
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS
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Resumo

Ao longo das últimas décadas, tem-se assistido a um grande aumento na quan-
tidade de dados produzidos e disponibilizados em qúımica, em especial após a
introdução de métodos de análise mecanizados. Devido a este crescimento no
número de dados, existe cada vez mais uma necessidade de implementar siste-
mas automáticos computacionais capazes de armazenar, estudar e interpretar
estes dados de forma eficiente. Uma das tarefas mais importantes em quimio-
-informática é, de facto, a utilização dos dados obtidos em laboratório em
sistemas de comparação e classificação de compostos qúımicos. Os métodos
actuais mais eficazes baseiam-se na premissa de que a função de um com-
posto qúımico está intimamente relacionada com a sua estrutura. Apesar de
esta premissa estar geralmente correcta, como comprovam os métodos actuais,
eles podem falhar, especialmente quando moléculas parecidas desempenham
funções diferentes (como acontece com os l- e d-aminoácidos) ou moléculas di-
ferentes desempenham uma função biológica semelhante (como acontece com
inúmeros exemplos de inibidores).

O trabalho proposto neste documento apresenta uma solução para resol-
ver este problema através da utilização de uma métrica h́ıbrida que integre
no seu núcleo informação não só estrutural mas também semântica, ou seja,
o sistema desenvolvido tem a capacidade de explorar a informação acerca do
significado das moléculas num contexto bioqúımico. Para este efeito, utilizei
o ChEBI como fonte de informação semântica, tendo criado uma ferramenta
denominada Chym (Chemical Hybrid Metric) que é capaz de lidar com pro-
blemas de classificação de compostos qúımicos. Resumidamente, para decidir
se um composto qúımico possui uma determinada caracteŕıstica, por exemplo
se atravessa a barreira hematoencefálica, este sistema atribui ao composto um
coeficiente de actividade que é calculado com base nos compostos qúımicos que
se sabe possúırem a caracteŕıstica; por comparação com um valor de corte, o
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Chym classifica o composto em estudo como possuidor ou não dessa carac-
teŕıstica.

A ferramenta que resultou do trabalho desta tese foi aqui explorada e va-
lidada. Assim, o trabalho apresentado mostra evidências substanciais que su-
portam a eficácia do Chym, uma vez que este apresenta melhores resultados do
que todos os modelos com os quais foi comparado. Particularmente, para três
problemas seleccionados, o Chym decide correctamente qual a classificação de
um composto 90.9%, 87.7% e 84.2% das vezes: pela ordem apresentada, esses
valores referem-se à classificação de compostos como permeáveis à barreira he-
matoencefálica, como substratos da glicoprotéına-P, ou como ligandos de um
receptor de estrogénio. Para efeitos de comparação, estes três problemas foram
anteriormente resolvidos com exactidão de 81.5%, 80.6% e 82.8% respectiva-
mente. Comprova-se, portanto, a hipótese da tese, ou seja, que a integração de
informação semântica em sistemas de comparação e classificação de compostos
qúımicos aumenta, por vezes de forma substancial, a fidelidade do método.

Desta forma, o objectivo da tese foi bem sucedido em duas frentes. Por
um lado a tese serviu para validar a hipótese, e por outro culminou na criação
de uma ferramenta de classificação de compostos qúımicos que pode vir a ser
usada no futuro em projectos mais abrangentes, nomeadamente no estudo da
evolução das vias metabólicas, na área de desenvolvimento de fármacos ou na
análise preliminar da toxicidade de compostos qúımicos.

Palavras chave: Aprendizagem automática, Ontologias, Semelhança de com-
postos qúımicos, Semelhança semântica
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Abstract

Over the last few decades, there has been an increasing number of attempts
at creating systems capable of comparing and classifying chemical compounds
based on their structure and/or physicochemical properties. While the rate
of success of these approaches has been increasing, particularly with the in-
troduction of new and ever more sophisticated methods of machine learning,
there is still room for improvement. One of the problems of these methods
is that they fail to consider that similar molecules may have different roles in
nature, or, to a lesser extend, that disparate molecules may have similar roles.

This thesis proposes the exploitation of the semantic properties of chemical
compounds, as described in the ChEBI ontology, to create an efficient system
able to automatically deal with the binary classification of chemical com-
pounds. To that effect, I developed Chym (Chemical Hybrid Metric) as a tool
that integrates structural and semantic information in a unique hybrid metric.

The work here presented shows substantial evidence supporting the effec-
tiveness of Chym, since it has outperformed all the models with which it was
compared. Particularly, it achieved accuracy values of 90.9%, 87.7% and 84.2%
when solving three classification problems which, previously, had only been
solved with accuracy values of 81.5%, 80.6% and 82.8% respectively. Other re-
sults show that the tool is appropriate to use even if the problem at hand is not
well represented in the ChEBI ontology. Thus, Chym shows that considering
the semantic properties of a compound helps solving classification problems.

Therefore, Chym can be used in projects that require the classification
and/or the comparison of chemical compounds, such as the study of the evolu-
tion of metabolic pathways, drug discovery or in preliminary toxicity analysis.

Keywords: Chemical compound similarity, Machine learning, Ontologies,
Semantic similarity
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Chapter 1

Introduction

With the current amount of chemical data being published and produced,
it has become increasingly necessary to devise automatic systems capable of
handling this information. The term “automatic” has been used for a long
time in chemistry, but the concept that comes to mind today is relatively
different from the one that would be evoked by an average scientist 40 years
ago. One has only to open one of the first issues of the Journal of Automated
Methods and Management in Chemistry, published since 1978 (when the name
was actually Journal of Automatic Chemistry), to see that the term’s meaning
was more close to mechanization (see, for example, Mitchell, 1978). Nowa-
days, with the increasing use of computers in the biochemical, biological and
biomedical sciences, the use of the word automatic progressively tends to sug-
gest the use of computation for the organization, study and production of new
information and knowledge. Specifically in chemistry, computers are mostly
used to automatically study molecules or molecular interactions (such as the
ones between proteins and ligands) (Yılmaz and Göktürk, 2009). The field
of knowledge that uses computers and computer science in general to handle,
study and solve chemical problems is known as Cheminformatics.

In a sense, it was the first meaning that pushed chemical science to start
using computers as a way to produce new information: the mechanization
induced an extremely rapid increase in the amount of data produced and
made it much more difficult to manually validate and process it. This raised
the need to create programs specifically designed to deal with chemical data.

This work is inserted in the context of cheminformatics and aims to provide
a tool capable of dealing with that need. I propose the creation of an effec-
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1. Introduction

tive system to automatically compare and classify chemical compounds. This
system serves a number of different applications. While the following is by no
means an exhaustive list, I tried to collect and expose three examples of appli-
cations that would benefit from such a chemical compound comparison tool.

1.1 Applications of chemical compound similarity

The first example is the use of chemical compound similarity in metabolic
pathway comparison. This is a problem which has seen some interesting im-
plementations. The most usual methods try to align two metabolic pathways
such that the number of modifications that need to be done to go from one to
the other is minimal. Usual methods to compute the weight, or cost, of each
modification, use protein similarity, calculated based on EC number (Pinter
et al., 2005; Heymans and Singh, 2003), protein sequence (Shlomi et al., 2006)
or other more sophisticated similarity measures, such as semantic similarity
based on the Gene Ontology (Clemente et al., 2005). However, more recently,
works have been published where the alignment of the pathways is done not
based on enzymes but on metabolites. Tohsato and Nishimura (2008) present
an approach for the alignment of chemical reactions based on their substrates
and products, which is used to create a similarity measure for pathways. Using
metabolites instead of enzymes has some advantages:

(i) Even if enzymes are much more widely studied than small molecules, the
first elements of a pathway to be completely known are the metabolites.

(ii) Macromolecules, such as enzymes, are harder to study than the small
molecules that act as metabolites. For instance, sequencing and three
dimensional studies usually take a long time and are not always readily
available (as in the case of membrane proteins).

A system capable of identifying and aligning similar metabolic pathways
would enable other, larger projects, such as the comparison of metabolic net-
works. Such a system can be applied, for instance, in the study of several
strains of a single species. If some strains possess an interesting character-
istic, as virulence, for example, this system could help determine the most
important metabolic pathways responsible for that characteristic.

A second application of chemical similarity is in the study and develop-
ment of pharmacophores, also known as drug discovery. While the subject of
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drug discovery exists since the beginning of the 20th century (Drews, 2000),
the advances in computer science and the increase of computational power
seen in more recent years impelled the rapid growth of this field. For ex-
ample, the use of computers to model the structure of proteins and small
chemical molecules enabled the detection of specific interactions between pro-
teins and ligands. This information can be used to understand the mechanism
of action of a drug and to determine whether other molecules are expected
to behave similarly (Wolber et al., 2008; Fukunishi et al., 2006). Penzotti
et al. (2002) used a system capable of differentiating amongst substrates of
the P-glycoprotein based on a similarity measure taken from structural prop-
erties of the molecules. This protein transports a variety of metabolites across
membranes and is very important in drug-resistance pathways (Cordon-Cardo
et al., 1990; Schinkel et al., 1995).

The third and last example is a variation of the previous one. Since molec-
ular similarity measures can be used to estimate whether a small chemical
compound is ligand of a protein, it can also be used to estimate whether it is
toxic or not. Richard et al. (2006) present an interesting review on this subject.
With a system capable of comparing and classifying chemical compounds, the
task of screening a full database to search for potentially toxic substances be-
comes much easier. For instance, the use of a hypothetical toxicology analyzer
could help reduce the cost of drug development through estimation of whether
a given chemical compound is or has the potential to be harmful to animals
or humans before attempting an in vivo experiment (Muster et al., 2008).

1.2 Problem

Today, several methods are used to compare chemical compounds. The best
approaches to date are usually based on the structure-activity relationship
premise (SAR), which states that the biological activity of a molecule is
strongly related to its structural or physicochemical properties (Patani and
LaVoie, 1996). While these methods are proof that this assumption generally
holds, it is not always the case that structure is a good indicative of biological
function. For instance, l-amino acids are used by cells to synthesize proteins,
but their stereo-isomers, d-amino acids, are much less frequent in nature and
their role is totally different. d-Serine, for instance, is a mediator in several
physiological and pathological processes, including plasticity and neurotoxicity

3



1. Introduction

(a)
Clavulanic Acid

(b)
3-carboxyphenyl

phenylacetamidomethylphosphonate

Figure 1.1: Chemical structure of two semantically related com-

pounds. The structures of these two compounds are very different, and yet
they both inhibit β-lactamase.

(Wolosker et al., 2008). From a biological point of view, these are two distinct
molecules, but because they share an almost absolute structural similarity,
the methods mentioned above would fail to clearly distinguish them.

On the other hand, both clavulanic acid and 3-carboxyphenyl phenyl-

acetamidomethylphosphonate are β-lactamase inhibitors (Reading and Cole,
1977; Pratt, 1989), despite the differences between their structures, (see Fig-

ure 1.1). To be accurate, it should be mentioned that the mechanisms of
inhibition are not the same: clavulanic acid is a competitive inhibitor of the
β-lactamase (Todd and Benfield, 1990), while the 3-carboxyphenyl phenyl-
acetamidomethylphosphonate seems to phosphorylate the active center of the
enzyme (Pratt, 1989). However, it is a fact that these two completely differ-
ent molecules share a very specific role in biological processes, and a robust
comparison tool should take this fact into consideration.

