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Resumo

Está a ser desenvolvido, na unidade de investigação LabMAg, o projecto “Aut-

oFocus: Adaptive Self-Improving Multi-Agent Systems”, no qual o presente tra-

balho de mestrado se enquadra. O projecto AutoFocus tem como objectivo a im-

plementação de sistemas multi-agente baseados em entidades autonómicas capazes

de comportamentos auto-optimizados e adaptativos.

A noção de computação autonómica, tal como outras noções que também im-

plicam computação pró-activa, baseia-se em entidades autónomas que agem activa-

mente no sentido de alcançar os seus objectivos e que têm a capacidade de se adaptar

dinamicamente a mudanças no seu ambiente, restringidas por limites de tempo e de

recursos. Na abordagem do projecto AutoFocus essa adaptação à mudança, assim

como a regulação das capacidades dos agentes, é resultante da combinação de as-

pectos cognitivos com aspectos de base emocional. O modelo de agente subjacente

ao projecto AutoFocus é o Modelo de Agente de Fluxo.

A tarefa a que correspondeu este projecto de mestrado, consistiu em desenvolver

uma plataforma de implementação para o Modelo de Agente de Fluxo. Pretendeu-

se com esta plataforma disponibilizar uma ferramenta que permita a rápida imple-

mentação de agentes baseados neste modelo bem como a sua monitorização.

O trabalho desenvolvido consistiu na análise e desenho, orientado a objectos,

implementação e teste dos componentes desta plataforma.

PALAVRAS-CHAVE:

inteligência artificial, agentes inteligentes, modelo cognitivo, modelo de emoção,

plataforma de experimentação
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Abstract

The work presented in this document is part of the project “AutoFocus: Adaptive

Self-Improving Multi-Agent Systems” that is being developed at the research unit

LabMAg, which objective is the implementation of multi-agent systems based on

autonomous entities capable of self-optimized and adaptive behaviors.

The notion of autonomic computation, like other notions that also imply pro-

active computation, is based on autonomous entities that actively work to achieve

their objectives and have the ability to dynamically adjust to changes in their en-

vironment, constrained by time and resource limits. In the approach used by the

AutoFocus project, that adaptation to change and the regulation of the agent’s ca-

pabilities, result from the combination of cognitive aspects with emotional based

aspects. The agent model defined and used by the AutoFocus project is the Agent

Flow Model.

The task that corresponded to the work presented in this document was to

develop a platform for the Agent Flow Model. It was intended, with this platform,

to provide a tool that enables the rapid deployment and monitoring of agents based

on this model.

The developed work consisted in the analysis and design, oriented to objects,

implementation and testing of components of this platform.

KEYWORDS:

artificial intelligence, intelligent agents, cognitive model, emotion model,

experimentation platform
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Chapter 1

Introduction

This initial chapter presents the objectives of this project in the context of the

AutoFocus project and briefly describes the organization of this document.

1.1 Context

The AutoFocus project main goal is to develop an agent model and architecture

capable of:

(i) creating the necessary support for real time adaptation an learning, according

to the agent’s experience;

(ii) regulating the agent’s internal processes, according to its resources and time

constraints.

For these purposes the Agent Flow Model was developed by Prof. Lúıs Morgado

and introduced in his PhD thesis[6] and several published articles (e.g.[7][8]), co-

authored by Prof. Graça Gaspar.

In the Agent Flow Model the regulation of the agent’s internal processes is

achieved through emotion based mechanisms. These mechanisms regulate the amount

of time and resources used by the agent’s cognitive processes and the formation of

internal memories.

1.2 Objectives

Although several Agent Flow Model prototypes already exist, the key features that

compose this model, namely the cognitive structure and the base mechanisms,

have been specifically implemented for each prototype according to the problem

addressed, thus not representing a general solution.

This project was idealized to integrate the knowledge gathered from those pro-

totypes and to provide a general reusable implementation of the key features of the

1



Chapter 1. Introduction 2

Agent Flow Model. More specifically, to build a computational library to serve as a

tool for the rapid deployment and monitoring of agents based in this model.

1.3 Document Organization

This document is organized as follows:

• Chapter 2 briefly describes the Agent Flow Model supporting theories: the

conceptual spaces and the emotion model used.

• Chapter 3 introduces the Agent Flow Model architecture general view and

the decomposition of this model in three main constituents: the cognitive

structure, the base mechanisms and the cognitive processes.

• Chapter 4 describes the work done in designing and implementing the Auto-

Focus platform:

– Section 4.1 presents the project objectives in more detail and the planning

and methodology used;

– Section 4.2 describes the general platform conception and how it was

divided into three subsystems: Agent, Environment and AutoFocusGlue;

– Section 4.3 presents the AutoFocus domain model;

– Section 4.4 explains, in detail, the interactions between the Agent, Envi-

ronment and AutoFocusGlue systems;

– Section 4.5 introduces the agent class model and the base mechanisms

algorithm;

– Section 4.6 presents the Experiment Program as a general tool to control

the AutoFocus platform execution;

– Section 4.7 presents the prototype implemented to test the platform, the

Tileworld agent, and the results obtained.

• Chapter 5 presents the conclusion and the future work related to the AutoFo-

cus platform.



Chapter 2

Supporting Theories

This chapter briefly introduces the main notions upon which the agent flow model

and architecture was defined.

2.1 Conceptual Spaces

The cognitive sciences have two objectives: the explanation of the cognitive activity

through theories and the construction of artifacts that can accomplish those activi-

ties. Artificial Intelligence focuses mostly in the last one and for that purpose, there

are two main approaches to represent cognition from a computational point of view,

the symbolic approach and the associationist approach.

The symbolic approach consists, essentially, in symbol manipulation according to

explicit rules, while the associationist approach focuses on the associations among

different kinds of information elements to represent cognition. Though both ap-

proaches have their advantages and disadvantages, neither can perform reasonably

well the task of concept learning, which is closely tied to the notion of similarity,

central to a large number of cognitive processes.

To overcome these difficulties Gärdenfors[4] purposes another form of represen-

tation, the conceptual representation, based on geometrical structures, where simi-

larity relations can be modeled in a natural way.

Quality Dimension

The key notion of this new representation is that of quality dimension, whose role is

to build up the domains needed for representing concepts. Some examples of quality

dimensions are temperature, weight or the three ordinary spatial dimensions height,

width and depth. The main function of these dimensions is to represent various

“qualities” of objects. For example, one can judge tones by their pitch, for which

our perception recognizes an ordering from “low” to “high” tones.

The dimensions form the framework used to assign properties to objects and to

3
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specify relations among them. The coordinates of a point within a conceptual space

represent particular values on each dimension, for example, a particular temperature,

a particular height, and so forth. It is assumed that each of the quality dimensions

is equipped with certain geometrical structures, like an ordering or a metric. For

example the dimension weight, illustrated in figure 2.1[4], is a positive continuous

ordered dimension.

Figure 2.1: The weight dimension.

Certain quality dimensions are integral in the sense that one cannot assign an

object a value on one dimension without giving it a value on the other. Dimensions

that are not integral are considered separable.

A domain is a set of integral dimensions that are separable from all other di-

mensions. The main reason for decomposing a cognitive structure into domains is

the assumption that an object can be assigned certain properties independently of

other properties.

Conceptual Space

A conceptual space is defined as a collection of one or more domains. A point in

space will represent an object or concept depending on the context in which they

are used. While an object refers to a particular artifact, a concept is an idea that

characterizes a set, or category, of objects.

It is possible to take a particular perspective of a concept by giving some domains

particular attention. This is accomplished by assigning different weights to different

domains.

A property is defined with the aid of a single dimension or domain. The main

idea is that a property corresponds to a region (subspace) of the conceptual space.

In contrast, a concept may be based on several separable subspaces. Properties form

a special case of concepts.

Conceptual spaces are static in the sense that they only describe the structure

of representations. This notion of conceptual spaces, as defined by Gärdenfors[4],

served as inspiration for the definition of the conceptual structure of the Agent Flow

Model, defined by Lúıs Morgado in his PhD thesis[6], that is the background for the

work presented here.
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2.2 The Emotion Model

The subjective nature of emotions makes them difficult to characterize, so an expla-

nation is in order of what exactly are we talking about and of the context in which

the term emotion is used in this work.

In the following, I will not attempt to present the different perspectives of emo-

tion that exist today but rather I only intend to introduce the ideas behind the

emotion model upon which the Agent Flow Model was defined.

Cognition

From a classic perspective, emotion requires a minimum level of cognition, which

presupposes a brain structure that only some living beings, like humans and other

mammals, have. However, if we consider the perspective defended by Maturana and

Varela[5], cognition can be defined as the “effective action of a living being in its

environment”. This means that cognition is a common property shared by all living

organisms and can be seen in the organisms capacity to execute actions that allow

them to strive, by adapting to their environments ever changing conditions. In this

perspective, simple organisms, like a bacteria or a plant, are capable of cognition

and action.

