
Universidade de Lisboa 

Faculdade de Ciências 

Departamento de Biologia Animal 

 

 

 

 

 

 

 

Genomic mechanisms of gene expression 

regulation in the Squalius alburnoides hybrid 

complex: insights from microRNAs and 

DNA methylation 

 

Joana Gonçalves Fernandes Pinho 

 

 

Mestrado Biologia Evolutiva e do Desenvolvimento 

2011 



Universidade de Lisboa 

Faculdade de Ciências 

Departamento de Biologia Animal 

 

 

 

 

 

 

 

Genomic mechanisms of gene expression 

regulation in the Squalius alburnoides hybrid 

complex: insights from microRNAs and 

DNA methylation 

 

Joana Gonçalves Fernandes Pinho 

 

 

Dissertação orientada pela Doutora Maria Ângela Inácio 

Mestrado Biologia Evolutiva e do Desenvolvimento 

2011 



1 
 

Contents 

 
 

Agradecimentos ............................................................................................................ 2 

Resumo ........................................................................................................................ 3 

Abstract ........................................................................................................................ 6 

1. Introduction ............................................................................................................ 7 

2. Aims .................................................................................................................... 17 

3. Materials and methods ......................................................................................... 18 

3.1. Sampling and genomic constitution determination ........................................ 18 

3.2. RNA extraction ............................................................................................. 18 

3.3. Library construction and sequencing analysis ............................................... 18 

3.4. Hybridization in microarray chip and data treatment ..................................... 19 

3.5. DNA extraction and 5-mC Immuno assay ..................................................... 20 

3.6. Msp I / Hpa II assay ...................................................................................... 20 

4. Results ................................................................................................................ 22 

4.1. MicroRNAs ................................................................................................... 22 

4.1.1. High-throughput sequencing .................................................................. 22 

4.1.2. MicroArrays ........................................................................................... 27 

4.1.3 Comparison of sequencing and microarray hybridization results............ 29 

4.2. Genome wide methylation ............................................................................ 30 

4.2.1 Immunoassay ............................................................................................. 30 

4.2.2. Msp I / Hpa II assay ............................................................................... 31 

5. Discussion ........................................................................................................... 34 

5.1 MicroRNAs expression as a post-transcriptional regulation mechanism ....... 34 

5.2 DNA methylation as a pre-transcriptional regulation mechanism .................. 36 

6. References .......................................................................................................... 38 

7. Appendix.............................................................................................................. 45 

 

  



2 
 

Agradecimentos 
À Doutora Maria Ângela Inácio pela paciência e por me ter guiado durante a elaboração desta 

Tese de Mestrado. 

À Professor Maria Manuela Coelho pelo constante interesse na evolução deste trabalho. 

À Maria Ana, Ana Rita e Mónica Silva por estarem disponíveis para a discussões de ideias e 

pela partilha de conhecimento do trabalho em laboratório. 

Ao Max pelas discussões sobre o controverso mundo da quantificação de DNA. 

Ao grupo S. alburnoides, Tiago Jesus, Miguel Machado, Miguel Santos e Isa Matos, pela útil 

partilha de conhecimentos, discussões e sugestões, pela boa disposição e animadas saídas de 

campo. Ao Tiago pelas sessões de “brainstorming” no autocarro, ao Miguel M. pelas suas 

acesas discussões e úteis limpezas, ao Miguel S. pelos seus ensinamentos de citometria de fluxo 

e tormento da vida das pessoas e finalmente à Isa Matos pela valiosa discussão e entusiasmo 

contagioso no estudo do S. alburnoides. 

À Joana Mateus pelo apoio, incentivo e companheirismo nos melhores e nos piores momentos. 

Aos colegas do Laboratório de Genética pelo apoio e compreensão nas horas mais difíceis. 

Ao grupo de Biologia do Desenvolvimento pela constante preocupação e amizade 

demonstradas. 

À Dona Branca pela sua disponibilidade e boa disposição. 

À Doutora Patrícia Pereira do CESAM pelo precioso auxílio prestado na análise de microarrays 

e ao Doutor Luca Comai pelas dicas sobre RNA-seq. 

Ao Doutor Francisco Enguita pela disponibilização do Bioanalyzer e à Doutora Ana Tenreiro 

pela disponibilização do leitor de fluorescência de microplacas. 

Aos meus amigos pela força que me deram mesmo quando ao faltava aos eventos sociais por 

motivos de força maior. 

Aos meus pais pelo afecto incondicional em todos os momentos, especialmente os mais 

complicados quando tiveram de aturar o meu mau humor. 

À minha família pelo apoio constante nesta complicada etapa. 

Ao Tiago Rio por estar a meu lado quando eu mais precisei. 

A mim por ter conseguido superar esta fase sem endoidecer. 



3 
 

RESUMO 

Organismos poliplóides são organismos caracterizados pelo aumento do número de cópias 

genómicas. Estes funcionam como reservas de variação latente que ao se tornarem visíveis à 

selecção lhes confere vantagem evolutiva. A evolução das plantas deve-se grandemente a este 

fenómeno, uma vez que as novas combinações geram novos fenótipos e portanto rápida 

evolução adaptativa. Mesmo em animais, embora mais raros há casos de taxa poliplóides. 

Apesar disso, estes organismos estão sujeitos a uma maior instabilidade genómica, seja por 

aumento da carga genética de um só genoma devido à sua endoduplicação (autopoliplóides) ou 

por aumento desta carga através da hibridação de genomas distintos (alopoliplóides). Desta 

forma, para que o organismo se mantenha equilibrado a nível funcional esta instabilidade tem de 

ser ultrapassada.  

Por outro lado, tem-se verificado em plantas poliplóides que esta amplificação não é linear, ou 

seja, a quantidade de genoma não é proporcional à sua expressão génica. Por exemplo, foi 

demonstrado em milho poliplóide a existência de um efeito de dosagem na expressão génica. 

Actualmente sabe-se que este efeito depende grandemente da re-organização do genoma. Esta 

organização pode ser não só genética, mas também epigenética. 

Um excelente organismo para o estudo dos efeitos da poliploidização do genoma em animais é 

o complexo Squalius alburnoides. Esta espécie, pertencente à Família Cyprinidae, foi descrita 

inicialmente como tendo três diferentes ploidias no mesmo complexo: diplóide, triplóide e 

tetraplóide. 

Actualmente sabe-se que este complexo tem uma origem híbrida resultante de um cruzamento 

entre um ancestral materno de S. pyrenaicus (genoma P) e de um ancestral paterno semelhante 

ao actual Anaecypris hispanica (genoma A). S. alburnoides encontra-se actualmente distribuído 

por toda a Península Ibérica. Em Portugal, a distribuição do complexo ocorre nos rios de Norte 

ao Sul do país, mas enquanto no Sul há incorporação do genoma P por interacção com a espécie 

Squalius pyrenaicus, no Norte o complexo incorpora o genoma C, uma vez que interage com a 

espécie Squalius carolitertii. Esta incorporação resulta das diferentes formas de reprodução do 

complexo que dão origem a diferentes combinações de genomas e ploidias. 

Em vertebrados, Pala et al., (2008) descobriu pela primeira vez que nas formas triplóides do 

complexo S. alburnoides existia silenciamento génico em alguns alelos envolvendo também um 

mecanismo de compensação de dose na expressão génica de alguns dos genes investigados. 

Consequentemente colocou-se a questão se o silenciamento seria num haploma inteiro ou não. 

Observou-se que nos indivíduos híbridos triplóides havia contribuição diferencial de genomas, 

ou seja, em diferentes genes verificou-se a ocorrência de duas situações diferentes: exclusiva 

expressão do genoma A ou expressão bialélica (PA). Não havendo portanto silenciamento de 

uma cópia de genoma inteira. Adicionalmente, ao comparar vários genes diferentes percebeu-se 
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que havia preferência para o silenciamento das cópias de genoma P, verificando-se que o 

silenciamento não ocorria completamente ao acaso. É possível que nos híbridos de S. 

alburnoides este mecanismo actue de forma plástica, podendo haver alelos que escapem aos 

vários mecanismos de regulação. De uma forma geral, em S. alburnoides os constrangimentos 

genéticos em poliplóides são ultrapassados mimetizando um contexto diplóide. No entanto, 

permanecem desconhecidos que mecanismos estão subjacentes à regulação da expressão e ao 

silenciamento diferencial dos alelos.  

