lifting 

the cells by trypsine catalysis (0.025% for 5 minutes at 37ºC). Cells were counted and 

inserted in 6-well plates (150 000 cells/well, in 2mL of DMEM with 10% FBS). Cell me-

dium was changed in day 4 and 60 minutes prior to cell treatment. 
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3.2.1. PC12 DIFFERENTIATION WITH NGF  

PC12 cells can differentiate in a more neuronal phenotype upon treatment with nerve 

growth factor (NGF) 50 ng/mL for 7 days (Greene and Tischler, 1976). Cells were 

plated at 100 000 cells/mL confluency in previously described medium supplemented 

with 50ng/mL of NGF 7S for 7 days. After that period, visual detection of branching was 

confirmed. 

3.3. GLUTAMATE INSULT 

In primary cultured neuronal cells with 9 days in vitro, L-glutamic acid (or glutamate) 

was used as neurotoxic insult in 20 to 1000 µM range for 24 hours (Tamura et al., 

1993). Other neurotoxic insults like Kainate 100 µM, Kainate 100 µM + Cyclothiazide 30 

µM (Rebola et al., 2005) and Staurosporine 1 µM (Pike et al., 1998) were used in this 

model but no increase in an apoptotic marker (pro-caspase-3 cleavage to caspase-3 on 

western blotting technique) was observed. Same glutamate treatment was tried in 

PC12 cells but cell viability was preserved. Amiloid-β25-35 peptide (Aβ, 25 µM) was used 

as positive control for apoptosis (Estus et al., 1997). 

3.4. PRE-INCUBATION WITH AGONISTS AND ANTAGONISTS OF CRF AND ADENOSINE A2A 

RECEPTORS  

Receptors’ antagonists were applied 15 minutes before cell insult, while their agonists 

were placed in cell medium right before glutamate or Aβ treatment. Urocortin was pre-

ferred to CRF because it binds to CRF1R and CRF2R with similar affinity, while CRF 

binds with higher affinity (20 fold) to CRF1R than CRF2R (reviewed in Dautzenberg et 

al., 2001). Antalarmin is a specific CRF1R non-peptide antagonist (Ki=1nM) that has 

almost no affinity to CRF2R (Chen et al., 1996; Webster et al., 1996). anti-Sauvagine-30 

(a-Sau) blocks CRF2R (Ki=1.4nM) and CRF1R (Ki=154 nM) differently (Ruhmann et al., 

1998). 

As reviewed by Klotz (2000), A2AR agonist CGS 21680 is highly specific for this subtype 

of receptors (Ki=27nM, versus 290nM, 89µM and 67nM of A1, A2B and A3 receptors). 

SCH 58261 has a high affinity to A2AR (Ki=0.6nM, while A1, A2B and A3 receptors have 

higher values of Ki). 

A2AR binding molecules were used as Rebola et al. (2005), while CRFR agonist and 

antagonists’ use was based on Pedersen et al. (2002) and Elliott-Hunt et al. (2002) re-

ports. Due to its toxic effects on cells, DMSO concentration in cell medium was main-

tained below 0.001%. In general, the tasks were based on the protocol presented in 

Figure 3.1. 
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Figure 3.1 – Summary of treatment protocols of primary neuronal cultured cells and PC12 cells. 

3.5. PROPIDIUM IODIDE AND SYTO-13 UPTAKE ASSAY 

To distinguish the mechanism involved in cell death, cells were incubated simultane-

ously with two fluorescent nucleic acid stains (Jones and Senft, 1985): Syto-13 (Invitro-

gen, USA), capable of enter on living cells and emits at 509 nm when excited at        

488 nm, and Propidium Iodide (PI, Sigma, Spain), which only enters cells through a 

disrupted membrane, absorbing preferentially at 535 nm and emitting at 617 nm. 

Cells previously growth in a coverslip were removed from the incubator and washed 

with KREBS-HEPES (117 mM NaCl, 3 mM KCl, 10 mM Glucose, 26 mM NaHCO3,  

1.25 mM NaH2PO4, 10 mM HEPES, 2mM CaCl2, 1mM MgCl2, pH 7.4). Cells were incu-
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bated with Syto-13 (4 µM) and PI (5 µg/mL) for 3 minutes at room temperature, followed 

by direct observation on Axiovert 200 fluorescence microscope using filter sets 10 (ex-

citation 450-490nm and emission 515-565nm) and 15 (excitation 534-558nm and emis-

sion above 590nm). Three to four arbitrary photographs from each coverslip were shot 

and an average of 1600 cells was counted per condition in each experiment. As pre-

sented in Figure 3.2, viable cells are presented with homogeneous cell body labelled 

with Syto-13, whereas primary and secondary apoptotic cells show fragmented or con-

densed nucleus (respectively labelled with Syto-13 or PI). Necrotic cells are presented 

as diffuse blots, emitting in PI range (Canas et al., 2009). This method has the disad-

vantage of exclude cells that detached the coverslip, by random events but also by the 

drug treatment of each coverslip. 

 

 

Figure 3.2 – Representative images of cultured cells labelled with PI and Syto-13 using 400x 

magnification. Cells were classified in 4 classes: 1) living cells, which emits green radiation and 

presents a homogeneous cell body; 2) primary apoptotic cells, green cells with fragmented or 

condensed nucleus; 3) secondary apoptotic cells that emit in red band of the spectra and pre-

sents fragmented (3a) or condensed (3b) cell nucleus; and 4) necrotic cells, which are pre-

sented as diffuse red blots. Scale bar represents 50 µm. 
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After cell counting, the formula used to obtain cell viability was: 

ݕݐ݈ܾ݅݅ܽ݅ݒ % =  
 ݏ݈݈݁ܿ ݃݊݅ݒ݈݅ ݂݋ ݎܾ݁݉ݑ݊
ݏ݈݈݁ܿ ݈ܽݐ݋ݐ ݂݋ ݎܾ݁݉ݑ݊

 

Equation 1 – Formula to obtain cell viability trough PI and Syto-13 labelling technique. The num-

ber of living cells corresponds to the ones that do not present any apoptotic or necrotic marker 

(represented as number 1 in Figure 3.2), whether total cells include the living plus the dying 

cells obtained from the sum of the cells that present apoptotic (2 and 3 from Figure 3.2) or ne-

crotic markers (4 from Figure 3.2). 