Biologic Systems and Autopoiese

One of the main characteristics of the living beings is their capacity to continually

recreate themselves. For example, in complex organisms, tissues and organs substi-

tute their own cells in continual cycles, maintaining, at the same time, their integrity

as a whole. This capacity of dynamic self-creation is designated as autopoiese by

Maturana e Varela[5].

In a autopoietic system each component participates in the creation or transfor-

mation of other components of the system, in a network of interdependence, allowing

the system to continuously create itself.

This process begins with the differentiation of the body in relation to the sur-

rounding environment through a dividing structure, such as the cell membrane. It’s

this membrane that allows the internal organization of the body, which in turn

generates it. So, we are not dealing with two separated processes, but rather two

distinct aspects of the same phenomenon. The interruption of any of the processes

would lead to the end the organism[5].

Therefore there is a cyclical relationship of feedback in autopoetic systems, where

each component affects the other which, in turn, affects the former. A central feature

of the feedback cycles is the ability to self-regulate, either by maintaining a stable

internal environment, or by the generation of actions of the system, allowing the
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continuous viability of the global body.

Auto-regulation and Motivation

With the differentiation between the interior and exterior of the body, through the

mechanisms of self-regulation, all variables that define the inner state are indepen-

dent of the ones that define the exterior. This means that autopoetic systems are

autonomous in nature, which translates to pro-active behaviors, motivated by their

self-regulating processes. These behaviors arise from the need to control and main-

tain the organism integrity.

To this end, the mechanisms of self-regulation regularly monitor the environment,

comparing the values observed with benchmarks, triggering the necessary steps to

reduce the difference observed. This difference represents the motivation of the

organism.

The thermodynamic paradox

The fact that living beings are able to create and maintain an organized structure,

away from equilibrium with the environment, is in apparent opposition to the second

law of thermodynamics, according to which, in a closed system, the entropy can only

increase. This means that the nature tends to homogenization, i.e. change occurs

naturally from order to chaos. Instead, living beings have the ability to create order

from chaos, which goes precisely in the opposite direction.

One solution to this problem introduces the concept of dissipative structure.

This structure would be an open system through which energy and matter flows

along and where the internally generated entropy would be sent out of the system

to ensure its continuity. For example, plants and animals absorb energy and matter

of low entropy, in the form of light or food, and export matter of high entropy in

the form of waste.

Agent as a dissipative structure

The notion of dissipative structure was chosen by Lúıs Morgado[6] as the appropriate

support for modeling an agent that incorporates all three basic characteristic of

biological systems described above: autopoiesis, self-regulation and motivation.

Based on the concept of dissipative structure, an agent is characterized by a set

of internal potentials {p1, p2, ..., pm} and a set of flows {f1, f2, ..., fm}, as depicted in

figure 2.2 taken from [6].

The internal potentials define the internal structure of the agent, varying ac-

cording to the internal activity, which in turn is governed by the maintenance of a

specific internal organization of those same potentials.
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Figure 2.2: Agent as a dissipative structure.

Motivation formation

The maintenance of a viable structure, despite variations in the environment, means

that the internal potentials are kept within viability limits.

It is the act of maintaining the internal potentials within these limits, by pro-

cesses of self-regulation, which is considered the primary source of motivation of the

agent. The viability limits may be implied by structural restrictions, or set explic-

itly, in the form of potential regulators, and therefore explicitly influence the agents

motivation and behavior.

The motivations can be distinguished in built-in motivations, embedded into the

agent during its design and implementation, and acquired motivations, resulting

from the default motivations and the interaction of the agent with the environment,

forming a hierarchy, with the built-in motivations at the base[6].

It is the satisfaction of those motivations that produces the forces that direct the

activity of the agent, which in turn will lead to the emergence of new motivations,

in a process of self-regulation typical of autopoietic systems.

Achieving Motivations

In order for the motivations to be fulfilled the agent must have the ability to produce

the required change, either internally or externally. Inspired by the classic definition

of thermodynamics, where energy is the ability to produce work, in the Agent Flow

Model, the ability to produce change is seen as being expressed in the form of energy

flows or being accumulated in the form of potential energy, which tends to produce

such flows. This potential energy translates in the potential capacity of an agent to

achieve its motivations.

The ability to produce change can be described, generally, by a potential P,

designated achievement potential. In turn, when acting on the environment, the
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agent may find more or less resistance to the change that it is trying to achieve.

That resistance is called the achievement conductance C.

In a dissipative structure the achievement potential can be seen as a force and

the achievement conductance as a transport property. Applying an achievement

potential P on an achievement conductance C, results in a flow F, called achievement

flow, illustrated in figure 2.3 taken from [6].

Figure 2.3: The relationship between agent and environment.

The Origin of Emotion

The achievement potential and flow represent, respectively, the motivational driving

forces underlying the behavior of the agent and the relationship between agent and

environment.

When the achievement potential is high, it means that the agent is capable of

producing the change needed to achieve its motivations. On the other hand, if the

achievement potential is low, the agent lacks that capacity.

The achievement flow expresses how the completion of the agent’s motivations

is evolving. If there is a favorable evolution of the completion of the agent’s motiva-

tions, we will say the flow is converging, otherwise we will say the flow is diverging.

Looking at both the potentials and flows, we can identify four basic patterns of

evolution of the agents situation:

• When the potential is high and the flow is convergent we have a favorable

situation;

• When the potential is high and the flow is divergent we have a adverse situa-

tion;

• When the potential is low and the flow is divergent we have a situation of

danger;
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• When the potential is low and the flow convergent we have a situation of

despondency.

These situations do not represent discrete states, but patterns of change involv-

ing both the dynamics of change and the agent’s consequent behavior. This behavior

is also determined by the nature of the agents, but should consist of some action in

compliance with their motivations.

Making the bridge to the biological world, if we consider the four possible situ-

ations, we can identify in the living beings typical behaviors associated with each

one of the situations.

• A favorable situation is associated with behaviors like approaching and enjoy-

ing;

• An adverse situation is associated with behaviors like mobilization and reac-

tion;

• A situation of danger is associated with behaviors like self-protection and

departure;

• A situation of despondency is associated with behaviors like inaction and re-

covery.

Comparing the four situations and types of behavior described above with the

description featuring four basic emotions, by Ekman and Davidson[2], we get the

correspondence visible on figure 2.4 taken from [6].

Figure 2.4: The relationship between patterns of achievement potential and flow
and basic emotions.

In this perspective, it is the whole formed by the expression of the motivational

dynamics, actions and the subjective perception resulting therefrom, which may be

characterized as emotion, illustrated in figure 2.5 taken from [6]. Thus, the emotional

phenomena do not correspond to any type of mild cognitive representation. It’s the

dynamic evolution of the structure of an agent, and its relation with the environment

that cause the perception of emotional patterns.
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Figure 2.5: Emergence of emotion.

Emotional Dynamics

After discussing the origin of emotion we need to describe it in a concise and objective

way to use it in a computational model.

The achievement potential and flow, from which emotion arises, vary in time,

according to the agent behavior and its relation with the environment. These vari-

ations can be formally expressed by the achievement potential temporal variation

(δP ) and the achievement flow temporal variation (δF ), respectively:

δP =
dP

dt
and δF =

dF

dt
(2.1)

They are at the same time supplementary and mutually influential. This inte-

grated dimensions are expressed through a vectorial function designated emotional

disposition (ED).

ED ≡ (δP, δF ) (2.2)

While the emotional disposition function changes through time we can observe

that for a specific time t = τ , an emotional disposition vector is characterized by

a quality, defined by the vector orientation and an intensity, defined by the vector

size.

quality(ED) ≡ arg(ED) (2.3)

intensity(ED) ≡ |ED| (2.4)
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Figure 2.6: Emotional disposition vector.

So the notion of emotional disposition is composed by two distinct properties:

• quality : equivalent to the emotion character or pattern, as in figure 2.4 taken

from [6].

• intensity : the emotion intensity or strength

From an emotional perspective it’s possible to establish a correspondence be-

tween each quadrant of the two dimensional space δP × δF and the emotional

patterns previously described. For example, in quadrant Q-I (δP > 0 and δF > 0)

the achievement flow is convergent with the agents motivations and the positive

achievement potential reflects a favorable evolution of the agents situation, what

can be translated to the emotional pattern of Joy (see figure 2.7) taken from [6].

These emotional tendencies, associated to each quadrant, are only subjective

indications of the essential nature of each quadrant since the quality of an emotional

disposition is a continuous value.

