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Abstract

Although mainstream object-oriented languages, like Java, are currently able to detect
and prevent many programming errors by static type-checking, common usage-related
errors are not captured and signalled to programmers. In general, no (formal) support is
available in these languages for ensuring that an object is used according to the protocol
which the programmer had in mind when describing the behaviour of a class. The file
reader protocol is a simple but clarifying example: first a file must be opened, then it can
be read multiple times (though not beyond the end-of-file), and finally it must be closed.
As client code is not checked for protocol conformance, trying to read the file without first
opening it, or when it is closed, are simple disregards caught only by runtime exceptions,
assuming the language is equipped with built-in support to handle errors and exceptional
events.

The MOOL programming language presented in this work is an attempt to formalise
object usage and access. It consists in a simple class-based object-oriented language that
includes standard primitives found in most object-oriented language formalisms. Addi-
tionally, the language offers constructs that can be attached at class definitions for spec-
ifying (1) the available methods based on an object state, and (2) how methods may be
called in that state – by a single client, in which case we say that the object has a linear
status, or without restrictions, in which case we say it has a shared one. We refer to this
abstract view that defines an object state and status the class usage type. We formalise
the language syntax, the operational semantics, and a type system that enforces by static
typing that methods are called only when available, and by a single client if so specified
in the class usage type. We illustrate the language capabilities by encoding in MOOL the
protocols of two well-known examples: the file reader and the auction system. We have
built a prototype compiler to implement our ideas, and its architecture is also described.
Finally, we anticipate some of the related topics which we are interested in pursuing in
future work.

Keywords: Object-oriented programming, concurrency, type systems, linear objects,
session types
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Resumo

As linguagens de programação centradas em objectos, como o Java, conseguem de-
tectar antecipadamente em tempo de compilação, e assim prevenir, muitos dos erros de
tipificação e de inicialização de atributos e variáveis que os programadores inadvertida-
mente introduzem nos seus códigos. Contudo, estas linguagens são actualmente incapazes
de capturar e assinalar erros relacionados com a utilização incorrecta de objectos. Em
geral, as linguagens comerciais não dispõem de suporte formal e verificável que garanta
que uma instância de uma classe é usada de acordo com a intenção do programador que es-
creveu essa classe. O protocolo que descreve a leitura de um ficheiro serve de motivação:
primeiro o ficheiro deve ser aberto, depois as suas linhas podem ser lidas uma por uma,
e, antes de o programa terminar, o ficheiro deve ser fechado. Não havendo qualquer
verificação do código cliente a este nı́vel, é inevitável que o protocolo seja quebrado, e
que uma tentativa (indevida) de leitura seja efectuada antes de invocada a operação que
abre o ficheiro, ou que uma outra esbarre com um ficheiro fechado. Em linguagens como
o Java, este tipo de erros só é tarde detectado, quando uma excepção é lançada em tempo
de execução.

A linguagem de programação MOOL proposta nesta tese representa uma tentativa de
formalizar a utilização e o acesso a objectos. Trata-se de uma linguagem baseada em
classes, que inclui primitivas disponı́veis na maioria dos formalismos de linguagens cen-
tradas em objectos. Adicionalmente, a linguagem dispõe de construções sintácticas que
permitem ao programador especificar como é que um objecto de uma classe deve ser us-
ado. Através desta especificação, o programador pode (1) definir os métodos disponı́veis
em função do estado do objecto, e (2) indicar como o objecto pode ser referenciado
quando se encontra nesse estado – por uma única referência, tratando-se assim de um
objecto linear, ou sem restrições no caso de um objecto que pode ser partilhado por vários
clientes. Neste trabalho, a visão abstracta que os clientes têm do estado dos objectos é
designada de tipo de utilização da classe (ou class usage type). Ao contrário dos tipos
comuns, na linguagem proposta os tipos dos objectos são dinâmicos, variando com o
seu estado. Gay et al. [38] designam de interface dinâmica a especificação global de
métodos disponı́veis numa classe com base no estado do objecto, distinguindo-a da in-
terface estática do Java. Objectos que mudam dinamicamente o conjunto de métodos
disponı́veis em função do seu estado são também conhecidos na literatura como objectos
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não uniformes. Nierstrasz [30] foi o primeiro a estudar o comportamento de objectos
não uniformes, ou activos, em sistemas concorrentes. A linguagem MOOL oferece ainda
um mecanismo de concorrência que permite a criação de threads, além da primitiva sync

que permite a sincronização de métodos quando, em objectos partilhados, a comunicação
deve ser efectuada em exclusão mútua.

A linguagem formal que é apresentada nesta tese é baseada na linguagem proposta por
Gay et al. [15], que formaliza uma abordagem designada de tipos de sessão modulares. A
teoria dos tipos de sessão foi proposta para a verificação em tempo de compilação de pro-
gramas cuja comunicação se processa por canais tipificados. Os tipos de sessão são pro-
postos como forma de impor que as implementações dos canais obedecem às sequências
e tipos das mensagens especificados nos protocolos de comunicação. Em geral, os pro-
tocolos podem ser expressos por tipos de sessão, independentemente da linguagem de
programação em que são integrados. Os tipos de sessão têm sido integrados em vários
paradigmas de linguagens de programação: cálculo pi, linguagens funcionais, linguagens
centradas em objectos, CORBA, etc. O trabalho sobre tipos de sessão modulares com-
bina, numa linguagem centrada em objectos distribuı́da, os tipos de sessão e a ideia de
disponibilidade dos métodos de uma classe em função do estado do objecto. A modular-
idade da abordagem resulta de a implementação do tipo de sessão poder ser decomposta
pelos vários métodos da classe, contrastando com trabalhos anteriores, no contexto de
linguagens centradas em objectos, em que o tipo de sessão é implementado no corpo de
um único método.

O conceito de tipos de utilização desenvolvido nesta tese foi inspirado nos tipos de
sessão modulares, e adaptado a um modelo de comunicação mais simples – a troca de
mensagens através de chamadas de métodos. O estilo de programação proposto pretende
ser simples e intuitivo, não tendo o programador de lidar com distribuição (a concorrência
é efectuada por memória partilhada), mas tirando proveito das propriedades de segurança
associadas aos tipos de sessão.

As contribuições desta tese materializam-se na formalização da sintaxe, da semântica
operacional e do sistema de tipos, que verifica as especificações em tempo de compilação,
e na implementação de um compilador de MOOL, cuja arquitectura também se descreve.

No contexto dos tipos de sessão, as contribuições desta tese podem resumir-se nos
seguintes pontos:

• Ao contrário de abordagens anteriores, o modelo de comunicação baseia-se exclu-
sivamente na chamada de métodos;

• As classes são anotadas com uma especificação de utilização que estrutura a sequência
de métodos que os clientes podem invocar em função do estado do objecto, a qual é
enriquecida com qualificadores lin/un que permitem controlar se um objecto é lin-
ear, e uma única referência o pode usar, ou se é partilhado, não existindo restrições
quanto ao número de clientes;
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• Ao contrário de abordagens anteriores, os canais partilhados são substituı́dos pela
primitiva de sincronização convencional que permite que certas operações num ob-
jecto sejam acedidas sem interferência de outras threads.

A tese encontra-se organizada em seis capı́tulos. Na introdução, o exemplo do leitor
de ficheiros é apresentado como motivação dos principais aspectos da linguagem e, em
particular, da especificação de tipos de utilização. Segue-se um capı́tulo onde se apre-
senta um exemplo mais extenso – o sistema de leilões – que ilustra a introdução de tipos
de utilização em protocolos mais complexos. No capı́tulo da linguagem formal, é descrita
a sintaxe, a semântica operacional e o sistema de tipos. Alguns exemplos de derivação de
tipos ilustram o funcionamento das regras e as mudanças operadas no tipo dos atributos à
medida que a derivação avança. A prova formal da linguagem MOOL não é apresentada
nesta tese, ficando adiada para um trabalho futuro. No entanto, sendo este sistema baseado
num sistema de tipos [15] para o qual é apresentada a prova formal por indução, tudo
aponta para que não seja difı́cil provar os resultados também para a linguagem MOOL.
No capı́tulo da implementação, são descritas as tecnologias utilizadas e a arquitectura do
compilador. Desenvolvido na linguagem Java, o compilador assenta na framework do
SableCC, que gera automaticamente analisadores léxicos e classes que implementam o
padrão visitante, o que permitiu reduzir o esforço de implementação ao desenvolvimento
da componente semântica, através da extensão destas classes. A arquitectura do compi-
lador distingue duas fases: a fase de análise, onde, com base na árvore abstracta do pro-
grama, é construı́da a tabela de sı́mbolos e efectuada a verificação de tipos com base num
algoritmo de tipificação guiado pelos tipos de utilização, e a fase de sı́ntese, onde o código
de um programa MOOL válido é traduzido para uma linguagem intermédia. O resultado
desta traduçao é convertido em bytecode pela plataforma open source Mono, tendo como
alvo a Common Language Runtime (CLR). No capı́tulo do trabalho relacionado, discute-
se o estado da arte em tipos de sessão, focando o contexto das linguagens centradas em
objectos, em typestates, uma abordagem com a qual as ideias desta tese apresentam pon-
tos de contacto, e em objectos lineares. Finalmente, na conclusão antecipa-se o trabalho
futuro, nomeadamente a apresentação dos resultados da linguagem MOOL e o estudo de
técnicas que introduzam alguma flexibilidade na utilização de objectos lineares.

Palavras-chave: Programação centrada em objectos, concorrência, sistemas de tipos,
objectos lineares, tipos de sessão
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Chapter 1

Introduction

As software complexity and size increase, more effective techniques for building reliable
systems are needed. In particular, large applications require both modular development
strategies and formal behavioural specifications that assist programmers in validating the
correctness of their code.

Concurrent programming usually introduces further complexity into the already com-
plex world of traditional sequential programming. Reasoning about concurrent programs
can be difficult, since thread interference should be considered at several program points.
Race conditions and deadlocks are some common concurrency-related problems in main-
stream programming languages.

Mainstream object-oriented languages, like Java, can automatically detect and pre-
vent (standard) type and initialisation errors through compile-time checks. However, they
cannot detect and prevent errors related to usage protocols (usually only described in
informal documentation), which end up revealing themselves as runtime exceptions in
languages equipped with built-in support to handle errors and exceptional events. For
example, reading from a file should follow the rules of a well-known usage protocol: first
a file must be opened, then it can be read multiple times (without reading beyond the
end-of-file), and finally it must be closed. Nevertheless, in mainstream object-oriented
languages, any disregard of this specification is only detected when it eventually causes
a runtime exception. As a result, one of the major topics of computer science today is
the study of strategies that can verify sequential and concurrent programs against precise
interface specifications.

The design of languages conceived especially for reasoning about program correct-
ness via specification and verification has received great attention since the Floyd–Hoare
logic [13, 21] in the late 1960’s. Since then, several programming languages were devel-
oped with mechanisms to prove program correctness and, in particular, with support for
statically enforcing specifications which programmers can write to express their intentions
about how a program should work. This support for recording and enforcing assumptions
about programs creates a new programming methodology in which developers are also
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Chapter 1. Introduction 2

called to reason about their code. However, the complexity of some specification models
is still a deterrent to the diffusion of these techniques to mainstream languages. Often,
readability and ease of understanding are design considerations that are not regarded as
important as correctness and safety ones, and software development practices continue
to be subjected to numerous errors that could easily be avoided by the use of these safer
languages.

Program development in the industry could greatly benefit from having specification
and verification techniques fully integrated in mainstream programming languages. Ben-
efits would not just be long-term, with the reduction in costs of software maintenance and
the extension of software lifespan. Immediate benefits would also come of having pro-
grammers use a methodology that allows them to automatically detect any usage errors as
early as compile-time.

In this context, we propose MOOL, a mini object-oriented language in a Java-like
style. Our programming language offers constructs that programmers can attach at class
definitions to capture usage protocols, describing how an object should be used and ac-
cessed. In particular, programmers can use these constructs to specify (1) the available
methods and (2) the existence of aliasing restrictions, both of which depend on an object
state. When only one client can reference an object, we say that the object has a linear
status. When multiple clients can reference the same object (i.e no aliasing restrictions are
imposed), we say that the object has an unrestricted, or shared, status. This combination
of properties (state and status) provides an abstract view of an object as seen by clients,
which we call the class usage type. As opposed to standard types, usage types are dy-
namic, varying over time with the object state. Based on an object usage type, the MOOL

type system can statically enforce that (1) methods are called in the specified order and
that (2) aliasing is compliant with the object specified status. MOOL also includes a sim-
ple concurrency mechanism for thread spawning, and a standard mutual exclusion facility
to be used when access to certain operations on shared objects needs to be performed
without thread interference.

Our formal language is based on a recent work by Gay et al. [15], which provides a
new approach to session types within the distributed object-oriented paradigm, referred
to as modular session types. Session types have been proposed to enhance the verifica-
tion of programs at compile-time by addressing the issue of typed communication over
channels. Typically, all communication takes place within the context of sessions. In
practice, sessions are just blocks of code in which a channel is made available for the
communication between two or more participants. Session types provide a means to en-
force that channel implementations obey the sequences and types of messages specified
in communication protocols, and are thus of great assistance to programmers who want to
verify the correctness of their programs. This theory has proved effective when applied to
static type-checking concurrent and distributed object-oriented languages, revealing both
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the expressiveness and complexity needed for modelling several common computing sce-
narios, such as client-server and peer-to-peer protocols.

