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Resumo

A actual crise, conhecida por Crise do “Sub-Prime”, teve múltiplas consequências na forma
como a teoria financeira se debruça sobre os mercados financeiros, uma das quais é a
inconsistência que as actuais taxa oferecidas no mercado interbancario (BOR) colocam à
teoria das taxas de juro.

A literatura e a comunidade de negociação ideintificaram diversos factores para o com-
portamento estranho tal como o prémio de risco e o prémio de liquidez (este último como
residuo de regressões). A resposta desta última foi no sentido de tratar cada maturidade do
mercado monetário de forma independente de outras maturidades e as diferenças entre si
como uma classe de activos autónoma (Basis Swaps). A comunidade cient́ıfica fcentrou-se
no “fixing” de uma única maturidade, esquecedo inclusivé o mercado a prazo e providen-
ciando uma resposta muito limitada sobre a natureza da dinâmica da BOR.

O que actualmente falta é um modelo consistente que capture a informação de todos
estes “novos mercados” e que nos devolva a sensação de um mercado único.

Propomos uma moldura teórica para um modelo estocástico multifactor que incorpora
cada um dos factores percebidos de uma forma consistente com a tomada de decisão dos
agentes. Ela mantém a simplicidade dos modelos de taxa de juro standard e, mais im-
portante, preserva a unicidade do mercado interbancário. Um modelo que trata todo o
conjunto de curvas BOR.

As questões que tratamos são importantes não só para a comunidade de investimento
mas também para reguladores e autoridades monetárias na resolução de problemas no
mercado interbancário. É necessário identificar claramente o problema de forma a resolve-
lo e o modelo proposto constitui uma ferramente útil para a sua identificação.

Iremos desenvolver a referidade moldura teórica e ilustrar a sua dinâmica com alguns
exemplos reais.

PALAVRAS CHAVE: MERCADO MONETÁRIO, LIBOR, CREDITO, LIQ-
UIDEZ, FINAL DE ANO
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Abstract

The current crisis, commonly named Sub-Prime crisis, had multiple implications on the
way financial theory addresses financial markets, one of which is the curve inconsistency
that current interBank Offered Rates (BOR) reality poses to interest rate theory.

Literature and trading community identified several factors for this strange behavior
such as credit risk and liquidity premium (always the residual of regressions). The response
of the later has been to treat each money market tenor independently from others and the
difference between them as an autonomous asset class (Basis Swaps). Scientific commu-
nity has been focused on one only tenor and also forgetting the market of forwards while
providing a very limited answer about the nature of the BOR dynamics.

What currently lacks is a consistent model that captures the information in all these
“new markets” and gives us back a sense of an unique market.

We propose the theoretical framework for multifactor stochastic model which incor-
porates each perceived factor in a way consistent with agent’s decisions. It keeps the
simplicity of standard interest rate models and, most importantly, it preserves the unity of
the interbank market. One model to address the entire set of BOR curves.

The questions we approach are important not only to the derivatives community but
also to regulators and monetary authorities in addressing the problems mirrored in the
interbank market. One needs to clearly identify the problem in order to address it, and
the proposed model in an useful tool to accomplish this goal.

We shall develop the referred theoretical framework and illustrate its dynamics with
several real examples.

KEY WORDS: MONEY MARKET, LIBOR, CREDIT, LIQUIDITY, END
OF YEAR
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Chapter 1

Introduction

The current crisis, commonly named Sub-Prime crisis, had multiple consequences on the
way financial theory addresses financial markets. One of them is the curve inconsistency
in current interBank Offered Rates (BOR), which challenges existing interest rate theory.

There are various examples of this inconsistency, the most striking one being the dis-
connection in the usual relationship between forward and spot rates. Before the current
crisis we could, at t0, synthetically build a FRA1 from start date t1 to maturity date t2
by simply entering in a loan and a deposit starting at date t0 and ending at dates t1 and
t2. Table 1.1 shows that now, after the beginning of the crisis, market quoted FRAs are
disconnected from synthetic FRAs.

Another example is the dynamic inconsistency between apparently interchangeable in-
struments at specific points in time: as we can see2 in Figure1.1 some tenors curves (1M)
may present an upward slope, others (6M) a downward slope and others a flat one (3M
and 12M) for the same time horizon.

FIXING 3M FIXING 6M FRA 3Mx3M SINTETHIC FRA 3Mx3M 3

4.72 4.38 2.46 3.98

Table 1.1: 13Oct2008 USD LIBOR: Fixings and FRA

The immediate consequence of this disconnection is that each tenor has started being
traded as an unique instrument with its own dynamics. Since the beginning of the current

1Forward Rate Agreement
2For help on graph interpretation see Appendix A
3

v
b
0,3,6 =

1+vb
0,6×c

ACT/360

0,6

1+vb
0,3×c

ACT/360

0,3

− 1

c
ACT/360

3,6

=

1+0.0438× 182

360

1+0.0472× 92

360

− 1

90

360

= 3.98%

1
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Figure 1.1: USD LIBOR 24Mar2009

crisis there are the ON, 1M, 3M and 6M curves, to name only the main ones. Also, when
analyzing previous correlated instruments like Interbank Deposits, T-Bills and ON curve
it is easy to see in Figure 1.2 that correlations from 3M intruments suddenly collapsed,
making the hedging activity a nightmare.

Another example of the inconsistency mentioned above is the relationship between
market prices inside each of the new curves: the humps and bumps in the short term
curve, constructed using the quoted forwards, unsettle the most complex interest rate
model. Of course we can always add n stochastic factors to fit a n-degree polynomial curve
but that would not be useful as we would only be describing the curve in a meaningless
way, without understanding it. The consequence of the phenomena described above is that
market-making of derivative instruments on interbank rates started to be more of an art
(not to mention witchcraft) than a technical job. Speaking of witchcraft, the analysts that
trusted these instruments to “read the market” would be better described as mediums or
psychics when they tried to interpret and decompose the factors impacting the interbank
market.

At this moment, it is clear for every market participant that follows closely the interbank
market that, besides interest rate risk, the current spot fixings and respective derivatives
are influenced by at least three other factors: credit risk, liquidity risk and an “end of
reporting period” risk. What currently lacks in the market is a consistent model that
captures the information in all these “new markets” and gives us back a sense of an unique
market again.

We will try to approach such problem by proposing a multifactor stochastic model that
represents each perceived factor in a way consistent with agent’s decisions while keeping
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Figure 1.2: Evolution of the 3M Money Market instruments during the crisis

the simplicity of standard interest rate models and, most importantly, preserving the unity
of the interbank market. One model to address the entire set of BOR curves.

The questions we approach are important not only to the derivatives community but
also to regulators and monetary authorities that try to address the problems mirrored in
the interbank market. One needs to identify the problem clearly in order to address it, and
the proposed model is an useful tool to accomplish this goal.

We shall develop the referred theoretical framework and illustrate its dynamics with
several real examples. We emphasize that we will not try to empirically estimate a model
as the techniques and tools which are required to do so would duplicate the dimension of
this work.

The structure of the work is as follows: In the current chapter we will give a brief
description of some events and reactions in the interbank market, followed by literature
that address some possible causes for such events. In the middle of the Chapter we will
present some market terms that can be useful to understand this work. In Chapter 2 we
will decompose our problem into several ones and treat each one separately. There will be
a section for credit risk, liquidity risk and “End of Reporting Period” (ERP) factor. In
Chapter 3 we will join all the factors in only one model dealing with the issues which are
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raised when we join variables. Chapter 4 will be dedicated to the analysis of some moments
of the BOR curve with the technics developed in this work. In Chapter 5 we will briefly
answer some questions raised during this work. Chapter 6 concludes the work.

1.1 Interbank Market

Before the crisis the interbank market had acquired a considerable importance for a sig-
nificant number of agents mainly trough the different BOR fixings4 and the associated
derivatives market5. While BOR fixings and swap rates were widely used as a reference for
bond pricing in the credit market, they also became the main vehicle for the transmission
of the monetary policy6. For traders it was one of the most efficient ways of implement-
ing trading strategies7, and for fixed income investors they became the most efficient tool
to hedge interest rate risk. Lastly BOR was viewed as an almost risk free rate by the
derivatives industry8.

When the crisis started the first market to feel it was the interbank market. Its rates
started to fix in an unprecedented volatile way, going higher without any expected move by
the monetary authorities and with strange features in the yield curve. These movements
disturbed every market player. In the credit market, it became more costly to borrow
money in the interbank market, the rate at which each player could borrow became very
specific and many lenders started to fund themselves at higher rates than those at which
they had lent. Then, as the interbank rates decoupled from central bank target rates
and the velocity of money dropped, traditional monetary authorities’ instruments became
powerless to affect economic activity. For traders, the market became much more complex
and illiquid as several curves, previously perceived as almost perfect substitutes, suddenly
started to have their own dynamic9. For the investment community, the effectiveness of
the hedge decreased enormously, as in many days investors would lose money both on the
hedged asset and on the hedging instrument. Finally, for the derivatives industry, BOR
was no longer the reflex of a risk free rate. To be clear, it was hard to tell what a risk free
market was as the premium to pay for a credit riskless bond increased dramatically10.

So it is clear that something changed in this market and that it would be useful to

4From which LIBOR is the most important example
5Swaps, FRAs and Futures.
6They could easily impact families’s available income, and corporates P&L, by changing the short-term

rates.
7Swaps are unfunded and highly liquid, have standard features but can be taylor made and have the

same cost for being long or short.
8It was taken like that since its perceived credit risk was minimal, banks could actually borrow and lend

at those rates, it had a liquid curve in every tradable currency along all maturities and did not have the
same liquidity distortions as the treasury curve.

9You could had the correct view of the future path of interest rates but still loose money simply because
you had bet on the wrong curve.

10Moreover, many derivatives desks were not able to borrow at BOR levels anymore.
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have insights both on the causes and on the corresponding dynamics that produced such
changes. Each player has it is own questions:

• Credit Market: at what rate will lenders be able to borrow in the future?

• Monetary Authorities: how can we start to be effective again? What problems to
address in order to give traction to traditional tools?

• Trading communities: which factor impacts each curve?

• Investment community: how to hedge the interest rate risk?

• Derivatives industry: where is the risk free rate? What is the dynamic of BOR?

We shall now review some recent and past BOR dynamics in order to start under-
standing the phenomena. In the end of this work, in Chapter 5 we will return to these
questions.

1.1.1 BOR: Pre Sub-Prime

Until recently the fixings of interbank market were driven by the expected path of interest
rates for very short maturities (ON to 2W) which are manipulated/chosen by the monetary
authorities. This expected path has a variable degree of uncertainty which was also reflected
on its fixings (the so called “term premium”).

As we are dealing with unsecured loans another “natural” contributor to BOR is credit
risk. Despite this BORs were traditionally regarded as “risk-free” as they reflected the rate
offered to high quality counterparts and the maturities were quite short (from 1W to 1Y).
Moreover, given the squeeze of spreads in the last decade, the difference between risk-free
rates and BOR was minimal as can be seen on Figure 1.3.
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Figure 1.3: USD LIBOR-OIS 17Jan2007
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Despite the historical dominance of the interest rate (risk-free) component, fixings spo-
radically moved away from interest rate expectations. Some reasons for such movements
are:

• End of year: the eminence of presenting themselves to the market and regulators,
makes banks clean their balance-sheets in order to decrease the amount of perceived
risk and capital requirements.

• Disruptive events: surprise/shock events such as 9-11 create a high degree of uncer-
tainty in the market and consequently in the confidence each bank has in its own
cash flows projections. In these situations banks hoard money in order to secure their
own liquidity position.

• Credit Problems on BOR Contributors: the Japanese inshore interbank market, mir-
rored by TIBOR11, was disrupted when Japanese banks had credit problems in the
90s.

1.1.2 BOR since August 07

Since the current crisis began everything changed! The surge in write-downs and the
increased difficulty in understanding the risks each counterpart was exposed to, drowned
the interbank market and liquidity started to be exchanged only in very short terms (ON
to 2W) and/or in a secured way (repo). If a bank had an excess of cash it would not know
whom to lend and how its creditworthiness would be perceived in the market in the future.
The safe bet would be to lend ON to a restricted number of counterparts.

With all these circumstances, BORs skyrocketed and became the center of the crisis
just when they turned meaningless, since there were no transactions backing them levels
and there were claims of underreporting.

At the same time, BORs became very relevant because of the pain they induced in the
“real-economy”, which was already facing difficulties, specially in a world were leverage
turned from a virtue into a sin. As previously referred, the continuous increase in BOR
also took power away from the traditional transmission channel of monetary policy: as
monetary policy eased and BORs did not react as expected. Under these conditions,
central banks expanded their liquidity provision to ensure the funding of the most illiquid
assets for a considerable length of time, while governments tried to improve banks solvency
and long term funding (equity injections and guaranteed debt).

Since then, conditions have improved but the dynamics of some BORs are still unset-
tling: EURIBOR, for instance, has fallen every day from 10 October 2008 until 19 May
2009 and surely the conditions in every factor that affects EURIBOR did not improved on
every single day. Another issue were the claims that banks would be underreporting the
contributed rate fearing a run on deposits if the contribution was too high.

11Tokyo Interbank Offered Rate
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1.2 Some Market Terminology

In order to better understand the current work we will introduce and clarify some market
terms that will be extensively used.

• LIBOR: is the BBA12 fixing of the London Inter-Bank Offered Rate13. It is based on
offered inter-bank deposit rates contributed by a panel of banks in accordance with
the BBA instructions14. The main features of LIBOR are the following:

– It is an offered rate: a rate at which the market offers funds to a specific con-
tributor;

– It is an average from which outliers are excluded: it captures the rate at which
the average interquartile bank in the panel would borrow;

– It is a rate offered in London, an offshore market for all the currencies except
sterling;

– It is not backed by effective transactions;

– The credit quality is one important criterion for being in the panel, and therefore,
LIBOR is the rate the market would offer to a high quality bank.

• Overnight Rate (ON): The rate at which banks exchange between each others ON
deposits at the central bank. At the end of day the central banks make a weighted
average of those exchanges and publish the number: EONIA for the ECB, Effective
Fed Funds Rate for the FED, SONIA for the BOE. Contrary to BOR rates, these
fixings are backed by real transactions. Among the factors affecting it are central
bank rates and the rules to access it and the excess of funds supplied to the market
by central banks. Is typically perceived as a risk free rate resulting merely from the
supply and demand of funds since the banks which are expected to default the next
day are “excluded” from the market. This happens because:

– there are always rumors that precede the default (you would not lend to those
counterparts) and some counterparts with difficulties would be paying an excess
over the market rate (you don’t lend at rates “out of the market” because it
may mean that the borrower is desperate and that no one else lends him);

– the supervision authorities 15 close a bank when they perceive insolvency risk;

– the monetary authority can be expected to act as Lender of Last Resort, enabling
the borrowers to fulfill their short term obligations when liquidity disturbances
occur;

12British Bankers Association
13See Appendix B
14See Appendix B.1
15FDIC in US
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– in practice this feeling is reflected in the similarity of OIS and Repo GC16 rates
which trade at the same levels except for turbulent periods in the treasuries
market (delivery failings, treasury interventions, FED interventions) and for
bid-offer differences.

• Interest Rate Swap (IRS): an agreement by which two parties agree to exchange cash
flows indexed to interest rate benchmarks. The most common one is the swap where
one party periodically pays a fixed interest rate and receives a floating one (like LI-
BOR 3M for instance). In the fixed-float swap the fixed leg reflects (among other
factors) the expected path for the floating leg and by this feature it is possible to
build a curve of future BORs implied by the swap market.

• Overnight Interest Swap (OIS): an IRS where the floating rate is the official ON rate.
As the central banks target the very short term of the curve it closely reflects the
implementation of monetary policy. It can be thought as the basis for construction
of a risk free curve as its underlying, the ON rate, is perceived as almost risk free.

• Treasury Curve: the set of yield rates at which sovereign bonds are traded plotted
against its respective maturity. This curve reflects supply and demand specificness
of each bond and the expected path of short term interest rates. For EUR, as many
sovereigns share the same currency it also reflect different credit profiles.

• LIBOR-OIS spread: the excess yield of BOR over the OIS when both refer to the
same maturity. If we assume that the OIS is the risk free rate (with the correspondent
term premium to remunerate some uncertainty related with the path of monetary
policy), the excess spread should contain all factors captured by in BOR besides
interest rate risk.

1.3 Literature

There are a few published works on this issue, which have been produced recently and
mostly motivated by central banks trying to justify or ascertain the effectiveness of their
programs to address the problems described above. One of the conclusions is that the
BOR curve no longer reflects only the future path of the central bank target rate, but
also includes credit and liquidity spread among other possible factors. We review the
contributions we find relevant in analyzing the recent behavior of the money market.

16Repo General Collateral (GC) refers to the repo rate applied to those US treasuries that are not trading
with a premium.
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1.3.1 Literature on Crisis

Here we shall refer to works analyzing the effects of the current environment on the in-
terbank market. The first published piece we know of is an analysis box in BOE (2007).
The authors analyze the LIBOR-OIS 12M spread and use the CDS market to extract the
credit component and get the residual which they call non-credit premium. They conclude
that in the beginning of the crisis increases in the LIBOR-OIS spread were due to other
factors beyond the credit premium and suggest that banks were hoarding liquidity due
to increased uncertainty about funding commitments with third parties. In their analysis
they assume that all components (interest rate, credit premium, non credit premium) are
independent which, as they acknowledge, may not be fully correct.

There was a surge in the production of papers by the staff at various regional FEDs
with the purpose of evaluating the impact of FED’s actions in the money market. The final
balance is positive for FED’s actions17, with McAndrews, Sarkar & Wang (2008) and Wu
(2008) finding statistical relevance in such actions, Taylor & Williams (2009) reaches the
opposite conclusion. Although none of them uses a dynamic term structure model, they
contain some interesting details that could be useful in this work:

• Wu (2008) tries to measure the impact of the TAF, which was designed to reduce
liquidity stress, on the credit component; this tests the validity of the independence
assumption (unfortunately the paper does not reach to a clear conclusion)

• McAndrews et al. (2008) uses a dummy variable to control for the quarter end effect
and finds it statistically non-significant.