Em plantas, já foram estudados variados processos de regulação génica. Entre estes encontram-

se a metilação ao nível do DNA e modificação das histonas que dependendo da sua localização 

desempenham um importante papel na regulação da estrutura da cromatina. A metilação 

envolve modificações covalentes no material genético das células. Eucariotas superiores 

possuem este mecanismo de regulação que actua adicionando um grupo metil às citosinas dos 

dinucleótidos CG, com a finalidade de impedir a transcrição. Uma vez adquirido um 

determinado padrão de metilação, os tecidos mantêm-no nas suas células ao longo de vários 

ciclos celulares devido à actividade da metiltransferase que metila as novas cadeias de DNA 

sintetizadas. Inclusive, pelo menos em plantas, sabe-se que esse padrão pode atravessar diversas 

gerações. 

Estudos anteriores mostram uma relação entre plantas alotetraplóides, tanto sintéticas como 

naturais, e modificações por metilação no genoma. Por outro lado, diversos estudos evidenciam 

que, embora bastante conservados, os microRNAs variam a sua expressão mesmo em espécies 

próximas. Além disso, mostrou-se estarem envolvidos nas variações da regulação génica de 

plantas alopoliploides, não havendo expressão aditiva. Os small RNAs foram inicialmente 

identificados em Caenorhabditis elegans e fazem parte de uma classe de RNAs não codificantes 

tendo normalmente ≈22 nucleótidos de comprimento. Actualmente, já estão descritos diversos 

tipos de RNA não codificantes para além dos microRNA que possuem também uma função 

regulatória. Embora estas classificações ainda sejam relativamente recentes, pode-se afirmar 

com clareza que ambos os miRNAs e os siRNAs (também designados por tasiRNAs) são 

processados pelo mesmo complexo com o intuito de regular o silenciamento génico. Desta 

forma, o produto final da sua biogénese é responsável tanto pela degradação do transcrito como 

pela repressão de tradução. Assim, poderemos questionar se nos organismos poliplóides, este ou 

outro tipo de RNAs não codificantes, poderão estar a controlar a expressão génica de forma a 

permitir a este tipo de organismos superar a instabilidade causada pelo aumento da dose génica, 

ou até pela junção de dois genomas diferentes. 

Tendo em conta os mecanismos já descritos em plantas, torna-se imperativo tentar perceber de 

que forma estes terão igualmente um papel decisivo na regulação génica que ocorre em 

vertebrados, mais especificamente no complexo Squalius alburnoides. Para tal, usaram-se 

indivíduos AA, PA e PAA do complexo e ainda PPs que foram analisados para esclarecer duas 
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possibilidades: a regulação por microRNAs e a regulação por metilação de DNA. Enquanto que 

o primeiro requereu uma análise através de Sequenciação de Nova Geração e microarrays, a 

segunda abordagem usou endonucleases com diferentes sensibilidades à metilação e um ensaio 

imunológico com afinidade para DNA metilado. 

Após um extensivo controlo de qualidade das bibliotecas sequenciadas, verificou-se que S. 

pyrenaicus possuía um perfil de expressão mais distante do que os indivíduos pertencentes ao 

complexo e que estes últimos possuíam os seus miRNA mais expressos do que PP, o que seria 

de esperar visto fazerem parte de um complexo alopoliplóide, necessitando portanto de maior 

regulação. A técnica de hibridação em microarrays revelou ter um padrão de expressão bastante 

semelhante ao obtido nos dados da sequenciação, apesar do seu elevado background e do facto 

da análise individual da expressão de miRNAs na maioria dos casos não se mostrar reprodutível 

com os resultados obtidos através da sequenciação. 

Além disso encontraram-se ainda sequências de 33 nucleótidos mais expressas em triplóides 

(PAA) provavelmente sendo algum tipo de smallRNA ainda não identificado, mas que poderá 

ter um papel importante da compensação de dosagem. 

Por outro lado, a metilação de DNA mostrou ser significativamente diferente e elevada nos 

indivíduos triplóides em comparação aos outros indivíduos analisados do complexo. 

Adicionalmente, verificou-se o expectável para as diferenças nos níveis de metilação de DNA 

entre órgãos tendo em conta a diversidade de genes a serem expressos em cada caso, sendo o 

fígado o tecido menos metilado e as células sanguíneas o mais metilado. 

No geral, os resultados deste estudos apontam para a existência de um mecanismo regulatório 

pré-transcricional por metilação de DNA nas formas triplóides, ao invés de um controlo pós-

transcricional massivo. De uma perspectiva evolutiva, não faz sentido transcrever genes que irão 

depois ser regulados por um qualquer mecanismo pós-transcricional. Tendo isto em conta, faz 

sentido que os triplóides PAA regulem a sua expressão génica de forma a obterem uma 

expressão semelhante à de um diplóide, preferencialmente através do mecanismo de metilação 

de genoma e usando apenas os miRNA para pequenos ajustes de expressão dirigidos a 

específicos transcritos alvo. 

 

Palavras-chave 
Squalius alburnoides, allopoliploidia, regulação da expressão génica, metilação de 

DNA, microRNAs 
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Abstract 

The cyprinidae Squalius alburnoides is an allopolyploid complex that inhabits the Iberian 

Peninsula rivers. Its hybrid origin and the vast variety of reproductive mechanisms generate 

different genomic compositions, including diploids (AA, PA) and triploids (PAA) forms. 

Using S. alburnoides as her model, Pala et al. (2008) showed for the first time in vertebrates 

that, as a response to the increase in the genome dosage, triploids could regulate gene 

expression to a diploid state. Besides, several alleles were showed to be silenced in the triploids. 

However until now, the mechanism of gene regulation was not described. 

Previous studies in plants demonstrate that silencing in allopolyploids could be explained by 

several epigenetic mechanisms. For instance, DNA methylation plays a major role in the 

chromatin remodelling and microRNAs seem to regulate gene expression post-trasncriptionaly. 

Therefore, in order to find out if these mechanisms have an important function in the regulation 

of gene expression in the S. alburnoides allopolyploid complex, they were investigated. 

MicroRNAs profiles were analysed by next generation sequencing and microarray hybridization 

while genomic DNA methylation was analysed by an immunoassay protocol and using methyl 

sensitive restriction analyses. Thus, results showed that the post-transcriptional regulation by 

non-coding microRNAs does not seem to play a major role in gene expression regulation of the 

complex. On the contrary, this regulation seemed to be mainly accomplished by the pre-

transcriptional mechanism of DNA methylation since this work demonstrated that it is 

predominant in the complex, mainly in the triploid form PAA. 

Thus, methylation should function as a primary step of regulation in order to buffer the 

polyploidy effect and, only then, microRNAs should be used as a tool to fine-tuning the 

allopolyploid expression of some essential genes is particular.  

 

 

 

 

Keywords 

Squalius alburnoides; allopolyploidy; gene expression regulation; DNA methylation; 

small RNAs 
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1. INTRODUCTION 
 

1. 1. Polyploids and Hybrids 

Evolution resulted occasionally due to changes occurred in chromosome number and genetic 

material. Polyploidy is characterized by the multiplication of the entire genome and provides a 

source of variation visible to natural selection that offers a rapid adaptative evolutionary 

potential and thus, higher evolutionary success.  

Polyploids can be classified in two groups, autopolyploids and allopolyploids, depending on the 

origin of their chromosomes and the mechanism involved in their formation. The first, possess 

multiple chromosome sets derived from the same species once it emerged from a natural 

genome doubling either from the same individual or from different individuals of the same 

species. The second arise when hybridization occurs, usually between different species, 

producing a polyploid composed by chromosomes derived from different species 

(reviewed in Otto, 2007). 

This phenomenon occurs mainly in a large range of plants, since sex determination and gene 

dosage imbalance restricts the existence of polyploidy in animals (Orr, 1990). Though less 

common, stable and well adapted polyploids have also been identified in some animal taxa such 

as amphibians and reptiles (reviewed in Otto & Whitton, 2000), fish (Leggat & Iwama, 2003) 

and even mammals (Gallardo et. al., 2006).  

Natural hybridization was reported to play an important role in evolution, through introgression 

and hybrid speciation (Mallet, 2007). This phenomenon is particularly distributed through fish 

and positively correlated with polyploidy (Le Comber & Smith, 2004). Former studies, namely 

in Cyprinidae and in Cobitidae families (Gromicho & Collares-Pereira, 2007), reported 

allopolyploidization as the prevalent state of polyploidization presented in fish. 

Many disadvantages and advantages of polyploidy have been extensively debated. For example, 

the emergence of asexual reproduction could give rise to less variability since it precludes the 

occurrence of recombination, however, asexual reproduction makes the encounter of sexual 

mates become needless which enhance the probability of the emergence of a next generation in 

a shorter period of time (reviewed in Comai, 2005). Additionally, heterosis, which is the 

maintenance of heterozygosity, originates hybrid vigour and possesses a positive effect in 

polyploidy success. Besides, beyond masking recessive (deleterious or not) alleles, gene 

redundancy also allows genes to undergo subfuncionalization or neofuncionalization. 