In the recent approach described in the work on modular session types [15], the mod-
ularity comes from partitioning the session implementation into several methods, as op-
posed to previous approaches in the context of object-oriented languages in which the
session is implemented in a single method body. Moreover, there is a successful attempt
at treating session-typed communication channels as objects by hiding channel primitive
operations in an API from where clients can call methods. In this thesis, we take the
overall concept on which session types are founded, namely that communication should
proceed according to specified protocols, which are statically enforced, and use it to ad-
dress the issue of typed object usage in a programming language that relies on a simpler
communication model – message passing in the form of method calls. We follow the pro-
gramming style of Java, and propose a language where the programmer does not have to
deal with distribution (we use shared memory concurrency) nor channels, while still tak-
ing advantage of the type-safety properties that are usually associated with session types.
The design of our language was guided by the attempt to make it not only type-safe at
compile-time, and for that we introduce statically enforced specification constructs, but
also simple for object-oriented practitioners, which we accomplish by introducing an in-
tuitive specification in a simple class-based object-oriented programming language.

1.1 Motivation

There are several reasons why a type system should enforce that an object, and its meth-
ods, should only be available under specific conditions. For example, an attempt to pop
an element from an empty stack, or to advance an iterator beyond the end of a list, or a
file that is freely manipulated by several clients, are simple uses of objects that can lead
to unexpected behaviour, and even loss of data.

Other approaches that check that an object is correctly used based on method availabil-
ity, namely systems of typestates for object-oriented languages [7, 10], rely on pre- and
post-condition annotations on method definitions, describing what an object state should
be before and after each one of its methods is called. In our language, we do not use
method annotations; instead, we attach a usage specification at the class level to define
how an instance of the class should be used.

Gay et al. [38] call the global specification of available methods the object dynamic
interface to distinguish from the interface offered by Java. In the literature, objects that
dynamically change the set of available methods are also known as non-uniform objects.
Nierstrasz [30] was the first to study the behaviour of non-uniform, or active, objects in
concurrent systems.

We follow a similar approach in which the available methods depend on an object
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state. Additionally, we make aliasing depend on its status. To introduce the concepts
that support our ideas, we present a simple example. Consider a FileReader that uses an
object of class File , whose behaviour has already been informally described, and supports
multi-threaded access once the contents of the file has been obtained. A FileReader hides
the File protocol from clients, revealing its own: it starts by reading an entire file into a
string; once the reading is concluded, the object can be shared, and several threads can
have references to the object in order to obtain the file contents. A counter tracks the
number of accesses made to the object. During the reading process, there is a choice of
obtaining the file contents read up to that point.

Listing 1.1 formalises the File protocol, which the FileReader class (the client side)
in Listing 1.2 implements. Each class usage type formally describes the informal de-
scriptions provided above. The FileReader uses an object of class File , conforming to
its protocol. Similarly, a FileReader client should use an object of this class taking into
consideration its formalised protocol. The usage specifications attached to the class defi-
nitions indicate the order in which methods are to be called and the aliasing restrictions,
if any, imposed on clients. An object of class File is linear from beginning to end, while
an object of class FileReader begins by imposing restrictions on aliasing, but then evolves
into state Done where the specified methods may be called by multiple threads. Although
a detailed explanation of the usage specification is provided later in Section 2.2.1 and
Chapter 3 of this thesis, below we comment briefly on some specific features.

Notice first that the lin qualifier (used to indicate linearity) tracks the object status
which is controlled by its current type. For example, after opening the file in line 10
of class FileReader, the field f changes its type to File [Read] (see the File usage), where
the next available method is eof, annotated with the lin descriptor. Read is a symbolic
name representing the object state or current type. The FileReader type accompanies the
changes in the File type. After calling open on a FileReader object, its type changes to
FileReader[Next].

The entire File protocol from state Read to state end, where there are no more available
methods, takes place in the method next body of class FileReader (lines 17-22). The form
〈. . . + . . .〉, which we call a variant type, in the File usage specification, indicates that
method eof returns a result of type boolean on which depends the object subsequent state.
So, in the FileReader implementation, a test is performed in order to find out whether the
end-of-file has been reached, and the file has to be closed by invoking method close, or
the next string can be read by invoking method read. Syntactically the (;) binds stronger
than the (+), which separates the two possible results (the true result is described on the
left hand-side, while the false one is described on the right hand-side). Because a variant
is implicitly linear, the lin is omitted in the type that starts each variant.

The FileReader example also includes a variant type. The true variant, represented by
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1 class F i l e {
2 usage l i n open ; Read
3 where Read = l i n eof ; 〈 c lose ; end + read ; Read〉 ;
4 . . .
5 }

Listing 1.1: A file usage type

1 class Fi leReader {
2 usage l i n open ; Next
3 where Next = l i n {next ; 〈Next + Done〉 +
4 t o S t r i n g ; Next } ;
5 Done = ∗{ t o S t r i n g + getCounter } ;
6
7 F i l e f ; str ing s ; i n t counter ;
8
9 unit open ( str ing name) {

10 F i l e f = new F i l e (name ) ;
11 f . open ( ” r ” ) ;
12 s = ” ” ;
13 counter = 0 ;
14 }
15
16 boolean next ( ) {
17 i f ( f . eof ( ) ) {
18 f . c lose ( ) ;
19 fa lse ; / / r e t u r n f a l s e
20 } else {
21 s += f . read ( ) ;
22 true ; / / r e t u r n t rue
23 }
24 }
25
26 str ing t o S t r i n g ( ) {
27 count ( ) ;
28 s ; / / r e t u r n s
29 }
30
31 i n t getCounter ( ) {
32 counter ; / / r e t u r n counter
33 }
34
35 sync unit count ( ) {
36 counter ++;
37 }
38 }

Listing 1.2: A file reader
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state Next, defines a recursive type, showing a similar behaviour to the one of the recursive
type Read in the false variant of the File class usage type. While this recursive type
eventually ends (method next returns false once the File protocols ends), the anonymous
recursive type denoted by (*) in line 5 of class FileReader reveals a different behaviour
of a type that never ends. The state Done marks the change in the object status, which
evolves from linear to shared. It is not imposed by the MOOL type system, but rather
it emerges as a property that the only form of unrestricted useful types, apart from end

(that is un{}), are of this form. In a branch type, the (+) assumes a different meaning,
indicating a choice: when in state Done any of the methods toString and getCounter can
be called an infinite number of times, in no particular order. Formally, this type defines
a recursive branch type of the form µX.un{toString.X + getCounter.X}, where the un stands
for unrestricted (or shared), and, to lighten the syntax, can be omitted as we consider it to
be an object default status. Because of the particular form of this recursive type, calling
any of these methods on an instance of class FileReader does not change the object state
nor the set of available methods.

Finally, notice that the method count, defined in line 35, is not referred in the FileReader

usage type. This means that we can regard it as a private method, because in MOOL clients
can only view (and call) methods defined in the class usage specification. This method
is sync-annotated, but when called in state Next, the method annotation has no effect, as
the lin qualifier in the class usage type, by forbidding aliasing, already enforces mutual
exclusion.

There are several remarks to be made regarding this motivating example:

• The class usage type in the File and FileReader examples prevents common pitfalls
in the usage of a file object by enforcing a sequence of legal method calls. For
example, clients can no longer read from a file without first opening it, or read
beyond the end-of-file. Moreover, the class usage type documents and formalises
the specification which our compiler ensures at compile-time that clients correctly
implement.

• This simple example also illustrates a problem of shared accesses which may arise
in both sequential and concurrent object-oriented programming. In mainstream
languages, there is no way to avoid the potential interference of two clients with
a reference bound to the same file object. For example, one reference could be
used to make the file unreadable (by invoking method close on it) between the test
on eof and the reading operation made by another reference. This might result in
inconsistencies in the clients’ views of the file, and it illustrates a situation that can
happen both in single- and multi-threaded settings. Our solution to this problem
is to introduce a status (linear or unrestricted) attached to an object type. In the
example, the field f declared in class FileReader is the only reference allowed to the
File object, thus ensuring the safeness of the protocol. The FileReader object is also
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linear while the File type has not been consumed to the end. Once the file has been
closed, we can allow that several threads hold references to the same FileReader

instance.

Foregoing work on session types for objects deals with linear types only. The intro-
duction of shared objects is dealt with in the implementation mentioned in modular
session types [15], while defining two distinct categories to treat linear and un-
restricted objects. In our approach to object aliasing control, we define a single
category for objects, as opposed to distinct categories for linear and for shared ob-
jects. We let the current status of an object to be governed by its type, allowing
linear objects to evolve into shared ones (cf. [35, 37]). The opposite is not possible,
as we do not keep track of the number of references to a given object.

• Finally, not all programming problems can be solved by the introduction of linear-
ity. However, forbidding aliasing would be a too restrictive approach. Because we
do not track the number of references existing to a shared object, we never let an
object with an unrestricted type to go back to being linear. As a result, some addi-
tional mechanism has to used to allow for concurrent access in mutual exclusion.
Since our main focus are linear objects, to enforce serialised access to certain meth-
ods that manipulate shared data, we adopt a standard and straightforward solution
similar to the synchronized mechanism used in Java to prevent thread interference.
The need for this mechanism should become clear from regarding method count in
the example, where the sync keyword modifies the method in order to ensure that
no updates to the counter are lost when the method is accessed by multiple threads.

1.2 Contributions

Building on previous work by Gay et al. [15, 38], we propose a core concurrent object
oriented-language that includes specification constructs based on the idea of an object
usage protocol. We formalise the operational semantics and type system. Finally, we
implement these ideas in a prototype compiler.

Regarding session types, the contributions of our language are as follows:

• In contrast to other works on session types, we elect method invocation as the only
communication model, both in concurrent and sequential programming;

• We annotate classes with a usage descriptor to structure how clients can call meth-
ods, and we enhance it with lin/un qualifiers for aliasing control, thus defining a sin-
gle category for objects that may evolve from a linear status into an unrestricted one;

• In contrast to other works on session types, we replace the well-known shared chan-
nel primitive by a conventional synchronization primitive for mutual exclusion ac-
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cess in concurrent settings. We introduce a sync method modifier to describe those
operations in shared objects that must be accessed without thread interference.

1.3 Thesis Outline

The current chapter introduces our work and its main motivations. The remaining chapters
are organised as follows:

Chapter 2 describes the programming language via an extended example, which illus-
trates the main features of the specification language;

Chapter 3 formally presents the core language, describing its syntax, operational seman-
tics and type system. Its safeness is not proved in this thesis; we leave it for future
work. Because our type system relies on many of the premises upon which the work
on modular session types [15] is built, which provides a full formal treatment for its
language, we are confident that MOOL inherits similar type-safety properties, and
that we will be able to formally demonstrate them in future work;

Chapter 4 describes the prototype compiler implementation, introducing the main tech-
nologies upon which the compiler was built, as well as a view of its architecture. As
far as technologies are concerned, the compiler is written in Java, and the SableCC
framework provides a parser generator and tree-walkers, which are extended in or-
der to implement the analysis on the input MOOL programs. The compiler targets
Mono, the open-source clone of the Common Language Runtime (CLR);

Chapter 5 discusses the state of the art on session types, in particular in the context of
object-oriented languages, typestates, and unique ownership of objects;

Chapter 6 presents our conclusions and points out lines for future work.



Chapter 2

Example: The Auction System

In this chapter, we introduce an example of a full system written in the MOOL program-
ming language in order to illustrate its syntax and main capabilities. Our main focus are
the usage specification details, apart from which the language is a standard class-based
object-oriented language. All the key technical ideas should already become clear in this
chapter (see Chapter 3 for a more technical introduction).

The example models an auction system. We begin by explaining the system overall
requirements and describing the usage protocols using an informal representation (Sec-
tion 2.1). Then, we provide our solution encoded in MOOL (Section 2.2) in which we
formalise the described protocols in usage types, and discuss the decisions taken. Be-
sides demonstrating a practical use of MOOL, we reveal in this extended example the
potentialities of our approach, which can be summarised in the following features:

• Expressiveness: the usage specification can be used for modelling relatively com-
plex scenarios;

• Small learning curve: it is very easy to understand the usage specification and start
writing types using it;

• Safer code: the programmer specifies in the class usage type how objects should
be used and accessed (namely, the available methods, and the aliasing restrictions),
and our type-checker verifies that client implementations comply with the usage
type.

2.1 The Auction Usage Protocol

Our auction system, adapted from [34, 35], features three kinds of participants: the auc-
tioneer, the sellers and the bidders. Sellers sell items for a minimum price. Bidders place
bids in order to buy some item for the best possible price. The auctioneer controls these
interactions.

9
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The system is best described by the UML sequence diagrams in Figures 2.1 and 2.2,
modelling the two main scenarios through a sequence of messages exchanged between
objects. The first diagram describes the scenario for a seller, while the second one de-
scribes the scenario for a bidder. We are mainly interested in visualising the interac-
tion between the different players; we do not represent concurrent communication, even
though it should not be hard to imagine several seller and bidder threads concurrently
making requests to the same auctioneer object.

The sequence diagrams show, as parallel vertical dotted lines (called lifelines), the
different objects that participate in the protocol, and as horizontal arrows, the messages
exchanged between them, in the order in which they occur. Activation boxes, or method-
call boxes, are the rectangles drawn on top of lifelines to represent the execution of an
operation in response to a message. To lighten the representation, we omit the usual
dashed open-arrowed line at the end of an activation box indicating the return from a
message and its result. Instead, we simply annotate sent messages with the returned
value, if any. A conditional message is shown by preceding the message by a conditional
clause in square brackets. The message is only sent if the clause evaluates to true.

The first diagram (Figure 2.1) depicts how a Seller initiates the interaction with the
Auctioneer indicating the item to auction and its price. The Auctioneer, after creating an
Auction object, where the bids for the item being sold are going to be placed, delegates the
service to a new Selling object. Once the auction is set, the auctioneer can start receiving
bids for that item. We signal with a note the moment when the two scenarios interweave.

In the interaction initiated by a Bidder (Figure 2.2), the Auctioneer receives a request
for the item searched and, if the item is being auctioned, it delegates the service to the
Bidding object. Still in the bidder scenario, we can see that a Bidder holds its own Bidding

object from which it can obtain the item initial price as defined by the Seller. Based on
the returned value, the Bidder decides whether to make a bid by calling the appropriate
method on the Bidding object, or else do nothing. Returning to the seller scenario, if
the sale is successful, the Selling object allows a Seller to obtain the sale final price by
invoking method getFinalPrice.

