View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by Universidade de Lisboa: Repositério.UL

UNIVERSIDADE DE LISBOA

Faculdade de @ncias
Departamento de Inforatica

S‘OL]S

C,)

> <
- z
(= e

AN IMPLEMENTATION OF
FLEXIBLE RBF NEURAL NETWORKS

Fernando Manuel Pires Martins
MESTRADO EM INFORMATICA

2009

https://core.ac.uk/display/12425243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA

Faculdade de @ncias
Departamento de Inforatica

S’OL[S

C’)

< 2
. -
> e S s
- A
Z 5

1D Tyoew

AN IMPLEMENTATION OF
FLEXIBLE RBF NEURAL NETWORKS

Fernando Manuel Pires Martins

DISSERTACAO
Projecto orientado pelo Prof. Doutor Ared©grio Fal@o

MESTRADO EM INFORMATICA
2009

Acknowledgements

| wish to acknowledge those who, either by change or simp#ariune, were involved
in my MSc.

| start by acknowledging Professor AedFal@&o for the trust, the guidance and the pa-
tience shown for the long months this work took, never givipgon me, even when the
bad times seemed to put an early end to my MSc.

| wish to acknowledge my good friend Paulo Carreira, who hanlan inspiration and
who has always supported and pushed me into the final goalitrfigvthis dissertation.

A special thanks goes for my family. There are no words to @gmy gratitude nor
to express how fantastic they were in supporting me. Withioeit support, this disserta-
tion would certainly not exist.

| wish to thanks to my parents Julia and Fernando, for the@tgmd education that al-
lowed me to come this far, and to my grandmother Maria Tefes&ger inspiring reading

and writting passion.

Finally, I have an endless debt to my beloved wife Vilma, vatigresponsible for, almost
magically, getting me the time to work on my MSc. | also havareetdebt to my daugh-
ters, Sofia and Camila, for the countless times that | had tseetio play with in this last
four years.

To my beloved family, Vilma, Sofia and Camila.

Resumo

Sempre que o trabalho de investigagesulta numa nova descoberta, a comunidade ci-
entfica, e o mundo em geral, enriquece. Mas a descobertdfaamer senao & sufici-
ente. Para beneficio de todésjecesario tornar estas inovaes acesseis atraes da sua
facil utilizaggdo e permitindo a sua melhoria, potenciando assim o pragoéssifico.

Uma nova abordagem na modeélagle ficleos em redes neuronais com Faes de
Base Radial (RBF) foi proposta por Fateet al. emFlexible Kernels for RBF Networks
[14]. Esta abordagem define um algoritmo de aprendizagem passifatago, inovador
naarea da aprendizagem das redes neuronais RBF. Os testes@fsatoostraram que
os resultados e&b ao fivel dos melhores nestaea, tornando como um dev@vio para
com a comunidade cidffita a sua disponibilizé&p de forma aberta. Neste contexto, a
motiva@o da implementa&p do algoritmo delncleos flexveis para redes neuronais RBF
(FRBF) ganhou novos contornos, resultando num conjunto agelys bem definidos:
() integra@o, o FRBF deveria ser integrado, ou infagal, numa plataforma facilmente
acess/el a comunidade cieffica; (ii) abertura, o adigo fonte deveria ser aberto para
potenciar a expa@d® e melhoria do FRBF; (iii) documentag, imprescintel para uma
facil utilizacgao e compree@®; e (iv) melhorias, melhorar o algoritmo original, no proc
dimento de alculo das distncias e no suporte de panetros de configurag. Foi com
estes objectivos em mente que se iniciou o trabalho de ingplirgio do FRBF.

O FRBF segue a tradicional abordagem de redes neuronais RBFuasntamadas,
dos algoritmos de aprendizagem para classi@ica@ camada escondida, que @&mtos
nlcleos, calcula a dighcia entre o ponto e uma classe, sendo o ponto atdlduclasse
com menor disincia. Este algoritmo foca-se nunetado de ajuste de ganetros para
uma rede de furies Gaussianas multi-vavieis com formas giticas, conferindo um
grau de flexibilidade extra estrutura do ircleo. Esta flexibilidadé obtida atrags da
utilizacdo de fundes de modificaio aplicadas ao procedimento ddaulo da dishncia,
que & essencial na avaliag dos ficleos. E precisamente nesta flexibilidade e na sua
aproxima@o ao Classificador Bayesea&')ptimo (BOC), com indeperixhcia dos acleos
em rela@oas classes, que reside a invdaagdeste algoritmo.

O FRBF divide-se em duas fases, aprendizagem e clasaificagndo ambas seme-
lhantes em relap as tradicionais redes neuronais RBF. A aprendizagem faz-sioism
passos distintos. No primeiro passo: (i)immero de faicleos para cada classealefinido

vii

atra\es da propoi@o da vam@ncia do conjunto de treino associado a cada classe; (ii) o
conjunto de trein@ separado de acordo com cada classe e os centro§dess180 de-
terminados atrads do algoritmo K-Means; e (ii§ efectuada uma decompdsigespectral
para as matrizes de covanmicia para cadaltleo, determinando assim a matriz de vecto-
res poprios e os valores pprios correspondentes. No segundo paasescontrados 0s
valores dos pa@metros de ajuste de expangara cadaircleo. Aps a concludo da fase
de aprendizagem, diin-se uma rede neuronal que representa um modelo de chagsific
para dados do mesmo damo do conjunto de treino. A classificagé bastante simples,
bastando aplicar o modelo aos pontos a classificar, obtemaovalor da probabilidade
do ponto pertencer a uma determinada classe. As melhotraslizidas ao algoritmo
original, definidas afs aralise do prabtipo, centram-se: (i) na parametrizag permi-
tindo a especificép de mais pametros, como por exemplo o algoritmo a utilizar pelo
K-Means; (ii) no teste dos valores dos @aetros de ajuste de expansdos micleos,
testando sempre as varigs acima e abaixo; (iii) na indicag de utilizag@o, ou 1@o, da
escala na PCA; e (iv) na possibilidade ddatilo da disincia ser feito ao ceritide oua
classe.

A analisea plataforma para desenvolvimento do FRBF, e das suas mahasaltou
na escolha do R. O B, ao mesmo tempo, uma linguagem de progré&magma plata-
forma de desenvolvimento e um ambiente. O R foi selecciopadoarias rades, de
onde se destacam: (i) abertura e expansibilidade, peduitirsua utilizago e exparéo
por qualquer pessoa; (ii) repasito CRAN, que permite a distribuap de pacotes de ex-
pan&o; e (iii) largamente usado para desenvolvimento de @piEsaestasticas e aalise
de dados, sendo mesmo o standdéedactona comunidade cietiica estaitstica.

Uma vez escolhida a plataforma, iniciou-se a implemédalp FRBF e das suas me-
lhorias. Um dos primeiros desafios a ultrapassar foi a itéaxisa de documentag para
desenvolvimento. Tal facto implicou a defia@de boas @aticas e padies de desenvolvi-
mento espdficos, tais como documentag e definigo de vamveis. O desenvolvimento
do FRBF dividiu-se em duas fudes principaisf r bf que efectua o procedimento de
aprendizagem e retorna o modelopreedi ct uma fun@o base do R que foi redefi-
nida para suportar o modelo gerado e guesponavel pela classific@p. As primeiras
veres do FRBF tinham uma velocidade de ex@ouenta, mas taldo foi inicialmente
considerado preocupante. No entanto, alguns testes aedimmEnto de aprendizagem
eram demasiado morosos, passando a velocidade de arexser um problemaitco.
Para o resolver, foi efectuada umaahse para identificar os pontos de ledtd Esta
ac@o revelou que os procedimentos de manifgage objectos eram bastante lentos.
Assim, aprofundou-se o conhecimento das @@s;e operadores do R que permitissem
efectuar essa manipubag de forma mais eficiente apida. A aplicago desta a&p cor-
rectiva resultou numa redag diastica no tempo de exe@a: O processo de qualidade
do FRBF passou porés tipos de testes: (i) uaitios, verificando as fuides individual-

viii

mente; (ii) de caixa negra, testando as fiegzde aprendizagem e classifiage (iii) de
precifo, aferindo a qualidade dos resultados. Considerando dexddgrle do FRBF e
0 nlmero de configurdies posiveis, os resultados obtidos foram bastante sabistet,
mostrando uma implementag lida. A precigo foi alvo de ateréo especial, sendo pre-
cisamente aqui ondéo foi plena a satisfé@p com os resultados obtidos. Tal facto @av
das discrefncias obtidas entre os resultados do FRBF e d@fipot onde comparap
dos resultados beneficiou sempre ésteno. Uma ailise cuidada a esta sitiagreve-
lou que a divergncia acontecia na PCA, géeefectuada de forma distinta. Goprio R
possui formas distintas de obter os vectordsgpps e 0s valores pprios, tendo essas
formas sido testadas, mas nenhuma delas suplantou osdesudto prditipo.

Uma vez certificado o algoritmo, este foi empacotado e subdmab CRAN. Este
processo implicou a escrita da documeatado pacote, das fudes e classes envolvidas.
O pacoteg distribido sob a licenca LGPL, permitindo uma utiliZacbastante livre do
FRBF e, espera-se, potenciando a sua expgaragnovago.

O trabalho desenvolvido cumpre plenamente os objectivomimente definidos. O
algoritmo original foi melhorado e implementado na platafa standard usada pela co-
munidade cienfica estaistica. A sua disponibilizé&p atraes de um pacote no CRAN
sob uma licenca debdigo aberto permite a sua explodace inovago. No entanto, a
implementago do FRBF Ao se esgota aqui, existindo espaco para trabalho futuro na
redu@o do tempo de execag e na melhoria dos resultados de classifioac

Keywords: Fung@es de Base Radial, Redes Neuronais;lbos Flekeis, R

Abstract

This dissertation is focused on the implementation and avgments of thé&lexible Ra-
dial Basis Function Neural Networlkdgorithm. It is a clustering algorithm that describes
a method for adjusting parameters for a Radial Basis Funceomah network of multi-
variate Gaussians with ellipsoid shapes. This providesiaa degree of flexibility to the
kernel structure through the usage of modifier functiondiagpo the distance computa-
tion procedure.

The focus of this work is the improvement and implementatibthis clustering al-
gorithm under an open source licensing on a data analysfeta Hence, the algorithm
was implemented under the R platform, tthe factoopen standard framework among
statisticians, allowing the scientific community to usentiahopefully, improve it. The
implementation presented several challenges at varivalslesuch as inexistent develop-
ment standards, the distributable package creation angrdfiéing and tuning process.
The enhancements introduced provide a slightly differeatring process and extra con-
figuration options to the end user, resulting in more tuninggmilities to be tried and
tested during the learning phase. The tests performed shobust implementation of
the algorithm and its enhancements on the R platform.

The resulting work has been made available as a R package andgen source
licensing, allowing everyone to used it and improve it. T¢wstribution to the scientific
community complies with the goals defined for this work.

Keywords: Radial Basis Function, Neural Network, Flexible Kernels, R

Xi

Contents

Figure List XVii
Table List XiX
Algorithm List XXi
1 Introduction 1
1.1 Motivation. e e 2
1.2 Goals e 2
1.3 Contribution. 3
2 Flexible Kernels for RBF Networks 5
2.1 RadialBasisFunctions 5
2.2 Radial Basis Functions Neural Networks 6
2.2.1 Neural Architecture 7
2.2.2 Radial Basis Function Network Training 8
2.2.3 Classification with Radial Basis Function Network 10
2.3 Flexible Kernels for RBF Neural Networks 10
2.3.1 FlexibleKernels., 11
2.4 Proofof ConceptPrototype., 16
25 Improvements L 18
3 R 21
3.1 WhatisR?2 e 21
3.2 RLanguage. e 22
3.3 RWorkspace. e 23
3.4 Comprehensive R Archive Network 23
3.5 RDevelopment. 24
3.5.1 Objects. 24
3.5.2 FunctionOverloading. 24
3.5.3 Application Programming Interface 25
354 Debug 25

4 FRBF Implementation
4.1 DevelopmentEnvironment 0 L
4.1.1 R DevelopmentEnvironment
4.1.2 Documentation Development Environment
4.1.3 Packaging Development Environment
4.2 Implementation.
421 Development
4.2.2 Functionsand OperatorsUsed
423 Model.
424 Print. e
425 Learning
426 Prediction
427 TuniNg
42.8 ProblemsFound.,
4.3 TestS. e e e
4.3.1 Execution BehaviorsObserved
432 Results.
44 Userlinterface
441 FRBF. e
442 Predict
443 Usage e
45 RPackaging
45.1 Package Structure. L Lo
452 HelpFiles
45.3 DistributionFile
454 ProblemsFound.
45,5 Instalingand Uninstalling
5 Conclusions
5.1 WorkPerformed
5.2 Release. e
53 Future Work.
A Static Definitions
A.1 Constant Definition.
A.2 ClassDefinition.

27
27
28

28
28
29
29
31
33
34
35
35
36
37
38
38
40
42
42
44
44
45
46
47
47
48
48

51
51
52
52

B FRBF Code Sample

B.1 FINAS. e
B.2 FRBF e e
B.3 GetPCA. e
B.4 Predict. e

C Tests
D Documentation

E Packaging

E.1 RPackagingScript

E.2 Shell Packaging Script
Abbreviations
Bibliography

Index

XV

57
57
61
63
64

65

69

71
71
12

75

79

80

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

4.1
4.2
4.3
4.4
4.5
4.6

A RBF neural network from Mitchell [36]. 7
A RBF neural network with NN terminology adapted from MatdH36]. 8
An example of a spiky and a broad Gaussian, adapted frdap®dia [57]. 9
A RBF neural network classification example adapted froncihdill [36]. 10

Exampleofshapes. 12
A FRBF classification example adapted from Mitchell [36].. 16

Prototype usageexample. 18
Function overloading definition. 25
An example of code declaration and documentatian. 30

An example of the operatorsusage.. 33
Remora predict function overloading.. 36
Black box test script executionexample. 39
A FRBF cluster grab making a broad Gaussian example.. 40

Example of the FRBF functionsusage. 46

XVil

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4
4.5

Distance weighting function models from Fadet al. [14]. 13
StatLog results using the prototype, adapted fromdeadtal. [14]. . . . 17
FRBF testingdatasets.. 38
FRBF and prototype accuracy comparisonresults. 41
FRBF training and testing accuracy results.. 41
wei ght i ng_functi on parameter values, following F&oet al. [14]. 44
Acceptable values farer bose parameter.. 44

XiX

List of Algorithms

2.1 Stage One of Flexible Kernels Learning Procedure
2.2 Stage Two of Flexible Kernels Learning Procedure
4.1 Overview of thé r bf functionsteps.

XXi

Chapter 1

Introduction

Whenever scientific work results in a new discovery, the sifiercommunity, and the
world in general, becomes richer. But the scientific discpmr itself is not sufficient,
it must be accessible and easily usable by everyone, so dugiigptake advantage of
such innovations. Making the scientific breakthroughs ssibée to everyone is therefor
a major contribution to the scientific community since it\odes a way to everyone use
it, test it and, ultimately, improve it.

An approach for modeling kernels in Radial Basis Function (RBfvorks has been
proposed irFlexible Kernels for RBF NetworK&4] by Falcaoet al.. This approach focus
on a method for adjusting parameters for a network of muitit@ Gaussians with ellip-
soid shapes and provides extra degree of flexibility to theédestructure. This flexibility
Is achieved through the usage of modifier functions apphbeithé¢ distance computation
procedure, essential for all kernel evaluations.

This new algorithm was an innovation within the neural negdearning area based
on RBF neural networks. A concept proof implementation of éinchitecture has proved
capable of solving difficult classification problems withogloresults in real life situations.
This was a stand alone implementation with the specific gnakdve the concept and,
therefor was available only to the research team memberssegoently, making this
work accessible to everyone was the next logical step ferrtaw algorithm.

In this context, an implementation of the Flexible kernals RBF neural network
(FRBF) algorithm under a widely spread scientific platfornsariA widely used platform
by the scientific community should be targeted, hence theaRgom has been chosen,
since it is the open sourake factostandard statistical platform. The resulting implemen-
tation was also packed and distributed under open soureesiicg, allowing anyone to
modify it and, eventually, improve it. Some enhancementewerformed on the original
algorithm, some focused on the algorithm parameterizamhothers on the algorithm
itself. The usage of the available base R functions that ikeenselves, already param-
eterized helped on this task and, as a result, a high numhmrssible configurations to
the end user was delivered.

Chapter 1. Introduction 2

This dissertation is organized as follows: Chagtertroduces this dissertation, Chap-
ter2 describes the Radial Basis Function neural networks, dé¢tailtexible kernels clus-
tering algorithm, which is the genesis of this work, and thpriovements performed to it.
The implementation framework R is covered in the Chaftand the implementation of
the new algorithm is detailed in ChapterFinally, Chapteb concludes this dissertation
and resumes the goals achieved.

1.1 Motivation

Having obtained such good results with the FRBF tests, it wagab that it should be
made available to everyone. Hence, the main stimulus behisgvork was to provide an
easy way for the scientific community to use FRBF.

The proof of concept implementation was developed as a stiane application, so it
was a very specific computer program that served a singleopargnd was not ready, nor
meant, to be used in any other way. Hence, it did not serve@uhgose of distribution
nor integration with frameworks, or other applications king it a non eligible solution.