1.3 Objective

In the examples presented above, a purely structural similarity measure will
not reflect the biological activity of the molecules. A robust comparison
method used in the context of biological sciences (in which the three ap-
plications described above are included) should take these discrepancies into
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account. To address this problem, this thesis proposes the use of the seman-
tics of a chemical compound in the context of biological relevance, i.e., its role
in biological processes, which I used in conjunction with existing methods in
an attempt to produce a better chemical compound comparison method that
improves on the existing ones. This was achieved through the development
of a novel hybrid metric that takes into account both structural and seman-
tic information. I dubbed this approach Chym, for Chemical Hybrid Metric.
Semantic information was extracted from ChEBI, the Chemical Entities of Bi-
ological Interest ontology, an ontology that contains more than 500,000 terms
at the time of writing, which can be used as the core of semantic similarity
(Degtyarenko et al., 2007).

Therefore, this thesis’s hypothesis is that compounds sharing a biological
role should have a similarity measure higher than the one obtained using only
structural or physicochemical properties, reflecting that fact; conversely, the
measure should also reflect different biological relevance even if both molecules
are similar in structure. This goal was achieved through the integration of
semantic similarity with other comparison methods in a hybrid metric.

1.4 Methodology

The methodology followed here is partly derived from Pesquita et al. (2008),
at least where semantic similarity is concerned. That paper details several
methods to calculate semantic similarity between two proteins described with
Gene Ontology terms. Some of these methods were adapted to be used with
chemical compounds described under the ChEBI ontology. The part of the hy-
brid metric that integrates a semantic similarity approach follows closely that
work. The structural similarity is computed based on a fingerprint approach.
These two methods are combined into a single formula, which is the Chym
similarity measure. To assess the effectiveness of Chym, I used it as a classifi-
cation tool on three data sets of chemical compounds extracted from previous
works, and compared these results with the ones obtained in those works.

1.5 Results

After the validation process, Chym obtained accuracy values as high as 90.9%.
This value was obtained when Chym was used to predict the permeability to
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1. Introduction

the blood-brain barrier of molecules in one of the sets. On the other two
sets, accuracy values were 87.7% and 84.2% for prediction of whether com-
pounds are P-glycoprotein substrates and whether they bind to an estrogen
receptor, respectively. These values are clear improvements over the previous
results obtained in the same data sets, which were 81.5%, 80.6% and 82.8%
respectively.

1.6 Structure of the thesis

This document is structured in several chapters that should be read in order.
It starts with some terminology definition and a detailed background section
in chapter 2, explaining the terms and ideas that are needed to understand
the rest of the work. Terms like semantics, mentioned above, are given a
precise meaning, while the data sources are also mentioned and briefly ana-
lyzed. Chapter 3 delineates previous attempts at classifying and comparing
chemical compounds, mentioning and detailing some of the existing methods
and the results that were achieved with them. Those results are critical, since
Chym is compared against them. Chapter 4 delineates the methods underlin-
ing Chym’s approach and the major algorithms and formulas developed are
presented and explained. This chapter also mentions the software used to
implement Chym. The evaluation of the effectiveness of this approach is the
topic of chapter 5, where the data and results of previous studies are compared
to the outcome of Chym. This chapter is divided in four sections: the first two
describe the setting used to validate Chym; then the results obtained are laid
out; and finally the results are discussed. The thesis proceeds with chapter 6,
where I make some final conclusions in the context of possible applications and
briefly mention the future work that could be constructed upon this project.
Finally, three appendices finish the thesis, where less important remarks are
mentioned. Appendix A describes the road map that gave origin to the Chym
tool, presenting the main decisions that had to be made and showing the re-
sults that support those decisions. Appendix B includes a brief description
of the steps followed to create the local Chym database, and mentions pro-
gramming languages and software used. Appendix C proves a mathematical
statement made during the main text.
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Chapter 2

Background

To fully understand the work developed to create and validate Chym, there
are a number of terms, concepts and data sources that the reader should be
familiar with. This chapter deals with those definitions and details.

2.1 Terminology

Throughout this work, I will often use three terms that were at the very base
of the development of Chym.

The first term is the adjective structural. I refer to structural properties,
structure and other related words when dealing with the composition of a
molecule: atoms, bonds, charge, etc. The structure can usually be repre-
sented as a two dimensional graph, although sometimes it is important, for
stereochemical reasons, to represent the relative position of atoms in three di-
mensional space, in which case three dimensional coordinates should be used
(for instance l-amino acids and d-amino acids, can only be distinguished if
spatial arrangement is taken into account).

The second term is the adjective physicochemical. It is common, in the
field of cheminformatics, to refer to structural properties as a much wider
concept, that includes not only the composition of the molecule but also some
of the properties that are not immediately obvious from the structure. For
instance, many papers mention the structure-activity relationship as the hy-
pothesis that the biological activity of a molecule is a direct consequence of
its structural and/or physicochemical properties. In the terminology I used
in this thesis, it is important to distinguish between these two sets of prop-
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2. Background

erties. Examples of physicochemical properties include (a) the octanol-water
partition coefficient, a very common property used in classification studies
that make use of physicochemical properties, and which reflects the ratio of
the concentration of a molecule in the two phases of the mixture of those
two immiscible solvents, (b) the molar refractivity, which is a measure of the
total polarizability of the molecule, or (c) the acid dissociation constant, or
its logarithmic counterpart, pKa, which measures the strength of an acid in
an aqueous solution. All these properties are difficult to predict from the
structure of the molecule, and they are generally gathered from literature by
automatic data mining approaches, especially when the number of molecules
involved is too big to allow the data mining to be done manually.

According to Oxford Advanced Learner’s Dictionary (Crowther, 1995), the
definition of semantics is “the branch of linguistics dealing with the meaning of
words in sentences.” While this term seems utterly connected to the linguistics
filed, in has been transported to computer science mainly due to the study of
artificial intelligence. Computer science has usually used this term as opposed
to syntax (which refers to the rules that govern the correct arrangement of the
words in the sentence); more recently, it has often been found in the expression
semantic web, which is an attempt to introduce the concept of metadata into
the information that travels through the internet. The semantics of a term
is, therefore, its meaning in a predetermined context, the concept for which
it stands. Specifically for chemical compounds, their semantics reflect what
is known about their structure, their properties, and their role in nature.
As such, it can be seen that semantic properties are a more abstract and
generalized concept than both structural and physicochemical properties, since
the semantic information can include both these properties.

Structural properties are directly computable from the structure and, be-
cause the semantics of a chemical compounds is described in a database (see
below, under subsection 2.5), the retrieval of this information is also easily
done. For this reason, the implementation of Chym, which uses only structural
and semantic properties, was feasible. However, since the semantic informa-
tion may include physicochemical information, this approach is not blatantly
ignoring properties, but is rather exploiting them from a different perspective.

8



Fingerprints

Figure 2.1: Fingerprint example. This is an example of a simple finger-
print. All the fragments of a molecule (in this case cysteine, ChEBI:15356)
were retrieved from the structure, and then each fragment was used once to
set one of the bits to 1, here represented with black squares. The fingerprint
goes on to the right, where other bits may have been set to 1 as well. Only five
fragments are represented in the figure, but it is possible to generate more than
40 from that molecule. As can be seen, sometimes more than one fragment
sets the same bit to 1, in which case some information will be lost.

2.2 Fingerprints

A fingerprint, in the context of chemical compound similarity, is a bit-string,
a sequence of 0’s and 1’s, where each bit represents the presence or absence
of a given feature or substructure. There are several ways to construct the
fingerprint. For instance, there is a class of fingerprints commonly used in
cheminformatics usually called Daylight fingerprints (Daylight is the name of
the company that first used the concept here described) (Daylight Chemical
Information Systems, Inc., 2008). To construct this fingerprint, all distinct
linear fragments, up to a certain size, are identified from the graph and then
converted into numbers ni: usually, a hash function is applied to the fragment,
followed by a modulo function, effectively obtaining a number smaller than
the size of the fingerprint. The ni

th bits in the fingerprint are then set to 1 (see
Figure 2.1 for a very simple example) (Flower, 1998; Raymond and Willett,
2002). One of the disadvantages of this method is the possibility of overlaps.
Since all substructures up to a limit size are considered, the hash function will
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2. Background

have to assign the same bit to more than one linear fragment. This means a
loss of resolution, but the general nature of the method somehow compensates
for this problem.

Another method is to assign a particular substructure to each one of the
bits of the fingerprint; one of the bits may represent the presence of sulfur
atoms in the molecule or the existence of hydroxyl groups, for example. Here,
no overlap will happen, but the descriptors must be wisely chosen to accurately
represent the differences and similarities that one wants to catch.

Whatever the algorithms used to create the fingerprints, two molecules can
then be quickly compared based on the number of common bits in their fin-
gerprints, for example, through the Tanimoto (also called Jaccard-Tanimoto)
(Jaccard, 1901; Willett et al., 1998; Flower, 1998; Martin et al., 2002) or the
cosine (Willett et al., 1998) coefficients. These coefficients (and several other;
see Willett et al. (1998) for an interesting review on this subject) assign the
number of 1-bits in fingerprint A and B to variables a and b, and the number
of common 1-bits in both fingerprints to variable c. The Tanimoto coefficient
is defined in equation 2.1 and the cosine coefficient in equation 2.2.

simTanimoto =
c

a+ b− c
(2.1)

simCosine =
c√
ab

(2.2)

Of course, both fingerprints must have been calculated with the same
method, or the comparison will be meaningless.

2.3 Semantic similarity

The semantic information of an object, i.e., its meaning in a predetermined
context, is not easily handled by computers, mainly because meaning is a
subjective concept and is often described in terms of natural language. For
this reason, comparing the semantics of two objects (in this case, two chemical
compounds), is not a straightforward task, and is only possible if the semantics
of both objects are described under a common schema (Lord et al., 2003). In
this work, I exploit the ChEBI ontology (see subsection 2.5 for a description of
this ontology, and the next paragraph for an explanation of what an ontology
is) to semantically describe chemical compounds. Under that common schema,
it was possible to derive a semantic similarity metric.
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An ontology is a representation of terms and the relationship between
them, and is usually visualized as a directed graph where nodes are the terms
and edges are the relationships (Chandrasekaran et al., 1999). A common
type of relationship in ontologies is the is a relationship. It expresses the fact
that one term (the child) can be classified as a subclass of another term (the
parent). Given the non-cyclic nature of this relationship (a term can never
be a subclass of one of its subclasses), some ontologies can be interpreted as
directed acyclic graphs (DAG), where a term can have several parents and
several children; in such a graph, the deeper a term is, the more specific
its meaning is. For instance, if there is a single top term, it is completely
unspecific, since it is a superclass of all the other terms. But while an ontology
with only is a relationships is a DAG, a DAG can contain other relationship
types (as long as they are non-cyclic). As will be seen later, ChEBI has a
number of distinct non-cyclic relationship types, which enriches the ontology
and enables the expression of a much wider spectrum of relations between the
terms.

Given their structured an organized nature, ontologies are a common
schema chosen to annotate biological entities like proteins, diseases and chem-
ical compounds. For example, the Gene Ontology (GO) contains terms that
can be used to annotate proteins. These terms include functions, biological
processes etc. and one annotation with a GO term is a means to show that a
particular protein possesses that function or participates in that process.