Both scenarios depict a similar pattern, and it is not difficult to conclude from the di-
agrams that the usage protocols should be specified in the Selling and Bidding classes, and
that these protocols should describe linear types. This is the only way we can guarantee
that clients (sellers and bidders) fully obey the specification, by enforcing that their types
are consumed to the end. Notice in the diagrams that a fresh Selling (and Bidding) ob-
ject is created at the beginning of each selling (and bidding) interaction, and is implicitly
destroyed at the end. We signal object destruction in the diagram to increase the ex-
pressiveness of the representation; the type system provides crucial information to object
deallocation.
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Figure 2.1: The scenario for a seller

Figure 2.2: The scenario for a bidder
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2.2 Programming with Usage Types

Given the above informal description of the system usage protocols, it is straightforward
to write the code for each object identified in the two UML sequence diagrams. A possible
implementation is sketched in Listings 2.1-2.7. Each class begins by specifying in a
class usage descriptor the sequence of available methods and the aliasing restrictions,
if any, with which clients should comply. No additional specification is needed since, as
conventionally established, method signatures convey all the information clients need (the
number and type of parameters, and the return types).

2.2.1 Usage syntactic details

Before analysing each class and its usage in detail, we introduce some less obvious syn-
tactic details, in order to complete the brief description provided in Section 1.1. The usage
formalises how clients should use an object of a given class, and no other usage is possi-
ble. Although our language does not support access level modifiers, all methods that are
not referred in the usage specification are not visible to clients. For the same reason, class
fields are also private, and cannot be used directly.

If a program defines a conventional class named C with methods m1, m2 and m3, and
no usage declaration, our compiler will insert usage ∗{m1 + m2 + m3} as the class default
usage type, where each method (m1, m2 and m3) is always available. Formally, this usage
defines a recursive branch type of the form µ X.un{m1.X + m2.X + m3.X}. The un qualifiers
are omitted in the examples. A choice between calling one of the three available methods
is indicated by (+). Because of the particular form of the recursive type, calling any of
these methods on an instance of class C will not change the object state nor the set of
available methods.

A typical usage declaration for a linear object is a sequential composition of available
methods. If class C is linear, usage lin m1; lin m2; lin m3; end; is a possible usage decla-
ration. Calling methods in the prescribed order on an instance of this class changes the
object state and the set of available methods. State end is an abbreviation for un {}. When
an object is in this state, it means that the sequence of available methods is empty (the
usage protocol is finished).

A variant type, denoted by 〈. . . + . . .〉, is indexed by the two values of the boolean

type returned by the method to which the variant is bound. A client should test the result
of the call: if true is returned, the new object state, and the available methods, are to be
found in the left-hand side of the variant; if false is returned, it is the right-hand side to
dictate the object state and available methods.
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1 class Auct ioneer {
2 usage l i n i n i t ; ∗{ s e l l i n g + b idd ing } ;
3
4 AuctionMap map;
5
6 unit i n i t ( ) {
7 map = new AuctionMap ( ) ;
8 }
9

10 S e l l i n g [ Sold ] s e l l i n g ( str ing i tem , i n t p r i ce ) {
11 Auct ion a = new Auct ion ( ) ;
12 a . i n i t ( i tem , p r i ce ) ;
13 map. put ( i tem , a ) ;
14 S e l l i n g s = new S e l l i n g ( ) ;
15 s . i n i t ( a ) ;
16 s ; / / r e t u r n s
17 }
18
19 Bidding [ Reg is te r ] b idd ing ( str ing i tem ) {
20 Bidding b = new Bidding ( ) ;
21 b . i n i t (map. get ( i tem ) ) ;
22 b ; / / r e t u r n b
23 }
24 }

Listing 2.1: An auctioneer

1 class Auct ion {
2 usage l i n i n i t ;
3 ∗{ b id + g e t I n i t i a l P r i c e +
4 getMaxBid + getBidder } ;
5
6 str ing i tem ; i n t i n i t P r i c e ;
7 i n t b idder ; i n t maxBid ;
8
9 unit i n i t ( str ing i tem , i n t i n i t P r i c e ) {

10 . . . / / i n i t i a l i z e f i e l d s
11 }
12
13 sync unit bid ( i n t pid , i n t bid ) {
14 i f ( maxBid <= bid ) {
15 b idder = p id ;
16 maxBid = b id ;
17 }
18 }
19 . . . / / the g e t t e r s
20 }

Listing 2.2: An auction
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2.2.2 The Auctioneer

Consider now the usage specification in Listing 2.1, which provides an implementation
of class Auctioneer. When an object of this class is created using the explicit constructor
init , only one client can reference it, but then the object evolves into an unrestricted type,
allowing several sellers and bidders to hold references to the same Auctioneer instance.
Notice that we have defined a recursive (shared) type.

Each client can do one of two things:

• it can call method selling to obtain an object that provides an implementation of the
selling activity on the Auctioneer; or

• it can call method bidding and obtain an object that implements the buying activity
on the Auctioneer.

Then, it can repeat the interaction all over again: a seller can lower the price of an item
with no bids, and start a new sale; a bidder can bid a higher price. The type never ends, and
this illustrates why, in any program, we cannot keep track of the number of references to a
shared object. The return types of these two methods are Selling [Sold] and Bidding[Register]

respectively, because they need to be consistent with the state of the Selling and Bidding

objects after the method bodies are executed and advance the types. In the example, the
state Sold is short for lin sold; 〈getPrice; end + done; end〉; (lines 3 and 4 in Listing 2.4),
and is used for convenience to replace the full type above by a name that represents the
abstract state.

Notice, still in Listing 2.1, that when a new selling request is made, a new Auction

object is created (line 11). The code of class Auction is shown in Listing 2.2. This instance
is then added to the AuctionMap object (whose class we omit), where the Auctioneer keeps
all the auctions (line 13), and is passed to the constructors of both the Selling and Bidding

objects. In method selling , the reference to the Auction is created locally within the method
body and assigned to a variable (line 11), while in method bidding, it must be fetched from
the AuctionMap object (line 21). It is through reading and writing to this shared Auction

object that the protocol takes place.
The sync modifier of method bid (line 13 in Listing 2.2) is used to control concurrent

bids made by separate Bidder threads via their Bidding objects (see Listing 2.6). This
annotation also qualifies the put and get operations on class AuctionMap.

2.2.3 The Seller

Listings 2.3 and 2.4 implement two linear types. The usage declaration in class Seller is
an abbreviation for the nested composition of branch types lin{ init ; lin{run; un{}}}. Also
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1 class S e l l e r {
2 usage l i n i n i t ; l i n run ; end ;
3
4 str ing i tem ; i n t p r i ce ;
5 Auct ioneer a ;
6
7 unit i n i t ( Auct ioneer a , str ing i tem , i n t p r i ce ) {
8 . . . / / i n i t i a l i z e f i e l d s
9 }

10
11 unit run ( ) {
12 S e l l i n g s = a . s e l l i n g ( item , p r i ce ) ;
13 . . . / / wa i t f o r the auc t ion to end
14 i f ( s . so ld ( ) )
15 p r i n t ( ”made ” +
16 s . ge tPr i ce ( ) + ” euros ! ” ) ;
17 else {
18 s . done ( ) ;
19 i f ( lowerPr ice ( ) )
20 run ( ) ;
21 }
22 }
23
24 boolean l owerPr ice ( ) {
25 . . . / / implementat ion omi t ted
26 }
27 }

Listing 2.3: A seller

1 class S e l l i n g {
2 usage l i n i n i t ; Sold
3 where Sold = l i n so ld ;
4 〈 ge tPr i ce ; end + done ; end〉 ;
5
6 Auct ion a ; i n t f i n a l P r i c e ;
7
8 unit i n i t ( Auct ion a ) {
9 . . . / / i n i t i a l i z e f i e l d s

10 }
11
12 boolean so ld ( ) {
13 f i n a l P r i c e = a . g e t F i n a l P r i c e ( ) ;
14 f i n a l P r i c e >= a . g e t I n i t i a l P r i c e ( ) ;
15 }
16
17 i n t ge tPr i ce ( ) {
18 f i n a l P r i c e ;
19 }
20
21 unit done ( ) {
22 / / dummy method
23 }
24 }

Listing 2.4: A selling protocol
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1 class Bidder {
2 usage l i n i n i t ; l i n run ; end ;
3
4 i n t p id ; i n t myPrice ; Auct ioneer a ;
5
6 unit i n i t ( Auct ioneer a , i n t pid , i n t myPrice ) {
7 th is . a = a ;
8 th is . p id = p id ;
9 th is . myPrice = myPrice ;

10 }
11
12 unit run ( ) {
13 Bidding b = a . b idd ing ( ) ;
14 b . r e g i s t e r ( p id ) ;
15 i f ( b . g e t I n i t i a l P r i c e ( ) <= myPrice )
16 b . b id ( myPrice ) ;
17 else
18 b . done ( ) ;
19 }
20 }

Listing 2.5: A bidder

1 class Bidding {
2 usage l i n i n i t ; Reg is te r
3 where Regis te r = l i n r e g i s t e r ;
4 l i n ge tPr i ce ; l i n {bid ; end + done ; end} ;
5
6 Auct ion a ; i n t myBidder ; i n t p r i ce ;
7
8 unit i n i t ( Auct ion a ) {
9 th is . a = a ;

10 p r i ce = 0;
11 }
12
13 unit r e g i s t e r ( i n t myBidder ) {
14 th is . myBidder = myBidder ;
15 }
16
17 i n t ge tPr i ce ( ) {
18 i f ( p r i ce == 0)
19 p r i ce = a . g e t I n i t i a l P r i c e ( ) ;
20 p r i ce ;
21 }
22
23 unit bid ( i n t p r i ce ) {
24 a . b id ( myBidder , p r i ce ) ;
25 }
26
27 unit done ( ) {
28 / / dummy method
29 }
30 }

Listing 2.6: A bidding protocol
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notice an example of a variant type in class Selling (line 4 of Listing 2.4). The initial type
of each variant must be linear, so the redundant lin qualifier can be omitted. This variant
type requires that the client tests the boolean result of method sold in order to determine
the next available method: if the value evaluates to true, then the caller can obtain the
price (because the item was sold) via method getPrice, otherwise the protocol ends.

The Seller implementation completely complies with the Selling protocol (lines 14-16)
on what concerns reference s declared in line 12: the result of method sold is tested on the
condition of the if expression, and the price of the sale is printed if it evaluates to true,
otherwise the protocols ends, and the Selling object is deallocated through the dummy
method done. This method only purpose is marking the end of the protocol (and of the
object). However, if method lowerPrice returns true, the protocol can restart, a new Selling

object is created, and memory is allocated to it.

The method lowerPrice in class Seller (line 24 in Listing 2.3) is an example of a method
not referred in the usage specification (and consequently omitted from the object type).
Our type system ensures that only methods in the usage type are visible to clients (cf. [15,
38]). All methods not specified in the usage type can be accessed in their own classes, but
never alter the type (otherwise client views of the object could become inconsistent).

2.2.4 The Bidder

The Bidder and Bidding classes in Listings 2.5-2.6 are similar in terms of structure to the
classes described above for the seller protocol. Again, the usage type specified in class
Bidder shows an explicit constructor init and a run method (not recursive in this imple-
mentation). In the method run body, the Bidding object is used according to its usage type,
starting at state Register.

In order to bid, a bidder must register its process number; then, it must get the item
price; and finally, it can either make a bid or do nothing, and the protocol ends. Notice
the slight variation of the usage configuration in line 4 of Listing 2.6 in which the type
offers a choice of two different calls (bid or done) based on the result of a method with a
non-boolean return type. In line 15 of Listing 2.5, a Bidder object makes its choice based
on the price it is willing to pay.

2.2.5 Putting all together

The Main class in Listing 2.7 is the glue: it creates an Auctioneer object that controls the
auction, and spawns a separate thread for a Seller and two Bidder objects, using a Java-like
technique for thread creation.
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1 class Main {
2 usage l i n main ; end ;
3
4 unit main ( ) {
5 Auct ioneer a = new Auct ioneer ( ) ;
6 a . i n i t ( ) ;
7 S e l l e r s e l l e r = new S e l l e r ( ) ;
8 s e l l e r . i n i t ( a , ” psp ” , 100) ;
9 spawn s e l l e r . run ( ) ;

10 Bidder b idder1 = new Bidder ( ) ;
11 bidder1 . i n i t ( a , 1 , 100) ;
12 spawn bidder1 . run ( ) ;
13 Bidder b idder2 = new Bidder ( ) ;
14 bidder2 . i n i t ( a , 2 , 100) ;
15 spawn bidder2 . run ( ) ;
16 }
17 }

Listing 2.7: The main class
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The Core Language

In this chapter, we present the technical details of the MOOL core language, an essential
subset of the language used in the example (see Chapter 2) and implemented in a proto-
type compiler (see Chapter 4). The subset consists of those features that define MOOL,
distinguishing it from similar languages, as well as a handful of other features that sup-
port it as a practical language. We start with the formal syntax in Section 3.1, then we
define the operational semantics in Section 3.2 and subtyping in Section 3.3, and finally
we formalise the type system in Section 3.4. The main simplification in our language, as
opposed to previous approaches that work with session type concepts within the object-
oriented paradigm, is that it does not include channels; instead, only message passing
in the form of method calls is used. In particular, the set of expressions defined in our
language syntax are constructed based exclusively on standard primitives found in most
object-oriented language formalisms. The only unusual element is the usage type, speci-
fied in each class, which provides an abstract view of the protocol that clients must follow.