There was also a second motivation for this work, focusederenhancement of the
algorithm. It early became clear that the original algartbould be improved and a new
implementation was the perfect scenario for such taskesinprovided the chance to
perform the enhancements.

Hence, the need of a new FRBF implementation emerged. The atiotivof this
work was to (i) provide an easy to use implementation to thensiic community, (ii)
integrate with, or within, a framework, (iii) improve theiginal algorithm and (iv) be
open to receive improvements from others.

1.2 Goals

The motivation resulted in the set of specific goals. The ngaial of this work was to
deliver a new, open and integrated, implementation of the F&RFa second goal was to
improve the original algorithm.

These goals have been established after the identificatiGptbe need of an FRBF
implementation that would be integrated with, or withinyanhiework and (ii) the oppor-
tunity of enhance the original algorithm with some improests. In detail, the goals for
this work have been set as:

Integration. The implementation of FRBF only made sense if it could be iratesgl with,
or within, a framework or a third party application. The stézl platform was R
since R is thale factoopen standard among statisticians. R is also an integrated
suite of software facilities for statistical computing t@aanipulation, calculation

Chapter 1. Introduction 3

and graphical display. All this makes R a perfect target iiss hew FRBF imple-
mentation. Delivering the FRBF implementation as a R expangackage com-
plies with this goal.

Open source. In order to allow others to expand and improve FRBF the sourde bad
to be made open for the public. Thus, the resulting impleatent was delivered
under an open source licensing, allowing anyone to accessotlirce code, explore
it and even improve it.

Documentation. The implementation process followed the usual softwareld@ment
good practices. This means, among other things, that éwegyts documented.
The entire source code is documented, the distributed Ragacls documented
and the improvements are also documented. Since therevamlsdistinct docu-
mentation levels involved here, the documentation itseies in different formats
but is, in general, easily accessible. This provides anwagyo the understanding
of the FRBF implementation to anyone willing to go deeper ingieject.

Enhancements. The enhancements of the original algorithm were defined asowve-
ments to the distance calculation procedure and the sufgrortore configuration
options. The new implementation also had to support theraiglgorithm spec-
ification, meaning disabling the improvements, a featues¢ #iso comes up as a
configuration option. In practice, this means that the eret tigs more power
and flexibility to configure the algorithm when searchingtfoe best classification
model for a given domain.

The goals stated above fully respond to the initial motoaidentified on the prece-
dent section. The achieve of these goals resulted in an eagyothe scientific commu-
nity to use FRBF on a well known and standard platform.

1.3 Contribution

Regarding the previously stated goals in the previous sgdtie main contribution of this
work is the deliver of an improved FRBF implementation to thierstific community.

The enhancements performed over the original algorithnaamall contribution to
the RBF neural network learning algorithms. The improvememdsided in this imple-
mentation provide the end user more power and flexibility nyb@ameterizing the learn-
ing task. This results in a much wide number of possibilitiesilable when searching for
the best classification model for a given problem.

The implementation of the FRBF as a R expansion package issély, ia contribu-
tion to thede factostandard statistical platform used by the scientific comtguihe
packaging of the algorithm provides a standard way to tistei, use and document the

Chapter 1. Introduction 4

FRBF algorithm on this widely used platform. Finally, the usagd an open source li-
censing model allows anyone to explore and extend it to thveir needs, opening a way
for future improvements and an yet better implementatiotiassification algorithm.

Chapter 2

Flexible Kernels for RBF Networks

This chapter describes the Radial Basis Functions (RBF) breeplains the RBF neu-
ral networks, details the Flexible RBF neural networks athaniand the correspondent
enhancements introduced to the original version.

The Flexible Kernels for RBF neural networkalgorithm, defined by Fa#m et al.
in [14], was a breakthrough in the RBF neural networks. It is a legraigorithm used
for classification that provides adjustment of parametdisying extra flexibility to the
kernel structure. The tests performed proved that thisrdifgo is effective with real life
data.

2.1 Radial Basis Functions

A Radial Basis Function is a function whose value depends odigttence from a point
x to a center point, so that

P(x,¢) = ¢(|lx —cl]) (2.1)

The norm is to use the Euclidean distance, but other distamoéions can be used.

RBF neural networks are typically used to build up functionragpnations. This
means that a RBF neural network is used as a function that glosglhes, or approxi-
mates, or describes, a target function on a specific doméaia target function itself may
actually be unknown. But, in such cases, there is usuallygindata from the target func-
tion domain from which one can learn, and use that knowledgketine an approximate
function.

The sum of the RBF is commonly used to approximate given funstidhis can be
interpreted as a rather simple one layer type of artificiarakenetwork (NN) that can be
expressed by the equation

g(x) =Y w,g(||z — cu|) (2.2)

5

Chapter 2. Flexible Kernels for RBF Networks 6

where the approximating functiorix) is represented as a sum/fradial basis func-
tions, each associated with a different cenrtigrand weighted by an appropriate coeffi-
cientw,. Thew, coefficient is a weight that can be estimated using any of tdredsard
iterative methods for neural networks, like the least sgsifuinction. In this case, the Ra-
dial Basis Functions are the activation functions of the akeoetwork. RBF are covered
in detail by Hastieet al. in [23] and by Buhmann ing].

2.2 Radial Basis Functions Neural Networks

RBF neural network, as introduced in the prior section, is & tyfartificial neural net-
work constructed from a function distance. The functiortatise is obtained from the
known domain data, called training data, which means the RBFaheetwork is a learn-
ing method that will try to find patterns in the training datedanodel it as a network. In
particular, the distance function is used to determine thight of each known data point,
the training example, and it is called Kernel function. Therkvof Yeeet al. in [59] and
Hastieet al. in [23] cover RBF neural networks in detalil.

Learning with RBF neural networks is therefor an approach hetion approxima-
tion, which is closely related to distance weighted regogsand to artificial neural net-
works. The ternregressions widely used by the statistical learning community to refe
the problem of approximating real valued functions, whiksighted distanceefers to the
contribution that each training example has, by calcutgtire weight of its distance to a
center point. This subject is widely studied by the scientbmmunity, some examples
are {41, 5, 22, 4, 36, 24, 35, 23,59, 58]. In particular, Parlet al. in [40] studies universal
approximation using RBF neural networks.

As specified in detail by Mitchell in36], in the RBF neural network approach the
learned hypothesis is a function of the form

k
fa) =wo+) w,Ky(d(z,,x)) (2.3)

wherek is a parameter provided by the user that specifies the nunfilkerreel functions
to be includedy is the point being classified, each is an instance fronk’, the training
data, and¥,(d(x,, x)) is the kernel function, that depends on a distance function.

It is easy to understand that the distance function is eisgémtall kernel evaluations.
As previously stated, the kernel function is actually th&tahce function that is used to
determine the weight of each training example. In Equai@above, it is defined so that
it decreases as the distantie,, =) increases.

Even thoughf(:c) is a generic approximation tfx), the function that correctly clas-
sifies each instance, the contribution from each of the keenms is located in a region
near ther, point. It is common to choose each kernel function to be a &angunction

Chapter 2. Flexible Kernels for RBF Networks 7

centered at the point, with some variance?, so that

Ku(d(za, 7)) = e22 ") (2.4)
This equation is the common Gaussian kernel function for RRfat@etworks, but other
kernel functions can be used. The kernel functions have Wegly studied and is easy
to find literature about it, for instance, Haséeal. in [23] describes the Gaussian RBF
and Powell in #2] details RBF approximation to polynomial functions.

2.2.1 Neural Architecture

The function in Equatio2.3 can be viewed as describing a two layer network where the
first layer computes the values of the varidigd(x,, x)), and the second layer computes
a linear combination of the unit values calculated in the fager. In the basic form,

all inputs are connected to each hidden unit. Each hiddeihpuoduces an activation
determined by a Gaussian function, or any other functiod ,usentered at some instance
x,. Therefor, its activation will be close to zero unless thauitx is nearz,,. The output
unit produces a linear combination of the hidden unit atitves. An example of a RBF
neural network is illustrated in Figu&1

O O e 0
a,(x) a,x) a,(x)

Figure 2.1: A RBF neural network from MitchelB§.

In the neural network terminology, the variables of Equagid@are called differently,
though they mean the same. In particularis the number of neurons in the hidden
layer, z,, is the center vector for neuran andw, are are weights of the linear output
neuron. An example of a RBF neural network with the neural ndéwwerminology is
illustrated in Figure2.2 The work of Haykin in 4] discusses neural networks in detail
while Hartmanet al. in [22] focus on neural networks with Gaussian hidden units as
universal approximations, and more recently, Zainuddial. in [60] discusses function
approximation using artificial neural networks.

Chapter 2. Flexible Kernels for RBF Networks 8

input f(X)
\\eights
Radial
.. Basis
Functions
linear
weights

O O = 0
output - a ,(x) az(x) ak(x)

Figure 2.2: A RBF neural network with NN terminology adaptezhirMitchell [36].

2.2.2 Radial Basis Function Network Training

RBF neural networks are built eagerly from local approxinragieentered around the
training examples, or around clusters of training examexe all that is known is the
set of the training data points. Hence, the training dateésseted to build the RBF neural
network, which is achieved over two consecutive stages fil$testage selects the centers
and set the deviations of the neural network hidden units. SEtond stage optimizes the
linear output layer of the neural network.

First Stage

As previously stated, on the first stage the centers mustlbeted. The center selection
should be assigned to reflect the natural data clustering.s€&lection can be done uni-
formly or non-uniformly. The non-uniform selection is es@dly suited if the training
data points themselves are found to be distributed noreumly over the testing data.
The most common methods for center selection are:

Sampling: use randomly chosen training points. Since they are rangdsetécted, they
will represent the distribution of the training data in atistical sense. However,
if the number of training data points is not large enough,ayractually be a poor
representation of the entire data domain.

K-Means: use the K-Means algorithm, explained by MacQueen and Bisih{g#j 4], to
select an optimal set of points that are placed at the ceistadiclusters of training
data. Given & number of clusters, it adjusts the positions of the centerthat
(i) each training point belongs to the nearest cluster ceated (i) each cluster
center is the centroid of the training points that belongttoThe EM algorithm,
explained in detail by Dempstet al. in [13], can also be used for this task.

Chapter 2. Flexible Kernels for RBF Networks 9

Once the centers are assigned, it is time to set the dewsatidhe size of the devi-
ation determines how spiky the Gaussian functions are.elfGhussians are too spiky,
the network will not interpolate between known points, amastloses the ability to gen-
eralize. On the other end, if the Gaussians are very broaddtveork loses fine detail.
This is actually a common manifestation of the fitting dileeyrover-fitting is as bad as
under-fitting. For an example of such Gaussian shapes, gaeei3.

1 1
0.3 0.3
08 |- 08 |-
07 b 07 b
05 |- 05 |
05 0s b
04 04 b
03| 03|

0z |- 02|

0

Spiky Gaussian at the left and broad Gaussian on the right.

Figure 2.3: An example of a spiky and a broad Gaussian, adi&ie Wikipedia 7).

To obtain a good result, the deviations should typically besen so that Gaussians
overlap with a few nearby centers. The most common methastsfos such task are:

Explicit: the deviation is defined by a specific value, for instance steon.

Isotropic: the deviation is the same for all units and is selected hieally to reflect the
number of centers and the volume of space they occupy.

K-Nearest Neighbor: where each unit deviation value is individually set to theame
distance to its K nearest neighbors. Hence, deviationsmaadiex in tightly packed
areas of space, preserving detail, and higher in sparss afepace. The work of
Coveret al. in [11] and Haykin in P4] give a detailed insight.

Second Stage

Once the centers and deviations have been set, the secgedaitas place. In this stage,
the output layer can be optimized using a standard lineamggattion technique, the
Singular Value Decomposition algorithm (SVG) as describgdHaykin in [24].

The singular value decomposition is an important way ofdacy matrices into a
series of linear approximations that expose the underlgtngcture of the matrix. This
allows faster computation since patterns are used instethé entire data itself.

Chapter 2. Flexible Kernels for RBF Networks 10

The training of the RBF neural network is concluded when thagestfinishes. The
result is a trained neural network that defines a model fodtmeain of the training data.

2.2.3 Classification with Radial Basis Function Network

Classification using the learned RBF neural network is quit@EnOnce the RBF neural
network is defined through the learning procedure, as de=tin the previous section, it
holds a model that can be applied to new, unseen, data of e d@@main as the training
data. Hwangpt al. in [26] describe an efficient method to construct a RBF neural network
classifier.

When the model is applied, the artificial neural network wéldble to classify, hope-
fully correctly, the new data by calculating the distanceath new data point to each of
the centers of the model. This is performed through the abin of the hidden units, as
in any other artificial neural network. When a new data poirg being classified, it will
activate the hidden unit,, wherez,, is the nearest center to the paintFollowing Figure
2.4, the classification of results in (i) 20% of probability to belong to the first clustd
classA, (ii) 10% of probability to belong to the second cluster adss A, (iii) 40% of
probability to belong to clasg, and (iv) 30% of probability to belong to clags

Figure 2.4: A RBF neural network classification example adhfytem Mitchell [36].

To summarize, when the obtained RBF neural network model issaiijo a data point
x it will return the z,, that is the nearest centertgand classification happens.

2.3 Flexible Kernels for RBF Neural Networks

The originalFlexible Kernels for RBF neural networkagorithm, developed by Faoet
al. in [14], was a breakthrough in the RBF neural networks area. Thisilegalgorithm
is used for classification and distinguishes itself fromeotRBF neural network algo-
rithms by introducing extra flexibility to the kernel and g approximation to the Bayes

Chapter 2. Flexible Kernels for RBF Networks 11

Optimal Classifier (BOC) with independent kernel regardingdlasses. The work is the
genesis of this dissertation. It follows the earlier work®\threcht et al. and Bishopet
al. in [1, 4] and will be explained in the next sections.

As described by Hastiet al. in [23], kernel methods achieve flexibility by fitting
simple models in a region local to the target paint Localization is achieved via a
weighting kernelk’,, and individual observations receive weighfs(d(z,, z)).

Different models of RBF neural networks can be found in thediiere and several
methods for fitting parameters on this type of artificial rmémetwork have already been
studied. Thus, introducing flexibility to the kernel furaniper seis not a new idea, for
instance Bishop in3, 4] and Jankowski in29] have done it previously.

2.3.1 Flexible Kernels

This approach truly innovates by using modifier functiongligggl to the distance compu-
tation procedure, which is essential for all kernel evatrest as seen previously in Section
2.2 But this approach also distinguishes from others becawa# gum only the kernels
from the same class, which means it is approximated to the B@ptimal Classifier,
described in36] by Michell, since it preserves class independence. Theglseved by
using the training data information for constructing sepasets of kernels for each class
present in the data domain. Using this principle, the d&sgion procedure is straight-
forward.

Continuing to follow closely the work of Fao et al. in [14], and stated in a more
formal form, a clasg’;, belonging to the class sét, is attributed to a given pattern
according to the sum of all the kernels that have been adjdsteeach class

I
arg max Z w] K;j(x) (2.5)
j

wherekK;; is a generic kernel function and tlaé parameter leverages the importance of
a given kernel. Note that this equation is not equivalentqadion2.2 The equations
have only one slight difference in the sum, but that diffeeeresults in two very distinct
approaches. While the traditional RBF neural network sum$ealRBF, in this equation
the sum is selectively applied per class. This selectivdiGgin of the sum per class
isolates the kernels and allows class independence.

Using the common Gaussian model as the choice for kernelifuns; as presented in
Section2.2, K;;(z) can be rewritten as

Kij(x) = exp(—(z — c;j) 27 (x — ¢5)'/2) (2.6)

wherec;; corresponds to the kernel location parameter dnd a covariance matrix
of a data set. Using the inverse of the covariance matrixvalline captured of the cor-
relations between different variables, which providesdgimensional ellipsoid shape to

Chapter 2. Flexible Kernels for RBF Networks 12

each kernel against the common circular shape. As exendpiifiigure2.5, the Gaus-
sian model is a better representation of the clusters treaodimmon circular shape. Note
that Equatior2.6is not equivalent to Equatio2.4, since the distance function used is no
longer the usual Euclidean distance.

On the left the common circular shape and on the right the ellipsoid shape.

Figure 2.5: Example of shapes.

The inverse of the covariance matrix was selected becausgénerally more ver-
satile than using the simple distance to the kernel centi@tl assumes strict variable
independence. But his approach has some drawbacks. Naftbly,dovariance matrix
is singular or very ill conditioned, the use of the inversa peoduce meaningless results
or strong numerical instability. Removing the highly coateld components may seem
a good ideal. Unfortunately, that is infeasible since thesg vary among kernels and
among classes, thus not allowing an unique definition of gidhat builds the highly
correlated components for removal.

To better understand this problem, a spectral decomposiiam be applied to the
covariance matrix, producing the following eigensystem

S =PAP! (2.7)

in which P is the matrix composed of the eigenvectors and the respective eigenvalues
in a diagonal matrix format. Spectral decomposition, oeeiglue decomposition, has
been widely studied a4, 4, 35, 23] are examples of.

