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Abstract

In this dissertation the Heston (1993) model is considered, but using, instead of

a constant interest rate, stochastic interest rates according to Vasicek (1977) and to

Cox, Ingersoll and Ross (1985) models. Under this framework, a closed-form solution

is determined for the price of European standard calls, which, by using a manipula-

tion implemented by Attari (2004), only require the evaluation of one characteristic

function. For forward-start European calls, starting from the result for standard calls

and using analytic characteristic functions, it is determined a closed-form solution

that only requires one numerical integration. In the end, the results of these closed-

form solutions are compared with the results presented by Monte Carlo simulations

for the considered models.

Keywords: European Standard Call, Forward-Start European Call, Stochastic Volatil-

ity, Stochastic Interest Rate.

JEL Classification: G13.
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Resumo

Nesta dissertação é considerado o modelo de Heston (1993), mas em vez de uti-

lizar uma taxa de juro constante, considera-se taxas de juro estocásticas segundo

os modelos de Vasicek (1977) e de Cox, Ingersoll e Ross (1985). Neste contexto,

é determinada uma solução fechada para a avaliação de standard calls Europeias,

que, por ter sido usada uma manipulação implementada por Attari (2004), apenas

necessitará da avaliação de uma função caracteŕıstica. Para calls forward-start Eu-

ropeias, partindo do resultado apresentado para standard calls e utilizando funções

caracteŕıstica anaĺıticas, é determinada uma solução fechada que também recorrerá

a apenas uma integração numérica. No final, os resultados destas fórmulas fechadas

são comparados com os resultantes de simulações de Monte Carlo para os modelos

considerados.

Palavras Chave: Standard Call Europeia, Forward-Start Call Europeia, Volatili-

dade Estocástica, Taxa de Juro Estocástica.

Classificação JEL : G13.
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Chapter 1

Introduction

The Black-Scholes (1973) model brought a great development to option pricing

theory, but it considers some unrealistic assumptions, namely that the stock’s volatil-

ity and the interest rate are known and constant.

An alternative to Black-Scholes that considers stochastic volatility is the Heston

model (1993). According to this model, the underlying price process St of a dividend

paying asset and its instantaneous variance vt follow, under the risk-neutral measure

Q (the probability measure associated to the money market account), the stochastic

differential equations:

dSt = (rt − q) Stdt +
√

vtStdW Q
1 (t), (1.1)

dvt = κ (θ − vt) dt + σ
√

vtdW Q
2 (t), (1.2)

and d
〈

W Q
1 ,W Q

2

〉

t
= ρdt (1.3)

where, κ, θ and σ are positive constants, such that 2κθ > σ2, ensuring that vt remains

positive (Feller, 1951, p.180).

Seeking a more realistic framework, some models have also considered, besides

equations (1.1) to (1.3), a stochastic interest rate. This is the case of Bakshi, Cao

and Chen (1997), who have considered the short rate term structure model of Cox,
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Ingersoll and Ross (1985) (as well as random jumps), and the case of Hout, Bierkens,

Ploeg and Panhuis (2007), who have used the Hull-White (1990) no-arbitrage ex-

tended Vasicek (1977) model.

I will consider the usual conditions of the Heston model - equations (1.1) to (1.3) -

and two possibilities for the stochastic interest rate, namelly, the Vasiček (1977) and

the Cox, Ingersoll and Ross (1985) models:

(Vasicek) drt = κr (θr − rt) dt + ρrdW Q
3 (t), (1.4)

(Cox, Ingersoll, Ross(CIR)) drt = κr (θr − rt) dt + σr

√
rtdW Q

3 (t), (1.5)

with d
〈

W Q
1 ,W Q

3

〉

= 0, (1.6)

d
〈

W Q
2 ,W Q

3

〉

= 0, (1.7)

and where κr, θr, ρr and σr are positive constants, such that 2κrθr > σ2
r , ensuring

that, in the CIR model, rt remains positive (Feller, 1951, p.180). Unfortunately, in

the Vasiček model rt may become negative.

I will, when possible and practical, consider the generalization:

drt = κr (θr − rt) dt +
√

σ2
rrt + ρ2

rdW Q
3 (t) (1.8)

In the following Chapter, I start with the pricing of a standard European call,

but instead of using two characteristic functions like Bakshi, Cao and Chen (1997),

or Hout, Bierkens, Ploeg and Panhuis (2007), I will use a manipulation applied by

Attari (2004) to the pricing of options under the Heston model (1993), that uses

only one characteristic function. This approach will allow the computation of the

option price with only one numerical integration. I will finish the Chapter by making

some modifications to the obtained formulas so that discontinuities in the complex

logarithms are avoided.

In Chapter 3, I will determine the price of an European forward-start call under

the defined models. A closed-form solution has already been determined in the case
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of the Heston model (1993) with constant interest rates, by Kruse and Nögel (2005). I

will start by following a similar path but, by using characteristic functions, I simplify

the numerical implementation. Even without considering a stochastic interest rate,

Kruse and Nögel’s formula (2005) already requires the numerical calculation of four

integrals. Despite considering a stochastic interest rate, because I will be using the

formula determined in the previous Chapter along with characteristic functions, I will

be able to narrow to only one integral to be computed numerically.

In the final chapter I will present the obtained results with the numerical im-

plementation of the closed-form formulas and compare them with results attained

through Monte Carlo simulations.
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Chapter 2

Pricing of Standard European

Options

2.1 Zero Coupon Bond

To price options under the described models, I will need P (t, T ), the time - t price

of a default-free zero coupon bond which pays one monetary unit at the maturity

date T (≥ t). Considering the interest rate process defined by equation (1.8), and

following Björk (2003, p.320), P (t, T ) satisfies:

dP (t, T ) = rtP (t, T )dt +
√

σ2rt + ρ2
r

∂P

∂rt

(t, T )dW Q
3 (t). (2.1)

Moreover and following again Björk (2003, p.328), in an arbitrage free bond market,

P (t, T ) must satisfy the PDE:

−∂P

∂τ
+ κr (θr − rt)

∂P

∂rt

+
1

2

(

σ2
rrt + ρ2

r

) ∂2P

∂r2
t

− rtP = 0, (2.2)

subject to P (T, T ) = 1 and where τ = T − t.
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Equation (1.8) also ensures that the model has an affine structure (Björk, 2003,

p.331), therefore admitting a solution of the type:

P (t, T ) = exp [a (τ) − b (τ) rt] , (2.3)

where a(τ) and b(τ) are deterministic functions of time.

After incorporating equation (2.3) into equation (2.2) and solving the resulting

ODE’s (Appendix A), the bond’s price is known:

Vasicek b (τ) =
1 − exp (−κrτ)

κr

(2.4)

a (τ) = (b (τ) − τ)

(

θr −
ρ2

r

2κ2
r

)

− (b (τ))2 ρ2
r

4κr

(2.5)

CIR b (τ) =
2 (exp (ξτ) − 1)

2ξ + (exp (ξτ) − 1) (ξ + κr)
(2.6)

a (τ) =
2κrθr

σ2
r

ln

(

2ξ exp
(

(ξ + κr)
τ
2

)

2ξ + (exp (ξτ) − 1) (ξ + κr)

)

(2.7)

where ξ =
√

κ2
r + 2σ2

r .

2.2 Change of Numeraire

Applying Itô’s lemma to ln St, a solution to equation (1.1) may be expressed as:

d ln St =

(

rt − q − 1

2
vt

)

dt +
√

vtdW Q
1 (t)

⇔ ln

(

ST

St

)

=

∫ T

t

(

ru − q − 1

2
vu

)

du +

∫ T

t

√
vudW Q

1 (u)

⇔ ST = Ste
(

� T
t (ru−q− 1

2
vu)du+

� T
t

√
vudW

Q
1 (u)) (2.8)

⇔ ST = Ste
−qτ+x(t,T ) (2.9)

where x(t, T ) is the random shock term in stock prices (which I will represent, to

simplify notation, by xT ). That way, xt| Ft = 0 and the following equation may be

considered:

dxt =

(

rt −
1

2
vt

)

dt +
√

vtdW Q
1 (t) (2.10)
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To apply the multidimensional version of Girsanov’s Theorem, the three Brownian

motions can be made independent (Shreve, 2004, p.224). To restate this model with

independent Brownian motions, consider the following three independent Brownian

motions under measure Q:

ZQ
1 = W Q

1 , ZQ
3 = W Q

3 and ZQ
2 =

W Q
2 − ρZQ

1
√

1 − ρ2
(2.11)

Consequently, the pricing model becomes:

dxt =

(

rt −
1

2
vt

)

dt +
√

vtdZ
Q
1 (t) (2.12)

dvt = κ (θ − vt) dt + σ
√

vt

(

ρdZQ
1 (t) +

√

1 − ρ2dZQ
2 (t)

)

(2.13)

drt = κr (θr − rt) dt +
√

σ2
rrt + ρ2

rdZ
Q
3 (t) (2.14)

According to the general arbitrage theory, the option price can be computed as:

ct (St, vt, rt, X, T ) = BtEQ

[

(ST − X)+

BT

∣

∣

∣

∣

Ft

]

= EQ

[

Bt

BT

ST 1{ST >X}

∣

∣

∣

∣

Ft

]

− XEQ

[

Bt

BT

1{ST >X}

∣

∣

∣

∣

Ft

]

, (2.15)

where

Bt := exp

(
∫ t

0

rudu

)

(2.16)

is the time - t value of the money market account.