Most of the technicalities that we present are based on the core language from mod-
ular session types by Gay et al. [15], and on the linear type system presented by Vas-
concelos [37]. Inspired by these approaches on sessions types, our main challenge was
the attempt to formalise the convergence of channels and objects in a simple concurrent
object-oriented language.

3.1 Syntax

In MOOL, we distinguish between the user syntax and the runtime syntax. The former is
the programmer’s language, and is defined in Figure 3.1; the latter is only required by the
type system and operational semantics, and appears in Figure 3.2.

The metavariables C, f , and m range over class, field, and method names, respec-
tively. We write ~F as short for F1; . . . ;Fn; (a sequence of field declarations), ~M as short
for M1 . . .Mn (a sequence of method declarations), where n ≥ 0 in all cases. We abbre-
viate all sort of sequences using a similar pattern.

19
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We assume that class identifiers in a sequence of declarations ~D are all distinct, and
that the set of method and field names declared in each class contains only distinct names
as well. Object references o include the keyword this, which references the current in-
stance. In the examples, field accesses omit the prefix this; the compiler can insert it
when needed.

In order to simplify the static and dynamic semantics, as well as the type system, in
which we focus our analysis later in this chapter, we introduce the following restrictions
on the syntax of specific constructs:

(i) only assignment to fields is defined;

(ii) a method call is only defined on a field of an object reference (not on an arbitrary
expression);

(iii) it follows from the above that calling a method on a parameter requires assigning it
first to a field;

(iv) a method accepts only one parameter.

The rules in the type system and operational semantics can easily be extended to
methods accepting multiple parameters by recursively considering each of the parameters,
instead of just one. The remaining restrictions are mainly related to the limited use of
parameters in the core language. Passing a parameter to a method call, and assigning it
to a field are the only two ways to use this kind of reference in the core language. While
being a restriction, it supports good programming practices, since calling a method on a
parameter changes the object type, and hence its assignment to a field, instead of its direct
use in a call, should be preferred.

In the implementation, the syntax has been extended to include local variables. The
rules for fields are easily adapted to variables, the main difference being that a variable
has a method-level scope, whereas a field is defined at the class level. The resulting
implications on linearity are taken into consideration. Self-calls (made on this) are defined
in the syntax and the operational semantics, and have also been implemented. However,
since self-calls do not modify the object type, we omit from the type system the typing
rule for this construct.

3.1.1 User syntax

Classes, Fields and Methods The syntax of a class declarationD defines a class named
C that encloses a usage descriptor u, and a set of fields and methods within its scope. A
field declaration F simply defines a field named f with a type t. In the case of a field
of an object reference, type t is dynamic, which means that it may vary at runtime. The
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(class declarations) D ::= class C {u; ~F ; ~M}
(field declarations) F ::= t f

(method declarations) M ::= s t m(t x) {e}
(method qualifiers) s ::= ε | sync

(types) t ::= unit | boolean | C[u]

(values) v ::= unit | true | false | o
(expressions) e ::= v | x | o.f

| e; e | o.f = e

| new C() | o.m(e) | o.f .m(e)

| if (e) e else e | while (e) e

| spawn e

(class usage types) u ::= q {mi;ui}i∈I | 〈u+ u〉 |
| X | µX.u

(type qualifiers) q ::= lin | un

Figure 3.1: User syntax

general syntax for defining a method declaration M is also standard, denoting a method
named m that returns a value of type t, taking a parameter x with type t. The body of the
method is represented by the expression e.

Method modifiers are optional, which we indicate in the syntax by the empty string ε.
A method declaration can be annotated with the sync qualifier to prevent race conditions
from arising when separate threads attempt concurrent calls on the same method. This
means that a sync method is evaluated in a similar way to Java’s synchronized methods:
the object for which the method is invoked has an associated monitor lock, that is acquired
by the synchronized method before its body is executed [19].

Types and Values The MOOL syntax defines non-object and object types. Non-object
types include the primitive unit and boolean types. The unit type has the single value unit,
while the boolean type can have one of two values: true and false.

The type of an object is C[u] in the style of modular session types [15], ranging
over a class named C with usage type u. From a client class perspective, it prescribes the
structure of method invocation: in which order/how methods should be called. Notice that
only methods (not fields) are visible from outside, since methods are in the object type
(and fields are not), as discussed in the examples from the previous chapters. It follows
that methods not referred in the type of an object can be regarded as private (cf. [15, 38]),
even though our language does not support access level modifiers.
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Expressions The MOOL expressions are standard in object-oriented languages. We
have defined (in order of appearance) values, parameters, fields, the sequential expression
composition, assignment to fields, object creation, the self-call, the method call on fields,
control flow expressions, and thread creation.

Values and references have been introduced above. Assignments, object creation and
method calls have a syntax similar to the one found in most object-oriented languages,
except for the aforementioned restrictions. Conditional and loop expressions are standard.
Thread creation uses the spawn primitive. The form of the spawn expression means that
the inner expression e will be evaluated in a newly created thread.

Class usage types In the core language, only the abstract syntax of usage types is de-
fined, omitting the usage and where clauses, and the branch choice (+) and recursive (*)
operators that have been introduced in the examples. However, it is not difficult to trans-
late from the syntax of the examples into the core language syntax. The recursive type of
the Auctioneer with the form usage lin init ; ∗{selling + bidding}; (see Section 2.2.2) takes
the following configuration in the core language:

lin {init;µX.un {selling.X, bidding.X}}

The usage type defined in class Selling (see Section 2.2.3) provides an example of a vari-
ant type. The form usage lin init ; Sold where Sold = lin sold; 〈getPrice; end + done; end〉;
is equivalent in the core language syntax to:

lin {init; lin {sold; 〈lin {getPrice; un {}} + lin {done; un {}}〉}}

Branch types are denoted by {mi;ui}i∈I , defining available methods mi and their contin-
uations ui. Variant types are denoted by 〈u + u〉, and are indexed by the set of the two
boolean values returned by the preceding method in the specified usage type. In order to
resolve the type, the caller must perform a test on its result before calling further methods.
For simplicity, we use binary-only variants as in typestates [32], but more generous vari-
ants using enumerations can be found in the literature [15]. Recursive types are indicated
in the syntax by µX.u, and need to be contractive, which means that no subexpression
of the form µX1.· · ·µXn.X1 is allowed [15]. These types are treated in an equi-recursive
discipline, which means that we regard µX.u and its unrolling u{µX.u/X} as equal types.

A usage branch type is annotated with a qualifier q for aliasing control. The lin qual-
ifier describes the status of objects that can be referenced by a single client. The un

qualifier stands for unrestricted, or shared, and governs the status of objects that can be
referenced in multiple threads. Recall that we define a single category for objects, as op-
posed to distinct categories for linear and for unrestricted objects, allowing linear objects
to evolve into a status where they can be shared by multiple clients (cf. [35, 37]). The
opposite is not possible, as we do not keep track of the number of references to a given
object.
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(values) v ::= . . . | uninitC[u]

(expressions) e ::= . . . | insync o e

(contexts) E ::= [ ] | E ; e | o.f = E
| o.m(E) | o.f .m(E)

| if (E) e else e | while (E) e

(lock flags) l ::= 0 | 1

(object records) R ::= (t, l, ~f = ~v)

(heaps) h ::= ∅ | h, o = R

(states) S ::= (h; e1| . . . |en)

Figure 3.2: Runtime syntax

Notice that the type system, which we introduce later in this chapter, imposes some
further restrictions on usage types, namely that:

(i) the initial class usage type can only be a branch, because a variant type is bound to
the result of a method call;

(ii) in a variant type configuration 〈u+ u〉, each u corresponds to a lin-qualified branch
(and that is why the qualifier is always omitted); and

(iii) an object final status is always unrestricted, whether because it evolves into an end

state (with an empty set of alternatives), or because, being recursive, it never ends,
as illustrated in the examples.

3.1.2 Runtime syntax

Figure 3.2 introduces additional elements required by the type system and operational
semantics, but not available in the user syntax.

In the runtime syntax, values include uninitC[u], not in the programmer syntax, which
is used by our compiler to initialise fields of type C[u] when an object is created. Expres-
sions are extended with the insync expression in the style of Flanagan and Abadi [12],
that denotes that the subexpression e is currently being evaluated while the lock is held
on object o.

Contexts, lock flags, object records, heaps and states presented next are required by
the operational semantics. Evaluation contexts are denoted by E , and are expressions
with one hole. Contexts specify the order in which expressions are evaluated, defining
where reduction rules can be applied. The contexts which we define ensure that all field
accesses and method calls occur after the receiver has been resolved, and that sequences
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of expressions are evaluated in a specific order, namely from left to right. In the case of
control flow expressions, the contexts guarantee that a branch in a conditional construct
can only be executed after the condition has reduced to a value of a boolean type, and the
same is guaranteed in the execution of the body of a while loop.

A heap is viewed as a map (a partial function of finite domain) from object identifiers o
into records R. The operation h, o = R adds an entry to the heap h, if o does not yet
exist, and is considered to be associative and commutative, which means that a heap is an
unordered set of bindings [15]. Object records are instances of usage-typed classes and
are represented by the triple (t, l, ~f = ~v), where t is the object current type, l represents
the class lock flag, and ~f 7→ ~v is a mapping from field identifiers to their values. The
lock can be either in a locked or unlocked state, denoted by the 1 and 0 flag, respectively.
The record ( , 1, ) means that some thread currently holds the lock associated with the
current instance. Initially, an object is created with the flag set to 0. States consist of two
components: a heap and a parallel composition of expressions sharing the same heap.

3.1.3 Programs

A MOOL program is composed of a collection of class declarations, which include the
program entry point – a starting class named Main with a special method called main.
A program starts with an initial state of the form (o : Main[u], 0, ~f = init(~t)), o.main().
Intuitively, though not syntactically correct, we could simplify and just say that a program
starts with the expression new Main().main().

In the rest of this chapter, we present the reduction and typing rules of the MOOL core
language. We use the notation in Figure 3.3 to access the components defined in class
declarations.

3.2 Operational Semantics

An operational semantics for MOOL is described in this section, modelling program exe-
cution. The rules are defined in terms of state transitions. The evaluation of configurations
starts with an empty heap and a set of expressions, and proceeds according to the various
rules that specify the behaviour of each expression.

To simplify the reduction rules, we define a set of operations on the heap. If o is in the
domain of h, then h(o) returns the recordR associated with o in h. IfR = (C[u], l, ~f = ~v),
the auxiliary functions in Figure 3.3 are used to access and update object record compo-
nents.

The functions used to access elements of object records are straightforward. Functions
for record update are used to modify an object component. We show how lock and field
values are updated. In both cases, the operation changes the initial heap h1 into the final
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Accessing components in class C {u; ~F ; ~M}

• C.usage = u

• C.fields = ~F

• C.methods = ~M

Accessing components in record (C[u], l, ~f = ~v)

• h(o).class = C

• h(o).usage = u

• h(o).lock = l

• h(o).fi = vi

Updating record components in heap h = h1, o :
(C[u], l, ~f = ~v), h2

• h{o.lock 7→ l′} = h1, o : (C[u], l′, ~f = ~v), h2

• h{o.fi 7→ v} = h1, o : (C[u], l, (~f1 = ~v1, fi =

v, ~fn = ~vn)), h2 where ~f = f1 . . . fn and ~v =
v1 . . . vn

Figure 3.3: Auxiliary functions for class and heap components

one h2. We also use the notation e{o/this}{v/x} to denote the substitution in expression e
of this for o and of x for v.

The rest of the section is devoted to presenting the reduction rules for MOOL and
explaining each one of them in detail. The only unusual rules are the ones that have to
deal with linear control of objects; the remaining ones are typical of most object-oriented
languages.

3.2.1 Reduction rules for states

In Figure 3.4 we define the reduction rules for states, and below we comment on each one
of them. These rules take the general form:

(h; e1| . . . |en) −→ (h; e1| . . . |en)
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(h; e1| . . . |e| . . . |en) −→ (h′; e1| . . . |e′| . . . |en)
(R-CONTEXT)

(h; e1| . . . |E [e]| . . . |en) −→ (h′; e1| . . . |E [e′]| . . . |en)

(R-SPAWN) (h; e1| . . . |E [spawn e]| . . . |en) −→ (h; e1| . . . |E [unit]|e| . . . |en)

Figure 3.4: Reduction rules for states

R-CONTEXT This rule is standard, defining which expression can be evaluated next
in the program execution. It is the rule that invokes all the other reduction rules for
expressions (see Figure 3.6).

R-SPAWN When spawn e is evaluated in an arbitrary context, the original thread does
not evaluate the expression, but instead detaches it to a new thread running in parallel.
After spawn, the original thread proceeds to evaluate its next instruction. The value of
the spawn expression is unit, as the result of evaluating e is not transferred back to the
original thread.

3.2.2 Reduction rules for expressions

The rules for expressions in Figure 3.6 have a similar form, with the difference that the
state contains only one expression (as opposed to a parallel composition of expressions):

(h; e) −→ (h; e)

The rules use in their definitions the predicates defined in Figure 3.5. Predicate q(v)

determines the type status (linear or unrestricted) given a value v. If v is a value of a
primitive type, then its status is always unrestricted. If v is an object, then its status
depends on its current type, which can be fetch from the usage component of the record
associated with o in heap h. A variant type is always linear, and the status of a branch type
is defined by the programmer. Predicate q(t) follows a similar pattern, with the difference
that it takes a type as its argument. Finally, function init(t) takes a type as its argument
and returns the type default value.

R-SEQ This rule reduces the result to the second part of the sequence of expressions,
discarding the first part only after it has become a value.