In the context of ontologies, a semantic measure between two terms reflects
their proximity in the ontology. One of the simplest ways to compare two
terms is to count the minimum number of relations that must be traversed
to get from one compound to the other (Resnik, 1999). Another approach
used in DAGs is to find the closest common ancestor of both terms; then, the
distance between them is the maximum number of relations from one of the
two terms being compared to the common ancestor.

It is worth noting that a measure can be a distance (as the terms get
closer, the distance decreases) or a similarity (as the terms get closer, the
similarity increases). Chym considers only similarity measures, but could be
easily adjusted to use distances instead.
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2.4 Information Content

Information content (IC) is an abstract concept that reflects the specificity of
a particular object (Resnik, 1999). From information theory, the information
content of an object in a particular context can be evaluated as the negative
logarithm of the probability of finding that object on that context (Ross,
1994):

IC(x) = − log Pr(x) (2.3)

Intuitively, equation 2.3 means that a very frequent term is considered to be
less informative and vice-versa.

When calculating information content, it should be noted that a function is
only meaningful if each term’s occurrence contains all its children’s occurrences
too. In an ontology like ChEBI, this means that for more abstract terms
(terms closer to the top of the ontology) this probability includes many terms,
decreasing its information content, which, in turn, reflects its low specificity.

The probability function that Chym uses is based on the number of path-
ways each compound participates in. kegg databases will be used to deter-
mine this function, as will be explained in chapter 4.

The information content is one of the main principles of semantic infor-
mation. It is not immediately obvious why the probability of finding a par-
ticular term should be useful in semantic similarity measures, but its purpose
becomes a little more evident when considering one of the most common se-
mantic metrics. From equation 2.3, the more specific a chemical compound
is, the higher is its information content. Consider that the similarity between
two compounds is the information content of the most informative common
ancestor of the two terms (Resnik, 1999). From the nature of an ontology, if
the most informative common ancestor of two very specific terms is almost
as deep in the DAG as the two terms, then their similarity should be high,
since they share a lot of their ancestry; and because the common ancestor is
also very specific, the similarity between the two terms is high as requested.
On the contrary, two distinct terms will have a very far, unspecific common
ancestor, making their similarity small. This is a good term-based method
to measure semantic similarity. Pesquita et al. (2008) have shown this and
other interesting results on term-based similarity measures. Chym, however,
uses two more sophisticated methods (also adapted from the work of Pesquita
et al. (2008)), which are detailed in chapter 4.
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2.5 Chemical Entities of Biological Interest

Chemical Entities of Biological Interest (ChEBI) is a freely available
database of small molecular entities (distinct isotopes, atoms, ions, molecules
etc.). These entities may be products of nature or synthetic products used
to intervene in biological processes (Degtyarenko et al., 2007). The ontol-
ogy also includes classes of molecular entities and partial molecular entities,
enabling ChEBI to be organized as an ontology, structuring chemical enti-
ties into classes and defining the relations between them. This database was
constructed to enable biological relevance to be extracted from its terms.

Unlike other biomedical ontologies, ChEBI does not objectively separate
between classes and instances. For example, GO is a DAG of abstract classes
that can be attributed to proteins as annotation. On the contrary, ChEBI
terms can be classes, instances or even both. Cysteine, for example, is an
instance of α-amino acids and sulfur-containing amino acid, but is also the
superclass of l-cysteine, d-cysteine, or other not so common compounds such
as cystine or cysteine radical. Although this approach creates some disadvan-
tages, it is fitting to a database of chemical compounds, since compounds are
generally mentioned without full detail and specificity. When biologists refer
to cysteine, they are probably referring to l-cysteine. However, it is some-
times desirable not to be so specific, which happens, for instance, in racemic
mixtures (a mixture with equal amounts of l- and d-isomers), in which case
the less specific term is used.

One of the consequences of not separating classes from instances is that
ChEBI includes the elements it is trying to classify. In the following para-
graphs, I will use the words class and subclass to refer to the parent and child
of a relationship, respectively.

ChEBI defines six non-cyclic relationship types (Degtyarenko et al., 2007):

(i) is a implies that the subclass is an instance of the class, as described
above. Subclasses are always more specific than their classes.

(ii) has part indicates that a part of the subclass’s structure is equal to the
class’s structure.

(iii) has functional parent indicates that the subclass can be derived from
the class by functional modification.
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(iv) has parent hydride indicates that the subclass can be derived from the
class by substitution of one or more of its hydrogens (a hydride is “an
unbranched acyclic or cyclic structure or an acyclic/cyclic structure hav-
ing a semi-systematic or trivial name to which only hydrogen atoms are
attached” (IUPAC Commission on Nomenclature of Organic Chemistry,
1993)).

(v) is substituent group from indicates that the subclass is formed by
loss of one or more protons or simple functional groups of the class.

(vi) has role indicates that the subclass’s behavior is described by the class.

The “is a” relationship is defined by Smith et al. (2005), and is part of
the Open Biomedical Ontologies (OBO) community effort to standardize the
relationships used in biomedical ontologies. The “has part” relationship is
not specified by OBO, but OBO does specify its reversal, a “is part of” re-
lationship. Since chemical compounds with a given substructure are usually
more specific than the compound defined by that substructure, the subclasses
are also more specific than the superclasses. The other four relationships are
unique to ChEBI, since they are specifically related to the properties of chem-
ical compounds, although the “has functional parent”, “has parent hydride”
and “is substituent group from” fall into the OBO “derives from” relationship.

The other four relationship types (“is conjugate acid of”, “is conjugate
base of”, “is enantiomer of” and “is tautomer of”) are cyclic and, as such,
unsuitable to use in a DAG structure, which by definition cannot contain
cycles.

The ontology is subdivided into three partially overlapping sub-ontologies:

(i) Molecular structure, in which the entities are classified according to
composition and structure.

(ii) Role, in which entities are classified according to their role within a
biological context.

(iii) Subatomic particle, which classifies particles smaller than atoms.

Each of these sub-ontologies starts as a node in the top of ChEBI, and
consists of all the terms that can be connected to that node through a path
of non-cyclic relations.
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As of the time of the computations (January 2010), the graph of this
ontology contains more than 500,000 nodes representing terms (release 64).
As stated above, some terms are not chemical compounds but parts of com-
pounds, such as functional groups, that make the ontology structure possible.
Also, for each chemical compound, there may be several ChEBI identifiers,
resulting from different annotations that were later identified as the same
compound.

Besides the ontology, the ChEBI database is enriched with an extensive list
of synonyms and manually curated cross-references to other non-proprietary
databases, as well as a list of chemical structures.

2.6 Kyoto Encyclopedia of Genes and Genomes

Kyoto Encyclopedia of Genes and Genomes (kegg) is a collection of
databases categorized into systems, genomic and chemical information. The
different kegg databases are highly integrated in an effort to be an efficient
and accurate computer representation of the biological system (Kanehisa et al.,
2006).

One of the main components of kegg is the pathway database, which
contains a collection of graphical representations of known pathways. Each
metabolic pathway entry integrates information from other databases in kegg,
such as the intervening enzymes (kegg enzyme), chemical reactions (kegg

reaction) and chemical compounds present in the pathway (kegg com-

pound).
kegg compound is a chemical structure database for metabolic com-

pounds and other chemical substances that are relevant to biological systems.
Chym uses entries in the kegg compound database to discover the com-
pounds present in the metabolic pathways (kegg pathway entries). The ex-
istence of a mapping between ChEBI and kegg compound makes it possible
to integrate information from both databases, which in turn enabled the cal-
culation of the frequency of each chemical compound defined in ChEBI. This
is the step required to determine the information content of a compound, as
discussed previously (see section 2.4).
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Chapter 3

Current approaches in

chemical similarity

This section tries to bring into focus the previous work done in the field of
chemical similarity by mentioning some of the previous contributions to this
area of research. This section is also important because Chym was developed
and validated as an improvement of these previous works, and the results
obtained with this method are actually compared to the ones obtained previ-
ously.

The comparison of chemical compounds has recently been gaining some
focus on the scientific community. Most methods implemented currently use
either (a) the chemical structure as the foundation of the comparison, or (b) a
combination of structural and physicochemical properties, like the molecular
weight and the octanol-water partitioning coefficient etc. (Doniger et al., 2002;
Svetnik et al., 2003; Tong et al., 2003). Both these approaches are further
discussed below.

3.1 Direct structure comparison methods

The great advantage of approach (a), which uses structural properties to derive
a chemical similarity measure, is its ability to compare two or more molecules
on demand, i.e., one can theoretically draw an arbitrary molecule and com-
pare it to a whole database of structures without any prior knowledge of its
relevance or physicochemical properties. This is because structural properties
are directly derived and easily calculated from the structure of a chemical
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molecule, when it is known. It is disadvantageous when the structure of a
molecule is not known, but with advances in spectroscopy (Herzberg, 2008) it
is becoming increasingly rare to not know the structure of the molecule being
studied. Furthermore, the structure of biologically relevant molecules can also
sometimes be obtained from crystallography X-ray studies of the protein to
which it binds (Ghosh et al., 2008).

There have been attempts to use graph comparison algorithms applied to
the chemical structure of two molecules, but since the problem of comparing
two graphs is computationally expensive (Raymond et al., 2002), heuristics are
used. One way of doing it is to restrict the similarity problem to the search
for the maximum common sub-graph (Le et al., 2004). The topology of the
molecule can also be used as the base of chemical similarity measures, where,
for instance, a molecule can be represented as the matrix of the number of
bonds between any two atoms and compared based on those matrices with
algebraic methods (Fukunishi and Nakamura, 2009). More often, though,
structural similarity is calculated with the aid of fingerprints (see section 2.2).

From the several coefficients that can be used to measure the similarity
between two fingerprints, the Tanimoto coefficient is more widely used, at least
in chemical similarity approaches, since it was shown (Willett et al., 1986;
Salim et al., 2003) that is performs better than the cosine coefficient and is
faster to calculate because it does not involve a square root (cf. equations 2.1
and 2.2).

3.2 Comparison from physicochemical properties

The approach (b) consists in using structural and physicochemical proper-
ties to create a similarity measure between two chemical compounds. As is
evident, there is a big disadvantage here when compared to the previous ap-
proach. Since most of the physicochemical properties are difficult to estimate
computationally, one has to gather them from literature and/or databases, or
to conduct experiments to obtain them. There is an increasing number of sys-
tems capable of retrieving chemical compound properties through data mining
(Cheng et al., 2001; King et al., 2001; Teixeira et al., 2009), but even these
systems sometimes fail. However, this is still the approach most commonly
used to compare and classify chemical compounds.
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Doniger et al. (2002) used Artificial Neural Network (ANN) and Sup-
port Vector Machine (SVM) to distinguish compounds capable of crossing the
blood-brain barrier (BBB) from those that do not cross it. Each compound is
described as a 9-dimensional vector, where each element is a physicochemical
property of the molecule. An ANN is composed by a number of artificial neu-
rons (a conceptual object that receive several inputs and combines them to
produce a single output) arranged in layers, where the first layer gets as input
the descriptors of the molecule and the last layer outputs the classification;
the SVM method consists in finding the hyper-surface that best separates the
vectors of the compounds that cross the BBB from the vectors of the other
compounds (Cortes and Vapnik, 1995), in this case in the 9-dimensional space.