At this point, in order to prepare the expression for the simplification introduced

by Attari(2004), instead of making a numeraire change for each expected value, I will

change them both from the risk-neutral measure Q to the T-forward measure QT ,

that uses P (t, T ) as numeraire. Attari (2004) did not consider a stochastic interest

rate, but, as he refers, in that case, a forward measure should be used instead of the

risk-neutral measure.
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To determine the Radon-Nikodym derivative, another expression for P (t, T ) is

convenient, which can be obtained by using equation (2.1) and applying Itô’s lemma

to ln P (t, T ):

d ln P (t, T ) =



rt −
1

2

(

√

σ2rt + ρ2
r

P (t, T )

∂P

∂rt

)2


 dt +

√

σ2rt + ρ2
r

P (t, T )

∂P

∂rt

dZQ
3 (t)

⇔ 1

P (t, T )
= e

� T
t

�
ru− 1

2

σ2
rru+ρ2

r
P2(u,T )

( ∂P
∂ru

)
2 �

du+
� T
t � √σ2

rru+ρ2
r

P (u,T )
∂P
∂ru � dZ

Q
3 (u)

(2.17)

Using equations (2.16) and (2.17), the Radon-Nikodym derivative can be deter-

mined as:

dQT

dQ

∣

∣

∣

∣

Ft =
Bt

BT

P (T, T )

P (t, T )

= e
− 1

2

� T
t

�
σ2

rru+ρ2
r

P2(u,T ) � ∂P
∂rt � 2 �

du+
� T
t � √σ2

rru+ρ2
r

P (u,T )
∂P
∂rt � dZ

Q
3 (u)

(2.18)

But, to apply Girsanov′s theorem to make this numeraire change, it is necessary

to verify that the right-hand side of equation (2.18) is defined and is a martingale.

That can be made by verifying Novikov′s condition or, alternatively, according to

Revuz and Yor (1999, p. 338), by verifying the existence of two constants a and c

such that EQ [exp(aY 2(s))| Ft] ≤ c ∀s : t ≤ s ≤ T , where Y 2(t) is
σ2

Rrt+ρ2
r

P 2(t,T )

(

∂P
∂rt

)2

(see

Appendix B). Girsanov′s theorem then leads to:

dZQT

1 (t) = dZQ
1 (t) (2.19)

dZQT

2 (t) = dZQ
2 (t) (2.20)

dZQT

3 (t) = dZQ
3 (t) −

√

σ2
rrt + ρ2

r

P (t, T )

∂P

∂rt

dt (2.21)
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With this numeraire change, and after returning to correlated Brownian motions

(W QT

1 = ZQT

1 , W QT

3 = ZQT

3 and W QT

2 = ρZQT

1 +
√

1 − ρ2ZQT

2 ), the pricing model

becomes:

dxt =

(

rt −
1

2
vt

)

dt +
√

vtdW QT

1 (t) (2.22)

dvt = κ (θ − vt) dt + σ
√

vtdW QT

2 (t) (2.23)

drt =

(

κr (θr − rt) +
σ2

rrt + ρ2
r

P (t, T )

∂P

∂rt

)

dt +
√

σ2
rrt + ρ2

rdW QT

3 (t) (2.24)

d
〈

W QT

1 ,W QT

2

〉

t
= ρdt (2.25)

d
〈

W QT

1 ,W QT

3

〉

t
= 0 (2.26)

d
〈

W QT

2 ,W QT

3

〉

t
= 0 (2.27)

Proceeding with the numeraire change into equation (2.15):

= EQT

[

P (t, T )

P (T, T )
ST 1{ST >X}

∣

∣

∣

∣

Ft

]

− XEQT

[

P (t, T )

P (T, T )
1{ST >X}

∣

∣

∣

∣

Ft

]

= EQT

[

P (t, T )ST 1{ST >X}
∣

∣Ft

]

− XEQT

[

P (t, T )1{ST >X}
∣

∣Ft

]

= EQT

[

P (t, T )Ste
−qτ+xT 1{xT >l}

∣

∣Ft

]

− XEQT

[

P (t, T )1{xT >l}
∣

∣Ft

]

= Ste
−qτEQT

[

P (t, T )exT 1{xT >l}
∣

∣Ft

]

− XP (t, T )EQT

[

1{xT >l}
∣

∣Ft

]

= Ste
−qτ

∫ ∞

l

P (t, T )exf(x)dx − XP (t, T )

∫ ∞

l

f(x)dx

= Ste
−qτΠ1 (t, xt, vt, rt, X, T ) − XP (t, T )Π2 (t, xt, vt, rt, X, T ) (2.28)

where l := ln
(

X
St

eqτ
)

and f(x) is the density function associated to xT under measure

QT .

Π2 will be determined through the characteristic function as usual, but Π1 will

be determined through the same characteristic function as Π2, using a modification

applied by Attari(2004).
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2.3 The Characteristic Function

2.3.1 A Single Integral Solution

According to the Fourier Inversion theorem, given the characteristic function of a

random variable X: ϕ (φ) = E
[

eiφX
]

, the density function f(x) and the distribution

function F (x) may be written as:

f(x) =
1

2π

∫ ∞

−∞
e−iφxϕ(φ)dφ (2.29)

F (x) =
1

2
+

1

2π

∫ ∞

0

eiφxϕ(−φ) − e−iφxϕ(φ)

iφ
dφ (2.30)

Let ϕ (xt, vt, rt; T, φ) = EQT [exp(iφxT )| Ft] be the characteristic function associ-

ated to xT under the T-forward measure (for notational simplicity I will represent it

by ϕ (φ)).

From equation (2.30), and since the characteristic function is an hermitian function

(ϕ(−φ) = ϕ(φ)), Π2 can be determined as follows:

Π2 (t, xt, vt, rt, X, T ) = QT (xT > l) = 1 − QT (xT ≤ l)

=
1

2
− 1

2π

∫ ∞

0

eiφlϕ(−φ) − e−iφlϕ(φ)

iφ
dφ

=
1

2
− 1

2π

∫ ∞

0

eiφlϕ(φ) − e−iφlϕ(φ)

iφ
dφ

=
1

2
− 1

2π

∫ ∞

0

2i sin(φl)Re(ϕ(φ)) − 2i cos(φl)Im(ϕ(φ))

iφ
dφ

=
1

2
+

1

π

∫ ∞

0

cos(φl)Im(ϕ(φ)) − sin(φl)Re(ϕ(φ))

φ
dφ (2.31)
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To determine Π1’s expression, I follow Attari(2004), starting by using equation

(2.29) in the expression that Π1 had in equation (2.28), and then changing the order

of integration:

Π1 =

∫ ∞

l

P (t, T )ex

(

1

2π

∫ ∞

−∞
e−iφxϕ(φ)dφ

)

dx

=
P (t, T )

2π

∫ ∞

−∞
ϕ(φ)

(
∫ ∞

l

e−i(φ+i)xdx

)

dφ (2.32)

Because Π1|l=−∞ = 1 (Ste
−qτ is the value of this option if the strike is zero), equation

(2.32) implies that:

Π1 =1 − P (t, T )

2π

∫ ∞

−∞
ϕ(φ)

(
∫ l

−∞
e−i(φ+i)xdx

)

dφ

=
1

2
+

Π1|l=−∞
2

− P (t, T )

2π

∫ ∞

−∞
ϕ(φ)

(
∫ l

−∞
e−i(φ+i)xdx

)

dφ

=
1

2
+

P (t, T )

4π

∫ ∞

−∞
ϕ(φ)

(
∫ ∞

l

e−i(φ+i)xdx

)

dφ

+
P (t, T )

4π

∫ ∞

−∞
ϕ(φ)

(
∫ l

−∞
e−i(φ+i)xdx

)

dφ

− P (t, T )

2π

∫ ∞

−∞
ϕ(φ)

(
∫ l

−∞
e−i(φ+i)xdx

)

dφ

=
1

2
+

P (t, T )

4π

∫ ∞

−∞
ϕ(φ)

(
∫ ∞

l

e−i(φ+i)xdx

)

dφ

− P (t, T )

4π

∫ ∞

−∞
ϕ(φ)

(
∫ l

−∞
e−i(φ+i)xdx

)

dφ

=
1

2
+

P (t, T )

4π

∫ ∞

−∞
ϕ(φ)