Nevertheless, regarding the functionality of stable polyploids, a whole new level of complexity 

emerges where all the cellular machinery has to be adjusted to the new environment within the 

cell, particularly when dealing with allopolyploids. So, in order to achieve that and overcome 
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the genetic constrains, polyploidization is accompanied by genetic as well as epigenetic 

alterations (Riddle & Birchler, 2003). 

 

2.Genetics and epigenetics in polyploids  

The response to the increase in gene dosage or the gathering of two heterologous genomes 

which contribute unequally to the regulatory networks, is an indispensable step to achieve a 

functional cell. Without an appropriate genome reorganization of the resulting polyploid, it 

could become unviable due to genomic instability. Innumerous studies about several genetic and 

epigenetic arrangements in polyploid plants have been described. Among others, the genetic 

consequences of polyploidization could be the mobilization of transposable elements (TE), 

already verified in plants, such as in the hybridization between rice and wild rice (Shan et al., 

2005) or in the three hybrid species of sunflower (Ungerer et al., 2006). In animals, 

transposable elements activation was also verified, namely in interspecific hybrid between two 

species of Australian wallaby (O’neill et al., 1998). Loss of other genetic material (Liu et al., 

1988), as well as gene conversion (Wendel et al., 1995) are other known genetic consequences 

of polyploidization. 

On the other hand, it has been already reported that the genome amplification verified in 

polyploidy plants is not proportional (non-additive) to its gene expression (reviewed in Comai, 

2005). For instance, a study from Guo (1996) described a dosage effect in the gene expression 

of wheat polyploids, referring to a dosage compensation mechanism. In fact, in plants it was 

observed that an allopolyploid should be capable of maintaining a diploid-like behavior (Ma & 

Gustafson, 2005). Despite the presence of multiple copies, gene expression has to be silenced 

somehow. Silencing patterns, on the other hand, are dependent on the gene, ones being silenced 

independently and repeatedly during polyploidization and others being affected stochastically 

(Adams, 2007). 

Interestingly, many microRNA (miRNA) and their targets were not additively expressed in the 

Arabidopsis allotetraploids (Wang et al., 2006b; Ha et al., 2009), suggesting a miRNA’s 

functional role. Beyond miRNAs, several other types of non-coding small RNAs have been 

found in animals, plants, and fungi, namely endogenous small interfering RNA (siRNA) 

(Reinhart and Bartel, 2002; Ambros et al., 2003; Baulcomb, 2004), transacting siRNA 

(tasiRNA) (Vasquez et. al, 2004),  Piwi-interacting RNAs (piRNAs) (Aravin et al., 2007), 

among others. TasiRNAs were identified as mediators of post-transcriptional regulation, as well 

as of RNA-directed DNA methylation and chromatin remodeling (Vasquez et. al, 2004). The 

latest, piRNA, usually with 24-30nt length are derived from transposons and other repeated 

sequence elements and have been reported not only to be crucial to germ line development and 

fertility (O’Donnelland & Boeke, 2007), but also to transposon repression, which became 
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extremely active after an event of allopolyploidization.Regarding the epigenetic regulation of 

gene expression, it occurs instantly by consequence of polyploidisation or hybridization. One of 

the main modifications is related to methylation patterns and gene silencing, which, in spite of 

being more frequent in plants (Xiong et al, 1999; Adams et al., 2004), was also described in 

animals (Salmon et al, 2005). Indeed, with the disruption of heterochromatin activation of TE 

(Josefsson et al., 2006), biased expression of homeologs (Udall et al., 2006), abnormal 

imprinting (Vrana, 2000), among others, could occur. As previously described, epigenetic and 

genetic modifications are closely related (Lu & Chen, 2011). Moreover, epigenetic regulation 

could be reversible which makes it advantageous for selection and adaptation during evolution 

and development. 

In addition, some studies have also reported that these alterations are tissue specific (Adam et 

al, 2003). Besides, allopolyploids suffer a more critical alteration, when comparing to 

autopolyploids, meaning that hybridization causes the majority of modifications in gene 

expression, rather than ploidy changes (Albertin et al., 2006; Salmon et al., 2005). 

  

2.1MicroRNAs biogenesis and cellular function 

Transcriptome is defined as the complete collection of transcribed elements in a genome 

(Velculescu et al., 1997). It was considered to mainly consist of ribosomal RNA (rRNA) (80-

90%), transfer RNA (tRNA) (5-15%), messenger RNA (mRNA) (2-4%) and a small fraction of 

intragenic (i.e. intronic) and intergenic noncoding RNA (ncRNA) (1%) with undefined 

regulatory functions (Lindberg & Lundberg, 2010). But, more recently it was described that 

ncRNA varies with the complexity of the genome, ranging from 0,25% in prokaryotes and 

98,8% in humans (Taft et al., 2007). Several types of these ncRNAs have been already 

described. However, their functions are not clarified yet, thought huge efforts have been made 

in that direction.  

The first ncRNA characterized was the short lin-4 RNA, in 1993, that was reported to directly 

down-regulate the lin-14 gene product by binding to specific repetitive sequences on the 3’UTR 

of the lin-14 messenger, controlling the time of development of the worm Caenorhabditis 

elegans (Lee et al., 1993). After, the first miRNA (let-7) was discovered (Reinhart et al., 2000), 

triggering the beginning of the comprehension of the silencing of specific genes by small non-

coding RNAs. miRNAs have since then been found in plants, green algae, viruses, and more 

deeply branching animals (Griffiths-Jones et al., 2008), being verified that they are very 

conserved (Zhang et al, 2006). Particularly, miRNAs are post-transcriptional gene expression 

modulators, that are closely related with human disease and for that reason have been the most 

described of all small ncRNA. It was estimated that each animal miRNA regulates hundreds of 

different mRNAs, suggesting that a large proportion of the transcriptome is subjected to miRNA 



10 
 

regulation (Bartel et al., 2009; Voinnet, O et al., 2009). Thus, they control a wide range of 

biological processes such as cell proliferation, differentiation, apoptosis and metabolism (Bartel 

et al., 2009; Carthew & Sontheimer, 2009; Voinnet, O et al., 2009; Krol, J. et al., 2010). 

MicroRNAs are composed by ≈22 nucleotides in length and derived from a complex biogenesis 

composed by several steps. At first, the capped and polyadenylated miRNAs precursors (pri-

miRNAs) are transcribed, usually by RNA Pol II and fold back on themselves to form a long 

hairpin-like structure, which contains an imperfectly base-pairing stem. Once pri-miRNAs are 

formed, they are processed by the RNase III-like endonuclease Drosha which cuts them into 

≈70 nucleotides hairpins designated as pre-miRNAs with 5’ phosphate and 2 nucleotides 3’ 

overhang. These molecules are transported to the cytoplasm by Ran-GTP through exportin5 and 

newly processed, this time by a protein complex (TAR RNA binding protein) including RNAse 

III type Dicer which is responsible for the cleavage of pre-miRNAs into ≈22 nucleotides 

duplexes. Finally, one of the strands is degraded and the other (mature miRNAs) becomes 

loaded into the Argonaute protein in miRNP or miRISC (miRNA-ribonucleoprotein or miRNA-

induced silencing complex, respectively) where the miRNA will be complementary to target 

transcripts avoiding translation either by repression or endonucleolytic cleavage (Filipowiczet 

al, 2008). 

The targeting issue still causes a lot of discussion. In plants, the complementarity between 

miRNA and mRNA is nearly perfect, however when talking about metazoans an imperfect base-

pairing succeed which makes the miRNA harder to predict its targets transcripts (Winter et al., 

2009). Nevertheless, miRNA seed region, at 5’end (2-8 nucleotides) is required to have a 

perfect matching with its respective target mRNA transcript (Lewis et al., 2005) being the 

secondary structure on the 3’ UTR region of the mRNA also a relevant matching criteria 

(Brennecke et al., 2005). 

Until very recently it was thought that, in animals, miRNA repressed translation with little or no 

influence on mRNA abundance, but conversely, in plants, miRNAs were reported to degrade 

the transcript target. However, over the past few years, it has become clear that microRNAs are 

capable to induce mRNA degradation in animals and also translational repression in plants 

(Huntzinger & Izaurralde, 2011). 