It is important to note that the notion of emotional disposition does not con-

stitute a direct analogy to the notion of emotion. Instead it’s an action inducing

mechanism in the same sense as a predisposition or readiness for action[3].
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Figure 2.7: Relationship between the two dimensional space quadrants and the
emotional disposition quality.



Chapter 3

The Agent Flow Model

The Agent Flow Model agent architecture, developed by Prof. Morgado[6], and de-

picted in figure 3.1, is composed by three main type of constituents: the cognitive

structure, the base mechanisms and the cognitive processes (perception, assimila-

tion, reasoning, decision and action).

Figure 3.1: The Agent Flow Model architecture.

This is a general view of the architecture and it is not required that all aspects are

present in every agent. For example, Reasoning and Decision processes will probably

be absent in reactive agents. The same can be said for some of the base mechanisms.

The main features of this agent model are the central usage of the cognitive structure

to store and organize all the information maintained by the agent and how that

information is used by the base mechanisms to obtain emotional dispositions and to

regulate the cognitive processes.

13
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3.1 The Cognitive Structure

Under the proposed model, the cognitive structure is composed by all the internal

elements involved in the agents cognitive activity. These elements are modeled as a

composition of internal potentials.

Cognitive Elements

The agent’s potentials result from the interaction between the agent and the en-

vironment, and from the agents own internal activity. In any case, they express

aspects, of the internal and external environment, that correspond to the quality

dimensions (Gärdenfors[4]) that the agent is able to discriminate and understand.

Since these potentials form the cognitive structure of the agent, namely in the form

of memories, they are called cognitive potentials.

The cognitive potentials are a composition of two types of signals[6]:

(i) a qualitative signal ϕ(t), that identifies the discriminated dimension;

(ii) a quantitative signal ρ(t), corresponding to the value of the discriminated

dimension.

At a certain time t, a cognitive potential p can be represented by:

p(t) = ρ(t)ϕ(t) (3.1)

Through the aggregation of different cognitive potentials, differentiated by their

corresponding dimension i, we get a cognitive element σ(t), represented by:

σ(t) =
K∑
i=1

pi(t) (3.2)

where K is the number of aggregated cognitive potentials.

We can see in figure 3.2, taken from [6], an illustration of the formation of

cognitive elements, in the perception context. We can identify three main activities

involved on the agent perception:

• detection: where the outside signals, which may come in different forms, de-

pending on the nature of the agent, are picked up by the agent;

• discrimination: in which sensory channels discriminate the different qualities

of the signals, creating the respective cognitive potentials;
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Figure 3.2: Formation of cognitive elements from the agent perception.

• coding : in which the cognitive elements are generated by manipulation and

aggregation of the cognitive potentials previously created.

In this case the cognitive element, generated by the perception, is an observa-

tion and it has a very specific role in the agents model. But the same cognitive

element can have a different role, depending on the context in which it is created or

manipulated. The cognitive elements can play three main roles. They can be:

• observations : the direct result of the perception processes, representing the

environment situation observed by the agent;

• motivators : cognitive elements that represent the situations that the agent

is trying to achieve, acting as driving forces of the agent behavior, like the

motivations;

• mediators : cognitive elements that are the resources that support the action,

forming an interface between the internal cognitive processing and the concrete

action, as illustrated in figure 3.3 taken from [6].

While the observations are the result of the perception activity, motivators and

mediators are produced internally, as a result of cognitive activity, or explicitly

embedded in the cognitive structure of the agent due to design options or structural

restrictions.



Chapter 3. The Agent Flow Model 16

Figure 3.3: Mediators as an interface for concrete action.

Cognitive Activity Periods

In the proposed model, the activity of the cognitive processes occurs during periods

of cognitive activity. It is during these periods that the cognitive potentials are

generated and interact, producing new cognitive elements, which are considered

stable after an initial phase of transition between periods of cognitive activity, as

illustrated in figure 3.4.

Figure 3.4: Cognitive activity periods evolution along time.

These periods determine the minimum time unit discriminated by the agent. The

duration of those periods is inherently not null and result from the agents subjective

time characterization into discrete moments tn with n ∈ N.

During the stable zone of a cognitive activity period, the characteristics of the

existing cognitive elements remain unchanged, although new cognitive elements may

be generated. Thus the cognitive elements are seen as localized in time, with an

inherently transient existence, unless they are made persistent by assimilation or

learning processes, for example, in the form of memories.
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Cognitive Space

The cognitive structure allows the agent to keep an internal state that reflects the

evolution of the interaction, between agent and environment, over time, named

cognitive space.

A cognitive space CSK is characterized by a set of K base orthonormal vectors,

with K ∈ N, corresponding to quality dimensions, here named cognitive dimensions.

In the cognitive space, cognitive elements can be represented as points. Since

the cognitive elements can be localized in time, t = τ , a cognitive element σ(t) is

represented in the cognitive space CSK as a vector σ, defined as:

σ = (ρ1, ρ2, ..., ρK) (3.3)

The topology of a cognitive space is characterized by a metric d that defines the

distance between two cognitive elements, σ1 and σ2:

d(σ1, σ2) ≡ ‖σ1 − σ2‖ with ‖σ‖ =
√
〈σ, σ〉 (3.4)

where ‖x‖ represents the norm of vector x and 〈x, y〉 represents the scalar product

between vectors x and y.

To allow the differentiation between different cognitive elements, we will assign

unique identifiers to each cognitive element. For example, an agent capable of pro-

ducing observations from two sensors, a right sensor (RI) and a left sensor (LE), is

characterized by two cognitive elements: σRI and σLE. Since the cognitive elements

represent different locations in the cognitive structure, σRI and σLE can also be

recognized by their positions.

We should note that the cognitive elements are transient. What this means

is that a cognitive element is formed, plays its role in the cognitive activity for a

certain period of time, and disappears. If, later on, another cognitive element takes

shape in the same location earlier, it is considered a distinct cognitive element. In

this sense, the cognitive elements are also located in time. For clarity of notation,

this temporal location is implied throughout this report, unless explicitly indicated

otherwise.

The concepts presented here are essential because they allow an easy formal

way to calculate distances between cognitive elements, corresponding to the level of

similarity between those elements. From that distance, we can then calculate, over

time, the speed and acceleration between cognitive elements, allowing, for example,

to know whether the agent is approaching or departing from its motivations. It

is from these dynamics that the emotional phenomena will emerge, following the

emotion model presented.
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3.1.1 From movement in the cognitive space to emotional
dispositions

As the agent interacts with the environment, its cognitive elements will change

accordingly, and those changes can be seen as trajectories in the cognitive space.

As we have seen, the behavior of an agent is driven by the relationship between

the agents motivations and the perception of its current situation, expressed by

motivators and observations.

The cognitive activity of the agent is therefore guided by maximizing the flow of

achievement that leads to the reduction of the distance between motivators and ob-

servations. This process can be described based on the movement that motivators

and observations draw in the cognitive space, where the motivators and observa-

tions, at a given moment, correspond to specific positions, and the mediators define

directions of movement, as illustrated in the figure 3.5 taken from [6].

Figure 3.5: The role of a mediator, defining a direction of movement of an observa-
tion as the agent acts to try to attain a motivator.

In figure 3.5.b we can see several adjustments to the trajectory of the observation.

These could be the result of new behaviors or planning steps, but the forces that

led to those changes result from the motivations of the agent and the perception

of the evolution of the agent situation in its environment. In the cognitive space

these dynamics are expressed by the movement of a observation (obs) in relation to

a motivator (mot), depicted in figure 3.6 taken from [6].

The notions of achievement potential and flow are represented, in the cognitive

space, by the notions of distance and velocity, because they express the evolution

of the motivational achievement of the agent. So, the emotional dispositions (ED)

are defined by the evolution of the distance s = d(σobs, σmot) and by the velocity

v = ds/dt of the movement of σobs toward σmot:

ED = (δs, δv) where δs = −ds
dt

and δv =
dv

dt
(3.5)
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Figure 3.6: Movement of an observation toward a motivator in the cognitive space.

3.2 The Base Mechanisms

After understanding the cognitive structure and how information is represented

we will introduce the mechanisms that actually support the creation of emotional

dispositions and their use, the base mechanisms.

The base mechanisms, using the cognitive structure, provide basic support to

the cognitive activity, regulating and synchronizing the cognitive processes.

3.2.1 Emotional Disposition Mechanism

This mechanism calculates the evolution of the situation between two cognitive

elements, a motivator and an observation, producing two types of signals:

• the emotional disposition cognitive potentials, ps and pv, that form the emo-

tional disposition vector ED = (ps, pv);

• and the affective signals, λ+ and λ−, that correspond to the affective property

and positive and negative value of an emotional disposition.