3.6. IMMUNOCYTOCHEMISTRY 

This technique, firstly discovered by Coons et al. (1942), was used to characterize pri-

mary cortical neuronal cultures with 9 days in vitro. After cell medium removed, cells 

were washed with PBS (137 mM NaCl, 2.7 mM KCl, 1.8 mM KH2PO4 and 10 mM 

Na2HPO4, pH 7.4) and fixed for 10 minutes at room temperature with 4% PFA in PBS. 

After PBS washes cells were permeabilized with 0.1% Triton-X in PBS 0.1% gelatine. 

Cells were incubated for 1 hour at room temperature with primary antibodies diluted in 

PBS 0.1% gelatine (mouse anti-MAP2 1:200, Millipore MAB3418, and rabbit anti-GFAP 

1:100, Sigma G9269). After washes (0.05% Tween-20 in PBS) cells were incubated 

with secondary antibodies diluted in PBS 0.1% gelatine (anti-mouse Alexa Fluor 568 

and anti-rabbit Alexa Fluor 488, both 1:400, from Invitrogen). DAPI (70 µg/mL, Sigma) 

was used to label cell nucleus. Coverslips were mounted with MOWIOL (Sigma) and 

cells were observed in Axiovert 200 fluorescence microscope. 

3.7. PREPARATION OF TOTAL PROTEIN EXTRACTS  

Cells from primary cultures with 9 days in vitro and PC12 cells with 7 days of NGF dif-

ferentiation were washed with cold PBS. Using NP-40 lysis buffer pH 8.0 (1% Nonidet 

P40, 150 mM NaCl, 50 mM Tris-base, 1 mM EDTA, 5 mM DTT, proteases inhibitors - 

Complete, EDTA-free Protease Inhibitor cocktail tablets, Roche) cells were mechani-

cally scratched. The resulting solution was centrifuged at 13 000 rpm during 10 minutes 

at 4oC and pellet (composed by cell nucleuses, intact cells and cell’s residues) was 

discarded while the supernatant, composed by cellular proteins, was used in western 

blotting technique. 

3.8. WESTERN BLOTTING 

The protein concentration was achieved using the BioRad DC Protein assay Kit based 

on Lowry (1951) due to the high levels of detergents in the sample. The appropriate 

volume of each sample was diluted with water and sample buffer (350 mM Tris pH 6.8, 
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30% glycerol, 10% SDS, 600 mM DTT and 0.012% Bromophenol blue). The samples 

were denatured either at 60-70oC for 15-20 minutes in the particular case of A2A recep-

tor or at 95oC for 5 minutes for caspase-3. 

Based on protocol of Towbin et al. (1979), the samples, the molecular weight markers 

and positive control (rat striatum homogenate for A2AR) were separated by SDS-PAGE 

(10% or 12% according to the protein molecular weight and a 5% stacking) in denatur-

ing conditions and electro-transferred to nitrocellulose membranes (GE Healthcare) or 

PVDF membranes (Millipore). The percentage of resolving gels and protein loading 

amounts are summarized in Table 1. Membranes were blocked with 5% non-fat dry 

milk for 1 hour, washed with TBS-T 0.1% (Tris Buffer Saline with 0.1% Tween-20 solu-

tion, 200 nM Tris, 1.5 M NaCl,) and incubated with primary antibody (diluted in TBS-T, 

3% Bovine Serum Albumin and 0.1% NaN3) overnight at 4ºC. After washing again for 

30 minutes, the membranes were incubated with horseradish peroxidise (HRP, EC 

1.11.1.7) conjugated secondary antibody (in 5% non-fat dry milk) for 1 hour at room 

temperature (primary and secondary antibody dilutions are in Table 1). After 40 minutes 

of washing with TBS-T followed by 20 minutes in TBS (same as TBS-T without 0.1% 

Tween-20), chemoluminescent detection was performed with ECL-PLUS western blot-

ting detection reagent (GE Healthcare) using X-Ray films (Fujifilm). Optical density was 

determined with Image-J software and normalized to the respective α-tubulin or pro-

caspase-3 band density. 

Table 1 – Primary and secondary antibodies used in western blotting technique.  

 
Protein 

loading (µg) 
Resolving 

gel % 
Primary 
antibody Animal Dilution 

Secondary 
antibody Dilution 

A2AR 80 10 
Upstate 

(sc-13937) 
Mouse 1:4000 

Santa Cruz 
Biotechnology 

(goat anti-rabbit, 
sc-2004; 

goat anti-mouse, 
sc-2005) 

1:7500 

Caspase-3 30 12 
Santa Cruz 

Biotechnology 
(sc-7148) 

Rabbit 1:1000 1:15000 

α-Tubulin - - Abcam 
(ab4074) Rabbit 1:2000 1:15000 

3.9. PHARMACOLOGICAL AGENTS 

Urocortin and antalarmin were purchased from Sigma-Aldrich (Spain). Staurosporine 

was from Roche (Germany). NGF 7S was from Invitrogen (UK). 4-[2-[[6-Amino-9-(N-

ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzene propanoic acid 

(CGS 21680), 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo [4,3-e] [1,2,4] triazolo [1,5-c] 

pyrimidin-5-amine (SCH 58261), L-Glutamic Acid and anti-Sauvagin-30 were pur-
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chased from Tocris (UK). Aβ25-35 peptide was from Bachem (Switzerland). These drugs 

were diluted in the assay solution from sock aliquots made in water or DMSO stored at 

-20oC. All other reagents used were of the highest purity available and proper for cell 

cultures. 

3.10. STATISTICS 

The values presented are mean ± SEM of n independent experiments. In primary neu-

ronal cell culture, each n is related to results obtained from embryos of different preg-

nant rats. In PC12 cells, each n represents one different passage of cells of a new 

thawed set. In statistical tests between three or more conditions, a one way ANOVA 

was used, followed by a Bonferroni's Multiple Comparison post hoc test. Values of 

P<0.05 were considered to be statistically significant. In each comparison, the following 

code was used: * P<0.05; ** P<0.01; *** P<0.001 to compare one condition to the con-

trol. # P<0.05; ## P<0.01; ### P<0.001 to compare one condition to glutamate 100µM. 

‡ P<0.05; ‡‡ P<0.01; ‡‡‡ P<0.001 to compare with other condition rather than control 

or glutamate 100µM. 
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4. RESULTS 

4.1. CHARACTERIZATION OF THE PRIMARY NEURONAL CELL CULTURES 

Primary cortical neuronal cultures with 9 days in vitro (DIV) were used during the first 

part of this work. The cell preparation was labelled with anti-MAP2 (microtubule-

associated protein 2 – neuronal marker) and anti-GFAP (glial fibrillary acidic protein – 

astrocyte marker) antibodies. Approximately 50% of cells were found to be red labelled, 

related to anti-MAP2 expression (Figure 4.1). The contamination with astrocytes was 

less than 20%, as shown by the cells positive for anti-GFAP green labelling. The re-

maining cells, labelled with DAPI, did express neither MAP-2 nor GFAP. 