Penzotti et al. (2002) used a three dimensional representation of molecules
and applied an approach named “four-point pharmacophore”. This approach
builds millions of descriptors, each being a different spatial arrangement of
4 features with the respective distances, and then determines whether the
compound contains each of the descriptors, effectively constructing a big bit-
string which can be used like fingerprints, just as previously described. In their
work, the “four-point pharmacophore” model was used to predict whether
compounds are substrates of the P-glycoprotein (P-gp). An SVM approach
was also attempted on this set by Xue et al. (2004).

Tong et al. (2003) applied the concept of decision trees to predict whether
a chemical compound binds to an estrogen receptor. A decision tree consists
of several if-then statements, operating over the descriptors, which ultimately
come together to create a tree with several branches. The last limbs of the
tree classify the compound as positive or negative. In their work, they defined
and used decision forests, which are ensembles of several decision trees, where
each tree is constructed from the set of descriptors not used in any of the
previous trees, in order to minimize the number of misclassifications, and the
final output is a combination of the outputs of the trees.

Random forests also use decision trees as its base, as shown by Svetnik
et al. (2003). In their work, they used random forests to classify compounds as
positive or negative in several sets, including the BBB, P-gp and estrogen sets
described above. Unlike the decision tree approach, however, the descriptors
used in each tree are randomly drawn from the set of all descriptors, rather
then drawn from the set of unused descriptors.

These previous works (as well as the study that is in the origin of this
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Table 3.1: Previous works. This table summarizes the efficiency of several
classification methods.

Testing set Classification system Accuracy Reference

BBB Artificial Neural Networks 75.7% (Doniger et al., 2002)
Random Forest 80.9% (Svetnik et al., 2003)

Support Vector Machines 81.5% (Doniger et al., 2002)

P-gp Four-point Pharmacophore 62.7% (Penzotti et al., 2002)
Support Vector Machines 79.4% (Xue et al., 2004)

Random Forest 80.6% (Svetnik et al., 2003)

estrogen Decision Forest ∼80% (Tong et al., 2003)
Random Forest 82.8% (Svetnik et al., 2003)

thesis) validate their approaches by using the comparison algorithms as clas-
sification systems. Table 3.1 presents the accuracy values obtained from
those systems.
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Chapter 4

Methodology

In order to develop and validate the hybrid similarity metric for chemical
compounds, the Chemical hybrid metric (Chym), I built a model based both
on fingerprints and on the semantic similarity measures developed for the Gene
Ontology (GO) (Pesquita et al., 2008). The backbones of these two methods
were laid down on previous sections of the Background chapter (section 2.2
for fingerprints and sections 2.3 and 2.4 for semantic similarity) and are now
further detailed, but now with Chym in mind.

4.1 Structural similarity

To calculate the structural similarity between two molecules, Chym needs a
representation of their structures. Because ChEBI contains a list of structures
in SMILES, MDL and InChI chemical file formats, these were the formats
used, in that order of preference. The rationale for this choice is the wide use
of SMILES over MDL and InChI.

For each structure, three fingerprints were calculated. These formats
were computed with the OpenBabel software (Guha et al., 2006; Open Babel
Project, 2009):

FP2 All non-branched (linear or possibly circular) fragments of up to 7 atoms
are calculated from the initial structure. Each fragment is assigned a
number from 0 to 1020 by means of a hash function and the correspond-
ing bit in the fingerprint is set to 1. This is an approach similar to
the Daylight fingerprints previously discussed (section 2.2), but uses a
different algorithm.
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FP3 The molecule is analyzed and, if a specific pattern is identified, its cor-
responding bit in the fingerprint is set. The patterns are detailed in a
file that is part of the OpenBabel software.

FP4 This is the same as the FP3 format, but the patterns are defined in a
different file, also part of the OpenBabel software.

The reason to use more than one fingerprint format is the flexibility of
Chym. For each classification problem, one of these formats will perform
better than the others, but the best format is not always the same. For
example, the FP2 format covers a wider range of substructures than the other
formats, but as a result some substructures will be assigned to the same bit,
and the format loses resolution. FP3 and FP4 specify different descriptors,
which means the similarity calculated through these two methods will reflect
distinct groups of differences. Any good classification scheme must be able
to adapt to different problems and different training sets. Having different
fingerprint formats (and different semantic similarity formats as well, as can
be seen under section 4.2) enables this required flexibility to Chym.

Given two molecules and the corresponding fingerprints (ai) and (bi), the
similarity score between them is calculated according to the Tanimoto coeffi-
cient. This coefficient can be redefined with equation 4.1, which is equivalent
to equation 2.1:

simstructural =
#{i|ai = 1 ∧ bi = 1}
#{i|ai = 1 ∨ bi = 1}

(4.1)

where ai and bi are the ith bit in each of the fingerprints. That fraction is al-
ways defined unless #{i|ai = 1 ∨ bi = 1} = 0. In that case, neither fingerprint
has a 1-bit, which means they are equal and Chym then forces simstructural = 1.

From equation 4.1, it can be seen that the structural similarity will be 0
when no single bit is set to 1 on both fingerprints (total disparity) and will be
1 when the 1-bits in the two fingerprints are the same.

4.2 Semantic similarity

Following the application of semantic measures for the GO (Pesquita et al.,
2008), I developed a similar approach; instead of proteins, however, Chym
works with chemical compounds. As has already been stated, there are a
number of different ways to measure semantic similarity based on an ontol-
ogy. I chose to use simUI and simGIC, which seem the most sophisticated
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measures, encompassing more information in a single measure. Other possibil-
ities included term-based measures like the Resnik similarity measure (Resnik,
1999), which was discussed in section 2.4. simUI and simGIC are a less time-
consuming, because it is not necessary to determine which of the common
ancestors is the most informative, and they showed a greater resolution in GO
than other term-based methods. As there is no objective reason to suspect
that the same will not be true in ChEBI, they were the preferred measures.

Having two methods for calculating semantic similarity plus several com-
plementing sub-ontologies gives Chym flexibility in the semantic side of the
approach, in parallel to what happens with structural similarity (see previous
section).

For the rest of this section, consider c, c1 and c2 as chemical compounds
and asc(c) as the set of ancestors of the chemical compound c, including
c itself. Furthermore, Figure 4.1 represents a very simplified view of an
example ontology. While reading this section, it is useful to refer to it in order
to understand the concepts and the usefulness of the formulas. It is worth
noting that the figure represents only an exemplification, not a real ontology.

4.2.1 simUI

simUI is a graph-based measure, which means that it considers the terms and
all of their ancestors in the graph of the ontology. It is defined as follows
(Gentleman, 2005):

simUI(c1, c2) =
#{t | t ∈ asc(c1) ∩ asc(c2)}
#{t | t ∈ asc(c1) ∪ asc(c2)}

(4.2)

This measure is purely graph-based. Only the nodes and edges are con-
sidered, without any information content being used in the calculation. Intu-
itively, simUI measures the amount of common ancestry between two terms.
When two terms share most of their ancestry, they share most of their mean-
ing, and the simUI similarity measure returns a high value to reflect this fact.
On the other hand, two dissimilar terms will share few ancestor terms, and
simUI will be low.

4.2.2 simGIC

It is known, however, that for ontologies where term specificity is not well
correlated with term depth (the minimum number of relations between the
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term and the root of the DAG), methods based on information content (IC)
are preferable (Pesquita et al., 2008). simGIC is a combination of the graph-
based simUI metric with the information content properties of compounds
through equation 4.3 (Pesquita et al., 2008). In fact, both definitions are very
similar, but simGIC weights each ancestor with its information content:

simGIC(c1, c2) =
∑
{ IC(t) | t ∈ asc(c1) ∩ asc(c2)}∑
{ IC(t) | t ∈ asc(c1) ∪ asc(c2)}

(4.3)

where IC is the information content, as calculated through the IC equation:

IC(c) = − log Pr(c) (4.4)

The corpus used to calculate the probability of finding a compound is
kegg, and the probability of finding a compound is the fraction of pathways
in which it participates.

Equation 4.3 shows that unspecific ancestors (like the root of the ontology
or other early compounds) contribute very little to the similarity measure.
This has two main consequences:

(i) simGIC similarity measure is generally lower than simUI (see why in
appendix C), and

(ii) two completely equal compounds share a similarity of 1, but the similar-
ity decreases rapidly when the compounds draw apart, which increases
the resolution of this method for similar compounds.

For both simUI and simGIC, the similarity value is between 0 and 1 be-
cause the intersection of two sets is always a subset of their union, and there-
fore the numerator is always smaller then the denominator.

4.3 Hybrid metric

Until this point, I presented two orthogonal metrics able to measure the sim-
ilarity between two chemical compounds, each using a different set of proper-
ties. My intent, however, is to join them together to produce a hybrid metric
that takes into account both structural and semantic information.

Since all metrics detailed above fall in the closed interval [0, 1], I propose
the following definition for the hybrid similarity:

simhybrid = α · simstructural + (1− α) · simsemantic (4.5)
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Figure 4.1: Semantic similarities in action. An example ontology with
terms specified as dots or words and relationships represented with arrows.
Information content of each term was fictitiously calculated and written near
it. From this figure, it is possible to calculate, for instance, simUI(A,B) = 5

8 =
0.625 or simGIC(B,C) = 0.0

20.3 = 0.0.

where α is a real number from 0 to 1. When α = 0, the identity degenerates
into pure semantic similarity and when α = 1, into pure structural similar-
ity. Furthermore, with the several fingerprint formats and semantic similarity
measures presented, equation 4.5 is not a metric but a collection of metrics.

In the introduction (chapter 1), I mentioned that the main objective of
this thesis is to create a metric that reflects the biological relevance of a com-
pound based on its semantics in such a way that the similarity measure for two
biologically related compounds is higher than what would be obtained with
purely structural methods. The equation given in equation 4.5 integrates
both semantic and structural information, but if semantic similarity is lower
than structural similarity, the definition above will return a value lower than
the purely structural similarity. This is not in agreement with the objective
delineated above. But the absolute value of similarity is not the important
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parameter. Consider a list of pairs of compounds ranked according to simi-
larity: the metric is considered successful (it will conform to the hypothesis)
if the rank of a pair of semantically related compounds increases, or, in other
words, if its position in the list goes up.

4.4 The Chym approach to classification

To assess the performance of Chym when it comes to conforming to the hy-
pothesis rewritten above, it was crucial to use it in a way that could be com-
pared and evaluated based on previous works.

One of the possible uses of Chym is the application of this similarity metric
to classify compounds. The ideal system gets as input a set of chemical com-
pounds that possess a common property (positive compounds) and a set of
chemical compounds without that property (negative compounds), and then
determines whether other chemical compounds also possess the same prop-
erty. This is also the approach used by SVM and random forests, for example,
where the input serves as a training set that is used to create a classification
model. In Chym, the model consists of the set of positive compounds and a
threshold that is used to decide whether a compound is positive or negative.

Given the training set of positive and negative compounds, the algorithm
used to predict whether another compound is positive or negative is the fol-
lowing (Figure 4.2 contains a visual representation of the process):

1. Compare each compound in the training set with the positive compounds
in that group. The comparison of a positive compound with itself is
excluded, since this value (which is always 1) could introduce a bias into
the rest of the algorithm.

2. For each of these compounds, determine its activity coefficient, which is
the unweighted average of the results in step 1. A compound will be
classified as positive if its activity coefficient is above a threshold, which
still needs to be calculated.