R-LINFIELD, R-UNFIELD Access to a field involves extracting the value of the field
from an object in the heap and determining whether the value belongs to an unrestricted
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Predicates lin(v) and un(v) with q ::= lin | un

• if v = unit, true, false then un(v)

• if v = o and h(o).usage = 〈 + 〉 then lin(v)

• if v = o and h(o).usage = q {. . . } then q(v)

Predicates lin(t) and un(t) with q ::= lin | un

• if t = unit, boolean then un(t)

• if t = C[〈 + 〉] then lin(t)

• if t = C[q {. . . }] then q(t)

Function init(t)

• init(boolean) = false

• init(unit) = unit

• init(C[u]) = uninitC[u]

Figure 3.5: Auxiliary functions for values and types

or a linear type, using functions un(v) and lin(v), respectively (defined in Figure 3.5).
After access, the value of an unrestricted field is v as in Java, but the value of a linear field
must be unit to ensure that only one reference to an object with a linear type exists at any
given moment.

R-ASSIGN Assignment to a field updates the value of the field with value v. The value
of the entire expression needs to be unit (as opposed to v), and this is again a linearity
constraint to enforce that a reference to an object with a linear type goes out of scope after
appearing on the right-hand side of an assignment.

R-NEW The creation of a new object requires generating a fresh object identifier and
obtaining the field names and types from the set of the class fields. Notice that a new
object record, indexed by object identifier o, is added to the heap. Also notice that the
object starts in an unlocked state 0, and that fields are initialised to default values based
on their declared types (see Figure 3.5).



Chapter 3. The Core Language 28

(R-SEQ) (h; v; e) −→ (h; e)

h(o).f = v lin(v)
(R-LINFIELD)

(h; o.f) −→ (h{o.f 7→ unit}; v)

h(o).f = v un(v)
(R-UNFIELD)

(h; o.f) −→ (h; v)

(R-ASSIGN) (h; o.f = v) −→ (h{o.f 7→ v}; unit)

o fresh C.fields = ~t ~f
(R-NEW)

(h; new C()) −→ (h, o = (C,C.usage, 0)~f = init(~t); o)

m( x) {e} ∈ (h(o).class).methods
(R-SELFCALL)

(h; o.m(v)) −→ (h; e{o/this}{v/x})

m ∈ h(o).f.usage m( x) {e} ∈ (h(o).f.class).methods
(R-CALL)

(h; o.f .m(v)) −→ (h; e{o.f/this}{v/x})

h(o).f.lock = 0 m ∈ h(o).f.usage

sync m( x) {e} ∈ (h(o).f.class).methods
(R-SCALL)

(h; o.f .m(v)) −→ (h{(o).f.lock 7→ 1}; insync o′ e{o.f/this}{v/x})

(R-INSYNC) (h; insync o v) −→ (h{(o).lock 7→ 0}; v)

(R-IFTRUE) (h; if (true) e′ else e′′) −→ (h; e′)

(R-IFFALSE) (h; if (false) e′ else e′′) −→ (h; e′′)

(R-WHILE) (h; while (e) e′) −→ (h; if (e) {e′; while (e) e′} else unit)

Figure 3.6: Reduction rules for expressions
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R-SELFCALL, R-CALL The first rule is for method calls directly on an object refer-
ence, which typically result from calls on this. These calls do not depend on the usage
type, unlike rule R-CALL. In the latter case, the invoked method not only has to be de-
fined in the class of the receiver, but it must also be referred in receiver usage type. Notice
that both rules are for non-synchronized method calls. For synchronized calls we have
defined a specific rule (R-SCALL), which we introduce below. In either case, if the hy-
pothesis holds, then the method body is prepared by replacing occurrences of this by the
receiver heap address (so that occurrences of this within the method body refer to the
receiver instance) and the actual parameter by the formal one. The resulting expression
is the method body with the above substitutions that can be further reduced using the
appropriate rules.

R-SCALL, R-INSYNC These two rules are used when synchronizing method calls.
They were inspired by the operational semantics proposed by Flanagan and Abadi [12]
for a concurrent, imperative language. The new element here, as opposed to the standard
reduction rules for method calls above (R-SELFCALL and R-CALL), is the lock acquired
on the receiver object. The method body reduces to the insync expression that indicates
that the method body specified by e is currently being evaluated as a synchronized block.
Rule R-INSYNC says that once the method returns a value, the lock on the object is
released, and this we represent by updating the lock component with the flag 0.

R-IFTRUE, R-IFFALSE These two rules implement the conditional construct, making
each branch depend on the boolean value that controls the condition, and which has been
reduced by other rules.

R-WHILE The behaviour of the while loop is defined by rewriting it to a nested condi-
tional expression. Iteration is reproduced by evaluating the condition within a conditional:
if the test succeeds, an iteration will be performed; if it fails, the iteration is cancelled,
and execution proceeds to an empty (unit) branch.

3.3 Subtyping

The subtyping definition for the MOOL language is similar to the one described for the
language in [15]. The subtype usage relation is coinductively defined as follows, where<:

stands for the largest relation on class usage types:

• If {mi : ui}i∈I <: u′ then u′ = {mj : u′j}j∈J with J ⊆ I and ∀j ∈ J, uj <: u′j

• If 〈u′ + u′′〉 <: u then u = u′ with u′ <: u or u = u′′ with u′′ <: u
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The branch type is the source of subtyping by allowing that the possible usage choices
can safely be used in the context where the superusage is expected. The proof that the
usage relation is a pre-order (i.e. a relation that is reflexive and transitive) is not provided
here, but can be adapted from [16].

The subtyping usage rule relation is extended to the types of our language as the
smallest reflexive relation which includes the following:

• C[u] <: C[u′] if u <: u′

This means that implicitly the subtyping relation for the two other types in our lan-
guage is defined as boolean <: boolean and unit <: unit.

3.4 Type System

The purpose of any type system is to filter some of the programs that are generated by the
context-free grammar, seeking to guarantee that these programs make sense in view of a
set of well-defined rules. In MOOL, type safety is achieved by making sure that:

(i) client code calls methods in the order specified in the class usage type;

(ii) client code tests method results, if applicable, before proceeding to the next call; and

(iii) references to linear objects are consumed to the end before being discarded.

The type checker relies on a set of typing rules that formalise these properties. Most of the
rules are adapted from modular session types [15]. The reconstruction of session types
in [37] gave us insight into how to approach lin/un qualifiers.

The inference rules that define the type system use two typing environments, Θ and Γ.
We consider typing environments as maps (or partial functions of finite domain) similar to
heaps. The typing environment Θ is a map from usage types u to typing environments Γ.
It records the field typing environment associated with usage type u. It is used to keep
track of visited usage types, thus preventing cycles in the presence of recursive types.

The typing assumptions for environment Γ have the form:

Γ ::= Σ | 〈Γ + Γ〉

where Σ is a map from fields o.f and parameters x to types t. Environment 〈Γ + Γ〉
represents a pair of maps: the map on the left is used for the true variant, while the map
on the right is for the false one.

Below are the typing judgements where these environments are used. The typing
judgement for usage types is presented on the left, and the one on the right is used for
expressions:

Θ; Γ . C u / Γ′ Γ . e : t / Γ′
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` D1 . . . ` Dn(T-PROGRAM) ` D1 . . . Dn

∅; this. ~f : ~t . C u / Σ un(Σ)
(T-CLASS)

` class C {u;~t ~f ; }

Figure 3.7: Typing rules for programs

The judgements have two parts: the input of the judgement (on the left-hand side of the
first triangle) and its output (on the right-hand side of the second triangle). In the centre
is the syntactic construct being evaluated.

The typing judgement for usage types reads: ”Usage type u is valid for classC starting
from field and parameter types in Γ, the initial environment, and ending with field and
parameter types in Γ′, the final environment”. The initial and final environments may be
different, because object field types in Γ may have changed after each method described
in u has been type-checked.

The typing judgement for expressions follows a similar pattern. Γ is the initial typing
environment before type-checking expression e, and Γ′ is the final one, after associat-
ing e with type t. Again, the initial and final environments may be different, because of
side-effects the expression being checked may cause on environment Γ, turning it into
environment Γ′. In particular, identifiers may become unavailable in the case of refer-
ences to linear objects, and object types may change as a result of the evaluation of some
language constructs, namely method calls and control flow expressions.

Using a similar notation to the one used in Section 3.2 to update the heap, if Γ(o.f)

is defined, i.e. if o.f ∈ dom(Γ), then Γ{o.f 7→ t} denotes the environment obtained by
updating the type of field o.f to type t.

3.4.1 Type checking programs

The typing rules defined for MOOL have a clear algorithmic configuration. They should
be read starting from the judgement in the conclusion, and considering that it holds given
the specified premises. Moreover, type-checking is modular and performed following a
top-down strategy: a program checking is conducted by checking each class separately,
which in turn conducts the checking of each method within the class in the order in which
it appears in the specified usage type. In what follows, rules are presented in the order in
which they are evaluated (and in the order in which they should be read).

Figure 3.7 defines rules for typing programs, and below we comment on them.

T-PROGRAM When checking that a program is well-formed, this rule simply checks
that each class defined in it is well-formed.
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T-CLASS The rule for typing classes constructs the field arguments in the initial typing
environment1. Notice that when starting to type-check a class, the environment Θ is
empty as no usage types have yet been visited. T-CLASS is responsible for calling the
rules for type-checking usage type constructs (see Figure 3.8). After type-checking u, the
object fields in Σ are a subset of the original ones, that have been consumed, inside the
object, to the end. Those which are missing have been passed as parameters, or returned
from methods, and thus removed from the environment. This means that the object fields
in a class final environment have always unrestricted types, either recursive or un end.
Function un(Σ) recursively calls predicate q(t) in Figure 3.5, passing each field type in Σ

as argument, in order to guarantee that no linear fields exist in the class final environment.

3.4.2 Type checking classes

The rules in Figure 3.8 describe how the four usage constructs (cf. Figure 3.1) are typed
in MOOL. In Figure 3.9, we exemplify in a derivation tree how the rules are applied to a
slightly simplified FileReader usage type from Section 1.1, starting at state Next. To lighten
the representation, we drop the subscript in the usage type judgements, which identifies
the class being type-checked. Γ1 is the initial environment, containing the field f typing
when a FileReader object is at state Next. Field f references a linear File object, and its
type (omitted) changes throughout the FileReader class type-checking, altering the class
environment configuration. Environments Γ1 to Γ4 represent these changes. Θ1 and Θ2

keep track of visited usage types by storing references to recursive states Next and Done,
mapped to their respective environments. Because the other two fields in class FileReader

(s and counter) have standard, non-object types, that remain unchanged throughout the
class type-checking, we simplify and omit them from the environments represented in the
derivation.

The example makes a reference to the derivation in Figure 3.13, where we illustrate
the method next body being type-checked and revealing how f changes its type as the File

type is consumed. T-IFV final environment Γ2 (in the form of a pair of environments) is
T-BRANCH initial one. The true environment Γ1 is chosen for the type-checking of those
methods described in state Next, while the false one Γ4 is chosen for the type-checking
of the methods specified in state Done. The class final environment is empty as field
f has been removed by T-BRANCH after its type has been consumed to the end in the
method next body. The example establishes that µNext.lin next;. . . is a valid usage type
by directly applying the appropriate usage type rule at each step in the derivation tree.
The descriptions that we provide below clarify the semantics of the rules.

1The initial typing environment cannot be Γ, because variant types are bound to the result of a method
call, as discussed in Section 3.1.1.
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∀i ∈ I si ti mi(t
′
i xi) {ei} ∈ C.methods Σ, xi : t′i . ei : ti / Γ

xi : t′′i ∈ Γ⇒ un(t′′i ) Γ = 〈 + 〉 ⇒ ti = boolean Θ; Γ\xi . C ui / Γ′
(T-BRANCH)

Θ; Σ . C q {mi;ui} / Γ′

Θ; Γ′ . C ut / Γ Θ; Γ′′ . C uf / Γ
(T-VARIANT)

Θ; 〈Γ′ + Γ′′〉 . C 〈ut + uf〉 / Γ

(T-USAGEVAR) (Θ, X : Γ); Γ . C X / Γ′

(Θ, X : Γ); Γ . C u / Γ′
(T-REC)

Θ; Γ . C µX.u / Γ′

Figure 3.8: Typing rules for classes

T-BRANCH The rule for branch usage types conducts the type-checking of the methods
defined in the class usage type in the order in which they appear in the specified sequence.
The appropriate rules for expressions (see Figure 3.11) are called by T-BRANCH so that
each method body ei can be type-checked.

The initial environment is a single map of fields and parameters, denoted by Σ, while
the final one may be a pair of maps if the method mi returns a value of type boolean.
Thus Γ is used instead. When exiting the method body, the parameter type in Γ may have
changed from the initial type t′i to the final one t′′i . Additionally, the rule requires that
t′′i is unrestricted, so function un(t′′i ) checks that the parameter has been consumed to the
end. Finally, the parameter entry must be removed from environment Γ before the rule
advances to type-checking the method continuations ui, where again the field typing may
change, modifying the initial environment Γ to the final one Γ′.

Extending the rule to methods accepting multiple parameters means simply that each
parameter in the environment is recursively checked, and recursively removed from the
final environment afterwards.

T-VARIANT In checking variant types, the rule requires that there is a consistency be-
tween the variants final environment Γ, after passing Γ′, the left environment, to type the
true variant, and Γ′′, the right environment, to type the false variant.