The cognitive potentials ps and pv belong to two specific cognitive dimensions

that, together, represent the emotional disposition space, illustrated in figure 3.7

taken from [6]. Since the emotional disposition is an essential part of the archi-

tecture, these two cognitive dimensions are considered implicit to all AutoFocus

agents.

Considering the values of the emotional cognitive potentials, they express the

base emotional dynamics presented by δs and δv. We can see in figure 3.7 the

emotional disposition vector and how it fits in the emotional patterns previously

characterized. For example, when both emotional potentials are positive that repre-

sents a positive evolution and concretization perspectives for the agent that can be
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Figure 3.7: The emotional disposition space and an emotional disposition vector.

matched in the emotional pattern of Joy, first quadrant of the emotional disposition

space.

In this space, the most extreme possible emotional dispositions are represented

by the reference vectors Λ+ = (1, 1) and Λ− = (−1,−1), also visible in figure 3.7.

It’s the projection of the emotional disposition vector on one of those vectors that

provides the associated affective values λ ∈ R:

λ+ =

{
proj(ED,Λ+) , if proj(ED,Λ+) > 0
0 , otherwise

(3.6)

λ− =

{
proj(ED,Λ−) , if proj(ED,Λ−) > 0
0 , otherwise

(3.7)

where proj(x, y) represents the orthogonal projection of the vector x on the

vector y.

The emotional disposition mechanism is the first of the base mechanisms, since

the emotional potentials and affective values will serve as input for the other mech-

anisms.

3.2.2 Regulation Mechanisms

Since the agent time and resources are finite and the need to take action more or

less urgent, it will have to confine its cognitive activity. In the proposed model,

these two focusing perspectives, of time and resources, are addressed by two base

mechanisms, the attention focus and the temporal focus mechanisms. Both of them

dependent of the notion of emotional disposition previously described.

The attention focus restricts the accessibility of cognitive processes to the cog-

nitive structure in order to limit the number of cognitive elements available for

processing. This way, without altering the cognitive processes it is possible to press

the agent for a quicker response by limiting its input.
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The temporal focus works through the generation of an indication of the urgency

of the response, restricting the time available for the generation of that response.

An observation and a motivator along with cognitive potentials, ps and pv, that

constitute the associated emotional disposition are integrated to form a more com-

plex cognitive element, σDE. These integrated elements are then presented to the

attention focus mechanism that will decide which ones will be ultimately presented

to the cognitive processes.

Attention Focus Mechanism

This mechanism acts like a depletion barrier producing an attention field formed by

the integrated elements that are able to cross that barrier. The cognitive processes

only have access to the elements in the attention field. Figure 3.8, taken from [6],

illustrates this mechanism in action.

Figure 3.8: Attention focus mechanism.

The depletion barrier is characterized by its intensity and permeability. The

depletion intensity ε, is regulated by the affective values λ+ and λ−, in a way that

it can express the cumulative effect of those values:

dε

dt
= α+λ+ + α−λ− (3.8)

where α+ and α+ are sensibility coefficients that determine the influence of the

affective values, λ+ and λ− respectively.

The permeability µ, determines the intensity εσ of the interaction of the inte-

grated cognitive element σ with the depletion barrier;

εσ = µsp
σ
s + µvp

σ
v (3.9)
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where µs and µv are permeability coefficients that determine the influence of the

emotional potentials pσs and pσv of the element σ. If the interaction intensity εσ is

greater than the depletion barrier intensity ε (εσ > ε), then the integrated cognitive

element σ is included in the attention field.

Temporal Focus Mechanism

The temporal focus mechanism regulates the rate of the cognitive activity. The

temporal base corresponds to a signal pφ with a frequency ωφ which can be used to

determine the cognitive activity period.

The regulation of the frequency ωφ is determined by the affective values λ+ and

λ− using the following equation:

dωφ
dt

= β+λ+ + β−λ− (3.10)

where β+ and β− are sensibility coefficients that determine the influence of the

affective values, λ+ and λ− respectively.

The variable length of the cognitive activity periods, according to the reference

time signal pφ, allows an indirect regulation of the type and scope of the processing

performed. For example, the perception process can be more detailed or compre-

hensive depending on the time available for it.

The division of the time available for each cognitive process is relegated to agent

designer. It is not a responsibility of this mechanism.

3.2.3 The Base Mechanisms operational view

An operational view of the presented base mechanisms is illustrated in figure 3.9,

adapted from [7].

Figure 3.9: Operational view of the presented base mechanisms.

The cognitive elements, an observation and an motivator, are submitted by the

emotional disposition mechanism which calculates the corresponding emotional dis-

position and affective values. These results are integrated along with the initial
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cognitive elements to form an integrated cognitive element. After the integration,

this element is submitted to the attention focusing mechanism where it’s interaction

with the attention barrier will be calculated. If that interaction is greater than the

attention barrier value, the element is introduced into the attention field.

Meanwhile the affective values are used by the attention focusing mechanism

to update the attention field barrier and by the temporal focusing mechanism to

update the activity period length.

In the end, only the significant cognitive elements will be presented to the cogni-

tive processes which will have a limited time to compute them in order to calculate

the agent’s next action.

3.3 The Cognitive Processes

The cognitive processes, as shown in figure 3.1, Perception, Assimilation, Reasoning,

Decision and Action, represent generic processes, which may involve several specific

processes organized into different levels of detail. There are no restrictions on the

form of their implementation inherent to this agent model. What they have in

common is the access to the same information, through the attention field, and the

possibility to interact with the base mechanisms.



Chapter 4

Design and Implementation of the
AutoFocus Platform

This chapter describes the objectives, the decisions and the implementation of the

AutoFocus platform as a Java library.

4.1 Objectives, Planning and Methodology

This project had two main objectives: to clarify some aspects of the Agent Flow

Model and to provide the necessary tools to facilitate the development of agents

with this architecture.

Although the theory of the Agent Flow Model had been developed, as it was pre-

sented in the previous chapter, it had only been implemented and tested for specific

cases. Until the beginning of this project several prototypes existed, but both the

cognitive structure and the base mechanisms had been specifically implemented for

each one according to the problem addressed. Those prototypes were implemented

in the C language, with more emphasis in efficiency than in generality.

So, this project was idealized to integrate the knowledge gathered from each

prototype and to provide a general reusable implementation of both the cognitive

structure and the base mechanisms, the key features of the Agent Flow Model.

This implementation, as determined in the project specification, would take the

form of a Java library.

Planning

Given the complexity of the agent model and the uncertainty that still existed about

certain aspects, it was decided to adopt a iterative approach to the development

effort, dividing it into two main iterations.

In the first iteration the base mechanisms including the regulation mechanisms

24
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were to be implemented as well as prototypes to test them. The second iteration

would then be devoted to develop extensions to those base mechanisms to allow the

implementation of the memory mechanisms and prototypes with memory formation.

It was decided that the first iteration should be concluded in mid-March and the

second iteration in early July, as depicted in figure 4.1.

Figure 4.1: The planning presented in the preliminary report.

Actually the planning has not been completely fulfilled and the second iteration

was relegated to future work. This happened for two reasons. First, the complete

design and implementation of the base mechanisms took longer than expected. Sec-

ond, a lot of effort was put in the development of a stable platform to test the

prototypes. This last task was not planed but it was considered to be an important

part of the AutoFocus platform.

Some initial work was done for the second iteration, for example on the domain

model, which will be presented in this report, although it was not implemented.

Methodology

The methodology adopted was to have weekly meetings, with the supervising pro-

fessors, Prof. Graça Gaspar and Prof. Lúıs Morgado, to discuss the concepts of the

model and define the domain model and the general conception of the platform. In

each meeting the work done so far was presented and evaluated. When the design

and implementation phases started, the meetings frequency was reduced to fort-

nightly and focused more on configuration options and the experimentation aspects

of the AutoFocus platform.
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There was an effort to follow the unified modeling process during the design and

implementation of this platform.
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4.2 General Platform Conception

Using the Rl-Glue[9] as source of inspiration, it was decided to divide the platform

into three subsystems: the Agent, the Environment and the AutoFocusGlue.

The Rl-Glue is a standard for connecting reinforcement learning agents and en-

vironments.

In theory, the RL-Glue is a protocol consisting of standard functions to facilitate

the exchange and comparison of agents and environments without limiting their

abilities. As software, RL-Glue is functionally a test harness to “plug in” agents,

environments and experiment programs without having to continually rewrite the

connecting code for these pieces.

Using this approach in the Agent Flow Platform architecture lead to the creation

of the AutoFocusGlue.

The AutoFocusGlue

The AutoFocusGlue was introduced to control the communication between the agent

and the environment. The objective was to facilitate the decoupling between agents

and environments, so that different agents could be easily tested with different en-

vironments and vice-versa.