3. Determine the threshold of activity, t. To do this, Chym uses all the
coefficients calculated in step 2 as potential thresholds, and classifies
the compounds in the training set as positive or negative accordingly.
The coefficient that minimizes the number of misclassifications in the
input set is chosen. This ends the training step.
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4. For all compounds in the validation set, Chym calculates their activity
coefficient (average of similarities between a compound and all positive
compounds in the training set), and classifies it as positive if the activity
coefficient is greater than or equal to the threshold of activity t, and as
negative otherwise.

Figure 4.2: Visual explanation of Chym’s classification process. To
classify a compound that is not in the input set, Chym starts by comparing
all the compounds in the input set with the known positive compounds (dot-
ted, straight arrows) in order to train the model and obtain a threshold value.
This training step is represented here in the rectangle, which yields t, the
threshold of classification. Then, the new compound is compared with all the
positive compounds in the input set (continuous, curved arrows) and the ac-
tivity coefficient a is calculated as the average of these values (here represented
by the ellipsis). The compound is classified as positive or negative based on
the comparison of the activity coefficient and the threshold. Compounds are
represented with the diamond-shaped symbols.
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4.5 Assessment of the quality of Chym

Since the performance of the previous systems was assessed based on their ac-
curacy (cf. Table 3.1), I will report mainly the accuracy of Chym. However,
accuracy may not be the best parameter to evaluate whether a classification
tool is good. It is very common in bioinformatics to construct what is called a
confusion matrix, which attributes to each classification one of four labels: true
positive (TP), true negative (TN), false positive (FP) or false negative (FN),
respectively to positive compounds being classified as positive, negative com-
pounds as negative, negative compounds as positive and positive compounds
as negative (the last two are the misclassifications). Refer to Table 4.1 for a
better visualization of a confusion matrix.

There is no single number that can perfectly describe a confusion matrix.
The accuracy of a prediction is the fraction of correct classifications, but it
fails to assess the true quality of a system in some cases, particularly when
the distribution of positive and negative compounds is not balanced:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.6)

F-measure is also very common in bioinformatics, and is mainly used in
data mining operations. It does not take into account the number of false
negatives. It is defined in terms of precision (p) and recall (r), which, in turn,
are defined in terms of the variables in the confusion matrix:

p =
TP

TP + FP

r =
TP

TP + FN

F-measure =
2pr
p+ r

(4.7)

These two coefficients are in the interval [0, 1], with 0 corresponding to a
totally unsatisfying tool and 1 to the perfect prediction tool.

Table 4.1: A confusion matrix.

Experimental Real

Positive Negative

Positive TP FP
Negative FN TN
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When the sizes of positive and negative groups are disparate, neither of
these two coefficients describe accurately the quality of the prediction. For
instance, if 90% of the compounds are positive, and the tool assigns “positive”
to all compounds, the accuracy would be 90%, but as a prediction tool, this
would correspond to an unsuccessful attempt.

The Matthews correlation coefficient (MCC) is the least used of these three
measures, but it is also the one that more faithfully reflects the quality of the
tool when the number of positive compounds is very different from the number
of negative compounds (Baldi et al., 2000):

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.8)

Unlike the other two, this coefficient measures a correlation, and as such
varies from −1 to 1, with −1 reflecting a tool that fails all predictions, 0 a
seemingly random prediction tool and 1 a perfect prediction.

4.6 Implementation

The methods used to structurally compare compounds are implemented by the
software OpenBabel (Guha et al., 2006; Open Babel Project, 2009), an open
sourced chemical toolbox containing a number of different functions, including
the ability to store and analyze data from molecular modeling, particularly,
to this work, from the structure of chemical compounds. Version 2.2.3 of the
OpenBabel software was downloaded and installed locally on December 2009.

The semantic similarity demanded for the application of semantic tools on
the ontology used, ChEBI. As has been previously done in the work of Grego
et al. (2010), it was necessary to reorganize the ChEBI ontology so that it
could fulfill Chym’s purposes. All cyclic relationships (“is tautomer of ” etc.)
were removed, and the other relationships were merged into a single “is a”-like
relationship. ChEBI identifiers pointing to the same chemical compounds
were also merged into a single node. This resulted in the production of three
independent DAGs, one for each branch of the main ontology (structure, role
and subatomic), and a forth DAG resulting from joining the other three (all).
With this modification, it is possible to directly calculate simUI similarities
with equation 4.2.

To calculate the IC needed for the simGIC metric, Chym needs a corpus
where chemical compounds are referenced, kegg pathway. With this corpus,
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the value of Pr(c) from equation 4.4 is the fraction of pathways where the
compound c or any of its descendants are present. To map ChEBI identifiers
into kegg identifiers, I used the ChEBI cross-references. Sometimes, however,
these references were ambiguous (some ChEBI ids point to two or more kegg

compound ids, as happens, for instance, with compound ChEBI:16218, which
points both to C:00663 and C:01135 from kegg compound). For this reason,
whenever a ChEBI id c had more than one kegg compound reference, Chym
uses all of them to determine the number of pathways in which c participants.

The information described above was stored locally in an manner that can
be easily accessed:

• All ChEBI compounds, with their names as defined in that database;

• The set of cross references between ChEBI and kegg compound;

• The four DAGs in closed form, where a row in the table is of the form
c1, c2 and determines that c1 is part of the ancestry of c2;

• The IC of the compounds present in at least one of the kegg pathways.

Since there are 3 fingerprint formats (FP2, FP3 and FP4), and semantic
similarity can be calculated based on 4 different DAGs (all, role, structure and
subatomic) and with 2 different methods (simUI and simGIC), the Chym’s
approach consists of 3 × 4 × 2 = 24 different similarity metrics, each tuned
with a real parameter α.

With this setting, Chym is now ready to be validated. In the next chapter,
I will show the effectiveness of Chym, based on its performance when used as
a binary classification tool.
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Chapter 5

Assessment

Up until now, this document presented the background information needed to
understand Chym, the current approaches and their results, and the method-
ology followed in the implementation of Chym. This chapter now shows the
results obtained with this tool. To validate the effectiveness of Chym, I used
it as a binary classification tools in the BBB, P-gp and estrogen sets described
in section 3.2 and Table 3.1.

This chapter is the direct application of the methodology described in
chapter 4 to real world problems. Here, the positive compounds are the posi-
tive compounds of each of the three data sets used: in the BBB set they are
the molecules that cross the blood-brain barrier; in the P-gp set they are the
substrates of P-glycoprotein, and in the estrogen set they are the estrogen-
binding molecules. The negative compounds are, therefore, the compounds
from each set that do not possess the corresponding biological activity.

The chapter is divided in four sections. First, the three data sets are
analyzed and converted to something that Chym can use. Then, I delineate
the steps followed to validate Chym. The last two sections are the most critical
of the chapter, since they first show the results achieved by the validation of
Chym in section 5.3 and then proceed to discuss their meaning, in section 5.4.

5.1 Sources of data sets

In all the three input sets retrieved from the previous works, BBB, P-gp and
estrogen, the compounds are listed by name. Therefore, the first step in the
assessment of Chym was to translate that list of names into ChEBI identifiers,
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so that the semantics of each compound can be retrieved. The task of getting
a ChEBI id from a name was accomplished by a string matching technique
that I have called “C-match”, for Chemical Match.

To this end, each ChEBI name was converted into a list of words, where a
word is a string containing only letters or only numbers. It is worth mentioning
that a ChEBI compound may have several distinct names. For instance, the
names of ChEBI:33813 include ((18)O)water, Water-(18)O and Heavy-oxygen

water. Those three names are thus converted into the lists {18, O, water},
{Water, 18, O} and {Heavy, oxygen, water}, where the order and case are
unimportant. This means that C-match considers the first and second lists
equal.

A name from the list of compounds in the input set is matched to a ChEBI
compound c if the list of words in the name is equal to at least one of the lists
of words of the compound c. In case names from several ChEBI compounds
meet this requirement, the difference between the non-alphanumeric charac-
ters is used to create a scoring system among the compounds, and those with
the absolute minimum distance are considered. This can still lead to two or
more matches. Because ChEBI is continually growing, I estimate that older
compounds in the ontology are usually more correctly annotated and tend to
have smaller identifiers. Therefore, in case of more than one match, C-match
chooses the smallest ChEBI id. Only compounds with a molecular structure
in the ChEBI database were considered.

Since the ontology does not contain all the possible molecules, it was im-
possible to get a full mapping between the names in the three sets and ChEBI
compounds, which means that the sets used by Chym were shorter versions
of the original ones. From now on, I refer to these smaller sets as purged
versions and denote them as BBBp, P-gpp and estrogenp. Table 5.1 shows
the fraction of compounds in each of the three sets that are present in the
ontology.

The results presented in the table show a significant reduction in the size of
all three sets after converting the names into ChEBI identifiers. Since an ex-
haustive validation process includes the comparison of the results obtained by
Chym with previous results, I had to compare Chym’s performance with those
previous classification systems’. However, facing these values, I chose to di-
rectly compare Chym’s results only to the ones obtained with the blood-brain
barrier, because (a) the BBB set is the one with higher percentage of coverage,
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Table 5.1: Fraction of compounds in the ChEBI ontology. This table
summarizes the fraction of names in each of the three input sets that C-match
was able to map into the ChEBI ontology. Coverage for positive and negative
compounds is detailed.

Testing set ChEBI coverage

positive negative overall

BBB 74/180 79/144 47.2%
P-gp 57/109 24/87 41.3%

estrogen 42/132 59/101 43.3%

(b) after purging, it remains the biggest set, and as such is fitter to be broken
into training and validation sets without losing too much information, (c) it
is the set where the distribution of positive and negative compounds in the
purged version is more faithful to the distribution in the original set, and finally
(d) it has a more balanced distribution of positive vs. negative compounds.
These are the reasons that led me to choose the BBB set as the main validation
set for Chym. Nonetheless, it is important to observe its performance with
other, not so well behaved sets. As such, I applied Chym’s classification algo-
rithm to those sets as well, but the analysis of those results was not as deep.

5.2 Validation process

The BBB set was first described in Doniger et al. (2002), where the authors
use an artificial neural network (ANN) and a support vector machine (SVM)
to classify several chemical compounds as either able to cross the blood-brain
barrier (positive) or unable to do so (negative). The paper showed that SVMs
are more efficient in this particular classification problem than ANNs (see
Table 3.1). The set was further used by Svetnik et al. (2003), where a random
forest (RF) was grown. The authors of this work showed the efficiency of this
system in several chemical compound sets, but the results obtained for the
BBB set in particular were not better than the ones obtained with SVM. For
this reason, I compared Chym’s results to the 81.5% accuracy obtained in the
work of Doniger et al. (2002).
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In order to make an unbiased comparison between Chym and SVMs, I
addressed the validation process in three steps, which were devised so that for
every two consecutive steps, only one specification of the process changed:

1. The SVM model described in Doniger et al. (2002) was used to replicate
the results reported in that paper with the original set;

2. The same SVM model was used in the purged set, BBBp;

3. Finally, the SVM model was replaced with Chym. It must be noted
that there are 24 metrics, each having a real parameter α. For this task,
Chym used α values running from 0 to 1 in steps of 0.01, making a total
of 24×101 = 2424 metrics, and considered the one with higher accuracy
value the best one to classify the compounds.

For the SVM approach, I retrieved the compounds’ properties from the
article as 9-dimensional vectors and used the SVMlight software with a radial
basis function kernel (Joachims, 1999), as is described in the original paper.