The use of a more generic strategy is suggested in orderdotietly use the infor-
mation conveyed by the eigenstructure produced for eacstekerhis is achieved by not
limiting the model to the inverse function but instead, ddasa generic matrix function
M (A) coupled with a scalar multiplier parameteused to weight the distance modified

Chapter 2. Flexible Kernels for RBF Networks 13

by the operatod/(-), the diagonal matrix functioni’;;(z) can now be rewritten as
Kij(z) = exp(—(x — c;j) PM(N)P'(z — ¢;;)'s) (2.8)

This equation is thus more generic than the general Gauksrael model in Equation
2.6. In fact, the news parameter value is a generalization of th@ constant. Larger
values ofs correspond to more spiky Gaussians, and smaller ones tddirshapes that
decrease slowly towards 0. These Gaussians shapes cambe Begire2.3.

It was found that using the parameter inside the Gaussiarekenstead of conside-
ring it as a common weight multiplier, has a strong positiffea in the discrimination
capabilities of the model.

A variety of models have been tested by Baldn [14] et al. for the diagonal matrix
function M (-), listed on Table2.1 Model (0) stands for the simplest RBF kernel, which
does not account for the correlation between variablesesimprovides circular shapes for
kernels instead of ellipsoids as all the remaining modeie ffaditional Gaussian kernel
of Equation2.6 corresponds to function model (3), the Mahalanobis fumstidetailed by
Mardiaet al. in [35], and, like in model (6), a constant with a small value like 0.01, is
added to the expression to ensure that numerical problemstdarise.

©) 1 L (1-X 2 (1-2)?
3) 1/(A+¢) (4) exp(l—A) (5) exp(l—A)?
6) (I—log(A+e) | (M) (A=N/A+N)|@) (1=N/(1+N)

Table 2.1: Distance weighting function models from Ralet al. [14].

The learning procedure for this, described in the followtwg sections, is the same
for all the models. It is performed over two stages and isegsiinilar to the procedure
explained in Sectio@.2.2

Stage One of Flexible Kernels Learning Procedure

On this initial stage, the classifierO uses an unsupervisgtiad to construct the network
topology where the kernel positions and the global shapesetr Most of the network
parameters required are defined without any customizatamn the user. Actually, only

two parameters are required from the user (i) the total nurab&ernels in the model

and, (ii) the distance modifying function type.

The algorithm starts by defining the number of kernels in edaks. This is done
through the proportion of the total variance in the traindaja set associated with that
class. The variance is used to adjust the number of kernelslg®s regarding how the
class is spread on the domain data. Then, the training dagpéarated according to each
class, and the kernel centers are determined through tlaé Kisdeans clustering algo-
rithm. After the clustering procedure, the kernel locatmarameters correspond to the
centroids of the resulting clusters, and thg parameter of Equatio.5 is set to the

Chapter 2. Flexible Kernels for RBF Networks 14

number of patterns that are included in each cluster. Finidlé spectral decomposition
is performed for the covariance matrices of each kernel terdene the eigenvector ma-
trix and the corresponding eigenvalues. An overview of fing stage can be seen in
Algorithm 2.1

Algorithm 2.1 Stage One of Flexible Kernels Learning Procedure
Require: Number of kernels, instance modifying function type, thagndata.

1: var < variance(classes, total _kernels, training_data)

2: for all class in classes do

3: num_kernels < adjustKernels(total _kernels,var, class,training_data)
kernels[class] <— kmeans(training_data, num_kernels)
for all kernel in kernels|class| do

eigen[kernel] < pca(kernel) {Spectral decomposition for the covariance ma-

trices to find the eigenvector matrix and the correspondiggrvalues;
7. end for
8: end for

@ g k&

Stage Two of Flexible Kernels Learning Procedure

After the conclusion of stage one, the classes of each pattehe training data are used
to learn the adjustment of appropriate spread parameteadl ikernels, i.e. the widths
of each kernel are determined.

This part of the algorithm starts by assigning a common lolweséor all clusters of all
classes. This value is increased iteratively by a fixed amaimecking the classification
error rate at every iteration. Typically, as this paramatereases, the error decreases
down to a local minimum and is then used as an initial estimatehis point, a simple
Hill-Climbing greedy algorithm starts to individually adjuestimates for each kernel.
The Hill-Climbing algorithm can be easily found in the litexee, as 86, 45, 20] are
examples of.

The parameter adjustment is also performed iterativelychester by incrementing
and reducing the spread parameter value and testing itsaamgcuFirst, increment the
value and check the classification accuracy. If the accursit is better, then keep that
value as the current best spread parameter for the curgstecl Otherwise, reduce the
value and check the classification accuracy. Again, if theuecy result is better, then
keep that value as the current best spread parameter fouttentcluster. This method
uses two parameters () the parameter that will make vasy and (ii) o, a constant that
will make varyd. Thed parameter starts with a, somewhat, large value, implyirggela
modifications to thes parameter for each kernel. But, as the algorithm proceeds] th
parameter decreases, and the changeapproaches zero. This procedure is performed
until a maximum number of thirty iterations is achieved certhare no changes in the
classification accuracy for three consecutive iteratidwsoverview of this second stage

Chapter 2. Flexible Kernels for RBF Networks 15

can be seen in Algorithra.2

Algorithm 2.2 Stage Two of Flexible Kernels Learning Procedure
1: s[] « random() {Attribute a random initial value to all cluste}s.

2. d <+ 0.23
3: no_changes < 0
4: number _iiterations < 30
5: while number _iteration > 0 do
6: number_iterations <— number_iterations — 1
7. forall cluster in random(clusters) do
8: slcluster] < s|cluster] x (1 + d) {Increase the testing spread.
o: if better Accuracy(s,s’) = s’ then
10: slcluster] <+ s’ {Keep this value for the current cluster.
11 no_changes < 0
12: else
13: slcluster]’ < s|cluster] x (1 — d) {Decrease the testing sprepd.
14: if better Accuracy(s,s’) = s’ then
15: slcluster] «+— s' {Keep this value for the current cluster.
16: no_changes + 0
17: else
18: no_changes < no_changes + 1
19: if no_changes = 3 then
20: number _iterations <— 0 {No changes for 3 iterations, so stpp.
21: end if
22: end if
23: end if
24: d + a x d {Updated multiplying it by a constant.
25: end for

26: end while

Finding thes value by testing the classification accuracy constitutesitial classifier,
thus resulting on a RBF neural network ready for classification

Classification using the Flexible Kernels

After the learning procedure has taken place, the classdices straightforward. Since
the kernels are isolated, the classes are independent) wigans that the classification
of any given point is performed by measuring the distance/éen the point and the sum
of the centroid distances of each class. The point will bglanthe nearest classe. it
will be classified as a point of the class that is nearest to it.

Following the example of Figurg.6, the FRBF will return (i) 0.3 when tested for
classA, (i) 0.4 when tested for clasB, and (iii) 0.3 when tested for clags. Thus,z
belongs toB since it is the class to which has the higher probability to belong to.

Note that this is different from the traditional RBF neuralmetks, where the sum is
applied to all the kernels. Simply stated, (i) in the tramhifdl approach, an instanees

Chapter 2. Flexible Kernels for RBF Networks 16

J(x)
@{%\@ N
AO AO OB OC
0.2 0.1 04 03

Figure 2.6: A FRBF classification example adapted from Mitidi84).

applied to the RBF neural network and it returns the probahulitz to be part of each
class cluster, as seen in Fig@d; while (ii) in this approach, an instanaeis applied to
the sum of the kernels of a class, and returns the probabiiityto be part of that class.
This difference is easily viewed by comparing FiguPe$and?2.6.

2.4 Proof of Concept Prototype

Following the procedures described for the FRBF in the pres/gmction, a prototype has
been implemented in order to prove the algorithm conceptat codenamed Remora.

The prototype was developed using the C programming laregaag the Microsoft
Visual C++ development environment. To perform the spectral decoitiposit made
use of the Principal Components Analysis (PCA), detailed bytdghet al. [38] and
Mardiaet al. in [35]. An implementation of the PCA standard ANSI C library, whicds
been developed by Murtagh, was used for this.

The implementation followed the algorithm strictly, whicteans that the parameters
described in the algorithm are constants, except for thetiftksd user parameters, even
when a parameter could be parameterized by the user, sublke @éparameter listed in
Algorithm 2.2 During the development of the prototype, a bug in the PCAalpmwas
found and promptly fixed.

The prototype resulted in a stand alone Microsoft Windoayplication that executed
from the command line. The application works in three digtmodes and the command
line parameters depend on the selected run mode. The applisapports the following
command line parameters:

Function Type: the index of the function type to use, from the TaBl&

IMicrosoft and Visual C++ are registered trademarks of MsofboCorporation.
2Microsoft Windows is a registered trademark of Microsoftr@ration.

Chapter 2. Flexible Kernels for RBF Networks 17

Model File: the resulting learned model output file, only for run mo@esndV.

Run Mode: the run modeA (Mode Adjust), to adjust the RBF neural network model;
C (Mode Classify), to perform the classification, it outputs tfata point index and
the class prediction; and (Mode Validate), to perform the validation, it performs
the classification, outputs the data point index and thes@esdiction, and displays
the accuracy and the confusion matrix.

Input File: the input file that holds the testing data, when in run mAder the data to
classify, on the other run mode&S,andV.

Number of Kernels: the total number of kernels in the model, only for run méde

Clustering Function: the clustering function to use, only for run mode 1 (Cluster
K-Means), to use the K-Meang; (Cluster EM), to use the EM algorithm; ard
(Cluster AHCL), to use the complete linkage.

Output File: the resulting classification output file name, only @andV run modes.
Verbosity: the type of verbosity during executiof; verbose, o0, no verbose.

In order to be used, the application has to be called twicee@ntheA run mode, for
training, and a second execution in the run m@déor classification, oW, for classifica-
tion and accuracy validation. The execution in the traimmgdeA results in the writing
of a model file, namedut put . r em that holds the artificial neural network model. This
file will later be used when the application is executed ferdlassification task, in thé
andV run modes. There are two main difference betweerCtlamdV run modes. They
both perform classification on the input data, read from th¥ @put file, and they both
output the result into a CSV file, containing the data pointiexnand the class to which
they belong to. But in th€ run mode the input file cannot contain the class column
while in theV run mode the input file must contain the class column, plusspldys
the accuracy and the confusion matrix. Fig@ré exemplifies the prototype application
usage.

The prototype was tested with several of the most commonsadsarom the StatLog
[47] repository with very good results, as stated in Téh2

Dataset Kernel Function Train Accuracy (%) Test Accuracy (%

dna (1) 98.30 95.62
letter 3) 98.95 95.95
satimage (9) 94.88 90.35
shuttle (7 99.90 99.85

Table 2.2: StatLog results using the prototype, adapted ffal@oet al. [14].

Chapter 2. Flexible Kernels for RBF Networks 18

Training:
rembra.exe 1 A "d:/thesis/dataset/train.csv'" 6 1 1

Classification:
renora.exe 1 C output.rem "d:/thesis/dataset/classify-nc.csv"
"d:/mestrado/ dataset/result.txt" 1

Validation:
remora.exe 1 V output.rem "d:/thesis/dataset/classify-wc.csv"
"d:/mestrado/dataset/result.txt" 1

Figure 2.7: Prototype usage example.

Despite the results, unfortunately the prototype was wnfylredistribution since it
was a very specific stand alone application. It had not beeeloleed to be included, or
used by, other applications or frameworks, therefor it hael onique usage and a single
specific purpose.

2.5 Improvements

As stated before, the enhancement of the original algoritsdescribed in Sectiéh3, is
one of the focus of this dissertation. Several improvemeat® been introduced, mostly
related to the algorithm parameterization.

Despite the changes described here, the original algomtaspreserved unchanged.
The only exception is the testing of the spread values, wiherancrease and the decrease
of values are always both tested. Apart from this exceptlmresulting implementation,
as described in the following Chaptérallows the use of the original version. In fact, the
default configuration reflects the original version of thgoaithm.

The enhancements that have been introduced are descritiedfollowing sections.

Parameterization

One obvious and simple improvement was to allow the userstoauze the parameters
that were declared static, such as thgarameter listed in Algorithrd.2 Hence, all pa-
rameters that could be defined by the user moved from cosstahtes into user defined
values. Namely: (i}, the initial value ofd; (ii) <, required by some models; (iijiter,
the maximum number of iterations to perform when findin@gnd (iv) niter _changes,
the number of iterations without changes that can occur viineimg s. Note that thex
parameter in Algorithn®2.2 from the Stage Two of learning procedure in Secti8.],

Is not parameterized. The reason for such design option &@mmethe prototype results
that indicated that the parameter could be automatically inferred with very gocalils,
thus removing the need for the user to tune this parametercéi¢he variation ofl per

Chapter 2. Flexible Kernels for RBF Networks 19

iteration occurs from the following formuld= d_start + iterniter x (d_end — d_start)

where (i)d_start is the initial d value; (ii) iter is the current iteration; (iiiniter is, as
seen before, the maximum number of iterations to perfornrmviiineling s; and (iv)d_end

is the lower threshold fad, meaning/ will never be lower than 0.01.

Testing Spread Values

As described in the Stage Two of the learning procedure ilhgoy in Algorithm2.2a s’
greater value is tested, butaower value is only tested if the greater value did not yield
a better accuracy value than the one found up to that moméig.has been changed to
always test the increase and the decrease of the spreadgberaninis means that a lower
value will always be tested even if the greater value redutte better accuracy than the
one found up to that moment.

This is the only modification that cannot be parameterizedioov the execution of the
algorithm with the original behavior. This means that thgoathm will always execute
using this improvement.

PCA Scale Variance

The Principal Components Analysis (PCA), used for the spledéi@omposition, can be
scaled to have unit variance before the analysis takes.pldeescaling will be performed
by dividing the centered columns by their root-mean-sques@eckeet al. states in 2].
In practice, this means that the spectral decompositiohbeilperformed only after all
values have been scaled.

Evaluate Each Cluster Individually

In the original algorithm, the classification of a given gam calculated using the sum
of the centroid distances per class, as previously destriBet it can also be calculated
using just the individual centroid distance.

In the original version, the distance of all the centroidsusimed per each class, and
a point is classified against the distance of the class. Wigheénhancement, a point can
be classified by calculating the distance against an indalidlass centroid.

Chapter 2. Flexible Kernels for RBF Networks

20

Chapter 3
R

This chapter describes R and why it was selected as the talag&irm for the new im-
plementation of th&lexible Kernels for RBF neural networlsgorithm. Other solutions
have been considered, such as Jaral .Net frameworks, but since they have not been
selected as the target development platform, they are notioned here. This chapter
also covers the official repository, that holds the packalgascan be used to expand R,
and the mechanisms provided for development.

3.1 Whatis R?

R is aprogramming languagea development frameworand asoftware environment
for statistical computing, modeling and data visualizatitt was created by Ross Ihaka
and Robert Gentlemar27] at the University of Auckland, in New Zealand, and it im-
plements the S programming language, developed at Bell badrigs$ by Rick Becker,
John Chambers and Allan Wilks.

R is currently a GNU project developed by the R Development Core Team and can
be regarded as an open source implementation of the S lamgoiayiding an easy and
accessible route to research in statistics. This makesyRsumilar to S, it even supports
much code from S allowing it to be executed unaltered, ancktbealmost all literature
targets both systems.

R is a language and cross platform environment that uses emaanhline interface.
Pre-compiled binary versions are provided for various afieg systems and there are
graphical user interfaces available on some of those sgstknis highly extensible, pro-
vides graphical techniques and a wide variety of statistioanputing, like linear and
nonlinear modeling, classical statistical tests, timeeseanalysis, neural networks, clas-
sification and clustering. Some of R strengths include:

1Java is a registered trademark of Sun Microsystems.

2 Net is a registered trademark of Microsoft Corporation.
3Formerly AT&T, now Lucent Technologies.

4GNU is a registered trademark of the Free Software Founaatio

21

Chapter 3. R 22

¢ an effective data handling and storage facility;

e a suite of operators for calculations on arrays, in paricoiatrices;

e alarge, coherent, integrated collection of intermediatdstfor data analysis;
e support for much S code, allowing it to be executed unaltered

e ease to produce well-designed publication-quality plotsluding mathematical
symbols and formulas where needed;

e graphical facilities for data analysis and display eitheisareen or on hard copy;
e an extension mechanism that allows contributions;

e a well-developed, simple and effective programming lagguahich includes spe-
cial operators, conditionals, loops, user-defined reeerkinctions and input and
output facilities.

For all the stated reasons, R is widely used for statistictilvsre development and
data analysis, making it thae factostandard among statisticians.

3.2 R Language

Due to the similarity between R and S, the R language and itgalaevolution follows
S. There is a set of books that characterize the languageslyram

1. The New S Languagehich is the basic reference for R and was written by Becker
etal.[2],

2. Statistical Models in Sthat details the features included in the early ninetieb an
was written by ChamberdT, and

3. Programming with Datathat describes the formal methods and classes of the meth-
ods package and was also written by Chambgts [

Despite these S references, there is a speRifianguage Definitiofs2] that defines
the R language. There is also a frequently asked questi&@) (25| that covers the
basics and is a good starting point for all new R users.

The language syntax has a superficial similarity with the @mmming language,
but the semantics are of the functional programming langwagety with stronger affini-
ties with the Lisp and APL programming languages. In paléiGut allows "computing
on the language”, which makes possible to write functiorsd thke expressions as an
input, a feature that is common and often useful when appdietitistical modeling and
graphics.