(

lim
R→∞

e−i(φ+i)R

−i(φ + i)
− e−i(φ+i)l

−i(φ + i)

)

dφ

− P (t, T )

4π

∫ ∞

−∞
ϕ(φ)

(

e−i(φ+i)l

−i(φ + i)
− lim

R→−∞

e−i(φ+i)R

−i(φ + i)

)

dφ

=
1

2
+

P (t, T )

2π

∫ ∞

−∞
ϕ(φ)

e−i(φ+i)l

i(φ + i)
dφ − P (t, T )

4π
lim

R→∞

∫ ∞

−∞
ϕ(φ)

eR−iφR

i(φ + i)
dφ (2.33)

because lim
R→−∞

e−i(φ+i)R = lim
R→−∞

eR (cos(−φR) + i sin(−φR)) = 0

The second integral may be evaluated by applying a result related to the Residue

Theorem (see for instance Matos and Santos (2000, p. 236)). This result states that,

being f : U\A → C an analytic function (where U is a open set containing the complex
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half-plane defined by Im(z) ≥ 0, and A is a finite part of U\R), if limz→∞ f(z) = 0,

then, for all positive a,
∫ +∞
−∞ eiaxf(x)dx = 2πi

∑

ξ∈{z∈A:Im(z)>0} res(ξ, eiazf(z)). After

making the variable change w = −φ, the integral is in the necessary conditions:

∫ ∞

−∞
ϕ(φ)

eR−iφR

i(φ + i)
dφ =

∫ ∞

−∞
ϕ(−w)

eR+iwR

i(−w + i)
dw

= 2πiresid

(

i, ϕ(−w)
eR+iwR

i(−w + i)

)

= −2πϕ(−i) (2.34)

The value of ϕ(−i) can be calculated by determining explicitly the value of

Π1|l=−∞ (proceeding like in the steps that led to equations (2.33) and (2.34)) and

then using the fact that it has to be 1, like Attari(2004) did. Alternatively, know-

ing the expression of ϕ (which I will determine next), it is easy to conclude that

ϕ(−i) = P (t, T )−1.

Replacing equation (2.34) into (2.33):

Π1 = 1 +
P (t, T )

2π

∫ ∞

−∞
ϕ(φ)

e−i(φ+i)l

i(φ + i)
dφ

= 1 +
elP (t, T )

2π

∫ ∞

0

ϕ(φ)e−iφl

i(φ + i)
+

ϕ(−φ)eiφl

i(−φ + i)
dφ

= 1 +
elP (t, T )

2π

∫ ∞

0

−ϕ(φ)eiφl(i + φ) − ϕ(φ)e−iφl(i − φ)

i(1 + φ2)
dφ

= 1 − elP (t, T )

2π

∫ ∞

0

ϕ(φ)e−iφl(φ − i) + ϕ(φ)eiφl(i + φ)

i(1 + φ2)
dφ

= 1−elP (t, T )

π

∫ ∞

0

Re(ϕ)(cos(φl) + sin(φl)φ) + Im(ϕ)(sin(φl) − cos(φl)φ)

1 + φ2
dφ

(2.35)
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Introducing equations (2.31) and (2.35) into equation (2.28) and rearranging the

terms leads to the following option pricing formula:

ct(St, vt, rt, X, T ) = Ste
−qτ − P (t, T )

X

2

−P (t, T )
X

π

∫ ∞

0

(

Re(ϕ(φ)) + Im(ϕ(φ))
φ

)

cos(φl) +
(

Im(ϕ(φ)) − Re(ϕ(φ))
φ

)

sin(φl)

1 + φ2
dφ

(2.36)

2.3.2 The expression of the Characteristic Function

Due to the law of iterated expectations, the characteristic function ϕ must be a

martingale:

EQT [ϕ (xl, vl, rl; T, φ)| Ft] = EQT [EQT [exp(iφxT )| Fl]| Ft]

= EQT [exp(iφxT )| Ft]

= ϕ(xt, vt, rt; T, φ)

Replacing τ = T − t and applying Itô′s lemma to ϕ(xt, vt, rt; T, φ):

dϕ(xt, vt, rt; T, φ) = −∂ϕ

∂τ
dt +

∂ϕ

∂xt

dx +
∂ϕ

∂vt

dv +
∂ϕ

∂rt

dr +
1

2

∂2ϕ

∂x2
t

d 〈xt, xt〉

+
1

2

∂2ϕ

∂v2
t

d 〈vt, vt〉 +
1

2

∂2ϕ

∂r2
t

d 〈rt, rt〉 +
∂ϕ

∂xt∂vt

d 〈xt, vt〉

=

[

−∂ϕ

∂τ
+

(

rt −
1

2
vt

)

∂ϕ

∂xt

+ κ (θ − vt)
∂ϕ

∂vt

+

(

κr (θr − rt) +
σ2

rrt + ρ2
r

P (t, T )

∂P

∂rt

)

∂ϕ

∂rt

+
1

2
vt

∂2ϕ

∂x2
t

+
1

2
σ2vt

∂2ϕ

∂v2
t

+
1

2

(

σ2
rrt + ρ2

r

) ∂2ϕ

∂r2
t

+ σρvt

∂ϕ

∂xt∂vt

]

dt

+
√

vt

∂ϕ

∂xt

dW QT

1 + σ
√

vt

∂ϕ

∂vt

dW QT

2 +
√

σ2
rrt + ρ2

r

∂ϕ

∂rt

dW QT

3 (2.37)
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But, being a martingale, the drift of (2.37) must be zero so, the characteristic

function must be the solution to:

− ∂ϕ

∂τ
+

(

rt −
1

2
vt

)

∂ϕ

∂xt

+ κ (θ − vt)
∂ϕ

∂vt

+

[

κr (θr − rt) +
σ2

rrt + ρ2
r

P (t, T )

∂P

∂rt

]

∂ϕ

∂rt

+
1

2
vt

∂2ϕ

∂x2
t

+
1

2
σ2vt

∂2ϕ

∂v2
t

+
1

2

(

σ2
rrt + ρ2

r

) ∂2ϕ

∂r2
t

+ σρvt

∂ϕ

∂xt∂vt

= 0, (2.38)

with terminal condition ϕ (xT , vT , rT ; T ; φ) = exp(iφxT ).

To solve this equation, solutions are considered to have the following structure:

ϕ (xt, vt, rt; T, φ) = exp [F (φ, τ) + G(φ, τ)vt + H(φ, τ)rt + iφxt − ln (P (t, T ))]

(2.39)

Replacing ϕ into the partial differential equation (2.38):

− ∂F

∂τ
− ∂G

∂τ
vt −

∂H

∂τ
rt +

∂P

∂τ

1

P (t, T )
+

(

rt −
1

2
vt

)

iφ + κ (θ − vt) G

+

[

κr (θr − rt) +
σ2

rrt + ρ2
r

P (t, T )

∂P

∂rt

] [

H − 1

P (t, T )

∂P

∂rt

]

− 1

2
vtφ

2 +
1

2
σ2vtG

2

+
1

2

(

σ2
rrt + ρ2

r

)

[

(

H − 1

P (t, T )

∂P

∂rt

)2

− 1

P (t, T )

∂2P

∂r2
t

+

(

1

P (t, T )

∂P

∂rt

)2
]

+ σρvtiφG = 0

⇔ −∂F

∂τ
− ∂G

∂τ
vt −

∂H

∂τ
rt − rt +

(

rt −
1

2
vt

)

iφ + κ (θ − vt) G + κr (θr − rt) H

− 1

2
vtφ

2 +
1

2
σ2vtG

2 +
1

2

(

σ2
rrt + ρ2

r

)

H2 + σρvtiφG = 0 (2.40)

The last partial differential equation can be decomposed into three ordinary dif-

ferential equations subject to F (φ, 0) = G(φ, 0) = H(φ, 0) = 0. After solving those

equations (Appendix C):
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Vasicek:

H =
(1 − exp (−κrτ)) (iφ − 1)

κr

(2.41)

G =
κ − ρσiφ + dV

σ2

1 − exp (dV τ)

1 − qV exp (dV τ)
(2.42)

F = θriφτ − θrτ +
κθ

σ2

[

(κ − ρσiφ + dV ) τ − 2 ln

(

1 − qV exp (dV τ)

1 − qV

)]

+
θr (iφ − 1)

κr

(exp (−κrτ) − 1) +

+
ρ2

r (iφ − 1)2

κ2
r

[−3 + 2κrτ + 4 exp (−κrτ) − exp (−2κrτ)

4κr

]

(2.43)

where

dV =

√

(ρσiφ − κ)2 + (iφ + φ2) σ2 (2.44)

qV =
−κ + ρσφi − dV

−κ + ρσφi + dV

(2.45)

CIR:

H =
κr + dC

σ2
r

1 − exp (dCτ)

1 − qC exp (dCτ)
(2.46)

F =
κθ

σ2

[

(κ − ρσiφ + dV ) τ − 2 ln

(

1 − qV exp (dV τ)

1 − qV

)]

+
κrθr

σ2
r

[

(κr + dC) τ − 2 ln

(

1 − qC exp (dCτ)

1 − qC

)]

(2.47)

where

dC =
√

κ2
r − 2 (iφ − 1) σ2

r (2.48)

qC =
κr + dC

κr − dC

, (2.49)

while G is still given by equation (2.42).