In overall, it seems that genetic constrains generated in polyploid organisms could be, at least 

partially overcome through the regulation of miRNAs.  Indeed, studies have reported 

extensively that miRNAs regulate gene expression in allopolyploid plants (Ha et al., 2008), 

being evolved into genetic regulation of polyploid plants. Thus, once gene expression is not 

additive, the functionally of the cell could be recovered avoiding a genomic shock. 
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2.2Next Generation Sequencing Technologies 

Next generation sequencing (NGS) is a current toll to study transcriptomes and has been used to 

study small RNA profiles. It is a recent sequencing technology that has changed the world of 

molecular biology. The basic principle of these technologies is the miniaturized reactions which 

require DNA molecules at limiting dilutions, in a way that there is only a single DNA molecule 

firstly amplified and then sequenced. To do that, DNA has to be randomly broken into smaller 

sizes and then immobilized by primer or template to a solid surface, or even indirectly by 

linking a polymerase to the support (Mardis, 2008; Shendure & Ji, 2008; Metzker, 2010). Thus, 

the new sequencing platforms do not require the cloning of the fragments, which decreases 

considerably the cost and time of all the process when comparing with the older technologies.  

Before this, in 1977, the pioneer developments of Maxam and Gilbert (1977) and Sanger et al. 

started what is traditionally called Sanger sequencing. The massively parallel sequencing 

platforms only started with Roche (454) Genome Sequencer (GS) (2004), that was capable of 

producing several hundred thousand reads of 100 base pairs (bp) each. Today, GS FLX 

Titanium generates greater than 1 million reads composed by 400bp. In 2006, Illumina Genome 

Analyser (GA) was able to produce tens of millions of 32bp reads. Currently, Illumina HiSeq 

2000 produces up to six hundred billion of reads of 100bps. These technologies were then 

followed by the most recent platforms: Applied Biosystems based on Sequencing by Oligo 

Ligation and Detection (SOLiD) and Helicos BioScience HeliScope. Whereas the first produces 

400 million 50bp reads, the second is the first single-molecule sequencer that are able to 

produce 400 million though with 25-35bp reads (Costa et al, 2010). 

These platforms are very different in what concerns sample preparation, chemistry, type, 

volume of raw data, and data formats, giving rise to their own characteristic error profiles. For 

example, in Illumina technology there is a greater probability of accumulating sequence errors 

at the end of the read and it produces short reads requiring specific alignment algorithms (Costa 

et al, 2010). 

 

 

 

RNA-Seq and Microarray platform 

Transcriptome analysis through RNA-seq allows identifying, characterizing and cataloguing all 

the transcripts expressed within a specific cell or tissue. Hence, a huge potential to address 

many biological-related issues could be answered by determining the expression or splicing 

patterns either gene or allele-specific (Wang et al., 2009). For example, in terms of disease-

related studies, when comparing different samples, these data could give relevant biological 

information. 
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The older transcriptome techniques were based on hybridization or tag sequence. The 

widespread microarrays hybridization platforms typically suffer from cross-hybridization and 

undesirable background. Besides, transcripts hybridise only if it is included in the array design 

(Irizarry et al., 2005) which in RNA-seq does not occur. Also, a very significant issue has to do 

with the fact that we are dealing with an indirect method, which do not detect transcripts from 

repeated sequences or do not have the sensibility to detect very subtle changes in gene 

expression levels (Wang et al., 2009; Hoen et al., 2008; Bloom et al., 2009). On the other hand, 

when comparing to the older methodologies, the advantages of RNA-seq are evident. Besides, 

production of enormous volume of data with incredibly low background, it allows the discovery 

and quantification of new rare transcripts and Single Nucleotide Polymorphisms (SNPs); last, 

but not least, RNA-seq possesses higher technical and biological reproducibility (Metzker, 

2010; Costa et al, 2010). 

Still, studies about the comparison between RNA-seq and microarrays platforms are 

controversial. Based on comparison studies with biological data, it was described that, even if 

similarly correlated, microarrays produced less reliable absolute quantitative measurements and 

sequencing provides a better approximation of the real transcript content, when comparing 

microarrays with Illumina sequencing (Marioni et al., 2008; ′t Hoen et al., 2008) or other 

platforms (Coughlan et al., 2004; Chen et al., 2007; Liu et al., 2007). However, another study 

using pre-known synthetic samples demonstrated that microarray measurements are better 

correlated with RNA content than measurements from sequencing data. Additionally, 

reproducibility seems equivalent in both methods and microarrays sensibility showed to be 

higher than previous demonstrated (Willenbrock et al., 2009). Moreover, a 2010 study using 

biological data, demonstrated that RNA-seq is more sensitive than microarrays (Xiong et al., 

2010). Finally, Malone and Oliver (2011) affirmed that microarrays should be considered an 

accurate and useful tool, and RNA-seq should be used as complemented measurement. 

In practice, what is necessary to do a trancriptome analysis through RNA-seq is: library 

preparation, sequencing and imaging, genome alignment and assembly (Metzker, 2010; Costa et 

al, 2010). The most common analysis of transcriptome is the quantitative expression profiling. 

To do so, it is necessary to trim the data and proceed to the crucial and complex step of genome 

alignment using algorithms like SOAP (Li et al., 2008), QPLAMA (Bona et al., 2008), TopHat 

(Trapnell et al., 2009), G.Mo.R-Se (Denoeud et al., 2008) or PASS (Campagna et al., 2009), 

making use of a reference genome. When higher sequencing errors are expected in higher 

polymorphisms, insertion/deletion, complex exon-exon junctions, miRNA and small ncRNA, a 

more sophisticated alignment strategy is required to them. Particularly in the case of miRNAs, 

the first step (trimming) has to be efficiently performed, otherwise many observed miRNA 

would be derived from other sequences, since mature miRNA have paralogs with highly similar 

sequences (Bartel et al., 2004; Guo et al., 2009).  Then, several approaches for the 
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quantification analysis could be performed: (1) number of reads per each annotated element or 

(2) sum of the number of reads covering each base position of the annotated element, also 

known as base coverage (Costa et al., 2010). Afterwards, when comparing at least two samples 

sequenced independently, normalization should be done in order to take into account the sample 

size effect. Transcripts Per Million (TPM) is a simple and common approach which considers 

the raw abundance of each signature in each library. More recently, Reads Per Kilobase per 

Million (RPKM) was proposed by Mortazavi (2008) and is based on an algorithm that uses the 

molar concentration of a transcript by normalizing for the RNA length and the number of 

mapped reads. It is used to quantify the following comparisons: both different genes within the 

same sample and differences of expression across biological conditions (Li et al., 2009). The 

main problem is that these types of measurements do not reflect precisely the accurate RNA 

abundance into a library due to several reasons: integrity of the input RNA, extent of ribosomal 

RNA remaining in the sample, size selection steps, accuracy of the gene models used and non-

uniform sequence coverage (Costa et al., 2010). Efforts have been made in order to obtain novel 

efficient approaches. For example, NEUMA, an algorithm recently developed by Lee et al. 

(2010), demonstrates superior accuracy over other recently developed methods. 

Differential expression is not only characterized by transcripts exhibiting the most spectacular 

differential expression. Some studies have concluded that small changes as 2:1 or 2:3 can cause 

drastic effects for example in disease states caused by haploinsufficiency or trisomy (Audic & 

Claverie et al., 1997). 

 

2.3DNA methylation, a pre-transcription mechanism 

Methylation of DNA through addition of a methyl group to a cytosine is one of the most 

common inherited covalent modifications (Richards, 2006; Klose and Bird, 2006; Kim et al., 

2009),. In complex multicellular eukaryotes, methylation is localized at cytosines within CG 

dinucleotides. In every cellular cycle, after DNA replication, DNA methyltransferase from 

Dnmt1 family (Goll & Bestor, 2005) fills in the new synthetized strand with group methyl in 

order to recover and maintain the original pattern. At least in plants, this process is described to 

be maintained through multiple generations (Chan et al., 2005, Zilberman et al., 2007). Today 

there is no doubt about its central role in many aspects of biology. The studies describing DNA 

methylation importance are extensive since it plays an important role in cellular activities such 

as differential gene expression, cell differentiation, chromatin inactivation, genomic imprinting, 

development and even carcinogenesis (Gonzalgo & Jones, 1997a).  In animals, for example, 

once Dnmt1 in Danio rerio is depleted, the terminal differentiation of the intestine, exocrine 

pancreas and retina are abnormally formed (Rai et al., 2006). Knockout mutations on genes 

encoding DNA methyltransferares in mouse are lethal (Goll & Bestor, 2005). Additionally, in 
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female mammals, DNA methylation also actively participates in X- chromosome inactivation in 

response to dosage compensation (Heard & Disteche, 2006). In plants, alterations in 

development are also evident, such as in Arabidopsis thaliana, where the loss-of-function of the 

ortholog of Dnmt1 (MET1) generated a delayed flowering and reduced fertility, aggravated by 

additional mutations in other methyltransferases genes (CMT and/or DRM2). Other studies 

reported significant differences in DNA methylation among diverse organs in plants, such as 

rice (Dhar et al., 1990), tomato (Messeguer et al., 1991) and maize (Lund et al., 1995), 

suggesting a role in tissue or organ formation. Besides, it was also verified that methylation act 

as an important response to environmental changes, for example in the study where alteration of 

DNA methylation was induced by salt stress (Zhong et al., 2009). 