Another interesting paper is Eisenschmidt & Tapking (2009) where the authors con-
struct a theoretical model to explain the behavior of a group of banks in an uncertain
environment. The argument is that in a multiperiod horizon, where banks would be sub-
ject to random liquidity shocks, they will require a premium in their lending activity to
compensate for their own credit risk, since they might have to refund themselves in the
future in case of a liquidity shock. The authors also prove that it is conceivable that, in
such situation, the bid and offer in the market for term liquidity may never settle so that
the equilibrium in the money market would be one where every transaction would be ON.
Evidence of this behavior is presented in Michaud & Upper (2008).

Still under the heading of “the current environment on the interbank market” we could
easily include the papers on the TIBOR-LIBOR spread that emerged in the late 90s. At
that time japanese banks were perceived to be undercapitalized and were charged an extra
premium in the interbank market. The consequence was the emergence of a spread between
TIBOR which included mostly japanese banks and LIBOR which had only a few ones. We
found two papers, Melvin, Covrig & Low (2004) and Peek & Rosengren (2001), which tried

17The simple existence of liquidity programs trying to solve the problem means that there is a will to
control such phenomena which advocates for the use of mean reverting processes for the liquidity component.
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to regress the spread on the flow of news or risk indicators. Given their methodology these
papers do not serve the purpose of this work, and therefore despite the easy parallel we
could trace, our work will not have direct influence from this literature.

1.3.2 Credit

In what concerns credit risk, the present work is highly influenced by Lando’s articles
on intensity models with credit transition matrices and further developments. The first
paper is Jarrow, Lando & Turnbull (1997), where the credit matrix applied to credit risk
is developed, but our reference paper is Lando (1998) which introduces double stochas-
tic Poisson Process, Cox Process, in the previous model. Other important reference for
intensity models is Duffie & Singleton (1999) were the recovery process is modeled.

Two interesting papers which explore Cox Processes are Collin-Dufresne (2001) and
Feldhütter & Lando (2008), the latter of which is a direct application of Lando (1998) as
our work is.

1.3.3 Swap Spreads

Literature on both spreads and swap spreads is quite old18. Its relevance may seem obvious
since we model the dynamics of a spread but it is even stronger when we look at the yield of
a treasury as the average repo rate periodically incurred to finance the very same treasury
until maturity. Under such interpretation the swap spread appears as the long term version
of our work.

Among works on swap spreads we will focus on those that try to explain curves dynam-
ics following Duffie & Singleton (1997). Two of those papers are of particular interest: He
(2000) and Li (2004). He (2000) considers both government bonds and IRSs risk free in-
struments and so all the spread should be explained by liquidity concerns. The swap spread
curve is modelled using a three factor Vazicek model19. Li (2004) goes one step further by
trying to decompose the swap spread into a liquidity and a credit risk component. This
work last is particularly interesting given the way the author identifies the liquidity factor
from hardly any data available (Liu, Longstaff & Mandell (2006) for a similar model).

1.3.4 Liquidity

The literature concerning liquidity its quite ambiguous due to the vagueness of the concept
and its widely usage. For this reason we shall state some definitions related to the liquidity
concept.

Definition 1 (Liquidity). Liquidity related definitions

18Swap Spread is the yield difference between Swaps and Government Debt for some maturity
19Grinblatt (2001) has a similar model.
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Liquidity is cash, i.e., the asset that is generally accepted on exchanges.

Liquidity of an Asset is the ability that the asset has to be liquidated, i.e., transformed
into cash. It would be very liquid if we lose little money on its conversion and it
would qualify as being illiquid if we lose much of its assigned/perceived value in the
conversion.

Liquidity Shock is an unexpected cash shortage.

Liquidity Risk is the risk of having a liquidity shock

Management of Liquidity Risk is about building a structure which would avoid the
forced liquidation of illiquid assets when the balance-sheet is subject to a liquidity
shock

Papers dealing exclusively with liquidity tend to analyze mostly bid-offer spreads and
their impact on on the price of assets like Chollete, Naes & Skjeltorp (2008) for equity and
Chen, Lesmond & Wei (2005) for corporate bonds. In the interest rate area some premium
between apparently equal instruments are attributed to liquidity: the premium carried by
on-the-run treasuries versus off-the-run treasuries, the premium the official bond issue pro-
gram carries over other issues also guaranteed by the sovereign 20 or even the swap spread,
as seen previously.

When associating BOR fluctuations with liquidity issues, we will try to connect them
to the liquidity risk management of banks: the extra premium for lending funds would
be a function of balance-sheet’s capacity to absorb liquidity shocks and of the probability
of such shocks occurring. By analyzing the problem in this fashion we would expect this
component of the price to reflect precautions/sentiment of market participants due too
the bad functioning of other markets. In proceeding this way we are in fact closer from
Eisenschmidt & Tapking (2009) than from traditional liquidity literature. Despite this we
will not adopt the discrete one period model from Eisenschmidt & Tapking (2009) since
we need a continuum time approach which deals with all possible time horizons at each
time.

Another contribution from other areas will be the way Li (2004) estimates the liquidity
component. Likewise when estimating our model the approach would be simply to label
the part of the spread that we are unable to explain using observable factors as the liquidity
component.

1.3.5 End of Reporting Period

By “End of Reporting Period” we mean to refer to the effects that closing some period
produces in asset prices. The most obvious effect is the year end, but the semester end can

20Longstaff (2002)
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be another source of price changes21.
Griffiths & Winters (2005) goes across several explanations for such behavior such as:

tax-effects where investors sell assets with taxable losses prior to the end of year to
capture the loss in the current tax year

risk-shifting window dressing where “intermediaries alter portfolios at disclosure dates
to underrepresent the riskiness of portfolios held on non-disclose dates”

preferred-habitat where price movements are driven by effective asset preferences and
cash-flow restrictions of agents

The last two are the most interesting and Griffiths & Winters (2005) study them
with reference to money market movements in year end, finding evidence in favor of the
preferred-habitat hypothesis. In the current environment, where leverage is “forbidden”
and capital is scarce and expensive we would privilege the risk-shifting hypothesis, but we
will still employ part of the author’s dummies methodology in our work.

21And, as the financial semesters for some financial agents differ in Europe and US, every quarter is a
semester end for reporting purposes.



Chapter 2

Model

2.1 Introduction

We shall present a model that describes the current dynamics of interbank markets.
Our idea is that if a bank has excess cash it can lend it in the interbank market, hedge

the interest rate risk1 and then charge a spread to cover all the remaining risks and costs.
Each lender shall have its own costs and they shall vary differently for each tenor across
different lenders. Moreover, the credit risk is specific to the bank to whom the cash is lent,
which makes the premium banks charge one another, for a specified time period, specific
to that transaction.

Despite the specificity that each transaction carries we shall not target the individual
transactions in our analysis. We will proceed in this way because there is no such data and
also because if that data existed there would not exist a forward curve and a derivative
market for each transaction which would make the exercise less interesting.

Our goal is to model benchmark interBank Offered Rates (BORs).

Definition 2 (BOR). Is a interBank Offered Rate on a deposit to a relatively good credit
quality bank by a counterpart with relatively sound liquidity position. The cash would be
deposited in t and returned in T . Examples of BOR are LIBOR, EURIBOR and TIBOR.

We propose the following factors as determinants of BOR to complement the risk free
dynamics :

• the potential loss of a credit event, of the borrower, which occurs at moment τ c < T

• the potential loss of a liquidity event, of the lender, which occurs at moment τ l < T

• the capital and reputation cost, of the lender, from holding a risky balance-sheet
position in the ith reporting moment. ti will refer to the date of that deterministic
moment.

1In a OIS for instance

13
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Moreover we will not be very interested on contemporary BOR as most of the impact
BOR have over the market is on the forward market. We shall define

Definition 3 (forward BOR). Is a BOR where t > ttoday . The biggest difference from a
contemporary BOR is that credit and liquidity conditions are set to be valid only at the
future start date and not “today”. It can be defined as a defaultable claim conditional
on the credit condition of the borrower and on the liquidity position of the lender at the
forward start date. LIBOR futures, or any OTC equivalent, an examples of BOR forward.

In the following sections, after introducing the probability space and some auxiliary
concepts, each factor will be analyzed per se while assuming the non existence of other
factors. In each section the goal we will to capture the spread over the risk free rate that
is due in order to compensate the lender for future costs related to the factor in analysis.

While proposing this model we are aware that the interbank rates should be the result
of other factors, some of them common to all interbank market, others specific to one of
them and that those factors could be correlated with the presented ones. There is also the
possibility that factors which currently are irrelevant will be valued in the future and that
the factors that currently drive interbank rates become less important.

Nevertheless, our aim is to state that, in today’s markets, we should not model rates
as blindly stochastic, just trying to discover the mathematical model that better fits the
data: we should add more information about the conditions in which rates are set in order
to better capture its dynamics.

2.2 Previous Remarks

2.2.1 Probability Space

We shall work on (Ω,F , P ) probability space large enough to support R
d - valued adapted

stochastic process Xt = {Xu : 0 ≤ u ≤ t} and two discrete stochastic variables, ηx
u (with

x = l, c , where l and c stand for liquidity and credit), representing the x−class achieved
by an asset at each moment and whose dynamics are given by a stochastic Markovian
transition matrix.

Moreover, we assume that there is an equivalent risk neutral measure to P : Q. All the
results will be computed on Q measure except when otherwise stated.

The following σ − algebra will be used to distinguish different subsets of information:

Gt = σ {Xu : 0 6 u 6 t} represents the information about the state-space vector Xu up to
moment t;

H x
t = σ {ηx

u : 0 6 u 6 t} holds the information about the path of ηx
u up to moment t;



2.2. PREVIOUS REMARKS 15

Ft = Gt ∨ H l
t ∨ H c

t all available information at t, ie, corresponds to knowing the evolution
of Xu and the information about the path of ηx

u up to moment t.

Under this framework the credit and liquidity event moments are function of ηc
u and

ηl
u:

τx = min {u : ηx
u = Kx}

where Kx is the class the asset achieves when the event x arrives.

In models where there are no class, just two states: “event x already occurred”, τx < t,
and “event x did not occurred”, τx > t, ηx

s will be defined as:

ηx
t =

{

1 , τx > t

0 , τx 6 t

One last comment related to the nature of ηx variables: the trigger for ηx moves are
the movements of an underlying hazard rate, the cumulated intensity and the threshold
ξ which once touched triggers the event is a random variable which follows a standard
exponential distribution. Quoting Brigo & Mercurio (2006) ξ is independent of all default

free market quantities and represents an external source of randomness that makes reduced

form models incomplete.
In this work we will pose a more restrict set of assumptions as we will impose indepen-

dence between all ξ type variables which will exclude one source of dependency between η

type variables.

2.2.2 Some Math Fin and Probability concepts and notation

Having m (Xu), n (Xu), ..., as linear functions of Xu we state some definitions:

Definition 4 (Stochastic Exponential).

βm
t,T = exp

(

−

∫ T

t

m (Xu) du

)

βm+n
t,T = exp

(

−

∫ T

t

m (Xu) + n (Xu) du

)

Definition 5 (Expected Value of Stochastic Exponential).

Bm
t,f,T = E

[

exp

(

−

∫ T

f

m (Xu) du

)

|Ft

]

= E
[

βm
f,T |Ft

]

Bm+n
t,f,T = E

[

exp

(

−

∫ T

f

m (Xu) + n (Xu) du

)

|Ft

]

= E
[

βm+n
f,T |Ft

]
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Definition 6 (Money Market account). We define βt to be the value of a bank account at
time t > 0. The bank account evolves according to the following differential equation:

dβu = ruβudu β0 = 1

were ru is a stochastic variable function of the state-space vector Xu. As a consequence,

βt = exp

(

−

∫ t

0
r (Xu) du

)

Definition 7 (Stochastic Discount Factor). We define βt,T to be the value of a bank
account at time t > 0 that is equivalent to one unit of currency payable at time T > t and
is given by

βt,T =
βT

βt
= exp

(

−

∫ T

t

r (Xu) du

)

= βr
t,T

Definition 8 (Risk Free Zero Coupon).

Br
t,f,T = Bt,f,T = E

[

exp

(

−

∫ T

f

r (Xu) du

)

|Ft

]

= E [βf,T |Ft ]

Definition 9 (Inhomogeneous Poisson Process). An Inhomogeneous Poisson Process Yt

with (non-negative) deterministic intensity function l (.) satisfies:

P (YT − Yt = k) =

(

∫ T

t
l (u) du

)k

k!
exp

(

−

∫ T

t

l (u) du

)

in particular, if k = 0:

P (YT − Yt = 0) = exp

(

−

∫ T

t

l (u) du

)

Definition 10 (Cox Process). A Cox Process is a generalization of a Poisson Process in
which the intensity2 is allowed to be random but in such way that if we condition on a
particular realization l (.,̟) of the intensity, the jump process becomes an inhomogeneous
Poisson process with intensity l (u,̟). The random intensity will be written on the form:

l (u,̟) = λ (Xu) = λu

where Xu is a R
d- valued stochastic process and λ : R

d → [0,∞[.

P (YT − Yt = 0) = exp

(

−

∫ T

t

λ (Xu) du

)

= βλ
t,T

2Also known as hazard rate
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2.3 Credit Risk

2.3.1 Introduction

In the current state of art it is quite strait forward to evaluate a defaultable claim of a
known counterpart both in the spot and forward market. Despite such easiness the same
does not happens when evaluating a defaultable claim of a counterpart conditional on its
future rating, which is the concept behind forward BOR.

Looking to Def. 3 the crucial factor is the “credit condition of the borrower (...) at the
forward start date”. This nuance has been, quite often, ignored or minimized due to the
low term of interbank deposits, low credit risk associated to high quality banks in the last
two decades and also the cheapness of credit risk in the last decade.

Nevertheless such feature produces a yield curve different from others as there is the
guarantee of credit quality being almost constant trough the time: the credit quality is
periodically refreshed.

About credit risk modeling, one could argue that the credit risk associated to a spe-
cific credit class would be the same along time and that it would not make sense to use
a stochastic model to capture its dynamics. In spite of that, in reality the premium de-
manded for bearing credit risk of a specific credit class do moves and there are good reasons
explaining those movements.

One concerns the concept of credit class where credit agencies attribute the rating/class
by valuing the ability of the company to survive in stress environments. So it is quite natural
to observe some pro-ciclicity in the default probability of any rating class3. Other argument
is that due to perceived assets correlations changes, the credit premium demanded by the
market can evolve across time. Throughout this work we will forget this last argument as
we will assume a constant price of credit risk.

The former argument also allows us to approach the credit factor as a two dimen-
sions problem: the relative position of each counterpart, reflected on the rating, and the
“underlying absolute level of risk”, reflected on the procyclicality of defaults and ratings
movements.

Given the described “refreshing character”4 of BOR term structure and its natural
dependence on ratings we propose the Jarrow et al. (1997) rating dependent default model
with the stochasticity introduced by Lando (1998). Only with a model that incorporates
credit quality we can price a forward defaultable claim conditional on the future credit
quality. Moreover, by using a stochastic transition matrix we can model separately the the
referred two dimensions of credit: the matrix parameters reflect the relative level of risk
and the stochastic parameters the “underlying absolute level of risk”.

3As well of downgrading probability
4The property of always standing a good rating at the beginning of the operation.
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The impact, on pricing, of setting the future rating follows immediately since the price
of a forward claim conditional on the present rating will depend on the rating path from
now until maturity and the later only on that path from the forward start date until ma-
turity.

In the present section we will study a zero coupon with T maturity only factoring for
interest rate (the risk free curve) and credit risk, a characteristic which motivates a rc5

superscript when appropriate. Most of the time the pricing will be conditional on the credit
class/rating of the bond at a certain moment: that class will be visible as a superscript
of the respective moment (ti for instance). An hypothetical example would be a highly
liquid corporate bond (so the liquidity premium would be small) whose sole buyers are non
supervisioned entities (so no capital constraints in the reporting months).

2.3.2 Lando 1998

Here we shall present and comment Lando (1998) main results concerning the double
stochastic process and the particular case of the stochastic Markovian rating transition
matrix. Full details should be found in Appendix C.

We will try to provide an evaluation at t a Zero Coupon with N notional and T maturity:

Brc
t,T = E

[

exp

(

−

∫ T

t

rudu

)

N1{τc>T} + exp

(

−

∫ τc

t

rudu

)

φc
t1{τc<T} |Ft

]

where φt is the recovery amount upon default event.

As in Lando (1998) we will work with the zero recovery assumption: φt = 0 and later
on6 analyze the case where φc

t 6= 0.

We will present Lando (1998) reasoning in four steps:

1. Lando (1998) start from Duffie & Singleton (1999) well known result – see Eq. C.3
in Appendix C – to value defaultable claims :

Brc
t,T = E

[

exp

(

−

∫ T

t

rudu

)

N1{τc>T} |Ft

]

= 1{τc>t}E

[

exp

(

−

∫ T

t

ru + λc
udu

)

N |Gt

]

(2.1)

5Shorthand for r + c
6Section 2.5
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which states that we can treat a risky claim in the same way we treat the risk free
one7: it is just a mater of adding the continuous default intensity, λc

u, to the risk free
interest rate.

2. Then, uses Jarrow et al. (1997) generator matrix, Ac, to model λc
u dynamics condi-

tional on an initial credit class ηc
t . The difference from Jarrow et al. (1997) is that

Ac is stochastic: Ac
u = Ac (Xu). From all above we need to restate λc

u definition:
λc

u = λc (ηc
u,Xu).

We will also enlarge the scope of λc based notation: λc
i,j (Xu) will be the intensity of

the transition from class i into class j and λc
u = λc

ηc
u,Kc (Xu).