2.3.3 Continuity

For the numerical implementation of these formulas, some difficulties may arise

from the discontinuity of the complex logarithm, consequence of always using the

principal argument. In some cases, the curve of the numbers for which is calculated the

18



logarithm will cross the negative part of the real axis, and, considering the principal

argument, that will generate a discontinuity, as seen in Figures 2.1 and 2.2.

To avoid such problems, Jäckel and Kahl (2006) indicated an algorithm which,

under certain conditions, should choose the argument so that it ensures continuity.

Later, Kahl and Lord (2006) presented a demonstration that this algorithm chooses

branches of the complex logarithm that ensures continuity but, they also mention

that, under an alternative (and equivalent) formulation of the characteristic function,

the principal branch ensures continuity.

This alternative formulation is easier to implement and numerically more stable

than Heston’s original formulation. Albrecher, Mayer, Schoutens and Tistaert (2006)

also explore the alternative formulation, explaining that, under such formulation,

stability is guaranteed. I will follow the alternative formulation, to which I must

rearrange terms with h = 1
q

in equations (2.41) to (2.49), so that the formulas depend

on −d instead of depending on d. Proceeding analogously to Albrecher, Mayer,

Schoutens and Tistaert (2006), I reach the following formulas:

Vasicek:

G =
κ − ρσiφ − dV

σ2

1 − exp (−dV τ)

1 − hV exp (−dV τ)
(2.50)

F = θriφτ − θrτ +
κθ

σ2

[

(κ − ρσiφ − dV ) τ − 2 ln

(

1 − hV exp (−dV τ)

1 − hV

)]

+
θr (iφ − 1)

κr

(exp (−κrτ) − 1)

+
ρ2

r (iφ − 1)2

κ2
r

[−3 + 2κrτ + 4 exp (−κrτ) − exp (−2κrτ)

4κr

]

(2.51)

where

dV =

√

(ρσiφ − κ)2 + (iφ + φ2) σ2 (2.52)

hV =
1

qV

=
κ − ρσφi − dV

κ − ρσφi + dV

(2.53)
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CIR:

H =
κr − dC

σ2
r

1 − exp (−dCτ)

1 − hC exp (−dCτ)
(2.54)

F =
κθ

σ2

[

(κ − ρσiφ − dV ) τ − 2 ln

(

1 − hV exp (−dV τ)

1 − hV

)]

+
κrθr

σ2
r

[

(κr − dC) τ − 2 ln

(

1 − hC exp (−dCτ)

1 − hC

)]

(2.55)

where

dC =
√

κ2
r − 2 (iφ − 1) σ2

r (2.56)

hC =
1

qC

=
κr − dC

κr + dC

(2.57)
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Figure 2.1: The logarithm in equation (2.43), considering τ = 30, κ = 1, σ = 0.5 and

ρ = −0.3
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Figure 2.2: The other logarithm in equation (2.47), considering τ = 30, κr = 1, σr = 0.5

and ρ = −0.3
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Figure 2.3: The logarithm in equation (2.51), considering τ = 30, κ = 1, σ = 0.5 and
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Chapter 3

Pricing Forward Start Options

Forward-start options are exotic options which have its life starting on some future

date t∗, although its premium is paid at the time of the purchase. It only makes sense

to evaluate forward-start options with t < t∗, otherwise it would be a standard option

with a determined strike since its inception. The strike will be considered to be a

proportion (k) of the asset′s price at the time of its life start: kSt∗ .

Kruse and Nogel (2005) determined a solution for the pricing of this forward-

start European option under the Heston (1993) model. I will follow their steps but

considering a stochastic interest rate setup and using the expression I reached in the

previous chapter for standard options. Also, unlike Kruse and Nogel (2005), I will

seek to reduce the number of numerical procedures by using characteristic functions,

avoiding the calculation of density functions and only computing one integral.

I will be changing from the risk-neutral measure Q to QS, the measure that uses

the stock price (compounded by the dividend yield) as numeraire. So, to apply Gir-

sanov’s theorem, I consider the independent Brownian motions defined in equations

25



(2.11) and the pricing model defined by equations (2.12) to (2.14). Using equations

(2.8) and (2.16), the Radon-Nikodym derivative can be determined as:

dQS

dQ

∣

∣

∣

∣

Ft =
Bt

BT

eqT ST

eqtSt

= exp

(

−
∫ T

t

rudu

)

eqT ST

eqtSt

=

= exp

(

−1

2

∫ T

t

vudu +

∫ T

t

√
vudZ

Q
1 (u)

)

(3.1)

To make the change of measure, it is necessary to verify that the right-hand side of

equation (3.1) is defined and is a martingale. Once again I will do it by verifying the

existence of two constants a and c such that EQ [exp(aY 2(s)| Ft] ≤ c ∀s : t ≤ s ≤ T ,

where Y 2(t) is vt (see Appendix B). Girsanov′s theorem then leads to:

dZQS

1 (t) = dZQ
1 (t) −√

vtdt dZQS

2 (t) = dZQ
2 (t) dZQS

3 (t) = dZQ
3 (t)

With this numeraire change, and after returning to correlated Brownian motions

(W QS

1 = ZQS

1 , W QS

3 = ZQS

3 and W QS

2 = ρZQS

1 +
√

1 − ρ2ZQS

2 ), the pricing model

becomes:

dxt =
(

rt +
vt

2

)

dt +
√

vtdW QS

1 (t) (3.2)

dvt = (κ − ρσ)

(

κθ

κ − ρσ
− vt

)

dt + σ
√

vtdW QS

2 (t) (3.3)

drt = (κr (θr − rt)) dt +
√

σ2
rrt + ρ2

rdW QS

3 (t) (3.4)

d
〈

W QS

1 ,W QS

2

〉

t
= ρdt (3.5)

d
〈

W QS

1 ,W QS

3

〉

t
= 0 (3.6)

d
〈

W QS

2 ,W QS

3

〉

t
= 0 (3.7)

Although having different parameters, vt still follows a square root process with

parameters satisfying the stability condition:

2(κ − ρσ)
κθ

κ − ρσ
> σ2 ⇔ 2κθ > σ2
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Consider c
f
t (St, vt, rt, kSt∗ , t

∗, T ) to be the price of a forward-start European call

in the mentioned conditions. Following Kruse and Nogel (2005), I begin with the

numeraire change:

c
f
t (St, vt, rt, kSt∗ , t

∗, T ) = EQ

[

Bt

(ST − kSt∗)
+

BT

∣

∣

∣

∣

Ft

]

= EQS

[

Ste
qt (ST − kSt∗)

+

ST eqT

∣

∣

∣

∣

Ft

]

(3.8)

Because St is Ft-measurable and applying the law of iterated expectation, then:

c
f
t (St, vt, rt, kSt∗ , t

∗, T ) = Ste
qtEQS

[

EQS

[

(ST − kSt∗)
+

ST eqT

∣

∣

∣

∣

Ft∗

]∣

∣

∣

∣

Ft

]

= Ste
qtEQS

[

EQS

[

St∗e
qt∗ (ST − kSt∗)

+

ST eqT

∣

∣

∣

∣

Ft∗

]

1

St∗eqt∗

∣

∣

∣

∣

Ft

]

(3.9)

Knowing that

EQS

[

St∗e
qt∗ (ST − kSt∗)

+

ST eqT

∣

∣

∣

∣

Ft∗

]

= c
f
t∗ (St∗ , vt∗ , rt∗ , kSt∗ , t

∗, T )

= ct∗ (St∗ , vt∗ , rt∗ , kSt∗ , t
∗, T )

allows us to use equation (2.36) with τ ∗ = T − t∗ and ϕ = ϕ (xt∗ , vt∗ , rt∗ ; T, φ) (for

notational simplicity I will sometimes write ϕ instead of ϕ (xt∗ , vt∗ , rt∗ ; T, φ):

EQS

[

St∗e
qt∗ (ST − kSt∗)

+

ST eqT

∣

∣

∣

∣

Ft∗

]

=

= St∗e
−qτ∗ − P (t∗, T )

kSt∗

2

− P (t∗, T )
kSt∗

π

∫ +∞

0

(Re(ϕ) + Im(ϕ)
φ

) cos(φl) + (Im(ϕ) − Re(ϕ)
φ

) sin(φl)

1 + φ2
dφ

(3.10)
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Introducing this result into equation (3.9):

c
f
t (St, vt, rt, kSt∗ , t

∗, T ) =

= Ste
qtEQS

[

e−qT − e−qt∗P (t∗, T )
k

2

−e−qt∗P (t∗, T )
k

π

∫ +∞

0

(Re(ϕ) + Im(ϕ)
φ

) cos(φl) + (Im(ϕ) − Re(ϕ)
φ

) sin(φl)

1 + φ2
dφ

∣

∣

∣

∣

∣

Ft

]

= Ste
−qτ − Ste

−q(t∗−t)k

2
EQS [P (t∗, T )| Ft] − Ste

−q(t∗−t) k

π
EQS [Ω| Ft] (3.11)

where

Ω := P (t∗, T )

∫ +∞

0

(Re(ϕ) + Im(ϕ)
φ

) cos(φl) + (Im(ϕ) − Re(ϕ)
φ

) sin(φl)

1 + φ2
dφ (3.12)

Notice that neither l = ln
(

kS∗

t

S∗

t
eqτ∗

)

= ln keqτ∗

nor the conditional expectation

depend on St∗ . So, and because xt∗ = x(t∗, t∗) = 0, the variables involved are just vt∗

and rt∗ .

