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“O que sabemos é uma gota; 

o que não sabemos é um oceano.” 

(Sir Isaac Newton) 
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ABSTRACT 

The study of phytoplankton dynamics is a fundamental tool in environmental 

assessment and monitoring, studies of trophic relationships and modeling ecosystems. 

The present study was a rare opportunity to study two different ecosystems, such as a 

polar zone, the Antarctic, and a temperate zone influenced by upwelling processes, the 

Portuguese coast. The main objective of this study was to understand the physical-

chemical processes related to the phytoplankton communities’ distribution in these 

areas. Particularly, the Nazaré submarine canyon region (coast of Portugal) and 

around the tip of the Antarctic Peninsula, and characterize their communities through 

pigment analysis (HPLC) and identifying dominant species by microscopy. A great 

spatial variability in chlorophyll a (Chl a) was observed in the Antarctic Peninsula: 

highest levels in the vicinity of the James Ross Island (exceeding 7 mg m-3 in 2009), 

intermediate values (0.5 to 2 mg m-3) in the Bransfield Strait, and the lowest 

concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m-3). On the 

other hand, in the region of Nazaré submarine canyon, a clear onshore-offshore 

gradient was visible: high Chl a concentrations were recorded in the canyon head, near 

the coast, where values greater than 4 mg m-3 were observed; in contrast, Chl a was 

relatively low in offshore regions, with values below 0.5 mg m-3. The use of taxonomic 

tools such as CHEMTAX software allowed efficient quantification of the contribution of 

different taxonomic groups present to total Chl a (biomass index). This study also 

showed that the spatial distribution of macronutrients is one of the key factors 

regulating the distribution of phytoplankton communities in the Nazaré Canyon region, 

while in the neighboring Antarctic Peninsula, other factors, such as light availability 

and/or iron distribution, mostly associated with the structure of the water column, 

determined the spatial composition of phytoplankton communities. 

The results presented are important to understand the oceanographic dynamics 

of these regions, and provide new insights for the overall knowledge of phytoplankton 

dynamics. Moreover, this work contributed with invaluable in situ data, which can be 

used in ecosystem modeling. 

 

 

 

Keywords: Antarctic Peninsula; Portugal coast; Upwelling region; Phytoplankton 

communities; Phytoplankton Pigments; High-Performance Liquid Chromatography. 
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RESUMO 

 

O ambiente marinho contém comunidades biológicas muito diversas que 

estão interligadas em complexas cadeias tróficas. Na base dessas cadeias 

tróficas encontra-se o fitoplâncton (principal produtor primário dos oceanos), 

que embora representando menos de 1% da biomassa vegetal do planeta, é 

responsável por cerca de metade da produção primária na Terra. O estudo da 

dinâmica do fitoplâncton constitui uma ferramenta fundamental na 

monitorização e avaliação ambiental, nos estudos das relações tróficas e na 

modelação dos ecossistemas. A presente dissertação constituiu uma rara 

oportunidade de estudar dois ecossistemas tão distintos como uma zona polar, 

a Antártica, e uma zona temperada influenciada por processos de afloramento, 

a costa portuguesa. Apesar de o oceano Austral ser, usualmente, caracterizado 

como uma região de elevadas concentrações de nutrientes, mas com baixas 

concentrações de clorofila a (Chl a), existem determinadas zonas ao redor da 

Antártica onde se registam elevadas taxas de produtividade marinha, que 

servem de importantes áreas de alimentação para herbívoros e que são 

cruciais para captação de CO2 atmosférico em termos globais. Por sua vez, as 

regiões costeiras caracterizadas pelos processos de afloramento, como o caso 

da costa de Portugal, estão entre os ecossistemas marinhos mais produtivos 

dos oceanos e são conhecidas por sustentar algumas das regiões de pesca 

mais importantes do mundo. 

O principal objectivo deste estudo foi compreender os processos físico-

químicos responsáveis pela distribuição das comunidades de fitoplâncton na 

região da Península Antártica e na região do canhão da Nazaré (costa de 

Portugal), caracterizando as respectivas comunidades através da análise 
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pigmentar por HPLC (high-performance liquid chromatography, que se poderá 

traduzir como cromatografia líquida de elevada precisão) e identificando as 

espécies dominantes por microscopia. A utilização de ferramentas químico-

taxonómicas como o programa CHEMTAX permitiu uma eficiente quantificação 

da contribuição das diversas classes taxonómicas para o total de Chl a (índice 

de biomassa). 

O estudo ecológico efectuado na região da costa de Portugal encontra-

se descrito e discutido no Capítulo II. Este trabalho baseou-se em uma 

campanha oceanográfica efectuada na região do canhão da Nazaré, numa 

altura do ano em que predominaram ventos favoráveis (quadrante norte) para a 

ocorrência de processos de afloramento costeiro. Esta situação foi evidenciada 

pelo surgimento de uma banda de águas mais frias, junto à costa, observada 

nas imagens de satélite da temperatura da superfície da água do mar. Nesta 

região da costa de Portugal foram observadas maiores concentrações de Chl a, 

relacionadas com a presença de diatomáceas e/ou dinoflagelados, nas regiões 

costeiras em associação com a presença de águas mais frias e ricas em 

nutrientes. Nas regiões mais afastadas da costa, fora da região de afloramento, 

observou-se um aumento da estratificação, menores concentrações de 

nutrientes e um total domínio de primnesiófitas, com um incremento na 

contribuição das cianobactérias nas estações mais oceânicas. Por outro lado, a 

presença do canhão submarino determinou um diferencial Norte-Sul na 

circulação dos nutrientes, que proporcionou uma injecção de maiores 

quantidades de nutrientes (bem visível na distribuição espacial do fosfato) para 

a região costeira a Sul do canhão, favorecendo o desenvolvimento de 

diatomáceas nesta área. Os dinoflagelados, por sua vez, competindo com as 
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diatomáceas por nutrientes e, provavelmente, melhor adaptados a regimes com 

menores concentrações de fosfato estabeleceram-se numa região a norte da 

cabeceira do canhão, onde este nutriente foi observado em concentrações 

muito baixas. Esta região de elevada biomassa (valores de Chl a superiores a 

4 mg m-3) foi caracterizada por um forte florescimento de um dinoflagelado 

tóxico formador de cadeias longas – Alexandrium affine – em conjunto com 

outros dinoflagelados como Ceratium candelabrum, Ceratium furca, Ceratium 

fusus, Dinophysis acuta e Dinophysis caudata. 

O Capítulo III diz respeito ao estudo acerca da distribuição espacial das 

comunidades de fitoplâncton no entorno da Península Antártica, baseado nos 

resultados obtidos em dois cruzeiros oceanográficos realizados em dois anos 

consecutivos (2008 e 2009) no final do verão austral. As maiores biomassas 

registaram-se nas estações mais costeiras e próximas à Península, que 

apresentaram uma coluna de água mais homogénea e, possivelmente, uma 

maior disponibilidade em ferro devido aos processos de mistura. Estas zonas 

mais costeiras, em especial a região ao redor da ilha de James Ross (onde se 

registaram valores de Chl a superiores a 7 mg m-3), foram associadas com um 

predomínio de diatomáceas. Em zonas mais oceânicas (mar do Weddell e 

Passagem de Drake) verificou-se um aumento da estratificação, provavelmente 

restringindo os níveis de ferro na camada eufótica, o que limitou a biomassa e 

favoreceu o crescimento de organismos nanoplanctónicos, como as criptófitas 

e/ou Phaeocystis antarctica (primnesiófita). A utilização de índices pigmentares 

permitiu avaliar alguns processos fisiológicos das comunidades de fitoplâncton 

em resposta a determinadas condições ambientais (disponibilidade de ferro, luz 

e/ou herbivoria). Esta informação serviu para uma melhor compreensão dos 
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complexos processos responsáveis pela dinâmica do fitoplâncton ao redor da 

Península Antártica. 

A região do Estreito de Bransfield apresentou uma grande variabilidade 

espacial e temporal das suas características físico-químicas devido, em parte, 

a uma influência repartida de águas provenientes do mar de Weddell e do mar 

de Bellingshausen. Este facto reflectiu-se na grande variabilidade observada na 

distribuição da biomassa (concentrações de Chl a entre 0.5 e 2 mg m-3) e, 

consequentemente, das comunidades de fitoplâncton. 

 Na sequência desta grande variabilidade observada para o Estreito de 

Bransfield e juntando uma terceira campanha oceanográfica realizada em 

2010, na mesma época do ano (final do verão austral) e nas mesmas estações 

de amostragem realizadas em 2008 e 2009, efectuou-se um estudo específico 

para a região do Estreito de Bransfield, apresentado no Capítulo IV, sobre a 

variabilidade interanual das comunidades de fitoplâncton (variação na 

dominância dos principais grupos taxonómicos) em relação às condições físico-

químicas e climáticas observadas. Foi ainda possível associar o início do 

degelo marinho, para a região do Estreito de Bransfield, com as variações 

observadas nas comunidades de fitoplâncton no final do verão austral (período 

em que se realizaram as amostragens). Tal como já observado por diversos 

autores para outras regiões ao redor da Península Antártica, uma alteração no 

início e/ou intensidade do degelo marinho causa um desfasamento (atraso ou 

antecipação) na natural sucessão fitoplanctónica da região. No ano de 2010, 

onde se verificaram temperaturas atipicamente frias durante o verão austral, o 

início/intensidade do degelo (gatilho fundamental para o desenvolvimento dos 

primeiros florescimentos de diatomáceas) foi de tal forma atrasado que resultou 
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em valores de biomassa bastante reduzidos durante todo o verão austral de 

2010. Além disso, este processo resultou em um domínio de criptófitas em 

detrimento das diatomáceas, naquele ano, com presumíveis implicações para 

toda a cadeia trófica marinha da região. 

 

 

 

Palavras-chave: Península Antártica; costa de Portugal; sistema de 

afloramento; fitoplâncton; pigmentos fitoplanctónicos; cromatografia líquida de 

elevada eficiência. 
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1.1. Introdução geral 

 

O ambiente marinho contém comunidades biológicas muito diversas que 

estão interligadas em complexas cadeias tróficas. Na base dessas cadeias 

tróficas encontra-se o fitoplâncton (principal produtor primário dos oceanos), 

que embora representando menos de 1% da biomassa vegetal do planeta, é 

responsável por cerca de metade da produção primária na Terra [Falkowski, 

2002]. O fitoplâncton desempenha um papel fundamental na regulação dos 

níveis de dióxido de carbono (CO2) nas camadas superficiais do oceano, 

através dos processos fotossintéticos, influenciando as trocas entre oceano e 

atmosfera. O recente conceito de “bomba biológica” ilustra o papel do 

fitoplâncton no sequestro de CO2, através da qual ocorre a sedimentação das 

células fitoplanctónicas e outros detritos orgânicos para o fundo oceânico; ou 

seja, existe um transporte de carbono para o leito oceânico e sua consequente 

retirada do ciclo superficial marinho por longos períodos [Falkowski, 2002]. 

Estima-se que diariamente o fitoplâncton seja responsável pela absorção de 

aproximadamente 100 milhões de toneladas de carbono da atmosfera 

[Behrenfeld et al., 2006]. 

O fitoplâncton cresce nas camadas mais superficiais do oceano (i.e., na 

zona eufótica, onde a intensidade da luz decresce até 1% daquela existente à 

superfície), necessitando de luz e nutrientes para se desenvolver. Os 

nutrientes, quando esgotados na superfície, são repostos principalmente por 

processos físicos como o afloramento (“upwelling”), turbulência e outros. Numa 

situação de abundância de nutrientes e de luz favorável, estes organismos 

podem-se multiplicar rapidamente desencadeando um florescimento ou 
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“bloom”. Estes episódios podem ser sazonais (algumas semanas) ou pontuais 

(alguns dias) [Cloern, 1996]. Durante este processo existe uma sucessão de 

eventos transitórios, com várias magnitudes, que envolvem um número variado 

de espécies e grupos taxonómicos de fitoplâncton. Os mecanismos que 

controlam o início, a magnitude e a duração dos florescimentos podem ser 

bastante diversificados consoante o tipo de ecossistema em estudo [Townsend 

et al., 1994]. 

As alterações climáticas podem gerar significativas alterações nos 

padrões conhecidos de sucessão do fitoplâncton marinho. Estas questões têm 

sido objecto de muitos, e importantes, trabalhos científicos, mas nem todos 

com resultados concordantes. Utilizando técnicas de detecção remota, 

registou-se uma diminuição na produção primária líquida total durante a última 

década, que se relacionou com o recente aumento da temperatura da 

superfície dos oceanos [Behrenfeld et al., 2006]. Por outro lado, de acordo com 

Doney [2006], esta variação da temperatura influenciará os processos de 

mistura das águas, o que irá favorecer, por um lado, o crescimento do 

fitoplâncton nas zonas polares e, por outro, uma diminuição nos trópicos e nas 

zonas de latitude média. Outro aspecto que tem vindo a ser associado às 

mudanças climáticas é a antecipação dos florescimentos de primavera. 

Edwards & Richardson [2004], utilizando séries de observações microscópicas 

de longo termo, verificaram a antecipação no florescimento de diversas 

espécies fitoplanctónicas, com consequências no crescimento de espécies de 

zooplâncton e toda a sua implicação na restante cadeia trófica. Por outro lado, 

Kahru et al. [2011], utilizando imagens de satélite, verificaram uma antecipação 

do florescimento de primavera no Ártico, estimado em 50 dias para o período 
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entre 1997 e 2009. O desenvolvimento de programas de monitorização do 

fitoplâncton em escala global é crucial na identificação de futuras alterações 

nos ecossistemas marinhos [Hays et al., 2005]. 

Neste trabalho efectuaram-se estudos sobre o fitoplâncton e as variáveis 

ambientais que influenciam sua dinâmica em dois ecossistemas bastante 

produtivos que apresentam particularidades bastante distintas: a região 

Antártica e a zona costeira de Portugal. 

A região Antártica, embora remota e isolada geograficamente, exerce 

uma profunda influência no clima do planeta e, por consequência, nos 

ecossistemas e na sociedade. As comunidades marinhas antárticas são 

reconhecidas por um alto nível de endemismo, que em contraste com as áreas 

emersas, podem atingir, em determinadas regiões, biomassa e biodiversidade 

elevadas [Brandt et al., 2007]. Como tal, esta região é um laboratório 

excepcional e único no planeta para o estudo de processos evolutivos e 

adaptativos dos diversos organismos nela existentes. 

O oceano Austral, regra geral, é habitualmente caracterizado como 

sendo uma região com elevados teores em macronutrientes, mas com baixas 

concentrações de clorofila a (representando a biomassa fitoplanctônica) 

[Chisholm & Morel, 1991]. Considerando as águas ricas em macronutrientes do 

oceano Austral, a luz actua como o principal factor limitante durante a 

primavera austral [Smith & Gordon, 1997], enquanto os baixos teores de ferro 

como variável limitativa da produção primária durante o verão [Sedwick & 

DiTullio, 1997]. Além disso, é possível que ocorra uma co-limitação de ambos 

os factores [Tremblay & Smith, 2007], uma vez que o ferro e a limitação de luz 

interagem entre si [Sunda & Huntsman, 1997; Sedwick et al., 2007]. No 
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entanto, existem determinadas regiões do oceano Austral onde se têm 

observado elevadas biomassas fitoplantónicas, caracterizando florescimentos 

na primavera e/ou verão. Estas áreas são tipicamente associadas com: (1) a 

estabilidade sazonal da camada de mistura, provocada pela camada superficial 

de baixa salinidade devido ao descongelamento do gelo marinho nas zonas 

marginais [Smith & Nelson, 1986; Mitchell & Holm-Hansen, 1991; Holm-Hansen 

et al., 1989]; (2) os principais sistemas oceânicos frontais, gerados por intrusão 

de água da Corrente Circumpolar Antártica [Boyd et al., 1995; Savidge et al., 

1995] e/ou ressurgência da Água Profunda Circumpolar Superior [Prézelin et 

al., 2000, 2004]; (3) as condições meteorológicas favoráveis, tais como baixa 

intensidade de vento [Lancelot et al., 1993; Smith et al., 1998]; e (4) a formação 

de gelo marinho [Smetacek et al., 1992]. Estes florescimentos são controlados 

principalmente pela luz [van Oijen et al., 2004; Smith et al., 2000], 

micronutrientes como o ferro [Martin et al., 1990; Coale et al., 2004; Hare et al., 

2007], herbivoria por microzooplâncton [Burkill et al., 1995] e/ou tempestades 

[Mitchell & Holm-Hansen, 1991; Fitch & Moore, 2007]. Durante estes períodos 

de alta produção no oceano Austral, o fitoplâncton funciona como um 

importante meio de captação de CO2 e, além da sedimentação direta, 

processos como excreção celular, lise e herbivoria podem retirar das camadas 

superiores da coluna da água grandes quantidades de material orgânico, num 

fluxo superior a 1-2 g C m-2 d-1 [Fischer et al., 2002]. 

A região Antártica estudada neste trabalho engloba a ponta da 

Península Antártica, que abrange o Estreito de Bransfield, parte da Passagem 

de Drake e o Noroeste do mar de Weddell (Fig. 1). No lado leste da Península 

Antártica, particularmente nas zonas ao redor do gelo marinho no mar de 
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Weddell, extensos florescimentos de fitoplâncton têm sido detectados durante a 

primavera e verão [Sullivan et al., 1993; Park et al., 1999; Kang et al., 2001], 

constituindo importantes áreas de alimentação para herbívoros. Além disso, as 

baías e zonas rasas a sudoeste do Estreito de Bransfield funcionam como 

extraordinários viveiros para uma série de organismos, especialmente o krill 

[Zhou et al., 1994], como resultado das elevadas biomassas sazonais 

fitoplanctónicas observadas nessas regiões [e.g., Karl et al., 1991; Castro et al., 

2002]. 

 

Figura 1: Localização geográfica das regiões de estudo. (A) Região do canhão da Nazaré, 

Portugal; (B) região da Península Antártica, Antártica. 
 

Na região Antártica existem zonas, tais como a Península Antártica, 

onde as alterações climáticas têm sido bastante acentuadas, tendo-se 

registado um aquecimento gradual e significativo, tanto da atmosfera como das 
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águas superficiais e subsuperficiais, ao longo das últimas décadas [Meredith & 

King, 2005; Clarke et al., 2007]. Como consequência destas alterações 

climáticas regionais, têm sido observadas importantes mudanças na 

distribuição e composição das comunidades desta região (e.g., fitoplâncton, krill 

e pinguins) [Smith et al., 1999, 2001; Montes-Hugo et al., 2009]. 

Por sua vez, a zona costeira de Portugal é um ecossistema 

particularmente caracterizado por processos de afloramento. No fenômeno de 

afloramento costeiro, as águas superficiais afastam-se da costa em direção ao 

largo, sendo substituídas por águas mais frias e ricas em nutrientes dissolvidos 

(nitratos, fosfatos e silicatos). Isto acontece porque as águas subsuperficiais, 

que estão a ser transportadas para a superfície, possuem maior concentração 

desses nutrientes do que as próprias águas da superfície, que estão depletas 

devido ao consumo por parte do fitoplâncton. Desta forma, existe um transporte 

de nutrientes para a zona eufótica permitindo as condições ideais, de luz e 

nutrientes, para o desenvolvimento do fitoplâncton. Este aumento da 

produtividade primária provoca o desenvolvimento de toda a restante cadeia 

alimentar marinha. Em geral, estas zonas de afloramento são mosaicos 

múltiplos e variáveis, que apresentam uma grande heterogeneidade espacial e 

temporal das suas propriedades físicas e químicas [Kudela et al., 2005; 

Lachkar & Gruber, 2011]. A dinâmica do processo de afloramento costeiro varia 

com o regime dos ventos dominantes e com as diferenças batimétricas e 

topográficas existentes, como por exemplo, a extensão da plataforma 

continental, a existência de canhões submarinos e de acentuadas 

descontinuidades da linha de costa [Crépon et al., 1984; Kudela et al., 2005; 

Ryan et al., 2005]. Os sistemas de afloramento estão entre os ecossistemas 
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marinhos mais produtivos dos oceanos e são conhecidos por sustentar 

algumas das regiões de pesca mais importantes do mundo [Bakun, 1990; Pauly 

& Christensen, 1995; Carr & Kearns, 2003]. Apesar de representarem menos 

de 1% da área total dos oceanos, as regiões costeiras de afloramento são 

responsáveis por cerca de 11% da produção primária marinha [Chavez & 

Toggweiler, 1995] e cerca de 20% da captura mundial de pescado [Pauly & 

Christensen, 1995]. 

Ao longo da costa oeste portuguesa, o regime de ventos induz diferentes 

padrões de afloramento, que estão relacionados com as características 

morfológicas da costa, com a batimetria da plataforma continental/talude 

superior e com o regime dos ventos locais [Fiúza, 1983; Relvas et al., 2007]. 

Geralmente, os processos de afloramento ocorrem sazonalmente, desde Abril 

até Setembro, sob ventos do quadrante norte (predominantes nessa altura do 

ano), enquanto que processos de advecção de águas oceânicas oligotróficas 

são observados durante o outono e inverno, quando os ventos sul passam a 

dominar [Fiúza et al., 1982; Peliz et al., 2005]. No entanto, episódios de 

inversão no regime de ventos podem ocorrer durante ambos os períodos. 