Ac
u = Ac (Xu) =















λc
1 (Xu) λc

1,2 (Xu) · · · λc
1,Kc−1 (Xu) λc

1,Kc (Xu)

λc
2,1 (Xu) λc

2 (Xu) · · · λc
2,Kc−1 (Xu) λc

2,Kc(Xu)
...

...
. . .

...
...

λc
Kc−1,1 (Xu) λc

Kc−1,2 (Xu) λc
Kc−1 (Xu) λc

Kc−1,Kc (Xu)

0 0 · · · 0 0















The author states that such intensity can be stochastic in two different ways:

• the intensity will change whenever the rating changes (which already happened
in the standard Jarrow et al. (1997) model)

• the intensity will change in accordance to a state vector: Xu

A full description of this step can be found on Appendix C.4.

3. Then Eq. 2.1 is restated – see eq. C.4 in Appendix – in a way that is function of Ac
u

Brc

t
ηc
t ,T

= E

[

exp

(

−

∫ T

t

rudu

)

(

1 − Πc
t,T |ηc

t ,K

)

|Gt

]

(2.2)

where
∂Πc

t,T

∂t
= −Ac

tΠ
c
t,T

and Πc
t,T |l,c is the element of Πc

t,T in l line and c column.

4. Finally, after some assumptions on the form of Ac
u, the author arrives to the following

result – see eq. C.5 in Appendix –:

Brc

tη
c
t ,T

=
Kc−1
∑

j=1

−αc
ηc

t ,jE

[

exp

(

−

∫ T

t

ru − µc
j (Xu) du

)

|Gt

]

(2.3)

where αc
i,j and µc

j (Xu) are defined on Section C.5.

7In future references to this result, for economy of space, we will not use the 1{τc>t} part, omitting the
obvious result: P (τ c > T |GT ∧ {τ < t}) = 0
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The last result main advantage is to enable the modeling of the credit risk factor in
a way where we can perceive the credit dynamics as they are and not merely a binary
(default/non-default) model while keeping the same framework.

The valuation of a forward start rating contingent claim would be as easy as a spot
one. Following Eq. C.7,

Brc

t,f
ηc
f ,T

=
K−1
∑

j=1

−αc
ηc

f ,jE

[

exp

(

−

∫ T

f

ru − µc
j (Xu) du

)

|Gt

]

(2.4)

Furthermore, in case of independence of r (Xu) and µc
j (Xu), following C.9 :

Brc

t,f
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t,f
ηc
f ,T

2.4 Liquidity Risk

2.4.1 Introduction

The current literature on liquidity does not offer much, if any, help if we want to implement
a stochastic analysis8. Following the set of Definitions 1 the value of liquidity shall be
defined as

Definition 11 (value of Liquidity). the cost of not having enough cash in order to answer
to an unexpected liquidity shock, and so the cost of having to find that money (either by
selling assets or borrowing from someone) adjusted by the probability of such event. It can
be expressed in a spread or in a present value format.

This definition is influenced by the recent paper from Eisenschmidt and Tapking (2009)
who built a money market model in the context of uncertain liquidity shocks, where they
argue that the demanded yield should compensate the lender for the possibility of him
coming to the money market to fund a liquidity shock.

On the cost side, if the instrument that absorbed the liquidity is a tradable instrument
one option is to sell the instrument and so the liquidity cost of holding such instrument
would be, the maximum, the mid-offer spread (assuming that the “fair value” of such
instrument is the mid price). Other option would be going to the money market and raise
the required funds. The cost of raising funds in such fashion would be the excess that

8One should question the value of such approach if there is no previous research.
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is paid over the risk free rate and such excess is dependent on the institution’s perceived
credit risk, market’s overall liquidity among other factors (there is still the chance that the
market stops to work or keeps not working).

When the instrument that absorbs liquidity is non tradable, like a deposit, the most
natural option would be raising the money in the money market. The alternative option,
the better one, would be to unwind the previous deposit such operation would be more
costly than the money market since we only have one counterparty quoting and it may
be unwilling to free such deposit (ultimately they could go to the market again for the
remaining period). But despite being more costly the unwind of the operation reduces
counterparty exposure and also frees up some capital.

In what concerns the probability of such event, it is not too strong to state that the
marginal probability increases with time horizon since the factors that the institution is
able to control to manage its liquidity decrease when the time horizon is expanded9.

One last reference to correlations. There are several occasions where the liquidity shock
and the credit risk of an entity may be correlated:

• when the liquidity shock is higher than bank’s ability to fund in the short term

• when the credit quality of a counterparty turns doubtful there is a risk of a run on
deposits

• when an asset suffers an credit event there is a loss of its ability to refinance via repo;
moreover, when the credit event is the default the principal payment is not timely
fulfilled

However, such situations will not be relevant as in the offered rate of a deposit we are
evaluating the credit risk of the borrower and the liquidity risk of the lender. In order to
this correlation to work we would have to make a stronger statement: that the liquidity of
borrower and lender are also correlated.

2.4.2 BOR liquidity

As in the credit issue, BOR’s liquidity component should reflect two different problems:
“market sentiment” and individual decision. From this duality there may result an apparent
contradiction: the market may signal an easing of liquidity stress in the medium term and
individual agents will still demand a higher liquidity premium for longer time horizons.

The aversion of agents to lend long term liquidity will be modeled by creating liquidity
profiles: using a transition matrix to model the event of a liquidity shock and also the tran-
sition between different states of liquidity shock probability. In order to deal with market

9This can be one reason for companies be willing to pay a big spread for issuing in the long term.
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sentiment, as it is the market who lends to the panel, we will introduce stochasticity in the
transition matrix, so that it reflects overall refinancing costs and uncertainty.

Turning to BOR’s liquidity historic premium/importance, most of the time, when mar-
kets are functioning normally, there is widespread confidence and assets are liquid, the
liquidity premium is quite small and stable. By contrast, when there are doubts about
some market segment, when some agents start having difficulties in financing themselves,
the lack of liquidity spreads into other markets as a pandemic and its premium increases in
a vicious cycle: high liquidity premium generates fear which generates a higher demanded
premium.

Meanwhile, as market discovers a price to liquidity, bank’s regulators, the primary
source of liquidity, also follow the conditions and consequences of such price. In some
situations, when the overall uncertainty increases dramatically and there is a risk of system
collapse, they intervene providing ample liquidity to the market even ensuring each bank
unlimited liquidity for an extended period of time.

So, current experience tells us that the process of a liquidity premium is quite boring
in stable times, violent in liquidity crisis and it reverts to a “stable” environment as soon
as authorities eliminate all the funding risk10.

Another important aspect is the meaning of forward liquidity and the difference between
its price when is lent by the market, the BOR case, or by one particular agent. When an
agent promises to lend in the future it is almost certain that it will be subject to various
liquidity shocks and thereby its liquidity status will be different from the one at beginning.
When dealing with the liquidity offered by the market, we will assume that market’s
liquidity price is formed by those who are in relatively good liquidity positions11.

2.4.3 Liquidity Model

The purpose of this model is to provide a stochastic framework to an unexpected liquidity
event and respective consequences. The event would be associated to the previous lock
in of some amount of liquidity between t and T in a Zero Coupon Bond, a characteristic
which motivates a rl12 superscript when appropriate.

Moreover, in this section we will assume that there are no further risks or costs beyond
the liquidity and risk free rate.

10Then the cost of refinancing in the authority is the penalty for accessing the extraordinary program
designed by the authority. This cost should be adjusted to the market uncertainty: the largest the uncer-
tainty the smaller the cost; the program should be unwound as the ”market normality” is reestablished in
order to motivate interbank lending.

11Those who are in a relatively bad liquidity position will demand a higher price for the liquidity, its offer
will not met a demand and consequently their demanded price will not be reflected in market price.

12Shorthand for r + l.
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To model the occurrence of a liquidity event we shall use a Cox Process in the same
way13 Lando (1998) did to model a credit event. We will start by presenting a model
to evaluate a claim with no recovery upon liquidity event and only in section 2.5 we will
address it.

In this section we shall discuss the hypothesis in which we incur, present the variables
and the final results. All non original demonstrations can be found in Appendix C and be
easily adapted to the current case14 as they are formulated to a non specified event.

Basic Liquidity Model

Let ml (u, ω) be a particular realization of the random intensity of a Y l
u Cox Process defined

on a (Ω,F , Q) probability space. We will write ml (u, ω) = λl (Xu) = λl
u where Xu is a

R
d - valued stochastic process and λl : R

d → [0,∞[ defined on (Ω,F , Q) probability space.

Definition 12. The liquidity event time τ l can be thought as the time of the first jump
after t of the Y l Cox process with intensity process λl

t.

τ l = inf
{

u : Y l
u − Y l

t ≥ 1
}

From the Definition 12 and according to eq. C.1 in Appendix C

P
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τ l > T |GT ∧ H
l

t

)

= 1{τ l>t} exp
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)

(2.6)

We are able now to value a claim contingent on such event. Following eq. C.3 in
Appendix C
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(2.8)

In future references to this result, for economy of space, we will not use the 1{τ l>t}
part, omitting the obvious result: P

(

τ l > T |GT ∧ {τ < t}
)

= 0.

13Using the same arguments and following the same line of thought.
14It is only need to change the x superscript into the l in the relevant variables to full convert the appendix

results into the desired ones.
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A Class Based Liquidity Model

As discussed previously BORs are rates offered by the market to the BOR panel. After
going through a simple model of how each bank should value its liquidity risk our question
is: how should this individual decision making be reflected on market offered rate?

One hypothesis would be that after each bank putting a premium on the liquidity
component15 the offers are ordered and only the best ones16 are “hit”. We would define
then the market offered rate as some statistic of those hit offers: average, the highest/last,
some quantil, etc. We would conclude then that

1. market offered rate reflects a state of liquidity better than markets average

2. changes in liquidity risk premium of offered rates reflect changes in overall liquidity17.

Assuming that the costs from liquidity shocks have the same distribution for every bank,
the only factor for difference would be the intensity. Then, taking the fact that market
offered rate liquidity premium reflects a certain intensity and is associated with a good
liquidity position we may build a structure where bank’s would be classified accordingly
to its liquidity state:

1. a fixed number of liquidity states to which we can associate different liquidity shock
probabilities

2. intermediary intensities that attribute some probability of a bank in a given state to
change to another state

3. an absorbing state which would be the liquidity shock state

The main problem with such structure is that every bank has the same expected/possible
path. In reality it is quite possible that, given that different banks identify different weak-
nesses/strengths in different time horizons, a bank may have a liquidity advantage that
enables it to lend at 1M and at the same time a disadvantage that make its offer out of the
market for a 6M deposit. In the proposed framework such behavior would not be possible.

To be completely fair we would not be taking such strong statement since since the ag-
gregate result of many individual decisions may be correctly described by it. In fact with
such model we only pretend capture one effect: that sometime in the future a lender may
be in a worse liquidity state than the one it currently faces and that at the same time this

15Function of individual balance-sheet risks and the perception of future developments of interbank market
16There is not an inelastic amount of demand of funds as each term competes with all the others and all

compete with the secured lending and central bank facilities
17Changes on some of the best bidders would not affect much the market rate since they would be

marginally replaced by others; only wide changes in overall liquidity sentiment would drive every bidder to
change the offered rate
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fact does not mean that the all market will be facing harder liquidity environment in the
future. The transition matrix with stochastic intensities enables us to conciliate individ-
ual decisions with market sentiment in a way a simple n-factor linear model does not enable.

After laying the basis for a stochastic markovian transition matrix we shall describe its
main features. Once more we will use the same approach Lando (1998) used.

Define the generator matrix:

Al
u = Al (Xu) =

















λl
1 (Xu) λl

1,2 (Xu) · · · λl
1,Kl−1

(Xu) λl
1,Kl (Xu)

λl
2,1 (Xu) λl

2 (Xu) · · · λl
2,Kl−1

(Xu) λl
2,Kl (Xu)

...
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...
λl

Kl−1,1
(Xu) λl

Kl−1,2
(Xu) λl

Kl−1
(Xu) λl

Kl−1,Kl (Xu)

0 0 · · · 0 0

















where

• 1, ...,K l−1 are liquidity classes/ratings where 1 is the class with the lowest propensity
to a liquidity shock, K l − 1 is where the propensity is higher and K l is the liquidity
shock state

• λl
i,j (Xu) is the intensity transition from state i to state j, function of stochastic state

variables

• λl
i = λl

i,i =
∑Kl

j=1,j 6=i λ
l
i,j (Xu) , i = 1, ...,K l − 1 by definition

• λl
i,Kl = 0, means no exit from liquidity shock state

With this construction18 we obtain a continuous time process which conditionally on
the evolution of the state variables is a non-homogeneous Markov chain.

Conditionally on the evolution of the state variables, the transition probabilities, Πl
X (t, T ),

of this Markov chain satisfy

∂Πl
t,T

∂t
= −Al

tΠ
l
t,T

Pricing in a Generalized Markovian Model

In the next paragraphs we shall deliver a pricing formula, based on previous framework,
for a zero coupon bond with only liquidity risk conditional on the initial liquidity state: ηl

t

18See Lando (1998) pag 108 for details and further motivation
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Recovering the 2.7 result and applying the previous results we obtain following equation
(after Eq. C.4 in Appendix C):
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where

• Πl
t,T |i,Kl = P
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t < τ l 6 T
∣
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)

or the element from ith line and K l column

from Πl
t,T matrix.

• the condition H l
t ∧ ηl

t = i resumes to ηl
t = i. as there is more information in ηl

t than
in H l

t

Finally, after many algebra manipulations to 2.9 and some assumptions, we arrive to
the formula (after Eq. C.4 in Appendix C):
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where αl
i,j and µl

j (Xu) are defined on Section C.5.
The valuation of a forward start rating contingent claim would be as easy as a spot

one. Following Eq. C.7,
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Furthermore, in case of independence of r (Xu) and µl
j (Xu), following C.9 :
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2.5 Recovery

2.5.1 Introduction

We decided to treat the recovery variable separately from the credit and liquidity sections,
and not as a subsection in each section, since it applies to both in the exactly the same



2.5. RECOVERY 27

way and is a well studied subject.

Recovery can be roughly described as the value that the investor recovers upon an
event after loosing all due future cash flows. Applying such concept to a credit event19

is quite straightforward but to a liquidity one seams too violent. But in reality, in face
of a liquidity shock we desire to anticipate all future cash flows and exchange them for a
lump sum amount received at the liquidity shock moment, and that amount would be our
recovery.

In what concerns our variable recovery, φx
u, there are several methods traditionally

explored by the literature:

• Zero Recovery

• Recovery of Treasury

• Recovery of Market Value

• Recovery of Par

• Stochastic Recovery

The first is, in our context, an academic case, a starting point which enables us to
progress to more elaborated models. The second, third and fourth are hypothesis that
make the recovery as a fixed coefficient of other factor, and the last one is about making
that fixed coefficient stochastic. All are analyzed separately on Appendix D.

2.5.2 Choosing a Method

One special feature of recovery is that it cannot be identified with a simple spread structure,
as we would have one spread to identify both the probability of default and recovery rate.
In such situation there are two options after choosing the recovery method:

• assume a given recovery rate and extract the event probability

• to join default probability and recovery rate in one single new unidimensional variable

Our option will be to privilege the easiness of modeling without taking too strong
assumptions. The only method that enables us to do that is the Recovery of Market Value
(RMV) which delivers a recovery adjusted event intensity20

λxa (Xu) = qxλx (Xu)

19Historically it depends on numerous factors as the pre-default ratting or the business cycle evolution,
among others. See Schonbucher (2003) for a discussion on the determinants of recovery and merits of each
method dealing with it.

20As the 3.5 example in Lando (1998)
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where qx is the recovery parameter: φx
u = (1 − qx) Brx

u−,T .

In case of stochastic recovery, Schonbucher (2003)21 states that if the process that
generates the recovery is independent from all other processes, we only need to use the
expected value of qx instead of itself to avoid incurring in errors:

qx = E [qx (Xu) |Gt ]

And with such property we are able to join estimate event probability and recovery in
a stochastic framework only taking the hypothesis that the recovery is independent from
all other processes.

So if we want to apply any of the formulae in this chapter in a Recovery of Market
Value perspective and not as Zero Recovery as was stated in the beginning we only have
to adjust the interpretation of the intensity parameter from “event intensity” to “recovery
adjusted event intensity”.

Eq 2.1 and Eq 2.8 are now
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where

φx
u = (1 − qx)Brx

u−,T λxa
u = qxaλx

u qx = E [qx (Xu) |Gt ]

All remaining results are kept, only the interpretation of λx has to be adjusted into a
recovery adjusted intensity under a a RMV model.

Furthermore, the generator matrix Ax
u is now Axa

u after replacing λx
i,j by λxa

i,j = qxaλx
i,j.

2.6 End of Reporting Period - ERP

In the current crisis other recurrent phenomena gained unseen proportions: the premium
banks charge each others to carry a position over a reporting date.

When leverage and balance-sheet size was seen as a strength and capital was cheap this
phenomena was visible but kept under reasonable proportions. As we can see in Figure 2.1
the “instantaneous” impact on LIBOR-OIS of having to hold a credit in the 31-12-2006
is for the 3M LIBOR-OIS on the end of September about 2bp × 90days = 180bp and
approximately 8bp × 30days = 240bp for the 1M LIBOR-OIS on the end of November.

During the current crisis with the delevereging pressure and scarcity of capital trading
desks started to be pressed early on to avoid short term trades that would cross the End

21The main results can be founded in Appendix D
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of Reporting Period (ERP) the premiums were significantly higher. In Figure 2.2 the “in-
stantaneous” impact on LIBOR-OIS of having to hold a credit in the 31-12-2008 is for the
3M LIBOR-OIS on the end of September about 5bp × 90days = 450bp which is not much
higher from the previous exemple. But it rose to approximately 50bp × 30days = 1500bp
for the 1M LIBOR-OIS on the end of November.

As we saw in the literature review it is not easy to distinguish between ERP as we
characterize here and liquidity risk since liquidity risk increases if lenders are not willing
to lend. Eventhough we think that there is room in the current environment to study the
ERP due to the big influence of the delevereging process and capital scarcity.