Because P (t∗, T ) depends only on rt∗ , it may be moved inside the integral. Because

it has no imaginary part, it may be moved into Re(ϕ) and Im(ϕ), where, gathered

with ϕ (given by equation (2.39)), may give place to 1

Υ (xt∗ , vt∗ , rt∗ ; T, φ) := P (t∗, T )ϕ = eF (φ,τ∗)+G(φ,τ∗)vt∗+H(φ,τ∗)rt∗+iφxt∗ , (3.13)

allowing to define Ω as:

Ω :=

∫ +∞

0

(Re(Υ) + Im(Υ)
φ

) cos(φl) + (Im(Υ) − Re(Υ)
φ

) sin(φl)

1 + φ2
dφ (3.14)

In the second conditional expectation, vt∗ and rt∗ are envolved, so it is necessary

to know its joint transition density. However, because vt∗ and rt∗ were assumed

to be independent, the joint transition density may be obtained by multiplying the

individual transition density from each one, represented by fv (v| vt) and fr (r| rt),

respectively. The first conditional expectation, is simpler since it depends only on rt∗ :

EQS [P (t∗, T )| Ft] =

∫ +∞

0

P (t∗, T )fr (r| rt) dr. (3.15)

1For notational simplicity I will refer to Υ (xt∗ , vt∗ , rt∗ ;T, φ) as simply Υ
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However, 2

EQS [Ω| Ft] =

=

∫ +∞

0

∫ +∞

0

∫ +∞

0

(Re(Υ) + Im(Υ)
φ

) cos(φl) + (Im(Υ) − Re(Υ)
φ

sin(φl))

1 + φ2

dφfv (v| vt) fr (r| rt) dvdr. (3.16)

The second conditional expectation led to a triple integral. However, assuming

that the integrand is Lebesgue-integrable and that the characteristic function of both

the random variables can handle a complex object, the number of integrations may

be reduced.

According to Fubini’s theorem, if the integrand is Lebesgue-integrable then the

order of integration may be changed:

∫ +∞

0





(Re
∫ +∞

0

∫ +∞
0

Υfv (v| vt) fr (r| rt) dvdr +
Im

� +∞

0

� +∞

0 Υfv(v|vt)fr( r|rt)dvdr

φ
) cos(φl)

1 + φ2

+
(Im

∫ +∞
0

∫ +∞
0

Υfv (v| vt) fr (r| rt) dvdr − Re
� +∞

0

� +∞

0 Υfv(v|vt)fr( r|rt)dvdr

φ
) sin(φl)

1 + φ2



 dφ

(3.17)

To simplify further, it is necessary to have under consideration that, for a random

variable X:
∫ +∞

−∞
exp (iaX) fX(a)dX = ΦX(a) (3.18)

where ΦX and fX represent, respectively, X’s characteristic and density functions.

It is also necessary that a be allowed to be a complex number, which requires the

characteristic function to be analytic.

The Normal Distribution has a characteristic function analytic in the entire com-

plex plane. That conclusion can be reached by using a theorem presented by Kawata

2In the Vasicek case, the integral relative to r must be from −∞ to +∞ instead of 0 to +∞,
because while equation (1.5) defines rt strictly positive, the same is not true for equation (1.4)
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(1972, p.460), or by the expression of the characteristic function itself, which is known

to be an analytic function. Concerning to the Non-central Chi-Squared Distribution,

because its distribution function is null for negative objects, the characteristic func-

tion is analytic at least in the half-plane defined by Im(a) > 0 - see, for instance,

Kawata (1972, p.456).

Considering that (3.18) holds for complex a, an expression for the first integral

may determined:

∫ +∞

0

P (t∗, T )fr (r| rt) dr =

∫ +∞

0

ea(τ∗)−b(τ∗)rfr (r| rt) dr =

= ea(τ∗)

∫ +∞

0

e−b(τ∗)rfr (r| rt) dr =

= ea(τ∗)Φr (ib (τ ∗)) (3.19)

Similarly:3

∫ +∞

0

∫ +∞

0

Υfv (v| vt) fr (r| rt) dvdr =

∫ +∞

0

∫ +∞

0

eF+Gv+Hrfv (v| vt) fr (r| rt) dvdr

= eF

∫ +∞

0

eGvfv (v| vt) dv

∫ +∞

0

eHrfr (r| rt) dr

= eF Φv(−iG)Φr(−iH) (3.20)

The previous result allows equation (3.17) to be simplified into:

EQS [Ω| Ft] =

∫ +∞

0





(Re(eF Φv(−iG)Φr(−iH)) + Im(eF Φv(−iG)Φr(−iH))
φ

) cos(φl)

1 + φ2

+
(Im(eF Φv(−iG)Φr(−iH)) − Re(eF Φv(−iG)Φr(−iH))

φ
) sin(φl)

1 + φ2



 dφ

(3.21)

3For simplicity of notation I will write F, G or H instead of F (τ ∗), G(τ∗) and H(τ∗)
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So, the fair-value of the forward-start option is given by:

c
f
t (St, vt, rt, kSt∗ , t

∗, T ) =

= Ste
−qτ − Ste

−q(t∗−t)k

2
ea(T−t∗)Φr (ib (τ ∗))

− Ste
−q(t∗−t) k

π

∫ +∞

0





(Re(eF Φv(−iG)Φr(−iH)) + Im(eF Φv(−iG)Φr(−iH))
φ

) cos(φl)

1 + φ2

+
(Im(eF Φv(−iG)Φr(−iH)) − Re(eF Φv(−iG)Φr(−iH))

φ
) sin(φl)

1 + φ2



 dφ

(3.22)

The expression of the characteristic functions are known (see, for instance Kapadia,

Owen and Patel (1976, p.46))):

Lemma 3.1. Let X1 be a random variable with non-central Chi-squared distribution

with R degrees of freedom and non-centrality parameter Λ and X2 a random variable

with Normal distribution with mean µ and standard deviation σ. The characteristic

function of X1 is

Φ1 (a) = (1 − 2ia)−
R
2 e

iΛa
1−2ia (3.23)

and the characteristic function of X2 is:

Φ2 (a) = exp

(

µia − 1

2
σ2a2

)

(3.24)

For rt defined according to the Vasicek model, rt∗ |Ft has a Normal distribution

with mean rte
−κr(t∗−t) + θr

(

1 − e−κr(t∗−t)
)

and variance ρ2
r

2κr

(

1 − e−2κr(t∗−t)
)

.

Considering fχ2(Λ,R) to be the density of a Non-Central Chi-Squared Distribution

with R degrees of freedom and non-centrality parameter Λ, then, under measure QS,

the density function of vt∗ |Ft and rt∗ |Ft (according to the CIR model) are given by,

respectively:

fv (v| vt) = Bfχ2(Λ,R) (Bv) (3.25)

fr (r| rt) = Brfχ2(Λr,Rr) (Brr) (3.26)
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Λ = Be−(κ−ρσ)(t∗−t)vt , B =
4(κ − ρσ)

σ2

1

1 − e−(κ−ρσ)(t∗−t)
, R =

4κθ

σ2

Λr = Bre
−κr(t∗−t)rt , Br =

4κr

σ2
r

1

1 − e−κr(t∗−t)
, Rr =

4κrθr

σ2
r

So, according to Lemma 3.1, the characteristic functions are:

Φv(a) =
(

1 − 2iaB−1
)−R

2 e
ΛiaB−1

1−2iaB−1 (3.27)

(CIR) Φr(a) =
(

1 − 2iaB−1
r

)−Rr
2 e

ΛriaB
−1
r

1−2iaB
−1
r (3.28)

(Vasicek) Φr(a) = e(rte
−κr(t∗−t)+θr(1−e−κr(t∗−t)))ia− ρ2

ra2

4κr
(1−e−2κr(t∗−t)) (3.29)
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Chapter 4

Numerical Implementation

Due to the steps followed, the numerical implementation for standard and for-

ward start options, only requires the computation of one integral, which was done

with a Gauss-Laguerre Quadrature (see, for instance, Press, Flannery, Teukolsky and

Vetterling (1997, p. 152)).