 

Figure 4.1 - Primary cortical neuronal culture with 9 days in vitro in control condition. Neurons 

are labelled with anti-MAP2 antibody that emits red radiation, whereas astrocytes present a 

green colour by staining with anti-GFAP antibody. Cell nucleus is marked with DAPI, which 

emits blue radiation. The photograph is from one representative cell culture preparation in the 

control condition. 

4.2. CELL VIABILITY UPON GLUTAMATE INSULT 

Glutamate exerts neurotoxic damages to cortical cultured cells through caspase-3 

pathway activation (Du et al., 1997; Castro et al., 2004). This excitatory amino acid ac-

tivates NMDA receptors leading to an increase of intracellular Ca2+
 and Na+ (Schramm 

et al., 1990) and consequently to necrosis and apoptosis (Ankarcrona et al., 1995). 

Neuronal cultures were treated for 24 hours with five different glutamate concentrations 

(20, 50, 100, 500 and 1000 µM) that intended to represent several degrees of cell injury 

either by apoptosis or necrosis (Bonfoco et al., 1995). Amiloid-β25-35 peptide (Aβ,         

25 µM) increases cell death by apoptosis (Estus et al., 1997) and was used as positive 
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control in cell viability assessment. Cell survival upon glutamate insult was obtained by 

labelling with propidium iodide (PI) which is incorporated by dying or death cells emit-

ting in red band of spectrum and with Syto-13 which stains with green living cells. 

Control (CTR) cells with 9 days in vitro presented approximately 64.4 ± 0.834% (n=6) of 

viability that correspond to the percentage of cells that do not present any apoptotic or 

necrotic markers, i.e. condensed or fragmented apoptotic nucleus, either green or red, 

or characteristic red blots of necrotic cells. As presented in Figure 4.2, preincubation 

with glutamate resulted in a reduction of cell viability, in a concentration-dependent 

manner, reaching the minimum viability of 66.2 ± 5.97% (normalized to the control, 

P<0.001, n=3) for glutamate 1000 µM.  

 

 

Figure 4.2 - Glutamate reduces cell 

viability in a concentration dependent 

manner. Primary cortical cultures 

presents a lower rate of survival on 

Aβ25-35 peptide and glutamate treat-

ment (20 µM to 1000 µM range, 24 

hours) observed by PI and Syto-13 

staining technique. A) Representa-

tive images from each condition a) 

Aβ 25 μM; b) Control (CTR); c) Glu-

tamate 20 µM; d) Glutamate 50 µM; 

e) Glutamate 100 µM; f) Glutamate 

500 µM; and g) Glutamate 1000 µM. 

Green cells incorporated Syto-13 

while red cells are labelled with PI.  

Scale bar represents 50 µm. B) Percentage of cell viability in previously described conditions, 

compared to control. During all experiments control has approximately 65% of viable cells (all 

but apoptotic and necrotic cells). Each bar is the mean ± SEM of three to six experiments.          

* P<0.05 and *** P<0.001 compared to control, calculated using a one way ANOVA test plus a 

Bonferroni post hoc test. 

A) 

B) 
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al apoptosis induced by glutamate insult is mediated by caspase-3 (Du et al., 

3 is an effector caspase responsible for the late apoptotic process 

(Porter and Janicke, 1999; Zeiss, 2003). Cas-

quantified by Western 

peptide treated cells, as 

3 levels were gradually increased through glutamate 

% of control, P<0.001, 
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3 levels in primary cortical cells 

3 immunoreactivity was normalized 

peptide 25 µM was used as positive control in pro-

. Each bar is the mean ± SEM of three to four experiments. * P<0.05; 

calculated using a one way ANOVA test, followed by a Bon-

. At the top a representative image of the western blot is presented. 

UTAMATE NEUROTOXICITY 

Urocortin, a CRF family peptide, activates both subtype 1 and 2 of CRF receptors, 

10pM was applied to cell medium 

4.4 it is possible to ob-
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serve that urocortin increased cell survival in the presence of glutamate, reaching sta-

tistical significance for 50 µM (from 77.7±1.31% to 88.6±1.36%, P<0.01, n=3) and for 

100 µM (from 76.4±1.63% to 90.5±2.23%, P<0.001, n=3). For higher concentrations of 

glutamate (500 and 1000 µM) urocortin did not change cell viability as compared to 

glutamate alone. Urocortin by itself did not alter cell viability (95.3±2.44% compared to 

control 100±1.29%, n=3). 

 

 

 

Figure 4.4 – Urocortin 10 pM (Urc, a 

CRFR agonist) avoids cell death by 

glutamate insult observed by PI and 

Syto-13 staining technique. A) Repre-

sentative images of several condi-

tions: a) CTR; b) Urocortin 10 pM; c) 

Glutamate 20 µM; d) Glutamate 20 µM 

+ urocortin 10 pM; e) Glutamate        

50 µM; f) Glutamate 50 µM + urocortin 

10 pM; g) Glutamate 100 µM; h) Glu-

tamate 100 µM + urocortin 10 pM; i) 

Glutamate 500 µM; j) Glutamate     

500 µM + urocortin 10 pM; k) Gluta-

mate 1000 µM; and l) Glutamate    

1000 µM + urocortin 10 pM. Scale bar 

represents 50 µm. B) Graphic repre-

sentation of previous described condi-

tions. Darker grey bars represent glu-

tamate concentrations in absence of urocortin, whereas brighter grey bars show the values of 

glutamate with urocortin 10 pM. Results are mean ± SEM of three experiments. * P<0.05,          

** P<0.01 and *** P<0.001 compared to control; ‡‡ P<0.01, ‡‡‡ P<0.001, compared the two 

selected conditions, calculated using a one way ANOVA test plus a Bonferroni post hoc test. 
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Glutamate 100 µM was the concentration selected for the following experiments. At this 

concentration, glutamate causes mild apoptosis that is characterized by condensed 

nucleus without DNA fragmentation (see Figure 4.4.e for an example), in opposite to 

lower glutamate concentrations where apoptosis is characterized by nucleus fragmen-

tation, as glutamate 20 µM (see Figure 4.4.c). Glutamate 100 µM is enough to induce 

measurable cell death and simultaneously avoid cell detachment caused by cell necro-

sis (Ankarcrona et al., 1995). Higher concentrations of glutamate are associated to cell 

necrosis (with consequent plate detaching) while lower concentrations resulted in an 

insignificant amount of cell death as observed in this work and in previous ones 

(Ankarcrona et al., 1995). 