Chapter 3. R 23

3.3 R Workspace

The R workspace is the working environment that includestmmand prompt and the
user defined objects such as vectors, matrices, data fréstesfunctions and variables.
This means that the workspace is composed by a working draincludes all objects

currently in memory, and a command prompt where the userigarcgmmands such as
() a call to any defined function; (ii) a variable manipudatj like an assignment; or (iii) a
specific R console command, such as terminate the sessid@anitice workspace. The
management of objects in the workspace memory is dynamics rbans that, for in-

stance, alibrary, function or variable, can be loaded imtoemoved from, the workspace
at any time.

During a R session, it is possible to save the state of anycohjm the workspace
into an external file, and load it again from the file into therkepace. At the end of a
R session, the user can save an image of the current state wbthkspace, that includes
all the objects, that will be automatically reloaded thetrtére R is started. It is also
possible to save the current workspace state and loadedaityatime. This feature is
extremely useful to everyone that needs to keep a restoné @oivants to keep a specific
state of the current work for sharing or later usage.

R comes with both a command line text console and a graphocaiate that provides
user friendly interaction such as a set of common R consatentands and easy access
to R packages. There are also other third party R envirorsibat potentiate the usage
of R workspace, for instance by combining the console wittrgoseditor. But this is not
the only way to interact with R. It is possible to execute an Rosby calling the R from
the system command prompt and the script as a parameterwilhatake R to execute
the specified script and, when finished, it will return to tiistem command prompt.

3.4 Comprehensive R Archive Network

R comes with a set of pre-installed packages that form itéssba# order to expand
these basic capabilities, other packages can be obtaim@dsficentralized repository, the
Comprehensive R Archive Network (CRAN). CRAN is a family of Intetsites that hold
a very wide range of modern statistical packages.

A package is a library, usually about a specific topic, aretctionality, that con-
tains a set of functions, data, and the correspondent dottatien. The data present in
the packages is optional and is usually used to support,adesiustrate the functions of
the package.

Each package expands R by providing new functions to it. Hukg@ges are usually
available to the scientific community through the R certealdirepository CRAN. Obtain-
ing and using a package is performed by downloading the gackam CRAN and then

Chapter 3. R 24

loading it into the workspace. The graphical console as$i user in this task, making
it quite easy and straightforward.

As stated before, one of this dissertation goals is to petié FRBF, described in
the following Chapte#d, as a package in the CRAN repository as a contribution to the
scientific community.

3.5 R Development

Simply stated, R allows development through the definitiboser functions and class
objects. For that, R provides the usual basic programmimguiage mechanisms3], like
control structure, class definition, basic data types, aipes, etc.. R is interpreted, which
means slower executions when compared with similar comhpidele. Nevertheless, using
R is actually quite efficient, even when it comes to workingfvgomplex operations and
large data sets. When packed, a development may be disttiaoteshared with others.

3.5.1 Objects

R supports two object systems, known as the S3 and the S4®bjec

Simply stated, S3 objects, classes and methods have beiabbyvan R since its
inception and are very informal. For instance, it is not regpito define any data type for
its slots, commonly known in Object Oriented Paradigm (O@d¥)roperties or members.

The S4 objects are the new generation that tries to elimihateveak S3 OOP sup-
port. It requires more attention from the developer. Inipatar, it forces the explicit
declaration of slots with a data type and tieav) function must be used to create a S4
object.

3.5.2 Function Overloading

R supports function overloading based on data types. Ma&sw®ly, a function behavior
can be defined based on the data type that it receives as anarguFor instance, the
print function, that displays a variable value on the consolengha its behavior de-
pending on the variable data type. The printing of a matriisplayed differently than
an integer or an array.

The overloading mechanism is quite simple. R interpretsuhetion name concate-
nated with the data type by a dot, preserving the originattion signature. Figur8.1
shows how this mechanism can be declared.

This mechanism is very useful when custom implemented etassed a pretty way
to display its values to the user.

Chapter 3. R 25

<function>. <data type> <- function(argunmentl, ...) {
[...]
¥

Figure 3.1: Function overloading definition.

3.5.3 Application Programming Interface

R has an Application Programming Interface (API) that aiotrto be included as, or to
include an, external library. This feature makes R a pereatpanion for other appli-
cations, since they can make use of R and its functions anikhgas. This feature also
makes R a preferred target platform, since it supports camcation with other external
functions allowing it to be expanded without recurring te fflackage mechanism.

In particular, R can interface with the C and Fortrag][programming languages. It
can be called from both C and Fortran, and it can execute dedh and Fortran 77
code, or any other language which can generate C interfemesxample C++.

In particular, C implementations are common for perforneareasons. Some pack-
ages actually have its functions implemented in the C prograng language. This allows
a boost in performance when compared with the same implatientn R, that would
have to be interpreted.

3.5.4 Debug

Since R runs on a command line interface, debugging in R if®peed via the call to
debug functions. This is true even when using the graphicasale, since it does not
provide any special or extra interface for this task.

The usual debug mechanisms like break points, call stac&twariable querying, and
manipulation of data in memory are available.

Since the usage of the debug functionality is performed widtem commands, it
turns out to be verbose and script intrusion. For instarcendrk a break point on a
function, thebr owser () function call must be included precisely on the line where th
execution should be paused and the debug command line shepicbmpted. When the
browser () function call is executed, the control returns to the R ctasoth a special
debug prompt that allows the user to interact with the pnogiraits current state. The
user has access to all information in scope, allowing toygaed modify the data as
required.

3.5.5 WhyR?

As seen along the sections of the current chapter, R prowdey features that make it
a great choice for the development of the new implementatidhe Flexible Kernels for
RBF neural networkalgorithm.

Chapter 3. R 26

R was chosen for a number of reasons, but in particular it el@st®d because (i) the
R platform is quite open and extensible, allowing anyones®itiand extend it in several
ways, (ii) the CRAN repository is a great way to distribute aka@e to the scientific
community, and finally, (iii) R itself is widely used for ststical software development
and data analysis. In fact, it is tlde factostandard among statisticians.

Hence, selecting R for this task helped achieving some ajolaés of this dissertation.

Chapter 4

FRBF Implementation

This chapter describes the new implementation ofRtexible Kernels for RBF neural
networksalgorithm, including its enhancements, as described ipteeious Section2.3
and2.5. All aspects of its implementation in R are covered here,algnthe development
process, the packaging, the documentation, the problemmslfahe challenges overcame
and the resulting work. The resulting work is known as FRBF,abenym of Flexi-
ble RBF that is also the name of the R function that implemergsatgorithm and the
distributable R package.

4.1 Development Environment

The implementation of FRBF was performed on several distingrenments under the
Windows XP [10] and Kubuntd [33] operating systems. This was necessary because
some development tasks were easier, and faster, to acabnyplder certain specific en-
vironments.

Regardless of the number of environments used, there wasmaowersion control
system that served them all. A Subversion (SV8)\ersion control server running on
Debiart [28] has been used for this task. On the client side, the cornelgrd SVN client
command line tools and the operating systems specific GUs,tdortoiseSVN 55| in
Windows XP and KSVN 39 in Kubuntu, have also been used.

Despite the number of operating systems and different soéwnvolved, there was
only one laptop used in the implementation of FRBF. The laptg\ware has a single
core PentiurhM processor at 2GHz, 2GB of RAM and 100GB of hard disk. Thisipart
ular limitation of using only one laptop, forced to boot betm systems whenever it was
necessary to perform tasks that specifically required aiceeinvironment. Each of the
software tools used had specific goals and some were only tessful when combined

IMicrosoft XP is a registered trademark of Microsoft Corpiima.

2Kubuntu is a Linux distribution and a registered trademdr®anonical Ltd.
3Debian is a registered trademark of Software in the Pubtirést, Inc.
4Pentium is a registered trademark of Intel Corporation.

27

Chapter 4. FRBF Implementation 28

with others. For this reason, some automatic combinatids®fware tools have been
implemented through scripting. The usage of two distin&rapng systems and such a
variety of software increase the implementation compyexit

4.1.1 R Development Environment

The implementation of the algorithm was mainly performed\Nimdows XP using the
Tinn-R [15] editor. But the algorithm has also been developed in Kubusing the JGR
[43] as both the text editor and the R console.

Regardless of the operating system, the official R tools haen lwidely used for
script execution, algorithm debugging, FRBF function tegtpackaging, documentation
and build. There was one exception related with the packgaihiat ended being totally
performed under the Linux environment for productivityseas.

4.1.2 Documentation Development Environment

The documentation of the FRBF package has been entirely pgztbon Linux. This was
because Kubuntu had almost all the necessary tools alreadgitze on the system, and
the missing ones were extremely easy to obtain and use Wiehdr none configuration.
This task could also have been accomplished using Wind@ae scribe by Rossi idf],
but there was an enormous overhead, with little gain congperéhe adopted solution,
related with tool gathering, installation, configuratiorda certain lack of documentation
and support on it.

Hence, the development of the packaging documentation erdsrmed on Kubuntu,
using LaTeX, as the official documentatidsf] refers, Kate 49| editor and the official R
tools for compilation and packaging.

However, the development of this dissertation has beeropeaed on Windows XP
using the WinShell12], MiKTeX [46], Ghostscript 8] and Inkscaped4] tools.

4.1.3 Packaging Development Environment

The packaging development was also entirely performed nuxX.since the development
of documentation and packaging is bound. In fact, the paekimgumentation is one of
the steps of the packaging procedure, as stated in the bifmtamentation$3]. Thus,
the reasons for choosing Linux are the same stated in théopeesection.

The packaging procedure was automated employing scriptdoBo, a R packaging
script and a shell script, which can be seen in Appeigiwere written specifically for
this task. Again, the JGR and Kate editors have been useHifotask.

Chapter 4. FRBF Implementation 29

4.2 Implementation

As explained before in the previous chapter, R has been olassthe target platform for
the implementation of FRBF. First of all, R had to be learnedc¢esithe the author was
unfamiliar with it. Fortunately, there is much literatutwoat this subjectd, 8, 25, 52, 56).

R is quite easy to understand and it has a fast learning curve.

R provides the basic development mechanisms required ikiid of task, but it
suffers from the fact that it is less used and widespread thla@r more common pro-
gramming languages.

Since R is less used, the number of tools available and tineatibnalities cannot be
compared with the ones available for more common and widespprogramming lan-
guages. In particular, the development process and thedefgutask are somewhat raw.
R does provide the basic mechanisms but there are no fanksyaweailable to leverage
these mechanisms and make them more user friendly or modeginee.

Another real problem faced was the absence of documentaitioed for the develop-
ment procedure. This forced the need for common tasks, tile documentation, to be
specifically defined for the scope of this implementation.

4.2.1 Development

R does not have a real development manual procedure whedasts, code documen-
tation, good practices, design and organization are defiiég R Development Team
provides a manual of R InternalS]] but it focus on tools for writing code outside R,
like in C and Fortran, rather than focusing on a coding stethd@or this reason, the au-
thor used his experience and a set of general good pracficedtoware development to
define specific development procedures for this implemiemtaHence, a small standard
has been defined from some easy and generic good practiceplé@e the missing R
development procedure:

Declaration: all variables had to be declared and initialized;
Documentation: all the functions, classes and static constants had to hemted:

Structure: the code had to be organized through a logical domain group.

Declaration

R does not require for explicit variable declaration, itm®egh to assign a value to a new
variable in order to create it. Doing so will make R to autagsly infer a data type
and assigned it to the variable. For this reason, all vaegbbked in the implementation
of FRBF were initialized prior to its first use, and the explit#ta type declaration was
usually omitted. But in some particular cases it was necgseaxplicitly define a data

Chapter 4. FRBF Implementation 30

type, usually by creating the variable with the correspomndmata type constructor, or
to enforce a data type, usually done through a data type csiove The need for such
data type conversions was specially common betweemghei x anddat a. f r ane data
types.

As a convention, names always started with a small letter. nMthes required to
compound words, both the camel case writing and the wordragpa with an under-
score were accepted. The variables, constants, functimesidunction parameters, class
names, and class slots all use this convention. An examigledhvention can be seen in
Figure4.1

CGet Nunber of Clusters.
Retrieves the nunber of clusters depending on
each cl ass vari ance.

@aramtrainingmatrix: the training data matrix
@aram cl asses: array of cl asses

@aram config: the algorithm configuration
@eturn array of clusters per class

HoH OHF O H O HHF HH

get Nunber O Cl usters <- function(training.matrix,
cl asses, config) {
[...]
}

Figure 4.1: An example of code declaration and documemtatio

This rule was also applied to the static constants dectaratR does not provide a
specific static constant declaration, so a variable and staohare only distinguished by
the way the variable name is written. Constants are writtéh ali capital letters and use
an underscore as a word compound symbol.

Resulting from this rule, only S4 classes, as described inid@3e8.5.1 were used.
This kind of class enforces the declaration of class sloth widata type. The class
constructor guarantees that all class slots are initidlizometimes default values are
used for slots, allowing the user to omit it. If a class sldtieas missing and there is no
default value defined for its initialization, the constarawill issue an error and the FRBF
execution will be halted.

Code Documentation

The resulting code of FRBF is entirely documented, not onlyahbse it is a good practice
but also because of the algorithm complexity. A templateldesesn defined and used for
documenting the code. A function or class is documentedarctde by having its defi-

Chapter 4. FRBF Implementation 31

nition preceded by a description and, when applied, an eafilan about its signature. A
comment line starts by &h the R standard comment symbol. The function signatures use
@ar am <paraneter>[:] <paraneter description>todocument a parameter
and@eturn <result description>todescribe the result returned by the function.
The descriptions are all free form. The Figdrd illustrates this through a code snippet
of a function documentation.

Structure

The implementation of the algorithm was organized follayvihe steps described in Sec-
tion 2.3.1, namely the two learning stages and the classification Stegt resulted in five
distinct R source code files, each containing specific defirstabout a common domain.
The script files are listed bellow by dependency order:

1. Classes that holds the class definition, the object constructois the required
static values;

2. Commonthat contains the functions which are auxiliary or commarded in any
part of the algorithm;

3. Model which contains the functions responsible for the learrpngcedure that
builds the RBF neural network model;

4. Predict that holds the prediction function, responsible for thesslfication step;
and

5. Main, which has the main functions, in particular the functidmet are available to
the end user.

4.2.2 Functions and Operators Used

One of R strongest points is the set of operators and furetwailable for mathematical
calculus. The functions and operators are usually optithezsed are able to perform
complex calculations quite efficiently. The FRBF implemeotatook advantage of this
by using the basic R functions and operators whenever ges&BBF does not make use
of any function outside the basic R installation, makingtatly independent of external
package.
Some of the most interesting functions used in the impleat&mt relate with clus-

tering, spectral decomposition and matrix computation radhipulation. Some of the
functions and operators usage can be seen in the sample fcadpendixB.

Chapter 4. FRBF Implementation 32

Function diag

Thedi ag function extracts or replaces the diagonal of a matrix, oistwicts a diagonal
matrix. In this implementation, it is used to construct egdiaal matrix. This function is
very useful since it eliminates the need for a custom implaaten of this utility.

Function kmeans

Thekneans function executes the K-Means clustering algorithm on a dadatrix. The
input data matrix is clustered by the K-Means method, whintsao partition the points
into &£ groups such that the sum of squares from points to the askiuster centers is
minimized.

The algorithm to use for clustering can be specified by the. useo algorithm is
specified, the function default algorithm will be used.

Function max.col

Thenax. col , also referred asaxCol , is a very useful function that finds the maximum
position for each row of a matrix.

This function is used to find which column of a matrix holds thggest numerical
value per row. It performs very fast and discards the need tmstom implementation of
such utility.

Function prcomp

Thepr conp function performs a PCA on a given data matrix and returns d&33 object.
This function is used to obtain the eigenvalues, fromstev slot, and the eigenvector,
fromr ot at i on slot.

The calculation is done by a singular value decompositich@tlata matrix, possibly
scaled as it is one of the enhancements introduced and psyiceferred, and not by
using theei gen function on the covariance matrix. This is generally thdgmmed method
for numerical accuracy.

The standard deviations of the principal components, slet/, is the square roots
of the eigenvalues of the covariance/correlation matrixe Talculation is actually done
with the singular values of the data matrix.

Ther ot at i on holds the matrix whose columns contain the eigenvectors.

As stated in the manuab()], the signs of the columns of the rotation matrix are arbi-
trary, and so may differ between different programs for PGl even between different
builds of R.

Chapter 4. FRBF Implementation 33

Function sd

Thesd function computes the standard deviation of a matrix. Assaltea vector of the
standard deviation of the columns is returned.

This function is used to quickly calculate the standard @ of a matrix. It per-
forms very well and discards the need for a custom implentientaf this formula.

Function sum

Thesumfunction sums all the values passed as an argument. BecaitsdéexXibility, in
this implementation it is used to sum distinct data typesnipanatrices and vectors.

This function performs a fast sum, regardless of the data tiged as argument, and
eliminates the need for several custom implementationsmffsinctions.

Operators

R provides a set of operators that allow the execution of dexr tedious, operations
on a simple and straightforward way.