In the current environment, where deposits on the central bank do not consume capital
and lending to banks does consume, the most natural behavior for banks approaching an
ERP would be:

1. to cut all trading exposures that pass the ERP;

2. to borrow all needs in the last auctions form central bank (to avoid asking for liquidity
in the ERP);

3. to lend excess liquidity in the interbank market while the term dos not pass the ERP;

4. in the last day of the current period deposit the excess on the central bank deposit
facility or to lend ON at a higher than normal yield to other banks if the bank do
not have capital constraints.

18-Sep-2005 25-Oct-2005 01-Dec-2005 07-Jan-2006
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Figure 2.1: LIB-OIS Before Lehman
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Figure 2.2: ERP After Lehman

The ON rate on the ERP usually do not follow the premium pattern of longer money
market terms as the Central Banks flood the market with short term liquidity in this times
biasing money market prices.

The way we see this phenomena impacting the BOR curve is the following:

• when the ERP is in the horizon banks start cutting risk positions that cross ERP to
approach their desired balance-sheet state

• such behavior will diminish liquidity available from terms crossing the ERP and
increase liquidity for the other terms

• the consequence would be changes in relative pricing of different tenors as we get
closer of ERP

• Central Banks make liquidity injections in the eve of ERP to avoid market disrup-
tions which makes the shorter end of the money market curve less affected by the
phenomena

• return to normality as the ERP passes

Based on such diagnostic we model the ERP as a cost for which the lender has to be
compensated:

Brz
t,T = E

[

βt,T N −
∑

i

βt,tiz
i
ti
|Ft

]

(2.14)
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where ti is a ERP date and zi
ti

is the respective cost.

Once again, as in credit and liquidity risk, we will study a zero coupon with no other
risk than the risk free curve and the factor which we are analyzing, a characteristic which
motivates a rz22 superscript when appropriate.

On the model of ERP premium we should add that we are not fully satisfied with
2.14 as we think ERP premium is more complex than that. For instance, there could be a
process of discovering of the premium “fixing driven”: as the different money market terms
pass the ERP the implied premium payed on other tenors is affected23. Other possibility
is that the change of liquidity from one tenor to the other affects the price of both, and
not only of the tenor that passes the ERP24.

2.6.1 Single-Period Model

With such behavior in mind the price the banks attach to the extra room in balance-sheet
would change as the circumstances and their positions change. We shall measure such
price as the extra yield demanded for the last day of the period priced on interbank rates
that cross the ERP. The yield would be charged over the market value of the asset as both
capital consumption and perceived leverage are function of it.

This sort of pricing will produce the same framework as the “Recovery of Market Value”
model described in Appendix D.

We will begin with a discrete time reasoning:

• time step from t to t + ∆t

• the period from t to t + ∆t may or may not be an ERP

• The set A is the set of data periods that are classified as ERP periods, Dt =
1{]t,t+∆t]⊂A}

• if Dt = 1, Zt will follow the RMV framework: Zt+∆t = ΘBrz
t,TDt

• R as risk free interest rate from t to t + ∆t

• Θ is the RMV parameter

The price of an asset at time t must be the expected discounted value of its value at
time t + ∆t:

22Shorthand for r + z
23See the jump of US LIBOR 3M when USD 1M LIBOR maturity crosses the ERP on Figure 2.2
24See the downward slope of USD 1M LIBOR in the two months following the day that the maturity of

USD 3M LIBOR crosses ERP on Figure 2.1
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Brz
t,T =

1

1 + R∆t

{

E
[

Brz
t+∆t,T

|Ft

]

− Zt+∆t

}

=
1

1 + R∆t

{

E
[

Brz
t+∆t,T |Ft

]

− DtΘ∆tB
rz
t,T

}

(2.15)

where Dt = 1{]t,t+∆t]⊂A}

Rearranging the terms, the price Brz
t,T should be

E
[

Brz
t+∆t,T

|Fτ

]

Brz
t,T

= 1 + R∆t − DtΘ∆t

and then

E

[

Brz
t+∆t,T

− Brz
t,T

Brz
t,T

|Ft

]

= 1 + R∆t + DtΘ∆t − 1

= R∆t + DtΘ∆t

In the limit when ∆t → 0, replacing interest and cost rates with their stochastic con-
tinuously compounded equivalents25

E

[

dBrz
u,T

Brz
u−,T

|Fu

]

= (ru + duθu) du

This leads to the conjecture that Brz
t,T is reached by discounting the expected price in

survival Brz
t+∆t,T

with the (r + dθ) continuous rate.

The value of Brz
t,T from Eq 2.15 would be26

Brz
t,T = E

[

exp

(

−

∫ T

t

r (Xu) + duθ (Xu) du

)

|Ft

]

(2.16)

where θu would be modeled through an Affine Term Structure (AFS) model and du =
1{u∈A}.

The valuation of a forward start rating contingent claim would be as easy as a spot
one. Eq. 2.16 can easily be modified into

Brz
t,f,T = E

[

exp

(

−

∫ T

f

r (Xu) + duθ (Xu) du

)

|Ft

]

(2.17)

25R → ru, Θ → θu and Du → du
26proof on pag 139 of Schunbucher for a similar problem
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Furthermore, in case of independence of r (Xu) and θ (Xu):

Brz

t,fηl
t ,T

= Br
t,f,T Bz

t,f,T (2.18)

2.6.2 Multi-Period Model

At each moment there are multiple reporting periods in the horizon each of them with
different degrees of importance but all affecting the BOR’s curve27. How should we handle
all this different periods?

1. Every ERP is a different phenomena and should be given a special treatment. We
would need as many models (θi) as the number of ERP that will affect our variables.
Naturally, correlations could be implemented when required. This is the most general
way to express the Multi-Period Model.

Brz
t,T = E

[

exp

(

−

∫ T

t

ru +
∑

di
uθi

udu

)]

(2.19)

where di
u = 1{u∈Ai}

2. All ERP are the same phenomena and should be reflected in one single model.

Brz
t,T = E

[

exp

(

−

∫ T

t

ru + duθudu

)]

(2.20)

where du = 1{u∈A}

3. There are different classes of ERP (EoY and EoS for instance) each class represent
a single phenomena and should be modeled trough a different model. Naturally,
correlations could be implemented when required.

Brz
t,T = E

[

exp

(

−

∫ T

t

ru + dEoY
u θEoY

u + dEoS
u θEoS

u du

)]

(2.21)

where dEoY
u = 1{u∈AEoY } dEoS

u = 1{u∈AEoS}

4. There are different classes of ERP (EoY and EoS for instance) but all represent the
same underlying phenomena, classes only reflect different intensities. There is only
one model which is scaled with a coefficient (stochastic or deterministic) for each
class of ERP.

Brz
t,T = E

[

exp

(

−

∫ T

t

ru + duθudu

)]

(2.22)

27In some cases there are more than one affecting a Deposit.
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where

du =







1 , u ∈ AEoY

cEoS
t , u ∈ AEoS

0 else

Our preference would go to the last option, Eq. 2.22, as it allows some degree of
flexibility when compared with equation 2.20 without the increased complexity of equation
2.21. About equation 2.19, we think that the huge complexity due to a big number of
models and a covar matrix behind them is not matched in gains for having one model for
each ERP.



Chapter 3

Joint Model

3.1 Introduction

When trying to join all factors the first question should be: “How do those factors interact
between themselves?” and not “What result are we expecting?”. And, despite the unsci-
entificness of the second question it will shape our path in a much stronger way than the
first will do.

The first question will be extensively discussed but it can be easily modeled by inserting
some extra state variable which connects two or more observed variables or other method
for modeling co-movements.

Nevertheless it shall be noted that concerning the Poisson Processes implicit in some
factors we will assume independence towards all continuous variables, which is a common
assumption, but also independence between all Poisson Processes, which can be disputed.
This assumption is mostly due to the added complexity1 which the relaxing of the assump-
tions would introduce.

The second question, despite being much easier to answer since is based on intuition
and some preconceived ideas, is much harder to deal with since the framework we design
will affect the final result and the easiness of modeling it.

With such thoughts in mind we will start by displaying the various possible/acceptable
frameworks and choose the one best fits our desired result and end the chapter discussing
and modeling the correlations between factors.

1We would need to introduce copula models.

35
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3.2 Framework

3.2.1 Choosing

When joining the models we have to take assumptions on the global consequences of an
event, be it a credit or a liquidity one:

AD All risks (Liquidity and Credit) and costs (ERP) Disappear

• In a liquidity event is equivalent to assume that the deposit is unwound (so no
more credit risk)

• In a credit event is equivalent to assume that the recovery amount is kept in
ON deposits (so no more liquidity risk)

OK the Other risk and ERP costs are Kept but the event that occurred cannot happen
again.

• In a liquidity event is equivalent to assume that the deposit is not unwound (so
we keep credit risk)

• In a credit event is equivalent to assume that the recovery amount is only re-
ceived at maturity (so we keep liquidity risk over the recovery amount)

AK All risks (liquidity and credit) and ERP costs are Kept

• In a liquidity event is equivalent to assume that the liquidity shock is partial,
and so after a shock there would still be room for future shocks

• In a credit event is equivalent to assume that the recovery amount is reinvested
again in a BOR deposit until maturity

Naturally, when a ERP cost is incurred nothing happens to the others risks and ERP costs

We shall now deduce an intermediary formulation which will be the starting point for
the next section

3.2.2 Zero Recovery

By choosing a Zero Recovery assumption in credit and liquidity we are implicitly choosing
the AD assumption, as there is no asset after the event. The value of such asset would be
given by:

Bb
t,T = E

[

βt,T N1{T>τcl} +
∑

i

βt,tiz
i
ti
1

ti>min{T,τcl} |Ft

]

(3.1)
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where τ cl = min
{

τ l, τ c
}

is the time at which the first of the poisson processes jumps to 1.

The event time τ cl can be thought as the time of the first jump after t of Y cl
u = Y c

u +Y l
u.

Given that Y c
u and Y l

u are independent from each other Y cl
u is also a Cox process with

intensity process λcl
t = λc

t + λl
t.

τ cl = inf
{

u : Y cl
u − Y cl

t ≥ 1
}

Then, using Eq C.3 results:

Bb
t,T = 1{τcl>t}E

[

βt,T βλcl

t,T +
∑

i

βt,T βλcl

t,ti
zi |Gt

]

= 1{τcl>t}E

[

βr+λl+λc

t,T +
∑

i

βr+λl+λc

t,ti
zi |Gt

]

(3.2)

And lastly, solving for the ERP factor under the simplest hypothesis, Eq 2.20:

Bb
t,T = E

[

βr+λl+λc+duθu
t,T |Gt

]

(3.3)

3.2.3 Recovery of Market Value

We will opt for the AD option for the following reasons:

• The AK assumptions imply slightly different models from the ones previously studied;
the models are not much different but would add unnecessary complexity to our
formulation

• The OK assumptions do not allow us to reach the desired final result: spreads addi-
tivity

Under the AD assumption, assuming RMV on credit, liquidity and ERP the value of
the interbank zero coupon is:

Bb
t,T = E

[

βt,T N1{T>τcl)} + βt,τ lφl
τ l1{τ l<min(T,τc)}

+ βt,τcφc
τc1{τc<min(T,τ l)} + zi1{ti<min(T,τcl)} |Ft

]

(3.4)

We will now use the same kind of arguments presented on SECTION D.4, starting with
a discrete model and extract the limit.
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Discrete reasoning Assumptions:

• time step of ∆t: ]t, t + ∆t]

• R as risk free interest in ]t, t + ∆t]

• the set A is the set of data periods that are classified as ERP periods, Dt =
1{]t,t+∆t]⊂A}; the moment t + ∆t may or may not be an ERP

• if Dt = 1, zt will follow the RMV framework: zt+∆t = ΘBb
t,T Dt

• Θt the ERP RMV parameter

• at the event moment, τx , the recovery of every event is (1 − qx) times the pre-event
value of the claim

φx
τx = (1 − qx) Bb

τx−,T x = l, c

if τx = t + ∆t then τx− = t

• the event probability until t + ∆t is px
t,t+∆t

= px x = l, c

• the event x Hazard rate, Hx, is defined as ∆t · H
x = px

1−px x = l, c

• p = pc +pl −pcpl is the probability of any event to happen until t+∆t and ∆t ·H
x =

pc+pl−pcpl

1−pc−pl+pcpl is the correspondent hazard rate

• Starting Point: The price of an asset at time t must be the expected discounted value
of its value at time t + ∆t as displayed on Figure 3.1:

Bb
t,T =

(1 − p)
{

E
[

Bb
t+∆t,T

|Ft

]

− zt+∆t

}

+ plφl
t+∆t

+ pcφc
t+∆t

1 + R∆t

Bb
t,T =

(1 − p)
{

E
[

Bb
t+∆t,T

|Ft

]

− Θt∆tDtB
b
t,T

}

+ pl
(

1 − ql
)

Bb
t,T + pc (1 − qc)Bb

t,T

1 + R∆t

Bb
t,T

{

1 + R∆t − pl
(

1 − ql
)

− pc (1 − qc) + (1 − p)Θt∆tDt

}

= (1 − p) E
[

Bb
t+∆t,T

|Ft

]
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In t

Bb
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t+∆t

+ φc
t+∆t

Figure 3.1: Discrete Time Valuation

E
[

Bb
t+∆t,T

|Ft

]

Bb
t,T

=
1 + R∆t − pl

(

1 − ql
)

− pc (1 − qc) − (1 − p)Θt∆tDt

1 − p

=
1 + R∆t − pl + plql − pc + pcqc + plpc − plpc + (1 − p)Θt∆tDt

1 − p

=
R∆t + plql + pcqc − plpc

1 − p
∆t · H

1 − p

p
+ 1 + Θt∆tDt

=
R∆t + plql + pcqc − plpc

p
∆t · H + 1 + Θt∆tDt

= R∆t
∆t · H

p
+

plql + pcqc − plpc

p
∆t · H + 1 + Θt∆tDt

= R∆t (1 + ∆tH) +
{

plql + pcqc − plpc
} 1

1 − p
+ 1 + Θt∆tDt

= R∆t + Rt (∆t)
2 H +

{

pcqc 1 − pc

pc
∆tH

c + plql 1 − pl

pl
∆tH

l − plpc

}

1

1 − p

+ 1 + Θt∆tDt

=

(

R + qcHc 1 − pc

1 − p
+ qlH l 1 − pl

1 − p
+ ΘtDt

)

∆t + Rt (∆t)
2 H −

plpc

1 − p
+ 1
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and then

E

[

Bb
t+∆t,T

− Bb
t,T

Bb
t,T

|Ft

]

=

(

R + qcHc 1 − pc

1 − p
+ qlH l 1 − pl

1 − p
+ ΘtDt

)

∆t

+ Rt (∆t)
2 H −

plpc

1 − p
+ 1 − 1

In the limit when ∆t → 0, pc
t,t = pl

t,t = 0, ignoring the (∆t)
2 terms and replacing

discrete variables with their continuous equivalents2

E

[

dBb
u,T

Bb
u,T

|Ft

]

=
(

ru + qc
uλc

u + ql
uλl

u + θudu

)

du

This leads to the conjecture that Bb
t,T is reached by discounting the expected price in

survival Bb
t+∆t,T

with the
(

ru + qcλc + qlλl + θudu

)

continuous rate. After adjusting the

notation of qcλc and qlλl

Bb
t,T = E

[

exp

(

−

∫ T

t

ru + λca
u + λla

u + θududu

)

|Gt

]

(3.5)

Then, applying the results obtained in Credit, Eq 2.3, and Liquidity section we obtain
Bb

t,T conditional on ηc
t and ηl

t:

Bb
t,T =

Kc−1
∑

j=1

−αc
ηc

t ,jE

[

exp

(

−

∫ T

t

ru − µc
j (Xu) + λla

u + θududu

)

|Gt

]

=
Kl−1
∑

jj=1

Kc−1
∑

j=1

αc
ηc

t ,jα
l
ηl

t,jj
E

[

exp

(

−

∫ T

t

ru − µc
j (Xu) − µl

jj (Xu) + θududu

)

|Gt

]

(3.6)

As previously done the analogy into the forward start rating contingent claim follows.
After Eq. 3.5,

Bb
t,f,T = E

[

exp

(

−

∫ T

f

ru + λca
u + λla

u + θududu

)

|Gt

]

(3.7)

After Eq. 3.6, Bb
t,f,T =

Kl−1
∑

jj=1

Kc−1
∑

j=1

αc
ηc

t ,jα
l
ηl

t,jj
E

[

exp

(

−

∫ T

f

ru − µc
j (Xu) − µl

jj (Xu) + θududu

)

|Gt

]

(3.8)

2R → ru, Hx → λx, Θ → θu and Du → du
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3.3 Independence

3.3.1 Discussion

We will analyze the six different relation that may be established between the factors.

Interest Rate Credit Liquidity ERP
Credit X X X
Liquidity X X
ERP X

Table 3.1: Independence Analysis

Credit As already stated the correlation between business cycles and credit variables,
both intensity and recovery, is quite obvious and if we add that central banks behave
countercyclicy while setting interest rates the correlation between intensities and risk free
rates follows immediately.

Against this argument:

• central banks do not respond to banking solvency issues with rate policy;

• we shall focus on short term high quality credit, less vulnerable to business cycles
evolution

• the main movements we would like to capture are general collapses on banking in-
dustry confidence and those are rapid movements with low correlation to risk free
rates (except for flight to quality and liquidity phenomena)

• for long lasting phenomena like Japan’s TIBOR, its reversion is not function of the
main interest rates and its impact on the business cycle, and so the rates, is quite
differed

One other source of correlation is the ERP factor: a poor condition on the credit side
means that banks do not have the appropriate capital which would push them to delev-
ereging in the End of the Reporting Period.

We do not find any particular reason for a correlation with liquidity factors.