Kilin(2007) mentioned that the solution to option pricing in the Heston model pre-

sented by Attari(2004) had the advantages, relatively to the original formulation, of

just using one characteristic function and of having a quadratic term in the integral’s

denominator, providing a faster rate of decay. This is also valid when comparing the

closed-form solution to standard options presented by Bakshi, Cao and Chen(1997)

with the one I reached in Chapter 2.

When comparing the solutions in Chapter 3 with the implementation for the

forward-start options by Kruse and Nögel(2005), besides also having the advantage

of only needing the numerical implementation of one integral and which also had

a quadratic term in its denominator, there was the advantage of not needing the

implementation of the modified Bessel function.
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To verify the results given by the numerical implementation of the solutions, I used

Monte Carlo Simulation through a standard Euler scheme. To generate the random

deviates with Normal distribution required for the simulation I generated uniform

deviates and then used the Box-Muller method (see, for instance, Press, Flannery,

Teukolsky and Vetterling (1997, p. 275)).

For the comparison, I considered S0 = 100, r0 = 0.04, q = 0.01, v0 = 0.01,

κ = 2, θ = 0.01, σ = 0.1, κr = 0.3, θr = 0.05, σr = 0.05, and experimented

different maturities, strikes and correlations ρ. I considered a 35-point Gauss-Laguerre

Quadrature for the integral of the Closed-Form Solution, and, for the Monte Carlo

solution, I considered 700 time-steps per year and one million simulations.

The following tables present, for each case, the Closed-Form Solution (CFS),

Monte Carlo solution (MCS), relative error:=CFS−MCS
MCS

(MCErel) and standard

error:=MCStDev√
N

(MCEstd) (where MCStDev is the standard deviation of the Monte

Carlo simulation and N the number of simulations). It is possible to observe that

most of the simulations returned values close to the ones presented by the closed-form

solution. Almost only with higher strikes, which correspond to solutions near zero,

there were MCErel superior to 1% and in many cases it was even below 0.1% .

Model Strike τ ρ CFS MCS MCErel MCEstd

Heston+Vasicek 50 1 -0.5 51.0148 51.008 0.01% 1.01%

Heston+CIR 50 1 -0.5 51.0302 51.0248 0.01% 0.98%

Heston+Vasicek 100 1 -0.5 5.72622 5.72293 0.06% 0.68%

Heston+CIR 100 1 -0.5 5.63308 5.63168 0.02% 0.66%

Heston+Vasicek 150 1 -0.5 0.000041 0.00003 37.42% 0.001%

Heston+CIR 150 1 -0.5 0.000015 0.000015 3.3% 0.001%

Table 4.1: Results for a Standard European Call with different strikes
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Model k τ t∗ − t ρ CFS MCS MCErel MCEstd

Heston+Vasicek 0.5 2 1 -0.5 50.6134 50.5557 0.11% 1.22%

Heston+CIR 0.5 2 1 -0.5 50.6272 50.6098 0.03% 1.09%

Heston+Vasicek 1 2 1 -0.5 5.77113 5.94804 -2.97% 0.74%

Heston+CIR 1 2 1 -0.5 5.68765 5.67515 0.22% 0.66%

Heston+Vasicek 1.5 2 1 -0.5 0.0001585 0.000449 -64.7% 0.006%

Heston+CIR 1.5 2 1 -0.5 0.0001015 0.000097 4.59% 0.002%

Table 4.2: Results for a Forward-Start European Call with different strikes (kSt∗)

Model Strike τ ρ CFS MCS MCErel MCEstd

Heston+Vasicek 100 3 -0.5 12.7658 12.7509 0.12% 1.52%

Heston+CIR 100 3 -0.5 12.1794 12.1737 0.05% 1.30%

Heston+Vasicek 100 2 -0.5 9.40752 9.38098 0.28% 1.11%

Heston+CIR 100 2 -0.5 9.07573 9.05445 0.24% 1.01%

Heston+Vasicek 100 1 -0.5 5.72622 5.72293 0.06% 0.68%

Heston+CIR 100 1 -0.5 5.63308 5.63168 0.02% 0.66%

Heston+Vasicek 100 0.5 -0.5 3.63465 3.62971 0.14% 0.45%

Heston+CIR 100 0.5 -0.5 3.6136 3.60918 0.12% 0.45%

Table 4.3: Results for a Standard European Call with different maturities
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Model k τ t∗ − t ρ CFS MCS MCErel MCEstd

Heston+Vasicek 0.5 3 1 -0.5 51.6525 51.5438 0.21% 1.76%

Heston+CIR 0.5 3 1 -0.5 51.7428 51.7358 0.01% 1.46%

Heston+Vasicek 0.5 2 1.5 -0.5 49.8357 49.8037 0.06% 1.01%

Heston+CIR 0.5 2 1.5 -0.5 49.8373 49.8238 0.03% 0.91%

Heston+Vasicek 0.5 2 1 -0.5 50.6134 50.5557 0.11% 1.22%

Heston+CIR 0.5 2 1 -0.5 50.6272 50.6098 0.03% 1.09%

Heston+Vasicek 0.5 2 0.5 -0.5 51.3343 51.2761 0.11% 1.38%

Heston+CIR 0.5 2 0.5 -0.5 51.3782 51.3647 0.03% 1.24%

Heston+Vasicek 0.5 1 0.5 -0.5 50.2861 50.2766 0.02% 0.80%

Heston+CIR 0.5 1 0.5 -0.5 50.2881 50.2855 0.01% 0.78%

Table 4.4: Results for a Forward-Start European Call with different maturities

Model Strike τ ρ CFS MCS MCErel MCEstd

Heston+Vasicek 100 1 -0.5 5.72622 5.72293 0.06% 0.68%

Heston+CIR 100 1 -0.5 5.63308 5.63168 0.02% 0.66%

Heston+Vasicek 100 1 -0.3 5.70613 5.7031 0.05% 0.71%

Heston+CIR 100 1 -0.3 5.60956 5.60846 0.02% 0.68%

Heston+Vasicek 100 1 0 5.67238 5.67003 0.04% 0.74%

Heston+CIR 100 1 0 5.57092 5.57049 0.01% 0.72%

Heston+Vasicek 100 1 0.3 5.63383 5.63249 0.02% 0.77%

Heston+CIR 100 1 0.3 5.52783 5.52835 -0.01% 0.75%

Heston+Vasicek 100 1 0.5 5.60516 5.60465 0.01% 0.79%

Heston+CIR 100 1 0.5 5.49638 5.49766 -0.02% 0.77%

Table 4.5: Results for a Standard European Call with different correlation ρ

36



Model k τ t∗ − t ρ CFS MCS MCErel MCEstd

Heston+Vasicek 0.5 2 1 -0.5 50.6134 50.5557 0.11% 1.22%

Heston+CIR 0.5 2 1 -0.5 50.6272 50.6098 0.03% 1.09%

Heston+Vasicek 0.5 2 1 -0.3 50.6134 50.5546 0.12% 1.23%

Heston+CIR 0.5 2 1 -0.3 50.6272 50.6088 0.04% 1.10%

Heston+Vasicek 0.5 2 1 0 50.6134 50.5533 0.12% 1.24%

Heston+CIR 0.5 2 1 0 50.6272 50.6076 0.04% 1.12%

Heston+Vasicek 0.5 2 1 0.3 50.6134 50.5525 0.12% 1.25%

Heston+CIR 0.5 2 1 0.3 50.6272 50.6069 0.04% 1.13%

Heston+Vasicek 0.5 2 1 0.5 50.6134 50.5522 0.12% 1.26%

Heston+CIR 0.5 2 1 0.5 50.6272 50.6067 0.04% 1.14%

Table 4.6: Results for a Forward-Start European Call with different correlation ρ
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Chapter 5

Conclusion

In this dissertation I found a closed-form solution for standard European calls un-

der the Heston model but with stochastic interest rates. These closed-form solutions

differ from the ones presented by Bakshi, Cao and Chen (1997) and Hout, Bierkens,

Ploeg and Panhuis (2007) due to the use of a manipulation already used by Attari in

the case of a constant interest rate, allowing the use of just one characteristic function,

which facilitates the numerical implementation required for option pricing.