For instance, the operat®&% also referred asat nul t , multiplies two matrices. If
one of the operands is a vector, it will be promoted to eithesvaor column matrix to
make the two arguments conformable. If both are vectorslitreturn its inner product
as a matrix. Thg and[[operators, and the corresponding closing brackets, agk use
for indexing and serve for structures like matrices, vectord data frames. For instance,
when working with matrices, a row or column can be fully sfiediby not specifying and
index or by explicitly specifying a set of indexes. Anoth&le is thes n%operator
that yields true or false when a value belongs, or not, to.a set

Using such powerful operators makes the execution of cetéagks very easy. Figure
4.2 shows an example of the usage of such operators. Note thamission of the
row index selects all the rows, but the columns index spetifiexclude one particular
column.

datamatrix[, !(col nanes(data_matrix) % n% col umm_nane)]

This results in thelat a_mat r i x without thecol urm_nane column.

Figure 4.2: An example of the operators usage.

4.2.3 Model

The FRBF implementation, following the prototype implemdiota described earlier,
uses a model that can be saved for future usage. This pdéantlee share of models
trained with specific data sets.

Chapter 4. FRBF Implementation 34

The model keeps all the information that was used in the legrprocedure plus
the result of that same learning procedure. Raeor aMbdel is an S4 class with the
following slots:

config is the configuration used to build the model, holds the S4aagect
Renor aConf i gurati on;

model is the matrix with the model data information, in particutae class centroids and
related information such as the spread paramgter

lambda is the precalculated matrix values of Equatid per cluster; and

kernels is the list of theRenor aKer nel s S4 class object with the kernels that resulted
from the K-Means.

The definition of the classes referred above can be found peAgixA.2.

The configuration parameters are only used in the trainioggaure, hence it may
seem odd to include the configuration as part of the model. tBumclusion is actually
very useful because it helps to document and explain how teehwas built. There
iS one exception to this though, ther bose configuration parameter, that can hold any
of the VERBOSE_OPTI ONS value described in Appendik.1, is used in the classification
procedure. This is totally dispensable as the user doesqnatre to have any feedback
about the classification procedure as it goes.

The model itself is the result of the training procedure & BERBF algorithm. The
function responsible for returning the model to the usehés t bf function which will
be detailed later on this chapter.

4.2.4 Print

Since the FRBF implementation is based on classes createdhsitiurpose to support
the model, thepri nt function has been overloaded. This mechanism is used tw allo
complex and compound data types to be displayed in a mordnessaly output, when-
ever the user needs to inspect its values. Thus, the foltpalasses are supported by the
pri nt function:

RemoraConfiguration prints all the configuration slot values;

RemoraKernels prints all the kernel slot values iterating whenever theigalare lists;
and

RemoraModel calls the print function for all the slots, dispatching thiapto the corre-
spondent class print function.

The complete list of the FRBF classes is available in AppeAd2x

Chapter 4. FRBF Implementation 35

4.2.5 Learning

The learning procedure occurs through thevf function. This function is responsible
for the two learning stages of the FRBF algorithm, as describetie earlier Section
2.3.1

Thef r bf function receives all the required parameters to build todeh Namely, it
will receive the FRBF configuration parameters and the trgidiata. When finished, it
will return a model to the user, as already described in thagpter.

The function is actually quite simple. Following Algorithfhl, the first step is to
build the learning configuration object from the user inpaiues, which happens in the
first line. The FRBF algorithm really starts by performing thevi€ans in line 2. Then,
the spectral decomposition takes place in line 3. Next, #s pread parameter values
for each cluster are found in line 4. An information table pentroid is built from lines 5
to 7. Then, the kernel function values, here called lambaacalculated in line 8. Based
on the information calculated, the model is built in line Bdaeturned to the user in the
last line.

Algorithm 4.1 Overview of thef r bf function steps
Require: Training data and parametrization values.

1: config < remoraCon figuration(user learning parameters)
kernels < get K M eans(training matriz, config)
kernels <— get PC'A(kernels, config)
svalues < findS(training-matriz, kernels, model_lambda, con fig)
for all centroidin kernels do

centroid_table[centroid] <— buildModel(kernels, s_value[centroid|, centroid)

end for
model_lambda < findLambda(training matriz, kernels, config)
model < remoraModel(config, centroid_table, model lambda, kernels)
return model

©oNOR®O®DN

=
e

This function is one of the user interface functions andets implementation can
be seen in AppendiB.2. The coming Sectiod.4.1will describe its signature, the user
acceptable values and its usage.

4.2.6 Prediction

The classification occurs through thepRedi ct function. This function has been over-
loaded in order to be used with the FRBF model and, therefoehttes just like the
common R user expects. The overloading of phedi ct function is exemplified in
Figure4.3and it follows the overloading mechanism described earlier

Thepr edi ct function will perform the classification for a given data sstng the
model data calculated in the learning procedure, as destiibthe classification task
of Section2.3.1 As stated before, the information contained in tlaf i g slot that is

Chapter 4. FRBF Implementation 36

used in this stage resumes itself to thee bose parameter. Its code is fully available in
AppendixB.4 and, being one of the user interface functions, it can be isegetail in the
coming Sectior#.4.2

#
Renora predict function.
#
@aram obj ect renora nodel
@aramdatamatrix the data to use to train
the algorithmor the data to use to classify
@eturn prediction
#
predi ct. RenoraMbdel <- function(object, data.matrix, ...) {
[...]
}
Figure 4.3: Remora predict function overloading.
4.2.7 Tuning

The first R versions of the FRBF algorithm had a slow executiofopmance. This was
mainly derived from the fact that the author, at the time, stisunfamiliar with many
of the R functions and operators that are optimized to perfoertain operations. For
instance, matrix manipulation using an iterative procésslboping for each column and
row is way too slow when compared with the matrix function ipatation and index
selection mechanisms.

Even with a not very fast execution, the performance was nanidal concern and
therefor, it was actually one of the last modifications idtroed to the FRBF implementa-
tion. But the performance became a critical issue. When sortteedésts took too much
time to build a model, it clearly became a problem that needieshtion. In particular, the
learning procedure for th®atellite Imagealso known asatimage data matrix from the
StatLog B7] repository, with 4435 data points, 36 features and 6 ctgssas taking over
19 hours to construct the model. Such problem clearly requartuning process.

The tuning process was iterative and started by profilingftinetions that had the
most number of invocations during the learning procedune, later evolved to all the
important functions of the implementation. R does provid@mazing way to find where
inefficiencies are in the code though the functi@asof andsummar yRpr of . Butthe R
profiling mechanism was not really useful since it is not dbl&race uses of loops, like
for, while and repeat. Consequently, it does not identifypkbas the cause of inefficiency
of the code. Hence, this task was performed with a naive @gproy collecting times-
tamps in specific function points and analyzing where thegn@tslow. Some of this

Chapter 4. FRBF Implementation 37

performance information is still available and can be segséditing the configuration
ver bose parameter with theebug value.

The profiling showed that the functions were usually spemntho much time perform-
ing object manipulations like inspecting the values of armand seeking the column
that had the biggest value per row. After collecting thisfiiry information, the tun-
ing process began. Learning advanced R techniques was tinefocas by the time,
since it was necessary to acquire specific expertise toraimislow object manipulation.
Each time a new technique was learned and applied, the peafame got better. Learn-
ing advanced R techniques payed its profits and the earfenred data matrix learning
procedure start getting faster. When the tuning task wasleded, the model from the
previously referredatimagedata set was built in around 5 minutes.

Since this implementation is entirely coded in R, it will neyerform as fast as a
C coded version. This happens because R is interpreted asch&ively compiled, as
described in the earlier Secti@®5.3

4.2.8 Problems Found

Several challenges have been overcome during the FRBF imptatioen. Some of them
have already been described in the previous sections.

One of the first problems encountered was the inexistenca bftagrated Develop-
ment Environment (IDE) that allowed an easy and fast way iteyebug and refactor
the R code. Later, a performance problem raised and the sappehed with the tuning
process, where the profiling had to be performed throughertashniques has explained
in the previous section. All this caused a longer and sloveselbpment and evolution
of the algorithm. Compared with current common IDEs and pngfitools available for
other programming languages, this can be seen as a praduissue.

Another problem found was the missing of a R development @lanith the defini-
tions for standards, code documentation, good practi@sg and structure. This was
overcame by the definition of specific rules for this develeptnhas already describred.

The FRBF algorithm complexity was also a challenge. Duringnitglementation
several bugs raised from the algorithm interpretation asdcmnhancements. This is a
common situation of the development process, but codinglteithm correctly was not
achieved at the first try. In particular, the adjustment gfrapriate spread parameters
detailed in Algorithm2.2, thef i ndS function, visible in AppendixB.1, required special
detailed attention. The values returned by it were veryatisie from the ones obtained
by the prototype, which clearly indicated that the functi@ad problems. Many debug
sessions were performed around this function before itineaworrect.

Chapter 4. FRBF Implementation 38

4.3 Tests

The tests of the FRBF were performed with several testing ndsthod data sets. The
testing methods made use of distinct approaches, nameilgi{ijesting, to test functions
individually; (ii) black box testing, to test the algorithiearning and classification proce-
dures; and (iii) accuracy testing, to assert about the tyuallits results and in which the
data sets were particularly relevant.

The unit testing focused only on critical functions thatueed special attention. The
tests were performed by calling the function with a speciéica input arguments and
confronting the output result with the expected correatlte3 his method allowed to test
the functions individually.

In the black box testing, the goal was to test the functiotegiration. This test was
performed by calling the available user interface funcjotescribed in the upcoming
Section4.4, and checking if it behaved correctly. Figutel exemplifies the output result
of a black box test script, available in Appendix

The accuracy testing aimed at certifying that the algorithiplementation was re-
turning good results. This was achieved by confronting ti@Btementation results with
the prototype results for the same configuration and dasa sethis test, several data sets
have been used, like the classio@é and the StatLog47] repository data sets. The data
sets assume a particular importance in this test, sinceatteeyidely known and used by
the scientific community. Tablé.1 characterizes some of the most interesting data sets
used in the accuracy tests.

Dataset | # Training Patterns # Testing Patterns # Features # Classes
iris 125 25 4 3
wdbc 569 80 30 2
satimage 4435 2000 36 6
shuttle 43500 14500 9 7

Table 4.1: FRBF testing data sets.

4.3.1 Execution Behaviors Observed

The tests revealed some specific behaviors about the FRBFtxecu

An expected behavior that was observed during the testshaathe FRBF execution
is CPU bound. This happens because the FRBF is computatiosivegsince it performs
many calculus with matrices. On the other hand, it is memdrgient, since it does not
require much RAM to perform the calculations with big datassefhis happens even
when several structures loaded with thousands of datagaietloaded in memory. For
instance, a matrix with 4435 data points and 37 columeswith 164095 singular values,
requires approximately 32MB of RAM, including the R envirogmi

Chapter 4. FRBF Implementation 39

Performng full tests on frbf using wdbc.

[...]

Configuration [1]: function is euclidean, algorithmis
Harti gan-Wng, scale variance is TRUE, performsumis TRUE

Accuracy [1]: 0.7594937

Train Accuracy: 0.7820738

Model [1]: 1.57995 mi nutes.

Prediction [1]: 0.001316667 m nutes.

Configuration [2]: function is euclidean, algorithmis
Harti gan-Wng, scale variance is TRUE, performsumis FALSE

Accuracy [2]: 0.949367

Train Accuracy: 0.8857645

Model [2]: 1.5703 minutes.

Prediction [2]: 0.001316667 m nutes.

[...]

Configuration [52]: function is mahal anobis, algorithmis
Harti gan- Wong, scale variance is FALSE, performsumis FALSE

Accuracy [52]: 0.9746835

Train Accuracy: 0.913884

Model [52]: 0.5627667 m nutes.

Prediction [52]: 0.001033334 m nutes.

Configuration [53]: function is mahal anobis, algorithmis
Ll oyd, scale variance is TRUE, performsumis TRUE.

Accuracy [53]: 0.721519

Train Accuracy: 0.775044

Model [53]: 2.29115 m nutes.

Prediction [53]: 0.001316667 m nutes.

[...]

Configuration [141]: function is nornmalized.difference.sq,
algorithmis MacQueen, scale variance is TRUE
performsumis TRUE

Accuracy [141]: 0.9367089

Train Accuracy: 0.8945518

Model [141]: 0.9513 m nutes.

Prediction [141]: 0.001300001 m nutes.

Configuration [142]: function is normalized.difference.sq,
al gorithmis MacQueen, scale variance is TRUE
performsumis FALSE.

Accuracy [142]: 0.949367

Train Accuracy: 0.8927944

Model [142]: 1.001033 m nutes.

Prediction [142]: 0.001300001 m nut es.

[0

Figure 4.4: Black box test script execution example.

Chapter 4. FRBF Implementation 40

The tests also revealed one particular behavior about thustatent of the spread
parameters, detailed in Algorithth2 After all clusters have been stabilized, it was com-
mon for thef i ndS function, visible in AppendiB.1, to grab one cluster and successively
lower itss value, making a broad Gaussian as visible in Figu8in order to expand that
same cluster and thus capture more data points. This hapgelesa better accuracy is
obtained, even if between iterations only one single daiat better classified. Figure
4.5exemplifies this behavior, thethat belongs to both clusters was caught because the
cluster expanded in a broad way, otherwise it would have @enlzaught by it and would
have been classified adlh

Figure 4.5: A FRBF cluster grab making a broad Gaussian example

4.3.2 Results

Overall, after solving the problems, the result of the testse very satisfying. Consid-
ering the complexity involved and the number of configurapossibilities available, the
tests showed a solid implementation of the FRBF algorithm diitd enhancements.

Accuracy

A special attention was given to the accuracy test restilésphly test where the author
was not entirely satisfied with the results obtained.

During this test, some discrepancies appeared in the sesodéained from the R and
the prototype implementations. First, from the fact thanedunctions had bugs, as previ-
ous described. And later, after the bug fixing, from the flaat the spectral decomposition
is performed differently in the prototype and in this R implntation. In fact, R itself
has distinct ways to obtain the eigenvalues and eigenwecitre manualq0] states that
pr conp yields better results than theg gen function, but even though, tests were per-
formed with both to check which returned better results. giheonp, described earlier,
was the original choice and it was kept, since when it was tise@lgorithm returned a
better accuracy. But even using this function, the resubts fthe prototype were usually
more accurate. A detailed analysis was performed to confiamnthey diverged precisely

Chapter 4. FRBF Implementation 41

in the PCA, but no changes were made to substitute the interfuadctionpr conp. Table
4.2 shows a comparison of the best accuracy obtained using thetype and the FRBF
implementation for the same data set and parameterization.

Dataset FRBF Accuracy Prototype
Train (%) Classification (%) Train (%) Classification (%
satimage| 84.23 84.46 87.46 85.30
wdbc 92.44 97.46 100 100
shuttle 98.39 98.43 100 100

Table 4.2: FRBF and prototype accuracy comparison results.

An example of the best results from the accuracy tests amgrsimoTable4.3. The
table shows some of the most interesting data sets usedfghe configuration applied
to it, the learning procedure computation time and the aaguresults obtained for the
training and the classification data sets. The training r@oyuis calculated by applying

the learned model to the training data set.

Dataset Kernel Train Classification
Function # | Time (min.) Accuracy (%) Accuracy (%)
satimage| (0) 6 5.40 79.32 79.9
satimage| (3) 6 4.40 84.23 84.46
wdbc (0) 3 1.55 89.98 97.46
wdbc (3) 4 0.15 92.44 97.46
iris 4) 3 0.07 93.6 96
shuttle (3) 7 153.64 98.39 98.43

Table 4.3: FRBF training and testing accuracy results.

One curious result was the classification accuracy obtawigdthe wdbc data set
using the Mahalanobis and the Euclidean kernel functiorssndJdistinct configurations
resulted in the same classification accuracy. This was aes®, since the tests indicate
that, typically, the Mahalanobis function performs bettean the Euclidean function, as
exemplified by thesatimagetest results on Tablé.3. The learning procedure is usually
not time consuming, but that was not the case witrstingtledata set, where the learning
procedure time was a lot longer than in the rest of the exasnflkis happened because
the training data set is much bigger than the rest of the ptedalata sets, as visible in
Table4.1, and thus a lot more calculations are performed. As an exarfgol finding the
spread parameterfor satimage each iteration performs 783000 calculations, which is
clearly computation intensive and time consuming.

lterations

The tests revealed that the number of iterations to find tiesadents of the spread
parameters was actually very low, no matter how big the itngidata set was.

Chapter 4. FRBF Implementation 42

The default value is set to 5% of the number of data pointshwebin the training.
But the tests showed that thevalue was usually found with much less iterations, most of
the times with less than 25% of the default value.

Parameter Influence

There is a set of parameters that clearly influence the acgurare than other parameters.

When using the same configurations, the tests showed that a&allkhobis kernel
function usually performs better than the other availabtefions. The number of clusters
is, obviously, one of the parameters that directly influsnite accuracy result. This is
because it has a direct impact in the K-Means accuracy reshith is one of the most
important factors of the learning procedure.