Liquidity There seems to exist independence in what concerns the relation between
factors behind risk free rates and liquidity variables. There are, however, two question
that should be addressed.

Let’s first consider central banks’ reaction to generalized liquidity problems. While
trying to mitigate agent’s costs of an elevated liquidity cost one of the available instruments
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is the monetary policy and so a generalized liquidity uncertainty could trigger a lower policy
rate.

Nevertheless, the policy rate is not the correct instrument to deal with a liquidity crisis
and authorities should avoid using it3.

The second issue is the reaction of BOR fixings after the central bank cutting rates:
they may stand still for technical factors, making all the cut to be compensated by liquidity
premium, as the former is estimated as a residual4.

We do not find any particular reason for a correlation with ERP.

ERP In what concerns independence there is no apparent relation of the ERP phenomena
with the risk free rate, however there exist chances for a big correlation which depends on
the way we measure the risk free curve.

If we assume that the treasury curve is the benchmark for the risk free curve then the
correlation may be huge, as banks substitute bank deposits for short term treasury bills,
which consume zero capital, and respective yields completely diverge.

If however our risk free benchmark is the OIS curve the problem may be reduced, but
it will still persist as one of the fixings, the last business day of the year for instance, will
be affected by the same phenomena!

In the first case we have a negative correlation, in the second a positive one. And on
the later we still be left thinking if the ERP effect should not be entirely reflected on the
ON curve!

We will choose the ON curve as the treasury curve is hugely disruptive for its liquidity
driven movements5 and since the positive correlation does not occur in practice. The
answer to this apparently incoherent pricing of liquidity on the last business day of a
period is probably related to the liquidity flooding which most central banks do in this
traditionally critic periods of the calendar. In proceeding this way the demand for funds
in the interbank market drops making the transactions to settle at lower rates.

3However a high liquidity premium, signaling the freeze of money markets, can lead to the collapse of
real economy which can later trigger the downward move of monetary policy.

4This argument can be applied to any illiquid instrument as the markets risk free curve moves almost
continuously and the former instruments more exporadicly. As we are “artificially” splitting the yield of
a risky instrument into risk-free component and a credit spread the different timings between prices can
easily produce correlation in the extracted spread and risk free rates.

5Schonbucher (2003) on Section 3.7 refers some evidence from Houweling and Vorst (2001) that repo
and swap rates outperform government rates as risk-free reference curve.
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3.4 Modeling

3.4.1 Independence

Assuming independence makes estimation much easier than not doing so as it enables
us to estimate each factor independently from others, which significantly decreases the
complexity of the model. Starting from Eq. 3.5:

Bb
t,T = E

[

exp

(

−

∫ T

t

r (Xu) + λca (Xu) + λla (Xu) + θ (Xu) dudu

)

|Gt

]

= E
[

β
r(Xu)
t,T β

λca(Xu)
t,T β

λla(Xu)
t,T β

θ(Xu)du

t,T |Gt

]

under independence

Xu =
[

Xr
u,Xc

u,Xl
u,Xz

u

]

Bb
t,T = E

[

β
r(Xr

u)
t,T |Gt

]

E
[

β
λca(Xc

u)
t,T |Gt

]

E

[

β
λla(Xl

u)
t,T |Gt

]

E
[

β
θ(Xz

u)du

t,T |Gt

]

= Bt,T (Xr
t)Bc

t,T (Xc
u) Bl

t,T

(

Xl
u

)

Bz
t,T (Xz

u) (3.9)

followed by the simple spreads equation after using the relation yx
t,T =

(− log Bx
t,T )

ct,T

Bb
t,T = exp

(

−ct,T yr
t,T

)

exp
(

−ct,T yc
t,T

)

exp
(

−ct,T yl
t,T

)

exp
(

−ct,T yz
t,T

)

= exp
(

−ct,T

[

yr
t,T + yc

t,T + yl
t,T + yz

t,T

])

3.4.2 Dependence

About the dependence analysis we shall again stress that we will only treat dependence in
vector Xu, we will not study dependence of Y x

u Cox Processes, and that thera are alterna-
tive ways of expressing dependence.

The Xu vector will be composed by the following elements

• Xi1
u , Xi2

u ,..., X
ini

u for modeling the ith component, i = r, c, l, z

• Xj
u for modeling the covariation components: j = 1, ..., J

As in Eq. 3.6

Bb
t,T =

Kl−1
∑

jj=1

Kc−1
∑

j=1

αc
ηc

t ,jα
l
ηl

t,jj
E

[

exp

(

−

∫ T

t

ru − µc
j (Xu) − µl

jj (Xu) + θududu

)

|Gt

]

where
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• ru =
∑nr

i Xri
u +

∑nr
j ar,jX

j
u

• µc
u (Xu) =

∑nc
i Xci

u +
∑J

j ac,jX
j
u

• µl
t (Xu) =

∑nl
i X li

u +
∑J

j al,jX
j
u

• θt =
∑nz

i Xzi
u +

∑nz
j az,jX

j
u

and cx,j is a parameter.



Chapter 4

Numeric Examples

4.1 Introduction

In this chapter we will present four examples of past structures of the money market, most
of which the current theory in unable to deal with, and show how our proposal handles
such reality. We aim to show how our model dynamics compare with market ones.

We shall also emphasize that, by default, model parameters will be chosen without any
criteria beyond author’s judgment.

We will use Eq. 3.7 as a starting point and evolve from there:

Bb
t,f,T = E

[

exp

(

−

∫ T

f

r (Xu) + λca (Xu) + λla (Xu) + duθ (Xu) du

)

|Gt

]

(4.1)

Then we assume independence between the four factors in order to make the exem-
plification simpler. We remind that the assumption of Dependence or Independence may
change the difficulty in optimizing the parameters of Eq. 4.1 but do not change the con-
ceptual framework in which we are working. We will further assume that each factor is
function of just one ATS state variable.
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As such Eq. 4.1 is

Bb
t,f,T = E

[

exp

(

−

∫ T

f

r (Xr
u) + λca (Xc

u) + λla
(

X l
u

)

+ duθ (Xz
u) du

)

|Gt

]

= E

[

exp

(

−

∫ T

f

r (Xr
u) du

)

|Gt

]

E

[

exp

(

−

∫ T

f

λca (Xc
u) du

)

|Gt

]

E

[

exp

(

−

∫ T

f

λla
(

X l
u

)

du

)

|Gt

]

E

[

exp

(

−

∫ T

f

duθ (Xz
u) du

)

|Gt

]

= B
r(Xr

u)
t,f,T B

λca(Xc
u)

t,f,T B
λla(Xl

u)
t,f,T B

duθ(Xz
u)

t,f,T

= Br
t,f,T Bc

t,f,T Bl
t,f,T Bz

t,f,T (4.2)

where

dXi
t = εAi

(

εBi − Xi
t

)

dt +
√

εCi + εDiX
i
tdW i

t

Then, developing Eq. 4.2 using the relation Bx
t,f,T = exp

(

−ct,f,T · yx
t,f,T

)

, CC spread

additivity follows easily:

Bb
t,f,T = B

r(Xr
u)

t,f,T B
λca(Xc

u)
t,f,T B

λla(Xl
u)

t,f,T B
duθ(Xz

u)
t,f,T

exp
(

−ct,f,T · yb
t,f,T

)

= exp
(

−ct,f,T · yr
t,f,T

)

exp
(

−ct,f,T · yc
t,f,T

)

exp
(

−ct,f,T · yl
t,f,T

)

exp
(

−ct,f,T · yz
t,f,T

)

exp
(

−ct,f,T · yb
t,f,T

)

= exp
(

−ct,f,T · yr
t,f,T − ct,f,T · yc

t,f,T − ct,f,T · yl
t,f,T − ct,f,T · yz

t,f,T

)

yb
t,f,T = yr

t,f,T + yc
t,f,T + yl

t,f,T + yz
t,f,T

where ct,f,T = T−f
360

4.2 Market Data

We have chosen to study the tenors 1M, 3M, 6M and 12M from the USD LIBOR curve.
The USD LIBOR is fixed at 11:00, London Time, every day while there is no fixing neither
for the LIBOR FRA OIS curve neither for the CDS one. For those reasons we will have to
take extra care in the process of collecting data in order to avoid comparing data reflecting
different market environments.
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4.3 Method

4.3.1 Capture the Spot and Forward BOR curve

Forward Period 0 1 2 3 4 5 6 9 12 15 18 21
1M USD LIBOR x x x x x
3M USD LIBOR x x x x x x x x x x x x
6M USD LIBOR x x x x x
12M USD LIBOR x x x x x

Table 4.1: LIBOR Data

We will capture the DC yields1, vb
t,f,f+∆i

f
, displayed on Table 4.1 and from that data we

will calculate the implied CC yields, yb
t,f,f+∆i

f
based on the following formula:

exp
(

ci
f · yb

t,f,f+∆i
f

)

=
1

1 + ci
f · vb

t,f,f+∆i
f

where

ci
t =

∆i
t

360 , i = 1M,3M,6M,12M

∆i
t is the number of days for a i maturity money market in t.

4.3.2 Extracting the Risk Free curve

We will use the OIS curve as our proxy for the risk free curve for the reasons previously
outlined on section 3.3. The OIS curve will be captured trough the following spot contribu-
tions: 1M, 2M, 3M, 4M, 5M, 6M, 9M, 12M, 15M, 18M, 24M. Based on those contributions
a risk free zero coupon curve Br is build.

Model

We will not attempt to model the risk free dynamics as it is not the purpose of this work
and consequently we will just calculate the yr

t,f,f+∆i
f

implied on the risk free zero coupon,

Br
t,f,f+∆i

f
, which is calculated using a linear interpolation on the yields.

exp
(

ci
f · yr

t,f,f+∆i
f

)

= Br
t,f,f+∆i

f

1When the forward period is 0 it refers to the daily official fixing, whether the others refers to the market
quoted FRAs.
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Then we will show a graph with the spread LIBOR-OIS:

yb−r
t,f,f+∆i

f

= yb
t,f,f+∆i

f
− yr

t,f,f+∆i
f

4.3.3 Extracting the Credit curve

Model

Following Eq. C.9, with Kc = 3 and ηc
f = 1, we have

Bc
t,f1,T =

2
∑

j=1

−αc
1,jE

[

exp

(

−

∫ T

f

−µc
j (Xc

u) du

)

|Gt

]

(4.3)

The credit matrix we use follows the one presented in Lando (1998). From that matrix
we extracted the classes 1 (Low Credit Event Probability), 2 (High Credit Event Prob-
ability) and 3 (Credit Event already occurred), and obtained the base generator matrix
Ac.

Ac =





−0.0165 0.0155 0.001
0.0128 −0.0881 0.0753

0 0 0





Following Section C.6 we set µc
j (Xc

u) = ξc
jX

c
u where ξc

1, ξ
c
2 are Ac eigenvalues and Eq.

4.3 becomes

Bc
t,f1,T = −αc

1,1E

[

exp

(

−

∫ T

f

−ξc
1X

c
udu

)

|Gt

]

−αc
1,2E

[

exp

(

−

∫ T

f

−ξc
2X

c
udu

)

|Gt

]

(4.4)

where αc
1,1 and αc

1,2 are obtained from Ac eigenvectors following Annex C.

αc =

[

−1.667 0.667
−0.2011 −0.7989

]

ξc =
[

−0.0138 −0.0908
]

Finally, applying Eq. E.3

Bc
t,f i,T = −αc

1,1 exp
(

Ac
t,T −Ac

t,f − Bc
t,T Xc1

t + Bc
t,fXc1

t

)

+

+ −αc
1,2 exp

(

Ac
t,T −Ac

t,f − Bc
t,T Xc2

t + Bc
t,fXc2

t

)

(4.5)

In relation to the Xc
u ATS model we will only define three parameters

εc
A = 0.9 εc

C = 0.052 εc
D = 0

and use the εc
B to adjust to the data in each moment. Despite not being a correct proce-

dure, since we would like to present a stable framework valid to all moments, we will use
this simplification to avoid introducing more stochastic variables which would reach the
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same result preserving the framework.

After having calculated the parameter εc
B and the initial value of the state variable,

Xc
t , we calculate Bc

t,f,f+∆i
f

following Eq. 4.5 and then yc
t,f,f+∆i

f
for every LIBOR in our

data:
exp

(

ci
f · yc

t,f,f+∆i
f

)

= Bc
t,f,f+∆i

f

Then we will show a graph with the spread LIBOR-OIS-CREDIT:

yb−r−c
t,f,f+∆i

f

= yb
t,f,f+∆i

f
− yr

t,f,f+∆i
f
− yc

t,f,f+∆i
f

Market Data

The LIBOR credit curve is the most non-standard element of data we have to gather from
market as it is, in our model, the only element specific to the LIBOR contributor. In
order to do it properly we would have to compare each counterpart credit curve with its
contribution. As the purpose of this chapter is simply to illustrate the mechanics of the
model we will take a short cut based on two assumptions:

• the credit curve is flat for each tenor (from the observation that in all the considered
period the credit curve for the generality of the contributor banks, namely the median,
kept a flat profile): Xc

t = εc
B

• the credit spread of the 12M tenor is the LIBOR-OIS spread of the longest forward in
the sample, yb

t,t+∆i
t
− yr

t,t+∆i
t
. We are assuming that both the ERP and the liquidity

component are poorly valued by the market for longer maturities and that only the
credit component appears: Bb−r

t,t+1,t+2 = Bc
t,t+1,t+2. Following Eq. 4.5

Bc
t,(t+1)i,t+2

= −αc
1,1 exp

(

Ac
t,t+2 −Ac

t,t+1 − Bc
t,t+2X

c1
t + Bc

t,t+1X
c1
t

)

+ −αc
1,2 exp

(

Ac
t,t+2 −Ac

t,t+1 − Bc
t,t+2X

c2
t + Bc

t,t+1X
c2
t

)

And, given Bb−r
t,t+1,t+2 solve for Xc

t .

4.3.4 Extracting ERP costs

In this factor we will apply the Eq. 2.22 multi-period model:

Bz
t,f,T = E

[

exp

(

−

∫ T

f

duXz
udu

)]

where

du =















1 , u ∈ AEoY

1
2 , u ∈ AEoS

1
4 , u ∈ AEoQ

0 else
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The parameters of the ATS model will be

εz
A = 0.9 εz

B = 0.04 εz
C = 0.052 εz

D = 0.

and the initial value of the state variable, Xz
t , will be sloppily adjusted to the data.

We will then calculate yz
t,f,f+∆i

f
for every LIBOR in our data:

exp
(

ci
f · yz

t,f,f+∆i
f

)

= Bz
t,f,f+∆i

f

Then we will show a graph with the spread LIBOR-OIS-CREDIT-ERP:

yb−r−c−z

t,f,f+∆i
f

= yb
t,f,f+∆i

f
− yr

t,f,f+∆i
f
− yc

t,f,f+∆i
f
− yz

t,f,f+∆i
f

4.3.5 Liquidity

Model

Following Eq. C.9, with K l = 3 and ηl
f = 1, we have

Bl
t,f1,T =

2
∑

j=1

−αl
1,jE

[

exp

(

−

∫ T

f

−µc
j

(

X l
u

)

du

)

|Gt

]

(4.6)

The liquidity matrix, Al, we be slightly different from the credit one, Ac, in order to
increase the liquidity spread of the tenors with higher duration. We did it imposing a lower
probability of transition from class 1 to class 2 and a higher probability of a Liquidity event
given that the agent is on class 2.

Al =





−0.071 0.07 0.001
0.01 −0.2 0.19
0 0 0





Following Section C.6 we set µl
j

(

X l
u

)

= ξl
jX

l
u where ξl

1, ξ
l
2 are Al eigenvalues and Eq.

4.6 becomes

Bc
t,f1,T = −αl

1,1E

[

exp

(

−

∫ T

f

−ξl
1X

l
udu

)

|Gt

]

−αc
1,2E

[

exp

(

−

∫ T

f

−ξl
2X

c
udu

)

|Gt

]

(4.7)

where αl
1,1 and αl

1,2 are obtained from Al eigenvectors following Annex C.

αl =

[

−1.4646 0.4646
−0.1091 −0.8909

]

ξl =
[

−0.0329 −0.1026
]
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In relation to the ATS model we will only define two parameters and use the εl
B and

εl
A to adjust to the data in each moment.

The argument is the same as in the credit shortcut. Despite not being a correct proce-
dure, since we would like to present a stable framework valid to all moments, we will use
this simplification to avoid introducing more stochastic variables which would reach the
same result preserving the framework:

εl
C = 0.052 εl

D = 0

After having calculated the parameters εl
A and εl

B and the initial value of the state
variable, X l

t, we calculate Bl
t,f,f+∆i

f
following Eq. 4.7 and then yl

t,f,f+∆i
f

for every LIBOR

in our data:

exp
(

ci
f · yl

t,f,f+∆i
f

)

= Bl
t,f,f+∆i

f

Then we will show a graph with the spread LIBOR-OIS-CREDIT-ERP-LIQ:

yb−r−c−l−z
t,f,f+∆i

f

= yb
t,f,f+∆i

f
− yr

t,f,f+∆i
f
− yc

t,f,f+∆i
f
− yz

t,f,f+∆i
f
− yl

t,f,f+∆i
f

Market Data

The only factor from which we do not hold any evidence is the liquidity and as such we will
use the usual procedure: it will be our residual. So we will start from a base model leaving
some degrees of freedom, εl

A, εl
B and X l

t to adjust the model to the residual LIBOR-OIS-
CREDIT-ERP.

We will sloppily adjust εl
A, εl

B and X l
t to the data in order to get a final yb−c−l−z

t,f,f+∆i
f

which

is zero in average and where the difference between the points in the curve is minimal and
seemingly random.
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4.4 Examples

4.4.1 Before August 2007
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Figure 4.1: USD LIBOR 21Feb2007
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(b) BOR-OIS-CREDIT-ERP-LIQ

Figure 4.2: USD LIBOR Decomposition 1 21Feb2007
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Xx
0 εx

A εx
B

Credit 0.3 0.5 0.305
ERP 200

10000 0.5 400
10000

Liquidity 0.05 1 0.2

Table 4.2: AFS Parameters 21Feb2007

We have chosen to analyze the 21st of February of 2007 with the structure displayed on
Figure ?? using the method described on SubSection 4.3 and parameters from Table 4.2.
As can be seen in Figure 4.2b final residual ranges between 0 and 5 which compares2 with
an initial residual between 6 and 13 as displayed on Figure 4.2a.