For the referred model I also determined a closed-form solution to European

forward-start calls. Kruse and Nögel (2005) determined a closed-form for these op-

tions under the Heston model (with constant interest rates). Although having a

stochastic interest rate, I was able to follow a similar path but, because I started

from a closed-form solution for standard calls that only had one characteristic func-

tion, the formulas reached in this dissertation also require the calculation of just

one characteristic function. By using properties of analytic characteristic functions

I reduced the number of integrals and numerical procedures required, resulting in a

formula which is more easily implemented than the formulas presented by Kruse and

Nögel (2005), requiring just one numerical integration.
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The Monte Carlo simulations made for the evaluation of these options under the

considered mode presented results close to the ones returned by the closed-formula

implementation.
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Appendix A

Zero Coupon Bond’s ODE

Incorporating equation (2.3) in equation (2.2):

−
(

∂a

∂τ
− ∂b

∂τ

)

− κr (θr − rt) b (τ) +
1

2

(

σ2
rrt + ρ2

r

)

b2 (τ) − rt = 0

⇔ rt

(

∂b

∂τ
+ κrb (τ) +

1

2
σ2

rb
2 (τ) − 1

)

+
1

2
ρ2

rb
2 (τ) − κrθrb (τ) − ∂a

∂τ
= 0

subject to a (0) = b (0) = 0.

Since the equation must be equal to zero for all values of rt, it can be decomposed

in two ordinary differential equations:

∂b

∂τ
+ κrb (τ) +

1

2
σ2

rb
2 (τ) − 1 = 0 (A.1)

1

2
ρ2

rb
2 (τ) − κrθrb (τ) − ∂a

∂τ
= 0 (A.2)

A.1 Vasicek

In the Vasicek case, the equations are:

∂b

∂τ
+ κrb (τ) − 1 = 0 (A.3)

1

2
ρ2

rb
2 (τ) − κrθrb (τ) − ∂a

∂τ
= 0 (A.4)
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Starting with equation (A.3),

∂b

∂τ
= 1 − κrb (τ) ⇔ 1

1 − κrb (τ)
∂b = ∂τ ⇔ − 1

κr

ln (1 − κrb (τ)) = τ + C,

where C is a constant of integration.

b(0) = 0 ⇒ C = 0 ⇒ − 1

κr

ln (1 − κrb (τ)) = τ ⇔ b (τ) =
1 − e−κrτ

κr

(A.5)

Substituting equation (A.5) into equation (A.4):

∂a

∂τ
= −κrθr

(

1 − e−κrτ

κr

)

+
1

2
ρ2

r

(

1 − e−κrτ

κr

)2

⇔ a (τ) = −κrθr

(

τ + 1
κr

e−κrτ

κr

)

+
1

2
ρ2

r

(

τ + 2
κr

e−κrτ − 1
2κr

e−2κrτ

κ2
r

)

+ C

⇔ a (τ) = −θr

(

τ +
1

κr

e−κrτ

)

+
1

2
ρ2

r

(

τ

κ2
r

+
2

κ3
r

e−κrτ − 1

2κ3
r

e−2κrτ

)

+ C

a(0) = 0 ⇒ C =
θr

κr

− 1

2
ρ2

r

(

2

κ3
r

− 1

2κ3
r

)

a (τ) =

(

1 − e−κrτ

κr

− τ

)

θr −
(

1 − e−κrτ

κr

− τ

)

ρ2
r

2κ2
r

−
(

1 − e−κrτ

κr

+
e−2κrτ − 1

2κr

)

ρ2
r

2κ2
r

=

(

1 − e−κrτ

κr

− τ

)(

θr −
ρ2

r

2κ2
r

)

−
(

1 − 2e−κrτ + e−2κrτ

κ2
r

)

ρ2
r

4κr

= (b (τ) − τ)

(

θr −
ρ2

r

2κ2
r

)

− (b (τ))2 ρ2
r

4κr

(A.6)

A.2 CIR

In the CIR case, the ODE are:

∂b

∂τ
+ κrb (τ) +

1

2
σ2

rb
2 (τ) − 1 = 0 (A.7)

−κrθrb (τ) − ∂a

∂τ
= 0 (A.8)

The following lemmas are useful:
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Lemma A.1. The solution of differential equations of the type ∂f

∂τ
= af 2 (τ)+bf (τ)+

c, with a 6= 0 and subject to f (0) = 0 is:

f (τ) =
−b + d

2a

1 − edτ

1 − qedτ
(A.9)

where d =
√

b2 − 4ac and q = b−d
b+d

Proof.

af 2 + bf + c = 0 ⇔ f =
−b ±

√
b2 − 4ac

2a
=

−b ± d

2a
(A.10)

A
(

f + b−d
2a

) +
B

(

f + b+d
2a

) =
1

a
(

f + b+d
2a

) (

f + b−d
2a

) ⇔







−A = B

A = 1
d

(A.11)

Due to equations (A.10) and (A.11):

∂f

∂τ
= af 2 + bf + c

⇔∂f

∂τ
= a

(

f +
b + d

2a

)(

f +
b − d

2a

)

⇔ 1

a
(

f + b+d
2a

) (

f + b−d
2a

)∂f = ∂τ

⇔
(

1

d
(

f + b−d
2a

) − 1

d
(

f + b+d
2a

)

)

∂f = ∂τ

⇔1

d
ln

(

f2a + b − d

f2a + b + d

)

= τ + C

⇔f2a + b − d

f2a + b + d
= ed(τ+C) (A.12)

f(0) = 0 ⇒ b − d

b + d
= edC ⇔ q = edC (A.13)

f2a + b − d

f2a + b + d
= qedτ ⇔

(

2a
(

1 − qedτ
))

= qedτ (b + d) − (b − d) ⇔

⇔ f
(

2a
(

1 − qedτ
))

=
(

edτ − 1
)

(b − d) ⇔ f =
−b + d

2a
× 1 − edτ

1 − qedτ

Lemma A.2. Defining b and d as in the previous Lemma, then

∂f

∂τ
=

1 − edτ

1 − qedτ
⇔ f (τ) = τ +

2

b − d
ln
(

1 − qedτ
)

+ C (A.14)
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Proof.

∂f

∂τ
=

1 − edτ

1 − qedτ
⇔ ∂f

∂τ
= 1 +

(q − 1) edτ

1 − qedτ
⇔ f (τ) = τ +

q − 1

−qd
ln
(

1 − qedτ
)

+ C

q − 1

−qd
=

b−d
b+d

− 1

− b−d
b−d

d
=

1 − 2d
b+d

− 1

− b−d
b−d

d
=

− 2d
b+d

− b−d
b−d

d
=

2

b − d

So,

f (τ) = τ +
2

b − d
ln
(

1 − qedτ
)

+ C

Applying Lemma A.1 into equation (A.7) and defining ξ =
√

κ2
r + 2σ2

r :

b (τ) = −κr + ξ

σ2
r

1 − eξτ

1 +
(

κr+ξ

ξ−κr

)

eξτ
(A.15)

Replacing equation (A.15) in equation (A.8) and using Lemma A.2:

∂a

∂τ
= κrθr

κr + ξ

σ2
r

1 − eξτ

1 +
(

κr+ξ

ξ−κr

)

eξτ
⇔

⇔ a (τ) = κrθr

κr + ξ

σ2
r

(

τ − 2

κr + ξ
ln

(

1 +
κr + ξ

ξ − κr

eξτ

)

+ C

)

a(0) = 0 ⇒ C =
2

κr + ξ
ln

(

1 +
κr + ξ

ξ − κr

)

⇒ a (τ) = κrθr

κr + ξ

σ2
r

(

τ − 2

κr + ξ
ln

(

1 + κr+ξ

ξ−κr
eξτ

1 + κr+ξ

ξ−κr

))

Simplifying the previous expression:

a (τ) =
2κrθr

σ2
r

(

ln
(

e(κr+ξ) τ
2

)

− ln

(

ξ − κr + (κr + ξ) eξτ

ξ − κr + κr + ξ

))

=
2κrθr

σ2
r

ln

(

e(κr+ξ) τ
2

ξ−κr+(κr+ξ)eξτ

2ξ

)

=
2κrθr

σ2
r

ln

(

2ξe(κr+ξ) τ
2

2ξ + (κr + ξ) (eξτ − 1)

)

(A.16)

Because ξ =
√

κ2
r + 2σ2

r ⇔ σ2
r = ξ2−κ2

r

2
⇔ σ2

r = (ξ−κr)(ξ+κr)
2

, equation (A.15) can be

transformed into:

b (τ) =
2(1 − eξτ )

(ξ − κr) + (κr + ξ) eξτ
=

2(eξτ − 1)

2ξ + (eξτ − 1) (κr + ξ)
(A.17)
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Appendix B

Novikov’s Condition

Revuz and Yor (1999, page 338, Exercise 1.40) present the following version of

Novikov’s condition:

Lemma B.1. Let Wt be an Ft-Brownian motion and Yt an Ft-adapted process such

that

E

[

eaY 2(s)
∣

∣

∣
Fr

]

≤ c (B.1)

for all r < s ≤ T and two positive constants a and c. Then the process

Xt = exp

(

−1

2

∫ t

0

Y 2 (s) ds +

∫ t

o

Y (s) dWs

)

, 0 ≤ t ≤ T (B.2)

is a martingale.