O afloramento costeiro tem sido identificado como a maior fonte de 

variabilidade sazonal e espacial do fitoplâncton na costa portuguesa, associado 

à disponibilidade de nutrientes na região eufótica e com alterações da 

estabilidade da coluna de água [e.g., Moita, 2001; Silva et al., 2009]. Trabalhos 

prévios na costa portuguesa baseados em dados de satélite [Fiúza, 1983; 

Haynes et al., 1993; Sousa & Bricaud, 1992; Peliz & Fiúza, 1999; Oliveira et al., 

2009] têm evidenciado, durante o verão, padrões de temperatura superficial da 

água do mar e de clorofila a similares aos de outras regiões típicas de 
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afloramento, caracterizadas pela ocorrência periódica (na costa e em direção a 

regiões mais oceânicas) de filamentos de águas mais frias e ricas em clorofila 

a. Entre os vários locais onde estes filamentos aparecem recorrentemente, a 

área central da costa de Portugal (entre os 38°N e 40°N) tem sido assinalada 

como uma região propícia ao desenvolvimento de florações de algas nocivas 

[Moita et al., 2003; Amorim et al., 2004]. Esta é uma região com grandes 

alterações na orientação da linha de costa, com acentuadas irregularidades 

topográficas e com influência de um grande rio (o rio Tejo), proporcionando 

complexos padrões de correntes superficiais com centros activos de 

afloramento e, também, de zonas mais resguardadas e menos turbulentas 

[Moita et al., 2003]. Episódios de florescimentos de diatomáceas e/ou 

dinoflagelados têm sido associados à dinâmica dos processos de afloramento 

que caracterizam a circulação oceânica ao sul do cabo da Roca [Oliveira et al., 

2009]. As diferentes condições hidrológicas e ecológicas resultantes desta 

dinâmica têm sido indicadas como os principais mecanismos de distribuição de 

determinadas espécies típicas desta região. Amorim et al. [2004] observaram, 

ao estudar a distribuição de quistos de dinoflagelados, distintos nichos 

ecológicos de Gymnodinium catenatum e de Lingulodinium polyedrum que 

foram relacionados com a presença das plumas de afloramento. Por exemplo, 

o desenvolvimento de G. catenatum (espécie não endémica, introduzida no 

início do século passado na região da costa portuguesa [Amorim & Dale, 2006]) 

é beneficiado por mecanismos físicos que favorecem a sua acumulação em 

regiões situadas entre as plumas de afloramento e a zona costeira, 

normalmente relacionadas com a presença de correntes oceânicas menos 

intensas [Moita et al., 2003]. 
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A região da costa portuguesa abordada neste estudo é caracterizada 

pela presença do maior desfiladeiro submarino da Europa, denominado canhão 

da Nazaré, que possui uma extensão de cerca de 200 km e atinge os 5000 m 

de profundidade nas regiões mais abissais (ver Fig. 1). Trabalhos baseados em 

dados físico-químicos e geológicos têm revelado uma interferência do canhão 

submarino nos processos de afloramento costeiro desta região [Vitorino, 2005; 

Oliveira et al., 2007], nomeadamente na dinâmica da distribuição de nutrientes 

para as camadas superficiais da coluna de água. Esta é uma região ainda 

pouco estudada quanto à dinâmica das comunidades de fitoplâncton, apesar 

de alguns estudos pontuais já terem registado, por exemplo, a presença de 

dinoflagelados potencialmente tóxicos nesta região (e.g., Dinophysis acuta, 

Dinophysis caudata e Alexandrium affine) [Moita, 2001]. Contudo, sem 

associação directa à presença do canhão submarino. 

Ao longo dos últimos anos, as técnicas tradicionais, através do uso da 

microscopia ótica, usadas no estudo das comunidades de fitoplâncton têm 

vindo a ser complementadas por técnicas mais expeditas e analíticas, tais 

como o uso de biomarcadores taxonómicos e/ou técnicas de detecção remota. 

Neste contexto, a análise dos pigmentos do fitoplâncton por cromatografia 

líquida de elevada eficiência (HPLC, high-performance liquid chromatography) 

tem-se revelado uma importante ferramenta, muito utilizada em estudos sobre 

dinâmica do fitoplâncton, na quantificação da biomassa e sua composição em 

classes taxonómicas [Mackey et al., 1996; Schlüter et al., 2000]. O programa 

CHEMTAX (CHEMical TAXonomy, [Mackey et al., 1996]), método químico-

taxonómico usado neste trabalho, é um método que tem sido amplamente 

utilizado na determinação da composição do fitoplâncton em várias regiões do 
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globo, incluindo o oceano Austral [e.g., Mackey et al., 1998; Schlüter et al., 

2000; Carreto et al., 2008; Wright et al., 2009, 2010]. Além de ser um método 

de fácil reprocessamento (caso seja necessário), o CHEMTAX permite estimar 

a composição do fitoplâncton em conjuntos numerosos de amostras, cuja 

determinação seria impraticável utilizando-se técnicas mais tradicionais, tal 

como a microscopia. Os resultados obtidos pela utilização do CHEMTAX 

apresentam uma forte correlação com os dados de microscopia e, em alguns 

casos, têm revelado a presença de grupos não detectados por esses métodos 

tradicionais (e.g., criptófitas, [Wright et al., 1996; Havskum et al., 2004]). As 

principais precauções na utilização destes métodos químico-taxonómicos estão 

relacionadas com a presença de pigmentos partilhados por vários grupos 

taxonómicos e a possíveis flutuações das razões pigmentares entre espécies 

de um mesmo grupo e/ou dentro da própria célula, sob a influência de vários 

parâmetros ambientais como a luz e/ou a disponibilidade em nutrientes [Jeffrey, 

1981; Goericke & Montoya, 1998; Wright & Jeffrey, 2006; DiTullio et al., 2007]. 

No entanto, com as devidas precauções acerca das implicações destes 

factores e com um conhecimento mínimo acerca das populações das regiões 

de estudo [Irigoien et al., 2004], o programa CHEMTAX pode ser considerado 

um método bastante viável e confiável para a determinação da composição das 

comunidades de fitoplâncton [Mackey et al., 1998]. 

O desenvolvimento desta Tese permitiu à equipa científica brasileira do 

grupo GOAL (Grupo de Oceanografia de Altas Latitudes), que tem 

desenvolvido estudos detalhados na região da Patagónia [e.g., Garcia et al., 

2008; Ferreira et al., 2009; Garcia et al., 2011], investigar a ecologia do 

fitoplâncton numa região Antártica e, simultaneamente, introduzir no grupo uma 
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nova metodologia a aplicar ao estudo das comunidades de fitoplâncton – a 

análise dos pigmentos fitoplanctónicos por HPLC. Por outro lado, o estudo na 

região do canhão da Nazaré (costa de Portugal), região ainda pouco estudada 

no que respeita a distribuição das comunidades de fitoplâncton, permitiu 

aprofundar o conhecimento existente sobre a dinâmica populacional do 

fitoplâncton marinho nas regiões sob influência de processos de afloramento ao 

longo da costa de Portugal. 

 

1.2. Objectivos 

 

O principal objectivo deste estudo foi compreender os processos físico-

químicos responsáveis pela distribuição das comunidades de fitoplâncton na 

região da Península Antártica e na costa de Portugal. 

 

Os objectivos específicos foram os seguintes: 

 

1) Estudar os principais mecanismos responsáveis pela distribuição dos 

grupos taxonómicos do fitoplâncton nas duas regiões em estudo; 

2) Caracterizar as comunidades de fitoplâncton utilizando a análise 

pigmentar por HPLC, complementada por observações ao microscópio; 

3) Testar o uso dos pigmentos fotossintéticos no desenvolvimento de 

índices que reflictam o estado fisiológico das comunidades de fitoplâncton 

relativamente a diferentes condições ambientais. 
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1.3. Estrutura da tese 

 

Os objectivos específicos desta Tese são abordados em estudos 

independentes que se encontram nos capítulos seguintes (II, III e IV) sob a 

forma de trabalhos publicados ou em processo de publicação. Desta forma, o 

Capítulo II intitulado "Spatial distribution of phytoplankton assemblages in the 

Nazaré submarine canyon region (Portugal): HPLC-CHEMTAX approach" 

procura responder aos objectivos específicos 1 e 2, no que se refere à região 

da costa de Portugal; o Capítulo III, "Dynamics of phytoplankton communities 

during late summer around the tip of the Antarctic Peninsula", engloba todos os 

três objectivos para a região da Península Antártica; e o Capítulo IV, 

"Cryptophytes dominated diatoms in the Bransfield Strait (Antarctic Peninsula) 

in the late summer 2010", atende aos objetivos 1 e 2, numa tentativa de 

compreender e associar a variabilidade interanual observada nas comunidades 

de fitoplâncton da região da Península Antártica à variação dos factores 

abióticos e/ou climáticos. A síntese dos principais aspectos metodológicos é 

apresentada no tópico seguinte (1.4.) enquanto o Capítulo V corresponde à 

conclusão geral desta Tese. 

 

1.4. Metodologias usadas 

 

1.4.1. Amostragem 

 

A amostragem, em ambos os ecossistemas, foi efectuada através de 

sistemas de carrossel com garrafas de “Niskin” existentes nos navios utilizados 

durante as campanhas oceanográficas. Conjuntamente, foram determinados 



Introdução 

41 

perfis verticais de temperatura, salinidade e fluorescência a partir de sensores 

acoplados ao sistema CTD (Conductivity, Temperature, Depth). Amostras de 

água foram recolhidas a diferentes profundidades para determinação da 

concentração de nutrientes, pigmentos fitoplanctónicos (clorofilas e 

carotenóides) e para determinação da composição taxonómica, através de 

microscopia óptica. 

Na região da Antártica foram realizados três cruzeiros oceanográficos no 

final do verão austral (Fevereiro/Março de 2008, 2009 e 2010) junto à 

plataforma continental da Península Antártica, com estações efectuadas no 

Estreito de Bransfield, Passagem de Drake, e noroeste do mar de Weddell (ver 

Fig. 1). Este trabalho está inserido dentro do projecto internacional, multi-

institucional e interdisciplinar denominado SOS-CLIMATE (Southern Ocean 

Studies for Understanding Global Climate Issues) e coordenado por 

investigadores da Universidade Federal do Rio Grande (FURG), Brasil, tendo 

decorrido no âmbito do Ano Polar Internacional (Março de 2007 a Março de 

2009). 

 Na zona costeira portuguesa foi realizada uma única campanha 

oceanográfica (Junho/Julho de 2006), na região do Canhão da Nazaré (ver 

Fig. 1), utilizando um cruzeiro oceanográfico que decorreu no âmbito do 

projecto HERMES (Hotspot Ecosytem Research on the Margins of European 

Seas), coordenado por investigadores do Instituto Hidrográfico (IH), Portugal. 

 No total, foram efectuadas amostragens em 262 estações 

oceanográficas, tendo sido amostradas, e posteriormente analisadas cerca de 

700 amostras para determinação, por HPLC, dos diversos pigmentos 

fotossintéticos. 



Introdução 

42 

1.4.2. Análise de nutrientes  

 

A determinação da concentração de nutrientes inorgânicos dissolvidos 

(nitrato, nitrito, amónia, silicato e fosfato) nas amostras de água, recolhidas em 

várias profundidades, foi efectuada recorrendo a métodos colorimétricos 

utilizando analisadores automatizados. As amostras recolhidas na região da 

costa portuguesa foram armazenadas (no navio) a uma temperatura de -20ºC e 

posteriormente analisadas na Divisão de Química e Poluição do Meio Marinho 

do Instituto Hidrográfico, Portugal (para maiores detalhes ver capítulo II). Por 

sua vez, as amostras referentes à região da Península Antártica foram 

recolhidas e imediatamente processadas, sob responsabilidade de 

investigadores do Laboratório de Biogeoquímica do Instituto de Biologia da 

Universidade Federal do Rio de Janeiro, em laboratório instalado no próprio 

navio (para maiores detalhes ver capítulo IV). 

 

1.4.3. Determinação dos pigmentos fitoplanctónicos por HPLC 

 

Nas estações oceanográficas realizadas recolheram-se amostras de 

água (com um volume aproximado entre 1 e 5L, dependendo da biomassa 

presente), que foram imediatamente filtradas, utilizando-se filtros Whatman 

GF/F (0.7 µm de poro). Os filtros foram prontamente congelados em azoto 

líquido e armazenados a -80ºC até serem processados em laboratório. A 

extracção dos pigmentos foi efectuada com 2/3 mL de metanol tamponizado 

(com 2% de acetato de amónio). Durante o processo de extracção, 

procedeu─se à maceração do filtro com a ajuda de uma vareta de vidro, 
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submeteu-se a um banho de ultrassons durante 1 minuto e deixou-se a extrair 

durante 30 minutos a -20ºC. Em seguida centrifugou-se a 2500 rpm, durante 15 

minutos, a uma temperatura de 4ºC. Retirou-se o material sobrenadante e, 

antes de se proceder à injecção no HPLC, filtrou-se usando filtros de 

membrana Millipore (0.2 µm de poro). O aparelho utilizado foi um HPLC 

Shimadzu, que inclui um módulo distribuidor de solventes (LC-10ADVP) com 

um sistema de controlo (SCL-10AVP), um detector de fotodiodos 

(SPDM10AVP) e um detector de fluorescência (RF-10AXL). A separação 

cromatográfica dos pigmentos foi efectuada seguindo duas metodologias 

distintas que acompanharam o desenvolvimento da técnica, no laboratório do 

Instituto de Oceanografia da Universidade de Lisboa, ao longo deste estudo. 

Desta forma, o processamento das amostras recolhidas durante o cruzeiro 

efectuado na costa portuguesa seguiu uma metodologia diferente (método C18; 

Kraay et al. [1992], adaptada por Brotas & Plante-Cuny [1996]) da usada no 

processamento das amostras resultantes das campanhas na região da 

Península Antártica (método C8; Zapata et al. [2000]). As 

vantagens/desvantagens de ambos os métodos estão amplamente descritas e 

discutidas em Mendes et al. [2007]. Adicionalmente, e numa fase mais recente, 

foi utilizado um padrão interno (Trans-β-apo-8'-carotenal) no processamento 

das amostras (cruzeiro oceanográfico de 2010 realizado na Península 

Antártica), de forma a possibilitar a quantificação de quaisquer anomalias 

resultantes de todo o processo de extracção/separação dos pigmentos. As 

características da fase móvel (solventes) e da fase estacionária (coluna) de 

ambos os métodos encontram-se resumidas, respectivamente, na Tabela 1 e 2. 

A identificação e quantificação dos picos referentes aos pigmentos 
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fotossintéticos foram realizadas usando como referência padrões comerciais da 

DHI (Institute for Water and Environment, Denmark). A concentração foi 

calculada a partir do sinal obtido pelo detector de fotodiodos e/ou pelo detector 

de fluorescência, para o caso dos pigmentos clorofilianos. 

 
Tabela 1: Gradientes e composição das fases móveis utilizadas pelas duas metodologias 

(método C18 e C8). 

A* B C

% % %
0 60 40 0
2 0 100 0
7 0 80 20
17 0 50 50
21 0 30 70

28.5 0 30 70
29.5 0 100 0
30.5 60 40 0
35 60 40 0

%
0 100
20 60
26 5
38 5
40 100

95
0

%

Tempo (min)

Tempo (min)

0
40
95

* Solvente A tamponizado com 0.5 M de acetato de amónia (concentração final)
† Solução aquosa de piridina (0.25 M) com pH ajustado a 5.0 pela adição de ácido acético

Solventes

A                         
Metanol:acetonitrilo:piridina aquosa† 

(50:25:25 v/v/v)

B                        
Metanol:acetonitrilo:acetona                      

(20:60:20 v/v/v)

M
ét

od
o 

C
18

Metanol:água                                          
(85:15 v/v)

Acetonitrilo:água 
(90:10 v/v)

Acetato de etilo

M
ét

od
o 

C
8

 

 

 
Tabela 2: Características das colunas cromatográficas usadas neste trabalho. 

Supelcosil LC-18                
(método C18)

Monomérica C18 
(Octadecilsílica) 250 × 4.6 100 5 170 11

Symmetry C8 
(método C8)

Monomérica C8             
(Octilsílica) 150 × 4.6 100 3.5 337 12.27

Carbono        
(%)Coluna Tipo Dimensões                

(mm)
Tamanho do 

poro (Å)
Tamanho das 

partículas (µm)
Área da superficie 

(m-2 g-1)
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1.4.4. CHEMTAX 

 

A quantificação da contribuição dos principais grupos taxonómicos para 

o total de clorofila a foi efectuada utilizando a versão 1.95 do programa 

CHEMTAX [Mackey et al., 1996; Wright et al., 1996, 2009]. Este programa 

utiliza um processo interativo de factorização matricial de forma a optimizar a 

associação entre os diferentes pigmentos presentes e a determinar a mais 

adequada composição em grupos taxonómicos [Mackey et al., 1996]. Desta 

forma, e com o objectivo de uma maior precisão na atribuição da clorofila a 

pelos diferentes grupos de fitoplâncton, o CHEMTAX requer uma matriz de 

entrada que contenha as classes esperadas (informação obtida através de uma 

prévia visualização ao microscópio e/ou através da presença de determinado 

tipo de pigmentos e suas respectivas associações) e as razões de pigmentos 

iniciais dessas mesmas classes. Usando o processo interativo numa dada 

matriz, o software optimiza as razões dos pigmentos para cada grupo e aplica 

uma razão final para o total de clorofila a, de forma a determinar a composição 

em cada amostra. Geralmente, a construção da matriz das razões pigmentares 

de entrada é baseada em trabalhos já publicados que utilizam a mesma 

metodologia em regiões geograficamente semelhantes. Esta informação pode, 

também, ser complementada através de razões pigmentares obtidas em 

trabalhos laboratoriais com culturas de espécies/grupos similares. No presente 

trabalho, as matrizes de entrada foram adaptadas de outras matrizes já 

disponíveis na bibliografia e desenvolvidas em regiões próximas às abordadas 

neste estudo. Detalhes sobre o procedimento de construção destas matrizes 
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encontram-se descritos/explicados no capítulo II (para a região do canhão da 

Nazaré) e no capítulo III (para a região da Península Antártica). 

 Para cada região em estudo foram aplicadas abordagens diferentes de 

utilização do programa CHEMTAX e baseadas em procedimentos descritos na 

bibliografia [Latasa, 2007; Wright et al., 2009]. Estas abordagens estão 

detalhadamente descritas nos respectivos capítulos (II e III). 

 Os dados de saída foram obtidos em termos de valores absolutos 

(mg m-3) de clorofila a atribuídos a cada grupo taxonómico, ou como uma 

quantidade relativa (percentual) do total de clorofila a de uma amostra. 

 

1.4.5. Análises de microscopia 

 

As análises microscópicas efectuadas nas amostras seleccionadas da 

costa de Portugal tiveram apenas um carácter qualitativo, de forma a identificar 

espécies-chave (para maiores detalhes ver capítulo II). A observação e 

identificação destas espécies foram realizadas no Instituto de Investigação das 

Pescas e do Mar (IPIMAR) sob supervisão da Doutora Graça Vilarinho. Por sua 

vez, as análises microscópicas das amostras da região da Península Antártica 

foram recolhidas com o objectivo de efectuar uma comparação entre os 

resultados obtidos pelo CHEMTAX e pelas contagens efectuadas ao 

microcópio. Estas análises foram efectuadas pelo investigador MSc. Márcio 

Silva de Souza, no Laboratório de Fitoplâncton e Microorganismos Marinhos do 

Instituto de Oceanografia da FURG e os detalhes protocolares inerentes à 

técnica usada estão descritos detalhadamente no capítulo III. 
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1.4.6. Análises estatísticas 

 

Foram aplicados diferentes procedimentos estatísticos (correlações 

simples, análises de agrupamento e/ou análises multivariadas) de forma a 

selecionar as variáveis físico-químicas, para cada região, com maior 

contribuição para a variância encontrada entre os pontos de amostragem. 

Estes procedimentos, quando usados, encontram-se devidamente comentados 

nos respectivos capítulos. 
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ABSTRACT 

The distribution and composition of phytoplankton assemblages were studied in 

the Nazaré submarine canyon, during an upwelling event, using high-

performance liquid chromatography (HPLC) pigment analysis, complemented 

by microscopic qualitative observations. High chlorophyll a (Chl a) 

concentrations were recorded in the canyon head, near the coast, where values 

greater than 4 µg L-1 were observed. In contrast, Chl a was relatively low in 

offshore regions, with values below 0.5 µg L-1. The most abundant accessory 

pigments were fucoxanthin, peridinin, diadinoxanthin and 19’-

hexanoyloxyfucoxanthin. Pigment data information was analysed using the 

CHEMTAX program to estimate the contribution of different taxonomic groups 

to total Chl a. North of the canyon head, an area with high concentration of 

peridinin-containing dinoflagellates was identified (with presence of chain-

forming toxic dinoflagellates). The presence of these organisms was associated 

with mixed water columns and phosphate values lower than the ones south of 

the canyon head, where a dominance of diatoms was recorded. The rest of the 

study region showed a dominance of prymnesiophytes and a significant 

contribution of cyanobacteria at oceanic stations. This study demonstrates the 

usefulness of using pigment analysis to study spatial distribution of 

phytoplankton in relation to a complex physical environment. 