We now intended to describe the subtype of CRFR that is responsible for this protec-

tion by using selective CRF1R and CRF2R antagonists, respectively antalarmin 10nM 

(Ant, firstly discovered by Chen et al., 1996) and anti-Sauvagine-30 10nM (a-Sau, 

presented by Ruhmann et al., 1998). 

According to Figure 4.6, the previously observed protection by urocortin 10pM against 

cell death was lost by blocking CRF1R or CRF2R independently, by antalarmin (de-

creasing from 90.5± 2.23% to 73.9± 3.53%, P<0.01, n=4) or anti-Sauvagine-30 (from 

90.5± 2.23% to 76.0±2.80%, P<0.01, n=4). Curiously, when the two antagonists were 

applied simultaneously, the effect of urocortin was not prevented. The effect of the two 

antagonists in the absence of urocortin did not affect cell death induced by glutamate 

100 µM (76.4±1.63%, with glutamate 100 µM, and 70.4±3.97%, glutamate 100 µM plus 

both antagonists, n=4). In addition, the two antagonists applied together did not affect 

cell viability by themselves, in the absence of the glutamate insult (99.0±3.88%, Figure 

4.7, 6th bar). 

The effect of the different drugs alone on cell viability was controlled (Figure 4.7). Glu-

tamate 100µM reduced cell viability by 23.6±1.63% (P<0.001, n=4), whereas neither 

CRFR nor A2AR ligands affected cell viability assessed by PI and Syto-13 labelling. 
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Glu 100 µM - + + + + + +  

Urc 10 pM - - + + + + -  

Ant 10 nM - - - + - + +  

a-Sau 10 nM - - - - + + +  

Figure 4.6 – Assessment of cell viability by PI and Syto-13 labelling method in presence of glu-

tamate 100 µM and CRFR agonist (Urc 10 pM) and antagonists (Ant 10 nM and a-Sau 10nM). 

A) Representative images of each condition are presented: a) CTR; b) Glutamate 100 µM; c) 

Glutamate 100 µM + urocortin 10 pM; d) Glutamate 100 µM + urocortin 10 pM + antalarmin      

10 nM; e) Glutamate 100 µM + urocortin 10 pM + anti-Sauvagine-30 10 nM; f) Glutamate       

100 µM + urocortin 10 pM + antalarmin 10 nM + anti-Sauvagine-30 10 nM; and g) Glutamate 

100 µM + antalarmin 10 nM + anti-Sauvagine-30 10 nM. Scale bar represents 50 µm. B) 

Graphic summary of previous conditions. Lines at 100% and near 80% represent control and 

glutamate 100 µM. Each value is mean ± SEM of three to four experiments. * P<0.05 and *** 

P<0.001 compared to control; ### P<0.001 compared to glutamate 100 µM; ‡‡ P<0.01; ‡‡‡ 

P<0.001 comparing the selected conditions, calculated using a one way ANOVA test followed 

by a Bonferroni post hoc test. 

A) 

B) 
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Glu 100 µM - + - - - - - -  

Urc 10 pM - - + - - - - -  

Ant 10 nM - - - + - + - -  

a-Sau 10 nM - - - - + + - -  

CGS 21680 30 nM - - - - - - + -  

SCH 58261 50 nM - - - - - - - +  

Figure 4.7 – Effects of each drug on cell viability by PI and Syto-13 labelling. A) Representative 

images of each condition are presented: a) CTR; b) Glutamate 100 µM; c) Urocortin 10 pM;      

d) Antalarmin 10 nM; e) anti-Sauvagine-30 10 nM; f) Antalarmin 10 nM + anti-Sauvagine-30     

10 nM g) CGS 21680 30 nM; h) SCH 58261 50 nM. Scale bar represents 50 µm. B) Graphic 

summary of previous conditions. Lines at 100% represent control. Each value is mean ± SEM of 

three to five experiments. *** P<0.001 compared to control, calculated using a one way ANOVA 

test followed by a Bonferroni post hoc test. 

4.4. INVOLVEMENT OF A2A RECEPTORS ON CRF NEUROPROTECTION 

It was previously described that activation of adenosine A2A receptors (A2AR) leads to 

an exacerbated cell death. In an opposite way, blockade of A2AR reverses glutamate 

induced cell death (Castillo et al., 2010). We now studied the possible interaction be-

tween A2AR and CRFR effects. By blocking A2AR, with a selective antagonist (SCH 

58261 50nM), or activating, with a selective agonist (CGS 21680 30nM), we evaluated 

the cell viability in presence of CRFR agonist, urocortin 10pM, and antagonists, anta-

larmin 10nM and anti-Sauvagine-30 10nM. 

A) 

B) 
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Glu 100 µM - + + + + + + + + +  

Urc 10 pM - - + - + + + + + +  

Ant 10 nM - - - - - + + - - +  

a-Sau 10 nM - - - - - - - + + +  

SCH 58261 50 nM - - - + + - + - + +  

Figure 4.8 – A2AR blockade changes cell viability obtained by PI and Syto-13 labelling method. 

A) Representative images of different conditions: a) CTR; b) Glutamate 100 µM; c) Glutamate 

100 µM + urocortin 10 pM; d) Glutamate 100 µM + SCH 58261 50nM; e) Glutamate 100 µM + 

urocortin 10pM + SCH 58261 50nM; f) Glutamate 100 µM + urocortin 10pM + antalarmin 10nM; 

g) Glutamate 100 µM + urocortin 10pM + antalarmin 10nM + SCH 58261 50nM; h) Glutamate 

100 µM + urocortin 10pM + anti-Sauvagine-30 10nM; i) Glutamate 100 µM + urocortin 10pM + 

anti-Sauvagine-30 10nM + SCH 58261 50nM; and j) Glutamate 100 µM + urocortin 10pM + 

antalarmin 10nM + anti-Sauvagine-30 10nM + SCH 58261 50nM. Scale bar represents 50 µm. 