It also allows the execution of the agent and environment systems at different

rates of activation.

The Agent System

The Agent system is composed by the cognitive structure, the base mechanisms and

the cognitive processes, following the architecture of the Agent Flow Model (figure

3.1).

However there are some important differences. The perception and action pro-

cesses were relegated to the environment system implying that the agent system is

liberated from the responsibility of transforming sensory input into cognitive ele-

ments or transforming action mediators into the actual physical execution of that

action on the environment.

What this means is that the perception, along with all it’s steps, is done by the

environment which transmits the appropriate observation cognitive elements to the

agent.

Using the same perspective, after the agent computes what will be it’s next ac-

tion, it sends the corresponding cognitive elements to the environment which then

makes the necessary changes to the environment and agent states.
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So the agent system can best be described as the “mental” side of the agent,

while it’s “physical” characteristics exist and are manipulated by the environment

system.

The Environment System

The environment system is responsible for maintaining the environment and agent

physical states. The environment is also responsible to provide the agent with a

cognitive space specification powerful enough for the agent to interact with the

environment.

When queried about it’s current state the environment must perform the trans-

duction and manipulation, inherent to the perception, necessary to provide the

agent with an observation that corresponds to the agent’s view of the environment.

That observation must be in accordance to the defined cognitive space, the reality

perceptible by the agent. When it is requested for the environment to execute an

agent’s action, it must transform the action into the proper agent and environment

modifications.
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4.3 Domain Model

The agent domain model is presented in figure 4.2, followed by a description of every

entity.

Figure 4.2: The AutoFocus agent domain model.

Agent

This is the main entity of the Agent system, representing the Agent. It has a state

that will be used to ensure a proper functioning of the system. The agent mainly

associated to a cognitive space since it determines the agent’s view of the reality.
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CognitiveSpace

This entity represents the cognitive space, which is composed by one or more cog-

nitive dimensions.

CognitiveDimension

A cognitive dimension is characterized by it’s type and range of values and it’s role

in the cognitive space.

The dimension’s type and range restrict the acceptable values. For example, a

cognitive dimension could accept only integers from 0 to 10. It is also possible to

have user defined value types as long as those values are ordered and a function is

defined that can calculate the distance between any two of those values.

The role of the cognitive dimension was introduced to facilitate the discrimination

between the cognitive dimensions that compose the observations from those that

compose the mediators.

CognitivePotential

The cognitive potentials are defined by a quality and an intensity. Each cognitive

potential belongs to a specific cognitive dimension. That relation restricts the po-

tential quality value to the type and range of the cognitive dimension. The intensity,

on the other hand, is always a real number in the interval [0, 1].

CognitiveElement

The cognitive element is composed either by a set of one or more cognitive potentials

or by a set of one or more cognitive elements, in which case it is called a composed

cognitive element.

Since cognitive elements evolve with time, each cognitive element has a link,

ancestor, which indicates its predecessor, i.e. the cognitive element corresponding

to itself in the immediately preceding moment of time. This connection is necessary

to establish the trajectory of a cognitive element in the cognitive space.

The cognitive elements can be classified by their role in the cognitive structure:

observation, motivator, mediator and emotional disposition. The emotional dispo-

sition can be considered a cognitive element since it is composed by two cognitive

potentials, according to the emotional model used in this project.

IntegratedCognitiveElement

The instances of this entity will be created by the emotional disposition mechanism

and are composed by an observation, a motivator and the emotional disposition that

results from their interaction.
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AttentionField

It represents the set of integrated cognitive elements that are available to the cog-

nitive processes.

TimeReferencedCognitiveElement

It is an integrated cognitive element that can be referenced in time.

TimeReference

Represents a time reference used by the agent.

Memory

It consists of the integrated cognitive elements, referenced in time, that were mem-

orized by the agent.
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4.4 The Agent, Environment and AutoFocusGlue

Systems

As it was previously presented, the AutoFocus platform is composed by three sys-

tems: the Agent, the Environment and the AutoFocusGlue, illustrated in figure 4.3.

The main objective for this architectural decision was to provide a flexible platform,

facilitating the running of sets of experiments.

Figure 4.3: The three systems that compose the AutoFocus platform.

With a general communication interface between the three systems it is possible

to test the same agent with different parameters, to study it’s performance, or to test

different agents with the same environment and vice-versa. To achieve this, both

the Agent and the Environment have several specific functions which will provide a

well established interface. These will be presented in the rest of this section.

Note that the Agent and Environment functions should, ideally, only be called by

the AutoFocusGlue, and not directly, if one wants to use AutoFocusGlue to control

experiments and obtain and treat experimentation results.

I will first present the available functions of the Agent and Environment systems

and after that the AutoFocusGlue functions and how it communicates with the

Agent and Environment to ensure a proper execution of the platform.

4.4.1 The Agent System

The agent has four possible states: created, initiated, active and suspended. These

states and their sequence are depicted in figure 4.4.

The agent interface is composed by three main functions: init (initialization),

start and step.

init(agentInit, css, distFunction)

• agentInit - The agent’s initialization parameters.

• css - The cognitive space specification.

• distFunction - The distance algorithm associated to the cognitive space.

This function is used to initiate or re-initiate the agent. The agent’s parameters

are reset to their initial values and the cognitive space is built, or rebuilt, according

to the cognitive space specification. This implies that all existing cognitive elements
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are erased. The agents distance algorithm, which calculates the distance between

cognitive elements, is set according to the parameter distFunction.

The base mechanisms are also initiated, and their parameters reset to their initial

values.

The agent system state is set to initiated.

Figure 4.4: The Agent system states.

start(agentConfig, agentExec, goal, goalFunction)

• agentConfig - Agent configuration parameters.

• agentExec - Agent execution parameters.

• goal - The initial agent goal (motivator).

• goalFunction - The goal function.

This function can only be called when the agent system is in the initiated state.

The agent’s configuration and execution parameters are set, as well as the agent’s

initial motivator and goal function. The configuration parameters are related to the

base mechanisms variables, and will be presented in the next section. The execution

parameters where introduced to allow the agent’s designer to set context specific

values. The goal function is only necessary when the agent’s built-in motivation

cannot be expressed by a static motivator. This is will be explained ahead, in the

messages definition section.

The agent system turns to the active state.
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step(envState) - action, timeTaken

• envState - The current environment state.

This function can only be called when the agent system is in the active state.

This is the main function of the agent computation. It takes the current envi-

ronment state, in the form of an observation, and computes the next action. What

exactly are the individual steps and mechanisms used, will be described in detail in

the next section.

It returns the action and the time taken to compute it. The time taken is the

subjective time that the agent took to compute the action. This time is constrained

by the temporal focus configuration parameters, that set its maximum value. But

the time taken can also be less than that specified limit and that is why it is returned

by the step function.

If the action returned is “END”, signaling that all motivations have been achieved,

the agent state changes to suspended, if not, it continues active.

4.4.2 The Environment System

The environment subsystem also has four states: created, initiated, active and sus-

pended. It’s interface is composed by four main functions: init, start, evolve and

executeAction. Figure 4.5 illustrates the environment states and their sequence.

Figure 4.5: The Environment system states.
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init(envInit) - css

• envInit - The environment’s initialization parameters.

When this function is called, all the environment parameters are set or reset to

their initial values and the environment is initiated or re-initiated. This function

returns the cognitive space specification, representing the cognitive dimensions that

are needed for an agent to interact with the environment.

The environment system changes to the initiated state.

start(envExec) - envState

• envExec - The environment’s execution parameters.

This function can only be called when the environment system is in the initiated

state.

This function sets the execution parameters and starts the environment exe-

cution. It returns the current environment state, which in this case is the initial

observation.

The environment system evolves to the active state.

evolve() - envState

This function can only be called when the environment system is in the active state.

The environment should evolve according to its internal dynamics and return

the resulting environment state.

If the resulting environment state is different from “END”, which signals the end

of the environment evolution, the environment system remains in the active state,

otherwise it turns to the suspended state.

executeAction(action) - envState

• action - The agent’s action.

This function can only be called when the environment system is in the active

state.

The environment executes the agent’s action by modifying accordingly the envi-

ronment and agent representations. It returns the resulting environment state.

If the resulting environment state is different than “END”, which signals the end

of the environment evolution, the environment system remains in the active state,

otherwise it turns to the suspended state.
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4.4.3 The AutoFocusGlue System

The AutoFocusGlue system has three states (suspended, initiated and active) and

three main functions (init, start and step), illustrated in figure 4.6.

Figure 4.6: The AutoFocusGlue system states.

init(envPeriod, envInit, agentPeriod, agentInit)

• envPeriod - Environment activation period.

• envInit - Environment initialization parameters.

• agentPeriod - Agent activation period.

• agentInit - Agent initialization parameters.