The goal is to use Lemma B.1 with Y 2(t) being vt or σ2
rrt+ρ2

r

P 2(t,T )

(

∂P
∂rt

)2

. For the first

case I proceed as Kruse and Nogel (2005, p.233). For the other case:

V asicek
σ2

rrt + ρ2
r

P 2(t, T )

(

∂P

∂rt

)2

= ρ2
rb (τ)2 (B.3)

CIR
σ2

rrt + ρ2
r

P 2(t, T )

(

∂P

∂rt

)2

= σ2
rrtb (τ)2 (B.4)

Note that in the Vasicek case Y 2(t) is not a random variable. So, and because

b(τ) is limited for the possible τ , the demanded condition in Lemma B.1 is satisfied,

ensuring the Lemma’s conclusion.

44



For the other two cases, it is necessary to use the following lemma (see, for instance,

Kapadia, Owen and Patel (1976, p.46)):

Lemma B.2. Let X be a random variable with non-central Chi-squared distribution

with R degrees of freedom and non-centrality parameter Λ. The moment generating

function of X is given by:

φ (a) = (1 − 2a)−
R
2 e

Λa
1−2a (B.5)

Let t < s. Considering fχ2(Λ,R) to be the density of a non-central Chi-squared

distribution with R degrees of freedom and non-centrality parameter Λ, the transition

density of the variance process vs and the interest rate rs (according to the CIR model)

are given by:

f (vs| vt) = Bfχ2(Λ,R) (Bv) (B.6)

CIR f (rs| rt) = Brfχ2(Λr,Rr) (Brr) (B.7)

where Λ = Be−κ(s−t)vt, B = 4κ
σ2

1
1−e−κ(s−t) and R = 4κθ

σ2 ,

and Λr = Bre
−κr(s−t)rt, Br = 4κr

σ2
r

1
1−e−κr(s−t) and Rr = 4κrθr

σ2
r

.

So, using Lemma B.2:

EQ [eavs| Ft] =
(

1 − 2aB−1
)−R

2 e
ΛaB−1

1−2aB−1 (B.8)

EQ

[

eaσ2
rb(τ)rs

∣

∣

∣
Ft

]

=
(

1 − 2aσ2
rb(τ)B−1

r

)−Rr
2 e

Λraσ2
rb(τ)B−1

r

1−2aσ2
rb(τ)B−1

r (B.9)

As pointed by Kruse and Nogel for vt, and also applicable to rt (in the CIR case),

due to the stability conditions 2κθ > σ2 and 2κrθr > σ2
r , the processes vt and rt

are strictly positive (Feller, 1951, p.180) and in addition R,Rr > 2, following from

κ, κr ≥ 0 that Λ, Λr ≥ 0 and B,Br ≥ 0. This allows to choose two positive constants

a and c as demanded in Lemma B.1, ensuring the Lemma’s conclusion for each case.
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Appendix C

The characteristic function’s ODE

Equation (2.40) can be decomposed into three ordinary differential equations:

C.1 Vasicek

−∂F

∂τ
+ κθG + κrθrH +

1

2
ρ2

rH
2 = 0 (C.1)

−∂G

∂τ
− 1

2
iφ − κG − 1

2
φ2 +

1

2
σ2G2 + σρφiG = 0 (C.2)

−∂H

∂τ
− 1 + iφ − κrH = 0 (C.3)

Starting by equation(C.3):

∂H

∂τ
= −1 − κrH + iφ ⇔ 1

−1 + iφ − κrH
∂H = ∂τ ⇔

⇔ − 1

κr

ln (−1 + iφ − κrH) = τ + C ⇔ H =
iφ − e−κr(τ+C)

κr

H(0) = 0 ⇒ − 1

κr

ln (−1 + iφ) = C ⇒ H = (iφ − 1)
1 − e−κrτ

κr

(C.4)

46



Equation (C.2) can be solved with Lemma A.1:

∂G

∂τ
= −1

2
iφ − 1

2
φ2 + (−κ + σρφi) G +

1

2
σ2G2 ⇔

⇔ G =
κ − σρφi + dV

σ2

1 − edV τ

1 − qV edV τ
(C.5)

where

dV =

√

(ρσiφ − κ)2 + (iφ + φ2) σ2 (C.6)

qV =
−κ + ρσφi − dV

−κ + ρσφi + dV

(C.7)

To solve equation (C.1), I start by replacing (C.4) and (C.5) into the equation, and

then I use Lemma A.2:

∂F

∂τ
= κθ

(

κ − σρφi + dV

σ2

1 − edV τ

1 − qV edV τ

)

+θr (φi − 1)
(

1 − e−κrτ
)

+
1

2
ρ2

r

(

(iφ − 1)
1 − e−κrτ

κr

)2

⇔ ∂F

∂τ
= κθ

(

κ − σρφi + dV

σ2

1 − edV τ

1 − qV edV τ

)

+θr (φi − 1)
(

1 − e−κrτ
)

+
1

2
ρ2

r (iφ − 1)2

(

1 − 2e−κrτ + e−2κrτ

κ2
r

)

⇔ F = κθ
κ − σρφi + dV

σ2

[

τ +
2

−κ + σρφi − dV

ln
(

1 − qV edV τ
)

]

+θr (φi − 1)

(

τ +
e−κrτ

κr

)

+
ρ2

r (iφ − 1)2

2κ2
r

(

τ + 2
e−κrτ

κr

− e−2κrτ

2κr

)

+ C

F (0) = 0 ⇒ C = κθ

[

2

σ2
ln (1 − qV )

]

− θr (φi − 1)

κr

− 3ρ2
r (iφ − 1)2

4κ3
r
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F = κθ
κ − σρφi + dV

σ2

[

τ +
2

−κ + σρφi − dV

ln
(

1 − qV edV τ
)

]

+θr (φi − 1)

(

τ +
e−κrτ

κr

)

+
ρ2

r (iφ − 1)2

2κ2
r

(

τ + 2
e−κrτ

κr

− e−2κrτ

2κr

)

+κθ

[

2

σ2
ln (1 − qV )

]

− θr (φi − 1)

κr

− 3ρ2
r (iφ − 1)2

4κ3
r

= θriφτ − θrτ +
κθ

σ2

[

(κ − ρσφi + dV ) τ − 2 ln

(

1 − qV edV τ

1 − qV

)]

+
θr (iφ − 1)

κr

(

e−κrτ − 1
)

+
ρ2

r (iφ − 1)2

2κ2
r

(

2κrτ + 4e−κrτ − e−2κrτ − 3

2κr

)

(C.8)

C.2 CIR

−∂F

∂τ
+ κθG + κrθrH = 0 (C.9)

−∂G

∂τ
− 1

2
iφ − κG − 1

2
φ2 +

1

2
σ2G2 + σρφiG = 0 (C.10)

−∂H

∂τ
− 1 + iφ − κrH +

1

2
σ2

rH
2 = 0 (C.11)

Equations (C.2) and (C.10) are the same, so, G has the same expression. To solve

equation (C.11), Lemma A.1 can be used:

∂H

∂τ
= −1 + iφ − κrH +

1

2
σ2

rH
2 ⇔ H =

κr + dC

σ2
r

1 − edCτ

1 − qCedCτ
(C.12)

where

dC =
√

κ2
r − 2 (iφ − 1) σ2

r (C.13)

qC =
κr + dC

κr − dC

(C.14)
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To solve (C.9), I start by replacing (C.5) and (C.12) into the equation, and then I

use Lemma A.2:

∂F

∂τ
= κθG + κrθrH

⇔ ∂F

∂τ
= κθ

(

κ − σρφi + dV

σ2

1 − edV τ

1 − qV edV τ

)

+ κrθr

(

κr + dC

σ2
r

1 − edCτ

1 − qCedCτ

)

⇔ F = κθ
κ − σρφi + dV

σ2

[

τ +
2

−κ + σρφi − dV

ln
(

1 − qV edV τ
)

]

+κrθr

κr + dC

σ2
r

(

τ − 2

κr + dC

ln
(

1 − qCedCτ
)

)

+ C

F (0) = 0 ⇒ C =
κθ

σ2
[2 ln (1 − qV )] +

κrθr

σ2
r

(2 ln (1 − qC))

F = κθ
κ − σρφi + dV

σ2

[

τ +
2

−κ + σρφi − dV

ln
(

1 − qV edV τ
)

]

+κrθr

κr + dC

σ2
r

(

τ − 2

κr + dC

ln
(

1 − qCedCτ
)

)

+
κθ

σ2
[2 ln (1 − qV )] +

κrθr

σ2
r

(2 ln (1 − qC))

=
κθ

σ2

[

(κ − ρσφi + dV ) τ − 2 ln

(

1 − qV edV τ

1 − qV

)]

+

+
κrθr

σ2
r

[

(κr + dC) τ − 2 ln

(

1 − qCedCτ

1 − qC

)]

(C.15)
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