B) Graphical representation of previous conditions. Lines at 100% and near 80% represent con-

trol and glutamate 100 µM. Each value is mean ± SEM of three to five experiments. *** P<0.001 

compared to control; ‡ P<0.05 and ‡‡ P<0.01 between the two shown conditions; ## P<0.01 

compared to glutamate 100 µM, calculated using a one way ANOVA test followed by a Bon-

ferroni post hoc test. 

A) 

B) 
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Glu 100 µM - + + + + + + +  

Urc 10 pM - - + - + + - -  

CGS 21680 30 nM - - - + + + + -  

SCH 58261 50 nM - - - - - + + +  

Figure 4.9 – Activation of A2AR by CGS 21680 30nM in neuronal viability upon a glutamate insult. 

The ratio of cell death was achieved by PI and Syto-13 technique. A) On Top, representative 

images of following conditions: a) CTR; b) Glutamate 100 µM; c) Glutamate 100 µM + urocortin 

10 pM; d) Glutamate 100 µM + CGS 21680 30nM; e) Glutamate 100 µM + urocortin 10 pM + 

CGS 21680 30nM; f) Glutamate 100 µM + urocortin 10 pM + CGS 21680 30nM + SCH 58261 

50nM; g) Glutamate 100 µM + CGS 21680 30nM + SCH 58261 50nM; and h) Glutamate 100 µM 

+ SCH 58261 50nM. B) Schematic representation of previously described conditions. Lines at 

100% and near 80% represent control and glutamate 100 µM. The results (mean ± SEM) were 

obtained from three experiments. *** P<0.001 compared to control; ## P<0.01, ### P<0.001 

compared to glutamate 100 µM, calculated using a one way ANOVA test followed by a Bon-

ferroni post hoc test. 

As presented in Figure 4.8, the blockade of A2AR by its selective antagonist, SCH 

58261 (50 nM) did not change the neuroprotection induced by Urc. However, SCH 

58261 (50 nM) alone prevented the cell death induced by glutamate (76.4±1.63% to 

88.3±1.53%, P<0.01, n=3). This improvement of cell viability due to SCH 58261 was 

B) 

A) 
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maintained with selective blockade of CRF1R (87.6±3.48%, n=4) but not with CRF2R 

blockade (74.8±4.91%, P<0.01 compared with SCH 58261 and glutamate 100 µM, 

n=5). Curiously, the ability of SCH 58261 to increase cell viability relative to glutamate 

100 µM was maintained even when both CRFR agonist and antagonists are present 

(91.0±5.23% compared to 76.4±1.63%, P<0.01, n=3). 

On contrast, as shown in Figure 4.9, A2AR activation with CGS 21680 30nM did not 

altered cell death in presence of glutamate 100 µM (72.4±6.79%, not reaching statisti-

cal significance from glutamate 100 µM, n=4), but seems to avoid urocortin neuropro-

tection previously presented (from 90.5±2.23% to 77.8±4.59% with CGS 21680, n=3). 

However, SCH 58261, an A2AR antagonist had a tendency to revert CGS 21680 effects 

in glutamate toxicity, ensuring that the selective A2AR agonist, CGS 21680, was acting 

mostly in this subtype of receptors. 

4.5. MODULATION OF A2A RECEPTOR LEVELS BY CRF 

In order to further understand the neuroprotective effects of CRF and its interaction with 

A2AR, we evaluated whether the levels of expression of these receptors are affected by 

crossactivation. The cortical expression of A2A receptors is very low (Lopes et al., 1999) 

and is technically difficult to detect the expression levels of this receptor subtype. So, 

we used nerve growth factor (NGF)-differentiated PC12 cells that proved to be a valid 

model to study changes in A2AR since these receptors are highly expressed in these 

cells (Arslan et al., 1997) which display a neuronal phenotype in these conditions 

(Greene and Tischler, 1976). In this task the levels of A2AR will be measure in homeo-

static conditions, i.e. no excitotoxic insult was applied to the cells. 

We then intended to observe variations in A2AR in the presence of its ligands as well as 

CRFR agonist (urocortin) and antagonist (antalarmin). The results presented in the Fig-

ure 4.10 showed that A2AR levels are regulated by their own ligands but are not affected 

by CRFR ones. While the A2AR agonist, CGS 21680, downregulated (48.9±5.5%, 

P<0.001 compared to control, n=4) the antagonist, SCH 58261, upregulated A2AR lev-

els (144±15.2%, P<0.01 compared to control, n=5). Neither CRF agonist, urocortin 

(88.3±9.4% of control, n=4), nor antagonist, antalarmin (80.7±14.5% in relation to con-

trol, n=3), significantly changed A2AR levels in NGF-differentiated PC12 cells. 
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CGS 21680 30 nM - + 

SCH 58261 50 nM - - 

Figure 4.10 – A) Modulation of A2AR levels by its 
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5. DISCUSSION 

The release of adenosine that occurs as a consequence of hypoxic events in the brain 

(Andine et al., 1990) is accompanied by an increase in the levels of the stress regula-

tor, corticotrophin-releasing factor (CRF, Chen et al., 2004a). In addition, the in vivo 

modulation of adenosine A2A receptors (A2AR) is responsible for reversion of stress-

induced effects in the hippocampus (Batalha et al., 2010). This raises the question 

whether A2AR regulate the levels or function of the main stress mediators, either CRF or 

glucocorticoids. We now intended to relate the neuroprotective effects of A2AR blockade 

with the activation of CRF receptors (CRFR), under stress conditions (glutamate insult), 

in an attempt to disclose a possible pharmacological synergy. 

Two basic approaches were used. On the initial tasks, primary rat neuronal cortical 

cultures were used to evaluate cell death through a glutamate insult protocol. This 

model was abundantly used in the past to observe neuroprotective effects of several 

drugs and their target receptors on cell death, either by apoptosis or necrosis (Tamura 

et al., 1993). On a second step, the regulation of A2AR levels was studied in NGF-

differentiated PC12 cells. 

The major findings of this work were 1) a protective role of CRF in cortical neurons 

against glutamate insult that is dependent on both CRF receptor subtypes, CRF1R and 

CRF2R; 2) that the CRF-induced neuroprotection was provided either directly by CRFR 

activation or by modulating A2AR actions, through a downregulation of A2AR mediated 

by CRF2R activation. 