T-USAGEVAR, T-REC The first rule, T-USAGEVAR, simply reads the type variable X
from map Θ. Because X represents an infinite branch in the usage type tree that no pro-
gram can ever consume to the end (see an example in states Next and Done in Figure 3.9),
the rule cannot define the final environment as being the same as the initial one, which
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class Fi leReader {
usage l i n open ; Next

where Next = l i n next ; 〈Next + Done〉 ;
Done = ∗{ t o S t r i n g + getCounter } ;

. . .
}

...(*)
Γ4 . getCounter : int / Γ4

(T-USAGEVAR)
Θ2,Γ4 . Done / ∅

...
Γ4 . toString : string / Γ4

(T-USAGEVAR)
Θ2,Γ4 . Done / ∅ (*)

(T-BRANCH)
Θ2,Γ4 . {toString; Done + getCounter; Done} / ∅

(**) (T-REC)
Θ1; Γ4 . µDone.{toString; Done + getCounter; Done} / ∅

(see Fig. 3.13)
(T-IFV)

Γ1 . if . . . : . . . / Γ2

(T-USAGEVAR)
Θ1; Γ1 . Next / ∅ (**)

(T-VARIANT)
Θ1; Γ2 . 〈Next + Done〉 / ∅

(T-BRANCH)
Θ1; Γ1 . lin next; . . . / ∅

(T-REC)
∅; Γ1 . µNext.lin next; . . . / ∅

• Θ1 = Next : Γ1

• Θ2 = Θ1,Done : Γ4

• Γ1 = this.f : File[Read]

• Γ2 = 〈Γ1 + Γ4〉 = 〈this.f : File[Read] + this.f : File[end]〉

• Γ3 = this.f : File[〈close; end + read; Read〉]

• Γ4 = this.f : File[end]

Figure 3.9: Example of the FileReader usage type derivation
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(T-UNIT) Γ . unit : unit / Γ

(T-TRUE) Γ . true : boolean / Γ

(T-FALSE) Γ . false : boolean / Γ

Figure 3.10: Typing rules for values

means that the final environment can be whichever we want. The rule for recursive usage
types, T-REC, not only reads the type from map Θ, but also checks the type against the
class, using T-USAGEVAR to type usage variablesX , and the other two rules, T-BRANCH

and T-VARIANT, to type branch and variant constructs. The final environment Γ′ may
be different, because field types may have changed, after type-checking expressions in
method bodies (recall that T-BRANCH calls the appropriate rules for expressions).

3.4.3 Type checking expressions

We now proceed to the rules for expressions. In order to make them more readable, we
use the single environment Σ everywhere a map is needed to index a field or a parameter;
otherwise the more general environment Γ is used. Figure 3.10 types values. The rules
are mostly standard, evaluating the types that values can assume.

Figures 3.11 and 3.12 define the rules for the remaining expressions of the top level
language. The rest of the section is devoted to discussing each one of them in detail.

T-SEQ Typing the sequential composition of expressions is simple: the rule considers
the typing of the second subexpression taking into account the effects of the first one on
the environment, which may be different when e represents a method call or a control
flow expression.

T-LINVAR, T-UNVAR These two rules evaluate the types of method parameters, dis-
tinguishing linear from unrestricted ones. Recall that, as we cannot call methods on pa-
rameters, they must be first assigned to fields. In the case of parameters with linear types,
the type system requires that they are removed from the environment, so that they can
no longer be used after assignment. Predicates lin(t) and un(t), which have been defined
earlier in Figure 3.5, are used to determine the status of a given type. In practice, primitive
types (unit and boolean) are always unrestricted; for object types the current status varies
with the type.
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Γ . e : t / Γ′′ Γ′′ . e′ : t′ / Γ′
(T-SEQ)

Γ . e; e′ : t′ / Γ′

(T-LINVAR) lin(t)

Σ, x : t . x : t / Σ

un(t)
(T-UNVAR)

Σ, x : t . x : t / Σ, x : t

(T-LINFIELD) lin(t)

Σ, o.f : t . o.f : t / Σ

un(t)
(T-UNFIELD)

Σ, o.f : t . o.f : t / Σ, o.f : t

Σ . e : t / Σ′ Σ′(o.f) = t un(t)
(T-ASSIGN)

Σ . o.f = e : unit / Σ′

(T-NEW) Γ . new C() : C[C.usage] / Γ

Γ . e : t / Γ′ un(t)
(T-SPAWN)

Γ . spawn e : unit / Γ′

Figure 3.11: Typing rules for simple expressions

T-LINFIELD, T-UNFIELD The rules for fields are similar to the ones defined above
for parameters, removing fields with linear types from the environment.

T-ASSIGN This rule formalises assignments to fields. The type of the reference and
the expression must be consistent and, because of linearity, it must be unrestricted. The
type of the entire assignment expression is unit (as opposed to t) to enforce that a linear
reference goes out of scope after appearing on the right-hand side of the assignment.

T-NEW The rule for object creation simply states that a new object has the initial usage
type declared by its class.

T-SPAWN The type-checking rule for a spawn expression requires not only that the
thread body is typable, but also that it is not of a linear type; otherwise one could cre-
ate a linear reference and not use it to the end (suppose we wrote spawn new C()). The
type of the entire spawn expression is unit, because the evaluation is performed only for
its effect (creating a new thread); no result is ever returned (recall the reduction rule in
Section 3.2.1).
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Γ . e : t / Σ Σ(o.f) = C[ {mi;ui}i∈I ]
j ∈ I t mj(t x) { } ∈ C.methods

(T-CALL)
Γ . o.f .mj(e) : t / Σ{o.f 7→ C[uj]}

Γ . o.f .m(e) : boolean / Σ

Σ{o.f 7→ C[ut]} . e′ : t / Γ′
Σ(o.f) = C[〈ut + uf〉]

Σ{o.f 7→ C[uf ]} . e′′ : t / Γ′
(T-IFV)

Γ . if (o.f .m(e)) e′ else e′′ : t / Γ′

Γ . o.f .m(e) : boolean / Σ

Σ(o.f) = C[〈ut + uf〉] Σ{o.f 7→ C[ut]} . e′ : t / Γ
(T-WHILEV)

Γ . while (o.f .m(e)) e′ : unit / Σ{o.f 7→ C[uf ]}

Γ . e : boolean / Γ′ Γ′ . e′ : t / Γ′′ Γ′ . e′′ : t / Γ′′
(T-IF)

Γ . if (e) e′ else e′′ : t / Γ′′

Γ . e : boolean / Γ′ Γ′ . e′ : t / Γ(T-WHILE)
Γ . while (e) e′ : unit / Γ′

Γ . e : t / Γ′
(T-INJL)

Γ . e : t / 〈Γ′ + Γ′′〉
Γ . e : t / Γ′′

(T-INJR)
Γ . e : t / 〈Γ′ + Γ′′〉

Γ . e : C[u] / Γ′ C[u] <: C[u′]
(T-SUB)

Γ . e : C[u′] / Γ′
Γ . e : t / Σ Σ <: Σ′

(T-SUBENV)
Γ . e : t / Σ′

Figure 3.12: Typing rules for calls and control flow expressions
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T-CALL Besides enforcing that the type of the argument matches the parameter type in
the method signature, and that the method is defined in the set of the receiver methods,
calls on fields require that the receiver has an appropriate usage type. The call results
in the receiver changing its type to C[uj], with the final environment Σ being updated
accordingly, while at the same time the type advances from {mi;ui} to mj .

T-IFV, T-WHILEV As opposed to the rules presented thus far, the remaining rules
that we introduce in this section are not syntax-directed, which means that to implement
them additional information is needed as they are evaluated. The next chapter informally
describes the algorithm used in the implementation of the type-checker, explaining how
that information is tracked.

To simplify the rules, for an object to have type variant, the method call on which
the variant type depends must be performed on the condition of a control flow expression
(and not on an arbitrary assignment). Recall that a variant type is tied to the result of a
method and, depending on the value returned, an object type may be modified differently.

The type system requires the value to be tested in the condition of the expression, so
as to have the type immediately deduced. We believe that this restriction does not impair
current object-oriented programming practices, considering that what we propose reflects
how a variant type is typically given to an object.

T-IFV and T-WHILEV are particular cases of the more general rules for control flow
expressions that we describe below. The order in which we present them here corre-
sponds to the actual order in which the type-checker evaluates them. Both rules depend
on T-CALL to deduce the return type of the method tested on the condition.

In the case of T-IFV, both branches use Σ, the environment that results from the call,
as their initial environment. The method returned value defines how o.f type is updated,
thus determining which branch (the then or the else) shall be executed. However, because
only one of the branches can be executed, the rule enforces that the two branches should
be consistent, sharing the same final environment Γ′.

T-WHILEV follows a similar pattern: a while expression can be reduced to an if that
is repeated while a particular condition returns true. As in T-IFV, the rule for the loop
expression requires that the method called on the condition has a boolean type, and that
the receiver has a variant type. When the condition evaluates to true, the receiver type
becomes C[ut] in Σ, the loop body is executed, while preserving at the end the original Γ.
This is required because the condition continues being tested until it eventually evaluates
to false. In the conclusion, the final environment Σ is modified as the receiver type is
updated to the type of the false variant C[uf ]. The type of the entire loop expression is
unit, because its result can never be used.
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T-IF, T-WHILE These are standard rules for control flow expressions, and should be
used only after the above rules have been tried.

T-INJL, T-INJR The two injection rules build a variant environment as follows: an
environment Γ becomes 〈Γ+Γ′〉 by injecting Γ on the left using rule T-INJL, and becomes
〈Γ′ + Γ〉 by injecting on the right using rule T-INJR.

Typically, these rules build the final environment of a boolean method bound to a
variant type. The example in Figure 3.13 depicts the typing derivation of the method next

body from the FileReader class in Section 1.1. So that the example can be followed easily,
we accompany it with the FileReader usage type and the method implementation, as well
as with the File usage type, allowing that the changes in field f of FileReader, which is
bound to the File object, can be tracked in the respective usage specification.

T-IFV is at the root of the derivation tree evaluating the conditional expression cor-
responding to the method body, starting with the environment configuration represented
by Γ1. The example shows the environment configuration in which each subexpression
within the conditional expression is typed, and how the field f typing changes as the
derivation proceeds. Recall that the other two fields defined in class FileReader are omit-
ted, as their non-object types remain unchanged throughout the type-checking.

Calling f .eof() changes the type of field f to the variant type in Γ3, which is the initial
environment of each of the if expression branches. Calling f .close() and f .read() changes
again the type of f, differently in each call, resulting in two different environment config-
urations, Γ4 and Γ1, respectively. Using the appropriate injection rules, each environment
is then injected into the pair of environments Γ2, introducing consistency in the branches
final environment, and thus in the conditional expression final environment. Recall from
the derivation of Figure 3.13 presented earlier that Γ2 is used as the input environment of
rule T-VARIANT. In that example, we show the appropriate environment being chosen in
order to proceed with the type-checking of the remaining methods of class FileReader, not
yet type-checked.

T-SUB, T-SUBENV The two subsumption rules are similar to the ones described for the
language presented in modular session types [15]. T-SUB is a standard subsumption rule
that simply says that whenever we can prove that type t′ is a subtype of t, we can treat t′

as if it were type t. T-SUBENV allows subsumption in the final environment, and is used
for the branches of control flow expressions.

Consider in Figure 3.14 class F usage type, a variation of the File usage type written
exclusively for the sake of illustrating subsumption in MOOL. Class C defines a field f

referencing an object of class F. The method m body represents the MOOL way of writing
if (! f .eof) f .read(); After calling the condition f .eof() , there is a choice: the type of f

can either advance to type F[〈Close + read; Read〉] or to F[Close]. In the example, the then
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class F i l e {
usage l i n open ; Read

where Read = l i n eof ; 〈 c lose ; end + read ; Read〉 ;
. . .

}

class Fi leReader {
usage l i n open ; Next

where Next = l i n next ; 〈Next + Done〉 ;
Done = ∗{ t o S t r i n g + getCounter } ;

F i l e f ;
. . .
boolean next ( ) {

i f ( f . eof ( ) ) {
f . c lose ( ) ;
fa lse ; / / r e t u r n f a l s e

} else {
s += f . read ( ) ;
true ; / / r e t u r n t rue

}
}
. . .

}

...
Γ3 . f.close() : unit / Γ4(*)

Γ5 . f.close(); false : boolean / Γ2

...
Γ3 . f.read() : unit / Γ1(**)

Γ6 . f.read(); true : boolean / Γ2

. . . (T-CALL)
Γ1 . f.eof() : boolean / Γ3 (*) (**)

(T-IFV)
Γ1 . if (f.eof()) {f.close(); ... } else {... f.read(); ... } : boolean / Γ2

• Γ1 = this.f : File[Read]

• Γ2 = 〈Γ1 + Γ4〉 = 〈this.f : File[Read] + this.f : File[end]〉

• Γ3 = this.f : File[〈close; end + read; Read〉]

• Γ4 = this.f : File[end]

• Γ5 = this.f : File[close; end]

• Γ6 = this.f : File[read; Read]

Figure 3.13: Example of a FileReader method derivation
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branch body simply returns unit, so the type of f remains unchanged. On the contrary, the
else advances the type of f to F[Read]. Because T-IFV defines that the two branches final
environment must be consistent, T-SUBENV allows that the type in Γ2 subsumes the one
in Γ1, thus reconciling the final types of both branches.

3.5 Additional Details

In the previous section, we have presented a type system that can be unfolded in two:
the first one containing the syntax-directed rules, which can be implemented directly,
no additional information being required, in the prototype compiler type-checker, and
the second one containing the rules which are not syntax-directed, namely the rules for
the control flow expressions, and those for the injection and subsumption. The latter
type system requires that some information is kept as the algorithm, described in the
next chapter, proceeds with the evaluation. However, to prove the main results of our
type system, some additional technical rules are required for the syntactic constructions
described in Figure 3.2, namely rules for the insync expression, for object record R, for
heaps h and for states S.

Based on the full formal treatment provided for the language of modular session
types [15], the main results we are expecting to prove are:

Type Preservation Well-typedness remains invariant under evaluation.

No Stuck States A MOOL program never goes into a state that is not defined by the rules.

Conformance When executing a typed program, the call trace of every object is one of
the traces of the initial usage type of its class [15].

The properties type preservation and no stuck states are the usual properties for prov-
ing type-safety in object-oriented languages. The conformance property, however, is spe-
cific of our type system as it determines conformance of sequences of method calls to us-
age types. In MOOL, call traces on an object o is a sequence of method names m1m2 . . . ,
where each mi is a method name, excluding self-calls (for they do alter an object type). A
usage type defines a set of call traces, which corresponds to the set of paths in a labelled
directed graph (see an example in Figure 4.3).