4.4.2 Right After August 2007

Sep07 Dec07 Apr08 Jul08 Oct08 Jan09 May09 Aug09 Nov09
4.1
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5

5.1

Figure 4.3: USD LIBOR 23Oct2007

2Intermediate Figures can be found on Section F.1
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Figure 4.4: USD LIBOR Decomposition 1 23Oct2007

Xx
0 εx

A εx
B

Credit 0.3 1 0.305
ERP 510

10000 0.5 400
10000

Liquidity 2.9 2.7 0.75

Table 4.3: AFS Parameters 23Oct2007

We have chosen to analyze the 23th of October of 2007 with the structure displayed on
Figure 4.3 using the method described on SubSection 4.3 and parameters from Table 4.3.
As can be seen in Figure 4.4b final residual ranges between -5 and 20 which compares3

with an initial residual between 60 and 10 as displayed on Figure 4.4a.

3Intermediate Figures can be found on Section F.2
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4.4.3 Right After Lehman
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Figure 4.5: USD LIBOR 23Oct2008
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Figure 4.6: USD LIBOR Decomposition 1 23Oct2008
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Xx
0 εx

A εx
B

Credit 1 0.5 1.005
ERP 900

10000 0.5 400
10000

Liquidity 9 3 0.75

Table 4.4: AFS Parameters 23Oct2008

We have chosen to analyze the 23th of October of 2008 with the structure displayed on
Figure 4.5 using the method described on SubSection 4.3 and parameters from Table 4.4.
As can be seen in Figure 4.6b final residual ranges between -20 and 130 which compares4

with an initial residual between 30 and 260 as displayed on Figure 4.6a.

4.4.4 Beginning 2009
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Figure 4.7: USD LIBOR 24Mar2009

4Intermediate Figures can be found on Section F.3
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Jan09 May09 Aug09 Nov09 Mar10 Jun10 Sep10 Dec10 Apr 11
-20

-10

0

10

20

30

40

50

60

70

(b) BOR-OIS-CREDIT-ERP-LIQ

Figure 4.8: USD LIBOR Decomposition 1 24Mar2009

Xx
0 εx

A εx
B

Credit 1.215 0.5 1.22
ERP 1300

10000 0.5 400
10000

Liquidity 2.5 0.3 0.15

Table 4.5: AFS Parameters 24Mar2009

We have chosen to analyze the 24th of March of 2009 with the structure displayed on Figure
1.1 using the method described on SubSection 4.3 and parameters from Table 4.5. As can
be seen in Figure 4.8b final residual ranges between -10 and 70 which compares5 with an
initial residual between 30 and 170 as displayed on Figure ??.

4.4.5 Summer 2009

We have chosen to analyze the 23th of July of 2009.

5Intermediate Figures can be found on Section F.4
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Figure 4.9: USD LIBOR 23Jul2009

May09 Aug09 Nov09 Mar10 Jun10 Sep10 Dec10 Apr11 Jul11 Oct11
10

20

30

40

50

60

70

80

90

100

110

(a) BOR-OIS

May09 Aug09 Nov09 Mar10 Jun10 Sep10 Dec10 Apr11 Jul11 Oct11
-20

-15

-10

-5

0

5

10

15

(b) BOR-OIS-CREDIT-ERP-LIQ

Figure 4.10: USD LIBOR Decomposition 1 23Jul2009
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Xx
0 εx

A εx
B

Credit 0.3 1 0.305
ERP 510

10000 0.5 400
10000

Liquidity 2.9 2.7 0.75

Table 4.6: AFS Parameters 23Jul2009

We have chosen to analyze the 23th of July of 2009 with the structure displayed on
Figure 4.9 using the method described on SubSection 4.3 and parameters from Table 4.6.
As can be seen in Figure 4.10b final residual ranges between 10 and 105 which compares6

with an initial residual between -25 and 10 as displayed on Figure 4.10a.

4.5 Conclusion

In this small exercise, where we managed to deliver some results, we went through a lot of
problems related to data collection.

In first place we had the difference in the hours at which each set of data refers to, as
it is hard to control the capture of the OIS and FRA curve.

Then we had the illiquidity of some products as long maturity OIS and some less
traded FRA like some from the 12 months curve. Some of examples of these problems
were: understanding which bloomberg contributor quoted what and when, knowing where
the market is l with high bid-offer spreads, believing in the actuality of some quotes which
probably were not actualized at the same time the most liquid instruments were.

One other problem we had is related with the interpolation of the OIS curve which we
had to produce under dramatic changes in the steepness along the yield curve. The result
of this fact was that some yb−r spreads were overstated and others understated.

All these problems added to the simplicity of the implementation, non-optimization
and eventual structural problems in the model contributed to the final result of two major
problems and one fine achievement.

The first problem was the apparent incompatibility between our residual spreads,
yb−r−c−z, and the liquidity model: in order to correct some differences we would exag-
gerate other differences in the other extremity of the curve. The second problem concerns
some apparent autocorrelation of the residuals of the same tenor.

About the successes, we managed to reduce to almost zero the average residual (which
is not a success as we target the zero average residual in the sloppily process of adjusting
parameters to the data) and also, and this is an achievement, to reduce substantially the
dispersion of the residuals.

6Intermediate Figures can be found on Section F.5
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Chapter 5

Q & A

We we posed a couple of questions in Section 1.1. Based on the reflection and results of
this work we tried to answer those questions:

• Q: at what rate will lenders be able to borrow in the future?

A: in the Money Market, at a level consistent with its credit profile and market
appetite for capital and liquidity

• Q: how can Monetary Authorities start to be effective again? What problems to
address in order to give traction to traditional tools?

A: Depending on the source of the problem the approach must be different:

– liquidity problem: when impacting the BOR market is always a global problem
and can be addressed by increasing the central bank liquidity available1.

– credit problem: central banks should not address individual credit problems as
they are not prepared for that; cheap credit to finance high yielding assets is a
highly opaque form of restoring bank balance-sheets. The generalized increase
on banks spreads must be addressed with a framework which provides market
participants information on banks risks and solvency2, and a transparent way
to deal with recapitalization and default.

• Q; which factor impacts each curve?

A: Small tenors are most likely only affected in extreme scenarios by the own dynamics
which the transition matrix generates and by the observed patterns. In a liquidity
and/or credit crisis the most affected tenors are the longer ones.

1By acting in this way central banks will also decrease the risk of insolvency by illiquidity and thereby
decrease the credit factor.

2So that only the impaired ones suffer higher spreads
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• Q: how to hedge risks?

A: Interest Rate risk can be best hedged with an OIS as is available for all maturities
and it is not subject to liquidity issues as the government curve is neither interbank
problems as a traditional BOR swap is. Global liquidity issues may be hedged with
the BOR-OIS spread. Credit risk in the financial sector should be hedge with appro-
priate instruments and not with BOR-OIS spread, since the longer forwards almost
do not react to credit crisis3

• Q: what is the dynamic of BOR?

A: The dynamics of BOR are certainly connected to the dynamics of liquidity, credit
and capital tensions on the financial sector. We believe that the proposed framework
is a first step in order to understand them, but other factors may contribute to it.

3Due to the refreshing property of the BOR credit risk



Chapter 6

Conclusion

The Crisis We started our work with a dysfunctional BOR curve which reflected a new
reality displaying old features.

The new problem was a frozen money market and the old features where the pricing of
credit risk (of the borrower), liquidity risk (of the lender) and the pricing of capital requi-
sites and leverage (of the borrower). All these factors importance changed throughout the
time.

In the beginning of the crisis the main problem was liquidity. First, investors got scared
with the Asset Backed CP from CIVs one of the biggest sources of money market funding.
Then other agents, which usually trusted the money market to fund themselves, started to
tap liquidity facilities of banks as the money markets started to be of more difficult access.
This taps and difficulties on the money market affected severely the liquidity of the banks.

The liquidity problem was addressed by central banks which assured liquidity and BORs
started to normalize from December 2007 onwards.

After Lehman collapse the problem was of solvency. Besides uncovering a balance-sheet
worse than expected and an unwilling government to support the entire banking system
the Lehman default trigged huge asset prices moves which impacted very negatively banks
balance-sheets. This time money markets, as other markets, completely shut down: only
the ON was traded. Naturally the liquidity problem appeared again on BOR pricing. It
was almost impossible to find term liquidity outside the central banks.

The liquidity problem was again addressed by central banks which gave banks access
to almost unlimited amounts of liquidity. This time the central banks where helped by
governments which guaranteed banks newly issued debt which enabled liquidity flowing
between banks again. Even the FED and ECB helped the issue of long term liquidity: the
ECB with the Covered Bond program and the FED with the MBS program.
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The solvency problem started to ease in March 2009, after the bottom on the equity
market. The equity rally was followed by spreads tightening which came from improved
economic outlook and risk appetite and the pressure of the wall of liquidity circulating in
the market.

Throughout all this period the scarcity of capital and excess of leverage made the banks
more reluctant in having credits on reporting dates which made the premium of such po-
sitions increase comparatively to previous periods.

All the aforementioned events impacted both BOR fixings and BOR forward curve in
a specific way depending on the nature of the issues raised at each moment.

In our model we tried to provide a starting point for a further discussion on the con-
tribution of each factor and the way they are modeled.

The Models We are aware that there are alternative approaches to the one we took, we
will briefly expose the alternatives.

We could model the spot rate of each tenor as a stochastic variable. It provides an
inconsistent model across tenors and also inside each tenor curve because of the ERP
factor.

One advance from the first model would be to model the spot rate of each tenor,
excluding the ERP cost, as a stochastic variable. It provides an inconsistent model across
tenors but it would be still useful to trade each tenor curve as it provides a coherent curve.

One final option is to Model EONIA and also BOR-OIS spread, excluding the ERP
cost, for each tenor as a transaction cost. This is a consistent model across tenors and a
useful tool to trade the BOR curve. Despite being a good tool to trade and also to model
past correlations it can say little about future evolution based on assumptions about future
liquidity and credit conditions.

As opposed to the last option we started our model with one crucial assumption: the
set of BOR curves reflects one reality. From this assumption we had legitimacy to analyze
the entire set of BOR curves in an unified approach, which, under a disrupted market, was
the first work doing so.

Our approach, while analyzing this suddenly complex set of curves, was to give an
economic meaning to the factors underling the curves, attaching the agents decision process
to the model. That is why we modeled BOR liquidity trough the valuation of cost and
probabilities of a liquidity shock1 and ERP phenomena as a undeterminable lump sum tax
the lender has to pay in order to carry the asset on the end of the period.

In order to carry such analysis we had to introduce new tools and use old tools in a new
environment. The most obvious was the application of Lando (1998) model to very short

1And an assumption about the lender initial liquidity status.
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term tenors. But the “innovations” in our work, if any, were the treatment both of the
liquidity event with a Markovian transition matrix and of the ERP as an ATS stochastic
variable.

Joining the Models We analyzed carefully the hypothesis we had to incur in order
to join the models in a way that it remained mathematical tractable, intuitive (spread
additivity) and still having economic meaning.

We also showed that this model could handle easily correlations between factors as any
sum of stochastic ATS variables does. In respect to correlations the only strong assumption
we incurred was the independence of variables function of stopping times: ηc

t , ηl
t. The reason

for keeping independence in moments of class changes (and event time as a particular case
of class change) is quite simple: it would add too much complexity to our framework. We
do not exclude it out as we think there can be important response by all market variables
following a credit event, as it happened after Lehman.

The Experiences In the crude experiences we realized we managed to explain a consid-
erable part of the BOR-OIS spread and also to decrease the difference between the highest
and lowest BOR-OIS. Another result was that whenever a factor became more or less im-
portant during the crisis, the contribution to our rude calibration increased and decreased
accordingly.

Nevertheless there were still big residuals and sometime an inconsistency in model
parameters across time. Also important were the apparent residuals correlation for the
same tenor, in opposition to the desired result of this model, which was is to left a random
residual across tenors and position in the curve. We think this problems would be mitigated
with a panel data calibration, by using more than one stochastic variable to each factor
and by introducing correlations.

Problems Our work encompasses some problems related both to the concept of the
object studied and to the way we study it.

First we are assuming that BOR is a meaningful thing, i.e., that it reflects market behav-
iors and market prices, but in fact it may be “artificial” as it is not backed by real transac-
tions. There is also the risk that only part of the curve reflects market factors at each time,
the tenors with more liquidity for instance, making false our assumption of unicity of the
money market. We incur the risk of trying to model a meaningless/arbitrary/manipulated
phenomena.

Second we may be missing some important factors, some that are current present and
we do not value properly and others that are currently negligible and have potential to
became important ones. Still related to the model, we may be modeling credit, liquidity
and ERP in a way different from the one market players take the decisions and in that case
the model would not be able to capture the market dynamics.



66 CHAPTER 6. CONCLUSION

Third, related to the model itself, the correlations between intensities may provide an
weak correlation between all factors and consequently the model may underestimate future
volatility.

Goals The primary objective of this work was to provide a framework for future treat-
ment of BOR curves more specifically, a framework which gives an economic meaning to
liquidity and ERP factors, undoubtedly present in BOR curve, helping to forecast the curve
and to intervene in the appropriate timing. Other primal goal was to achieve the former
allowing for the intuitive spread additivity between the different factors. We think we hit
this goals.

The secondary objective was to explain the dynamics of the BOR curve during the
current crisis and that objective was poorly achieved as we did not have the space to make
a proper estimation of the model. In face of such limitation we opted to show how the
model works by assuming hypothetical parameters under the most simple stochastic and
matricial framework. In such work we got already some results by reducing the unexplained
factors but the final result still do not satisfy.

Future Work Behind the natural steps, which are to choose the appropriate stochastic
model of the state vector and then to estimate the respective parameters, there are other
areas which deserve a future study.

While estimating the model we should better understand the credit component of BOR
as it is a statistic of a panel of banks. To target each individual contribution could be an
option with enough data.

One component where there seems to exist a big opportunity for modeling is the ERP
factor as there are obvious correlations/dynamics between the premiums of each tenor
which were not taken into account in our model.

Other natural extension would be to study the Swap Spread curve, the long term version
of this work focused on the short term conditions of the Money Market. Finally, we could
use this framework to value the Bonds issued by a Bank or by a government.
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Appendix B

The BBA LIBOR fixing &
definition1

BBA LIBOR is the BBA fixing of the London Inter-Bank Offered Rate. It is based on
offered interbank deposit rates contributed in accordance with the Instructions to BBA
LIBOR Contributor Banks.

The BBA will fix BBA LIBOR and its decision shall be final. The BBA consults on
the BBA LIBOR rate fixing process with the BBA LIBOR Steering Group. The BBA
LIBOR Steering Group comprises leading market practitioners active in the interbank
money markets in London.

BBA LIBOR is fixed on behalf of the BBA by the Designated Distributor and the rates
made available simultaneously via a number of different information providers.

Contributor Panels shall comprise at least 8 Contributor Banks. Contributor Panels
will broadly reflect the balance of activity in the interbank deposit market. Individual
Contributor Banks are selected by the BBAs FX & Money Markets Advisory Panel after
private nomination and discussions with the Steering Group, on the basis of reputation,
scale of activity in the London market and perceived expertise in the currency concerned,
and giving due consideration to credit standing.

The BBA, in consultation with the BBA LIBOR Steering Group, will review the com-
position of the Contributor Panels at least annually.

Contributed rates will be ranked in order and only the middle two quartiles averaged
arithmetically. Such average rate will be the BBA LIBOR Fixing for that particular cur-
rency, maturity and fixing date. Individual Contributor Panel Bank rates will be released
shortly after publication of the average rate.

The BBA, in consultation with the BBA LIBOR Steering Group, will review the BBA
LIBOR Fixing process from time to time and may alter the calculation methodology after
due consideration and proper notification of the planned changes.

1Extracted from http://www.bba.org.uk, according to last clarification in 18/12/2008
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In the event that it is not possible to conduct the BBA LIBOR Fixing in the usual
way, the BBA, in consultation with Contributor Banks, the BBA LIBOR Steering Group
and other market practitioners, will use its best efforts to set a substitute rate. This will
be the BBA LIBOR Fixing for the currency, maturity and fixing date in question. Such
substitute fixing will be communicated to the market in a timely fashion.

If an individual Contributor Bank ceases to comply with the spirit of this Definition
or the Instructions to BBA LIBOR Contributor Banks, the BBA, in consultation with
the BBA LIBOR Steering Group, may issue a warning requiring the Contributor Bank
to remedy the situation or, at its sole discretion, exclude the Bank from the Contributor
Panel.

If an individual Contributor Bank ceases to qualify for Panel membership the BBA, in
consultation with the BBA LIBOR Steering Group, will select a replacement as soon as
possible and communicate the substitution to the market in a timely fashion.

B.1 Instructions To BBA Libor Contributor Banks

1. An individual BBA LIBOR Contributor Panel Bank will contribute the rate at which
it could borrow funds, were it to do so by asking for and then accepting inter-bank
offers in reasonable market size just prior to 1100.

2. Rates shall be contributed for currencies, maturities and fixing dates and according
to agreed quotation conventions.

3. Contributor Banks shall input their rate without reference to rates contributed by
other Contributor Banks.

4. Rates shall be for deposits:

• made in the London market in reasonable market size;

• that are simple and unsecured;

• governed by the laws of England and Wales;

• where the parties are subject to the jurisdiction of the courts of England and
Wales.

5. Maturity dates for the deposits shall be subject to the ISDA Modified Following
Business Day convention, which states that if the maturity date of a deposit falls on
a day that is not a Business Day the maturity date shall be the first following day
that is a Business Day, unless that day falls in the next calendar month, in which
case the maturity date will be the first preceding day that is a Business Day.