 

Keywords: phytoplankton, photosynthetic pigments, HPLC, Portuguese coast, 

upwelling system, Nazaré submarine canyon  
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2.1. Introduction 

 

Phytoplankton plays a crucial role in marine ecosystems, affecting the 

structure and efficiency of food webs, nutrient cycling and the flux of particles to 

deep waters. Thus, in order to understand the dynamics of pelagic ecosystems, 

knowledge of both phytoplankton composition and biomass is important. The 

determination of photosynthetic pigment concentrations by HPLC, besides 

providing an accurate quantification of Chl a concentration, allows the study of 

phytoplankton assemblage composition and structure, since some carotenoids 

and chlorophylls can be used as taxonomic indicators of phytoplankton groups 

[Gieskes & Kraay, 1983; Schlüter & Havskum, 1997; Ediger et al., 2006]. This 

technique has the advantage of detecting nano- and pico-planktonic organisms, 

which are normally difficult to identify by light microscopy. Furthermore, permits 

a relatively fast analysis of a large number of phytoplankton samples, important 

in monitoring abundance and composition of phytoplankton populations, which 

can become impracticable by microscopy [Wright & Jeffrey, 2006]. However, 

pigments data interpretation can be difficult as some pigments are present in 

several algal groups. For instance, fucoxanthin, which is a major pigment in 

diatoms, is also present in chrysophytes and prymnesiophytes [Jeffrey & Vesk, 

1997; Wright & Jeffrey, 2006]. The development of statistical tools such as 

CHEMTAX [Mackey et al., 1996; Wright et al., 1996] has overcome the problem 

of non-specificity of some pigments. This software applies matrix factorization to 

pigment data in order to estimate the contribution of phytoplankton groups to 

total Chl a. Pigment analysis by HPLC followed by data analysis with 

CHEMTAX has proven to be an effective method for determining the 
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abundance of phytoplankton, even for groups without specific biomarker 

pigments [Mackey et al., 1996; Mackey et al., 1998; Schlüter et al., 2000; 

Latasa, 2007; Carreto et al., 2008]. Nevertheless, it is recognized that light 

microscopy can provide a better taxonomic resolution than pigment analysis 

(except for some very small, nano and pico fraction as mentioned previously or 

fragile cells not resistant to fixatives) and it is crucial for identification of key 

species (e.g. toxic species) with potential ecological implications. Thus, a 

combination of both approaches is desirable and has been recommended [Silva 

et al., 2008a and references therein). 

In the present work, the spatial pattern of phytoplankton was studied 

around the Nazaré canyon region. This canyon, located on the Portuguese west 

coast, is not connected to a major river system and, therefore, the dynamics in 

the area are mainly determined by the oceanographic conditions. Generally, the 

west coast of Portugal is characterized by seasonal upwelling, determined by 

the coastal morphology, the continental shelf/upper slope bathymetry and local 

winds [Fiúza, 1983]. Sustained upwelling conditions are generally observed 

from April to September, when persistent northerlies occur [Fiúza et al., 1982], 

while advection of warmer oligotrophic oceanic waters is observed during 

autumn and winter, when southerly winds begin to dominate, leading to 

downwelling conditions and an intensification of waters flowing poleward [Fiúza 

et al., 1982; Peliz et al., 2005]. However, episodes of reverse winds can occur 

during both periods. In general, wind forcing circulation interacts with 

topography and coastline orientation, modifying the along-shore and cross-shelf 

flows at different levels, resulting in amplification and/or reduction of upwelling–

downwelling [Kudela et al., 2005; Ryan et al., 2005a]. Upwelling has been 
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identified as the major source of seasonal and spatial variability of 

phytoplankton for the Portuguese coast, associated with nutrient availability to 

the euphotic zone and alterations of the water column stability [Moita, 2001; 

Silva et al., 2009]. 

The objective of the present work was to study the phytoplankton 

distribution around the Nazaré canyon by means of HPLC pigment analysis and 

CHEMTAX software, relating the observed physical and chemical conditions of 

this peculiar topographic region to the spatial distribution of taxonomic groups. 

 

2.2. Methods 

 

2.2.1. Study site 

 

The Nazaré canyon is one of Europe’s largest submarine valleys, located 

on the central part of the Portuguese coast (Eastern Atlantic Ocean), oriented 

roughly perpendicular to the coast in an E–W direction (Fig. 1). This 

geomorphologic feature extends from the deep ocean shoreward, from 5000 m 

to about 150 m deep, where the canyon head is located 500 m from the shore. 

Along the upper canyon section (where it cuts the continental shelf region), the 

canyon width changes from less than 2 km, near the canyon head, to about 8-9 

km near the canyon mouth. This width is small when compared with the natural 

spatial scales of adjustment of the flow to topography in the presence of Earth 

rotation and stratification, indicating that, regarding dynamics, the Nazaré 

Canyon is very narrow [Vitorino et al., 2005]. 
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Figure 1: Location of stations sampled during HERMES06 cruise (23 June 2006 to 5 July 2006) 

in the Nazaré canyon region. Open circles indicate location of stations with microscopic 

observations. 

 

2.2.2. Sample collection 

 

Sampling was conducted between 23 June and 05 July 2006, on board 

the N.R.P. “D Carlos I”, during HERMES (Hotspot Ecosystem Research on the 

Margins of European Seas) 2006 cruise, specifically designed for physical and 

geological studies. Surface water samples (5 m in depth) were collected from 

92 stations around the Nazaré submarine canyon for phytoplanktonic pigments 

and nutrients and, at selected stations, for microscopic analysis (Fig. 1). 

Physical data (temperature and salinity) and water samples were collected 

using a combined Idronaut CTD profiler and a rosette sampler. Only surface 

samples were collected for the present study, due to a limited number of Niskin 

bottles. 
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2.2.3. Remote-sensing data of SST 

 

Sea Surface Temperature (SST) data acquired by the Moderate-

resolution imaging spectroradiometer (MODIS) on NASAs Aqua satellite and 

processed by The Ocean Biology Processing Group (OBPG) were downloaded 

from the Ocean Color Website (http://oceancolor.gsfc.nasa.gov/). For the cruise 

period, swaths covering the region of interest were selected and downloaded 

via-ftp. After standard quality checking and masking, valid data were 

interpolated into an equal latitude–longitude grid and averaged for each phase 

of the cruise using MATLAB software. The images have a nominal resolution of 

1 km. 

 

2.2.4. Wind data 

 

Meteorological measurements were collected with an Aanderaa AWS 

2700 coastal weather station which is maintained by Instituto Hidrográfico in 

Ferrel (39.39ºN, 09.29ºW). The wind speed and direction data were converted 

to time series of northward and eastward wind components. 

 

2.2.5. Nutrient analysis 

 

Determination of nutrient (nitrate, nitrite, ammonium, phosphate and 

silicate) concentration was performed using a Skalar SANplus Segmented Flow 

AutoAnalyzer specially engineered for the analysis of saline waters. N–NOx and 

N–NO2 were determined according to Strickland & Parsons [1972], with N–NO3 
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being estimated by the difference of the previous two; N–NH4 and Si-SiO2 were 

determined according to Koroleff [1976]; P–PO4 was determined according to 

Murphy & Riley [1962]. All methods were adapted to the methodology of 

segmented flow analysis and uncertainties were determined, respectively, for 

low and high nutrient concentrations: 11.7% and 6.0% (NOx<2.64 µM; NOx≥2.64 

µM), 11.7% and 6.1% (NO2<0.45 µM; NO2≥0.45 µM), 16.6% and 8.6% 

(NO3<2.64 µM; NO3≥2.64 µM), 13.5% and 9.7% (NH3<3.51 µM; NH3≥3.51 µM), 

11.7% and 6.1% (PO4<0.70 µM; PO4≥0.70 µM); 11.9% and 7% (SiO2<1.56 µM; 

SiO2 ≥1.56 µM). 

 

2.2.6. HPLC pigment analysis 

 

Water samples (5 L) were filtered onto Whatman GF/F filters (nominal 

pore size of 0.7 μm and 47 mm in diameter). The filters were deep-frozen 

immediately and stored at –80°C. Phytoplanktonic pigments were extracted with 

5 mL of 95% cold-buffered methanol (2% ammonium acetate) for 30 min at 

20°C, in the dark. Samples were sonicated (Bransonic, model 1210, w: 80, Hz: 

47) for 1 min at the beginning of the extraction period. The samples were then 

centrifuged at 1100 g for 15 min, at 4°C. Extracts were filtered (Fluoropore 

PTFE filter membranes, 0.2 μm in pore size) and immediately injected in the 

HPLC. Pigment extracts were analyzed using a Shimadzu HPLC comprised of a 

solvent delivery module (LC-10ADVP) with system controller (SCL-10AVP), a 

photodiode array (SPD-M10ADVP), and a fluorescence detector (RF-10AXL). 

Chromatographic separation was carried out using a C18 column for reverse 

phase chromatography (Supelcosil; 25 cm long; 4.6 mm in diameter; 5 mm 
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particles) and a 35 min elution program. The solvent gradient followed Kraay et 

al. [1992] adapted by Brotas & Plante-Cuny [1996] with a flow rate of 0.6 mL 

min-1 and an injection volume of 100 µL. The limit of detection (LOD) and limit of 

quantification (LOQ) of this method were calculated and discussed in Mendes et 

al. [2007]. Pigments were identified from both absorbance spectra and retention 

times and concentrations calculated from the signals in the photodiode array 

detector or fluorescence detector (Ex. 430 nm; Em. 670 nm). The HPLC system 

was previously calibrated with pigment standards from Sigma (chlorophyll a, b 

and β-carotene) and DHI (for other pigments). 

 

2.2.7. CHEMTAX analysis of pigment data 

 

The relative abundance of microalgal groups contributing to total Chl a 

biomass was calculated by pigment concentration data using version 1.95 of 

CHEMTAX chemical taxonomy software [Mackey et al., 1996; Wright et al., 

1996; Wright et al., 2009]. CHEMTAX uses a factor analysis and steepest-

descent algorithm to find the best fit of the data on to an initial pigment ratio 

matrix. The basis for calculations and procedures are fully described in Mackey 

et al. [1996]. 

Initial pigment ratios for major algal classes were obtained from the 

literature [Schlüter et al., 2000; Gibb et al., 2001] (Table 1a). Based on the 

diagnostic pigments detected, 7 algal groups were loaded in CHEMTAX: 

diatoms, dinoflagellates, prymnesiophytes, chryptophytes, prasinophytes, 

chrysophytes and cyanobacteria (see Table 1). The pigments loaded were 

alloxanthin (Allo), fucoxanthin (Fuco), peridinin (Perid), prasinoxanthin (Pras), 
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zeaxanthin (Zea), lutein (Lut), 19’-butanoyloxyfucoxanthin (But-fuco), 19’-

hexanoyloxyfucoxanthin (Hex-fuco), chlorophyll c3 (Chl c3), chlorophyll b (Chl b) 

and chlorophyll a (Chl a). Chlorophytes were excluded from this study as 

significantly positive correlations were found between prasinoxanthin (exclusive 

of prasinophytes) and concentrations of both chlorophyll b and lutein (pigments 

present in chlorophytes and prasinophytes) (R2=0.75 and 0.50, respectively, 

p<0.05). In addition, zeaxanthin concentration (present in cyanobacteria and 

chlorophytes) did not correlate significantly (p>0.05) with chlorophyll b 

(R2=0.25). These correlation analyses support the use of chlorophyll b, 

prasinoxanthin and lutein as indicators of prasinophytes and zeaxantin as a 

biomarker for cyanobacteria in this study. 

 
Table 1: Marker pigments to Chl a ratios. Input ratios were obtained from Schlüter et al. [2000] 

(Prasinophytes) and Gibb et al. [2001] (all other groups). Output ratios (after 15 runs) were 

estimated with the CHEMTAX program – mean values of six final matrices obtained. See text 
for further details. 

Allo Fuco Perid Pras Zea Lut But-fuco Hex-fuco Chl b Chl c 3 Chl a

(a) Input matrix

Diatoms 0 0.760 0 0 0 0 0 0 0 0 1
Dinoflagellates 0 0 1.060 0 0 0 0 0 0 0 1
Prymnesiophytes 0 1.210 0 0 0 0 0.020 1.360 0 0.170 1
Cryptophytes 0.230 0 0 0 0 0 0 0 0 0 1
Prasinophytes 0 0 0 0.458 0.079 0.018 0 0 0.679 0 1
Chrysophytes 0 0.970 0 0 0 0 1.560 0 0 0.250 1
Cyanobacteria 0 0 0 0 0.590 0 0 0 0 0 1

(b) output matrix

Diatoms 0 0.628 0 0 0 0 0 0 0 0 1
Dinoflagellates 0 0 1.001 0 0 0 0 0 0 0 1
Prymnesiophytes 0 0.143 0 0 0 0 0.001 0.637 0 0.436 1
Cryptophytes 0.486 0 0 0 0 0 0 0 0 0 1
Prasinophytes 0 0 0 0.203 0.176 0.043 0 0 0.998 0 1
Chrysophytes 0 0.019 0 0 0 0 1.720 0 0 0.001 1
Cyanobacteria 0 0 0 0 1.774 0 0 0 0 0 1  

 

For optimization of the input matrix, a series of 60 pigment ratio tables 

were generated by multiplying each ratio of the initial table by a randomly 

function as described in Wright et al. [2009]. The best six output results (with 
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the smallest residual) were then selected to apply further fifteen successive 

CHEMTAX runs in order to check final ratio convergence, according Latasa 

[2007]. Using the output pigment:Chl a ratio matrix of each run as input for the 

following run, ratios should stabilize towards their most probable values [Latasa, 

2007]. Fig. 2 shows the changes of main ratios for the representative taxonomic 

groups along the 15 successive runs, with final mean and standard deviation. 

The final results (ratios and abundances) were then calculated as the average 

of the final six outputs obtained after the processing described above. The 

optimized pigment ratio matrix derived by CHEMTAX is presented in Table 1b. 

 

2.2.8. Microscopic analysis 

 

At some coastal stations (see Fig. 1), surface samples were collected 

with a 20 µm mesh net and immediately preserved with Lugol’s iodine solution 

for micro-phytoplankton qualitative analysis. Species identification was 

performed using an inverted light microscope Olympus IX70, at 400× 

magnification. Phytoplankton identification was mainly based on Hasle & 

Syvertsen [1996] and Dodge [1982]. 

 

 

 



Phytoplankton in the Nazaré submarine canyon region 

70 

 

Figure 2: Evolution of pigment ratios of the six input matrices (A─F), after successive runs of 

CHEMTAX for main phytoplankton pigment groups, with mean and standard deviation shown 

for the final run. See text for initial matrix (A─F) calculation method. For pigment abbreviations, 

see Table 2. 

 

2.2.9. Statistical analysis 

 

The phytoplankton community structure at the stations was examined by 

a cluster analysis, using the software PRIMER6 [Clarke & Gorley, 2001]. A 
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dendrogram was produced using the group average linkage method based on 

the Bray–Curtis similarity. The mean relative contribution of each phytoplankton 

group to community structure was examined using the Similarity Percentage 

procedure (SIMPER). 

In order to explore the relationships between the phytoplankton groups’ 

biomass and environmental conditions, a Canonical Correspondence Analysis 

(CCA) was performed. The CCA is an ordination method effective to directly 

reveal correlations between spatial/temporal structure of communities and 

environmental factors that might be responsible for that. Water temperature, 

salinity, water depth, nutrient concentrations (silicate, phosphate and DIN) and 

N:P ratio were the environmental variables included in the CCA. The CCA was 

performed using CANOCO 4.5 [Ter Braak & Smilauer, 2002]. 

 

2.3. Results 

 

2.3.1. Oceanographic conditions 

 

During the cruise, two distinct oceanographic conditions driven by wind 

regime were verified (Fig. 3). The first period of the cruise (23 to 27 June 2006) 

was characterized by northerly winds (negative values of the northward 

component in Fig. 3). These winds promote an offshore transport in the surface 

Ekman layer, the upwelling of colder sub-surface waters by continuity, and the 

establishment of a southward jet over the shelf. Typically, in the NW Portuguese 

shelf, this response to upwelling wind events can be established in the region 

close to the coast in about 35 h [Mork & Jorge da Silva, 1993]. 
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Figure 3: Times series of eastward and northward components of the wind measured at the 

coastal station of Ferrel during the cruise. Negative values of the northward component indicate 

a favorable upwelling wind. The boxes indicate the two periods of CTD measurements and 

water sampling. 

 

This upwelling situation is expressed by the 30 Km width band of cold 

(upwelled) water, which extends along the coast (Fig. 4a), being notorious at 

the head of the canyon. The SST images also reveal the presence of a cold 

water filament off Cape Carvoeiro, which is a recurrent feature of the summer 

upwelling season off Western Portugal, showing frequently a westward 

orientation [Haynes et al., 1993]. 
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Figure 4: Average sea surface temperature (SST) from the Moderate-resolution imaging 

spectroradiometer (MODIS) for the period (a) 23 to 27 June 2006, and (b) 1 to 5 July 2006. 

Black dots represent the sampling sites during the respective periods. 

 

In the second period (1 to 5 July 2006) the northerly winds relaxed and, 

for a short period between 2 and 3 July 2006, even became southerly (positive 

values of the northward component of the wind in Fig. 3) and downwelling 

favorable. These changes in the wind forcing led to a strong reduction of the 

cold-water band width (Fig. 4b), which expresses the response of surface 

waters to the upwelling relaxation. A CTD section along the canyon axis 

covered prior and after the wind relaxation, however, suggests that these 

changes affected mainly the upper 10-20 m of the water column (Fig. 5). The 

conditions measured at 20m depth during the second phase of the cruise were 

still largely representative of the upwelling conditions that were dominant before 

the wind relaxation. 
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Figure 5: Temperature profiles of the repeated transect (in both cruise phases) at the canyon 

head. (a) Transect at the end of the first period and (b) transect at the beginning of the second 

period. Inset: positions of stations at each transect. 

 

 

2.3.2. Nutrients 

 

The spatial distribution of nutrients was highly variable (Fig. 6). Dissolved 

inorganic nitrogen (DIN) ranged from 0.21 to 7.77 µM, with higher 

concentrations at the canyon head (Fig. 6a). Silicates varied from 0.31 to 

8.11 µM with an evident maximum north of the canyon head (Fig. 6b) and 

phosphates presented a range between 0.08 and 0.8 µM, with higher values 

south of the canyon and near the coast (Fig. 6c). N/P ratios (Fig. 6d) showed 

maximum values north of the canyon head. Values ranged between 1.4 and 80. 
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Figure 6: Surface nutrients distribution (µM) measured during this study. (a) Dissolved 

inorganic nitrogen (DIN), (b) silicates, (c) phosphates and (d) N:P ratios. Note the different 

concentration scales. Black line scheme the canyon. 

 

2.3.3. Pigment concentrations and CHEMTAX analysis 

 

Through the analysis of chromatograms it was possible to identify a total 

of 20 pigments (Table 2). Chl a (used as biomass index), fucoxanthin, 

Chl c1+c2, peridinin and 19’-hexanoyloxyfucoxathin were the most abundant 

pigments in this study, present in almost all samples, with average 

concentrations exceeding 0.1 µg L-1. Chl a concentration ranged between 0.1 

and 4.3 µg L-1, with the highest values found near the coast and the lowest in 

more offshore regions (Fig. 7). Maximum biomass (3.9 and 4.3 µg L-1 of Chl a) 

was observed at two stations near the coast, around the canyon head, where 
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dinoflagellate-exclusive pigments, peridinin, dinoxanthin and p-457 were 

detected. At both stations, peridinin concentrations were extremely elevated, 

surpassing 3 µg L-1. There was also a nucleus of high Chl a south of the canyon 

and southwest of Cape Carvoeiro, with values greater than 1 µg L-1 (Fig. 7). 

 

Table 2: Abbreviations, names and concentrations of photosynthetic pigments detected in this 

study. 

Abbreviation Pigment Average concentration/minimum and maximum (µg L-1) 
      Chl a Chlorophyll a 0.68 (0.10 - 4.33) 
Chl b Chlorophyll b 0.06 (0.01 - 0.46) 

Chl c3 Chlorophyll c3 0.09 (0.00 - 0.40) 

Chl c1+c2 Chlorophyll c1 plus c2 0.13 (0.00 - 1.47) 
Chlide a Chlorophyllide a trace amounts 
Fuco Fucoxanthin 0.17 (0.01 - 1.28) 
Perid Peridinin 0.16 (0.01 - 3.29) 
Diadino Diadinoxanthin 0.07 (0.01 - 0.83) 
Diato Diatoxanthin 0.01 (0.00 - 0.06) 
Dino Dinoxanthin no standard 
Hex-fuco 19'-Hexanoyloxyfucoxanthin 0.10 (0.02 - 0.38) 
But-fuco 19'-Butanoyloxyfucoxanthin 0.02 (0.00 - 0.09) 
Allo Alloxanthin 0.02 (0.00 - 0.35) 
Zea Zeaxanthin 0.06 (0.02 - 0.21) 
Pras Prasinoxanthin 0.01 (0.00 - 0.10) 
Lut Lutein 0.01 (0.00 - 0.03) 
Viola Violaxanthin trace amounts 
ββ-Car β,β-Carotene trace amounts 
βε-Car β,ε-Carotene trace amounts 
P-457 P-457 trace amounts 
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Figure 7: Surface distribution of total chlorophyll a (µg L-1). Black points represent stations’ 

location. 

 

The relative contribution of the main phytoplankton groups to Chl a, 

calculated by CHEMTAX is shown in Fig. 8. Diatoms were distributed mainly in 

the region south of the canyon, along the coast and surrounding Cape 

Carvoeiro (Fig. 8a) with a maximum biomass contribution of 80%. 

Dinoflagellates appeared to dominate only at two stations immediately north of 

the canyon head, with values higher than 65% (Fig 8b). In all other stations the 

contribution of dinoflagellates was always below 30% of the total Chl a. 

Prymnesiophytes were the dominant group off the coast with a maximum 

dominance (>50% of total Chl a) at stations north of the canyon (Fig. 8c). 

Cyanobacteria appeared with a major contribution (>25%) in offshore stations 

(Fig. 8d) and a maximum of cryptophytes (>20%) was observed at two stations 

south of the canyon region, at approximately 39.3oN (Fig. 8e). Prasinophytes, 
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more abundant north of the canyon, were always below 20% (Fig. 8f), and 

crysophytes never represented more than 8% of biomass (data not shown). 