On the other hand, the selected K-Means algorithm, perfayrthe sum, or not, of
the centroids distance per class and changing the PCA saalmeter seems to have less
influence in the final result. Usually the gain of changing ofithese parameters is resid-
ual, but that is not always the case, where the differencasdaracy can be high. The test
example in Figuré.4 shows some of these variations. In the example, the Configarat
1 and 2, and the Configuration 141 and 142, only differ in thégper sum value. While
the first case as a difference of 19%, the second case ongrgliffy 1%. The combi-
nation of several of these parameters can result in gretdtereshces, like in the case of
Configuration 52 and 53, that differ by 25%.

All this shows that FRBF is extremely flexible and allows therdedest many differ-
ent parameterizations in the search of the best model.

4.4 User Interface

Once the testing phase has been concluded the FRBF was readsat. The interac-
tion between the user and the FRBF is performed through a sediunctions. These
functions work as the user interface and can be used justhlgeother R function. If
exported they can be seen as an Application Programminddnge(API). The following

two sections describe these user interface functions aildet

441 FRBF

Thef r bf is the function responsible for the learning proceduremfilements the Stage
One and Stage Two of the Flexible Kernels Learning Procedsreetailed in the Algo-
rithms 2.1 and2.2 from the earlier Sectio.3.1 It also implements the algorithm im-
provements described in the Sect@b. As a result, thé r bf function returns a model,
an object of theRenor aMbdel S4 class as already described.

Thef r bf function has the following signature:

Chapter 4. FRBF Implementation 43

data_matrix: the training data, must be a matrix or a data frame;

number _clusters: the total number of clusters, may be adjusted during theutixectand
will be used by the K-Means algorithm, see #treeans R function in [p0];

classname: the name, or index, of the column that holds the class of @iaitrg data
matrix;

weighting_function: the name of the kernel function, if none is specified the Eeeln
function will be used, the allowed values for this parametan be seen in Table
4.4

scalevariance: specifies if the scale should be performed for the principatgonents
analysis, default is True, see theconp R function in B0;

s.value: the initial s value to use to find the kernels sigma value, the spread ptgame
adjustment, it has a default value of 0.2;

d: the initial d value to use to find the value, it will use the default value of 0.23 if no
value is specified;

epsilon: thee value for the functions that require it, if none is specifietbfault value of
0.01 will be used;

niter: the maximum number of iterations to perform to findf no value is provided, a
default will be calculated based on the number of training gaints;

niter_changes: the number of iterations without changes that can occuhjisfnumber
Is reached without any change, the iteration will stop, ivatue is specified 5 will
be used by default;

perform _sum: specifies if the sum of the centroids per cluster should bé&expr not,
default is True;

clustering_algorithm: specifies which of the K-Means algorithms should be used, if
none is specified, the default K-Means algorithm will be yssek thekneans
R function in BQ];

verbose: specifies the algorithm verbosity during the executionpthig is specified it
will be silent, the allowed values for this parameter cand&ensin Table4.5, and
finally it

Returns: the FRBF neural network model.

The R code implementation of tHe bf function can be seen in AppendB2. A
later section shows how this user interface function cansee u

Chapter 4. FRBF Implementation 44

Value Formula

(0) euclidean 1

(1) oneminus (1—=X)

(2) oneminussq (1 —)2

(3) mahalanobis 1/(A+¢)

(4) exponeminus exp(l — \)

(5) exponeminussq exp(l — \)?

(6) exponelog (1 —=log(A+¢))

(7) normalizeddifference (1 —\)/(1+)
(8) normalizeddifferencesq ((1— A)/(1+ \))?

Table 4.4:wei ght i ng_f unct i on parameter values, following Fa&oet al. [14].

no yes detail debug

Table 4.5: Acceptable values feer bose parameter.

4.4.2 Predict

Thepr edi ct function is responsible for the classification proceduteémplements the
Classification using the Flexible Kernels, as describederetirlier Sectio2.3.1 As pre-
vious stated, this function overloads the basiedi ct function for theRenor aMbdel
S4 object class. As aresult, theedi ct function acts just as the user expects, it receives
a model and the data to classify and returns a predictiontabewlassification.

Thepr edi ct function has the following signature:

object: remora model, obtained from the learning procedure;
data_matrix: the matrix, or data frame, containing the data to classifg; i&
Returns: prediction through an array containing the class of eaca plaint.

The R code implementation of tipe edi ct function can be seen in Appends4.
The next section shows how this user interface function eaunsied.

4.4.3 Usage

Having both functions available, its usage is quite easyalfsady referred, the model
can be saved for later usage, this is also exemplified in &usa.

Function frbf

First, the user must train the algorithm with a training dseé so that it can learn and
build the artificial neural network and return its model. §ts performed by calling the
fr bf function.

Chapter 4. FRBF Implementation 45

For instancepodel <- frbf(training.mtrix, class_name="class",
wei ghti ng_f uncti on="rmahal anobi s", nunber clusters = 7) builds a model
of 7 clusters by applying theahal anobi s kernel function over the training data matrix
trai ni ng_matri x. The model is returned and assigned torbeel variable. Figure
4.6 exemplifies this procedure combined with the classificatasik.

Function predict

After the RBF neural network model has been built, it will bedis® make predictions
about the class of new, unseen, data. This is performed byg#tepr edi ct function.

For instancegl assi fication <- predict(nodel, data.matrix) will apply
the modelhodel , learned from the application of the bf function, to classify the data
setdat a_mat ri x. Figured.6exemplifies this procedure combined with the learning task.

Object save and load

The model obtained from the training procedure can be sawethfter usage, or for
distribution. This is a very interesting feature that R pdes to its users. Using R basic
functionssave andl oad makes this task quite easy.

For instance, theave(nodel , file = "nodel . Rdata") function will save the
model object into therodel . Rdat a file, while thel oad(" nodel . Rdat a") function
will load the model object back from thendel . Rdat a file into the current workspace.
Figure4.6 exemplifies how the model can be saved for later usage attde#nining task
has been concluded.

4.5 R Packaging

The final stage of the FRBF implementation is its packaging istridution. Packaging
the FRBF includes its source code, the user documentation &asl script that is exe-
cuted for validation. As previously stated, this has bediredy performed under Linux,
but following Rossi in #4] allows anyone to set up a Windows system to accomplish this
task.

The packaging procedure is well documented in the R officagiudhentation $3],
and several easy to follow documents about this subjectvaikahble, such as the tutorials
from Gomez-Rubio 18] and Gentleman16].

The execution of this task involves several distinct stépthe creation of the package
structure for the FRBF, (ii) the inclusion of the help files tdatument the package, and
(i) the build of the distributable package file.

Chapter 4. FRBF Implementation 46

Load the training data froma file
training.matrix <- read.csv(file=
"/t hesi s/ dat aset s/ wdbc/ wdbc_train.csv’', header =TRUE)

Train the RFB network and get the resulting nodel
nodel <- frbf(training.matrix, class_name="cl ass",
wei ghti ng_functi on="nahal anobi s", nunber clusters = 7)

Save the nodel for |ater usage
save(nodel, file = "/thesis/nodel s/ wdbc_nodel . Rdat a")

Load the data to classify froma file
datamatrix <- read.csv(file=
"/t hesi s/ dat aset s/ wdbc/ wdbc_unknown. csv’, header =TRUE)

Predict the classification using the nodel
classification <- predict(nodel, data.matri x)

Show the cl assification
print(classification)

Figure 4.6: Example of the FRBF functions usage.

4.5.1 Package Structure

The first step of the packaging procedure is to gather thetimecthat will be packed
and build a structure, in a local directory, that provide biasis for the other upcoming
two steps. R has two ways to perform the packaging, (i) paekrtformation that is in
memory, and (ii) pack from a given set of files. The second@ggr has been used since
the first one seemed incompatible with the S4 object clasdetmsled in an upcoming
section. A small build script, detailed in Appendixl, was written specially for this pur-
pose. The packaging structure created by the executiomsagthpt is a set of directories
and files bellow thepackage nane> directory:

DESCRIPTION: the information description of the package, such as the reamnddi-
cense;

NAMESPACE: the list of functions and classes to export, meaning the thraswill be
visible to the user;

man/<package>-package.Rd: the package help file that documents the package;
man/<classname>-class.Rd: the classes help files, one per each class;

man/<function_name>.Rd: the functions help files, one per each function;

Chapter 4. FRBF Implementation a7

R/ the directory of the R source code, since the file list metisdoeing used it simply
copies the specified files into this directory;

4.5.2 Help Files

Once the structure has been created, it is time to documemattkage and its functions
through the creation of the correspondent help files.

The help files go under thean/ directory and are R documentation files, with the
. Rd extension, and are actually LaTeX files in its essence. Mrdio [37] describe the
technical side of these files for documentation purpose ami&mnan in17] introduces
how to document the functions by writing this user help files packaging purposes.
More generic documentation and books about writing LaTeX,both beginners and
advanced users, is quite easy to obtain32s30, 31] are examples of.

A special note about the section namednpl es in the. Rd files. It contains R code
that is used to show an example of the function usage. But thizde is also used in the
latter packaging step to validate that the user will havereecbrunning example. These
LaTeX files will be compiled to provide the documentation whke user requests the
help for the FRBF package functions.

Each time the packaging mechanism runs, it will overwrigedkisting files, so, once
created, the Rd files are kept in a safe place and will be copied intorthe/ directory
whenever the automatic packaging shell script is execuibd.packaging shell script is
available in AppendiE.2

4.5.3 Distribution File

The final step of the packaging mechanism is to create theldigon file. This is
achieved by compiling the information contained in the @agk structure and collect
it into a single tarball gziped file with thet ar . gz file extension.

The package must be validated before the distribution fikelmabuilt. This is per-
formed by theR CVMD check <package> system command. The R code provided in
the exanpl es section of the help files is executed to validate that the widéend up
with a correct running example. If the R code provided dodsemecute correctly, the
check command will not validate the package. This commaadtes a structure under
the<package nane>. Rcheck directory that contains information about this validation
like the check log file.

Finally, the distributable source package file can be bulis is done by running the
system comman@& CMVD bui | d <package>, that creates thepackage>.tar. gz
file for CRAN submission. A binary distribution for a specifiagfbrm can be created
through theR CVMD --bi nary --use-zip build <package>command. The main
differences from this two distribution packages come fromn fiact that the first does not

Chapter 4. FRBF Implementation 48

contain the files compiled, meaning they will be compileteiateither by the CRAN for
distribution or at install time in a system that has all theessary tools to make the build..

The FRBF has been built using thebf as the package name and the GNU LGPL as
the usage license, originating the creation offthef _1. 0. t ar. gz, where 1.0 indicates
the package version. The package has been submitted to the @&pliNitory and is
already available, allowing the scientific community to ddéead and explore it.

45.4 Problems Found

The packaging brought up some challenges of itself.

As previously stated, R has two ways to perform the packa@mack the informa-
tion that is in memory, and (ii) pack from a given set of filesheTiirst approach used
the packaging mechanism that gathers the information fiecurrent environment. It
issued some warnings but the installation package wasecte@he problem came when
trying to install the package, a critical error with litthleformation halted the installation.
This was a serious problem, since there was not much inf@mabout it. There were
many people complaining about this error, specially in trdeReloping groups, but only
a couple of hints to solve it that did not work. The investigatto understand the cause
of the problem and, consequently solve it, began. It tookestime to find what was
causing the problem. It was related with the S4 class ohjgassomehow seemed to be
unfriendly with this packaging method. So, the later pagkgghechanism had to be used
and a small build script, as detailed in AppenBipwas written specially for that purpose.
With this new mechanism in practice, all the packaging wagsiand installation errors
disappeared.

The creation of the help files using Latin characters wasaltdmllenge. The support
of a specific encoding is not always easy to perform, since Reefiles are specifically
processed and are not directly compiled by the usual LaTexgss. To overcame this, a
specific encoding command must be included in.tRd files, but unfortunately it did not
solved the problem. Hence, the solution was to replace tkia tharacters with standard
non-accentuated ASCII characters.

4.5.5 Installing and Uninstalling

The installation and removal of an R package is quite easyetar installing and unin-
stalling thef r bf package is straightforward.

The installation of the package can be performed throughytEm command CVD
I NSTALL frbf_1.0.tar.gz. This command will install the package in the current R
installation. Unless the package is already compiled, Rnekd to compile the package
before installing it. This means that the system must havihalrequired tools for this
task, as stated in the official documentati®3][The package can be loaded like any

Chapter 4. FRBF Implementation 49

other package though the usage of thér ary function. The deletion of the installed
package is done through the system commRrevD REMOVE f r bf .

A simpler way to perform this actions is to use the CRAN repogitihat already has
the FRBF package compiled for all the platforms. Using the lgicg R interfaces eases
the execution of this task. Once installed, thébf package can be immediately loaded
and its functions used.

Chapter 4. FRBF Implementation

50

Chapter 5

Conclusions

As stated in the introduction of this dissertation, the authias motivated by the oppor-
tunity to provide an easy way for the scientific community &&uhe FRBF approach
proposed by Andr Fal@oet al. in Flexible Kernels for RBF NetworK44]. Hence, the
main focus was set in providing an implementation of the FRBI# ¢buld be easily used
by everyone and integrated with, or within, a framework arctiparty applications. This
was also a great opportunity to perform some enhancemetfis twiginal algorithm such
as providing a wider range of parameterization.

This chapter concludes this dissertation and covers thie penformed, the scientific
contribution and the future work on FRBF.

5.1 Work Performed

The work performed to achieve the goals started by undetstgrthe FRBF algorithm
and identifying the enhancements that could be includekigrtew implementation.

After that, the selection of the platform for the new implenagion took place. The
R framework has been selected because of its great featuresn open and extensible
platform with a repository that allows an easy way to distiéthe new implementation
as an expansion package. It is also widely used for statistaftware development and
data analysis, making d@e factostandard among statisticians.

Once the platform has been selected, the implementatitplace. First of all, it was
necessary to learn R and define a set of development standaets the FRBF algorithm
development, and the identified improvements, took plager.ofiling and tuning process
was performed because of some execution inefficienciesatbig detected. There was
a set of tests, using distinct methods and data sets, thatexbthe development of the
algorithm and its accuracy in order to certify that it wasdye#or distribution.

After the FRBF algorithm has been developed, the next step evasite the user
documentation and build the distribution package.

51

Chapter 5. Conclusions 52

5.2 Release

As stated before, an implementation of the FRBF was developtiR framework and
distributed as an expansion package for the scientific camtyn his package is licensed
to the end user under LGPL, allowing anyone to make use of Ri#H-algorithm in a
wide range of usages and, eventually, improve it.

Delivering this FRBF improved implementation as an open saRexpansion pack-
age fully covers the goals of this work.

5.3 Future Work

As a future work some improvements can be made to the FRBF.

For instance, the performance could be improved. Devetpthis FRBF implemen-
tation in C, or C++, would certainly allow much faster compiatias, allowing an obvious
time reduction for the learning procedure.

A special attention was payed to the accuracy results, thetest where the author
was not entirely satisfied because of the R PCA calculatideréiices when compared
with the prototype implementation. A different spectratdeaposition to provide a better
accuracy would be much appreciated, since the accuragyftage identified that there is
space for improvement in this area.

Appendix A

Static Definitions

The definitions used in the implementation of FRBF are detail¢uke following sections.
This covers both the constants and the classes used on the cod

A.1 Constant Definition

The constants are used all over the implementation.

Renmora wei ghting functions avail abl e

Eucl i dean (default)
One M nus
One M nus Squar ed
Mahal anobi s
Exp One M nus
Exp One M nus Sq
Exp One Log
- Uni npl enent ed
Normal i zed Difference
Normal i zed Difference Sq
FUNCTI ON_REMORA EUCLI DEAN <- "eucl i dean"
FUNCTI ON_REMORA_ ONE_M NUS <- "one_mi nus"
FUNCTI ON_REMORA_ONE_M NUS_SQ <- "one_m nus_sq"
FUNCTI ON_REMORA MAHALANOBI S <- "mahal anobi s"
FUNCTI ON_REMORA _EXP_ONE_M NUS <- "exp_one_m nus"
FUNCTI ON_REMORA EXP_ONE_M NUS_SQ <- "exp_one_m nus_sq"
FUNCTI ON_REMORA _EXP_ONE LOG <- "exp_one_l og"
FUNCTI ON_REMORA NORMALI ZED DI FFERENCE <- "nornmal i zed_di fference"
FUNCTI ON_REMORA_NORMAL| ZED DI FFERENCE_SQ <-
"normal i zed _di fference_sq"
FUNCTI ONS_REMORA = c(FUNCTI ON_REMORA_EUCLI DEAN,
FUNCTI ON_REMORA_ONE_M NUS,
FUNCTI ON_REMORA_ ONE_M NUS_SQ,
FUNCTI ON_REMORA_NMAHALANCBI S,

HFHHFHHFHHFHEHFHEHH

O oOo~NOOUTh WNPEFO

53

Appendix A. Static Definitions 54

FUNCTI ON_REMORA _EXP_ONE_M NUS,

FUNCTI ON_REMORA_EXP_ONE_M NUS_SQ

FUNCTI ON_REMORA _EXP_ONE_LOG,

FUNCTI ON_REMORA_NORMAL| ZED DI FFERENCE,
FUNCTI ON_REMORA_NORMAL| ZED DI FFERENCE_SQ)

#

Ver bose

#

No verbose, means sil ent

VERBOSE_NO <- "no"

Display sone information

VERBOSE_VYES <- "yes"

Di splays detailed information

VERBOSE DETAIL <- "detail"

Di spl ays debug information

VERBOSE DEBUG <- "debug"

VERBOSE_OPTI ONS <- c¢(VERBOSE_NO VERBCOSE_YES,
VERBOSE_DETAI L, VERBOSE_DEBUG)

A.2 Class Definition

The S4 class definitions used in the FRBF implementation are presented bel@thht the class
name it actually declared as a constant, which have been covered lden®tain the previous
AppendixA.1 for easiness of understanding. This was a design option that allowsfessnce
errors and an easier way to identify a reference in the code.