Once formed, several allopolyploid plants are frequently accompanied by DNA methylation 

modifications which play a critical role in chromatin remodeling and are associated with gene 

silencing (Madlung et al, 2002; Liu &Wendel, 2003).  So, several studies have been made to 

conclude about the functional role of DNA methylation patterns in polyploids. When treated 

with an inhibitor of DNA methyltransferase (5-aza-2’-deoxycytidine), DNA of synthetic 

allotetraploids suffered demethylation and altered morphologies are developed (Madlung et al., 

2002). Curiously, the natural allotetraploid (Arabidopsis suecica) possess silenced genes due to 

epigenetic regulation (methylation) (Lee & Chen, 2001). Tritivumaestivum (Ozkan et al., 2001; 

Shaked et al., 2001), a wheat synthetic allopolyploid, and a rice hybrid (Xiong et al., 1999) also 

showed alteration in genome methylation. All these studies showed that allopolyploids are 

subjected to epigenetic alterations, namely DNA methylation. Overall, sequences that are 

actively transcribed are often less methylated than silent genes, either in promoter or coding 

region (Finnegan et al., 1993). Hence, epigenetic regulation through DNA methylation may 

suppress gene expression, an essential achievement for allopolyploids success, whereas 

respective demethylation may cause their reactivating.  

Until now, a huge range of methods in order to detect DNA methylation have been developed. 

The classical techniques are based on bisulfite conversion, methylation-sensitive restriction 

enzymes or affinity purification of methylated DNA. The basic principle of bissulfite 

conversion is the treatment of DNA with sodium bisulfite, which converts every unmethylated 

cytosine to uracil and then to thymine by PCR. Once sequences are obtained and analyzed, 

methylation polymorphism is possible to uncover. While the last method is more frequently 

used to analyze methylation polymorphism, the others enable to analyze the whole genome 

methylation. Affinity enrichment of methylated DNA uses an antibody or a methyl-binding 

domain (MBD) protein to obtain, by attaching to a column, the methylated DNA through 

affinity purification. In addition, some kits use specially treated strip wells that have a high 

DNA affinity. The methylated fraction of DNA is detected using capture and detection 

antibodies and then quantified colorimetrically/fluorimetricaly by reading the absorbance in a 
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microplate spectrophotometer. The amount of methylated DNA is, then, proportional to the OD 

intensity measured. On the other hand, methyl-sensitive restriction enzymes have been used on 

several techniques Hpa II and Msp I recognize the same restriction site (CCGG) but possess 

different sensibilities to certain methylation states of cytosine, whereas Hpa II does not cut if 

one of the two adjacent cytosine are fully methylated (double strand), Msp I does not cleave if 

the external cytosine is fully or hemi methylated (single strand) (McClelland et al., 1994). In 

other words, the fully-methylation of the internal cytosine or hemi-methylation of the external 

cytosine at CCGG sites can be unequivocally distinguished by these isoschizomers. Although 

they do not distinguish all methylated stated of CCGG sequences in the genome, they are a very 

good indicator of the methylation relative content. However, it is important to have in mind that 

methylation percentages are lower than the total absolute values (Mhanni & MacGowan, 2004). 

 

3.The Squalious alburnoides complex 

The Squalius alburnoides (Steindachner) complex belongs to the Cypriniae family and is 

considered an endemic freshwater fish of the Iberian Peninsula, sympatric with other Squalius 

species, S. pyrenaicus, S. caroliterti and S. aradensis. Molecular evidences showed that its 

origin resulted from the unidirectional hybridization between Squalius pyrenaicus (Günther) (P 

genome) (Alves et al., 1997b) as maternal ancestor and a probably extinct paternal ancestor 

related to Anaeccypris hispanica species (Steindachner) (A genome) (Alves et al., 2001; 

Crespo-López et  al.,  2006; Gromicho et al., 2006; Robalo et al., 2006). 

S. alburnoides was described for the first time in 1983 by Collares-Pereira, who identified three 

different ploidies within the complex, diploid (2n = 50), triploid (3n = 75) and tetraploid (4n = 

100). Particularly in Portugal, the distribution of the complex occurs from North to South 

basins, where Squalius species actively contribute with genetic material to the complex. Thus, 

while in southern populations this hybridogenetic complex incorporates the P genome due to the 

S. pyrenaicus interaction, in the North, S. alburnoides interacts with S. carolitertii and 

consequently incorporates the C genome. Additionally, in the restricted southern population of 

Quarteira drainage, S. arandendis also contributes to the complex’s genetic diversity by 

introgression of its Q genome (reviewed in Collares-Pereira & Coelho, 2010). For this reason, S. 

alburnoides is considered an allopolyploid complex. 

Besides, one of the characteristic features of the S. alburnoides complex is its high diversity of 

reproductive modes that promote an intricate network of genetic exchange and continuous 

shifting between different forms. Indeed, it was described that the allopolyploid complex 

possess mechanisms of sexual and asexual reproduction, since depending on its genetic 

composition, it produces gametes with different genomes. Thus, hybridogenesis, meiosis and 

meiotic hybridogenesis are some of the reproductive modes already described (Alves et  al., 
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1998,  1999,  2001,  2004;  Gromicho & Collares-Pereira,  2004;  Pala  &  Coelho,  2005; 

Crespo-López et  al.,  2006;  Sousa-Santos  et  al.,  2007b). Consequently, due to its hybrid 

origin and the variety of reproductive mechanisms, each hybrid could be composed by distinct 

combinations of parental genomes, resulting in the southern populations diploids PA and AA, 

triploids PAA and PPA or tetraploids PPAA, being PPA rarely found. In this complex, the 

constant shift of the genome composition in consecutive generations involving a change on the 

ploidy level, promotes repetitive situations of potential genomic shock. So, and since this 

hybridogenetic complex shows high evolutionary success, it is an excellent organism to 

investigate the allopolyploidization effects (Alves et al., 2001; Crespo‐López et al., 2006). 

Furthermore, the fact that hybrid diploid (PA) and tripoid (PAA), are morphologically 

undistinguished, suggest that gene expression is non-addictive, and so genetic or epigenetic 

silencing mechanisms should be acting.  

 

3.1Gene-copy silencing and dosage compensation 

The allopolyploid S. alburnoides complex must then supplant the expected previously referred 

genetic constrains in order to achieve a functional gene expression programme. Indeed, for the 

first time in triploid vertebrates, the presence of a silencing mechanism was suggested by Pala et 

al. (2008) by studying this complex, specifically in individuals from southern populations. It 

seemed that there was a response to the increase of gene dosage since the PAA triploid form had 

some alleles with reduced transcript levels to a diploid state. Thus, since there were no 

significantly differences in the expression between diploids and triploids, a dosage 

compensation mechanism was proposed (Pala et al., 2008; Pala et al., 2010). 

Consequently, the question about whether the silencing occurs preferentially in a species 

specific genome emerged. To answer that it was necessary to proceed to a genome-specific 

allele expression of the triploid hybrids. In each analyzed housekeeping or tissue-specific gene, 

two different situations were verified depending on the tissue: exclusive expression of A 

genome or both genomes being expressed. These results revealed the existence of silencing in 

the P allele or in one of the A alleles, in order to mimic the diploid expression. Additionally, 

when comparing different genes and observing each tissue, the more frequent situation is the 

silencing of the alleles from the minority genome (P), instead of being random (Pala et al., 

2008). 

However, this pattern was recently described to vary within the complex, according to the 

geographical origin and consequently, according to the genomes involved in hybridization 

process. Thus, contrarily to southern populations, in northern population polyploids exhibit 

preferential biallelic gene expression patterns, irrespective of genomic composition (Pala et 

al. 2010). In spite of knowing that gene expression in the hybrid triploid is non-additive, the 
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mechanisms underlying expression regulation and allele differential silencing are still undefined 

in this species. 