6. Rates shall be contributed in decimal to at least two decimal places but no more than
five.
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7. Contributors Banks will input their rates to the Designated Distributor between
1100hrs and 1110hrs, London time.

8. The rate at which each bank submits must be formed from that banks perception of
its cost of unsecured funds in the interbank market. This will be based on the cost
of funds not covered by any governmental guarantee scheme.

9. Contributions must represent rates formed in London and not elsewhere.

10. Contributions must be for the currency concerned, not the cost of Producing one
currency by borrowing in another currency and accessing the required currency via
the foreign exchange markets.

11. The rates must be submitted by members of staff at a bank with primary responsi-
bility for management of a banks cash, rather than a banks derivative book.

12. The definition of funds is: unsecured interbank cash or cash raised through primary
issuance of interbank Certificates of Deposit.

The Designated Distributor will endeavour to identify and arrange for the correction
of manifest errors in rates input by individual Contributor Banks prior to 1130.

The Designated Distributor will publish the average rate and individual Contributor
Banks’ rates at or around 1130hrs London time.

Remaining manifest errors may be corrected over the next 30 minutes. The Designated
Distributor then will make any necessary adjustments to the average rate and publish it
as the BBA LIBOR Fixing at 1200hrs.
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Appendix C

Lando (1998)

C.1 Introduction

As far as I know the paper “On Cox Processes and Credit Risky Securities”, was the first
introducing Cox processes, the double stochastic Poisson processes, to the credit risk mod-
eling. By doing this it enabled the stochascity of of credit spreads without the traditional
requirement for rating changes and allowed the introduction of dependence between the
risk free structure and credit spreads.

We will follow the paper with two slight differences on the approach. First, we will not
attach the model to a credit event, we shall keep it general by studding the event x so that
the explanation can fit any sort of events. Second, we will focus on an asset with specific
cash flows, the zero coupon deposit with zero recovery, and ignore all other variants the
author suggest throughout the paper.

In reality such approach does not pose any problem as the paper is written in such a
way that we could easily replace credit by any other type of event without consequences
and also because the author’s main goal is to value the asset we choose.

The probability space and respective σ − algebras will be the same to the presented in
Section 2.2 and we will just adapt the notation to the present appendix.

C.2 Cox Process

Let lx (u, ω) be a particular realization of the random intensity of a Y x
u Cox Process defined

on a (Ω,F , Q) probability space. We will write lx (s, ω) = λ (Xu) = λx
u where Xt is a R

d

- valued stochastic process and λx
u : R

d → [0,∞[ defined on (Ω,F , Q) probability space.

Definition 13. The event time τx can be thought as the time of the first jump after t of
the Y x

u Cox process with intensity process λx
u.

τx = inf {u : Y x
u − Y x

t ≥ 1}
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From the Definition 13 and the properties of the Poisson Process we obtain the following
result

P (τx > T |GT ∧ H
x

t ) = 1{τx>t} exp

(

−

∫ T

t

λx (Xu) du

)

(C.1)

Proof.

P (τx > T |GT ∧ H
x

t ) =

{

P (τx > T |GT ∨ {τx > t}) , τx > t

0 , τx 6 t

= 1{τx>t}P [τx > T |GT ∨ {τx > t} ]

= 1{τx>t}
P [τx > T ∩ {τx > t} |GT ]

P [{τx > t} |GT ]

= 1{τx>t}
P [τx > T |GT ]

P [{τx > t} |GT ]

= 1{τx>t}

exp
(

−
∫ T

0 λx
udu

)

exp
(

−
∫ t

0 λx
udu

)

= 1{τx>t} exp

(

−

∫ T

t

λx
udu

)

C.3 Valuing a Claim I

We will value a zero coupon claim contingent on the occurrence of an particular event x

and subject to the interest risk free rates.

Brx
t,T = E

[

exp

(

−

∫ T

t

rudu

)

N1{τ>T} |Ft

]

(C.2)

The superscript rx states the dependence on risk free curve and the credit risk.

Following Eq. C.1 our first approach while valuing Brx
t,T is the following:

Brx
t,T = 1{τ>t}E

[

exp

(

−

∫ T

t

ru + λudu

)

N |Gt

]

(C.3)
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Proof.

E

[
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−
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t

rudu

)

N1{τx>T} |Ft

]

= E
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E
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rudu
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N1{τx>T} |GT ∨ H
x

t

]

|Ft

]
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rudu

)

NE
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t
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]
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rudu
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udu
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|Ft

]

= 1{τx>t}E

[
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−
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t

ru + λx
udu
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N |Ft

]

= 1{τx>t}E

[

exp

(
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t

ru + λx
udu

)

N |Gt ∨ H
x

t

]

= 1{τx>t}E

[

exp

(

−

∫ T

t

ru + λx
udu

)

N |Gt

]

In future references to this result we will not use the 1{τx>t} part. In fact, space will
be a scarce resource and so we will omit the obvious result: P (τx > T |GT ∧ {τ < t}) = 0

C.4 A Generalized Markovian Model

We shall now specify λx
u dynamics.

We start assuming that that there are different propensities to the materialization
of the event. As consequence each deposit, in each moment, is classified accordingly to
its propensity to the event: ηx

t is the stochastic Ht − measurable variable that reflects
such classification. The transition between states throughout the time is governed by a
markovian transition matrix which has Ax

u as a generator matrix.
The author goes a little further from this point stating that those propensities/intensities

are themselves stochastic. This development is reflected in a stochastic generator matrix:
Ax

u = Ax (Xu), function of the state vector Xu.

We may now define the generator matrix:

Ax (Xu) =















λx
1 (Xu) λx

1,2 (Xu) · · · λx
1,Kx−1 (Xu) λx

1,Kx (Xu)

λx
2,1 (Xu) λx

2 (Xu) · · · λx
2,Kx−1 (Xu) λx

2,Kx (Xu)
...

...
. . .

...
...

λKx−1,1 (Xu) λx
Kx−1,2 (Xu) λx

Kx−1 (Xu) λx
Kx−1,Kx (Xu)

0 0 · · · 0 0
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where

• 1, ...,Kx − 1 are classes/states where 1 is the class with lowest propensity to event x,
Kx − 1 is the worst and Kx represents the event itself

• λx
i,j (Xu) is the intensity transition from state i to state j, function of stochastic state

variables

• λx
i (Xu) = λx

i,i (Xu) =
∑K

j=1,j 6=i λ
x
i,j (Xu) , i = 1, ...,K − 1 by definition

• λx
i,K (Xu) = 0, means no exit from event class once there

With this construction1 we obtain a continuous time process which conditionally on
the evolution of the state variables is a non-homogeneous Markov chain.

Conditionally on the evolution of the state variables, the transition probabilities, Πx
t,T ,

of this Markov chain satisfy
δΠx

t,T

δt
= −Ax

t Πx
t,T

despite this, the solution of this equation in the time-inhomogeneous case won’t be always2

Πx
t,T = exp

(
∫ T

t

Ax
udu

)

Nevertheless it is possible to write Πx
t,T directly with recourse to product integral no-

tation3:

Sx
t,T =

(∫ T

t

Ax
udu

)

Πx
t,T =π ]t,T ]

(

1 + dSx
t,T

)

where π ]t,T ] is the product integral from t to T

C.5 Valuing a Claim II

Now, having defined λx stochastics, we are able to change slightly eq. C.3 to incorporate
the class information, reflected on t superscript, and then follow a different path of reason-
ing.

1See Lando (1998) pag 108 for details and further motivation
2It would only happen if

R a

t
Ax

udu and
R T

a
Ax

udu were commutative which typically will not occur.
3See Gill & Johansen (1990) section 4 for more detail on product integration of Markov Processes
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The pricing formula for contingent bonds with zero recovery, conditional on its class is:

Bx
ti,T = E

[

exp

(

−

∫ T

t

rudu

)

N1{τx>T} |Ft ∧ ηx
t = i

]

= E

[

exp

(

−

∫ T

t

rudu

)

N1{τx>T} |Gt ∨ H
x

t ∧ ηx
t = i

]

= E

[
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t
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]

|Gt

]

= E

[

exp

(

−

∫ T

t

rudu

)

(

1 − Πx
t,T |i,Kx

)

|Gt

]

(C.4)

where

• Πx
t,T |i,Kx = P (t < τx 6 T |GT ∧ ηx

t = i) or the element from ith line and column K

from Πx
t,T matrix.

• the condition H x
t ∧ηx

t = i resumes to ηx
t = i. as there is more information in ηx

t than
in H x

t

In order to enable analytical solutions, the author impose a structure on the conditional
intensity matrix, Ax (Xu).

Assumption 1 (Structure of the conditional intensity matrix). For each path of Xu

assume that the time dependent generator has the representation

Ax
u = B

xµx
u [Bx]−1

where

µx (Xu) = µx
u denote de Kx×Kx diagonal matrix4 configuration diag

(

µx
1 (Xu) , . . . , µx

Kx−1 (Xu) , 0
)

;

B
x is a Kx × Kx matrix whose columns consist of Kx eigenvectors of Ax

u;

If we further define the diagonal matrix:

E
x
t,T =





















exp
(

∫ T

t
µx

1 (Xu) du
)

0 · · · 0

0 exp
(

∫ T

t
µx

2 (Xu) du
)

· · · 0

...
. . . · · ·

... · · · exp
(

∫ T

t
µx

Kx−1 (Xu) du
)

0

0 · · · 0 1





















4See Assumption 2 for one hypothesis on µ



78 APPENDIX C. LANDO (1998)

Then, by setting Πx
t,T = B

x
E

x
t,T [Bx]−1 , Πx

t,T satisfies Kolmogorov’s backward equation:
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It follows that:
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]−1
∑Kx

i=1 bx
K,ie

x
i

[

bx
i,2

]−1
· · ·

∑Kx

i=1 αx
Kx,ie

x
i



















where αx
i,j = bx

i,j

[

bx
j,Kx

]−1
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Then,

E
[

1{t6τx6T} |GT ∨ ηx
t = i

]

= Πx
t,T |j,Kx

=

Kx
∑

j=1

αx
i,je

x
j

=
Kx−1
∑

j=1

αx
i,je

x
j + αx

i,Kxex
Kx

=

Kx−1
∑

j=1

αx
i,je

x
j + 1

=

Kx−1
∑

j=1

αx
i,j exp

(∫ s

t

µx
j (Xu) du

)

+ 1

given the result αx
i,Kx = 1

Finally, for valuing a risky bond,

Brx
ti,T = E

[

exp

(

−

∫ T

t

rudu

)

(

1 − Πx
t,T |i,Kx

)

|Gt

]

= E



exp

(

−

∫ T

t

rudu

)



1 −

K−1
∑

j=1

αx
i,j exp

(∫ T

t

µx
j (Xu) du

)

− 1



 |Gt





= E



exp

(

−

∫ T

t

rudu

)





K−1
∑

j=1

−αx
i,j exp

(
∫ T

t

µx
j (Xu) du

)



 |Gt





= E









Kx−1
∑

j=1

−αx
i,j exp

(

−

∫ T

t

ru − µx
j (Xu) du

)



 |Gt





=

Kx−1
∑

j=1

−αx
i,jE

[

exp

(

−

∫ T

t

ru − µx
j (Xu) du

)

|Gt

]

(C.5)

The valuation of a forward start rating contingent claim is as easy as a spot one. Eq.
C.4 can easily be modified into

Brx

t,f
ηx
f ,T

= E

[

exp

(

−

∫ T

f

rudu

)

(

1 − Πx
f,T |ηx

f ,Kx

)

|Gt

]

(C.6)

and the same applies to eq. C.5

Brx

t,f
ηx
f ,T

=

K−1
∑

j=1

−αx
ηx

f ,jE

[

exp

(

−

∫ T

f

ru − µx
j (Xu) du

)

|Gt

]

(C.7)
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Furthermore, in case of independence of r (Xu) and µx
j (Xu):

Brx

tη
x
t ,T

= Br
t,T

Kx−1
∑

j=1

−αx
ηx

t ,jE

[

exp

(

−

∫ T

t

−µx
j (Xu) du

)

|Gt

]

(C.8)

= Br
t,T Bλx

tη
x
t ,T

and

Brx

t,f
ηx
f ,T

= Br
t,f,T

Kx−1
∑

j=1

−αx
ηx

f ,jE

[

exp

(

−

∫ T

f

−µx
j (Xu) du

)

|Gt

]

(C.9)

= Br
t,f,T Bλx

t,f
ηx
f ,T

C.6 Extra Condition

In order to insure that we always have a coherent Ax (Xu) we will generally work with an
extra extra Assumption to on top of Assumption 1.

Assumption 2. There exists and base generator matrix Ax from which all the others are
produced such that

• eigenvector (Ax) = B
x = eigenvector (Ax (Xu))

• eigenvalue (Ax) = ξx =

















ξx
1

ξx
2

ξx
3

. . .

ξx
K−1

0

















= µx(Xu)
P

giXi
u

P

gi

which means µx
i (Xu) = ξx

i

P

giXi
u

P

gi

This construction means that when all relevant Xi
t = 1 then Ax (Xu) = Ax. | |



Appendix D

Recovery

D.1 Introduction

In this appendix we will work on the recovery of an zero coupon bond, φx
τx , upon event x.

The purpose is to help on the decision of choosing the recovery model and to supply all
needed results to pursue such application.

We will present some known results about recovery models applied to Zero Coupon
Bonds following Schonbucher (2003). The results will be presented in a slightly different
way from the book as the recovery will not be associated to a credit event.

The probability space and respective σ − algebras will be the same to the presented in
Section 2.2 and we will just adapt the notation to the present appendix.

We will explore several methods:

• Zero Recovery (ZR)

• Recovery of Treasury (RT)

• Recovery of Market Value (RMV)

• Recovery of Par (RP)

• Stochastic Recovery (all the above methods use a deterministic intensity)

D.2 Zero Recovery

Assumption:

• All claims have a zero recovery at event

φx
u = 0 ∀u > 0
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BxZR

t,T = E

[

exp

(

−

∫ T

t

rudu

)

1{τx>T} |Ft

]

= E

[

exp

(

−

∫ T

t

rudu

)

exp

(

−

∫ T

t

λx
udu

)

|Gt

]

= E
[

βt,T βλx

t,T |Gt

]

(D.1)

assuming independence between λx and r

BxZR

t,T = E [βt,T |Gt ]E
[

βλx

t,T |Gt

]

= Bt,T Bλx

t,T (D.2)

D.3 Recovery of treasury

Assumptions:

• there exists an equivalent default-free asset to every defaultable claim. This equiv-
alent claim pays off for sure the payoffs that were promised in the defaultable asset
and its price process is denoted by Bt,T

• at default, the recovery of every default claim is c times the value of the equivalent
default-free asset

φx
u = cxBu,T

If cx is constant then one can decompose the problem into a zero recovery defaultable
claim and a risk free claim:

BxRT

t,T = (1 − cx)BxZR

t,T + cxBt,T

= (1 − cx)E
[

βt,T βλx

t,T |Gt

]

+ cxBt,T (D.3)

after assuming independence between λx and r.

BxRT

t,T = (1 − cx)Bt,T Bλx

t,T + cxBt,T

= Bt,T

[

(1 − cx) Bλx

t,T + cx
]

(D.4)
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D.4 Recovery of Market Value

Assumptions:

• at default, the recovery of every default claim is (1 − qx) times the pre-default value
of the defaultable claim

φx
τx = (1 − qx)BxRMV

τx−,T

Like Schonbucher (2003) we will use a discrete time argument to start:

Discrete reasoning

• time step of ∆t: ]t, t + ∆t]

• R as risk free interest in ]t, t + ∆t]

• the event probability until t + ∆t is px
t,t+∆t

= px

• the event x Hazard rate, Hx, is defined as ∆t · H
x = px

1−px

• at the event moment, τx , the recovery of every event is (1 − qx) times the pre-event
value of the claim

φx
τx = (1 − qx)Bb

τx−,T

if τx = t + ∆t then τx− = t

The price of a zero coupon at time t must be the expected discounted value of its value
at time t + ∆t:

BxRMV

t,T =
1

1 + R∆t

{

(1 − px)E
[

BxRMV

t+∆t,T
|Gt

]

+ px (1 − qx) BxRMV

t,T

}

Rearranging the terms,

BxRMV

t,T (1 + R∆t − px (1 − qx)) = (1 − px)E
[

BxRMV

t+∆t,T
|Gt

]

E
[

BxRMV

t+∆t,T
|Gt

]

BxRMV

t,T

=
1 + R∆t − px (1 − qx)

1 − px
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and then

E
[

BxRMV

t+∆t,T
|Gt

]

BxRMV

t,T

=
R∆t + qx · px

(1 − px)
+ 1

=
R∆t + qx · px

(1 − px)
Hx∆t

1 − px

px
+ 1

= R · ∆t
∆tH

x

px
+ qx∆tH

x + 1

= R · ∆t (1 + ∆tH
x) + qx∆tH

x + 1

= R · ∆t + R (∆t)
2 Hx + qx∆tH

x + 1

= ∆t (R + qxHx) + RHx (∆t)
2 + 1

and then

E

[

BxRMV

t+∆t,T
− BxRMV

t,T

BxRMV

t,T

|Gt

]

= ∆t (R + qxHx) + RHx (∆t)
2 + 1 − 1

In the limit when ∆t → 0,ignoring the (∆t)
2 terms and replacing discrete variables

with their continuous equivalents1

E

[

dBxRMV

u,T

BxRMV

u−,T

|Gt

]

= (r + qxλx) du

This leads to the conjecture that BxRMV

t,T is reached by discounting the expected price

in survival BxRMV

t+∆t,T
with the (r + qxλx) continuous rate.