This function stores the activation periods and initializes, first the environment

and then the agent, as depicted in figure 4.7. It also initializes the time ticker. The

agent’s and environment’s activation periods are integers whose value determine the

relative rate of activation of these two subsystems. An environment period of 100,

for instance, means the environment should evolve once for each 100 ticks of the

AutoFocusGlue counter.

The AutoFocusGlue system changes to the initiated state.
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Figure 4.7: The AutoFocusGlue initialization sequence.

start(envExec, agentConfig, agentExec, goal, goalFunction)

• envExec - Environment execution parameters.

• agentConfig - Agent configuration parameters.

• agentExec - Agent execution parameters.

• goal - Agent initial goal or motivation.

• goalFunction - Agent goal function.

This function can only be called when the AutoFocusGlue system is in the ini-

tiated state.

This function starts the execution of the agent and then the environment, storing

the returned environment state, as depicted in figure 4.8.

The AutoFocusGlue system evolves to the active state.

Figure 4.8: The AutoFocusGlue start sequence.
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step()

This function can only be called when the AutoFocusGlue system is in the active

state.

This function makes the computation advance “one step”, as depicted in figure

4.9. Here, the expression “one step” is used to refer to the computation of the

agent’s next step and the corresponding evolution of the environment.

It starts by calling the step function of the Agent, with the previously stored

environment state as parameter. The Agent responds with the next action and the

time taken for its computation.

To represent the different activation rates, and the time taken by the agent to

determine an action due to the temporal focusing, the AutoFocusGlue will determine

how many times the Environment must evolve before the agent’s action take place.

The algorithm that defines how many times the environment evolves in relation

to the agent is also illustrated in figure 4.9.

The AutoFocusGlue maintains two internal variables, agentLastEvolved and en-

vLastEvolved, that record when, in terms of tick counts, the agent and the environ-

ment were last invoked. The next time the agent should act upon the environment

depends on the agentPeriod and on the timeTaken, i.e. the subjective time the agent

took to compute that action. The variable timeTaken is seen as a number of units

of agentPeriods.

If either the resulting action or environment state are “END” the AutoFocusGlue

changes to the suspended state otherwise it stays in the active state.

Figure 4.9: The AutoFocusGlue step sequence and algorithm.
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4.4.4 Messages Definitions

The messages presented previously on the AutoFocus interfaces show a great deal

of information being passed between the agent and the environment. This section

will introduce the syntax and semantic of those messages.

Upon initialization the environment sends a CSS (cognitive space specification)

message to the agent.

Cognitive Space Specification (CSS)

The CSS indicates the cognitive dimensions that compose the cognitive space. It is

composed by: the total number of dimensions, the specification of the observation

dimensions and the specification of the action dimensions.

totalNumber|obsDimensions|actDimensions

Both the observation and action dimensions are described by their type and an

optional range of allowed values:

type1range1:type2range2:...:typeNrangeN

The type indicates the type of value of that particular dimension. For the mo-

ment, only two types are implemented, integers and doubles, indicated in a CSS de-

scription by i and d respectively. Expansion to other types, including user designed

types has also been considered and the implementation was chosen to facilitate that,

as will be mentioned in section 4.5.1.

The range specifies the interval of values allowed in that dimension, [min,max].

If min or max are not present, the type limits are assumed, for example, in Java an

integer has a minimum value of -2,147,483,648 and a maximum value of 2,147,483,647.

Here is an CSS example:

4|i[0,1]:d[,]:d[1.5,3]|i[0,3]

This example has four dimensions, three observation dimensions and one action di-

mension.

Cognitive Potential and Cognitive Element Representation

The cognitive potential, as presented before, is composed by two values: intensity

and quality. In the messages exchanged we will refer to it’s quality value simply as

value, while the intensity value will be referred as it’s intensity.
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The cognitive potential is always bound to a cognitive dimension that indicates

the type and range of the cognitive potential value, while the intensity is always a

real number, between 0 and 1.

The cognitive potentials have the following syntax:

value,intensity

For example, a cognitive potential with value 3.14 and intensity 0.5 is represented

by:

3.14,0.5

By aggregating several cognitive potentials we get a cognitive element.

v1,i1:v2,i2:...:vn,in

Here is an example of a cognitive element with a value 1 and intensity 1 in the

first dimension, value 3.14 and intensity 0.8 in the second dimension and value 11

and intensity 1 in the third dimension.

1,1:3.14,0.8:11,1

For simplicity sake, when the intensity is 1 it can be omitted. So the above

cognitive element could be rewritten has:

1:3.14,0.8:11

If the potential value corresponding to a certain dimension is not present, the

intensity value is assumed 0 and can also be omitted from the description of the

cognitive element. For example, if the second dimension of the previous example

had no value, then its intensity would be 0 and the description of the whole cognitive

element would be as follow:

1::11

Note that the cognitive elements must respect the format given by the CSS. For

example to represent an observation as a cognitive element, its cognitive potentials

must match the number, type and range of the specified observation dimensions.

Environment State Representation

Note that the term environment state is used here to refer what the agent observes,

as it was explained previously. As such, this state representation can depict, and in

most cases it does, only a part of the entire environment state.
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In simple cases, an environment state representation can consist of only one

cognitive element, i.e. a simple observation, but for more complex situations it is

conceived that an environment state can be composed by more than one cognitive

element. So there is a need for those elements to be tagged with an object class and

unique identification, using the following syntax:

objectClass|objectID|observation

for a single cognitive element. If there are various cognitive elements they must

be separated by the symbol “-”:

class|ID1|obs1-class|ID2|obs2-...

Action Representation

The representation of actions is composed by cognitive elements just like the obser-

vations. Note that the actions, in this framework, are atomic. This means that the

environment can always execute any of the agents actions in one of its steps.

Goal Representation

A goal or motivator follows the same syntax. If a dynamic motivator is needed, when

the motivation cannot be represented by a static motivator throughout the agent

life but it rather depends on the objects existing in the current environment state,

then each time the agent receives an environment state, there is a goal function that

determines the motivators. This function should be defined by the agent developer.

A simple example: The Cat and Mouse World

In the Cat and Mouse World the environment consists of a 10x10 grid world. In

this world the agent, which is a cat, must catch one of three mice. This world is

depicted in figure 4.10, where C is the cat and M1, M2 and M3 are the mice.

To represent this world in a cognitive space we will use three cognitive dimensions

representing the environment cells:

• row number; from 1 to 10

• column number; from 1 to 10

• cell content;

– 0, empty

– 1, cat

– 2, mouse
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Figure 4.10: The Cat and Mouse World.

– 3, cat and mouse

The cat can perform the following two types of action: move to an adjacent cell;

and catch a mouse, if there is one at his current position. To represent these actions

we will use two dimensions. One indicates a movement action and the other a catch

action.

• movement

– 1, move to the upper left cell

– 2, move to the upper cell

– 3, move to the upper right cell

– 4, move to the left cell

– 5, don’t move

– 6, move to the right cell

– 7, move to the down left cell

– 8, move to the down cell

– 9, move to the down right cell

• catch mouse

– 0, don’t catch mouse

– 1, catch mouse

So this world CSS, using our approach, is:
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5|i[1,10]:i[1,10]:i[0,3]|i[1,9]:i[0,1]

Using this CSS, we can represent the situation presented in figure 4.10 with the

following environment state, composed by four observations:

cat|C|10:1:1-mouse|M1|3:3:2-mouse|M2|7:4:2-mouse|M3|7:7:2

A movement of the cat to the right cell is represented by the following cognitive

element corresponding to a mediator:

6:0
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4.5 Design and Implementation of the Agent Sys-

tem

In this section I will present the class models of the most relevant parts of the

AutoFocus platform and the algorithm implemented by the base mechanisms.

4.5.1 From the Domain Model to the Class Model

As it was already explained, one of the most important notions of this agent archi-

tecture is the cognitive dimension which is characterized by it’s type and range of

values.

These specific type of values follows two rules: the values are ordered and there

is a distance function to calculate the proximity between any two values.

These restrictions were implemented by imposing that any new type of values

must implement the AutoFocusComparator, illustrated in figure 4.11, along with the

two currently implemented types, Integer and Double.

Figure 4.11: The AutoFocusComparator and the two available types.

The cognitive structure class model

By separating the restrictions on the value type of cognitive dimension we have

a single generic implementation of cognitive dimension, illustrated in figure 4.12.
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There we can see that a generic cognitive dimension is characterized by it’s minimum

and maximum values, a string describing the value type and a char that identifies

it’s role in the cognitive space.

In this figure we can also see that a cognitive potential only exists if connected

to a cognitive dimension and it’s quality is restricted to the type and range of that

dimension.