5.1. ESTABLISHMENT OF A NEURONAL MODEL THAT RESPONDS TO EXCITOTOXIC INSULTS 

Primary rat cortical neuronal cultures are mainly composed by neuronal cells. Although 

these cells are the core of central nervous system function, astrocytes hold an impor-

tant role in brain homeostasis, either by regulating neuronal metabolism or by removing 

signalling molecules from synaptic cleft, as neurotransmitters. Due to this symbiotic 

behaviour, the cultures used in this work present a low percentage of astrocytes (less 

than 20%). In addition, neuroprotective effects of adenosine analogues against excito-

toxic mediators were previously related to glial cells (reviewed by Fields and Burnstock, 

2006). 

During glutamate insult protocols, cell viability was measured by propidium iodide (PI) 

and Syto-13 uptake technique. Cultured cells with 9 days in vitro present a viability of 
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approximately 65% which is in accordance to previous published works (Tamura et al., 

1993; Pedersen et al., 2001; Rebola et al., 2005). Glutamate increase cell death in in 

vitro neurons in a concentration dependent form, reaching significant differences from 

control with a minimum of 20 µM which is in accordance with previous results (Choi et 

al., 1987). With the lowest glutamate concentrations, cells present a high rate of pro-

caspase-3 fragmentation, an apoptotic mechanism characteristic of glutamate insult in 

this type of cells (Du et al., 1997). However, for higher glutamate concentrations (above 

100 µM) cell death is not caused mostly by apoptosis. For these glutamate concentra-

tions cells preferentially die by necrosis, which is a caspase-3 independent process. 

These observations were confirmed by a concentration dependent increase in cell 

death by PI and Syto-13 method without the correspondent raise of pro-caspase-3 

fragmentation. Presumably rapid necrosis is preferred at high glutamate concentrations 

due to a robust activation of NMDA and AMPA receptors that drastically increases in-

tracellular calcium and sodium and disrupts the mitochondrial membrane potential and 

leads to cellular swelling by osmosis (reviewed by Greenwood and Connolly, 2007). 

This necrotic process is characterized by an early membrane rupture caused by an 

acute but severe stressful event. On other hand, apoptosis is a form of controlled cell 

death that is characterized by the presence of a signalling cascade, in which caspases 

have a crucial role. Similarly to necrosis, apoptosis is triggered by mitochondrial swell-

ing and cytochrome c releasing. At low concentrations of glutamate (below 100 µM) 

necrosis is replaced by a delayed apoptosis (Ankarcrona et al., 1995; Bonfoco et al., 

1995). In our experimental conditions, although AMPA receptors desensitize through 

time, NMDA do not (Fedele and Raiteri, 1996; Nahum-Levy et al., 2001). This leads to 

a continuous incorporation of calcium in intracellular medium, which will induce apop-

tosis rather than necrosis at low concentrations of glutamate, as observed by Bonfoco 

et al. (1995). 

Although PI and Syto-13 labelling provides quick and visual perceptive results it is in-

adequate to measure death by necrosis. Cells are attached to poli-L-lysine but when a 

necrotic stimulus takes place cell membrane ruptures and all intracellular components 

are released to extracellular medium, which includes DNA. As this method uses DNA 

probes, it is difficult to observe all the necrotic cells after an extreme toxic insult 

(Ankarcrona et al., 1995). As a consequence, although the number of total cells in each 

coverslip did not decrease with glutamate concentration (data not shown), the values 

obtained for cell mortality with higher glutamate concentrations can be underestimated. 

To avoid this technical limitation, a commercial LDH assay kit was used to measure the 

amount of lactate dehydrogenase (LDH, E.C. 1.1.1.27), a cytoplasmatic enzyme that is 



5. Discussion 

 

 37 

released to cell medium as a consequence of the necrotic process. However, this 

method did not show any relevant changes even with an extreme concentration of glu-

tamate, 10 mM (data not shown). 

5.2. UROCORTIN PREVENTS GLUTAMATE INDUCED CELL DEATH 

Primary cortical neuronal cultured cells used in this work have been described to pos-

sess 9.8 fmol/mg protein of CRFR (Kapcala and Dicke, 1992), with a higher preponder-

ance of CRF1R compared to CRF2R in cerebral cortex (Reul and Holsboer, 2002). 

However, CRF2R are also present in our working model since brain areas where they 

are mostly expressed (as the hippocampus) were not removed during the process. 

Urocortin (a peptide from CRF family that has equivalent affinity to CRF1R and CRF2R) 

decreased cell death by glutamate insult in all concentrations except glutamate         

500 µM, reaching a statistical significance with its maximum effect in glutamate 100 µM 

insulted cells. This concentration of glutamate enhances cell death both by apoptosis 

and necrosis. For higher concentrations, severe cell necrosis occurs and urocortin 

seems to be inefficient in reverting cell death. On the other hand, at lower glutamate 

concentrations, the evoked cell death may not reach enough magnitude to allow a sig-

nificant and measurable decrease of cell death with urocortin. 

This ability of urocortin to prevent glutamate-induced cell death is not mimicked by the 

levels of caspase-3, a final apoptotic marker, instead of viability. Actually, these results 

suggest that urocortin may, in fact, contribute to apoptosis for lower glutamate concen-

trations (below 100 µM) and decrease it for higher glutamate concentrations. Having in 

mind that apoptosis is the primary process below 100 µM of glutamate and necrosis is 

preferred above that concentration, probably the protection said from cell death that we 

see by urocortin is rather on necrosis than apoptosis. As presented before, for lower 

concentrations of glutamate, caspase-3 levels even increase further with urocortin 

treatment. We assume that this is caused due to elevation of intracellular calcium by 

activation of CRFR, involving PKC and PKA pathways (Blank et al., 2003), which will 

release calcium from endoplasmic reticulum but also increase calcium transport from 

extracellular medium (Dermitzaki et al., 2004). This increase in cytoplasmatic calcium 

concentration will affect mitochondria membrane potential and initiate apoptotic cas-

cade through caspase-3 signalling. However, this effect on caspase-3 has no repercus-

sion on overall cell viability possibly due to an amplified expression of pro-survival fac-

tors like BDNF caused by a delayed action of CRFR on gene expression (Bayatti et al., 

2005; Hauger et al., 2009). CRF was also found to potentiate BDNF effects through 
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TrKB activation, a process that promotes cell survival (reviewed by Hauger et al., 

2009). 

Pedersen and colleagues (2001) had observed neuroprotective effects of urocortin in 

hippocampal and cortical neurons against 20 µM of glutamate, a very low concentra-

tion. However, they only assessed viability with no distinction of the cell death process 

occurring. With that glutamate concentration, the apoptosis process is favoured in rela-

tion to necrosis (Ankarcrona et al., 1995). Therefore, to mimic the evoked cell death 

caused by excessive excitatory amino acids in ischemia, which is a mixed process of 

apoptosis and necrosis (Martin et al., 1998), as we have now shown, care must be 

taken and higher concentrations of glutamate should be used instead. 