Cl ass definitions.
S4 inpl enentation.

HHHFH

#

O ass distance definition.

#

CLASS REMORA DI STANCE <- "Renorabi st ance"

cl ass_di stance <- setC ass(CLASS REMORA DI STANCE,

representation(index = "nuneric", distance = "numeric",
className = "character", point = "list"),
prototype = list(index=nuneric(), distance=nuneric(),

cl assNanme=character (), point=list()))

#

C ass configuration definition.

#

CLASS REMORA CONFI GURATI ON <- "RenoraConfiguration”

class_configuration <- setd ass(CLASS_ REMORA CONFI GURATI ON,
representation(nunber_clusters = "nuneric",

Appendix A. Static Definitions

55

cl ass_nane = "character",
wei ghti ng_function="character",
clustering_al gorithm="character",
scal e_variance="logical", s="nuneric",
d="nuneric", epsilon = "nuneric",
niter="nuneric", niter_changes="nuneric",
perform sunme"l ogi cal", verbose="character"),
prototype = |ist(nunber_clusters=nuneric(),
cl ass_nane=character (),
wei ghti ng_function=character(),
clustering_al gorithmecharacter(),
scal e_vari ance=l ogi cal (), s=nuneric(),
d=nuneric(), epsilon=nuneric(),
niter=nuneric(), niter_changes=nuneric(),
perform sunel ogi cal (), verbose=character()))

#

O ass renora kernels

#

CLASS REMORA KERNELS <- "Renor aKer nel s"

cl ass_kernel s <- setd ass(CLASS REMORA KERNELS,

representation(class_nanme="character", eigen_values = "list",
ei gen_vector = "list", clusters = "nuneric",
cluster_points = "data.frane",
poi nts_per_cluster = "list",
centroids="matrix", size="nuneric"),

prototype = list(class_nane=character(), eigen_values=list(),

eigen_vector=list(), clusters = nuneric(),
cluster _points = data.frane(),

poi nts_per _cluster = list(),

centroids = matrix(), size = nuneric()))

#

C ass nodel definition.

#

CLASS REMORA MODEL <- " Renor aMbdel "

class_kernels <- setd ass(CLASS REMORA MODEL,
representati on(confi g=CLASS_REMORA_CONFI GURATI ON

nodel ="dat a. frane", | anmbda="Ilist",
kernel s="list"),
prototype = list(config=new CLASS REMORA CONFI GURATI ON),

nodel =dat a. frane(), |anbda=list(),
kernel s=list()))

Appendix A. Static Definitions

56

Appendix B
FRBF Code Sample

The FRBF is open source, thus all its code is available. Nevertheless $oneenaost interesting
FRBF implemented code is available in the sections that follow.

B.1 FindS

Thef i ndS function is one of the crucial functions in the FRBF algorithm. It is respdagiry
finding the best spreadvalues for each cluster and makes use ofi thiet S function to initialize
the s values.

#

Finds the s value for each cluster.

#

@aramtraining_matrix: training data matrix

@aram kernels: the kernels (found on stage one)

@aram nodel | anbda: the previously cal cul ated | anbda
function val ues

@aram config: the renora configuration

@eturn s parameter per cluster

#

findS <- function(training _matrix, kernels, nodel | anbda,
config) {

if (verbose.showbDetail (config@erbose)) {
cat ("\tFinding S values:\n")
flush. consol e()

}

nunber _points <- nrow(training nmatrix)
test_matrix <- as.nmatrix(getUnclassedMatri x(

training_matrix, config@lass_nane))
cl ass_nanmes <- names(kernels)

best kernels_ s <- list()
test _kernels_s <- list()
kernels_s up <- list()

kernel s_s_down <- list()

57

Appendix B. FRBF Code Sample 58

if necessary calculates the niter paraneter
if (config@iter < 0) {
config@iter <- round(nrow(training_matrix) = 0.05)
war ni ng("niter paraneter has been cal cul at ed,
value is ", config@iter)
}
if necessary adjusts the niter paraneter to a nininum val ue
if (config@iter < 10) {
config@iter <- 10
warning(’'niter was too low, it has been
redefined to ', config@iter)

}

initialize val ues

di stance_table <- buil dDi stanceTabl e(test_matrix, kernels,
nodel | anbda, config)

d <- config@

d start <- d # prototype uses 0.23

d end <- 0.01

iter <- 1
random i ndex = vector()
flat_index <- list()

structure is passed into a flat structure and

point cluster index is added

accuracy_nmatrix <- training _matrix

new cl uster_colum_index <- ncol (training matrix) + 1

for (classes in sanpl e(nanes(nodel | anbda))) {

for (lanmbda in sanple(c(1l:1ength(nodel | anbda[[cl asses]]))))
{
flatlndex <- getFlatlndex(classes, |anhda)
flat_index[flatlndex] <- flatlndex

poi nts_per_cluster <- kernels[[classes]] @oints_per_cl uster
for (ppc_idx in (c(l:length(points_per _cluster)))) {
ppc <- points_per_cluster[[ppc_idx]]
for (idx in ppc["point_index"]) {
accuracy_matrix[idx, new cluster_columm_index] <-ppc_idx;
}
}
}
}

nanmes(accuracy_matrix) <- c(names(training_matrix),
"cluster_index")
best _kernels_s <- initS(distance_table, kernels,
accuracy_matrix, config)
kernel s_s_up <- best_kernels_s
kernel s_s_down <- best _kernels_s
| ast _change <- config@iter_changes

Appendix B. FRBF Code Sample

best _hit <- 0

if (verbose.showDetail (config@erbose)) {
cat ("\t\t Maxi mum nunber of iteractions: ')
cat (config@iter)
cat("\n\t\tlteractions: ')
flush. consol e()

}

iter

tinme_start <- unclass(Sys.tinme())

while (last_change >= 0 & iter < config@iter) {
i f (verbose. showDebug(config@erbose)) {
cat ("\n\t\t#)

cat(iter)
cat(':\n")
fl ush. consol e()

}

time_start iter <- unclass(Sys.tinme())
iterate over random i ndexs
for (index in sanple(flat_index)) {
#
try s up
#
test _kernels_s <- best _kernels_s
kernel s_s_up[index] <- as.nureric(kernels_ s up[index])
* (1 +d)
test _kernels_s[index] <- kernels_s_ up[index]

get distances for new s up val ue
dst _up <- distances(distance_table, kernels,
test _kernels_s, config)

classification for the distances found
class_up <- buildd assification(dst_up, config)

accuracy for the distances
hit <- accuracy(accuracy_matrix, class_up, config,
FALSE)

if (hit > best_hit) {

new, better s value found

i f (verbose. showDebug(config@erbose)) {
cat ("\t\t\ts upper value)
cat (test_kernels_s[[index]])
cat(’ is better for ")
cat (i ndex)
cat(’ with hit of ")

Appendix B. FRBF Code Sample

60

cat (hit)
cat(’;\n")
fl ush. consol e()
}
best kernels_s[index] <- test_kernels_s[index]
best _hit <- hit
| ast _change <- config@iter_changes

}

#

try s down

#

test _kernels_s <- best_kernels_s

kernel s_s_down[i ndex] <- as.nuneric(kernels_s_down[index])

* (1 - d)
test _kernels_s[index] <- kernels_s_down[index]

get distances for new s up val ue
dst _down <- distances(distance_table, kernels,
test _kernels_s, config)

classification for the distances found
cl ass_down <- buil dd assification(dst_down, config)

accuracy for the distances
hit <- accuracy(accuracy_matrix, class_down, config,
FALSE)

if (hit > best _hit) {
new, better s value found
i f (verbose. showDebug(config@erbose)) {
cat ("\t\t\ts |lower value)
cat (test_kernels_s[[index]])
cat(’ is better for ")

cat (i ndex)

cat (" with hit of ")
cat(hit)

cat(’;\n")

fl ush. consol e()

}

best _kernels_s[index] <- test_kernels_s[index]
best _hit <- hit

| ast _change <- config@iter_changes

}
d <- d_start+iter/config@iter+(d_end-d_start);
if (d <d_end) {

cat ("\t\tunexpected d < d_end\n")

Appendix B. FRBF Code Sample 61

d <- d_end
}
| ast _change <- last_change - 1
iter <- iter + 1
time_end_ iter <- unclass(Sys.tinme())
i f (verbose. showDebug(confi g@erhbose)) {
cat (" \t\t#)
cat(iter-1)
cat(':)
cat(tine_end_iter - tinme_start_iter)
cat (' seconds\n’)
fl ush. consol e()

}
}

time_end <- unclass(Sys.tine())

if (verbose.showbDetail (config@erbose)) {
iter tine <- tinme_end - tine_start

cat(’\n’)

cat (" \t Nunber of iteractions perfornmed: ')

cat(iter-1)

cat('\n")

cat("\tTime spent:)

cat (iter_tine/60)

cat(’ mnutes.\n")

cat(’\tAverage tine per iteraction: ")
cat(iter_tinel/iter)

cat(’ seconds.\n")

cat (' \tFinal sigma values:\n)
print(best kernel s_s)

flush. consol e()

}

best kernels_s

}

B.2 FRBF

The learning procedure of the FRBF algorithm is encapsulated ihrtbé function. This func-
tion is the learning procedure algorithm entry point for the user. It retdine model, in a
Renor aMbdel class, as describe in Append2, which will be used by ther edi ct function
described in the Appendig.4.

#

Renora nodel function

The | earning procedure of the frbf algorithm

#

@aramdata_nmatrix: the data to use to train the algorithm

@ar am

verbose: specifies the algorithmverbosity during it’s

execution (runtine inplenmentation specific
par anet er)

@ eturn nodel

Appendix B. FRBF Code Sample 62
@aram nunber _clusters: is the nunber of clusters to use in
the training part

@aramclass_nane: is the nane, or index, of the training

data matrix class col um

@aram wei ghting function: is the nanme of the weighting

function to use in the classification process

@aram scal e_variance: specifies if the scale should be

performed for the principal conponents analysis,

default is True (@ee prconp)

@arams_value: is the initial s value to use to find the

kernel sigma val ue

@aramd: is the initial d value to use to find the s value
@aramepsilon: is the epsilon value for function, only for
functions that require it

@aramniter: is the maxi mum nunber of iterations to perform
to find s, if no value is provided, a default wll
be cal cul ated based on the nunber of training data
poi nts

@aramniter_changes: is the nunber of iteration wthout

changes that can occur, if the nunber of

ni ter _changes is reached w thout any change, the

iteration will stop, a default value will be used
if none is specified

@aram performsum specifies if the sumof the centroids

per cluster should be applied, or not

@aramclustering algorithm specifies which of the k-neans
al gorithm should be used, if none specified, the

default k-means algorithmw Il be used (@ee kneans)
#

#

#

#

#

#

f

train

rbf <- function(data_matrix, nunber_clusters, class_nane,

wei ghti ng_function = FUNCTI ON_REMORA EUCLI DEAN
scal e_vari ance=TRUE, s _value = 0.2, d = 0. 23,
epsilon = 0.01, niter=-1, niter_changes=5,
performsum = TRUE, clustering_algorithm="",
ver bose=VERBOSE_NO {

if (verbose.show verbose)) {

cat (’

Model phase...\n")

fl ush. consol e()

}

config

<- renoraConfiguration(nunber_clusters, class_nane,
wei ghting_function, scale_variance, s_value,

epsilon, niter, niter_changes, performsum
clustering algorithm verbose)

Appendix B. FRBF Code Sample 63

nodel <- renora.nodel (data_matrix, config)
nodel

B.3 GetPCA

The get PCA function performs the spectral decomposition usinggheonp function. This
allows an easy way to get the eigenvectors and the eigenvalues.

Finds the Principal Conponents recurring to PCA

@aram kernels is the kernels
@aramconfig is the configuration
@eturn principal conponent analysis

H O HHHHH

get PCA <- function(kernels, config) {
if (verbose.showDetail (config@erbose)) {
cat('\tPerform ng PCAs...\n")
flush. consol e()

}

pca_result <- list()

iterates for clusters/kernels
for (cluster_nane in nanmes(kernels)) {

get cluster specific information

k <- kernel s[[cluster_nane]]

poi nts_per _cluster <- k@oints_per_cluster

for (cluster_id in c(l:1ength(points_per_cluster))) {
cluster_points <- points_per_cluster[[cluster_id]]

pca <- prconp(cluster_points]
c(2:length(cluster_points))],
scal e. = config@cal e_vari ance)
stddev <- pca$sdev
rotation <- pca$rotation

k@i gen_val ues[cluster _id] <- list(stddev)
k@i gen_vector[cluster _id] <- list(rotation)
}
pca result[cluster_nane] <- k
}
pca_result

Appendix B. FRBF Code Sample 64

B.4 Predict

Thepr edi ct . Renor aModel funcion overloads ther edi ct function to support the trained
model contained in th&nor aMbdel class, defined in Appendi&.2 and built by thef r bf
function of AppendixB.2.

This function is the FRBF classification stage entry point for the user.céives the model
and classifieq,e. predicts, to which class each of the given data points belong to.

#

Renora predict function.

#

@aram object: renora nodel, obtained from
the | earning procedure

@aramdata_matrix: the data to classify

@eturn prediction

#

@ee frhbf

#

predi ct. Renor aMbdel <- function(object, data matrix, ...) {

nodel <- object

classify
if (verbose.show nodel @onfi g@erbose)) {
cat (' C assification phase...\n")
flush. consol e()
}
data_matrix <- as.matrix(getUncl assedMatri x(data_matri x,
nodel @onfi g@l ass_nane))
i f (verbose. showDebug(nodel @onfi g@erbose)) {
classification <- renora.predict(nodel, data matrix)
} else {
classification <- renora.classify(nodel, data_matri x)

}

classification

Appendix C

Tests

The FRBF implementation in R has been subjected to several tests. The testebawautomated
through R scripting, thus allowing its execution and validation without humaistasse. The
following function exemplifies one of the scripted tests. When called, régggdf argument set

or not, it will make use of thevdbcdata set and iterate through all the kernel functions available,
all the K-Means algorithms available and will still test the PCA scaling factortk@dum, or not,

of the centroids per class. Overall, it will perform 144 tests. During its@tten, the configuration
used, the accuracy and the time spent for training and classificatiordpiresewill be printed.

Bl ack box test.

Uses the WDBC data and iterates over

all the kernel functions,

all the K-Means al gorithns,

the PCA scaling factor true and fal se val ues, and
the performsumtrue and fal se val ues.

@aram clusters: the nunber of clusters to use
@esult returns the average accuracy for all iterations

HFHHFHHFHHFHHEHHE

test _frbf_wdbc <- function(clusters = 4) {
cat('\nPerformng full tests on frbf using wdbc.’)

test data file <- "wdbc.csv"
classify data file <- "wdbc-for-classification.csv"

cat("\n\tUsing test data",test _data file)
nrx <- read.csv(fil e=paste(
"d:/ nmestrado/thesi s/ R dat aset s/ wdbc/ ',
test_data_file, sep=""), header=TRUE)
nrx <- getUnclassedMatrix(ntrx, "ID")
cat ("\n\tUsing classification data",classify data file)
classify <- read.csv(fil e=past¢e(
"d: / mestrado/ t hesi s/ R/ dat aset s/ wdbc/ ",
classify data file, sep=""), header=TRUE)
classify <- getUncl assedMWatrix(classify, "ID")

65

Appendix C. Tests 66

matri x_cl ass_nanme <- "Di agnhosi s"
total accuracy <- O
iterations <- O
cat('\n\nBase configuration:’,clusters,
"clusters, no verbosity.\n")
for (fn in FUNCTI ONS_REMORA) {
for (cain c("Hartigan-Wng", "Lloyd", "Forgy", "MacQueen")) {
for (sv in c(TRUE, FALSE)) {
for (psumin ¢c(TRUE, FALSE)) {

iterations <- iterations + 1
cat (" \nConfiguration [")
cat(iterations)

cat(']: function is)

cat (fn)

cat(’, algorithmis ")

cat (ca)

cat(', scale variance is ")
cat (sv)

cat(', performsumis ')
cat (psun)

cat(’.)

flush. consol e()

time_startm <- unclass(Sys.tinme())

nodel <- frbf(ntrx, weighting function=fn
clustering_algorithm= ca,
niter = nromntrx)/12,
cl ass_nane=matri x_cl ass_nane,
nunber clusters = clusters,
scal e_variance = sv,
performsum = psum
ver bose=VERBCOSE_NO)

ti me_endm <- unclass(Sys.tine())

TRAI N ACCURACY
train_prediction <- predict(nodel, ntrx)

CLASSI FI CATI ON

time_startp <- unclass(Sys.tinme())
classification <- predict(nmodel, classify)
time_endp <- unclass(Sys.tinme())

accuracy <- getAccuracy(classify, nmatrix_class_nane,
classification)
total _accuracy <- total _accuracy + accuracy

cat (" \ nAccuracy [’)
cat(iterations)

Appendix C. Tests

cat(']:)
cat (accuracy)
cat ('\nTrain ")
showAccuracy(ntrx, matrix_class _nanme, train_prediction
FALSE)
cat (' \ nModel [7)
cat(iterations)
cat(']:)
cat((tinme_endm - tinme_startm/60)
cat (' mnutes.’)
cat('\nPrediction [)
cat (i terations)
cat(']:)
cat ((tinme_endp - tinme_startp)/60)
cat (' mnutes.\n")
flush. consol e()
}
}
}
}

(total _accuracy / iterations)

}

Appendix C. Tests

68

Appendix D

Documentation

The documentation of FRBF is provided through R documentation help filéshvaine LaTeX
files in its essence, that are packed in the distribution package.