The cognitive space class is composed by two ordered sets of cognitive dimen-

sions. One corresponding to the observation subspace and the other to the action

or motivator subspace.

The cognitive elements are composed by an ordered list of cognitive potentials.

The cognitive elements also have an association to the cognitive space which imposes

that the cognitive potentials follow the description of the corresponding cognitive

dimensions.

The integrated cognitive elements class is composed by an observation, an mo-

tivator and the emotional dispostion and associated values that result from the

emotional and integration base mechanisms.
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Figure 4.12: A view of the cognitive structure class model.
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The Agent class model

The class model view relative to the agent is illustrated in figure 4.13. Here we

can see the Agent interface which specifies the agent’s communication functions, as

presented in section 4.4.

The Agent interface is implemented through the DefaultAgent class, which is

characterized by the cognitive space, base mechanisms and the observations, mo-

tivators and mediators known to the agent. These cognitive elements are stored

through an instant memory class which keeps the current version of any cognitive

element and it’s ancestor, the necessary information to calculate the emotional dis-

positions.

The BaseMechanism class stores all the base mechanisms as well as the agent’s

attention field. It provides the agent with a method that computes a cognitive

element pair through all the base mechanisms. This algorithm will be presented in

the next section.

Both the default agent and the base mechanisms classes extend the Observable

class for monitoring purposes.

Figure 4.13: The class model of the agent system.
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The three systems class model

The three systems that compose the AutoFocus platform (Agent, Environment and

AutoFocusGlue) are depicted in figure 4.14. These were first defined as interfaces to

implement the communication functions presented in section 4.4. Each interface was

then implemented by a class that also extends the Observable class for monitoring

purposes.

While the AutoFocusGlue default class is completely implemented, the agent’s

and environment’s default classes still have some abstract methods. These two

classes provide the basis to any developer that wants to implement an agent or

environment in this platform.

Figure 4.14: The class model of the AutoFocus platform.

4.5.2 The Base Mechanisms algorithm

After a thorough study of the base mechanisms theory and analysis of the existing

prototypes, the complete functional computation of a pair (observation, motivator),

using all the base mechanisms, was specified and is illustrated in figure 4.15.

In this figure the individual base mechanisms are represented by rounded boxes

with their left border crossed by small boxes indicating their input parameters and

the resulting outputs represented across the right border. There are also two darker

areas indicating the regulation mechanisms and the memory mechanisms.
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Figure 4.15: Functional view of the base mechanisms.

The memory mechanisms were not introduced in the algorithm that follows since

they were not implemented, but it is possible to view in the figure how they would

fit in the overall scheme.

Each time the agent receives a new environment state, in the form of one or more

cognitive elements, it discriminates those elements into two sets, observations and

motivators, which are then processed by the base mechanisms.

Emotional Disposition Mechanism

For each pair of one observation and one motivator (σobs, σmot), it is calculated the

current and previous distance, s and st−1, between σobs and σmot:

s = d(σobs, σmot) (4.1)

st−1 = d(σt−1
obs , σ

t−1
mot) (4.2)

If either the observation or motivator does not have an ancestor, for example at

the beginning of the agent’s execution, then the previous distance st−1 to consider

should be defined by default by the distance algorithm. It is typically a maximum

value.

From these distances it is calculated the emotional disposition potentials, ps and

pv:
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ps = st−1 − s (4.3)

pv = ps − pt−1
s (4.4)

The Integration Mechanism

Combining the observation and motivator, together with the corresponding emo-

tional potentials we can determine their interaction with the attention field barrier

εσ:

εσ =
ps × µs + pv × µv√
ps2 + pv2

√
µs2 + µv2

(4.5)

The variables µs, µv represent the permeability of the attention depletion bar-

rier, and have, by default, the values: µs = 1, µv = 1. This particular equation is a

normalized version of the equation presented previously in section 3.2.2.

After that the lambda values for this integrated element are calculated:

λ+
σ =

{
ps+pv√
ps

2+pv
2
√

2
, if(ps + pv) > 0

0 , otherwise
(4.6)

λ−σ =

{
− ps+pv√

ps
2+pv

2
√

2
, if(ps + pv) < 0

0 , otherwise
(4.7)

The resulting information (the observation, the motivator, the emotional poten-

tials ps and pv, the attention barrier interaction εσ and the two lambda values λ+
σ

and λ−σ ) is stored in a new entity called an integrated cognitive element.

After all the integrated cognitive elements have been created, the global affective

values, λ+ and λ− are calculated:

λ+ =
1

n

n∑
i=1..n

λ+
σ (4.8)

λ− =
1

n

n∑
i=1..n

λ−σ (4.9)

where n is the number of current integrated cognitive elements.
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The Attention Focus Mechanism

The integrated cognitive elements created are now tested so see if they can reach

the attention field or not. Only the integrated cognitive elements whose interaction

with the attention barrier is higher than the actual barrier limit are accepted.

εσ > ε (4.10)

By default, the initial ε value is 0.

Note that the attention field is always emptied when the agent receives a new

environment state, so there is a possibility that none of the new integrated elements

is of significant importance to be in the attention field. To resolve this issue it was

introduced a new agent parameter, emptyAttention, that signals if the attention field

can be left empty or if at least one element, the one with the best interaction, should

be included in the agent attention field, if it were to be otherwise empty.

After populating the attention field, the attention barrier value is updated:

ε = εt−1 + α+λ+ − α−λ− (4.11)

where the variables α− and α+ represent the sensibility of the attention barrier

to the global affective values. They are constricted to the interval [−1, 1], and have

the following values by default: α− = 0.3, α+ = 0.3.

The attention barrier value is constrained to it’s limits, if necessary:

ε→


εmin , ifε < εmin
εmax , ifε > εmax
ε , otherwise

(4.12)

By default the limits of the attention barrier value are: εmin = −1, εmax = 1.

The Temporal Focus Mechanism

Now the temporal focus value is also updated:

ω = ωt−1 + β+λ+ − β−λ− (4.13)

where the variables β− and β+ represent the sensibility of the temporal focus to

the global affective values. They are constricted to the interval [−1, 1], and have the

following values by default: β− = 0.5, β+ = 0.5.
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The temporal focus is constrained to it’s limits, if necessary:

ω →


ωmin , ifω < ωmin
ωmax , ifω > ωmax
ω , otherwise

(4.14)

By default, the initial focus value is 1 and it’s limits are: ωmin = 1, ωmax = 5.

The current value of ω is used, in this framework’s implementation, as the maxi-

mum number of agent period units that the agent should use to compute an action.

It corresponds therefore to the available time limit.
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4.6 The Experiment Program

In section 4.4 it was described, how the AutoFocusGlue controls the execution of the

Agent and the Environment. It is through calls to the AutoFocusGlue that the user

or another program, which we will refer to as the Experiment Program, illustrated

in figure 4.16, can control and monitor the execution of the agent and environment

and run sets of experiments.

Figure 4.16: The Experiment Program in the context of the three AutoFocus sub-
systems.

A general Experiment Program was developed to provide an experimentation

platform for the implemented AutoFocus prototypes. It provides the means to

design experimentation tests and to indicate the desired outputs in a general fashion.

Figure 4.17 illustrates the class model of the experiment program as the Experiment

class. It is composed by an AutoFocusGlue instance, which will refer the desired

Agent and Environment, one or more experimentation configurations to be executed

and four instances of the AutoFocusObserver which will monitor the agent and

its base mechanisms, the environment and the AutoFocusGlue. These observers

can be extended to monitor specific parameters implemented in different agents or

environments.

The experiments executed are declared and stored through an experimentation

configuration.

4.6.1 Experiment Configuration Parameters

This section presents the complete list of the available experiment configuration pa-

rameters. All the parameters are optional unless stated otherwise.

Environment Specific Parameters

The AutoFocus platform does not impose any restrictions to the environment im-

plementations, beyond the necessary communication interface. The environment

parameters, described below, should therefore be further designed by the environ-

ment’s developer.
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Figure 4.17: The Experiment Program class model.

• -envInit <parameters>

Sets the environment initialization parameters. These parameters are set by

the environment developer.

The parameters syntax is: param1=value1;param2=value2.

• -envExec <parameters>

Sets the environment execution parameters. They follow the same syntax as

above.

• -envMon <parameters>

Sets the environment monitors, i.e. indicates to the platform what are the

implemented variables that the user wants to monitor.

There is only one monitor implemented by the platform, the environment step

monitor (envStep) allowing to observe how many times the environment has

evolved.

The parameters syntax is: monitor1;monitor2;monitor3. A special value

”all” will activate all implemented monitors.



Chapter 4. Design and Implementation of the AutoFocus Platform 55

Agent Specific Parameters

• -agInit <parameters>

Sets the agent initialization parameters.

The parameters syntax is: param1=value1;param2=value2.