5.3. CRF1R AND CRF2R ACTIVATIONS HAVE A NEUROPROTECTIVE ROLE IN GLUTAMATE 

EXCITOTOXICITY 

CRF receptors subtypes have different functions either in HPA axis or in cell neuropro-

tection (Pedersen et al., 2002; Reul and Holsboer, 2002). We intended to observe 

which CRF receptor subtype is responsible for urocortin-induced neuroprotection 

against glutamate insults (100 µM). By using selective antagonists of each CRFR (anta-

larmin or anti-Sauvagine-30) we were able to observe a loss of effect of urocortin in 

glutamate evoked cell death, either by blocking CRF1R or CRF2R. CRF1R activation 

was previously described to afford neuroprotection (Pedersen et al., 2002) and our 

work is in accordance with those studies. In previous reports, CRF2R was discarded 

from any function in neuroprotection against oxidative stress (Pedersen et al., 2002), 

but there is no data available for the role of CRF2R activation in glutamate-induced neu-

rotoxicity. Urocortin 2, a CRF2R agonist, is not able to revert cell death caused by radi-

cal oxygen species, whereas Urocortin, a CRFR nonspecific agonist is able to protect 

neuronal cells from equivalent insult, by activating CRF1R (Pedersen et al., 2002). 

Here we observe a neuroprotective effect by activating CRF2R during glutamate insults 

in cortical neurons in culture. Despite reports that high concentrations of anti-

Sauvagine-30 are also capable of blocking CRF1R, KD=154 nM to CRF1R and KD=1.4 

nM to CRF2R (Ruhmann et al., 1998), this does not seem to be the case, since the 

concentration used (10 nM) is ten times lower than the KD for the CRF1R receptor.  

Other important question related to the involvement of CRF2R in neuroprotection is the 

ratio between the two receptors. While CRF1R levels are elevated, CRF2R are less ex-

pressed on cultured neurons (Reul and Holsboer, 2002), which could lead to unspecific 

blockade of CRF1R by CRF2R antagonists (as anti-Sauvagine-30). However this does 

not seem to be the case, since CRF2R are present in primary cultures used and anti-
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Sauvagine-30 concentration is insufficient to block completely CRF1R. In conclusion, 

CRFR activation by urocortin is neuroprotective against glutamate insults only when 

both CRF1R and CRF2R are active, since blockade of each one selectively was enough 

to prevent the neuroprotective effect of urocortin.  

Curiously, when applied together, the two CRFR antagonists failed to block the uro-

cortin effect against cell death induced by glutamate. This result was unexpected due to 

previous data that suggest the involvement of both receptors in neuroprotection. We 

therefore tried to distinguish: 1) an unspecific action of urocortin in a receptor-

independent manner (an effect never observed in previously published works) or 2) an 

interaction between the two molecules which could lead to the loss of antagonistic ef-

fect to either CRF1R or CRF2R. We tested the latter hypothesis, by searching for a di-

rect interaction between antalarmin and anti-Sauvagine-30. As presented in appendix 

6.1, antalarmin decreases the fluorescence emission of the amino acid phenylalanine 

present in anti-Sauvagine-30, in a concentration-dependent manner, suggesting a pos-

sible physical interaction between these two CRFR antagonists. Thus, using them to-

gether could lead to an ineffective blockade of both CRFR subtypes. 

5.4. CRF2R, BUT NOT CRF1R, IS ESSENTIAL TO NEUROPROTECTION BY A2AR BLOCKADE 

Adenosine A2A receptors are modulatory targets against neurologic insults (reviewed by 

de Mendonca et al., 2000) and share functional similarities with CRF receptors, as neu-

roprotection (Fox et al., 1993). Therefore, we explored a possible interaction between 

these two receptors either at the protein expression levels or studying their functional 

role in the prevention of cell death by glutamate insult. 

Using PC12 cells, we were able to assess the A2AR level which is technically difficult 

using neurons, since the expression levels in cortex and hippocampus are below the 

limit of detection of the technique (Lopes et al., 1999b). This cell line has an abundant 

expression of both A2AR and CRFR (Arslan et al., 1997; Dermitzaki et al., 2007). Using 

nerve growth factor (NGF) for 7 days, cells were differentiated to acquire a neuronal 

phenotype (Greene and Tischler, 1976). After these differentiation, PC12 cells present 

a neuronal like morphology (neurite like fibers growth) and synthesize and store dopa-

mine and norepinephrine that are released by calcium dependent processes (Greene 

and Tischler, 1976). The A2AR concentration in differentiated cells is of 472 fmol/mg of 

protein (Arslan et al., 1997). Comparing to neuron cells (193±18 fmol/mg protein in 

cortex of young rats, Lopes et al., 1999b), this amplified biological model is more useful 

to observe differences in A2AR levels. However, this cell line lacks the two ionotropic 



5. Discussion 

 

 40 

receptors for glutamate, NMDA and AMPA receptors (Sucher et al., 1993; Sudo et al., 

1997). No excitotoxic glutamate effects on cell viability were observed either by pro-

caspase-3 fragmentation on western blotting or by the trypan blue exclusion protocol 

(that enters death cells and renders them blue labelled, while living ones remain colour-

less). 

In this work we observed that A2AR levels are modulated by their agonists and antago-

nists, as expected. While the A2AR agonist, CGS 21680 30 nM, decreases A2AR levels, 

their antagonist, SCH 58261 50 nM, has the opposite effect. This upregulation of A2AR 

by their antagonism was expected and is in accordance with previous results from our 

laboratory that show an increase of these receptors after oral administration of the A2AR 

antagonist, KW 6002 (Batalha et al., 2010). In addition, the reduced levels of the excita-

tory A2AR by their activation with CGS 21680 can provide a regulatory mechanism in 

prevention of extreme neuronal excitability. The CRF1R antagonist, antalarmin, applied 

alone does not change A2AR levels. However, if applied in combination with the A2AR 

antagonist, SCH 58261, leads to a decrease in A2AR levels. There seems to be an in-

teraction between this two neuroprotective targets in brain, CRF and adenosine 

(through A2AR), although the mechanism involved is still unknown. To answer this ques-

tion, a possibility would be study the intracellular pathways activated by these recep-

tors, as PKA, PKC or MAPK. G-protein desensitisation and the binding to multiple G-

proteins is also an hypothesis for this interaction to occur.   