Once the distribution package has been installed, they can be invokedthusimgl p com-
mand, or its shortcu?<f unct i on>. Thus, executing the help command in the R console for a
FRBF package item, will bring up the correspondent help documentati@follbwing example
is from a development version of tipe edi ct . Renor aMbdel function.

\ narme{ pr edi ct . Renor aMbdel }

\al i as{ predi ct. Renor aMbdel }

\title{ Predict Cassification }

\ descri pti on{

The predict. RenmoraMdel funcion overl oads the predict function
to support the trained nodel contained in the

\code{\ i nk[frbf: Renmor aModel - cl ass] { Renor aMbdel }} cl ass.

This function receives the nodel, a data matrix to classify, and

classifies, i.e. predicts, to which class each of the given data
poi nts bel ong to.

}

\ usage{

predi ct. Renor aModel (obj ect, data matrix, ...)

}

% maybe al so 'usage’ for other objects docunented here.
\ ar gunrent s{
\item{object}{ the
\ code{\li nk[frbf: Renmor aModel - cl ass] { nodel }},
obtained fromthe | earning procedure
(see \code{\link[frbf:frbf]{frbf}}) }
\iten{data_matrix}{ the data to classify }
\iten{...}{ additional argunments affecting the predictions
produced }
}
\detail s{
The \code{data_matri x} can be a \code{rmatrix} or
\ code{dat a. frane}.
It can have the class colum if it has the sane nane, or
i ndex, as the training matrix used in

69

Appendix D. Documentation 70

\code{\link[frbf:frbf]{frbf}}).
In such case it will be automatically ignored, otherw se the
class columm cannot be present in the data set.

}

\val ue{
The result is a prediction |list containing the class nane
of each data point. The position of the data point in result
is the same as the position in the matrix given for
classification.

}

\references{Andre O Fal cao, Thibault Langlois and
Andreas W chert (2006) \enph{Fl exible kernels for RBF
net wor ks}. Jornal of Neurocomputing, volunme 69, pp 2356-2359.
El sevier. }

\'aut hor{ Fernando Martins and Andre Fal cao }

% note{ }

\seeal so{ \code{\link[frbf:frbf]{frbf}}

\ code{\li nk[frbf: RenorahMbodel - cl ass] { Renor aMbdel }}

}

\ exanpl es{

infert data is conposed by 248 points and will be split

data(infert)

the training matrix will be use the first 100 points

training_matrix <- infert[c(1:100) ,]

the matrix to classify will use all the other points

classification_matrix <- infert[c(101:248) ,]

create the node
nodel <- frbf(training _matrix, class_nanme = "education",
nunber _clusters = 10, scal e_variance = FALSE)

predict
classification <- predict(nodel, classification_matrix)

the classification points for the |ast

print(classification)

}

% Add one or nore standard keywords, see file 'KEYWORDS in the
% R docunentation directory.

\keyword{ classif }% ONLY ONE__ keyword per |ine

Appendix E
Packaging

The implementation of the FRBF algorithm required a set of scripts in orderilthibautomati-
cally. The following R scripts are used to pack the algorithm.

E.1 R Packaging Script

The packaging procedure is actually quite simple. All that is required tdectba packaging
structure is to call thpackage. skel et on function with thef r bf as the package name and
the file list that contains the FRBF code implementation. This is precisely whadlibeiihg R
script does. This script, saved on a file nan@edack_r enor a. r, is used by the shell script
shown in Appendi.2

*

Packagi ng Scri pt

H*

Version 1, Septenber 2009

Fer nando Martins

fp. martins@mail . com

http://ww. vil ma-fernando. net/fernando

HoH O HHFH

cat (' Packing Renora...\n")

file Ist <- character(5)

file Ist[1] <- '/home/fmmthesis/R src/1l classes.r’
file Ist[2] < '"/honme/fmithesis/R src/2 comon.r’
file Ist[3] <- '/home/fmmthesis/R src/3 nodel.r’
file Ist[4] <- "/hone/fmmthesis/ R src/4 predict.r’
file Ist[5] <- "/home/fmmthesis/R/ src/5 main.r’

package. skel eton(nane = "frbf", force = TRUE,
nanespace = TRUE, code files = file_lst)

cat (' \nDone.\n")

71

Appendix E. Packaging 72

E.2 Shell Packaging Script

To automate the entire packaging procedure, the following shell scriptrgased. It guarantees
that there is no previous packaging files nor directories, runs the Rigenckscript from Appendix
E.1, complements the packaging structure with the specific FRBF documentatiofidiie#\p-
pendixD, validates the package and, finally, buildstaar . gz file ready for CRAN submission.
CRAN will then validated it and, if approved, compile it to all the available systenaking it
available for distribution.

#!/ bi n/ sh

rmfrbf _*.tar.gz

rm-Rf frbf/

rm-Rf frbf.Rcheck/

R -f 0_pack_renora.r
rm-Rf frbf/man/*. Rd

rm frbf/ Read- and- del et e- ne
cp ../pack files/* frbf/.
cp ../pack _files/man/+ frbf/man/.
R CMD check frbf

R CVD bui |l d frbf

Appendix E. Packaging

74

Abreviations

ANSI American National Standards Institute

API Application Programming Interface

APL A Programming Language

ASCIl American Standard Code for Information Interchange
BOP Bayes Optimal Classifier

CPU Central Processor Unit

CRAN Comprehensive R Archive Network

Csv Comma Separated Values

EM Expectation Maximization algorithm

FAQ Frequently Asked Questions
FRBF Flexible RBF Network

GB Giga Byte

GHz Giga Hertz

GNU GNU's Not Unix

GUI Graphical User Interface

IDE Integrated Development Environment
LGPL Lesser General Public License

MB Mega Byte

NN Neural Network

OOP Object Oriented Paradigm

PCA Principal Component Analysis

RAM Random Access Memory
RBF Radial Basis Function

SVD Standard Value Decomposition
SVN Subversion

75

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]
[8]

[9]
[10]

[11]

[12]
[13]

[14]

[15]

[16]

S. Albrecht, J. Busch, M. Kloppenburg, F. Metze, and P. Tav&eneralized radial ba-
sis function networks for classification and novelty detection: self-dzgéion of optimal
bayesian decisiorNeural Networks13(10):1075-1093, 2000.

Richard A. Becker, John M. Chambers, and Allan R. Wilkee new S language: a program-
ming environment for data analysis and graphidé&adsworth and Brooks/Cole Advanced
Books & Software, Monterey, CA, USA, 1988.

Chris Bishop. Improving the generalization properties of radial basistion neural net-
works. Neural Computation3(4):579-588, 1991.

M. C. Bishop. Neural Networks for Pattern RecognitiorClarendon Press, Oxford, UK,
1995.

D. Broomhead and D. Lowe. Multivariate functional interpolation addative networks.
Complex System2:321-355, 1988.

Martin D. Buhmann. Radial Basis Functions: Theory and Implementatior@ambridge
University Press, 2003.

John M. ChambersStatistical Models in SCRC Press, Inc., Boca Raton, FL, USA, 1991.

John M. ChambersProgramming with Data: A Guide to the S Langua@pringer-Verlag
New York, Inc., Secaucus, NJ, USA, 1998.

CollabNet and Tigris. Subversion. http://subversion.tigris.org/, 2009.
Microsoft Corp. Windows xp. http://www.microsoft.com/windows/windews, 2009.

T. Cover and P. Hart. Nearest neighbor pattern classificatieBE Transactions on Infor-
mation Theory13:21-27, 1967.

Ingo H. de Boer. Winshell. http://www.winshell.org/, 2009.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihoodrfrmcomplete data
via the em algorithmJournal of the Royal Statistical Socie89(1):1-38, 1977.

André O. Fal@o, Thibault Langlois, and Andreas Wichert. Flexible kernels for RBF ne
works. Neurocomputing69:2356—2359, 2006.

J. Faria, P. Grosjean, and E Jelihovschi. Tinn-R - GUI/Editor ftariguage and environment
statistical computing. http://sourceforge.net/projects/tinn-r, 2008.

Robert Gentleman. An introduction to the R package mechanism, 2002.

77

Bibliography 78

[17] Robert Gentleman. R Functions: Writing, Using and Documenting, 2002
[18] Virgilio Gomez-Rubio. Introduction to the R packaging system, 2008.

[19] Paul Halmos. What does the spectral theorem say&fherical Mathematical Month]y
70(3):241-247, 1963.

[20] Jiawei Han and Micheline Kambebata Mining Concepts and Techniquedorgan Kauf-
mann, 2006.

[21] David Hand, Heikki Mannila, and Padhraic SmytRrinciples of Data Mining The MIT
Press, 2001.

[22] Eric Hartman, James D. Keeler, and Jacek M. Kowalski. Layerathhaetworks with gaus-
sian hidden units as universal approximatioNsural Computation2(2):210-215, 1990.

[23] Trevor Hastie, Robert Tibshirani, and Jerome FriednmEme Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer, 2001.

[24] Simon Haykin.Neural Networks: A Comprehensive Foundati®mentice Hall, Upper Sad-
dle River, NJ, 1999.

[25] Kurt Hornik. The R FAQ, 2009.

[26] Young-Sup Hwang and Sung-Yang Bang. An efficient method testract a radial basis
function neural network classifieNeural Networks10(9):1495-1503, 1997.

[27] R. Ihaka and R. Gentleman. R: A language for data analysis amhigea Journal of
Computational and Graphical Statistics(3):299-314, 1996.

[28] Software in the Public Interest Inc. Debian. http://www.debian.ord’920

[29] Norbert Jankowski. Approximation and classification with rbf-tygeimal networks using
flexible local and semi-local transfer functiondth Conference on Neural Networks and
Their Applicationspages 77-82, 1999.

[30] Helmut Kopka and Patric DalyA guide to LaTeX: Document preparation for begginers and
advanced usersAddison-Wesley Professional, 1999.

[31] Helmut Kopka and Patric DalyGuide to LaTeXAddison-Wesley Professional, 2003.

[32] Leslie Lamport. LaTeX: A document preparation systemddison-Wesley Professional,
1994.

[33] Canonical Ltd. Kubuntu. http://www.kubuntu.org/, 2009.

[34] James MacQueen. Some methods for classification and analysis of matéwbservations.
Proceedings of 5th Berkeley Symposium on Mathematical Statistics abd#lity, pages
281-297, 1967.

[35] K. Mardia, J. Kent, and J. BibbyMultivariate Analysis Academic Press, 2000.
[36] Tom M. Michell. Machine Learning McGraw-Hill, 1997.
[37] Duncan Murdoch. Parsing Rd files, 2009.

[38] Fionn Murtagh and Andr Heck.Multivariate Data AnalysisKluwer Academic, 1987.

Bibliography 79

[39] openDesktop.org. Ksvn. http://sourceforge.net/projects/ksvn.20

[40] J. Park and I. W. Sandberg. Universal approximation usin@ka@sis-function networks.
Neural Computation3(2):246—257, 1991.

[41] J. D. Powell. Radial basis functions for multivariable interpolation: a reviewlarendon
Press, New York, NY, USA, 1987.

[42] J. D. Powell. Radial basis function approximations to polynomidlaimerical analysis
1987 pages 223-241, 1988.

[43] RoDuSa. JGR - Java GUI for R. http://jgr.markushelbig.org/, 2009.
[44] Peter Rossi. Making R packages under Windows: A tutorial, 2006.

[45] Stuart Russell and Peter Norvigrtificial Intelligence: A Modern ApproachPrentice Hall,
Upper Saddle River, NJ, 2003.

[46] Christian Schenk. Miktex. http://miktex.org/, 2009.

[47] D. Shi, D. Yeung, and J. Gao. Sensitivity analysis applied to thetaari®n of radial basis
function networks Neural Networks7(18):951-957, 2005.

[48] Artifex Software. Ghostscript. http://pages.cs.wisc.edu/"ghost/, 2009.

[49] Kate Development Team and Others. Kate. http://kate-editor.org/, 2009

[50] R Development Core Team. R: A language and environment for statistmputing, 2009.
[51] R Development Core Team. R Internals, 2009.

[52] R Development Core Team. R Language Definition, 2009.

[53] R Development Core Team. Writing R Extensions, 2009.

[54] The Inkscape Team. Inkscape. http://www.inkscape.org/, 2009.

[55] Tigris. Tortoisesvn. http://tortoisesvn.tigris.org/svn/tortoisesvn/, 2009.

[56] Luis Torgo.A Linguagem R: Programa@p para Aralise Escolar Editora, 2009.

[57] Wikipedia. Gaussian functions. http://en.wikipedia.com/wiki/Gaussigation, 2009.

[58] lan Witten and Frank Eibédata Mining: Practical Machine Learning Tools and Techniques
Morgan Kaufmann, 2005.

[59] Paul V. Yee and Simon HaykinRegularized Radial Basis Function Networks: Theory and
Applications John Wiley, 2001.

[60] Zarita Zainuddin and Ong Pauline. Function approximation using artifieiaral networks.
WSEAS Trans. Math7(6):333-338, 2008.

Index

Accuracy,14, 15, 17, 19, 32, 4042, 51, 52 Distribution package3, 21-28, 31, 4549,
Accuracy test38, 40, 41, 52 51,52
) Documentation28, 46, 47
BUIld, 28, 45, 46, 48, 51 Pack.3. 27. 28 45-48
Classificationd, 3-6, 10, 11, 14, 15, 17, 19, 21, Fredict17,31, 35 44,45
31, 34, 35, 38, 40, 41, 44, 45 Function,35, 44, 45
Bayes Optimal Classifiet0, 11 Neural network1, 5-8, 10, 11, 15-17, 21,
Cluster,32, 34, 35, 40, 42, 43, 45 T
Clustering2, 31, 32 Tests,1, 2, 5, 8, 13-15, 17-19, 23, 28, 36, 38,
K-Means,8, 13, 17, 32, 34, 35, 42, 43 40-42, 45,51, 52

Train, 10, 17, 33, 34, 41, 42, 44, 45

Decomposition -
Training datag, 8, 10, 11, 13, 14, 35, 41,
Principal Component Analysid6, 19, 32, 43944
41, 42,52 '

Singular Value Decompositio®, 32
Spectral decompositiod2, 14, 16, 19, 31,
35,40, 52
Documentation3, 23, 27-30, 45, 47, 51
Help files,45-48
R documentation28, 45, 48

Eigenvalue 12, 14, 32, 40
Eigenvector]12, 14, 32,40

FRBF
Function,34, 35, 42-45, 61, 71
Package48, 49

Gaussianl, 6, 7, 9, 11-13, 40
Broad,9, 13, 40
Spiky, 9, 13

Learn,1, 3, 5, 6, 10, 13-15, 17-19, 29, 31, 34
38, 41, 42, 44, 45

Mahalanobis13, 41, 42
Model, 3, 4, 6,10-13, 17, 18, 31, 33-37, 41-45

Neural Network,1-3, 5-8, 10, 11, 17, 21, 43,
44

Package

81

	Figure List
	Table List
	Algorithm List
	Introduction
	Motivation
	Goals
	Contribution

	Flexible Kernels for RBF Networks
	Radial Basis Functions
	Radial Basis Functions Neural Networks
	Neural Architecture
	Radial Basis Function Network Training
	Classification with Radial Basis Function Network

	Flexible Kernels for RBF Neural Networks
	Flexible Kernels

	Proof of Concept Prototype
	Improvements

	R
	What is R?
	R Language
	R Workspace
	Comprehensive R Archive Network
	R Development
	Objects
	Function Overloading
	Application Programming Interface
	Debug
	Why R?

	FRBF Implementation
	Development Environment
	R Development Environment
	Documentation Development Environment
	Packaging Development Environment

	Implementation
	Development
	Functions and Operators Used
	Model
	Print
	Learning
	Prediction
	Tuning
	Problems Found

	Tests
	Execution Behaviors Observed
	Results

	User Interface
	FRBF
	Predict
	Usage

	R Packaging
	Package Structure
	Help Files
	Distribution File
	Problems Found
	Installing and Uninstalling

	Conclusions
	Work Performed
	Release
	Future Work

	Static Definitions
	Constant Definition
	Class Definition

	FRBF Code Sample
	Find S
	FRBF
	Get PCA
	Predict

	Tests
	Documentation
	Packaging
	R Packaging Script
	Shell Packaging Script

	Abbreviations
	Bibliography
	Index