We do not present the technical rules in this thesis, nor do we prove the main results,
leaving this analysis for future work. Nevertheless, we are confidant that with minor
adjustments we will be able to provide a full formal treatment for the MOOL language,
using subject reduction as a proof technique by induction, and having as reference the
strategy adopted by the work on modular session types.
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class F {
usage l i n open ; Read

where Read = l i n {eof ; 〈Close + read ; Read〉 +
Close}

Close = close ; end ;
. . .

}

class C {
. . .
F f ;
. . .
unit m( ) {

i f ( f . eof ( ) )
unit ;

else
f . read ( ) ;

}
. . .

}

(*) (T-UNIT)
Γ2 . unit : unit / Γ2

(T-CALL)
Γ4 . f.read() : unit / Γ1(**) (T-SUBENV)
Γ4 . f.read() : unit / Γ2

(T-CALL)
Γ1 . f.eof() : boolean / Γ3 (*) (**)

(T-IFV)
Γ1 . if (f.eof()) unit; else f.read() : unit / Γ2

• Γ1 = this.f : File[Read]

• Γ2 = this.f : File[Close]

• Γ3 = this.f : File[〈Close + read; Read〉+ Close]

• Γ4 = this.f : File[read; Read]

Figure 3.14: Example of a derivation with subtyping
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Implementation

Along with the core language introduced in the previous chapter, we have developed a
prototype compiler for MOOL. In this chapter, we start by giving an account of the tech-
nologies upon which our compiler is built (Section 4.1); then, we confront the language
formalisation with its implementation in the prototype compiler, highlighting the main
differences; and finally, we present the compiler overall architecture (Section 4.3), distin-
guishing between the analysis and the synthesis phases.

4.1 Technologies

The MOOL compiler takes as input a program in the form of a set of .mool source code
files. The contents of those files are parsed and analysed against the specification of the
MOOL grammar, after which the compiler outputs an equivalent program in an inter-
mediate language. The MOOL compiler is implemented in Java, it uses SableCC as a
parser generator, and the Mono ilasm Assembler tool to assemble the generated output
into bytecode, which is just-in-time compiled to machine code for execution by a Com-
mon Language Runtime (CLR).

4.1.1 The SableCC framework

SableCC is an object-oriented framework, fully written in Java, that generates compilers
and interpreters. We only provide here a brief overview of the framework, referring the
reader to [14] for more information. The compiler compiler takes as input a .grammar file
containing the grammatical specification of the source language, and generates as output
a set of Java classes, which include a lexer, a parser with an Abstract Syntax Tree (AST)
constructor, and an analysis framework to visit the AST nodes.

A compiler built upon SableCC gets the following features for free:

• lexical and syntactical analysis of the input program;

• automatic AST construction of the compiled program;

43
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• tree-walker classes to perform analysis and transformations on the AST; and

• storage in the form of internal hashtables that can be used to add specific analysis
information; no alteration of node types is involved, since these hashtables are kept
in the tree-walker classes.

A distinguishing feature of SableCC is that there are no embedded semantic actions
associated with each alternative of a grammar production in the specification file. Actions
can be added by extending classes in the tree-walker generated framework. This not only
increases the grammar readability, but also simplifies the development process, since the
effort of implementing the analysis on the input program is reduced to the implementation
of the classes that perform the semantic analysis.

SableCC takes full advantage of the Java type system to generate strongly typed ASTs.
For each production of the grammar, the tool outputs a class hierarchy, consisting of
an abstract class representing the production and a concrete class for each of its named
alternatives. These child classes provide accessor methods for their elements. SableCC
also makes extensive use of typed linked lists in elements with repetitions, using the Java
Collection API. The main advantage of having a generated framework strongly typed is
that the AST can be handled in a safer way, with no corruptions occurring in the tree.

SableCC enforces some additional safeguards. It is referred in [14] that it is not pos-
sible to create directed acyclic graphs (DAG). If an AST node is attached to a new parent,
the link between the node and its old parent is automatically deleted, since, in the SableCC
generated tree, each node can only have one parent.

4.1.2 The Mono IL assembler

Mono is an open source development platform based on the Microsoft .NET framework,
that allows the development of cross-platform applications. Mono’s implementation is
based on the ECMA standards for C# and the Common Language Infrastructure (CLI).
Mono contains the core development libraries, as well as the development and deployment
tools, offered within the .NET environment.

Our compiler does not compile to native code, but to the Common Intermediate Lan-
guage (CIL), or simply Intermediate Language (IL), which is an object-oriented assembly
language, entirely stack-based, generated by all .NET languages. Because Mono accepts
any language that compiles to IL, our prototype compiler outputs . il files, containing a
textual representation of .NET assemblies. An assembly in the .NET world is a deploy-
ment unit, containing all the information required by the runtime to execute the applica-
tion. The Mono assembler tool, ilasm1, assembles IL instructions into bytecode, creating

1There is a corresponding monodis tool, which is Mono disassembler of bytecode. For more information
about Mono platform, refer to Mono web page (http://mono-project.com).

http://mono-project.com
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assemblies, which are stored in Portable Executable (PE) files with a . dll or .exe exten-
sion, the difference being that a .exe assembly contains an entry point for an application
(a Main method). Assemblies thus generated can be executed by any Mono machine, the
execution of the program being performed by a virtual CLR.

4.2 Formalisation vs. Implementation

There are some differences between the formalisation of the core language, introduced in
the previous chapter, and its implementation in the prototype compiler. The latter does
not contradict any of the assumptions of the formalisation, but instead expands the core
language, removing some of the syntactic restrictions that were introduced in order to
simplify the typing rules.

Below is a description of the differences visible to the programmer:

• The reference to the current object this is optional; when omitted, the compiler
automatically inserts it.

• The MOOL language grammar was extended in order to include local variables,
as opposed to only fields and parameters in the core language (the examples in
Chapter 2 make use of these constructs). In terms of the reduction and typing rules,
the implications are not significant as variables share the same behaviour as fields,
except for the scope that is limited to the method.

• There are two additional usage type configurations which the programmer can
write: (1) the anonymous recursive usage type, mentioned in the examples, and
(2) the end state that abbreviates an unrestricted branch with no available methods.

• A default usage type, configuring a recursive anonymous usage containing all the
methods defined in the class, is automatically inserted by the compiler when no
explicit specification is defined by the programmer.

4.3 Architecture

By building the protoype compiler upon the SableCC framework, the effort of implement-
ing the analysis of MOOL programs is reduced to the semantic component. After being
executed on the grammatical specification of MOOL, SableCC automatically generates
four packages: analysis, lexer, node and parser. The MOOL compiler relies on SableCC
classes implemented in the lexer and parser packages to parse the input files and gener-
ate the program AST, using the appropriate classes in the node package. The tree-walker
classes in the analysis package are extended in order to perform the specific analysis on
the program tree representation.
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Figure 4.1: The MOOL compiler architecture

The MOOL prototype compiler is organised in the logical components represented
in Figure 4.1. The view depicts on the centre the AST and the symbol table structure
as the two shared internal representations on which the components from the analysis-
synthesis model operate. The dotted connections between the modules denote control
flow; the stronger connections between the modules and the AST/symbol table denote
data access and update. The input of the compiler is a MOOL program, which, after the
analysis process, is converted into an equivalent IL program. The Mono IL Assembler
then assembles this into a Portable Executable (PE) file.

Each component in the analysis/synthesis phases corresponds to one or more passes
over the tree, visiting the AST relevant nodes. In what follows, we give an overview of
each of the modules that compose the MOOL compiler.

4.3.1 Analysis Phase

If every file of a MOOL program conforms to the MOOL grammar, no parsing errors
being detected, and the corresponding AST is created, this means that the program is
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Figure 4.2: A program and its symbol table

syntactically correct. As in a standard compiler, identifiers and their uses must be checked
for consistency in order to build the symbol table. This corresponds to the first pass of
this phase. The second pass builds an internal representation of a class usage type, that is
attached to the class definition already in the symbol table. The order of the passes is not
irrelevant as only methods in the symbol table should be considered in the internal usage
type representation. Finally, the third and last pass of this phase type-checks each method
defined in the class based on its usage type.

Symbol table The semantic part that concerns identifier analysis usually collects infor-
mation from the input program and stores it in a data structure called a symbol table. This
structure maps each identifier to its semantics, and is used in all subsequent passes of
the compiler. In MOOL the different kinds of symbols are: class, field, method, formal,
and local variable. The symbol table must also provide information about the scope of
a symbol (where in the program the identifier is visible). The MOOL language does not
have inheritance nor nested methods, so the lexical scope rules are easy, having a maximal
depth of two. Each class in the MOOL language defines a scope that covers every method
in the class. Each method also defines a scope where every variable (local and parameter)
binding is active.

The symbol table design uses the Java inheritance mechanism. It is composed of an
abstract Symbol class, and a concrete subclass for each kind of symbol: class, method
(which are symbols with scope) and variable in which a field indicates the kind – field,
local or parameter. Scopes are implemented by setting up a separate table in the corre-
sponding symbol class, creating a multilevel structure. At the top-level, a table provides
the interface for the compiler, with an entry for each class. Under this level, each class has
its own tables, one with entries for fields and another one with entries for methods within
the class, and finally each method has also a table, with entries for variables (locals and
parameters) within the method. Hashtables are used to implement these tables. Figure 4.2
shows a program and its symbol table (other attributes of Symbol are omitted).
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(a) The FileReader usage type (b) A default usage type

Figure 4.3: The external and internal representation of two usage types

This structure directly mirrors the language lexical scopes, defining a separate logi-
cal table and associating with its scope. The symbol table is built by one pass over the
AST that visits node declarations and binds identifiers to their semantic properties in the
symbol table. In subsequent passes, identifiers are looked up in the table. For example,
assuming a variable is encountered in one of these visits, because the closest scope is seen
first, the compiler first looks it up in the method table of variables, and, if the identifier is
not found, it then looks it up in the class table of fields.

Usage type builder The four usage type configurations defined in the MOOL core lan-
guage (see Figure 3.1), and the two extra configurations mentioned in Section 4.2 are
transformed in an internal representation consisting of a labelled directed graph with only
two type of nodes, branches and variants. The six initial constructs available to the pro-
grammer are thus internally reduced to only two in order to easily implement the equiva-
lence of regular infinite trees.

The usage type internal representation is built using a separate hierarchy of three types
to represent a directed graph: a usage type abstract class and the two subclasses for branch
and variant types. A pass over the SableCC AST visits the six usage type configurations,
transforming them in this data structure, which is then attached to the respective class
in the symbol table. Figure 4.3 depicts the external and internal representations of two
usage types: (a) represents the FileReader usage type introduced in Section 1.1; and (b)
represents a default usage type, automatically generated by the compiler. The textual
type that accompanies graph (b) is equivalent to writing the anonymous recursive type
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usage ∗{m1 + m2 + m3};

Custom visitors were also implemented in order to visit the nodes of the graph repre-
sentation and perform specific analysis. A visitor class was designed to compare usage
types for equality by implementing the union-find algorithm adapted from [1]. The union

operation adds an element to an equivalence class, while the find operation checks whether
an element belongs to the same equivalence class of another element. To prevent infinite
cycles on recursive types, a set data structure is used as a control mechanism that tracks
visited usage types.

Usage type-checker The purpose of this module is to perform the semantic analysis on
types. A MOOL program type-checking starts with T-PROGRAM, which calls T-CLASS

for every class in the program, that in turn triggers the class usage type walker. The pass
over the class usage type then triggers the pass over the expression visitors.

The type-checker implements a type-checking algorithm adapted from the one defined
in modular session types [15]. A top-level algorithm implements the usage type rules,
calling an algorithm that implements the expression rules for the type-checking of each
method body. A map of field and variable types is used, representing the environment
in the typing rules. Additionally, a flag indicating whether or not the rule is in a variant
mode is also needed. Initially, the variant mode flag is set to false.

At the end of the pass over the expressions that define each method body, T-BRANCH

checks that variables have been consumed to the end, removing them from the map. Sim-
ilarly, at the end of the pass over each class usage type, T-CLASS checks that only fields
with unrestricted types are in the final map configuration.

Below is a description of each algorithm that composes the overall type-checking
algorithm:

Algorithm for checking subtyping Function sup(u, u′) and function sup(C[u], C[u′]),
its extension to types, with the same C in both types, are used by the algorithm
that checks subtyping. The function is defined by taking the intersection of sets of
methods and the upper bound of their continuations [15]. An example of subtyping
has been given in Figure 3.14.

Algorithm for checking expressions The tree-walker that visits expression nodes uses
a stack as a structure for supporting type-checking expressions, where the type of
each expression is pushed after visiting its node. The use of a stack of types greatly
simplifies this task. Since the walker implements a depth-first traversal of the tree,
when a new expression is visited, the types needed have already been pushed into
the stack by previous expression visitors. All that the type-checker needs to do is
pop the types out of the stack, check the expression against those types, and then
push the type of the expression being evaluated into the stack.
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For the syntax-directed rules (see Figures 3.10-3.11 and the rule for calls in Fig-
ure 3.12), the algorithm follows their definitions. The remaining rules (see remain-
ing rules in Figure 3.12) are not syntax-directed, which means that the algorithm for
checking subtyping and an additional constructor have to be invoked. This new con-
structor is the compositional constructor of variant maps Γ1]Γ2, which implements
the injection rules, combining two maps in a pair of maps 〈Γ1 + Γ2〉 and checking
for consistency. Typically, this constructor is used by T-IFV and T-WHILEV. An
example has been given in Figure 3.13.