Moreover, to decrease the potential bias in my analysis, I implemented
several validation methods. The first one is a 30-fold cross-validation-like
process, described in Doniger et al. (2002), which I dub “Cross25”, and which
consists of these steps:

1. First, 25 positive compounds and 25 negative compounds are randomly
removed from the input set; they are now the validation set;

2. The remaining set was used to train the model, as described in the
algorithm on section 4.4;

3. The 50 compounds in the validation set are classified according to the
model learned in the previous step;

4. Steps 1–3 are repeated 30 times, and the averages of the accuracy values
and the Matthews correlation coefficient (MCC) values are recorded.

Because the set is reduced to 47.2% of the original size (cf. Table 5.1), I
further implemented a Cross12 method, equal in everything to that previous
method, except that instead of picking 25 positive and 25 negative compounds
from the set to form the validation set, I picked 25× 0.472 ≈ 12 positive and
negative compounds.
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The third validation method is called leave-one-out, a method widely used
and well documented (Baldi et al., 2000). The difference from the above is
that in each repetition only one compound stands as the validation set, and all
compounds are used as validation set exactly once. This has the advantages of
not depending on randomness and of using the maximum information possible
from the primary set, since only one compound is being withdrawn from the
training set.

To complement this information, two other processes of validation were
tested: bootstrap, where the training set is randomly withdrawn from the
primary set, with reposition, until a training with the same size as the orig-
inal set size is obtained, and the validation set contains all the non-selected
compounds. This procedure is repeated 30 times and an average of the per-
formance is calculated. The fifth process is named k-fold validation, where
the original set is partitioned into k smaller sets, and each of the partitions
is used once as the validation set. Again, this is performed 30 times and the
reported value is simply an average of the individual performances obtained.

The last step in the assessment of Chym was to predict some new positive
compounds in each of the three sets. I calculated the activity coefficient of all
compounds in the ChEBI ontology that are annotated with a structure (based
on all positive compounds in each of the purged sets) and retrieved the ones
whose coefficient was higher.

5.3 Results

With Chym built as detailed in the previous section, its performance as a
binary classification tool can be assessed. In chapter 4, I delineated the main
procedure used to validate Chym. Here I will show some of the most important
and representative results. As discussed in section 4.5, accuracy is the value
that other systems usually report, and as such it is also the value that should
be used to compare Chym with these systems. Moreover, since the positive and
negative groups of the BBBp set have approximately the same size, accuracy is
as good as the Matthews correlation factor when used to measure the quality
of Chym. This is not valid for the P-gpp and the estrogenp sets, however.
As such, I will report the Matthews correlation coefficient as well. For an
homogeneous and complete comparison between the previous systems and
Chym, Table 5.2 presents the Matthews correlation coefficient (MCC) as it
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would have been reported in the previous works. These values were computed
based on the true positive, true negative etc. values reported in the original
papers. For the random forest approach, I used the code provided by the
authors of the paper to replicate their results but then used them to compute
the MCC, which means that the values presented are an average of 50 5-fold
cross-validation processes. For the ANN and SVM approaches of the BBB
problem, the authors report only the mean values of 30 true positives, true
negatives etc. These were the values used to compute the MCC, which means
that they are estimates, at best. Finally, the MCC calculated for the SVM
approach in the P-gp problem is an average of the 5 experiments the authors
reported.

Table 5.3 shows the main results of the validation process, including the
attempt to replicate the results of Doniger et al. (2002). Given that Chym
has 24 different metrics, each one tuned with a real parameter α, I had to
select one of the possibilities. The best combination for the BBB problem was
FP3 fingerprint format with semantic similarity calculated for all the ChEBI
ontology with a simGIC method, with 30% of weight to structure and 70% to
semantics (α = 0.30). Actually, this is not exactly the best approach for some
of the rows in that table. For instance, using a bootstrap validation approach,

Table 5.2: Previous works – Matthews correlation coefficient. This
table summarizes the efficiency of the classification methods presented in Ta-

ble 3.1, but with the Matthews correlation coefficient. An asterisk ∗ marks
the work where insufficient information was given, making the coefficient im-
possible to calculate. Values marked with the ∼ sign are only estimated. See
the text for an explanation.

Testing set Classification system MCC

BBB Artificial Neural Networks ∼0.549
Random Forest 0.605

Support Vector Machines ∼0.628

P-gp Four-point Pharmacophore 0.315
Support Vector Machines 0.591

Random Forest 0.591

estrogen Decision Forest ∗
Random Forest 0.647
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Table 5.3: Replication of the results of BBB. For the Cross25 and
Cross12 methods, the values are the mean of 30 experiments, as explained
in the previous section. The Chym results were obtained for FP3 fingerprint
format, simGIC semantic method using the entire ontology, and α = 0.30.
The bootstrap and k-fold validation processes were only attempted with the
Chym approach.

Set Approach Validation method Accuracy MCC

BBB SVM Cross25 81.3% 0.608
BBBp SVM Cross25 72.7% 0.469
BBBp Chym Cross25 88.3% 0.772

BBB SVM Cross12 80.4% 0.593
BBBp SVM Cross12 73.6% 0.451
BBBp Chym Cross12 90.0% 0.804

BBB SVM Leave one out 80.9% 0.612
BBBp SVM Leave one out 73.2% 0.464
BBBp Chym Leave one out 90.2% 0.809

BBBp Chym Bootstrap 88.1% 0.766
BBBp Chym 10-fold 90.9% 0.826

the best combination of parameters was FP3, simGIC, role, α = 0.24, but
from the 2424 hybrid metrics tested (each metric, with α values from 0 to 1
in steps of 0.01), the parameters FP3, simGIC, all α = 0.30 are the 15th best.
Therefore, I specifically chose these parameters because they are always close
to the best one and this allows me to directly compare the results with each
other. The table is separated in several sections, where each section is the
result of applying a different validation method.

These results show the superiority of Chym when compared to the SVM
approach, not only when using the accuracy values but also the Matthews
correlation coefficient. Moreover, when all the sections of the table are com-
pared, it is clear that the validation method does not affect significantly the
results. Since the “leave one out” approach is widely used (Baldi et al., 2000),
at least when compared to the Cross25, a method tailored to the BBB prob-
lem by Doniger et al. (2002), I performed the remainder analysis of Chym’s
results with this method. The second reason behind this choice is that it is
in between the other two methods, with the worse accuracy and correlation
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Table 5.4: Classification system derived from the Chym comparison

method. For each problem, the Chym parameters that yielded the best
results are reported. The validation process used was leave one out.

Set Chym Parameters Accuracy MCC

BBBp FP3, simGIC, all, α = 0.28 90.9% 0.821
P-gpp FP4, simUI, all, α = 0.66 87.7% 0.704
estrogenp FP4, simGIC, role, α = 0.42 84.2% 0.691

values corresponding to the bootstrap approach and the best corresponding
to the 10-fold approach.

The second row in the same table (along with the fifth and the eighth)
show that the accuracy and MCC of the SVM method used previously de-
crease significantly when some of the compounds in the set are removed. This
means that, at least for the 9 descriptors used, the SVM classification is very
dependent on the set size. However, the same purged set can be used by
Chym, and still achieve an accuracy almost 10% superior to the original and
with MCC approximately 0.2 units higher then the original. This seems to
indicate that Chym is less sensitive to the size of the training set and per-
forms well even with small sets. Table 5.4 reinforces this conclusion, since
the performance of Chym with the P-gpp and estrogenp sets, which are also
about 60% shorter than the original ones, is still higher than (for the P-gp set)
or comparable to (for the estrogen set) the value obtained with the random
forest approach, the best method applied so far to those sets.

When overlaid to the values on Table 3.1 and Table 5.2, the values on
this table also reflect the superiority of Chym compared to those previous
methods. Not only is there an increase in accuracy but also in MCC, mostly
evident in the BBB and P-gp problems. The accuracy and MCC for the
estrogen problem do not increase much, but the fact that the set used by
Chym is less than half of the one used by the random forest and decision
forest approaches seems to indicate that these values would in fact increase if
more of the compounds were present in the ChEBI ontology.

Table 5.5 contains the values for Chym’s prediction accuracy and MCC,
calculated for different α values. For each set, the parameters used with Chym
are those which reached maximum accuracy for some value of α, which means
that the parameters are the same as the ones in Table 5.4, minus the α
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Table 5.5: Effect of the α parameter in Chym performance. The
Chym parameters used are the ones in Table 5.4, except that instead of a
single α value, the table shows the performance for several values. Accuracy
values are reported with MCC in parenthesis. Validation was performed with
a leave one out approach. Bold values are the maximum for each column.

Alpha BBBp P-gpp estrogenp

0.0 81.0% (0.628) 74.1% (0.317) 73.3% (0.452)
0.1 86.9% (0.746) 74.1% (0.356) 74.3% (0.497)
0.2 88.9% (0.782) 79.0% (0.491) 74.3% (0.490)
0.3 90.2% (0.809) 76.5% (0.431) 79.2% (0.577)
0.4 88.2% (0.766) 81.5% (0.561) 84.2% (0.691)
0.5 85.0% (0.699) 84.0% (0.620) 83.2% (0.605)
0.6 83.0% (0.660) 85.2% (0.654) 78.2% (0.560)
0.7 83.0% (0.660) 86.4% (0.679) 81.2% (0.622)
0.8 81.0% (0.622) 82.7% (0.576) 76.2% (0.515)
0.9 77.1% (0.546) 84.0% (0.611) 71.3% (0.411)
1.0 71.9% (0.437) 85.2% (0.637) 79.2% (0.580)

part. It is visible that, in all the three Chym systems, the accuracy and MCC
start by increasing at first, reaching a maximum at some point in the table
(highlighted in bold), and then decrease again. This shows that using the
hybrid measure is better than using only purely structural or purely semantic
metric. When this same analysis is applied to other Chym parameters, the
same behavior is observed, which confirms the idea that, the integration of
structural and semantic information in a single metric helps to increase the
prediction power.

Finally, Table 5.6 shows the most positive ChEBI compounds, as defined
by the activity coefficient, retrieved for each set. For each compound, the ta-
ble gives a reference that shows that the compound is indeed positive. These
results make it clear that many of the compounds with predicted activity are,
in fact, positive compounds (they cross the blood-brain barrier, are substrates
to P-glycoprotein or ligand to the estrogen receptor), which also contributes
to the idea that the Chym method is effective. The only false positive in that
list is ChEBI:5078, flavonol (Zand et al. (2000) showed that this compound
is not an estrogen receptor ligand). However, the class of compounds named
flavonoids, into which flavonol is classified, is known to contain several com-
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Table 5.6: Discovery of new positive compounds in each set. The
activity coefficients of the most positive compounds in ChEBI was calculated
through compared to the positive compounds in each set. For each compound,
a reference showing that the compound is indeed positive is given.

Compound Set Coefficient Ref.

ID Name

1015 orthanilic acid BBBp 0.503 (Gupta, 2006)
2654 aminoglutethimide BBBp 0.489 (Unger et al., 1986)
2089 O-methylserotonin BBBp 0.477 (Kaminka, 1971)
3638 chloroquine BBBp 0.475 (Ohtsuki and Terasaki, 2007)
2430 aconitine P-gpp 0.474 (Chen et al., 2009)
1883 4-hydroxystyrene estrogenp 0.577 (Dall’Acqua et al., 2009)
5078 flavonol∗ estrogenp 0.577 (Zand et al., 2000)
5262 galangin estrogenp 0.577 (So et al., 1997)

∗ This compound is a false positive. The reference shows the compound inactivity.

pounds that bind to the estrogen receptor (Markiewicz et al., 1993; Miksicek,
1993). Because these compounds share a strong similarity, both structural
and semantic, the activity coefficient turned out to be the same, which makes
it a false positive.