• -agConfig <parameters>

Sets the agents base mechanisms parameters.

The parameters syntax is: param1=value1;param2=value2.

The available parameters correspond to the base mechanisms variables, pre-

sented in section 4.5.2:

– muS - (µs), the permeability coefficient that determines the influence of

the emotional cognitive potential ps. (muS=1 by default)

– muV - (µv), the Permeability coefficient that determines the influence of

the emotional cognitive potential pv. (muV=1 by default)

– alphaM - (α+), represents the sensibility of the attention barrier to the

affective value λ−. (alphaM=0.3 by default)

– alphaP - (α−), represents the sensibility of the attention barrier to the

affective value λ+. (alphaP=0.3 by default)

– betaM - (β−), represents the sensibility of the temporal focus to the af-

fective value λ−. (betaM=0.5 by default)

– betaP - (β+), represents the sensibility of the temporal focus to the af-

fective value λ+. (betaP=0.5 by default)

– epsilon - (ε), the attention barrier initial value. (epsilon=0 by default)

– epsilonMin - (εmin), the minimum limit of the attention barrier value.

(epsilonMin=-1 by default)

– epsilonMax - (εmax), the maximum limit of the attention barrier value.

(epsilonMax=1 by default)

– omega - (ω), the temporal focus initial value. (omega=1 by default)

– omegaMin - (ωmin), the minimum limit of the temporal focus value.

(omegaMin=1 by default)

– omegaMax - ωmax), the maximum limit of the temporal focus value.

(omegaMax=5 by default)

– emptyAttention - Allows the agent to have an empty attention field or

not, whether the parameter is set to ”true” or ”false”.

(emptyAttention=true by default)
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• -baseMon <parameters> Sets the base mechanisms monitors.

The parameters syntax is: monitor1;monitor2;monitor3

The available monitors are: alphaM, alphaP, betaM, betaP, lambdaM, lambdaP,

muS, muV, omega, epsilon and attentionSize.

A special value ”all” will activate all these monitors.

• -agExec <parameters>

Sets the agent execution parameters.

The parameters syntax is: param1=value1;param2=value2

• -agMon <parameters>

Sets the agent monitors. Two monitors are implemented by the platform: the

agent step (agentStep) and the time taken (timeTaken) monitors.

The parameters syntax is: monitor1;monitor2;monitor3

A special value ”all” will activate all implemented monitors.

AutoFocusGlue Specific Parameters

• -glueInit <parameters>

Sets the glue initialization parameters. which are the agent and environment

activation rates, with the following syntax:

environment activation rate;agent activation rate

(1;1 by default)

Experiment Execution Parameters

• -output <output path>

Sets the results file output path. The results are sent to the standard output,

if none is specified.

• -name <name>

Experiment name (experiment by default). It’s used to create the output file:

(output path/experimentname.csv)

• -report <type>

Type of data output. Currently there are two types, full and compact. The

full type reports the active monitors to output at every agent or environment

step. The compact type only reports the active monitors to output at the end

of each run.

(full by default)

• -end <end condition>

(Mandatory) The experiment end condition. An experiment ends when:
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– the agent or environment signal the AutoFocusGlue that the experiment

should end

– a specified number of AutoFocusGlue steps is executed

– a certain environment state is achieved

So the end condition can take one of three forms:

– “END” which means that the experiment will run until the AutoFocusGlue

sends the termination signal

– a positive integer corresponding to the number of steps to be executed

– an environment state

• -run <experiment runs>

Sets the number of times this experiment will be repeated. (1 by default)

A configuration example

Here is an example of an experiment configuration:

-startExp

-envMon all

-agMon all

-agConfig alphaP=0.2;alphaM=0.7;emptyAttention=true

-glueInit 10;2

-end 100

-run 10

-name configuration_example

-output \results\

-endExp

Note that an experiment configuration starts and ends with the keywords -startExp

and -endExp.
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4.7 Prototypes and Results

While implementing the AutoFocus platform several tests were made to ensure it’s

robustness and in the final stage of this project a full prototype was implemented,

the Tileworld prototype.

This particular environment was chosen because it had already been used by

Prof. Lúıs Morgado in his thesis[6] to prove the adequacy of the Agent Flow Model.

The Tileworld environment is characterized by a two-dimensional grid, in which

the agent objective is to reach target positions, known as “holes”. When the agent

reaches a “hole” the “hole” disappears. The “holes” also appear and disappear

randomly over time, in any free position of the grid. They have a gestation period

and a life period that are determined by independent random distributions, whose

characteristics are defined by the parameters of the simulation. The task of the

agent is to visit as many holes as possible during the time of the simulation.

In this implementation, each hole is perceived by the agent as a motivator and

the agent’s current position is perceived as an observation and the agent only plans

to visit the nearest “hole”.

The attention field, produced by the attention focus mechanism, restricts the set

of motivators (“holes”), that are considered for deliberation.

The attention field also controls the switch between planning and action. While

the motivator that the agent as planned to achieve remains in the attention field,

the agent will simply return the next step of the plan made to reach it. But if

it disappears from the attention field, the agent will target the closest motivator

present in the attention field and elaborate a plan to achieve it.

The temporal focus will determine the maximum length of the plans made by the

agent. If a cognitive activity period ends during the planning process, the planning

is stopped and the best partial plan formed until that time is used, returning the

first action of that plan.

The dynamism of the environment was changed for each experiment and the

results presented for a certain dynamism value are the average values for 100 runs

of 2000 steps each. Figure 4.18 shows the values used to configure the agent and

environment activation rate for each value of dynamism that we wanted to simulate.

Two separate variables were observed to measure the agents performance:

(i) the effectiveness of the agent, defined as the percentage ratio between the

number of “holes” closed by the agent and the total number of “holes”;
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(ii) the average planning cost.

Figure 4.18: The relation between the Tileworld dynamism and the agent and en-
vironment activation rates.

Best results obtained

After several experiments, the following agent configuration proved to be one that

provides the best results:

• alphaM = 0.7

• alphaP = 0.2

• betaM = 0.7

• betaP = 0.2

• emptyAttention = false

The remaining parameters kept their default values. Figure 4.19 illustrates the

obtained results.

Here we can observe that, when the dynamism is low, the agent has time to reach

practically all the holes, but when the dynamism increases, the agent does not have

enough time to reach every hole before they disappear and its effectiveness decreases.

That is also visible in the planning cost rise. Since there are more holes appearing
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Figure 4.19: The best results obtained for the Tileworld.

and disappearing, the agent is forced to re-plan more often. The reason why the

plan cost is not a linear function in comparison with the dynamism is because the

temporal focus forces the agent to have shorter cognitive activity periods, meaning

shorter plans.

Some additional results

Since this platform relies largely in experimentation to determine the best agent

configuration, there a few more results presented below, using the previous config-

uration as starting point and slightly changing some of the parameters.

Allowing the attention field to be empty

• emptyAttention = true

The results, illustrated in figure 4.20, show a global decline of the effectiveness

function while the planning cost remains basically the same. In this implementation,

when the attention field is empty the agent takes no action which is why, even with

a low dynamism the agent is incapable of reaching every hole. Possibly there could

be other implementations where the agent could take a random action that would

present better results.

Changing the signal of the α and β parameters

• alphaM = -0.7

• alphaP = -0.2
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Figure 4.20: Tileworld results allowing the attention field to be empty.

• betaM = -0.7

• betaP = -0.2

By simply changing the signals of the α and β parameters the results obtained

for either the effectiveness and planning cost were radically different. While the

dynamism is low the agent still manages to reach almost every hole, but as soon as

the dynamism rises the effectiveness drops drastically, while the planning cost rises

and then drops when the dynamism reaches the highest values.

Figure 4.21: Tileworld results after changing the signal of the α and β parameters.
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Using different α and β parameters

• alphaM = 0.1

• alphaP = 0.1

• betaM = 0.1

• betaP = 0.1

Using the value 0.1 for all α and β parameters gives a worse performance than

the first result but it is still better than the previous ones.

Figure 4.22: Tileworld results using different α and β parameters.



Chapter 5

Conclusions

The developed AutoFocus platform was conceived to be a flexible and general im-

plementation of the Agent Flow Model theory. Also various aspects of the cognitive

structure and base mechanisms where polished which improved the knowledge avail-

able in order to provide a general usable framework.

Although some of the original objectives were not accomplished, namely the sec-

ond iteration of the platform development, the work done during this project will

be the foundation upon which the memory mechanisms will be built, in the next

months after the completion of this master degree. The Experiment Program was

an added improvement to the initial platform requirements.

As future work, it is planned to create base mechanisms capable of defining the

global emotional situation, which can be understood as the agent’s emotional state,

and to study how the AutoFocus agents behave in multi-agent environments.
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