 

 

2. AIMS 

 

This study aims to investigate the genomic mechanisms involved in gene expression regulation 

operating in the Squalius alburnoides complex. Therefore, two possibilities were analysed: 

regulation by microRNAs and DNA methylation. Hence, regarding not only with the 

emergence of hybridization but also the increase of the ploidy level this work intended to focus 

on the specific goals, detect changes in the microRNA expression profile and Changes in the 

genome wide-DNA methylation  

 

Thus, to accomplish these aims it is essential to use in this study not only the hybrid triploids 

(PAA) and diploids (PA), but also the non-hybrid form of the complex (AA) and the interacting 

species in the region of the study, Squalius pyrenaicus (PP). The first goal were achieved 

through the construction of four small RNA libraries of the genomic compositions mentioned 

above and posterior sequencing by next generation technologies or microarray hybridization 

technology. The second goal was achieved by approaches using endonucleases with different 

sensibility to methylation and an immuno assay. Hereupon, what this study pretends is to gather 

data about these pre- and post-transcriptional mechanisms, allowing us to comprehend whether 

they play a role and if they do, how much they contribute to a wider regulation or a finer tuning 

of the constant shifting between the forms of the S. alburnoides complex. 
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3. MATERIALS AND METHODS 

3.1. Sampling and genomic constitution determination  

Squalius alburnoides specimens were collected from Almargem river basin, in the south of 

Portugal and Squalius pyrenaicus individuals were sampled in Colares stream. Fish was 

captured by electrofishing and had approximately 10 cm long. 

After settle all the fish in the fish facility, blood samples were collected in freezing solution and 

immediately frozen at -80ºC. Ploidy level was obtained by flow cytometry according to 

Próspero and Collares-Pereira (2000). Each genome contribution was determined according to 

Inácio et al., 2010. 

3.2. RNA extraction 

Fish were acclimatized in captivity for two weeks to ensure that their microRNA expression 

was not affected by external factors such as stress. After, captured fish were sacrificed by 

overdose of anaesthetic MS222 and the respective organs collected and preserved in 

RNAlatter® (Ambion) at -20ºC. 

Total RNA was extracted from liver, muscle and brain using the Tri-reagent (Ambion) and 

following the suppliers’ instructions. Contaminant DNA was eliminated by the addition of 

TURBO™ DNase (Ambion) and further purification with fenol/chloroform. Ethanol, Glycogen 

and Sodium Acetate (NaOAc) were used to achieve RNA precipitation. 

Quality evaluation of the extracted RNA was performed in Nanodrop 1000 (Thermo Scientific) 

and in 2100 Bioanalyzer (Agilent Technologies). The concentrations were also registered. 

3.3. Library construction and sequencing analysis 

To construct the smallRNA libraries, only RNA samples with a RIN greater than 8 

(Bioanalyzer) were considered. Three different organs (muscle, brain and liver) from about 

three individuals of the same genomic composition were pooled together for library 

construction. Four libraries were prepared one from S. pyrenaicus (PP) and three from the 

different main forms of S. alburnoides: AA, PA and PAA. Each library was made following the 

Illumina protocol Small RNA v1.5. It consists on the ligation of 5’ and 3’ RNA adaptors to the 

total RNA extracted, which were then reverse transcribed with primers complementary to the 

adaptors and size-fractionated on a 6% PAGE gel to collect the small RNAs of 22-30nt. 

Libraries were shipped in dry ice to Beijing Genomics Institute (BGI), Hong Kong, where they 

passed the Bioanalyzer and real-time PCR quality controls. Then, the same amount of each 

library was sequenced by the Illumina technology - Solexa. Bioinformatic analysis was also 

performed in BGI.  
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After trimming the low quality reads, contaminants, adaptors at both 5’ and 3’and reads shorter 

than 18nt, cDNA sequences were mapped to Danio rerio by SOAP programme. Annotation was 

made not only using the miRBase 15.0 database (http://www.mirbase.org/) for the 

precursor/mature miRNA, but also using the GenBank (http://www.ncbi.nlm.nih.gov/) and Rfam 

9.1 (http://www.sanger.ac.uk/software/Rfam) databases, since  many other sequences of exons, 

introns, tRNA, rRNAs, snoRNAs and snRNA were obtained. In order to avoid the classification 

of each unique sRNA into several categories priority was given to rRNA, miRNA, exon and 

intron classes, by this order. In addition, GenBank had priority over Rfam database. All the 

clean tags were grouped so that each unique sequence from each category had its associated 

umber of reads (counts). Tags that could not be annotated to any category were used to predict 

novel miRNA, by the BGI’s software Mireap (Fig 1). 

 

 

 

 

 

 

 

 

 

 

Fig 1 Scheme representing standard bioinformatics analysis applied to 35nt Solexa sequences after the data trimming. 

3.4. Hybridization in microarray chip and data treatment 

The same RNA pools that were used to construct the sequencing libraries were also subject to 

microarray analysis in a miRNAChip_MS_V1 produced by National Facility for DNA 

Microarrays (University of Aveiro). For that, RNA was reverse transcribed and cDNA was 

labeled using the miRNA labeling kit from Kreatech. Two µg of cDNA were incubated with 

Cy3-ULS (1 µl of Cy-ULS for 1 µg of cDNA) for 15min at 85ºC and then purified to remove 

non-reacted Cy-ULS. Dye incorporation was monitored by UV-visible spectroscopy. 

Hybridizations were performed at 42ºC for 16h and later, slides were washed according to the 

manufacture’s recommendations and scanned using an Agilent microarray scanner. Resulting 

images were analyzed using QuantArray to extract microarray data. Cy3 median pixel intensity 

exon/intron 
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values were background subtracted, normalized and subjected to further analysis. Data points 

were removed when intensity values were below 200% of background. A specific normalization 

of microarray data was applied using BRB ArrayTool. This part of the work was performed in 

collaboration with Cesam, Universidade de Aveiro. 

3.5. DNA extraction and 5-mC Immuno assay 

Genomic DNA was extracted from fin, muscle liver and blood following standard 

phenol/chlorophorm extraction protocol of the digested tissue with SDS (Miller et al.  1988). In 

order to avoid incorrect gDNA quantification due to RNA contamination, RNase (Sigma) 

digestion was performed. Quality evaluation and concentration were carefully assessed by 

agarose gel electrophoresis and Nanodrop 2000 (Thermo Scientific). MethylFlash™ Methylated 

DNA Quantification Kit – Fluorometric (Epigentek) was used to quantify genome-wide levels 

of 5-methylcytosine (5-mC) in each organ of each genomic composition. The optimal 

recommended quantity of 100 ng was used in all reactions including negative and positive 

controls. 5-mC was retained in the respective well and capture antibody followed by detection 

antibody was applied. Samples fluorescence were measured in Zenyth 3100 (Anthos) using the 

required excitation filter. Then, the relative fluorescence units (RFU) data was treated according 

to the following formula: 

 

 

                            - genome wide levels of 5-methylcytosine per individual;      - fluorescence 

measured for each sample;         - fluorescence measured for negative control, DNA non 

methylated;         - fluorescence measured for positive control, DNA composed by 50% of 5-

methylcytosine;       - amount of input DNA for each sample in ng;      - amount of input positive 

control in ng;      - factor to normalize positive control to 100% 

As there were only few reactions available, samples were selected according to their quality. In 

this case, although muscle’s DNA were from three individuals of the same genomic 

composition (except for AA -2 individuals), fin and liver’s DNA were obtained only from 2 

PAA, 2 PA, 1 AA and 1 PP. In addition, blood’s DNA was from 3 PAA, 2 PA, 1 AA, 1 PP and 

in this special case, also 1 PPA. 

3.6. Msp I / Hpa II assay 

DNA previously extracted from the fin used in this assay were the same as in the previous 

method, however in this case it was possible to use a greater number of individuals. Thus, seven 

individuals of each genomic composition PA, PAA, AA and PP and even three PPA individuals 

5˗𝑚𝐶 % =  
 𝑥 −𝐶𝑛 ÷ 𝑆

 𝐶𝑝 −𝐶𝑛 × 2 ÷𝑃
 × 100%  

 𝑥  5˗𝑚𝐶 %  

 𝐶𝑛  

 𝐶𝑝  

 𝑆   𝑃  

 2  
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were analysed. One µg of each sample was digested with either Msp I or Hpa II restriction 

endonucleases at 37ºC for 16h with manufacturer-supplied buffers. This digestion time was the 

maximum time recommended by the manufacturer which was confirmed by the achievement of 

complete digestion of the control plasmid pBR322. Efficiency of the enzymes was also tested 

by comparing with the negative control, where no enzyme was added to samples. Three 

independent electrophoresis, comprising digestions with both enzymes in the same 1% agarose 

gel, were performed for each sample as technical replicates. Each gel, stained with RedSafe™, 

was visualized using a transilluminator (Uvitec) and images were captured digitally by Kodak 

DC290 and analysed in Image J 1.44p software. Image densitometry analysis comprised the 

measure of the mean intensity of the visible smear obtained in the respective lane, for both 

enzymes. The region scanned corresponded to mid and low molecular weight DNA restriction 

fragments, avoiding the regions of high and very low weight due to the saturation of the signal. 