5.4 Discussion

Apart from the discussion of the results, it is important to mention that
Chym’s construction was not as straightforward as may seem from the read-
ing of this document. Some decisions had to be made. For instance, Chym’s
classification algorithm (the steps followed to classify a compound not in the
input set as positive or negative, as described in section 4.4) uses the average
of the similarities between the new compound and the positive compounds
of the input set. This was not the first choice. However, it was the choice
that gave Chym the ability to predict with as much as 90.9% accuracy. The
results that led to this and other decisions are detailed and explained in ap-
pendix A.

Moreover, there are mainly four other points of discussion that should be
addressed, now that all the results have been analyzed.

Firstly, it is important to note that it is not artificial to select the best
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metric for a specific case. Each classification problem is different from the
others, and the molecular characteristics that are important to distinguish
between positive and negative molecules are not the same. For instance, while
the FP3 fingerprint format may be good at detecting some substructures that
are important in the BBB problem, it may miss the relevant structures in
other problems. This actually happens, since Chym’s parameters to solve the
BBB problem include the FP3 format. Furthermore, some problems may be
better solved with a stronger focus on the semantic information, in which case
the α value will reflect this; this also happens in the BBB problem, where only
28% of the metric is structure-based. Choosing one of the 24 metrics and an α
value is no different than choosing the correct descriptors in a SVM, random
forest or any other approach presented so far, and is in fact what makes Chym
so powerful.

The second issue is the coverage of compounds present in the ChEBI on-
tology. For instance, to address the estrogen problem, Chym had to reject
almost 60% of the compounds in the estrogen data set because there was no
mapping between them and the chemical ontology. Even so, the accuracy of
prediction is slightly higher than the one obtained with the random forest
approach, which uses the whole data set. This seems to suggest that, as the
ChEBI ontology grows, Chym’s prediction power will increase. Since ChEBI
is a database developed and maintained by EBI, a very prominent institute
in the Bioinformatics field, the growth of ChEBI is almost assured. As a side
note, in October 2009, ChEBI has integrated in its database all entries in
ChEMBL, a database of bioactive drug-like small molecules, and because the
manual curation process is a long one, the ontology is bound to have missing
compounds and erroneous relations. With time, ChEBI will mature, providing
Chym with a better ontology which will probably improve these results.

Third, it is important to discuss some of the results obtained when Chym
used other classification algorithms. As a matter of fact, after analyzing sev-
eral algorithm to predict activity, the parameters that maximize Chym’s pre-
diction power remain very close to each other (cf. appendix A and Table A.3).
This means that Chym achieves approximately the same result even with dif-
ferent algorithms, which, in turn, contributes to the idea of stability of Chym.

Finally, Chym’s high accuracy values could be due to a possible term in the
ontology that classified compounds as able to cross the blood-brain barrier, as
substrates to the P-glycoprotein or as estrogen receptor ligands. Admittedly,
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if there were such terms in the ChEBI ontology, Chym would be biased and
would report high accuracy values because it was using the information it was
trying to validate as a means to prove its efficiency. As it turns out, no term
in the ontology refers to the words “brain”, “P-glycoprotein” or “permeabil-
ity” (the meaning of the P in P-glycoprotein). “Estrogen receptor” appears
twice, in “estrogen receptor modulator” and “estrogen receptor antagonist”,
but these two terms have only a total of 5 descendants in the ontology, and
none of them is present in the set estrogenp. This fact suggests that Chym
can be used in many classification and similarity problems, even if they are
not well represented in the ontology.
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Chapter 6

Conclusions

Over the last few decades, there has been a shift in the term automatic in
the field of chemical science: while 40 years ago it meant the mechanization
used to help in the laboratory, it now refers to the computational effort that
can be expended to analyze and organize existing data and to create new
information based on the currently existing one. Specifically in the field of
chemical compound similarity, cheminformatics has been applied to a certain
extent to data sets in order to compare and classify those compounds. In
general, these existing methods make use of structural and/or physicochemical
properties of the molecules in order to compare them, which is a good method
because of the structure-activity relationship (SAR) premise, which states that
the biological role of a molecule is a function of its structure. While previous
studies contribute to the idea that this premise is correct, it may fail in cases
where similar molecules have different roles, or different molecules have the
same role (as happens with l- and d-amino acids, for instance).

With the work of this thesis, I presented a method that tries to solve
this problem, through a novel approach to the chemical similarity problem,
namely, the use of a hybrid metric that encompasses both structural and
semantic information. The tool developed, which I named Chym, implements
a system capable of handling this information. It is based on fingerprints
for structural comparison and on an adaptation of a previous work that used
semantic information on proteins.

The results reported in this thesis are a compelling evidence for the effec-
tiveness of Chym as a classification system. The validation process consisted
in using three data sets previously described and used with other classifica-
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tion methods. Used on those sets, Chym achieves high performance, measured
through accuracy and Matthews correlation coefficient, predicting the correct
blood-brain barrier permeability up to 90.9% of the time. Other results include
correct classification of 87.7% of the compounds in the P-gp set and 84.2% in
the estrogen set, which correspond to the classification of compounds as sub-
strates of the P-glycoprotein or as ligands to an estrogen receptor respectively.
Parallel to these results, I also showed that the use of a hybrid metric that
uses both structural and semantic information is better suited for this kind of
problems than a system which uses only one of these data. Finally, Chym was
used to correctly predict new positive compounds in each of the three sets.

These results provide substantial evidence for validating the proposed hy-
pothesis: compounds sharing a biological role should have a similarity measure
higher than the one obtained using only structural or physicochemical prop-
erties, reflecting that fact; conversely, the measure should also reflect different
biological relevance even if both molecules are similar in structure.

In the future, it would be interesting to apply Chym to real world prob-
lems, such as the ones mentioned in the Introduction. For example, Chym
could be used in the comparison of metabolic networks to detect the metabolic
characteristics responsible for the virulence of some Streptococcus pneumoniae
strains, or it could be used in a drug development project to determine chemi-
cal compounds predicted to have a certain impact in the organism of humans.

As a complement to this work, and to further improve Chym as a classifica-
tion tool, I think that trying other hybrid metrics, especially other structural
comparison algorithms, would yield a fascinating project, probably with very
good results. For instance, since SVM and random forests seem to perform
very well on the sets they were used in, perhaps a Chym-like system, where
the structural part of the comparison is replaced with one of those methods
will, probably outperform Chym.

Moreover, while not mentioned during the main text of the thesis, the SAR
premise has recently been complemented with the QSAR premise (Quantita-
tive Structure-Activity Relationship). Instead of a binary classifier, Chym-
could have been implemented as a tool that predicts a continuous variable.
For instance, it could have been used to predict the concentration needed to
reach half of the maximum inhibition of and enzyme. It would make an excep-
tional study to understand if the activity coefficient, as defined in this work,
is in any way correlated to these continuous variables.
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Appendix A

The construction of Chym

As happens with every tool, particularly the ones developed with a scientific
purpose in mind, the creation of Chym was not a linear process; on the con-
trary, it was actually filled with experimentation and try-error cycles. This
appendix presents the road that I had to travel when developing and validat-
ing Chym, and documents the reasons that were in the origin of some of the
decision made.

A.1 The possible choices for Chym

The first “problem” encountered was the extraction of ChEBI molecular struc-
tures from the ChEBI database. As stated above, ChEBI has SMILES, MDL
and InChI formats, but not all chemical entities have the three structures.
The preference of SMILES over MDL over InChI was set based on a rough
estimation of usage. This estimate was done through Google, as detailed in
Table A.1.

InChI was actually discarded, because all chemical compounds with a
structure in this format had a structure in one of the other formats. Since the
structure is only used to compute the fingerprints, and the three fingerprint
formats in the base of Chym’s structural similarity use only two dimensional
properties, I expect that either one of the remaining formats will return very
similar (if not equal) fingerprints. For instance, the compound octane-1,8-

diol, ChEBI:44630, exposes a SMILES structure and an MDL structure. The
fingerprints obtained for each structure are equal when using either one of the
three fingerprint formats. With this in mind, SMILES was preferred because
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Table A.1: Choice of SMILES over MDL over InChI. This table details
the approximate number of hits returned by the Google search engine, when
the query is “〈term〉 chemical structure” (without the quotes). These numbers
refer to a search made on April 9th, 2010.

〈term〉 #results

SMILES 4,670,000
MDL 1,050,000
InChI 158,000

it is a simpler language than MDL, and takes much less space to store.
As for the classification algorithm chosen, there are mainly two decisions

that had to be made to ascertain Chym’s performance as a classification tool.
The most obvious parameter to be tuned is the criteria used to decide whether
a compound should be classified as positive or negative. As stated in the
algorithm presented in section 4.4, Chym classifies a compound based on its
activity threshold, which is the mean of the similarity values of the compound
with the positive compounds in the input set. Prior to the establishment of
this principle, I tried other approaches.

Before discussing the first attempts, I think the understanding of this
section is facilitated by the visual representations on Figure A.1, which ex-
hibits the similarity matrices obtained for the BBB classification problem,
with Chym parameters detailed in the sub-captions. Three conclusions can
be retrieved from that figure. First, there is a visible difference in the average
shade of each of the quadrants. Second, each format leads to different aver-
ages of similarity (as supposed). Third, and more important for the rest of
the assessment, the mean similarity of the negative vs. negative compounds is
lower than the positive vs. positive. This reflects the wider range of chemical
entities present in the negative group, which is expected, since the negative
compounds are a heterogeneous group. Table A.2 is a numeric overview of
those matrices.

We now go back to the attempts made before the final establishment of
Chym’s classification algorithm. The first attempt was the use of a spec-
tral cluster technique. This method gets, as input, the matrix of similarities
between all compounds and tries to distribute the compounds among k non-

52



The possible choices for Chym

(a)
Purely structural similarity,

FP3 format

(b)
Purely semantic similarity,
simGIC method, ontology

‘all’

(c)
FP3, simGIC, all, α = 0.29

Figure A.1: Similarity matrices for several Chym details. All the
matrices refer to the BBB classification problem. These images represent the
similarity between all pairs of compounds in the BBBp set. Starting from the
top left quadrant, and going clockwise, the quadrants contain: the similarities
between positive compounds; between positive and negative; between nega-
tive; between negative and positive. The horizontal and vertical dark lines
are not part of the matrix, but instead stand as the separation between posi-
tive compounds and negative compounds. Darker shades of gray reflect higher
similarity values, and the top-left-to-bottom-right diagonal is completely black
because sim(c, c) = 1. Since the matrices are symmetric, the figures are also
symmetric, with the symmetry axis being the black diagonal.

Table A.2: Details of some similarity matrices of the BBB problem.

In this table, P means positive compounds, N means negative and the values
are the average of all the similarities between all the compounds in the two
groups. The values on each row can be seen as the mean shade of gray in the
top left, top right and bottom left quadrants respectively.