The decision as to set the variant mode flag to true is taken after evaluating the
condition: if the receiver has a variant type, the flag is set to true. This is the point
where the distinction between the two variant control flow expressions, T-IFV and
T-WHILEV, and the two standard ones, T-IF and T-WHILE, is made. The flag is
again set to false by T-VARIANT in the top-level algorithm, when checking the true

and false variants.

Algorithm for checking class usage types Rules T-BRANCH and T-VARIANT are syntax-
directed, which means that the algorithm simply follows their definitions as given
in Figure 3.8. This is the top-level algorithm that triggers the above ones.

4.3.2 Synthesis Phase

This phase generates IL code for the CLR. The compiler converts almost directly from
the AST to this high-level assembly language, using the information stored in the symbol
table over the previous passes. Even though as of writing the compiler does not perform
optimisations, namely it does not implement a peephole code optimiser (the synthesis part
of the compiler is not the focus of this thesis), it should not be difficult to add one, since
part of the effort went to construct an intermediate representation for instructions that we
briefly describe below.

Code generator IL is a stack-based object-oriented language, which means that every
instruction takes something from the top of the stack and puts something onto the stack. IL
comprises two sets of instructions: base instructions, and object model instructions. The
base instructions are analogous to native CPU instructions. Examples include call , add,
ldloc (from the load and store groups of instruction), etc. The object model instructions
provide an instruction set commonly used in high-level languages, namely ldobj, initiobj

and ldstr . The .NET assembly reference library (mscorlib. dll ), which is loaded by the
CLR, is used in IL instructions. The mscorlib provides the basic class implementations
for .NET Framework, such as Object, String and Thread. The MOOL compiler uses only
a small subset of the available base and object instructions. IL is also strongly typed.
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The mapping between the MOOL standard types and the IL types is almost direct. For a
detailed description of IL, refer to [20] and [26].

A pass over the AST builds a sequence of IL instructions. For the instruction rep-
resentation a hierarchy is built, having Instr as an abstract class, and every required IL
instruction defined as a subclass. We implement this hierarchy in Java in order to eas-
ily translate each instruction in the MOOL language to its equivalent in IL to be run on
the CLR. The pass over the AST is straightforward, except in the presence of branching
instructions. To handle these expressions, we implement the backpatching one-pass tech-
nique, also described in [1]. When the branching instructions are generated, the targets of
the jumps are left unspecified. These instructions are stored in a specific list for jumps.
When the proper label is determined, the jumps are completed with the proper label.

Code emitter Code emission recovers the instruction sequences in the intermediate rep-
resentation built by the previous pass, and emits IL code. Headers for program, class, field
and method declarations also need to be generated by this component, and possibly the
maxStack directive, which gives the maximal evaluation stack depth in slots (not in bytes).
The directive indicates the maximum number of variables that may be pushed onto the
stack at any given time during the execution of a method. The default value is 8 slots, and
it should be enough for the vast majority of methods. The compiler only has to explic-
itly define a value for the directive if it determines a bigger stack slot. For each method
defined in a class, a previous pass visits expression nodes counting the resources needed,
by considering expressions that push variables onto the stack and those which pop them,
and then attaches that information to the method table in the symbol table, so that it can
be easily fetched by the code emitter component.





Chapter 5

Related Work

This chapter introduces a more extensive discussion of related work. It reviews the main
lines of research which have directly inspired this thesis. The topics addressed are ses-
sion types (Section 5.1), typestates (Section 5.2), and unique ownership of objects (Sec-
tion 5.3). Each section concludes with a discussion, commenting on the similarities and
differences of the described approaches regarding our work.

5.1 Session types

Introduced in [23, 24, 33], session types are, in their simplest form, structured sequences
of types representing the continuous interaction in the communication between two par-
ties. Originally developed for dyadic sessions, the concept was extended to multi-party
sessions. Typically, all communication takes place within the context of sessions in which
channels are made available for exchanging values between the participants according
to the specified types. Channels as conceived by session types are special entities that
carry messages of different types, bi-directionally, in a specific sequence between two
end points.

To capture the flavour of session type channel specifications as typically found in
the literature, we present below a brief example. A simple session type describing the
communication between two processes A and B could have the following configuration
as seen from process A perspective:

⊕{req : ! [Int] . ? [Bool] , quit : end}

Input and output of a value are represented by (!) and (?), respectively, while (⊕) indicates
the choices available and (&) denotes the alternatives provided. In this example, process A
has the choice of sending an integer and receiving a boolean in response, or quitting. The
keyword end marks the end of the communication.
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The same protocol from process B perspective would be:

&{req : ? [Int] . ! [Bool] , quit : end}

Notice that a condition of this example is that the two processes communicate over a
channel that is shared by both, and that the types described are dual. Duality means that
the types are compatible: an input of process A has a corresponding output in process B.
Another condition that the type system may enforce is that the communication between
the two processes proceeds without interference. For this to happen, channels must be
linear, guaranteeing that at any given moment each end of the channel may be owned by
exactly one process. Communication channels can also be unrestricted (or shared); the
reconstruction of session types in [37] provides insight into how to deal with a language
combining linear and unrestricted channels.

Communication protocols can be expressed as types using session type theory, inde-
pendently of the programming language in which session types are embedded. Proving
this, programming languages that implement session types come in all flavours: pi calcu-
lus, an idealised concurrent programming language in the context of which the original
concepts were developed, functional languages [17, 29, 35, 39], CORBA [34], object-
oriented languages [8, 9, 15, 28, 38].

Session types for object-oriented programming Session types have gained much at-
tention in the area of object-oriented languages. The work by Dezani-Ciancaglini et al.
on Moose [8, 9], a multithreaded object-oriented calculus with session types, was the first
attempt to marriage the object-oriented paradigm and session types. In this approach,
channel-based communication is integrated in a Java-like syntax, extended with session
expressions. For example, connect u s{e} starts a session on channel u, and the expression
u.receive receives a value on that same channel. Expressions also exist for conditional
and iterative communication: u. receiveIf{e}{e’} and u.receiveWhile{e} are the expressions
defined for receiving a value through these control flow expressions.

This and all subsequent work has been developed around the idea of channel creation
and specification within a single method, allowing delegation to another method, but on
the condition that the channel must be consumed to the end.

A recent line of research combines session types and the idea taken from types-
tate theory that the availability of methods depends on object states. First presented by
Gay et al. [38], describing how the interface of an object evolves based on the state of the
object, subsequent work focused on modularising a session over different methods of a
class [15]. The idea presented is that channel primitive operations can be hidden in an API
from where clients can call methods transparently. These approaches distinguish them-
selves from previous works on session types by defining a global specification of method
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availability at the class level, no longer constraining channel creation and specification
within a single method. Another key feature is that the state of an object may depend
on the result of a method with an enumerated return type. Inheritance is also included in
the Java-like style; a subtyping relation on session types defines method availability in a
subclass in relation to its superclass.

Discussion Our work is closer to the ideas introduced in the two recent approaches to
session types [15, 38]. We also define object types based on method availability, and make
object states depend on method results. However, communication channels specified by
session types are typically implemented in a socket-like style, even though they can be
hidden in an API [15]. Our language aims at a simpler programming style, analogous to
the one in [38]. Because working with channels is less convenient than using a commu-
nication model exclusively based on method calls, we borrow from session types the idea
of typed communication protocols but we apply it to usage (instead of session) protocols.

Another difference between our work and these recent approaches [15, 38] is that we
use binary-only variant types, making choices depend on the boolean values, and not on
the values of an arbitrary enumerated type. To simplify our language, we also impose
some restrictions on the use of variant types (which must be tested on the condition of
control flow expressions, and cannot be assigned), while the language in [15] provides
a more flexible solution, defining a special type which keeps track of a location with a
variant type.

Another important distinction is that we define a single category for linear and unre-
stricted (or shared) objects, as opposed to two separate ones, letting an object evolve from
linear to unrestricted.

5.2 Typestates

In the literature, several lines of research can be found that reveal similarities with session
type theory. One of these lines, started by Strom and Yemini, introduces the concept of
typestate [32] in which the state of the object in some particular context determines the
set of available operations in that context. Objects, by nature, can be in different states
throughout their life cycle. The concept involves static analysis of programs at compile-
time so that all the possible states of an object and associated legal operations can be
tracked at each point in the program text, based on pre- and post-conditions. The authors
describe an algorithm for typestate tracking in a program graph.

The concept was initially proposed for imperative languages, introduced in the lan-
guage NIL, and then incorporated into several programming languages [6, 7, 10], and
some ideas relate very closely to session type recent approach on modularity.

DeLine and Fähndrich propose the theory to objects in a tool called Fugue that spec-
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ifies and checks typestates on Microsoft .NET-based programs. Fugue allows subclasses
to define additional states. Bierhoff and Aldrich [4] extend Fugue’s approach with the
concepts of state refinement, which ensures subtype substitutability, and specification in-
heritance. The work is further extended with access permissions that combine typestate
and object aliasing information and can guarantee the absence of protocol violations at
runtime [5]. These access permissions allow developers to specify different patterns of
aliasing determining how a reference might be used.

Discussion Some ideas explored by typestates relate closely to the more recent work on
session types, and to our approach, namely the fact that methods should only be available
on certain states, and that method availability might depend on the result of a preced-
ing method. However, there are two main structural differences between the approaches
described and our own:

(i) typestates use annotations at the method level, while we capture the entire behaviour
in a class level specification; and

(ii) typestates allow a more complete aliasing control than ours (recall that our main
concern are linear types), at the expense of a more complex system and set of an-
notations, namely by using access permissions [5] which capture several patterns of
aliasing through a combination of allowed read and write accesses.

5.3 Unique Ownership of Objects

Baker [3] was one of the first authors to discuss the idea of linear objects and ”use-once”
variables in the context of concurrent computation models. Several advantages are pointed
out to the introduction of controlled ownership of objects in concurrent programming,
namely the possibility of using linear objects, instead of standard synchronization mecha-
nisms, with less costs. However, there are limitations as to their use, as identified by other
authors, in particular because linear objects cannot be stored in unrestricted objects, and
an unrestricted object cannot evolve to a linear one.

There have been several works that attempt to introduce flexibility in linearity: the
works of Hogg [22] and Almeida [2] are two of the most influential. Hogg’s Islands attach
to objects’ interfaces aliasing mode annotations, while Almeida’s Balloons uses abstract
interpretation. In both systems, through different mechanisms, aliasing of normal objects
is unrestricted within Islands and Balloons, but statically prevented by external references.

Discussion Although linearity presents many advantages, it also introduces limitations,
namely when used within the object-oriented paradigm. In MOOL, these restrictions are
also present, and proof of this is the need to introduce a standard synchronized mechanism
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for accessing shared objects in mutual exclusion. The approaches referred above are more
complex attempts than ours to address aliasing in object oriented languages. Our focus in
this thesis are linear objects, but in future work we intend to investigate more sophisticated
techniques to integrate linear and shared objects within the object-oriented paradigm.





Chapter 6

Conclusion

This thesis formalises a mini concurrent object-oriented programming language with sup-
port for the specification and static checking of usage protocols. Our ideas have been im-
plemented in a prototype compiler, which we also describe. From the beginning, we have
attempted to strike a balance between simplicity, expressiveness and safety in the design
of our language usage specifications.

6.1 Achievements

Although our approach is a combination of existing approaches, we believe that we have
achieved a distinct and effective framework of programming that arises from the treat-
ment which we provide to protocol control within the object-oriented paradigm. The
safety features that we borrow from (modular) session types are integrated in a simple
programming language with an intuitive specification descriptor which formalises object
usage. The file reader and the auction system examples, introduced in previous chapters,
illustrate our key technical ideas.

The language We have defined a clean class-based language that uses primitives con-
sistent with most object-oriented languages. The distinguishing feature is the usage spec-
ification which is able to describe both method availability, based on an object state, and
aliasing restrictions, based on an object status. As existing work on modular session types
and typestates, a key feature in MOOL is the possibility of making a state depend on the
result of a method call. Concurrency is also included in the language, and, within this set-
ting, linearity can efficiently and elegantly address safety issues in many usage protocols.
However, some scenarios do not naturally integrate linear objects, namely when objects
must be shared and provide operations accessed without thread interference. For those, a
standard synchronisation mechanism has been included in the language.
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Operational semantics and type system We have designed a simple operational se-
mantics and a static type system which checks client code conformance to method call
sequences and behaviourally constrained aliasing, as expressed by programmers in class
usage types. Environments are used to track consumption of linear references. Our rules
are attractive for implementation, since for the most part they are syntax-directed, and can
be implemented in a type-checker with little effort.

The compiler We have implemented our ideas in a prototype compiler written in Java,
built upon SableCC framework, and targeting the Mono virtual machine. By creating a
working compiler, we were able to refine our type system, and to identify some of the
limitations in our type system treatment. Some of these limitations were overcome in the
course of our work, others should be refined in future work.

6.2 Future Work

We intend to improve some of the features of the MOOL language, and to find out ways
to tackle some of its limitations. In what follows, we anticipate some of the topics which
we are interested in pursuing:

• Our most immediate goal is to provide a full formal treatment of the MOOL lan-
guage, proving that it has the property of subject reduction, as discussed in Sec-
tion 3.5.

• Aliasing control is a topic we would like to further explore. In our work, we intro-
duce linearity in the world of shared objects, thus relaxing a strictly linear control of
objects. The use of linear objects solves important aliasing and typing issues. In the
traditional linearity model, linear objects may reference other linear or unrestricted
objects, and unrestricted objects may reference other unrestricted objects, but they
may not reference linear ones. While emerging naturally from our type system, this
restriction can be limiting in practice. Existing work [11] proposes a type system
that relaxes this and other restrictions related to the division between linear and un-
restricted types. It would be interesting to look at this and similar approaches and
try to integrate them in the MOOL programming language.

• Modern object-oriented languages, like Java, offer sophisticated polymorphic fea-
tures. In this work, usage types are introduced in a simpler language. We would
also like to integrate our specifications in more complex usage patterns.
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