The value of BxRMV

t,T would be2

BxRMV

t,T = 1{τ>t}E

[

exp

(

−

∫ T

t

r (Xu) + qxλx (Xu) du

)

|Gt

]

+ 1{τ=t} (1 − qx)BxRMV

t−,T

(D.5)

D.5 Recovery of Par

Assumptions:

• at default, the recovery of every default claim is πx times the notional, Nt, of the
defaultable claim immediately before the default

φx
τx = πx

τxNτx−

1R → ru, Hx → λx

2Proof on pag 139 of Schonbucher (2003); the result holds for a qx predictable process.
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The value the recovery this asset would be:

E

[

exp

(

−

∫ τx

t

rsds

)

πx
t Nt1{τx<T} |Ft

]

= E

[
∫ T

t

exp

(

−

∫ τx

t

rudu

)

πx
τxNτxf (τx) dτx |Gt

]

= E

[∫ T

t

exp

(

−

∫ τx

t

rudu

)

πx
τxNτxλx

τx

exp

(

−

∫ τx

t

λx
udu

)

dτx |Gt

]

= E

[∫ T

t

πx
τxNτxλx

τx exp

(

−

∫ τx

t

ru + λx
udu

)

dτx |Gt

]

= E

[
∫ T

t

πx
τxNτxλx

τxβx
t,τxdτx |Gt

]

where f (τx) = λτ exp
(

−
∫ τx

t
λx

udu
)

adding BxZR

t,T

BxRP

t,T = BxZR

t,T + E

[
∫ T

t

πx
τxNτxλx

τxβx
t,τxdτx |Gt

]

(D.6)

D.6 Stochastic Recovery

As long as there aren’t correlations with other variables, which is commonly assumed, the
stochastic recovery can be replaced by its expected value when pricing.
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Appendix E

Dynamics Modeling

E.1 Affine Term Structure Model

We will present a general formulation that can be applied to any yield variable and some
other environments. In fact in this work AFS models will be also applied to the modeling
of a stochastic markovian generator matrix.

Yields can be represented by the sum of several X variables with the dynamics specified
here and still preserve the desired mathematical tractability.

E.1.1 General Framework

Under an AFS model the Xx stochastic variable has the following dynamics:

dXx
t = εx

A (εx
B − Xx

t ) dt +
√

εx
C + εx

DXx
t dW x

t

where the parameters refer to:

εx
A mean rever. velocity εx

B mean rever. value εx
C const. vol. εx

D cond. vol.

• Instantaneous Yield Rate1

yx
t = Xx

t

• Value of a Spot ZC

Bx
t,T = E

[

exp

(

−

∫ T

t

Xx
udu

)

|Ft

]

= exp
(

Ax
t,T − Bx

t,T Xx
t

)

1We could increase the complexity by making yx
t =

P

i X
xi
t
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where

Ax
t,T = fA (εx

A, εx
B , εx

C , εx
D)

Bx
t,T = fB (εx

A, εx
B , εx

C , εx
D)

• Value of a Forward ZC

Bx
t,f,T = E

[

exp

(

−

∫ T

f

Xx
udu

)

|Ft

]

= exp
(

Ax
f,T

)

E
[

exp
(

−Bx
f,T Xx

f

)

|Ft

]

→ fgm

= exp






Ax

f,T −Bx
f,T E

[

Xx
f |Ft

]

+
V ar

(

Xx
f |Ft

)(

Bx
f,T

)2

2







Bx
t,f,T =

Bx
t,T

Bx
t,f

=
exp

(

Ax
t,T − Bx

t,TXx
t

)

exp
(

Ax
t,f − Bx

t,fXx
t

)

= exp
(

Ax
t,T −Ax

t,f − Bx
t,T Xx

t + Bx
t,fXx

t

)

(E.1)

• Continuously Compounded Yield Rate of a Spot ZC

Bx
t,T = exp

(

−yx
t,T ∆t,T

)

yx
t,T =

(

− log Bx
t,T

)

∆t,T

• Continuously Compounded Yield Rate of a Forward Start ZC

Bx
t,f,T = exp

(

−yx
t,f,T∆f,T

)

yx
t,f,T =

(

− log Bx
f,T

)

∆f,T

=
−Ax

f,T + Bx
f,T E [Xf |Ft ]

∆f,T
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• Instantaneous Forward Interest Rate

fx
t,f = E

[

Xx
f |Ft

]

= −
∂ log Bx

t,f

∂f

• Asymptotic Spot Yield Rate

yx
t,∞ = lim

t→∞
yx

t,∞

where ∆t,T = T − t

E.1.2 Vasicek

The Vasicek model is one of simplest examples of AFS models, which is the reason we have
chosen it to illustrate our model.

Model

εx
D = 0 εx

A, εx
B , εx

C 6= 0

dXx
t = εx

A (εx
B − Xx

t ) dt +
√

εx
CdW x

t

Bx
t,T =

1 − exp (−εx
A∆t,T )

εx
A

Ax
t,T =

(

εx
B −

εx
C

2εx
A

2

)

(

Bx
t,T − ∆

)

−
εx
C

4εx
A

(

Bx
t,T

)2

and then,

• E
[

yx
f |Ft

]

= fx
t,f ∼

(

µ, σ2
)

µ = exp (−εx
A∆t,f ) yx

t + εx
B [1 − exp (−εx

A∆t,f )]

σ2 =
εx
C

2

2εx
A

(1 − exp (−2εx
A∆))

• yx
t,∞ = εx

B −
εx
C

2εx
A

2

• yx
t,T = rt,∞ +

(

yx
t − yx

t,∞

) 1−exp(−εx
A∆t,T )

εx
A

+
εx
C

4εx
A

2

(1−exp(−εx
A∆t,T ))

2

εx
A

2∆t,T

• fx
t,f = yx

t,∞ +
(

yx
t − yx

t,∞

)

exp (−εx
A∆t,f ) +

εx
C

2εx
A

2 (exp (−εx
A∆t,f ) − exp (−2εx

A∆t,f ))
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Curve Examples
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(b) Positive Slope
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(c) Flat
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Figure E.1: Vasicek Examples

This simple framework enables us to build a monotone yield curve with the slope we want
which are depicted in Figure E.1.

In these graphics the blue line represents yx
t,T , the red line represents fx

t,f and the green
line represents yx

t,f,f+3M .

E.2 JLT

The Jarrow et al. (1997) model is the starting point for Lando (1998) model described in
appendix C. In order to illustrate the added value of the former we will start showing
Jarrow et al. (1997) dynamics.

We will follow closely Appendix C, modeling the generic event x, with one small change:
Ax

u will no longer be stochastic, and will equal the base generator matrix Ax
u = Ax.

Model

All Appendix C results apply after replacing the stochastic generator matrix Ax
u for a static

one:

Ax
u = Ax =















λx
1 λx

1,2 · · · λx
1,kx−1 λx

1,Kx

λx
2,1 λx

2 · · · λx
2,kx−1 λx

2,kx

...
...

. . .
...

...
λx

Kx−1,1 λx
Kx−1,2 λx

kx−1 λx
Kx−1,Kx

0 0 · · · 0 0















where the intensities represent the transitions between a starting ratting (each line)
and a terminal ratting (each column).
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• Value of a Forward Start ZC, conditional on ηx
t = i

Following Eq. C.7 with µx
j (Xu) = µx

j

Brx
t,f i,T = E



exp

(

−

∫ T

f

r (Xu) du

)





Kx−1
∑

j=1

−αx
i,j exp

(
∫ T

f

µx
j du

)



 |Gt





= E

[

exp

(

−

∫ T

f

r (Xu) du

)

|Gt

]Kx−1
∑

j=1

−αx
i,j exp

(

∆f,T µx
j

)

= Bt,f,T

Kx−1
∑

j=1

−αx
i,j exp

(

∆f,T µx
j

)

• Value of a Spot ZC, conditional on ηx
t = i

Brx
ti,T = Brx

t,ti,T

• CC Spread of a Forward Start ZC, conditional on ηx
f = i

Brx
t,f i,T = exp

(

−yrx
t,f i,T ∆f,T

)

yrx
t,f i,T = yr

t,f,T + yx
t,f i,T

Bt,f,T

Kx−1
∑

j=1

−αx
i,j exp

(

∆f,T µx
j

)

= exp
(

−
(

yr
t,f,T + yx

t,f i,T

)

∆f,T

)

Bt,f,T

Kx−1
∑

j=1

−αx
i,j exp

(

∆f,T µx
j

)

= Bt,f,T exp
(

−yx
t,f i,T ∆f,T

)

Kx−1
∑

j=1

−αx
i,j exp

(

∆f,T µx
j

)

= exp
(

−yx
t,f i,T ∆f,T

)

−yx
t,f i,T ∆f,T = log





Kx−1
∑

j=1

−αx
i,j exp

(

∆f,T µx
j

)





yx
t,f i,T = −

log
(

∑Kx−1
j=1 −αx

i,j exp
(

∆f,T µx
j

))

∆f,T

• CC Spread of a Spot ZC, conditional on ηx
t = i

yx
ti,T = yx

t,ti,T
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• Event Intensity at T of a Forward Start ZC, conditional on ηx
f = i

λx
t,f i,T =

∂ log Πx
t,T |i,Kx

∂T

• Event Intensity at T of a Spot ZC, conditional on ηx
t = i

λx
ti,T = λx

t,ti,T

and since Πx
t,t+∆t

|i,Kx = Πx
f,f+∆t

|i,Kx then λx
t,f i,f+∆t

= λx
ti,t+∆t

Curve Examples

As in the previous section we can see on Figure E.2 that under such simple framework it is
possible to built a monotonous spread structure with the desired slope (blue line represents
yx

t,T and the red line represents fx
t,f ). We will use a three state framework (two pre-event

states and the event state).

The examples are drawn from the generator matrixs, Ax, on Table E.1:

• The positive slope is obtained based on Axp and a initial state ηx = 1

• The negative slope is obtained based on Axn and a initial state ηx = 2

• The positive slope is obtained based on Axn and a initial state ηx = 1

Axn =





−0.12 0.11 0.01
0.1 −0.12 0.02
0 0 0





(a) Negative Slope

Axp =





−0.12 0.115 0.005
0.02 −0.05 0.03
0 0 0





(b) Positive Slope

Table E.1: JLT Generator Matrix Examples
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(c) Flat

Figure E.2: JLT Examples

E.3 Lando (1998) Model

Despite having already discussed exhaustively Lando (1998) model we did not gave an
example with a concrete stochastic model and generator matrix. We shall do it now
using the Vasicek model and the generator matrix described in the previous section under
independence assumption between the stochastic factors behind interest rate and event:

Xu =

[

Xr
u

Xx
u

]

yr (Xu) = Xr
u

µx
j (Xu) = ξx

j Xx
u

where ξx
j is the ith eigenvalue from base generator matrix Ax,.
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Model

• Value of a Forward Start ZC, conditional on ηx
f = i

Following eq. C.7

Brx
t,f i,T =

2
∑

j=1

−αx
i,jE

[

exp

(

−

∫ T

f

r (Xu) − µx
j (Xu) du

)

|Gt

]

=

2
∑

j=1

−αx
i,jE

[

exp

(

−

∫ T

f

Xr
udu

)

|Gt

]

E

[

exp

(

−

∫ T

f

ξx
j Xx

udu

)

|Gt

]

= Bt,f,T

2
∑

j=1

−αx
i,jE

[

exp

(

−

∫ T

f

Xxj
u du

)

|Gt

]

= Bt,f,T

2
∑

j=1

−αx
i,jB

Xxj

t,f,T (E.2)

where Xxj = ξx
j Xx

u

dXx
t = ε2

A

(

ε2
B − Xx

t

)

dt +
√

ε2
C + ε2

DXx
t dWt

dXxj = ξx
j dXx

= ξx
j ε2

A

(

ε2
B − Xx

t

)

dt + ξx
j

√

ε2
C + ε2

DXx
t dWt

= ε2
A

(

ξx
j ε2

B − ξx
j

X
xj
t

ξx
j

)

dt +

√

ξx
j
2ε2

C + ξx
j
2ε2

D

X
xj
t

ξx
j

dWt

= ε2
A

(

ε
2j
B − X

xj
t

)

dt +
√

ε
2j
C + ξx

j
2ε

2j
D X

xj
t dWt

where ε
2j
B = ξx

j ε2
B ε

2j
C = ξx

j
2ε2

C ε
2j
D = ξx

j ε2
D

Then following Eq E.1

Brx
t,f i,T = Bt,f,T

2
∑

j=1

−αx
i,j exp

(

Ax
t,T −Ax

t,f − Bx
t,T X

xj
t + Bx

t,fX
xj
t

)

(E.3)

• Value of a Spot ZC, conditional on ηx
t = i

Brx
ti,T = Brx

t,ti,T (E.4)
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• CC Spread of a Forward Start ZC, conditional on ηx
f = i

Brx
t,f i,T = exp

(

−yrx
t,f i,T ∆f,T

)

yrx
t,f i,T = rt,f,T + yx

t,f i,T

Bt,f,T

kx−1
∑

j=1

−αx
i,jB

Xxj

t,f,T = exp
(

−
(

rt,f,T + yx
t,f i,T

)

∆f,T

)

Bt,f,T

kx−1
∑

j=1

−αx
i,jB

Xxj

t,f,T = Bt,f,T exp
(

−yx
t,f i,T∆f,T

)

kx−1
∑

j=1

−αx
i,jB

Xxj

t,f,T = exp
(

−yx
t,f i,T∆f,T

)

− yx
t,f i,T ∆t,T = log





kx−1
∑

j=1

−αx
i,jB

Xxj

t,f,T





yx
t,f i,T = −

log
(

∑kx−1
j=1 −αx

i,jB
Xxj

t,f,T

)

∆f,T

(E.5)

• CC Spread of a Spot ZC, conditional on ηx
t = i

yx
ti,T = yx

t,ti,T (E.6)

• Event Intensity at T of a Spot ZC, conditional on ηx
t = i

λx
ti,T =

∂ log Πx
t,T |i,kx

∂T

=
∂ log

(

1 −
∑2

j=1 −αx
i,jB

Xxj

t,T

)

∂T

• Event Intensity at T of a Forward Start ZC, conditional on ηx
f = i

λx
t,f i,T =

∂ log Πx
f,T |i,kx

∂T

=
∂ log

(

1 −
∑2

j=1 −αx
i,jB

Xxj

t,f,T

)

∂T
6= λx

f i,T
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Curve Examples

In the previous sections we shown how to build a monotone curve. It follows naturally
that combining those simple models we are able to build a non monotone spread curve.
Nevertheless our focus will not be the spot curve but the refreshed curve: a curve that
periodically has its ratting reset so that its implied credit quality stays relatively constant.
Using a matrix environment that produces positive slope spread curve, we will do some ex-
periments to test the reaction of the forward of several tenors, to changes on the stochastic
component.

Our base generator matrix, Ax, whose eigenvalues, ξx, and eigenvectors, B
x, produce

the model parameters αx.

Ax =





−0.12 0.115 0.005
0.025 −0.05 0.025

0 0 0





B
x =





−0.9696 −0.7578 0.5774
0.2448 −0.6525 0.5774

0 0 0.5774



 ξx =





−0.149 0 0
0 −0.021 0
0 0 0





αx =

[

0.1247 −1.1247
−0.0315 −0.9685

]

In order to show the impact of Xx
u in the generator matrix it is useful to show the

generator matrix for different Xx
u inputs.

Ax (3) =





−0.36 0.23 0.01
0.05 −0.1 0.05
0 0 0



 Ax (0.5) =





−0.06 0.0575 0.0025
0.0125 −0.025 0.0125

0 0 0





Ax (1) =





−0.12 0.115 0.005
0.025 −0.05 0.025

0 0 0



 = Ax

As we can see the probability of default and transition probabilities are multiplied by
Xx

u , making it a determinant factor for the event intensity.

Then by manipulating the Vasicek parameters we can achieve the profiles depicted on
Figure E.3 of the following four curves:

yx
01,t

CC Spread of a Spot ZC, conditional on ηx
0 = 1

yx
0,t1,t+0.25 CC Spread of a Forward Start 3M ZC, conditional on ηx

t = 1
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yx
0,t1,t+0.5 CC Spread of a Forward Start 6M ZC, conditional on ηx

t = 1

yx
0,t1,t+1 CC Spread of a Forward Start 12M ZC, conditional ηx

t = 1

As is clear the smaller the maturity of the forward the smaller the spread. This is
related with the structural upward slope of the generator matrix: it would take a big
downward movement of Xx

uto invert this situation2 .
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(a) Negative Slope
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(b) Positive Slope
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s01

s
0
2

0 1 2 3 4 5 6 7 8 9 10
50

60

70

80

90

100

110

120

130

(c) Flat
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Figure E.3: Lando Spread Examples

In E.4 the evolution of the event intensity of some of the spot and forward instruments
present in Figure E.3 are displayed:

λx
01,t

Event Intensity at t of a Spot ZC, conditional on ηx
0 = 1

λx
0,f1,t

Event Intensity at t of a Forward Start 3M ZC, conditional on ηx
f = 1 where f is

the previous 3M multiple in t

yx
0,t1,t+0.5 CC Spread of a Forward Start 6M ZC, conditional on ηx

t = 1

yx
0,t1,t+1 CC Spread of a Forward Start 12M ZC, conditional on ηx

t = 1

2It could be achieved setting the long term parameter much smaller than Xx
0
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(c) Flat
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Figure E.4: Lando Intensity

As we can see a smaller intensity reflects a smaller “refresh” period and this result is
obtained independently of the evolution of Xx

u as long as we have a structurally positive
sloped matrix, which is always valid for the highest rating.
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Graphs

F.1 Before August 2007
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Figure F.1: USD LIBOR Decomposition 2 21Feb2007
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F.2 Right After August 2007
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Figure F.2: USD LIBOR Decomposition 2 23Oct2007

F.3 Right After Lehman
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Figure F.3: USD LIBOR Decomposition 2 23Oct2008
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F.4 Beginning 2009
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Figure F.4: USD LIBOR Decomposition 2 24Mar2009

F.5 Summer 2009
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Figure F.5: USD LIBOR Decomposition 2 23Jul2009
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