 

Figure 8: Surface distribution of relative percentage contribution of main phytoplankton groups 

to total chlorophyll a, estimated by interpretation of pigment HPLC data using the CHEMTAX 

program. (a) Diatoms (color scale) and phosphate concentrations (lines), (b) dinoflagellates 

(color scale) and silicate concentrations (lines), (c) prymnesiophytes, (d) cyanobacteria, (e) 

cryptophytes and (f) prasinophytes. 
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2.3.4. Spatial distribution of taxonomical groups 

 

The Bray–Curtis Similarity Index among stations was applied to estimate 

the spatial variability of phytoplankton community. Cluster analysis identified 

three main groups of stations (60% similarity), represented in Fig. 9a. The 

SIMPER procedure revealed one group (closed circles in Fig. 9a) composed by 

two stations dominated by dinoflagellates, with 74% contribution to within-group 

similarity. A second group (open circles in Fig. 9a) consisted of stations 

dominated by diatoms which contributed 47% to the within-group similarity; and 

prymnesiophytes contribution of 24%. Finally, a third larger group (closed 

triangles in Fig. 9a) defined by stations with dominance of prymnesiophytes, 

with 51% contribution to station similarity. Within this last group, two stations 

appear separated from the rest and from one another (cluster analysis – 65% 

similarity). These stations (open triangle and open square in Fig. 9a) presented 

the highest prymnesiophyte (72%) and cyanobacteria (40%) relative 

contributions to biomass, respectively. 

The level of water column stratification at the selected stations 

representing each sub-region was analyzed through temperature profiles 

(Fig. 9b). For the prymnesiophyte dominated group an offshore (St. 24) and a 

coastal (St. 32) station were selected in order to represent the spatial span of 

the group. The offshore station is well stratified with surface temperatures 

around 20ºC and 14ºC at 100 m depth. Lower surface temperatures are 

observed in the coastal station (around 17ºC) and water column was 

moderately stratified. Diatom (St. 152) and dinoflagellate-dominated (St. 56) 
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stations were characterized by a poorly stratified water column with a narrow 

temperature range with depth. 

 

Figure 9: (a) Schematic representation of Cluster analysis results based on the relative 

contribution of phytoplankton groups to biomass. () Group with the highest diatom 

contributions; () group with dinoflagellate dominance; () group with prymnesiophyte 

dominance; () station with the highest values of prymnesiophyte contribution and () station 

with the highest contribution from cyanobacteria. (b) Temperature profiles (ºC) of four selected 

representative stations: diatom dominated station (station 152), dinoflagellate station (station 

56), coastal (station 32) and offshore (station 24) prymnesiophyte dominated stations. For 

station location see Fig. 9a. 
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A Monte Carlo test of F-ratio showed that the seven environmental 

variables contributed significantly to explain the spatial distribution of 

phytoplankton groups (p <0.01) (water temperature, salinity, water depth, 

N:P ratio, phosphate, DIN and silicate). A Canonical Correspondence Analysis 

(CCA) was used to investigate the response of each group to the environmental 

variables analyzed. The first two ordination axes from the CCA explained 95% 

of the total spatial distribution of phytoplankton groups with 62% referring to the 

first canonical axis and 33% to the second one (Fig.10). 

 

Figure 10: Canonical Correspondence Analysis ordination diagram relative to data on absolute 

contributions of phytoplankton groups. The first two ordination axes represent 62% of the total 

phytoplankton group’s variance and 95% of phytoplankton groups─environment relations. 

Arrows refer to environmental variables (water temperature (TºC), water depth (Depth), 

dissolved inorganic nitrogen (DIN), N:P ratio (N/P), salinity, phosphate and silicate). Diamonds 

() refer to absolute contribution of phytoplankton groups (din, dinoflagellates; dia, diatoms; 

crp, cryptophytes; pra, prasinophytes; pry, prymnesiophytes; cya, cyanobacteria; crs, 

crysophytes). Samples are represented with the same symbols used in Fig. 9a for better 

comparison with cluster analysis results. 
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The first axis reveals a clear distribution of phytoplankton groups ( in Fig.10) 

associated with temperature and water depth, being prasinophytes (pra), 

prymnesiophytes (pry), crysophytes (crs) and cyanobacteria (cya) distribution 

characterized by higher temperature, offshore waters. Conversely, diatoms 

(dia), cryptophytes (crp) and dinoflagellates’ (din) contributions are related to 

cold and more saline waters, rich in nutrients (coastal upwelled waters). 

Diatoms and dinoflagellates appear related to higher phosphate and nitrate 

concentrations, respectively. 

 

2.3.5. Microscopic analysis 

 

Microscope identification of the micro-phytoplankton component 

(>20 µm) from coastal stations revealed the presence of the following species: 

the dinoflagellates Alexandrium affine, Ceratium azoricum, Ceratium 

candelabrum, Ceratium extensum, Ceratium macroceros, Ceratium 

massiliense, Ceratium pentagonum, Ceratium tripos, Ceratium furca, Ceratium 

fusus, Dinophysis acuta, Dinophysis caudata, Gymnodinium catenatum, 

Prorocentrum micans, Protoperidinium diabolus, Protoperidinium divergens, 

Protoperidinium oceanicum, Protoperidinium steinii, and the diatoms Pseudo-

nitzschia sp., Rhizosolenia sp., Thalassiosira sp., Lioloma sp., Proboscia alata, 

Leptocylindrus danicus, Leptocylindrus mediterraneus and Detonula pumila. 

The high-peridinin concentration stations revealed the presence of large chains 

of dinoflagellates (e.g. A. affine and C. pentagonum) together with some non-

chain forming dinoflagellates (e.g. D. acuta, D. caudata and C. furca). 
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2.4. Discussion 

 

Diatoms, dinoflagellates and prymnesiophytes dominated the 

phytoplankton assemblage in terms of contribution to total biomass 

(chlorophyll a), around the Nazaré canyon region. However, cyanobacteria were 

an important group in most offshore stations. Those sites, with higher values of 

zeaxanthin concentration, were also analyzed by C8 HPLC method [Zapata et 

al., 2000], adequate for picophytoplankton, but no divinyl chl a (prochlorophytes 

biomarker) was detected. Hence we can assume that the picophytoplankton 

assemblage did not include prochlorophytes. The C18 HPLC method mostly 

used in this work was selected for being less costly, faster and for showing a 

higher sensitivity than the C8 method [Mendes et al., 2007]. 

Prymnesiophytes appeared outside the upwelling areas, in stratified and 

nutrient-poor oceanic waters (see CCA in Fig. 10). The maximum 

concentrations of Hex-fuco (major pigment of prymnesiophytes) were recorded 

in a region north of the canyon. A previous micropalaeontological study of 

surface sediments from the Nazaré canyon region revealed high abundance 

and diversity of nannoliths (calcareous structures of nannoplankton) in exactly 

the same area [Guerreiro et al., 2009]. The authors suggest that locally 

favorable conditions for productivity of coccolithophores could be promoted in 

this part of the shelf by non-linear internal waves (solitons). Those, according to 

Quaresma et al. [2007], are generated along the northern flank of the canyon by 

the interaction of the dominant semi-diurnal tide with the canyon topography, 

and propagate northward over the shelf, leading to enhanced injection of 

nutrients from the bottom to surface waters. This mechanism has been proven 
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to be an important contributor to the enhancement of biological productivity in 

some shelf-break regions [Sangrà et al., 2001 and references therein]. A study 

of marine coccolithophores in Portuguese coastal waters emphasized the 

importance of these organisms with a dominance of Gephyrocapsa species and 

Emiliania huxleyi [Silva et al., 2008a; Silva et al., 2008b]. 

Microphytoplankton (diatoms and dinoflagellates) was abundant along 

the coast line, responding to the upwelling signal and corresponding to the 

highest values of Chl a. The dynamical conditions also favored high Chl a 

concentrations south of Cape Carvoeiro in an eddie-like structure (filament) 

where strong diatom dominance was registered. This pattern, associated with 

the presence of the Cape, is typical of an alternation between upwelling and 

downwelling processes, and frequently reported for the Portuguese coast 

[Relvas et al., 2007]. In the study period, upwelling was observed in the first 

period and relaxation in the second; however, the spatial distribution of the 

phytoplankton communities remained essentially unaltered, as the same 

species composition was observed at a station sampled at both periods on the 

canyon head. This condition can be seen in the similarity of the vertical 

temperature profiles in the repeated transect (see Fig. 5). This section shows 

that in response to the relaxation of the upwelling favorable winds, warm 

oceanic water extends onshore, increasing stratification in the upper 20-30 m. 

The water column below however, remains mostly unchanged during this 

period. This suggests there was a relaxation process during the cruise, visible 

at the SST images and winds’ regimes, but not sufficiently strong to cause 

impact on the surface phytoplankton community’s composition, as verified by 

microscopic analysis. 
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Pigment analysis revealed micro-phytoplankton as dominant in the thin 

band of upwelled water, but a distinct spatial distribution was evident between 

diatoms and dinoflagellates (see CCA in Fig. 10). Diatoms dominated south of 

the canyon, around Cape Carvoeiro, whereas dinoflagellates were more 

abundant at the two northern stations located at the head of the canyon (Fig. 8). 

According to Kudela et al. [2005], spatial patterns of phytoplankton 

biomass distribution in upwelling systems are related to water-column 

stratification, nutrient availability, and the intensity and persistence of upwelling 

conditions. Stratification is a primary condition associated with blooming of red 

tide dinoflagellates [Margalef et al., 1979; Smayda, 1997; Ryan et al., 2005b], 

as it separates resources that sustain phytoplankton: light that increases 

towards the surface, and nutrients that increase in concentration with depth. By 

enabling access to separated light and nutrient resources, motility of 

dinoflagellates can provide competitive advantage over non-motile species 

[Ryan et al., 2005b]. In this study, diatoms and dinoflagellates appear in distinct 

regions, separated by the submarine canyon, but with similar hydrographic 

conditions, visible in the temperature profiles of both regions (Fig. 9b). Both 

groups appear in the band of upwelled waters, with relatively turbulent cool 

waters under a well developed thermocline. The predominance of chain-forming 

dinoflagellate species found in our study is in accordance with their selective 

advantage to survive in turbulent waters around upwelling areas [Margalef et 

al., 1979; Fraga et al., 1989; Moita et al., 2003]. 

Concerning nutrient availability, nitrogen and phosphorus strongly 

stimulate phytoplankton blooms, including harmful bloom species (HAB’s), in 

coastal areas [Paerl, 1997; Baek et al., 2008]. Along the coast south of the 
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canyon, dominated by diatoms, concentrations of phosphates were always 

greater than 0.2 µM (see Fig. 7a). In contrast, north of the canyon head, at the 

two stations with the highest biomass and dominance of dinoflagellates, 

phosphate levels were less than 0.2 µM, with an extremely high N:P ratio (60 

and 80, respectively) thus indicating a potential limitation by phosphate in this 

region, possibly restricting diatoms growth. This condition may favor 

dinoflagellates, since it is known that some species can grow on organic 

phosohorus sources by using alkaline phosphatase enzymes [Jauzein et al., 

2010]. The nutrient distribution around the canyon head can be explained by the 

persistent input of nutrients in the south-side of the canyon, where the 

phosphate availability (>0.2 µM) remains apparently favorable for diatom 

growth. The influence of the coastal Óbidos lagoon can be discarded, as the 

profiles of nearby stations do not show any intrusion of a different water mass 

(data not shown). 

Recent laboratory research revealed that the growth rates of two 

Ceratium species increased in high N:P (32-200) nutrient conditions 

(P limitation), suggesting an advantage over other algal species in phosphorus-

limited conditions [Baek et al., 2008]. These authors calculated the half-

saturation constants (Ks) for nitrate and phosphate of C. furca (0.49 and 

0.05 µM, respectively) and C. fusus (0.32 and 0.03 µM, respectively), which are 

low comparing to diatom Ks values. In fact, a great variability is reported for 

diatom phosphorous Ks, e.g. 0.29-0.39 for Eucampia zodiacus [Nishikawa et al., 

2007], 5.8-7 for Thalassiosira pseudonana [Perry, 1976], or 0.68 for 

Skeletonema costatum [Yamamoto & Tarutani, 1999], among others. In our 

study, some of the dinoflagellate species (e.g. C. furca and C. fusus), show the 
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ability to obtain nutrients through alternative nutrition sources, such as 

phagotrophy, which might contribute to bloom formation and population 

persistence [Baek et al., 2008]. 

Among the dinoflagellate community, some toxic species were very 

abundant, such as two Dinophysis species and A. affine. The occurrence of 

these organisms has been previously reported in this region by Moita [2001], 

Dinophysis spp in stratified summer conditions and A. affine in the autumn 

period. Our results revealed a massive bloom of dinoflagellates, both of 

unicellular and chain-forming species (e.g. A. affine, in some cases with more 

than 30 cells per chain) located in a well-defined region of the canyon head. 

For other regions in the Northwest Portuguese coast several episodes of toxic 

dinoflagellate blooms have been also described [Moita et al., 2003; Moita et al., 

2006 and references therein]. Many of these species (e.g. Alexandrium spp and 

Gymnodinium catenatum) produce benthic resting stages which accumulate in 

bottom sediments and may function as seed-beds for planktonic blooms 

[Amorim & Dale, 1998]. 

The contrasting nutrient conditions at north and south of the canyon are 

associated with particular interactions between topography and upwelling 

processes. The spring/summer oceanographic conditions along the west 

Portuguese coast are generally dominated by a coastal upwelling, characterized 

by a southward (left bounded) flowing shelf circulation and an important supply 

of nutrient-rich waters to the surface layers. Left bounded flows interacting with 

a narrow canyon, such as the Nazaré Canyon, are known to promote an 

important circulation inside canyon structures [Klinck, 1996; She & Klinck, 

2000]. The pressure gradient that supports the flow in the shelf, inside canyons, 
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forces onshore (up-canyon) flow and intensified upwelling at the canyon’s head. 

This circulation pattern can be advected by the incident flow, leading to 

intensified upwelling in the southward (downstream) rim of the canyon and the 

nearby shelf [Allen, 1996; Klinck, 1996]. Previous observations suggest that this 

kind of response to incident flow is also observed in Nazaré Canyon, under 

upwelling conditions. The data collected in May 2004, in particular, revealed the 

presence of upward motion and high surface nutrient concentrations on the 

southward flank of the canyon and over the shelf area just south of the canyon 

[Vitorino et al., 2005]. The occurrence of intensified upwelling in the southern 

rim of the canyon, which extends its influence to the shelf south of the canyon, 

can eventually persist even during the period of relaxation of upwelling winds, 

providing a probable explanation for the persistence of high concentrations of 

diatoms observed in this area, in both phases of the cruise. The significant 

association found between higher salinities (of typical cold upwelled waters), 

phosphates and diatoms’ abundance (see CCA results in Fig.10) seems to 

reinforce the occurrence of this process. 

 

2.5. Conclusion 

 

In this work, the use of biomarker taxonomic pigments, combined with 

microscopic observations, have been used to study phytoplankton distribution in 

a peculiar region of the Portuguese coast. The presence of topographic features 

such as the submarine canyon and important capes such as Cape Carvoeiro 

contribute to define the regional characteristics of the coastal ocean response to 

upwelling winds and, consequently affect the distribution of the main 
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phytoplankton groups. Microscopic observations confirmed the high abundance 

of toxic dinoflagellate species (e.g. A. affine and Dinophysis species) in a 

specific region of the canyon. This important occurence with potential ecological 

implications was associated with oceanographic and chemical conditions 

influenced by peculiar characteristics of the region. However, a more 

comprehensive study is desirable to enlighten the real impact of the canyon on 

phytoplankton dynamics and HAB’s occurrence in the area. 
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Dynamics of phytoplankton communities during late 
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ABSTRACT 

The composition and distribution of phytoplankton assemblages were studied 

around the tip of the Antarctic Peninsula during two summer cruises carried out 

in February/March 2008 and February/March 2009. Water samples were 

collected for HPLC/CHEMTAX pigment analysis and microscopic observations. 

A great spatial variability in chlorophyll a (Chl a) was observed in the study 

area: highest levels in the vicinity of the James Ross Island (exceeding 

7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m-3) in the Bransfield Strait, 

and the lowest concentrations in the Weddell Sea and Drake Passage (below 

0.5 mg m-3). Phytoplankton assemblages were generally dominated by diatoms, 

especially at coastal stations with high Chl a concentration, where diatom 

contribution was above 90% of total Chl a. In open-ocean areas (e.g., Weddell 

Sea) nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, 

replaced diatoms. Many species of peridinin-lacking autotrophic dinoflagellates 

(e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-

stratified stations of Bransfield Strait. Iron limitation, inferred from a Fe-

nutritional state index (19’-hexanoyloxyfucoxanthin:chlorophyll c3 ratio), and 

water column structure were the most important environmental factors 

determining the biomass and distribution of the phytoplankton communities. The 

HPLC pigment data also allowed an assessment of different physiological 

responses of phytoplankton to ambient light variation. The present study 

provides new insights about the dynamics of phytoplankton in an undersampled 

region of the Southern Ocean. 

Keywords: Antarctic Peninsula, Phytoplankton, Pigments, HPLC, CHEMTAX 
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3.1. Introduction 

 

The Antarctic Peninsula (AP) is experiencing one of the fastest rates of 

regional climate change on Earth, as ocean surface temperatures at the 

continental margin of the western AP have undergone a pronounced warming 

(3-4ºC) over the past century [Turner et al., 2005; Steig et al., 2009]. Such 

changes promote the collapse of ice shelves, retreat of glaciers and exposure of 

new terrestrial habitats [Clarke et al., 2007]. Environmental features, as regional 

circulation system, seasonal changes in the light regime and sea ice cover, 

have been shown to determine a latitudinal variation in phytoplankton 

productivity along the western AP [Garibotti et al., 2003]. Moreover, recent 

studies have shown that changes in phytoplankton biomass and composition 

along the western shelf of the AP are associated with regional long-term climate 

alterations [Montes-Hugo et al., 2009]. 

The Southern Ocean is generally a high-nutrient and low-chlorophyll 

(HNLC) area, mainly due to the limitation of micronutrients, such as iron. 

However, high phytoplankton biomass has been observed in particular regions, 

especially at oceanic fronts, marginal ice zones and nearshore straits, bays, 

and lees of islands [Prézelin et al., 2000 and references therein]. These high 

biomass regions are considered critical feeding sites for higher trophic levels 

and play a crucial role on biogeochemical cycling of nutrients. Phytoplankton 

blooms in those regions (usually dominated by diatoms or haptophytes, such as 

Phaeocystis antarctica) are generally associated with the development of a 

shallow mixed layer (with increased light levels that enhance phytoplankton 

growth) and/or iron availability [Prézelin et al., 2000]. On the other hand, recent 
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studies have shown the increasing dominance of cryptophytes in the AP region, 

mostly in zones with glacial melt water [Moline & Prézelin, 1996; Moline et al., 

2004]. The dominance of cryptophytes instead of diatoms may influence the 

trophic web, as cryptophytes are more efficiently grazed by salps than by 

antarctic krill [Moline et al., 2004]. Therefore, studies on phytoplankton and the 

influence of environmental constraints in species/groups composition are 

relevant for evaluation of ecosystem changes, both at short and long-term 

scales. 

The study of phytoplankton community composition has been classically 

performed with light microscope examination. An alternative way to study 

phytoplankton community structure is through chemotaxonomic methods based 

on High Performance Liquid Chromatography (HPLC) analysis, which rely on 

the presence and relative concentration of pigments that are characteristic of 

distinct algal taxonomic groups [Wright & Jeffrey, 2006]. Nevertheless, the use 

of phytoplankton pigments in chemotaxonomic methods has drawbacks, such 

as non-unique pigment markers and/or potential fluctuations in pigment ratios 

with physiological stressors, both at species and at cellular level (e.g., 

irradiance and nutrients) [Wright & Jeffrey, 2006]. On the other hand, variations 

in the relative concentration of those pigments may be used as indicators of the 

physiological state of phytoplankton communities [Moline, 1998; DiTullio et al., 

2007]. One of the chemotaxonomic tools that has been developed and 

continuously improved to minimize errors inherent to fluctuations of pigment 

ratios is CHEMTAX [Mackey et al., 1996]. This approach involves an iterative 

process of matrix factorization to optimize pigment ratios in order to estimate 

the contribution of phytoplankton groups to total chlorophyll a (Chl a). 
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CHEMTAX has been extensively used in phytoplankton communities in the 

Australian sector of the Southern Ocean [Wright et al., 1996; Wright & van den 

Enden, 2000; Wright et al., 2009; 2010] but only few studies have applied this 

approach to the AP region [Rodriguez et al., 2002; Kozlowski et al., 2011]. 