Then, gDNA methylation percentage was calculated as follows: 

 % = 1  (
     

      
) × 100 

 % - genome wide DNA methylation for each individual;                  - mean intensity 

values of independent experiments of the digestion with Hpa I and Msp II endonucleases, 

respectively. 
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4. RESULTS 

4.1. MicroRNAs 

 

4.1.1. High-throughput sequencing  

 

Small RNA libraries 

In order to evaluate whether expression profiles of, miRNAs were influenced by the genetic 

shock created by the constant shifting in the genomic compositions, four small RNA libraries 

from three genomic compositions AA, PA and PAA of S. alburnoides as well as one from 

Squalius pyrenaicus (PP) were sequenced using Illumina technology. For each library, total 

RNA extracted from muscle, brain and liver was pooled together. Each run produced 

68.926.168 (AA), 70.090.456 (PP), 69.740.296 (PA) and 66.362.907 (PAA) reads. After 

cleaning the data (discarding low quality reads, removing the adaptors and contaminants 

generated by ligation and sequences shorter than 18 nucleotides), 44.384.528 (64,39% out of the 

total reads), 43.137.518 (61,85%), 43.461.092 (65,49%) and 42.549.707 (60,71%) clean 

sequences remained from AA, PA PAA and PP libraries, respectively. In whole, this has 

generated ≈ 173.5 million of clean small RNA reads. Moreover, their length distribution 

presents a similar pattern among the libraries as well as an overall greater amount of sequences 

composed by 20-23 nucleotides in length, being the featured peak the one representing the 22 

nucleotides length (Fig 2).  In general, the distribution obtained by sequencing corroborates the 

sRNAs libraries quality since the traditional length of one of the most predominant class - 

miRNA is 20-23 nt (Lu et al. ., 2010). Interestingly, a contrast among the libraries is observed 

in the 31nt length sequences, in which the analysed triploid form, PAA, presents approximately 

2-fold (10,77%) comparing not only to the other diploids of the complex (AA and PA) but also 

to PP, 5,52%, 4,42% and 5,24%, respectively. A similar pattern was seen in the 33nt length 

sequences.

 Fig 2 Length distribution of the sequences in all the libraries. 
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Tab 1 Pair-wise comparisons of all unique sequences 

between every genomic composition. A Percentage of 

unique sequences specific from the compared genomic 

compositions. B Percentage of unique sequences common 

among the compared genomic compositions. 

When grouped in unique non-redundant small RNA sequences, 2.133.078 (AA), 1.691.614 

(PA), 2.358.444 (PAA), 2.607.075 (PP) distinct sequences were obtained.   

After analyzing the common and specific 

sequences of each pair-wise comparison, it is 

clear that although most of the total sequences 

are common among libraries, varying between 

 ≈92,5% and ≈95,2% (AA-PP 92,48%; PA-

PAA 95,17%; PA-AA 94,59%; AA-PAA 

93,81%; PA-PP 93,39%; PAA-PP 92,47%), 

when non-redundant sequences were analyzed 

and PAA was compared with the other forms of 

the complex it revealed more percentage of 

exclusive sequences (53,23% - PAA vs. 

34,80% - PA; 47,93% - PAA vs. 42,42% - AA) 

(Tab 1A). However, both nuclear hybrids (PA 

and PAA) presented more sequences in 

common (≈12%) (Tab 1B). On the other hand, 

PP shared less common sequences with all the 

forms of the complex, ≈7-8% (Tab 1B).  

 

 

Small RNA annotation and length distribution 

Using the ensemble database, clean reads were mapped to Danio rerio genome, the only 

Cyprinidae that already has its genome sequenced. Whereas AA, PA and PAA possess 

29.869.369 (67,30%), 28.774.125 (66,70%) and 22.612.648 (52,03%) aligned total reads, 

respectively, PP has 24.344.581(57,21%). The percentage of aligned reads was in accordance to 

another Cyprinidae study (Chi et al., 2011). After, in order to classify the sRNA into different 

categories all the sRNA that matched or not the genome, were annotated using miRBase, 

GenBank and Rfam databases. While miRBase was used to annotate miRNAs, GenBank and 

Rfam were the databases chosen to annotate the remaining sequences.  The most represented 

class was miRNA with 58,96% (AA), 62,46% (PA), 42,95% (PAA) and 44,22% (PP), 

proportions that are in accordance with the frequencies of annotated miRNA in the literature (Lu 

et al., 2010; Chen et al., 2005) and with results from Fig 2, considering the normal miRNA 

length. This was followed by unnanotated sequences, whose frequencies correspond to 28,75% 

(AA), 28,70% (PA), 41,76% (PAA) and 37,00% (PP). Additionally, degradation products from 

 PAA PA AA 

 PA 

53,23% 

34,80% 

  

AA 

47,93% 

42,42% 

38,83% 

51,49% 

 

PP 

43,13% 

48,55% 

34,21% 

57,31% 

40,74% 

51,51% 

 PAA PA AA 

PA 11,97   

AA 9,65 9,69  

PP 8,32 8,47 7,75 

A 

B 

A 
B 



24 
 

tRNAs, snRNA, snoRNA, rRNAs, exons and introns were also identified, even though 

underrepresented (Table S1 and Fig 3). 

  

 

  

 Fig3 Length distribution of the sequences in the four libraries AA, PA, PAA and PP of the following identified 

categories: snRNA, tRNA, unannotated, snoRNA and rRNA.  

By analyzing the length distribution of all the RNA categories excluding miRNAs, (Fig 3), it 

was clear that the higher peak of 31nt (Fig 2) in the triploid PAA was from unannotated 

sequences (4.413.544 – 10,15% in PAA; 2.413.188 – 5,44% in AA; 1.873.619 – 4,34% in PA; 

1.927.299 – 4,53% in PP).  Curiously the same was observed for the higher 33nt length peak of 

PAA (2.040.515 – 4,69%). On the other hand, the unannotated sequences present in the 22nt 

length peak indicate the potential unknown miRNAs in all the libraries, whereas, as expected, 

known miRNAs contributed for the majority of the sequences of the 22nt peak (Fig S1). 

 

miRNA expression profile 

In order to untangle the microRNA expression profile, it was essential to align sRNA reads to 

each mature or precursor miRNA in miRBase, either from Danio rerio or from other organisms 

of the database, associating each unique miRNA to its respective count. However, to compare 

the miRNA expression of each miRNA the expression of each miRNA was presented in units of 

transcript per million (TPM) which considers the proportion of total clean reads in each library. 
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Fig4 Pair-wise comparisons in log2 plots of miRNA expression profiles between the genomic compositions AA, PA, 

PAA and PP, obtained through RNA-seq method. Genomic composition displayed on the x-axis was considered the 

control, while treatment is exhibited on the y-axis. A, B, C Pair-wise comparisons including only genomic 

compositions from S. alburnoides complex,. D, E, F Pair-wise comparisons including S. pyrenaicus and the genomic 

compositions of the complex.  

Using TPM, pair-wise comparisons were performed, inferring the up- and down-expressed 

miRNA. In each comparison, two genomic compositions were presented as control vs. 

treatment. Two criteria to determine the up- and down-regulated miRNA were then established: 
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first, their fold-change and second, respective p-value (Tab S2 and Fig S2). So, the significant 

up-expressed miRNAs were considered the ones presenting an expression superior to 2-fold 

(log2 (fold-change) > 1), whereas significant down-regulated miRNA showed half of the 

expression (log2 (fold-change) < -1). Additionally, p-value was obtained following Audic et al. 

(1997) which takes into account random fluctuations and sampling size. Hereupon, although the 

expression of some miRNA was significantly different (p-value<0,01), they were not 

considered significant up- or down-regulated, since they did not met  the first criteria (Table 2). 

On the other hand, all the significant up- and down-regulated miRNA presented their p-value 

below 0,01 and were differently marked in the plots (Table 2 and Fig 4). 

 

Table2 Quantification of total and significant up- and down-expressed miRNA in each pair-wise comparison and 

respective percentage, in the RNA-seq method. Note that the values presented are for treatment (genomic 

composition represented in bold). Fold-change was calculated using all the differentially expressed miRNA, except 

when is demonstrated (w out), meaning that fold change was calculated without the one most distant outlier. 