Besides this direct interaction in the receptors levels, CRF and A2A receptors can be 

interacting in their neuroprotective function. Therefore, we assess cell viability by PI 

and Syto-13 staining technique in the presence of agonists and antagonists of the re-

ceptors. Blockade of A2AR by SCH 58261 reverted the cell death induced by 100 mM of 

glutamate, as previously observed in neurons (reviewed by Cunha, 2005). We then 

tested the combined actions of CRFR activation and A2AR blockade upon a glutamate 

insult. No addictive neuroprotection to that afforded by urocortin was observed by 

blocking A2AR. Further studies are needed to explore if this is due to a common path 

shared by both receptor subtypes in rescuing neuronal cells from evoked death. 

In presence of urocortin, SCH 58261 neuronal protective effects were abolished by 

CRF2R but not by CRF1R blockade, suggesting that the A2AR role in neuroprotection is 

dependent on CRF2R, but independent of CRF1R. This might occur as a result of the 

downregulation of A2AR previously observed in PC12 cells with simultaneous use of 

SCH 58261, urocortin and antalarmin (i.e. CRF2R activation and A2AR blockade). 

CRF2R and A2AR are metabotropic receptors located both in pre- and post-synaptically 
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(Li and Henry, 1998; Liu et al., 2004). Downregulation of A2AR achieved by CGS 21680 

occurs by the continuous binding to the receptors, and consequent activation of intra-

cellular pathways, promoted by Gs proteins. The receptor levels decrease to down-

regulate the signalling through that receptor (Shankaran et al., 2007). SCH 58261 

upregulation is a consequence of the opposite phenomenon, an insufficient activation 

of the A2AR. 

While the majority of reports points to A2AR activation as being harmful to cells (Gao 

and Phillis, 1994; Popoli et al., 2002; Dall'Igna et al., 2003; Castillo et al., 2010), a mi-

nority of studies suggest that A2AR activation is neuroprotective upon a kainate insult 

(Jones et al., 1998; Rebola et al., 2005). In our work, we were not able to detect any 

significantly changes in cell viability upon application of a A2AR agonist, CGS 21680. 

This may occur due to an excessive activation of A2AR by endogenous adenosine, 

which is present in higher concentrations after cell death induced by glutamate 

(Dunwiddie and Masino, 2001). Under these conditions, an A2AR agonist applied exo-

genously has little or no effect, as observed in our results. One way to test this hy-

pothesis would be to test the activation of A2AR in the presence of the enzyme adeno-

sine deaminase (ADA, E.C. 3.5.4.4) which metabolises adenosine to its inactive me-

tabolite inosine as it is released preventing its accumulation in the cell medium (Geiger 

and Nagy, 1986). Nevertheless, A2AR activation by CGS 21680 seems to avoid uro-

cortin neuroprotection upon glutamate 100 µM stimulus. 

The mechanisms underlying these neuroprotective effects still need to be explored. 

Both A2AR and CRFR are able to alter gene expression. Whereas blockade of A2AR is 

neuroprotective, by reducing PKA and PKC phosphorylation activity (Cunha, 2005; 

Fredholm et al., 2005), CRFR activation leads to increased PKA and PKC activity. PKA 

and PKC phosphorylation leads to insertion of NMDA receptors in the cell membrane 

(Leonard and Hell, 1997), contributing to the excitotoxicity induced by glutamate 

(Leveille et al., 2008). It seems that CRFR neuroprotection must be accomplished 

through some alternative mechanisms. One of the targets could be BDNF and its re-

ceptor TrKB, which were shown to be regulated by CRF (Bayatti et al., 2005; Hauger et 

al., 2009). These receptors, which have pro-survival effects, also enhance their activity 

in the presence of A2AR agonists (Diogenes et al., 2004), linking once more CRF and 

adenosine receptors. 

In contrast with previous reports, that described urocortin neuroprotection throughout 

time upon glutamate insult (Elliott-Hunt et al., 2002), we used an unique time point, 24 

hours. Since neuronal death and protein levels were evaluated in this discrete time 
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point, we cannot speculate about the kinetics of the observed effects or the long-term 

consequences for cell survival. It would be interesting to explore if CRF2R activation is 

needed previously or only during A2AR blockade to afford neuroprotection. 

Overall these data show a new role of CRF against glutamate-induced neuronal death, 

either by direct activation of CRF receptors or by modulating A2AR actions. The ob-

served neuroprotection by A2AR blockade requires CRF2R activation which might result 

of the ability of CRF2R to modulate the levels of A2AR directly. The interaction between 

the two receptors can point towards new pharmacological approaches exploring puta-

tive common molecular pathways. 

 

Figure 5.1 – Schematic summary of the results obtained in this work. CRF activation of both 

CRFR affords neuroprotection against glutamate insult. The proposed mechanism presents 

CRF2R as a negative modulator of A2AR and thus preventing A2AR noxious actions in neurons, 

when activated by adenosine. 
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6. APPENDIX 

6.1. PHYSICAL INTERACTION BETWEEN ANTALARMIN AND ANTI-SAUVAGINE-30 

Antalarmin and anti-Sauvagine-30, the two selective antagonists used in this work were 

never used simultaneously in the past. We, therefore, searched for interactions of these 

molecules that could lead to an aggregation and consequently to an inhibition of their 

functional role. anti-Sauvagine-30 is a CRF2R selective antagonist peptide that contains 

one Phenylalanine in its composition. This amino acid has fluorescent proprieties with 

maximum of absorbance at 260 nm and a band of emission between 260 and 320 nm 

(Teale and Weber, 1957). 

In Figure 6.1 are presented fluorescence spectra for different solutions of anti-

Sauvagine-30 and antalarmin. Fluorescence emitted by phenylalanine (present in anti-

Sauvagine-30) decreases inversely with antalarmin concentration, i.e. antalarmin is a 

quencher of the phenylalanine, which presents a possible physical interaction between 

these two CRFR antagonists. 

 

 

Figure 6.1 - Anti-Sauvagine-30 and antalarmin could physically interact. A) Fluorescence spec-

tra of solutions of anti-Sauvagine-30 and antalarmin in different proportions (1\0; 1\0.5 and 1\1) 

when excited at 260 nm. Fluorescence intensity at each wavelength was normalized to the one 

of same antalarmin concentration. B) Representative graph of the sum of each point (from 275 

to 320 nm) from each spectrum presented in A). 

 

A) B) 
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