In the present work, the spatial pattern of phytoplankton communities 

was studied around the tip of the AP, encompassing the Bransfield Strait, part 

of the Drake Passage and a northwestern section in the Weddell Sea. On the 

eastern side of the AP, particularly in the ice edge zone of the Weddell Sea, 

extensive phytoplankton blooms have been detected during spring and summer 

[Sullivan et al., 1993; Park et al., 1999; Kang et al., 2001], which form an 

important feeding ground for grazers. In addition, the shallows and bays of 

southwestern Bransfield Strait are breeding grounds for a host of biota, 

especially krill [Zhou et al., 1994], as result of high surface phytoplankton 

biomass associated with seasonal blooms [Karl et al., 1991; Castro et al., 

2002]. The main objective of the present study was to understand 

phytoplankton biomass variation and assemblage distribution during two late 

summers around the tip of AP by chemotaxonomic analysis, complemented 

with microscopic observations. The specific questions addressed in this study 

were: (1) what is the relationship between the thermohaline structure, water-

column physico-chemical properties and the phytoplankton communities in 

different areas of the study region?; and (2) can photosynthetic pigments be 

used as indices (proxies) that reflect physiological state and adaptations of 

phytoplankton communities to environmental constraints (e.g., iron-limitation 

and light availability)? 
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3.2. Material and Methods 

 

3.2.1. Study area and sampling collection 

 

Oceanographic cruises were conducted in the adjacent waters of the tip 

of AP, from 60.6ºS to 64.3ºS and from 48.3ºW to 62.2ºW (Fig. 1), during late 

summer of 2008 (February/March 2008) and 2009 (February/March 2009) and 

as part of the SOS-CLIMATE (Southern Ocean Studies for Understanding 

Global-CLIMATE Issues) project. Surface water samples were taken in all CTD 

(conductivity-temperature-depth) stations for phytoplankton pigments and 

microscopic analyses (phytoplanktonic cell abundance and carbon biomass). 

No microscopic analyses were made for the Weddell Sea samples due to very 

low phytoplankton concentrations. Both physical data (conductivity, temperature 

and salinity) and water samples were collected using a combined Sea-Bird 

CTD/Carrousel 911+system® equipped with 24 five-liter Niskin bottles. Density 

(kg m-3) was calculated for evaluation of the water column physical structure 

based on temperature, salinity and pressure data. The upper mixed layer (UML) 

depth was determined as the depth where a change of 0.05 kg m-3 occurred 

over a 5 m depth interval [Mitchell & Holm-Hansen, 1991]. At some stations, 

chosen according with the fluorescence profiles (WetLabs® profiling 

fluorometer), water samples were taken from several depths for phytoplankton 

pigment analysis. Phytoplankton cell abundance and carbon biomass data were 

calculated for surface samples, as they are representative of the UML [Garibotti 

et al., 2003]. 
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Figure 1: Study area and stations’ location during SOS-CLIMATE 2008 and 2009 summer 

cruises. Bounded stations (dashed line) represent the geographical zonation used in this study 

(non-bounded stations were not used in the discussion of the results). The first letter of stations’ 

is related to the surveyed region (D = DRAKE, B = BRANSFIELD, W = WEDDELL, R = ROSS). 

The number following that letter refers to the sampling period (1 = 2008 cruise, 2 = 2009 cruise). 

Inset map includes the South Polar orthographic projection and the box indicates the magnified 

region. 

 

3.2.2. HPLC pigment analysis 

 

During the cruises, seawater samples (1-2 L) were filtered onto Whatman 

GF/F filters (nominal pore size 0.7 μm and 25 mm in diameter), under vacuum 

pressure (< 500 mbar) and filters were immediately stored in liquid nitrogen. 

Phytoplankton pigments were extracted with 2 mL of 95% cold-buffered 

methanol (2% ammonium acetate) for 30 min at -20°C, in the dark. Samples 

were sonicated (Bransonic, model 1210, w: 80, Hz: 47) for 1 min at the 

beginning of the extraction period. Samples were then centrifuged at 1100 g for 
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15 min at 4°C. Extracts were filtered (Fluoropore PTFE membrane filters, 0.2 

μm pore size) and immediately injected in the HPLC instrument. Pigment 

extracts were analyzed using a Shimadzu HPLC comprised of a solvent delivery 

module (LC-10ADVP) with system controller (SCL-10AVP), a photodiode array 

(SPD-M10ADVP), and a fluorescence detector (RF-10AXL). The 

chromatographic separation of pigments was achieved using a monomeric OS 

C8 column (Symmetry C8, 15 cm long, 4.6 mm in diameter, and 3.5 µm particle 

size). Mobile phases were: (A) methanol:acetonitrile:aqueous pyridine solution 

(0.25 M, pH adjusted to 5.0 with acetic acid) (50:25:25, v/v/v), and (B) 

methanol:acetonitrile:acetone (20:60:20, v/v/v). The solvent gradient followed 

Zapata et al. (2000) with a flow rate of 1 mL min–1, with an injection volume of 

100 μL, and 40 minute runs. The limit of detection and limit of quantification of 

this method were calculated and discussed in Mendes et al. [2007]. Pigments 

were identified from both absorbance spectra and retention times and 

concentrations calculated from the signals in the photodiode array detector or 

fluorescence detector (Ex. 430 nm; Em. 670 nm). The HPLC system was 

previously calibrated with pigment standards from Sigma (chlorophyll a, b and 

β-carotene) and DHI (for other pigments). Table 1 lists all pigments detected 

above the limit of quantification and that were considered in this study. 

 

3.2.3. CHEMTAX analysis of pigment data 

 

The relative abundance of microalgal groups contributing to total Chl a 

biomass was calculated by pigment concentration data using CHEMTAX v1.95 

chemical taxonomy software [Mackey et al., 1996; Wright et al., 1996; Wright et 
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al., 2009]. CHEMTAX uses a factor analysis and steepest-descent algorithm to 

best fit the data on to an initial pigment ratio matrix. The basis for calculations 

and procedures are fully described in Mackey et al. [1996]. The initial pigment 

ratios of major algal classes were based on pigment matrices used in studies 

from the western AP region [Rodríguez et al., 2002; Kozlowski et al., 2011] 

(Table 2a). Based on the identified diagnostic pigments and confirmation of the 

higher taxonomic groups by microscopic analysis, 6 algal groups were loaded 

on CHEMTAX: diatoms, dinoflagellates-1 (peridinin-containing dinoflagellates), 

"Phaeocystis antarctica", cryptophytes, green flagellates (with Chl b) and 

"chemotaxonomic group". The loaded pigments were chlorophyll c3 (Chl c3), 

chlorophyll c2 (Chl c2), peridinin (Perid), 19’-butanoyloxyfucoxanthin (But-fuco), 

fucoxanthin (Fuco), 19’-hexanoyloxyfucoxanthin (Hex-fuco), alloxanthin (Allo), 

chlorophyll b (Chl b) and chlorophyll a (Chl a) (see Table 2a). The 

"chemotaxonomic group" was defined as having a pigment signature including 

Chl c3, Chl c2, But-fuco, Fuco and Hex-fuco, relative to a group including 

peridinin-lacking autotrophic dinoflagellates and diatoms with Chl c3 [Wright & 

Jeffrey, 2006], and other algal groups whose pigment composition has not yet 

been exhaustively analyzed (e.g., parmales and chrysophytes). 

The same initial ratio was used in data from both study years, but data 

from each cruise were run separately in order to detect potential variations in 

optimization of CHEMTAX procedures. Additionally, in order to account for 

variation in pigment ratios with irradiance and/or nutrient availability, data from 

each cruise were split into three bins according to sample depth (0-50 m, 50-

100 m and >100 m). 
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Table 1: Concentrations (mg m-3) of pigments (average and minimum-maximum concentrations 

by geographic region). Chl a = chlorophyll a; Chlide a = chlorophyllide a; Phytin a = pheophythin 

a; Phide a = pheophorbide a; Chl b = chlorophyll b; Chl c2 = chlorophyll c2; Chl c3 = chlorophyll 

c3; Allo = alloxanthin; Fuco = fucoxanthin; Hex-fuco = 19'-hexanoyloxyfucoxanthin; But-fuco = 

19'-butanoyloxyfucoxanthin; Diadino = diadinoxanthin; Diato = diatoxanthin; Perid = peridinin. 

Pigment Drake Bransfield Ross Weddell Bransfield Ross Weddell

Chl a 0.39 (0.04-0.89) 0.55 (0.12-1.08) 1.76 (0.25-4.50) 0.15 (0.04-0.15) 0.92 (0.35-1.98) 3.73 (0.36-7.61) 0.27 (0.02-0.27)

Chlide a 0.01 (0.00-0.03) 0.02 (0.00-0.05) 0.24 (0.00-0.87) 0.01 (0.00-0.01) 0.03 (0.00-0.14) 0.33 (0.00-0.90) 0.01 (0.00-0.03)

Phytin a 0.02 (0.00-0.05) 0.02 (0.01-0.05) 0.07 (0.01-0.26) 0.01 (0.00-0.01) 0.04 (0.01-0.07) 0.08 (0.01-0.18) 0.01 (0.00-0.03)

Phide a 0.04 (0.00-0.10) 0.08 (0.01-0.22) 0.19 (0.02-0.61) 0.01 (0.00-0.03) 0.09 (0.01-0.29) 0.26 (0.03-0.55) 0.01 (0.00-0.04)

Chl b 0.01 (0.00-0.02) 0.01 (0.00-0.04) 0.03 (0.02-0.09) 0.01 (0.00-0.03) 0.01 (0.00-0.03) 0.02 (0.00-0.03) 0.01 (0.00-0.03)

Chl c 2 0.07 (0.01-0.20) 0.11 (0.03-0.24) 0.50 (0.03-1.27) 0.02 (0.01-0.05) 0.13 (0.03-0.28) 0.73 (0.03-1.71) 0.04 (0.00-0.13)

Chl c 3 0.10 (0.00-0.28) 0.15 (0.00-0.37) 0.06 (0.00-0.21) 0.01 (0.00-0.03) 0.09 (0.01-0.28) 0.11 (0.00-0.30) 0.02 (0.00-0.05)

Allo 0.01 (0.00-0.07) 0.02 (0.00-0.23) 0.00 (0.00-0.00) 0.02 (0.00-0.06) 0.01 (0.00-0.03) 0.00 (0.00-0.01) 0.03 (0.00-0.13)

Fuco 0.31 (0.03-0.72) 0.44 (0.10-0.96) 1.60 (0.17-3.47) 0.05 (0.02-0.14) 0.59 (0.10-1.42) 3.00 (0.2-6.95) 0.11 (0.02-0.60)

Hex-fuco 0.07 (0.02-0.12) 0.08 (0.02-0.14) 0.02 (0.00-0.07) 0.05 (0.02-0.08) 0.02 (0.01-0.06) 0.01 (0.00-0.03) 0.06 (0.01-0.14)

But-fuco 0.06 (0.01-0.19) 0.07 (0.01-0.18) 0.01 (0.00-0.02) 0.01 (0.00-0.02) 0.02 (0.01-0.06) 0.00 (0.00-0.01) 0.01 (0.00-0.02)

Diadino 0.10 (0.01-0.23) 0.13 (0.02-0.29) 0.13 (0.02-0.28) 0.02 (0.01-0.03) 0.09 (0.01-0.22) 0.29 (0.02-0.60) 0.03 (0.00-0.09)

Diato 0.01 (0.00-0.04) 0.02 (0.00-0.06) 0.02 (0.00-0.05) 0.00 (0.00-0.00) 0.02 (0.00-0.06) 0.06 (0.00-0.16) 0.00 (0.00-0.01)

Perid 0.02 (0.00-0.05) 0.05 (0.00-0.13) 0.06 (0.00-0.17) 0.00 (0.00-0.00) 0.03 (0.00-0.09) 0.03 (0.00-0.06) 0.01 (0.00-0.02)

2008 2009

 

 

 

Table 2: Pigment to chlorophyll a ratios used for CHEMTAX analysis of pigment data. Initial 

ratios before analysis (a), 2008 optimized ratios (for 0–50m bin) after analysis (b), and 2009 

optimized ratios (for 0–50m bin) after analysis (c). 
Chl c3 Chl c2 Perid But-fuco Fuco Hex-fuco Allo Chl b Chl a

(a) Input matrix

Diatoms 0 0.110 0 0 0.754 0 0 0 1
Dinoflagellates-1 0 0.320 0.720 0 0 0 0 0 1
Chemotaxonomic group 0.067 0.126 0 0.122 0.290 0.248 0 0 1
Phaeocystis antarctica 0.141 0.144 0 0.080 0.011 0.916 0 0 1
Cryptophytes 0 0.174 0 0 0 0 0.228 0 1
Green flagellates 0 0 0 0 0 0 0 0.945 1

(b) Output matrix: 0 - 50 m (2008 data)

Diatoms 0 0.225 0 0 0.940 0 0 0 1
Dinoflagellates-1 0 0.274 0.926 0 0 0 0 0 1
Chemotaxonomic group 0.501 0.184 0 0.337 0.821 0.353 0 0 1
Phaeocystis antarctica 0.209 0.128 0 0.135 0.023 0.982 0 0 1
Cryptophytes 0 0.191 0 0 0 0 0.428 0 1
Green flagellates 0 0 0 0 0 0 0 0.932 1

(c) Output matrix: 0 - 50 m (2009 data)

Diatoms 0 0.149 0 0 0.821 0 0 0 1
Dinoflagellates-1 0 0.381 0.898 0 0 0 0 0 1
Chemotaxonomic group 0.249 0.118 0 0.093 0.401 0.037 0 0 1
Phaeocystis antarctica 0.208 0.128 0 0.080 0.011 1.237 0 0 1
Cryptophytes 0 0.192 0 0 0 0 0.362 0 1
Green flagellates 0 0 0 0 0 0 0 0.879 1  
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For optimization of the input matrix, a series of 60 pigment ratio matrices 

were generated by multiplying each ratio from the initial matrix by a random 

function, as described by Kozlowski et al. [2011]. The average of the best six 

output matrices (with the lowest residual or root mean square error) were taken 

as the optimized results. The optimized pigment ratio matrix derived by 

CHEMTAX for the 0-50 m bin is presented in Tables 2b and 2c (data from 2008 

and 2009, respectively). The output data are presented as absolute amounts 

(mg m-3) of Chl a attributed to each phytoplankton group, and as a relative 

amount (percentage) of the total Chl a in a sample. 

 

3.2.4. Microscopic analysis 

 

Water samples were preserved in amber glass flasks (~250 mL) with 2% 

alkaline Lugol’s iodine solution for phytoplankton identification and counting. 

Settling chambers (from 50 to 100 mL settling volume) were inspected on an 

Axiovert 135 ZEISS inverted microscope [Utermöhl, 1958; Sournia, 1978] in 

order to determine the species composition at 200×, 400× and 1000× 

magnification, according to specific literature [mainly, Hasle & Syvertsen, 1996; 

Scott & Marchant, 2005]. Staining cells with Lugol’s solution allows recognition 

of chloroplasts and pyrenoids and provides a clear picture of the cell outline, 

which favors recognition of shape and size under the microscope [Sournia, 

1978]. Distinction between autotrophic and heterotrophic dinoflagellates was 

made on either the known taxonomic trophic mode or the presence/absence of 

chloroplasts. Species-specific cell biovolumes were estimated by measuring cell 

dimensions (from microscope images - Spot Insight QE camera) and by 
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applying volume calculations based on the most similar geometric shapes as in 

Hillebrand et al. [1999]. At least 30 specimens of each species or major taxa 

were randomly chosen for measurements. Cell carbon content (carbon 

biomass) was then calculated using different carbon-to-volume ratios for 

diatoms and dinoflagellates according to Montagnes et al. [1994] and for all 

other algae groups according to Menden-Deuer & Lessard [2000]. 

 

3.3. Results 

 

3.3.1. Spatial distribution of phytoplankton pigments 

 

Figure 2 shows Chl a distribution along with Hex-fuco:chl c3 ratio (higher 

Hex-fuco:chl c3 ratio associates with iron limitation). Three spatial features are 

observed in Chl a distribution around tip of the AP: (i) a high Chl a region 

(exceeding 7 mg m-3 in 2009) in the vicinities of James Ross Island; (ii) a region 

with intermediate Chl a levels (0.5 to 2 mg m-3) in the Bransfield Strait, and (iii) 

two areas with very low Chl a concentrations (below 0.5 mg m-3), comprising the 

Weddell Sea section and stations located mainly offshore in the Drake Passage 

(only sampled in 2008). Both highest values of Hex-fuco:Chl c3 ratios (>3) and 

lowest phytoplankton biomass were observed in the Weddell Sea (in both 

years) and offshore in the Drake Passage (Fig. 2). 

Besides Chl a, the most abundant pigments (with maximum 

concentrations > 0.5 mg m-3) were Fuco, Chl c2, diadinoxanthin (Diadino) and 

some degradation products of Chl a (see Table 1). The highest concentrations 

of those pigments were observed near James Ross Island. Bransfield Strait 
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(particularly in 2008) and Drake Passage also presented relatively high values 

(> 0.05 mg m-3) of Chl c3, Hex-fuco and But-fuco. In the Weddell Sea region, 

where the lowest pigment concentrations were observed, Fuco was the main 

accessory pigment at coastal stations, while Allo and Hex-fuco appeared as the 

major carotenoids at some offshore stations. 

 

Figure 2: Surface distribution of total chlorophyll a (mg m-3) (color scale) and Hex-fuco:Chl c3 

ratio (isolines) for SOS-CLIMATE 2008 (a) and 2009 (b). 
 

 

Relationships between particular accessory pigments can be used to 

reveal the dominance of specific taxonomic groups. As observed in Figure 3, 
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the highest values of Chl c3:Fuco (slope = 0.38) were registered in 2008 for the 

Bransfield Strait and Drake Passage, intermediate values (slope = 0.16) were 

recorded in 2009 for the Bransfield Strait and the lowest values (slope = 0.037), 

for both years, were observed next to James Ross Island. The different slopes 

of this ratio were associated with relative diatom contribution to phytoplankton 

community, as observed in Ross stations where higher diatom contributions 

were associated with a lower slope (further information on next section). 

 

Figure 3: Relationship between chlorophyll c3 and fucoxanthin for the different regions and 

sampling periods. 

 

3.3.2. Distribution of taxonomic groups in relation to oceanography 

 

Spatial distribution 

 

The relative contribution of the main phytoplankton groups to surface 

Chl a, calculated by CHEMTAX, is shown in Figure 4.  
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Figure 4: Surface distribution of the relative contribution (%) of main phytoplankton groups to 

total Chlorophyll a estimated by CHEMTAX program using HPLC pigment data: diatoms in 2008 

(a) and 2009 (b); cryptophytes in 2008 (c) and 2009 (d); Phaeocystis antarctica in 2008 (e) and 

2009 (f); "Chemotaxonomic group" in 2008 (g) and 2009 (h). 
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Phytoplankton assemblages were generally dominated by diatoms in 

both years (Fig. 4a and b), especially at stations with high Chl a concentration 

(mainly near James Ross Island), where diatom contribution was above 90% of 

total Chl a. Nevertheless, other important groups were also abundant at distinct 

areas around the tip of the AP. Cryptophytes dominated the Weddell Sea 

region, particularly stations with low diatom contribution, and at one station in 

the Bransfield Strait, in 2008 (Fig. 4c and d). The haptophyte P. antarctica 

showed the greatest contributions to total biomass in the Drake Passage region 

(only sampled in 2008) and at some Weddell Sea stations (Fig. 4e and f). The 

“chemotaxonomic group” was more dominant in the Bransfield Strait comparing 

to other regions (Fig. 4g and h). Dinoflagellates-1, more abundant in the 

Bransfield Strait, were always below 10% of total Chl a, and green flagellates 

never represented more than 8% of biomass (data not shown). 

 

Microscopy vs. CHEMTAX 

 

Direct comparisons of the estimated biomass using microscopy data and 

CHEMTAX showed a significant relationship for total phytoplankton (Fig. 5a) 

and diatom biomass (Fig. 5b). The significant correlation between microscope-

derived carbon biomass and diatom-allocated Chl a calculated through 

CHEMTAX (Fig. 5b) mirrored the correlation for the total autotrophic community 

(Fig. 5a), denoting a clear dominance of diatoms. There was a conspicuous 

dominance of diatom carbon biomass in both years, with higher values 

(> 100 µg C l-1, in average) found near James Ross Island and in agreement 

with CHEMTAX results (see Fig. 4a and b). Regarding the haptophyte P. 
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antarctica, differences varied with the study period. In 2009 this organism was 

rarely recorded in microscope observations, partly due to the lack of microscope 

data from Weddell Sea, where the contribution of P. antarctica to Chl a was 20-

40% (determined by CHEMTAX). In 2008, with the additional data of Drake 

Passage, a significant correlation was observed between the two methods 

(Fig. 5c). Other groups (not shown in figure 5), such as cryptophytes, were 

barely separated from other small flagellates by microscopic analysis, except at 

one station in the Bransfield Strait (in 2008), where CHEMTAX data also 

showed a higher contribution of cryptophytes to biomass. The "chemotaxonomic 

group" was correlated with small flagellate biomass in the Drake Passage 

(R2=0.52; p<0.05), while in the Bransfield Strait the "chemotaxonomic group" 

was significantly related to dinoflagellates in both years (R2=0.62; p<0.05). This 

correlation found in the Bransfield Strait might indicate the presence of other 

types of dinoflagellates that contain other combinations of pigments instead of 

peridinin. 

 

Figure 5: Relationship between chlorophyll a biomass estimated from CHEMTAX/HPLC 

pigment data and carbon biomass obtained through microscopic analysis. (a) All groups (2008 

and 2009), (b) diatoms (2008 and 2009) and (c) Phaeocystis antarctica (only 2008). 
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Drake Passage (DRAKE) 

 

Figure 6 shows the vertical profiles of Chl a biomass of taxonomic groups 

determined by CHEMTAX at a typical coastal and offshore station in the Drake 

Passage region.  

 

Figure 6: Depth distribution of phytoplankton groups' biomass (as chlorophyll a concentration) 

calculated by CHEMTAX at: (a) a coastal station (D119) and (b) offshore station (D125) in the 

Drake Passage region. Insets: density profiles of the respective stations (see Fig. 1 for stations’ 

locations). 