Chym parameters Average of similarities

P × P P × N N × N

FP3, α = 1.00 0.524 0.423 0.468
simGIC, all, α = 0.00 0.121 0.046 0.079
FP3, simGIC, all, α = 0.29 0.238 0.155 0.192
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overlapping clusters of compounds such that intra-similarity inside a cluster
is high and inter-similarity between compounds in different clusters is low. In
all attempts, I used k = 2, since there are two classes of compounds: positive
and negative. The clusters techniques tended to fail, because there is not
enough power to separate the positive compounds from the negative. I think
this happens because, while the values in Table A.2 show evidence of greater
similarity among positive compounds, each line in the image (corresponding to
the different similarities between a compound and and every other compound)
contains a series of dark and light pixels, and many of the dark pixels are ac-
tually in the “wrong” quadrant (wrong here means in the right quadrant for
lines of the top, or left quadrant for lines on the bottom). The same happens
with light pixels. This leads to a general indecision as to whether to classify
the compound as positive or negative. Actually, after applying spectral cluster
to those matrices, the algorithm usually puts a single compound in one of the
clusters and the remaining compounds in the other cluster, which is a totally
inappropriate result for Chym. Besides, this classification system is not effi-
cient, because it is not able to classify a new compound in a straightforward
manner.

From this, it was clear that the path to follow did not made use of clus-
tering techniques. The second approach attempted was, according to these
previous finding, the approach that ended up being implemented in the actual
definition of Chym: a compound is classified as positive or negative based
on whether an activity coefficient, which is calculated through its similarity
with the compounds in the primary set, is above or below a certain thresh-
old. Since Table A.2 uses average values, I tried an average approach, where
the activity coefficient is the average of the similarities between a compound
and the known positive compounds. This is the current definition, because it
was the approach which achieved higher performance, and leads to the results
shown below. This is called the Average classification algorithm. In case this
was still not the best algorithm, I continued the analysis.

The third attempt was similar to the second one, but instead of taking
the average of the similarities between a compounds and all the positive com-
pounds, I took the maximum of these similarities. This is the Maximum
classification algorithm.

The forth and final attempt is the most sophisticated. A compound is
classified as positive if among the m most similar compounds there are at
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least n positive compounds. The pair (n,m) may have several values, like
(8, 10) or (10, 20). This approach is dubbed Fraction n/m.

Finally, since Chym uses the model where a compound is classified as
positive if its activity coefficient is higher than a threshold, there is still a
parameter from the classification algorithm that must be decided. Section 4.4
refers a training step which takes the known positive and negative compounds
and determines the best threshold as the value that minimizes the number of
misclassification in the training group, thus maximizing the accuracy. This
process could be achieved not only through accuracy, but also through the op-
timization of other descriptors, like the the Matthews correlation coefficient
or the F-measure (see section 4.5). After using either one of those three, the
chosen threshold was approximately the same, which means that the parame-
ter to be optimized does not influence significantly the performance of Chym.
Thus, Chym uses accuracy, since it is simpler, quicker to calculate, and more
intuitive.

A.2 Choosing the correct options

Table A.3 shows what happens to the accuracy of Chym when some of the
alternative approaches mentioned in the previous section are used. The table
contains the results obtained by Chym when applied to the BBB problem. In
this table, the Chym parameters used are those that lead to the best accu-
racy (not necessarily the best MCC, though). These results show that any
of the attempts produce good results, with the best one being the Average
classification algorithm.

It is also worth mentioning here that no matter what classification algo-
rithm is used (cf. Table A.3), the best parameters of Chym do not change
much. The greatest deviation is that the Average and Fraction 12/20 algo-
rithms perform better in the whole ontology, while the other perform better
in the “role” branch of the ontology. As for the α values, there is a slightly
wider variation, with the Fraction 8/10 and Fraction 10/20 algorithms deviat-
ing from the values of the other attempts, which are all approximately 0.30. I
suspect that this happens because the Fraction n/m algorithm is very different
from the other two, and this may introduce an unpredictable variation. On
the other hand, the Fraction 12/20 algorithm also uses the whole ontology and
α = 0.30, which is almost equal to the Average algorithm. Lastly, it is mostly
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Table A.3: Chym with different classification and training algo-

rithms. When a parameter is given in parenthesis, it is the parameter that
was maximized during the training step of the classification. As such, it is not
applicable to to the algorithm Fraction n/m. All validation was done with a
leave one out approach.

Classification algorithm Chym Parameters Accuracy MCC

Average (MCC) FP3, simGIC, all, α = 0.29 90.9% 0.821
Average (accuracy) FP3, simGIC, all, α = 0.28 90.9% 0.821
Average (F-measure) FP3, simGIC, all, α = 0.28 90.9% 0.821

Maximum (MCC) FP3, simGIC, role, α = 0.34 86.9% 0.744
Maximum (accuracy) FP3, simGIC, role, α = 0.32 86.9% 0.741
Maximum (F-measure) FP3, simGIC, role, α = 0.30 86.9% 0.741

Fraction 8/10 FP3, simGIC, role, α = 0.15 88.2% 0.766
Fraction 12/20 FP3, simGIC, all, α = 0.30 87.6% 0.752
Fraction 10/20 FP3, simGIC, role, α = 0.17 84.3% 0.700

evident that the maximizing parameter chosen has minimal influence in the
outcome of Chym, which, as stated previously, is not surprising, because the
thresholds that maximize accuracy, Matthews correlation coefficient or the
F-measure are bound to be close to each other. All together, these results are
a strong evidence of a kind of stability that enriches Chym with a sense of
credibility in its prediction power.
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Technical Details

Chym is a tool built mainly on top of the ChEBI database, since the semantic
similarity is intricately related to the ontology produced by that database.
Since this is the novelty presented with this work, I provide in this appendix an
insight in some technical details that allowed the development of the semantic
similarity.

Chym’s internal database has a lot of data directly imported from ChEBI,
although some of the data used comes from kegg, or even from the OpenBabel
software. Here I show the twelve steps needed to create (not to validate, which
has been detailed in the main text of the thesis) a stable database from which
the structural and semantic similarities of Chym can be extracted:

1. Extract ChEBI’s database dump from the ChEBI website, http://www.

ebi.ac.uk/chebi/. This was done on January 2010, release number 64.
This database is freely accessible and available to anyone, since it con-
tains only non-proprietary data.

2. Create empty tables in Chym’s database, where the information ex-
tracted from the data sources or computed from this information will be
stored.

3. Populate the database with ChEBI compounds. To do this, Chym distin-
guishes between primary compounds and secondary compounds. Some
ChEBI compounds refer to the same chemical entity and as soon as this
was discovered, they were merged into a single compound (named pri-
mary), but for compatibility reasons, the previous identifier remained in
the database as a pointer to the primary compound. When a reference
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to a compound is ever made in Chym, it first checks whether this is a
secondary compound and, if so, converts it to the corresponding primary
identifier.

4. The next step was to extract the ChEBI ontology relations into one
of Chym’s tables. As documented in the main text, only non-cyclic
relations were considered. The relations in the original table are only
direct relations, i.e., if the relations c1 → c2 and c2 → c3 exist in the
ontology (where the right side of the arrow represent the ancestor of
the relation), they are present in the original table and are extracted to
Chym’s table; but the fact that c1 and c3 are connected through a path
of relations is not directly inserted in this table.

5. Now Chym computes the ancestry of all compounds. To do this, I used a
transitive closure algorithm on the universe of all relations. This means
that, using the previous example, Chym now constructs a table with a
row stating c1

2−→ c3, which means that c3 is an ancestor of c1 and the
distance between them, in number of relations, is 2. Since Chym does
not differentiate between non-cyclic relations, it is not relevant if the two
relations are of the same type or not. Notice that Chym uses several
ontologies, with one transitive closure table for each ontology.

6. From kegg pathway, Chym then extracts the metabolic pathways
that are used as the basis of the IC calculations. This information
was retrieved directly from a webpage, http://www.genome.jp/kegg-bin/

get htext?htext=br08901.keg&filedir=%2ffiles&hier=2, which was parsed
to get all the pathways of the data source. kegg was also accessed on
January 2010, which corresponds to version 53.0.

7. The kegg web-services (http://www.genome.jp/kegg/soap/) were fur-
ther used to get the compounds of each pathway, as kegg compound

entries.

8. ChEBI’s cross references are extracted to Chym’s internal database.

9. Using ChEBI’s cross-references, Chym then converts each kegg com-

pound entry into a ChEBI identifier, thus calculating the number of
distinct pathways in which each ChEBI primary compound participates.
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As stated in the main text, this step is keen to lead to some ambigu-
ity. In the case of one kegg compound identifier being mapped into
two ChEBI compounds, both the compounds inherit the kegg com-

pound entry’s pathways; when one ChEBI compound references two
kegg compound entries, it inherits both their pathways.

10. Finally, the information content of each compound is calculated. Chym
uses four ontologies, and as such it has to calculate four information
content values for each compound. To do this, Chym refers to the cor-
responding closure graph, determines the descendants of the compound
and the number of distinct pathways in which any one of these com-
pounds participates. When divided by the total number of pathways,
this is the value of Pr(x) from equation 4.4, and the value is stored for
all compounds in each one of the four ontologies. With these steps,
semantic similarity is a matter of selecting the appropriate rows of the
tables and combining them through equation 4.2 and equation 4.3.

11. For the structural metrics, ChEBI structures where extracted from the
original database and inserted into Chym’s internal database. There
are various formats, as mentioned earlier, but Chym prefers SMILES to
MDL. Only one structure per primary identifier was considered.

12. To calculate the structural similarity, OpenBabel was then used to com-
pute the three structural fingerprints of each compound. With this,
Chym is completed, and is now able to calculate the hybrid similarity
metric for any two compounds which can be mapped to ChEBI and have
a structure.

The information calculated in these steps is stored locally in a MySQL
database. All the steps were coded with Python 2.4, and the files are stored
in one of the Informatics Department internal servers.
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Appendix C

Mathematical proof

In section 4.2.2, I mentioned that simGIC usually has a smaller value than
simUI:

simUI > simGIC (C.1)

Consider two compounds c1 and c2 and the sets of their ancestry, asc(c1)
and asc(c2). Let a1, . . . , an be the information content of the compounds
that belong to both ancestries and b1, . . . , bm the information content of the
compounds that belong to either asc(c1) or asc(c2) but not to both. n is the
size of the intersection set and n+m is the size of the union set. Remember
that asc(c) contains c itself.

This new notation allows the redefinition of the semantic measures:

simUI =
n

n+m
(C.2)

simGIC =
a1 + · · ·+ an

a1 + · · ·+ an + b1 + · · ·+ bm
(C.3)

and with this, inequality C.1 can be expressed in terms of these new variables:

n

n+m
>

a1 + · · ·+ an

a1 + · · ·+ an + b1 + · · ·+ bm

⇔ a1 + · · ·+ an + b1 + · · ·+ bm
n+m

>
a1 + · · ·+ an

n

⇔ avg(ai, bi) > avg(ai) (C.4)

It is a fact that a term’s IC is never lower than the value of each of its
ancestors’ IC. Moreover, while not always true, it is at least reasonable to
expect that the IC of the compounds in the intersection of the ancestries is
smaller then the IC of the compounds not in the intersection. This is because
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C. Mathematical proof

the compounds that are in both ancestries are less specific than the others
(cf. Figure 4.1, where none of the common ancestors of A and B has an IC
value higher than the not-common ancestors). Because of that, bi > aj , for
most values of i and j. This means that the average of all IC values, avg(ai, bi),
is generally higher than the average of the less specific compounds, avg(ai),
which proves equation C.4 and, thus, the initial inequality.
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