 

An increase in water column stratification was generally observed from 

coastal to offshore stations in this region, as observed in Figure 6. A coastal-

offshore gradient was also observed for biomass and relative distribution of 

taxonomic groups, with higher Chl a concentration at the coastal stations and a 

decrease towards offshore. At the coastal station (Fig. 6a), a dominance of 

diatoms was observed but no deep chlorophyll maximum (DCM), which was 

present at the offshore station (Fig. 6b). Relatively low diatom contributions 

were found at the surface layers of offshore stations (below 60 m diatoms 
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became dominant). In those surface water masses diatoms were replaced by 

nanoplankton (<20 µm in greatest axial linear dimension), such as P. antarctica, 

cryptophytes and green flagellates (Fig. 6b). Although many flagellates could 

not be identified by microscope observations, the most representative 

phytoplankton species in DRAKE were the large centric diatom Corethron 

pennatum, the haptophyte P. antarctica and nanoflagellates, comprising 

dinoflagellates (e.g., Gymnodinium spp.), among other taxonomic groups. 

 

Bransfield Strait (BRANSFIELD) 

 

The Bransfield Strait region showed the highest spatial variability for both 

biomass and distribution of taxonomic groups, and also a significant variation 

between the two surveyed years (Fig. 7). Higher biomass was observed in 2009 

(see also Fig. 2) compared with 2008, coupled with an increase in the relative 

contribution of diatoms (mainly the centric Thalassiosira spp., Corethron 

pennatum, the nano-sized Chaetoceros neglectus and the pennate 

Pseudonitzschia spp.). Generally, the highest biomass levels within the UML 

were registered at the deep stations in the central basin and were characterized 

by a major contribution of the "chemotaxonomic group" (associated with high 

densities of Gymnodinium spp.) and diatoms (Fig. 7b and e). Biomass levels 

decreased towards the coastal stations, where diatoms and/or cryptophytes 

were the major contributors to the phytoplankton community (Fig. 7a and d). In 

2008, a negative relationship was found between surface Chl a and the UML 

depth (R2 = 0.50, p < 0.01), with the deepest UML reaching 155 m near the 

Elephant Island (station B104). Lower biomass and an increase of small 
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flagellates over diatoms were seen at stations with deeper UML (see Fig. 7c). In 

2009, this physical feature was not observed (UML was always less than 

100 m) and biomass levels were similar to those observed at other 

BRANSFIELD stations, which were characterized by diatoms dominance (see 

Fig. 7f). 

 

 

Figure 7: Depth distribution of phytoplankton groups’ biomass (as chlorophyll a concentration) 

calculated by CHEMTAX at stations (a) B115, (b) B116 and (c) B104 (occupied in 2008); and at 

stations (d) B220, (e) B216 and (f) B204 (occupied in 2009) in the Bransfield Strait. Insets: 

density profiles of the respective stations (see Fig. 1 for stations’ locations). 

 

Generally, water column stratification and biomass levels of the main 

taxonomic groups were related, particularly in 2008 (Fig. 8). At stations with 

deep UML (stations B119, B120 and B121), mainly along the coast, diatoms 
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reached up to 0.4 mg m-3 of total Chl a (inset in Fig. 8), which represented over 

75% of total biomass. On the other hand, other taxonomic groups (mainly 

dinoflagellates) reached a similar or higher relative contribution at shallow UML 

stations (e.g., stations B117, B125 and B126). At intermediate stratification 

conditions (station B124) cryptophytes became the dominant group (more than 

80% of total Chl a). A slight stratification and low biomass, with a co-dominance 

of diatoms and cryptophytes was observed at the nearshore station B115 

(Figs. 7a and 8). 

 

Figure 8: Vertical profiles of density at Bransfield Strait stations with surface chlorophyll a 

values above 0.5 mg m-3, during the 2008 cruise. Inset: absolute contribution (mg m-3 of 

chlorophyll a) of major taxonomic groups at same stations shown on the main graph. Labels of 

some stations are displayed in order to associate with the graph inset. Density profiles of 

stations B115 and B124 are highlighted in black lines (see Fig. 1 for stations’ locations). 

 

 



Phytoplankton around the tip of the Antarctic Peninsula 

120 

 

Weddell Sea (WEDDELL) 

 

In the Weddell Sea section the phytoplankton community was mainly 

composed by diatoms, cryptophytes and P. antarctica (see Fig. 4), and in both 

years was associated with low biomass values (Chl a always below 0.5 mg m-3; 

see Fig. 2). In that section it was observed a particularly strong coastal-offshore 

gradient in water column stratification (Fig. 9). 

 

Figure 9: Vertical profiles of water column density for the Weddell Sea transect during (a) 2008 

and (b) 2009. Insets: absolute contribution (mg m-3 of chlorophyll a) of major taxonomic groups 

along the longitude W (coastal-offshore gradient displayed by arrows) for the same stations on 

the main graphs (see Fig. 1 for stations’ location). Labels of some stations are displayed in 

order to assist the geographical localization. Density profiles of more coastal stations are 

highlighted in black lines. 

 

The phytoplankton community composition displayed a neat succession 

along this gradient (insets in Fig. 9). Diatoms were dominant in the well-mixed 

water column at coastal stations, associated with highest biomass 
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(> 0.2 mg m−3), and they were gradually replaced by cryptophytes at stations 

with intermediate stratification. In both studied years, offshore stations were 

strongly stratified, which was associated with very low biomass (< 0.1 mg m-3). 

 

Figure 10: Depth distribution of phytoplankton groups’ biomass (as chlorophyll a concentration) 

calculated by CHEMTAX (bars), and Hex-fuco:Chl c3 ratio (marked line) at the selected stations 

from the Weddell Sea. The order of appearance of stations corresponds to the onshore-offshore 

gradient in 2008 (a-c) and 2009 (d-f) along with the Hex-fuco:Chl c3 ratio profiles. Insets: density 

profiles of the respective stations (see Fig 1. for stations’ locations). 

 

Figure 10 shows vertical profiles of the community composition at six 

stations (Fig. 10a-f) and their density profiles (insets in Fig. 10). For station 

W211 (Fig. 10d), samples from only two depths (including surface) are 

available. In addition, the vertical distribution of the Hex-fuco:Chl c3 ratio (Fe-



Phytoplankton around the tip of the Antarctic Peninsula 

122 

index ) is also shown. The surface Hex-fuco:Chl c3 ratio values increased, from 

approximately 2 at coastal station (Fig. 10a and d) to nearly 7 at the most 

offshore 2008 station (Fig. 10c), dominated by P. antarctica. At stations with 

intermediate ratio values at surface (station W114, Fig. 10b), a major 

contribution of cryptophytes was observed within the upper 20 m. Moreover, 

depth profiles showed that at stratified stations Hex-fuco:Chl c3 ratios were 

higher at surface and decreased with depth (Fig. 10b,c,f). Although both statins 

were located in a similar position and showed a similar density profile, the 

intermediate stratified station W215 (Fig. 10e) showed a different biomass 

profile than the station W114 (Fig. 10b). Despite the similar biological pattern 

between sampling years, there was an evident interannual difference in the 

Weddell Sea region, as higher biomass was observed in 2009 (Fig. 10d-f) and 

was coupled with a lower Hex-fuco:Chl c3 ratio. 

 

Vicinity of James Ross Island (ROSS) 

 

High Chl a concentration was generally recorded around the James Ross 

Island. On the other hand, at the Antarctic Sound stations (e.g., stations R118 

and R210; see Fig. 1 for their location) surface Chl a was always below 

0.5 mg m-3 (see Fig. 2). Figure 11 shows the vertical profiles of the 

phytoplankton community at six stations (Fig. 11a-f) that represent high 

(Fig. 11a and d), intermediate (Fig. 11b and e) and low (Fig. 11c and f) Chl a 

values during both years. Despite this relatively large biomass range, there was 

an absolute dominance of diatoms at all stations (>90 % contribution to total 

biomass). On a decreasing level of importance, the main diatom species were 



Phytoplankton around the tip of the Antarctic Peninsula 

123 

Odontella weissflogii (> 70 µm in length), an assembly of moderately large 

centric diatoms (from 20 to 100 µm in diameter) and Eucampia antarctica. 

Areas with relatively high biomass were associated with a shallow UML, mainly 

comprising the stations nearest to land (e.g., Fig. 11a and d; stations R113 and 

R208, respectively). By contrast, relatively low biomass (Fig. 11c and f; stations 

R118 and R210, respectively) was observed at deep UML (insets in Fig. 11c 

and f) Antarctic Sound stations. Maximum and average Chl a levels in 2009 

were twofold greater than those observed in 2008 (see Table 1). 

 

 

Figure 11: Depth distribution of phytoplankton groups’ biomass (as chlorophyll a concentration) 

calculated by CHEMTAX, at the selected stations in the vicinities of James Ross Island (a-f). (a) 

Coastal station, 2008; (b) Non-coastal station, 2008; (c) Antarctic Sound station, 2008; (d) 

Coastal station, 2009; (e) Non-coastal station, 2009 and (f) Antarctic Sound station, 2009. 

Insets: density profiles of the respective stations (see Fig. 1 for stations’ locations). 
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3.3.3. Other pigment indices 

 

Pigment degradation products 

 

The HPLC analysis allowed the separation, identification and 

quantification of three types of Chl a degradation products: chlorophyllide a 

(Chlide a), pheophytin a (Phytin a) and pheophorbide a (Phide a). Apart from 

the area around ROSS, where a typical diatom-bloom situation was observed, 

the concentration of the degradation products were always below 0.1 mg m-3. 

The main degradation product of Chl a for the whole survey region was 

pheophorbide a (see Table 1). The concentrations of degradation products, 

particularly chlorophyllide a, were higher in the ROSS area than in other 

sampling areas. Figure 12 shows the linear relationships observed between 

degradation products and total Chl a in this region, and indicates a significant 

difference between both study years. In 2008 all degradation products were 

present at significantly higher concentrations than in 2009, with an average 

proportion (degradation product/total degradation products plus Chl a) of 11% 

for chlorophyllide a, 9% for pheophorbide a and 3% for pheophytin a. In 2009 

the averages were 7%, 6% and 2%, respectively. 
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Figure 12: Relationship between chlorophyll a concentration and (a) chlorophyllide a 

concentration and (b) pheophytin a plus pheophorbide a concentration, for stations near James 

Ross Island. 
 

Photosynthetic and photoprotective pigments 

 

The array of phytoplankton pigments found in this study include 

photosynthetic and photoprotective carotenoids. The ratio of the sum of 

photoprotective carotenoids (PPC; alloxanthin, diadinoxanthin and diatoxanthin 

in our study) to the sum of total pigments (TP) was shown to indicate the 
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physiological adaptation of the phytoplankton community to the prevailing 

ambient light. An evident difference in those indices was found between 

samples taken during day and at nighttime in the diatom-dominated ROSS 

region. For instance, Figure 13 shows vertical profiles of PPC:TP for ROSS and 

DRAKE regions. 

 

Figure 13: Vertical profiles of photoprotective carotenoids (PPC) to total pigments (TP) ratios 

for available night (R103 and R109) and day (R113 and R118) stations at Ross region in 2008 

(a); night (R208) and day (R201, R210 and R212) stations at Ross region in 2009 (b) and 

stratified daytime stations in Drake Passage (c). Insets: Profiles of the PSC:TP ratios for the 

same stations. Note the different scales between main graphs and insets. 

 

The PPC:TP ratios at the nighttime stations in ROSS were about twofold 

smaller than those at daytime, especially on the surface layer (Fig. 13a and b), 

which indication that relative PPC concentrations may change over the course 

of a day. In the DRAKE region, under stratified water column conditions and 

during daytime, the PPC:TP ratios within the upper mixed layer were five-times 

higher than those at or below the pycnocline (Fig. 13c). However, when 

examining the ratio of pooled photosynthetic carotenoids (PSC; 19'-

butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, fucoxanthin and peridinin) 
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to TP (insets in Fig. 13), no noteworthy differences were found at stratified 

stations between day and nighttime stations or with depth variation. 

 

3.4. Discussion 

 

3.4.1. The application of CHEMTAX in the study of phytoplankton 

communities 

 

Several studies in the western AP region have already suggested that 

both microscopy and HPLC techniques should be used together to complement 

one another [e.g., Rodríguez et al., 2002; Kozlowski et al., 2011]. A common 

feature over the study region was areas of low biomass characterized by 

nanoplanktonic cells. Since those small-sized organisms were generally not 

recognizable by light microscopy and were often difficult to preserve, the HPLC-

CHEMTAX approach provides valuable information about the whole 

phytoplankton community, particularly for those small-size groups. The good 

relationship observed between HPLC-CHEMTAX and microscope derived 

biomass of representative taxonomic groups (diatoms and P. antarctica) (Fig. 5) 

also supports the reliability of the HPLC. Additionally, a high number of pigment 

samples analyzed during these oceanographic surveys, would be impractical to 

study by microscopic analysis. On the other hand, microscope observations 

complement the taxonomical information (to species or genus), which provides 

a better taxonomic resolution, particularly for large and recognizable organisms. 

The CHEMTAX software [Mackey et al., 1996] has been successfully used in 

many other worldwide investigations [e.g., Mackey et al., 1998; Schlüter et al., 
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2000; Carreto et al., 2008; Wright et al., 2009; 2010]. However, regarding matrix 

optimization procedures, it would be advisable to apply different approaches 

when using the CHEMTAX tool, as either described by Latasa [2007] and 

Wright et al. [2009], and/or by using a combination of approaches in order to 

improve the results [Mendes et al., 2011; Schlüter et al., 2011; de Souza et al., 

2011]. In the present study, the Wright’s method was used to obtain the output 

data from CHEMTAX, as it is appropriate for regions with low concentrations of 

pigments [Wright et al., 2009], which was observed in the Weddell Sea and 

Drake Passage. 

The output pigment ratios observed (see Table 2b and c) were generally 

equivalent to values available in the literature [e.g., Rodríguez et al., 2002; 

Kozlowski et al., 2011] for the AP region. The average Fuco:Chl a (diatom) 

output ratio was lower in Rodríguez et al. [2002] (0.425 in 1995/1996) as 

compared to our study (0.940 for 2008 and 0.822 for 2009), but it was still 

above the maximum value (0.714 ± 0.160 from 1995 to 2007) observed by 

Kozlowski et al. [2011]. The cryptophyte Allo:Chl a ratio (0.428 for 2008 and 

0.362 for 2009) was also higher as compared with observations made by 

Rodríguez et al. (2002) (0.228 in 1995/1996), but again within the range 

(0.443 ± 0.125 from 1995 to 2007) observed by Kozlowski et al. [2011]. On the 

other hand, we have observed negligible variations between our study and 

results presented by both Rodríguez et al. [2002] and Kozlowski et al. [2011] 

regarding the Hex-fuco:Chl a and But-fuco:Chl a ratios of P. antarctica. Those 

slight differences found in pigment ratios between this study and literature data 

may be related to a light regime variation, nutrients availability and changes in 

algal populations [Schlütter et al., 2000]. Additionally, the different approaches 
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used by different authors to work with CHEMTAX can likely affect these final 

ratios. The output ratios for "chemotaxonomic group" varied between the two 

sampling years and also with the literature mentioned above. These differences 

are associated with the structure of "chemotaxonomic group", which is 

composed of different taxa. For instance, the high Chl c3:Chl a ratio (0.501) 

observed in 2008 may be related to the presence of Gymnodinium spp. 

(detected by microscopy), since higher concentrations of Chl c3 were registered 

only at stations with high dinoflagellates abundance. Moreover, the high 

abundance of c3 -containing Pseudonitzschia spp. may have contributed to this 

ratio, particularly in the Bransfield Strait. 

 

3.4.2. Phytoplankton communities in relation to oceanographic 

parameters 

 

A great spatial variability (horizontal and vertical) in the phytoplankton 

community, both in biomass and composition, was found in the AP. This 

variation was mainly associated with the water column structure that can 

determine light availability and/or iron limitation within the UML. Stratification 

was associated with several physical processes in the whole study area, such 

as coastal ice melting (characteristic of ROSS region) and seasonal warming of 

surface layers (evident in WEDDELL and DRAKE regions). For instance, a 

remnant cold and salty Winter water is usually found below warmer and fresher 

Antarctic Surface Water commonly formed during summer [Gordon & Huber, 

1984], particularly in offshore areas. 
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Our sampling period was the late summer, when the phytoplankton 

communities are result of the succession associated with timing and extent of 

ice melting during the summer [Garibotti et al., 2005 and references therein]. 

Although in the present study a temporal variation was not evaluated, the great 

spatial heterogeneity allowed the understanding of some processes related to 

the distribution of phytoplankton communities around the tip of the AP. For 

instance, the low phytoplankton biomass seen in WEDDELL may be associated 

with a post bloom stage, as frequent blooms are often observed in this region 

during summer [Sullivan et al., 1993; Park et al., 1999; Kang et al., 2001], while 

in ROSS, a clear diatom bloom situation was observed. 

In ROSS, a reasonably well-stratified water column was observed due to 

ice melt and runoff from glaciers at James Ross Island, which are a likely 

source of iron that may have triggered the diatom-dominated (e.g., Odontella 

weissflogii) phytoplankton bloom. Moreover, a biological-physical gradient was 

observed, where stratified areas near land zones were associated with higher 

diatom biomass (see Fig. 11). This scenario was already described, highlighting 

the importance of a shallow UML depth [Mitchell & Holm-Hansen, 1991; 

Garibotti et al., 2005] and associated stratification as a result of ice melting on 

phytoplankton development. This feature has been observed predominantly in 

coastal areas, as these regions are apparently protected from strong winds 

[Ducklow et al., 2007]. Even though the lowest biomass levels in ROSS were 

measured in the Antarctic Sound area (associated with a deep UML), the 

phytoplankton composition was similar to other stations of the same region. 

This could be associated with advection processes in the Sound, which 
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prevented the accumulation of phytoplankton biomass [e.g., Moline & Prézelin, 

1996]. 

In WEDDELL and DRAKE regions, the phytoplankton community was 

characterized by low biomass and dominated by flagellates, including P. 

antarctica and cryptophytes at the stratified offshore stations. In these situations 

stratification was probably a major physical feature affecting phytoplankton 

assemblages by a supposed limitation of Fe input into the upper surface layer, 

leading to development of a deep chlorophyll maximum [Ducklow et al., 2007]. 

Other factors such as senescence and/or grazing may have also contributed to 

the low biomass observed in those regions. Regarding the important 

contribution of P. antarctica at shallow UML stations, this pattern was not 

observed in other Antarctic regions such as the Ross Sea [Arrigo et al., 1999, 

2000], where this organism was associated with deep UML and its dominance 

was linked to photophysiological abilities [Kropuenske et al., 2010; Mills et al., 

2010]. In this study, this haptophyte was found in very low biomass and shallow 

UML layers and therefore was able to thrive under apparently low iron 

conditions. Those oligotrophic conditions (mainly in WEDDELL) may reflect the 

timing of our sampling period (late summer). 

The BRANSFIELD region is hydrographically complex, comprising water 

masses that progressively change from Bellingshausen Sea to Weddell Sea 

influence [Sangrà et al., 2011 and references therein]. This could explain the 

great temporal (interannual) and spatial variability in phytoplankton biomass and 

composition. Briefly, higher biomass levels were recorded in 2009 mainly 

associated with diatoms and a shallower UML. At the northernmost part of this 

region (near Elephant Island), particularly in 2008, a low-biomass community 
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composed by small flagellates was observed, coupled with a deeper UML 

(presumably leading to light limitation) than in 2009 (see Fig. 7c and f). At 

coastal sites, diatoms and/or cryptophytes were the major groups contributing to 

phytoplankton biomass. On the other hand, the “chemotaxonomic group” was 

very important at the central channel (in the southernmost portion of the Strait). 

That group was represented mainly by Gymnodinium spp., which is known to 

contain carotenoids other than peridinin (Carreto et al., 2001). In this study, the 

high abundance of Gymnodinium spp. and other dinoflagellates was correlated 

with well-stratified water masses at the central channel in BRANSFIELD, as 

observed demonstrated in classical ecological theories [Margalef, 1958; 

Smayda & Reynolds, 2001]. Another interesting feature was the conspicuous 

dominance of cryptophytes at station B124, characterized by an intermediate 

stratification condition (see Fig. 8). One possible explanation for this particular 

area is the occurrence of a topographically induced upwelling of Weddell Sea 

water, observed by the temperature-salinity profile at that station (data not 

shown). Indeed, cryptophytes were a relatively important group at the WEDDEL 

region. A few studies have reported episodic upwelling caused by topographic 

characteristics in other regions close to AP [Ducklow et al., 2007 and references 

therein] as well as intrusions of Weddell Sea water from the southwest into the 

Bransfield Strait [Sangrà et al., 2011]. 

 

3.4.3. Pigments as indicators of community physiological state 

 

Pigment information can be used not only as a taxonomic tool to describe 

the phytoplankton community but also as a proxy for physiological responses to 
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distinct environmental factors, such as nutrient stress, light availability and 

grazing pressure. This study tested the Hex-fuco:Chl c3 ratio as an index of Fe-

nutritional state of the phytoplankton community, based on the experimental 

work developed and validated by DiTullio et al. [2007] for P. antarctica cultures 

and on field studies about phytoplankton community affected by iron enrichment 

[e.g., Hoffmann et al., 2006; Wong & Crawford, 2006]. Under Fe-stress 

conditions, P. antarctica (present at most sampling stations, mainly in DRAKE 

and WEDDELL) was found to be able to convert fucoxanthin into 19’-

hexanoyloxyfucoxanthin [Van Leeuwe & Stefels, 1998, 2007] and therefore 

increasing the Hex-fuco:Chl c3 ratio [DiTullio et al., 2007]. Moreover, 

experimental in-situ studies [e.g., Hoffmann et al., 2006; Wong & Crawford, 

2006] reported important shifts in phytoplankton communities inside a region 

under iron fertilization and thus in the phytoplankton pigments along the period 

of iron experiments. According to those studies, diatoms dominated (increase in 

fucoxanthin concentrations) when iron was supplied, while a nanoflagellate 

community, dominated mainly by haptophytes, declined. These Hex-fuco-

containing nanoflagellates, presumably not stimulated by iron supply, were 

controlled by grazing pressure [Hoffmann et al., 2006]. Moreover, upon iron 

enrichment, there was a slight increase in Chl c3 [Hoffmann et al., 2006; Wong 

& Crawford, 2006]. Although those studies associated Chl c3 with haptophytes, 

the increase of this pigment could be also coupled with higher abundance of 

chl c3-containing diatoms, such as Pseudonitzschia spp. [Wright & Jeffrey, 

2006] observed in naturally iron-enriched environments. Iron enrichment would 

thus cause a change in the phytoplankton community followed by a decrease in 

the Hex-fuco:Chl c3 ratio. The Hex-fuco:Chl c3 ratio can therefore reflect the 
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physiological response of P. antarctica (in regions dominated by this species) to 

iron availability. Additionally, it can also provide information about changes in 

phytoplankton communities associated with this important micronutrient, 

regardless the presence of P. antarctica. In view of all this information, in this 

work we assume that the Hex-fuco:Chl c3 ratio can provide a suitable index of 

the Fe-nutritional state of the whole phytoplankton community. Our results have 

shown that the ratio was highest (> 3), indicating Fe-limitation, in the Weddell 

Sea region and offshore Drake Passage, particularly at the surface layer, where 

the lowest biomass levels were recorded in both sampling years. A strong 

association was found between the pattern of Hex-fuco:Chl c3 ratio and the Fe 

spatial distribution pattern previously reported for this region of the AP. For 

instance, in the northernmost sector of the studied region, which encompasses 

Drake Passage and the western Weddell Sea (where high Hex-fuco:Chl c3 

ratios were observed), a limitation of primary production and biomass 

associated to low iron concentration has been previously reported [Holm-

Hansen & Hewes, 2004]. Additionally, Sañudo-Wilhelmy et al. [2002] described 

a coastal-offshore gradient in trace metal concentration (including Fe) in the AP 

region, from coastal waters with high metal concentrations to offshore waters, 

with low metal levels. This pattern was also evident in this study, particularly 

along the WEDDEL transect, from low (coast) to high (offshore) surface Hex-

fuco:Chl c3 ratio. This onshore-offshore gradient in Hex-fuco:Chl c3 ratio was 

accompanied by changes in the phytoplankton community: a dominance of 

diatoms along with low Hex-fuco:Chl c3 ratio was observed in coastal regions, a 

dominance of cryptophytes with intermediate Hex-fuco:Chl c3 ratios was found 

in middle sites, and very low biomass (dominated by smaller flagellates such as 
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P. antarctica) was detected at far offshore stations, associated with the highest 

Hex-fuco:Chl c3 ratios (see Fig. 10). These composition shifts are possibly 

related to competition for nutrient resources, especially iron, including different 

uptake physiological abilities of the distinct phytoplankton groups found across 

the WEDDELL transect. In the present work it was also observed a variation in 

the Fe-index between the study years, where Hex-fuco:Chl c3 ratios were 

generally higher in 2008 (indicating a stronger limitation) and associated with 

lower biomass levels, as compared to 2009 (see Fig. 2). 

Among other environmental factors controlling the phytoplankton 

community, grazing pressure must also be considered [Ross et al., 1998; 

Anadón et al., 2002]. Despite the lack of zooplankton data in this work, the 

relative content of Chl a degradation products can be used as a proxy for 

grazing pressure and for senescence of phytoplankton cells [Jeffrey et al., 

1997]. Generally, low concentrations of these degradation products were 

observed (see Table 1) in all regions, except in ROSS, where a diatom bloom 

was found. Higher proportions of all those products were observed in this region 

in 2008 than in 2009, which may suggest that the 2008 diatom-bloom was in an 

advanced senescence stage and under higher grazing pressure relatively to the 

scenario found in 2009 (see Fig. 12). 

Regarding the proportions of specific (photosynthetic or photoprotective) 

carotenoids over the total amount of pigments, considerable differences were 

found across vertical profiles of the sampling stations within the diatom-bloom at 

ROSS and at well-stratified offshore DRAKE stations (see Fig. 13). Contrasting 

differences were detected between the response of PPC and PSC relative to 

the irradiance variation. While a noteworthy difference in PPC:TP ratios were 
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observed between day (higher values) and night (lower values) stations at 

ROSS, no detectable differences were found between day and night PSC:TP 

ratios. In addition, the PPC:TP proportion was significantly higher in the upper 

surface layer than in depth at the well-stratified DRAKE stations, although this 

pattern was again not evident for the PSC:TP ratios. These results may be 

explained by the carotenoids’ key functions in photosynthesis: (i) PSC have a 

significant role in extending the phytoplankton light-harvesting spectrum, thus 

ensuring optimal absorption efficiencies and (ii) PPC acts as a protector of 

microalgal cells against high irradiances that may damage the photosynthetic 

apparatus [Kirk, 1994]. Furthermore, the ratios of PPC:TP and PSC:TP have 

been considered remarkably robust for assessing the physiological state of a 

phytoplankton community [Barlow et al., 2008 and references therein]. 

Therefore, information on PPC:TP ratios can indicate the phytoplankton light 

histories (e.g., day vs. night, as in our study) and the degree of water column 

stability [Moline, 1998]. Nonetheless, the PSC:TP ratios did not show an 

apparent response to short-term light changes, associated with neither daily-

varying light field, depth profiles nor degree of water column stratification. Our 

results support the assumption that photosynthetic pigments and respective 

ratios are rather adequate as taxonomic biomarkers. 

 

3.5. Concluding remarks 

 

This study shows that the spatial distribution of phytoplankton 

communities around the AP, particularly in the northernmost regions, is very 

complex and subject to several environmental factors, which may determine 
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their composition and succession stage. Diatoms were the main contributors to 

Chl a biomass in areas presumably affected by ice melting processes, as 

observed at ROSS. Ice melting processes probably enhance iron input into 

seawater, triggering the growth of large diatoms (both isolated cells and 

colonies). In open-ocean areas such as DRAKE and WEDDELL, where iron-

limited conditions were observed in stratified waters, nanoflagellates replaced 

diatoms as the dominant phytoplankton group. Among flagellates, P. antarctica 

was the dominant organism. Cryptophytes were persistently found at 

intermediate stratification conditions and associated with intermediate Hex-

fuco:Chl c3 values, i.e., between diatom-dominated and offshore low biomass 

stations. At both BRANSFIELD and DRAKE coastal stations, many species of 

dinoflagellates (dominant taxa of the “chemotaxonomic group” that contain 

carotenoids rather than peridinin) were also important to total Chl a 

concentration. Based on the spatial distribution of phytoplankton community 

composition and associated environmental factors, it seems that flagellates 

may, in fact, replace diatoms under certain conditions (intermediate to strong 

stratification leading to iron limitation). Finally, this study highlights the 

usefulness of HPLC pigment data as biotic indicators of physiological responses 

to environmental conditions, such as Fe-nutritional state, ambient light and/or 

grazing pressure. 
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CAPÍTULO IV 

_______________________________________________________________ 

 

 

Cryptophytes dominated diatoms in the Bransfield 

Strait (Antarctic Peninsula) in the late summer of 2010. 
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(submitted). Cryptophytes dominated diatoms in the Bransfield Strait (Antarctic 

Peninsula) in the late summer of 2010. Geophysical Research Letters. 
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ABSTRACT 

Recent global warming, which results in glacial meltwater runoff, consequently 

reduces surface water salinity around the Antarctic Peninsula. This predicament 

has increased the occurrence and abundance of certain phytoplankton groups, 

such as cryptophytes. The dominance of this group over diatoms affects 

grazers such as antarctic krill, which preferably feed on diatoms. By using three 

late summer’s data sets (2008-2010) from the Bransfield Strait, we observed 

changes in the dominant phytoplankton group using HPLC pigment analysis 

and confirmed by microscopy. Multivariate statistical analyses indicate that the 

dominance of diatoms, mainly in 2008 and 2009, was associated with deeper 

upper mixed layer (UML), high salinity and warmer sea surface temperature. On 

the other hand, cryptophytes, which were dominant in 2010, appeared at 

shallower UML, lower salinity and colder sea surface temperature. The low 

diatom biomass observed in the summer of 2010 was associated with high 

nutrient concentrations, particularly silicate, and low chlorophyll a (summer 

monthly average calculated from satellite images). The observed interannual 

variability in the dominance of phytoplankton groups reflected a delayed 

seasonal succession cycle of phytoplankton, which was, in turn, associated with 

a cold summer and a late ice retreat process in the region. This delay resulted 

in a drastic decrease of primary producers’ biomass in 2010, which may have 

impacted regional food web interactions. 

 

Keywords: Antarctic Peninsula, Bransfield Strait, Phytoplankton succession, 

Cryptophytes, Diatoms. 
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4.1. Introduction 

 

The Antarctic Peninsula (AP) is among world regions most susceptible to 

global climate change [Turner et al., 2005; Steig et al., 2009]. Consequences of 

these changes are not yet fully understood. Regional environmental changes in 

the AP have been altering the biomass and composition of primary producers, 

particularly phytoplankton [Garibotti et al., 2005; Ducklow et al., 2007; Montes-

Hugo et al., 2009]. However, as large spatial and seasonal/interannual 

variations of physical variables and, consequently, biological communities have 

been observed in the region, it is not known if changes that are currently being 

observed in such dynamic communities are natural temporal/spatial variations 

or result from recent climate change. As phytoplankton supports oceanic food 

webs and plays a key role on the AP marine ecosystem’s resilience, changes in 

its abundance and composition may have a direct effect on the regional 

ecosystem. 

The three main phytoplankton taxonomic groups in coastal regions of the 

AP are diatoms, haptophytes (primarily Phaeocystis antarctica) and 

cryptophytes [Rodriguez et al., 2002; Garibotti et al., 2003, 2005; Kozlowski et 

al., 2011]. Phytoplankton blooms around the AP are typically associated with 

the development of a shallow mixed layer, which keeps phytoplankton within 

adequate light levels and iron availability [e.g., Prézelin et al., 2000]. These 

blooms are usually dominated by diatoms and/or P. antarctica. Nevertheless, 

some studies highlight the increasing importance of cryptophytes in the AP 

region that prevail over diatoms, particularly in ice melting areas [Moline & 

Prézelin, 1996; Moline et al., 2004]. As diatoms are more efficiently grazed by 
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Antarctic krill than cryptophytes, the shift from a diatom to a cryptophyte-

dominated community will affect food-web trophic interactions [Haberman et al., 

2003]. These phytoplankton community’s changes around the AP waters have 

been associated with a recent increase in temperature together with dominance 

of salps instead of krill as main consumers [e.g., Moline et al., 2004; Montes-

Hugo et al., 2009]. Organisms from higher trophic levels, such as penguins and 

seals, preferably consume krill rather than salps [Loeb et al., 1997]. 

Consequently, shifts in the phytoplankton community composition may 

anticipate negative feedbacks on the ecology of these consumers. 

This study investigates environmental factors that may trigger changes in 

phytoplankton communities and lead to a dominance of either diatoms or 

cryptophytes in the Bransfield Strait, around the tip of the AP. 

 

4.2. Methods 

 

Twenty stations in the Bransfield Strait (Figure 1a) were sampled in the 

late summers of 2008 (21 February to 4 March), 2009 (25 February to 1 March) 

and 2010 (16 to 21 February), as part of the SOS-CLIMATE (Southern Ocean 

Studies for Understanding Global-CLIMATE Issues) project. Both physical data 

(conductivity, temperature and salinity) and water samples were collected using 

a combined Sea-Bird CTD/Carrousel 911+system® equipped with 24 five-liter 

Niskin bottles. Density (kg m-3) was calculated based on temperature, salinity 

and pressure data in order to evaluate the water column physical structure. The 

upper mixed layer depth (UMLD) was determined as the depth where a change 

of 0.05 kg m-3 occurred over a 5 m depth interval (adapted from Mitchell & 



Cryptophytes in the Bransfield Strait 

153 

Holm-Hansen [1991]). Water column stability (hereafter referred to as stability) 

was estimated using vertical density variations, as a function of the buoyancy or 

Brunt-Väisälä frequency (N²). Average stability values (between 0 and 100 m) 

were used in the statistical analyses.  

 

 

Figure 1: (a) Study area and station’s location during SOS-CLIMATE 2008, 2009 and 2010 

summer cruises. Abbreviations are as follows: Drake Passage (DP), Elephant Island (EI), South 

Shetland Islands (SSI), Bransfield Strait (BS), Weddell Sea Shelf Water (WSSW) and Antarctic 

Peninsula (AP). (b) T/S diagram (temperature and salinity data in the upper 200 m layer) from 

all stations sampled during the three years (2008, 2009 and 2010). Stations near the SSI clearly 

indicating ice-melting conditions are labeled (stations 12, 19 and 20). 
 

Surface water samples were filtered on cellulose acetate membrane 

filters to determine dissolved inorganic nutrients (nitrate, nitrite, ammonium, 

phosphate and silicate). Nutrients were analyzed on board, following the 

processing recommendations in Aminot & Chaussepied [1983], and absorbance 

values were measured in a FEMTO® spectrophotometer. Seawater samples 

(0.5-2 L) were filtered onto Whatman GF/F filters (nominal pore size of 0.7 µm 

and 25 mm in diameter) and immediately stored in liquid nitrogen for HPLC 
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pigment analysis. Pigments were extracted with 2 mL of 95% cold-buffered 

methanol (2% ammonium acetate) for 30 min at -20 °C, in the dark. Samples 

were sonicated (Bransonic, model 1210, w: 80, Hz: 47) for 1 min at the 

beginning of the extraction period and then centrifuged at 1100 g for 15 min, at 

4 °C. Extracts were filtered (Fluoropore PTFE membrane filters, 0.2 μm pore 

size) and immediately injected in the HPLC instrument. Method procedures for 

HPLC analyses (using a monomeric C8 column with a pyridine-containing 

mobile phase) are fully described in Mendes et al. [2007]. 

Three marker carotenoids were used for determining distributions of the 

major phytoplankton taxa: fucoxanthin (FUCO) for diatoms, 19'-

hexanolyoxyfucoxanthin (HEX-FUCO) for haptophytes (primarily P. antarctica), 

and alloxanthin (ALLO) for cryptophytes. From the class-specific accessory 

pigments and total chlorophyll a (CHL-a), the percentage contribution of each 

taxonomic group to the overall biomass was calculated using the ChemTax 

software [Mackey et al., 1996; Kozlowski et al., 2011]. Pigment-based estimates 

were verified and confirmed by microscope analyses. 

In order to compare environmental variables over different years, a one-

way analysis of variance (ANOVA) was performed, followed by the Tukey 

method for multiple comparisons among data sets. Data were logarithmically 

transformed when necessary to comply with the assumptions of ANOVA. 

Relationships between the phytoplankton groups' biomass and environmental 

variables were explored through a Canonical Correspondence Analysis (CCA). 
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4.3. Results 

 

The mean surface water temperature from the 20 stations showed 

significant differences (p <0.05) between 2009 (1.08 ± 0.87 ºC) and 2010 

(0.16 ± 0.71 ºC). An intermediate temperature was observed in 2008 

(0.54 ± 0.87 ºC), but not significantly different from the other two years 

(Figure 1b). Salinity was very similar in 2008 and 2009 in the upper layer 

(< 200 m), yet notably different from 2010, when the lowest and most variable 

surface salinity values were observed (see Figure 1b). This salinity pattern 

observed in 2010 caused a noteworthy stratification, particularly at stations 

close to the South Shetland Islands. Salinity varied between 34.1 and 34.6, 

which together with data from the T/S diagrams suggests that Weddel Sea 

water influenced the region during the three sampling years [García et al., 

2002]. 

 
Table 1: Concentration of the main photosynthetic pigments detected in this study and ratios of 

degradation products to chlorophyll a. CHL-a = chlorophyll a; FUCO = fucoxanthin; ALLO = 

alloxanthin; HEX-FUCO = 19'-hexanoyloxyfucoxanthin; CHLIDE-a = chlorophyllide a; PHE-a = 

pheopigments a (pheophorbide a + pheophytin a). Different superscript labels (a, b) between 

years indicate significant differences (p<0.05, Tukey method). 

PIGMENT / RATIO 2008 2009 2010

PHE-a :CHL-a 0.02 (0.01-0.05) b

0.01 (0.00-0.04) a

0.13 (0.04-0.23) a

0.02 (0.00-0.07) a

0.17 (0.04-0.38) a

0.03 (0.00-0.09) a

0.21 (0.08-0.32) b0.61 (0.10-1.42) a

1.07 (0.38-3.78) b
average and range of surface concentrations (mg m-3)

average and range of surface ratios

0.11 (0.03-0.25) a0.02 (0.01-0.06) b0.07 (0.02-0.14) a

0.14 (0.00-0.97) b0.01 (0.00-0.03) a0.01 (0.00-0.05) a

0.94 (0.35-1.97) bCHL-a

FUCO

ALLO

HEX-FUCO

CHLIDE-a :CHL-a

0.42 (0.10-0.96) a

0.52 (0.12-1.08) a
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High interannual variations were also observed in surface nutrient 

concentrations. Dissolved inorganic nitrogen (DIN) ranged from 16.6 to 

47.8 µM, with the lowest values recorded in 2008 (24.1 ± 4.6 µM) and highest in 

2010 (41.6 ± 3.5 µM). Silicates varied from 23.1 to 79.9 µM, with maximum 

values in 2010 (69.2 ± 6.4 µM), and phosphates varied between 0.3 and 

3.4 µM, with minimum values in 2008 (0.8 ± 0.3 µM). 

 

 

Figure 2: Average percentage contribution of phytoplankton groups (CHEMTAX-allocated) to 

total chlorophyll a in (a) 2008, (b) 2009 and (c) 2010. Dinoflagellates-1 = peridinin-containing 

dinoflagellates; Green flagellates = flagellates bearing chlorophyll b; P. antarctica = Phaeocystis 

antarctica; Chem. group = a group including peridinin-lacking autotrophic dinoflagellates and 

other algal groups such as parmales and chrysophytes. 
 

Significantly lower CHL-a values (used as phytoplankton biomass index) 

were recorded in 2008 (ranging from 0.12 to 1.08 mg m-3) (Table 1), while the 

highest value was observed in 2010 (3.78 mg m-3; station 12). FUCO, ALLO 

and HEX-FUCO were the main carotenoids observed in this study, and their 

concentrations displayed different interannual patterns. FUCO was the major 

carotenoid in the first two years and its concentration reached values higher 
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than 1 mg m-3 in 2009. The lowest concentration of FUCO was observed in 

2010, while ALLO was the main carotenoid in most stations sampled during in 

this year, particularly in the surface layers. The HEX-FUCO concentrations 

ranged from 0.01 to 0.25 mg m-3, and values were relatively lower in 2009 (see 

Table 1). Pheopigments a (PHE-a):CHL-a ratios (used as a relative index of 

grazing) was significantly lower in 2010 (p<0.05), and it was always below 0.05 

(Table 1). The maximum values (~ 0.4) were observed in 2008. On the other 

hand, chlorophyllide a (CHLIDE-a):CHL-a ratios (used as an index of cells 

senescence) did not show significant differences among years (Table 1). 

The relative contributions of the main phytoplankton groups to total CHL-

a are shown in Figure 2. Diatoms were the dominant group both in 2008 

(Figure 2a) and 2009 (Figure 2b), with a relatively higher value in 2009 

accompanied by a decrease in the contributions of all nanoplanktonic groups 

(e.g., P. antarctica, cryptophytes and green flagellates). In 2010, diatoms were 

mainly replaced by cryptophytes (Figure 2c). Figure 2 also shows the important 

contribution of the "chemotaxonomic group" for the phytoplankton community in 

all years. This group is an assemblage consisting of peridinin-lacking 

autotrophic dinoflagellates (e.g., Gymnodinium spp.), other algal groups such as 

parmales and chrysophytes, and CHL-c3-containing diatoms (e.g., 

Pseudonitzschia spp.). 

A multivariate analysis of the phytoplankton groups in the three years showed a 

strong association with water physical and chemical properties (see CCA 

diagram in Figure 3). The first axis of the CCA (63.5% explanation) reveals a 

notable separation between diatoms and cryptophytes, mainly associated with 

salinity, UMLD, temperature, DIN and silicate. The second axis (29.1% 
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explanation) indicates that most flagellates (e.g., P. antarctica) are positively 

correlated with water column stability and negatively correlated with phosphate 

concentration (see Figure 3). 

 

Figure 3: Canonical Correspondence Analysis ordination diagram of absolute contributions of 

different phytoplankton groups at sea surface. The first two ordination axes represent 76.3% of 

the total phytoplankton group’s variance and 92.6% of phytoplankton groups-environment 

relationships. Arrows indicate environment variables (water column stability (Stability), upper 

mixed layer depth (UMLD), and sea surface water values of temperature (T (ºC)), salinity 

(Salinity), chlorophyll a (CHL-a), pheopigments a:chlorophyll a ratio (PHE-a:CHL-a), 

chlorophyllide a:chlorophyll a ratio (CHLIDE-a:CHL-a) and dissolved inorganic nitrogen (DIN), 

phosphate and silicate). Blue diamond's refer to absolute contributions of phytoplankton groups 

(Diatoms; C_group = chemotaxonomic group; Dinoflagellates_1 = dinoflagellates with peridinin; 

G. flagelates = Green flagellates; P. antarctica = Phaeocystis antarctica; Cryptophytes). 

Stations are separated according to sampling year (red circles = 2008; green circles = 2009; 

yellow circles = 2010). 
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4.4. Discussion 

 

Several studies have been addressing the issue of seasonal succession 

of phytoplankton communities in the Antarctic Peninsula region, particularly 

during the Austral summer. Most studies report that the timing of sea ice retreat 

is critical for the progression of phytoplankton seasonal cycles [e.g., Moline & 

Prézelin, 1996; Garibotti et al., 2005]. Diatom blooms are found in the early 

summer, when the sea ice retreat is progressing. Later, flagellate blooms, such 

as cryptophytes, replace diatoms [Ducklow et al., 2007]. In a final stage of 

succession, the community is dominated by diatoms and unidentified 

phytoflagellates [Moline & Prézelin, 1996; Garibotti et al., 2005]. In the present 

study, sampling was always performed during the late summer. Consequently, 

the observed phytoplankton community was a result of the succession 

associated with the timing and extent of sea ice melting during the whole 

summer. 

Cryptophytes emerged as the dominant phytoplankton group associated 

with lower salinity, shallower mixed layer and stronger stratification (see CCA 

results in Figure 3), which are typical oceanographic characteristics of glacial 

ice melting conditions. Particularly, high cryptophytes' biomass in the low 

salinity surface layers was associated with strong water column stratification, 

which was observed at some nearshore stations in 2010 (Figure 4). As 

cryptophytes respond to changes in water column salinity [Moline & Prézelin, 

1996; Moline et al., 2004], taxonomic changes of the phytoplankton community 

may reflect variations in the timing, duration and amount of the annual fresh 

water input. Other factors, such as water column structure, have also been 
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suggested as possible triggers for the replacement of diatoms by cryptophytes 

[e.g., Mitchell & Holm-Hansen, 1991]. Freshwater input causes a strong 

stratification, and the prolonged occurrence of this condition can lead to severe 

nutrient limitation in surface layers, particularly iron. This probably favors 

opportunistic small-sized and motile species, such as cryptophytes, which can 

still grow in very low iron concentrations [Gerringa et al., 2000], contrasting with 

diatoms, which require relatively high iron levels. Although the association of 

cryptophytes with stratification/low salinity has been already discussed [Moline 

& Prézelin, 1996; Moline et al., 2004], the connection of this group with iron 

availability is still vague, due to the difficulty in measuring this trace metal in 

seawater [Lancelot et al., 2009].  

In the present work, results from 2010 show cryptophytes dominance 

under evident glacial ice melting (surface salinity in nearshore waters below 

33.8; Dierssen et al. [2002]) which contribute to stratification, but may not be a 

significant source of iron. According to Klunder et al. [2011], vertical mixing and 

upwelling are the most important iron supply mechanisms to the upper surface 

mixed layer in Antarctic regions. In 2010, when cryptophytes were the dominant 

group, very low relative levels of PHE-a, degradation products associated with 

grazing processes [Jeffrey, 1974], were observed, suggesting that grazing 

activities were less intense in that year. This possible shift in the primary 

producers’ community, namely diatoms to cryptophytes, may have caused a 

negative impact on the Antarctic Peninsula marine ecosystem, due to lower 

efficiency of local grazers, such as krill, on these nanoflagellates [Haberman et 

al., 2003]. These low grazing rates may have also contributed to sustaining the 

high biomass levels (CHL-a) associated with cryptophytes in late summer 2010. 
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Figure 4: Depth distribution of phytoplankton groups’ biomass (as chlorophyll a concentration) 

calculated by CHEMTAX, at the six selected stations in the Bransfield Strait in 2010, and 

respective density vertical profiles. Cryptophytes were found in the upper layer, above the 

pycnocline (a, b and c). Contrarily, diatoms appeared in deeper upper mixed layer (d, e and f). 

Dinoflagellates-1 = peridinin-containing dinoflagellates; Green flagellates = flagellates with 

chlorophyll b; P. antarctica = Phaeocystis antarctica; Chem. group = a group including peridinin-

lacking autotrophic dinoflagellates and other algal groups such as parmales and chrysophytes. 

See Figure 1a for station locations. Note the different scales in chlorophyll a concentration. 

 

Based on results of in-situ data (T/S diagram in Figure 1b), ice melting 

was more evident in 2010 than in the two previous sampling years. However, 

the study period (late summer) does not represent the conditions of the whole 

season. The summer of 2010 was shown to be much colder than previous 

summers, and preceded by a relatively cold winter (Figure 5), which resulted in 
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a great accumulation of ice around the AP (Figure 6). In contrast to 2008 and 

2009, when phytoplankton blooms were more intense during the austral 

summer, particularly around the South Shetland Islands (see Figure 6), the 

outcome of the cold and icy conditions in 2010 was a lower phytoplankton 

biomass (CHL-a estimated by remote sensing). The higher nutrient 

concentrations recorded in February 2010 also indicate low consumption and 

therefore low biomass accumulation, as observed in the Bransfield Strait. 

Silicate concentrations, which are almost only taken up by diatoms, were 

approximately twice the concentrations observed in the two previous years. 

Therefore, the natural diatom bloom that normally precedes cryptophyte 

development in early summer (seasonal succession) under sea ice melting 

[Moline & Prézelin, 1996; Garibotti et al., 2005] must have been less intense in 

2010. 

Based on this interpretation, we conclude that the phytoplankton 

community sampled in the late summer in the study region was in a delayed 

stage of its seasonal succession cycle during the coldest year (2010), and in an 

advanced stage as expected for late summer during the warmer years (2008 

and 2009). Moreover, although diatoms dominated the phytoplankton 

community in 2008 and 2009, the biomass levels were relatively lower in 2008. 

In this first year, a larger contribution of nanoflagellates was also observed, 

together with lower phosphate concentrations (see CCA in Figure 3). These 

results indicate that the phytoplankton community in 2008 was probably in a 

later stage of its seasonal cycle. 
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Figure 5: Monthly averages of air temperature recorded at the EACF Weather Station (62.08°S, 

58.39°W) located on King George Island, South Shetland Islands. Red arrows refer to sampling 

times. 

 

A possible reason for the delay in the phytoplankton seasonal succession 

in 2010 comparing to 2008 and 2009 (as stated above) might be a lower degree 

of sea ice melting, resulting from relatively lower air temperatures in the 

summer 2010 (monthly average air temperatures below 1 ºC; see Figure 5). 

These environmental conditions probably arrested the development of the initial 

diatom bloom in the first stage of natural succession and delayed the start of the 

second stage, which is replacement of diatoms by cryptophytes. 

The probable cause of the atypical cold temperatures in late 

2009/beginning of 2010 was the moderate-to-strong El Niño episode (source 

from U.S. National Oceanic and Atmospheric Administration, NOAA). Previous 

studies show that direct impacts of the El Niño-Southern Oscillation (ENSO) are 

consistent with Antarctic sea ice variability [e.g., Yuan, 2004; Stammerjohn et 

al., 2008]. Besides the effects in the Pacific basin [Trenberth & Hoar, 1996], the 

increasing frequency of ENSO events have also caused critical disturbances in 
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the timing and intensity of sea ice melting in Antarctica [Yuan, 2004; 

Stammerjohn et al., 2008]. As observed in this study, such disturbances can 

lead to decrease in the phytoplankton biomass levels in the region, which 

ultimately can have cascading effects in the whole ecosystem. Moreover, this 

study also shows that not only warmer but also colder temperatures affect the 

regular functioning of the phytoplanktonic primary production in the AP. 

 

Figure 6: Remote sensing of chlorophyll a concentration data were derived from monthly 

composites of MODIS-Aqua satellite images. Level 3 (L3) Standard Mapped Image (SMI) 

images were obtained from http://oceancolor.gsfc.nasa.gov at 4 km resolution. Daily images of 

sea ice concentration were used for calculating mean monthly images of the study area. The 

selected period was November to March from 2007 to 2010. Data were collected from the 

AMSR-E sensor (AQUA platform), with a spatial resolution of approximately 6x4 km at 89 Ghz. 

The Artist Sea Ice (ASI) algorithm was applied to retrieve the ice concentration between 0% and 

100% (Spreen et al., 2008). Hemispherical (6.25 km grid) sea ice concentration (ASI algorithm) 

daily maps were provided by the Institute of Environment Physics, University of Bremen, and 

used in this work (www.iup.physik.uni-bremen.de). SSI = South Shetland Islands; AP = 

Antarctic Peninsula. 

 



Cryptophytes in the Bransfield Strait 

165 

4.5. Concluding remarks 

 

This study concludes that the interannual variation observed in late 

summer phytoplankton composition in the Bransfield Strait represented a 

temporal displacement of the seasonal phytoplankton succession. The low 

temperatures recorded during the whole summer of 2010 did not allow a normal 

development of high biomass phytoplankton blooms (presumably diatoms), 

which are typical in this region. This departure from temporal norms certainly 

impacted all other trophic levels during that summer. Future studies should 

focus on broader spatial and finer temporal scale surveys in order to better 

understand how phytoplankton community responds to environmental factors. 

Such phytoplankton monitoring procedures are vital to fully understanding the 

function of marine food webs, particularly in regions extremely sensitive to 

global climate change, as the Antarctic Peninsula region. 
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5.1. Conclusões 

 

Neste trabalho foram efectuados estudos em dois ecossistemas 

bastante diferentes: uma região temperada fortemente influenciada por 

fenómenos de afloramento (zona costeira de Portugal) e uma região polar 

(região em redor da Península Antártica). Uma grande particularidade que 

diferenciou os dois ecossistemas foi a sua disponibilidade em (macro) 

nutrientes. Na Tabela 1 encontram-se os valores médios das concentrações 

superficiais dos principais macronutrientes analisados neste estudo. Valores 

mais reduzidos foram registados na região do canhão da Nazaré, sendo que as 

concentrações mais altas observadas nesta região da costa Portuguesa (e em 

situação de "upwelling") nunca atingiram os valores mínimos detectados para a 

região da Península Antártica, excepto no ano de 2008 onde se registaram 

concentrações de fosfatos (na região da Península Antártica) relativamente 

baixos. 

 

Tabela 1: Concentrações superficiais de clorofila a e dos principais macronutrientes 

determinados neste trabalho (média e mínimo/máximo). N total = nitrato+nitrito+amónia. 

2008 0.73 (0.04 - 4.50) 0.82 (0.26 - 2.98) 45.2 (23.1 - 65.9) 23.7 (14.1 - 40.2)

2009 1.29 (0.02 - 7.61) 2.59 (1.50 - 3.46) 54.3 (42.0 - 64.9) 28.5 (19.2 - 36.4)

2010 1.06 (0.12 - 3.78) 1.99 (1.56 - 2.21) 70.4 (52.9 - 92.0) 40.1 (30.7 - 48.6)

Clorofila a                 
(mg m-3)

Fosfato (P-PO4)        
(µM)

Sílica (Si-SIO2)         
(µM)

N total (N-NOx)              
(µM)

2006

C
an

hã
o 

N
az

ar
é

0.68 (0.10 - 4.33) 0.20 (0.08 - 0.8) 1.45 (0.31 - 8.11) 2.15 (0.21 - 7.77)

Pe
ní

ns
ul

a 
A

nt
ár

tic
a
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No que diz respeito à Península Antártica, o ano de 2010 destacou-se 

por ter apresentado concentrações médias quase duas vezes mais elevadas de 

sílica e principalmente de azoto, relativamente a 2008 e 2009 (nos fosfatos este 

padrão não foi evidente). Estas elevadas concentrações estão relacionadas, tal 

como descrito e discutido no capítulo IV desta dissertação, com um menor 

consumo associado a baixas biomassas fitoplantónicas registadas durante o 

verão de 2010. 

As concentrações superficiais de clorofila a (usada como índice de 

biomassa) na Antártica variaram entre 0.02 e 7.61 mg m-3, com as maiores 

concentrações a serem registadas junto à ilha James Ross (Península 

Antártica) e as menores nas regiões mais oceânicas e afastadas da Península. 

Na região do canhão da Nazaré, os valores de clorofila a variaram entre 0.10 e 

4.33 mg m-3, com os maiores valores registados junto à costa e os mais baixos 

nas estações mais oceânicas. Outros pigmentos, para além da clorofila a, 

foram também detectados em concentrações relevantes e com grande 

heterogeneidade na sua distribuição espacial, para ambas as regiões em 

estudo. Na região do canhão da Nazaré foi possível o registo de estações 

costeiras com máximos de peridinina (associados à presença de 

dinoflagelados) e outras, também junto à costa, com máximos de fucoxantina 

(pigmento principal das diatomáceas). Em estações menos costeiras, 

principalmente a norte do canhão, a 19'-hexanoyloxyfucoxantina (pigmento 

exclusivo das primnesiófitas) foi um dos pigmentos dominantes. Nas estações 

mais oceânicas, onde se registaram baixas concentrações de todos os 

pigmentos, a zeaxantina (indicador de cianobactérias) foi um pigmento 

preponderante. 
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Na região da Península Antártica a fucoxantina surgiu como o pigmento 

dominante nas regiões onde se registaram os valores de biomassa mais 

elevados (Estreito de Bransfield e junto à ilha James Ross), enquanto nas 

regiões da Passagem de Drake e do mar de Weddell a sua dominância foi 

substituída por outros pigmentos como a 19’-hexanoyloxyfucoxantina e/ou a 

aloxantina (exclusivo de criptófitas). Além desta diferenciada distribuição 

espacial na região da Península Antártica, os três anos consecutivos de 

amostragem no Estreito de Bransfield possibilitaram a observação de uma 

mudança temporal na dominância dos principais pigmentos onde a fucoxantina, 

dominante nos dois primeiros anos (2008 e 2009), foi substituída por uma 

dominância de aloxantina na maioria das estações amostradas em 2010. Estas 

variações, espaciais e temporais, na distribuição dos principais pigmentos 

fitoplanctónicos são um reflexo das adaptações das comunidades do 

fitoplâncton às modificações físico-químicas registadas nos ecossistemas em 

estudo. 

Com a aplicação e optimização do CHEMTAX foi possível fazer uma 

quantificação, com base nos dados de pigmentos, da contribuição dos 

principais grupos taxonómicos para o total de clorofila a. Como complemento, o 

uso das análises microscópicas permitiu uma maior resolução taxonómica (ao 

nível da espécie ou gênero), que por sua vez foi importante na determinação 

de espécies-chave, quer sob o ponto de vista de contribuição para a biomassa 

quer sob o ponto de vista ecológico. Por outro lado, a utilização de índices 

pigmentares permitiu avaliar alguns processos fisiológicos das comunidades de 

fitoplâncton em resposta a determinadas condições ambientais (disponibilidade 

de ferro, luz e/ou herbivoria). Esta informação serviu para uma melhor 
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compreensão dos complexos processos responsáveis pela dinâmica do 

fitoplâncton ao redor da Península Antártica (ver capítulo III para maiores 

pormenores). 

As Figuras 1 e 2 representam, esquematicamente, os processos 

responsáveis pela distribuição das comunidades de fitoplâncton nos dois 

ecossistemas em estudo – costa de Portugal e Península Antártica, 

respectivamente –, cumprindo assim os objetivos propostos inicialmente. 

Na região da costa de Portugal, canhão da Nazaré (Fig. 1), verificou-se 

uma clara resposta das comunidades do fitoplâncton ao aumento de nutrientes 

resultante da condição de afloramento, proporcionado por um regime de ventos 

favorável. 

 

Figura 1: Esquema conceitual dos processos físico-químicos responsáveis pela distribuição 

das comunidades de fitoplâncton na região do Canhão da Nazaré, costa de Portugal. As zonas 

em verde correspondem às regiões com maiores concentrações de clorofila a. O tracejado 

castanho delimita a região de domínio das diatomáceas e o tracejado verde a região dominada 

pelos dinoflagelados. 
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Foram observados maiores valores de clorofila a junto à costa (regiões 

em verde na Fig. 1) associados a águas mais frias e ricas em nutrientes. No 

entanto, a presença do canhão submarino determinou um diferencial Norte-Sul 

na circulação dos nutrientes, que proporcionou uma injecção de maiores 

quantidades de nutrientes (em especial de fosfatos) para a região costeira a 

Sul do canhão, favorecendo o desenvolvimento de diatomáceas nesta área (ver 

Fig. 1). Os dinoflagelados, por sua vez, competindo com as diatomáceas por 

nutrientes e, provavelmente, mais bem adaptados a regimes com menores 

concentrações de fosfatos, estabeleceram-se numa região a norte da cabeceira 

do canhão, onde este nutriente apresentava níveis muito baixos. Esta região foi 

caracterizada por um forte florescimento de um dinoflagelado tóxico formador 

de cadeias longas – Alexandrium affine –, em conjunto com outros 

dinoflagelados como Ceratium candelabrum, Ceratium furca, Ceratium fusus, 

Dinophysis acuta e Dinophysis caudata. O domínio de formas em cadeias 

facilita a permanência destes organismos em regiões de mistura da coluna de 

água costeira sob influência das águas frias provenientes do processo de 

afloramento. Nas regiões mais afastadas da costa, fora da região de 

afloramento, observou-se um aumento da estratificação, menores 

concentrações de nutrientes e um total domínio de primnesiófitas, com um 

incremento na contribuição das cianobactérias (para o total de clorofila a) nas 

estações mais oceânicas. 

Os factores preponderantes na distribuição da biomassa e das 

comunidades de fitoplâncton ao redor da Península Antártica foram a 

disponibilidade em ferro, inferido neste trabalho através de um índice pigmentar 

(19’-hexanoyloxyfucoxantina:clorofila c3), a estrutura da coluna de água e o 
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grau de degelo (também com influencia na estrutura da coluna) na época das 

amostragens. Os maiores valores de biomassa registaram-se nas estações 

mais costeiras e próximas à Península, que apresentaram uma coluna de água 

mais misturada e uma maior disponibilidade em ferro, e foram associadas ao 

predomínio de diatomáceas (Fig. 2). Em zonas mais oceânicas (mar do 

Weddell e Passagem de Drake) verificou-se um aumento da estratificação 

(principalmente condicionada por degelo), provavelmente restringindo os níveis 

de ferro na camada eufótica, limitando a biomassa e favorecendo os 

organismos nanoplanctónicos, como as criptófitas e/ou a Phaeocystis 

antarctica (Fig. 2). 

Figura 2: Esquema representativo da distribuição das comunidades de fitoplâncton na região 

da Península Antártica. 
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A região do Estreito de Bransfield apresentou uma grande variabilidade 

espacial e temporal na distribuição das comunidades do fitoplâncton devido, 

em parte, a uma influência repartida de águas provenientes do mar de Weddell 

e do mar de Bellingshausen. Por outro lado, foi possível associar os momentos 

do início do degelo marinho, para a região do Estreito de Bransfield, com as 

variações observadas nas comunidades de fitoplâncton no final do verão 

austral (período em que se realizaram as amostragens). Tal como já observado 

por diversos autores para outras regiões ao redor da Península Antártica (ver 

capítulo IV), uma alteração no início e/ou intensidade do degelo marinho causa 

um desfasamento (atraso ou antecipação) na natural sucessão fitoplanctónica 

da região. No ano de 2010, onde se verificaram temperaturas do ar 

atipicamente frias durante o verão austral, o início/intensidade do degelo 

(gatilho fundamental para o desenvolvimento dos primeiros florescimentos de 

diatomáceas) foi de tal forma atrasado que resultou em valores de biomassa 

bastante baixos durante todo o verão austral de 2010. Além disso, este 

processo resultou num domínio de criptófitas em detrimento de diatomáceas 

nesse mesmo ano, com presumíveis implicações para toda a cadeia trófica 

marinha da região. A grande variabilidade (espacial e temporal) dos factores 

ambientais, em estrita associação com as comunidades de fitoplâncton 

observada para a região da Península Antártica, suscita a necessidade de um 

processo de monitorização mais intenso, com escalas temporais e espaciais 

mais abrangentes, de forma a detectar os efeitos de possíveis alterações 

climáticas no ecossistema marinho desta importante região do Globo terrestre. 

 



Conclusões 

180 

Em síntese, o presente trabalho produziu um conjunto de informação 

científica relevante para a melhor compreensão da dinâmica do fitoplâncton em 

dois ecossistemas de extrema importância ecológica, nomeadamente: 

 

• Demonstrou a importância de estruturas geomorfológicas, como o canhão 

da Nazaré, na variabilidade espacial dos processos de afloramento costeiro 

e, consequentemente, na distribuição das comunidades de fitoplâncton; 

 

• Associou o aparecimento de florescimentos de algas potencialmente 

tóxicas, em sistemas influenciados por processos de afloramento, com a 

dinâmica da distribuição dos nutrientes nas camadas superficiais da coluna 

de água; 

 

• Testou e sugeriu o uso de alguns índices pigmentares na avaliação de 

determinados processos ecológico-fisiológicos envolvendo as comunidades 

de fitoplâncton na região da Península Antártica: indicadores de limitação 

por ferro e por luz, e taxas de herbivoria e/ou senescência celular; 

 

• Evidenciou a disponibilidade de luz e/ou ferro, associados maioritariamente 

com a estrutura da coluna de água, como os factores determinantes na 

distribuição espacial das comunidades fitoplantónicas na região em redor 

da Península Antártica; 
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• Comprovou a forte influência do grau e tempo do degelo durante o verão 

austral (factor susceptível às alterações climáticas) sobre a biomassa e 

composição das comunidades do fitoplâncton em ecossistemas Antárticos. 
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     “A criança que fui agora chora na estrada. 

    Deixei-a ali quando vim ser quem sou. 

    Mas hoje, vendo que o que sou é nada, 

    quero ir buscar quem fui onde ficou”. 

(Fernando Pessoa) 
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