 PA-AA AA-PAA PA-PAA AA-PP PA-PP PAA-PP 

 total ** total ** total ** total ** total ** total ** 

Up-expressed 
68 

(33.3%) 

15 

(55,6%) 

96 

(47.0%) 

6 

(26.0%) 

50 

(24.8%) 

10 

(52.6%) 

76 

(37.6%) 

5 

(10.0%) 

140 

(69.3%) 

3 

(6.5%) 

82 

(40.8%) 

6 

(16.7%) 

Down-expressed 
136 

(66.7%) 

12 

(44,4%) 

108 

(53.0%) 

17 

(74.0%) 

152 

(75.2%) 

9 

(47.4%) 

126 

(62.4%) 

45 

(90.0%) 

62 

(30.7%) 

43 

(93.5%) 

119 

(59.2%) 

30 

(83.3%) 

Total 204 27 204 23 202 19 202 50 202 46 201 36 

Average ** 

Log2(fold-change) 

2.45 – 1.91 

(w outl) 1.25 – 1.91 
3.12 – 1.40 

2.71 – 1.71 

(w outl) 1.19 – 1.71  
2.79 – 1.39  2.03 – 1.26  2.30 – 1.13  

** significant up- or down-expressed miRNA that were considered superior to 2-fold or half expression 

The most evident different miRNA expression profile was from S. pyrenaicus (PP), which 

showed a general lower miRNA expression comparing to any of the other genomic 

compositions from S. alburnoides complex (Fig 4 D, E, F). Indeed, a chi-square test was 

performed to test if the quantity of up- or down-regulated miRNA were significantly different in 

each library. Whereas all the pair-wise comparisons containing PP obtained a low p-value (p-

value<0,01), the remaining comparisons (Fig 4 A, B, C) between the genomic compositions of 

the complex, PA-AA (p-value=0,846), AA-PAA (p-value=0,022) and PA-PAA (p-

value=0,818) seemed to have no significantly differences (p-value>0.01). However, considering 

not just the significant, but all the up and down expressed miRNAs in the libraries, all the 

comparisons are different, except for PAA vs. AA. 

Regarding the fold change of the significant differently expressed miRNAs, the average of the 

up or down values was not considered significant different by the Mann-Whitney U test in none 

of the comparisons.  
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Novel miRNA 

Afterwards, all unannotated but mapped to genome sequences were used to predict unknown 

miRNA, based on miRNA precursor characteristic hairpin structure. Secondary structure, Dicer 

cleavage site and minimum free energy were used as the main parameters to identify novel 

miRNAs, among others, by the Mireap software. In total, 80 (AA), 67 (PA), 56 (PAA) and 54 

(PP) unique miRNA were predicted, being 21770, 25489, 19015 and 13954 the total counts 

respectively. From those, targets of all the novel miRNA were also predicted, except for PP in 

which only 4 from the 54 novel miRNA were possible to find. Thus, 442,040, 385,116, 304,152 

and 18,073 targets were obtained for each library, respectively. 

 

 

4.1.2. MicroArrays 

 

miRNA expression profile 

Using the same RNA’s pools of sequencing libraries and in order to support the sequencing 

data, microarrays hybridization for miRNAs were conducted in chips designed including 

miRNAs from Danio rerio species. After data extraction, normalized miRNA profile expression 

was obtained. These data were plotted in log2ratio pair-wise plots and analyzed in order to 

understand whether the pattern obtained by this method was similar to the sequencing data. 

In this analyses, the most different miRNA expression (here represented by +) was inferred by 

the same condition used in the RNA-seq (+ up-expressed (log2 (fold-change) > 1 or + down-

expressed (log2 (fold-change) < -1). 
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 Fig 5 Pair-wise comparisons in log2 plots of miRNA expression profiles between the 

genomic compositions, AA, PA, PAA and PP, obtained through microarrays. Genomic 

composition displayed on the x-axis was considered as control, while treatment is 

exhibited on the y-axis. Note that the blue zone was considered the technical background 

A, B, C Pair-wise comparisons including only genomic compositions from S. alburnoides 

complex, AA, PA and PAA. D, E, F Pair-wise comparisons including S. pyrenaicus and 

the genomic compositions of the complex, AA, PA and PAA. G Example of a hybridization in a microarray chip. 
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Table3 Quantification of total and significant up- and down-expressed miRNA in each pair-wise comparison and 

respective percentage, in the microarray hybridization method. Note that the values presented are for treatment 

(genomic composition represented in bold). Fold-change was calculated using all the differentially expressed 

miRNA. 

 PA-AA AA-PAA PA-PAA AA-PP PA-PP PAA-PP 

 total + total + total + total + total + total + 

Up-expressed 
111 

(46.3%) 

6 

(60.0%) 

118 

(49.0%) 

5 

(50.0%) 

108 

(44.6%) 

3 

(100.0%) 

117 

(49.2%) 

7 

(58.3%) 

120 

(50.2%) 

6 

(35.8%) 

130 

(54.2%) 

5 

(29.4%) 

Down-expressed 
129 

(53.7%) 

4 

(40.0%) 

123 

(51.0%) 

5 

(50.0%) 

134 

(55.4%) 

0 

(0.0%) 

121 

(50.8%) 

5 

(41.7%) 

119 

(49.8%) 

8 

(57.1%) 

110 

(45.8%) 

12 

(70.6%) 

Total 240 10 241 10 242 3 238 12 239 14 240 17 

Average + 

Log2(fold-change) 
2.44 – 2,15 2.20 – 1.98 0 – 1.22  2.01 – 1.36  2.00 – 2.35  1.62 – 2.45  

+ up- and down-expressed miRNA that were considered superior to 2-fold or half expression 

 

Once more, the most evident different miRNA expression profile was from S. pyrenaicus (PP), 

which showed a general lower miRNA expression comparing to any of the other genomic 

compositions from S. alburnoides complex (Fig 5 D, E, F). Additionally, the chi-square test 

performed to test if the quantity of differently (+) up or down expressed miRNA were 

significantly different in the same library, never showed a low p-value (p-value<0,01), meaning 

that none of the miRNA profiles seemed to be different. The same result is obtained if we 

consider all the up- and down-expressed miRNAs in the libraries. 

However, it is important to take into consideration that most of the miRNA showed an 

expression lower than the threshold that was considered background in the array.  

 

 

4.1.3 Comparison of sequencing and microarray hybridization results  

By means of comparing the sequencing and microarray data it was possible to verify the 

accuracy of the data obtained by both methods.  

In fact, the overall expression profiles between the different genomic compositions seemed to be 

alike among methods, with similar patterns between the forms of the complex but S. pyrenaicus 

showing a more distant profile.  

Nevertheless, individual analysis of each miRNA presented non reproducible results. Indeed the 

differently expressed miRNAs in both methods were mostly not the same (Tab S2, S3) and by 

analysing each same miRNA between methods, it was possible to verify that only eight out of 

forty seven miRNA exhibited a similar change of expression between genomic compositions 

(Fig 6).  
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Fig 6 Fold-change of expression between the different genomic compositions of the miRNAs possessing similar 

expression pattern among high-throughput sequencing and microarray hybridization data. Differential expression was 

observed in the following comparisons. dre-miR-101a: seq PA-PP PAA-PP AA-PP, microarrays PA-PP PAA-PP 

AA-PAA PA-AA; dre-miR-130b seq: AA-PAA; dre-miR-192: seq PAA-PP PA-PAA; dre-miR-31 seq AA-PAA PA-

PAA AA-PP; dre-miR301b; dre-miR-460-3p; dre-miR-454b seq PAA-PP, microarrays PAA-PP; dre-miR-93 seq 

AA-PAA PA-PAA AA-PP 

 

4.2. Genome wide methylation 

 

4.2.1 Immunoassay  

The content of 5-mC was determined by a fluorimetric immunoassay which is based on the 

recognition of 5-methylcytosin by specific capture antibodies posteriorly linked to detection 

antibodies.  Genomic compositions utilized in this method were the same as the used in the 

sequencing task, AA, PA, PAA and PP from several tissues. DNA was from blood, fin, muscle 

and liver and was extracted from 7 to 5 individuals from the complex, as well as 1 or 2 

individuals from S. pyrenaicus species. DNA extracted from blood of one PPA was also used. 

Given the few individuals considered, a statistical analysis of the data could not be performed. 

However, despite the low number of individuals, observing Fig 7A what stands out most in 

these data is the difference of the methylation content among the DNA from different types of 
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cells. Blood cells showed the highest amount of 5-mC (mean 39.7%), followed by fin (19.0%), 

muscle (13.1%) and liver (11.0%). Since the results were in agreement with the expected given 

the low diversity of genes being expressed in red blood cells (mainly globins), confidence on 

the method was gain and it was decided to look closer to a tissue that allowed us to expand 

further the DNA methylation analysis (see next section). That tissue was fin since it is easiest to 

obtain and does not involve the fish to be sacrificed. So, although with no statistic power, we 

took into consideration the patterns of DNA methylation in each genomic composition in the fin 

(Fig 7B). 

  

Fig 7 Quantification of 5-mC in genomic DNA. A 5-mC percentage of DNA from blood, liver, muscle and fin in the 

S. alburnoides complex, including diverse genomic compositions (PAA, PA, AA, and PPA) and in S. pyrenaicus B 

Fold-change of DNA 5-mC content from fin in PAA, PA, AA and PP. The data represent the average values ± 

standard deviation of the mean.  

 In particular, fin’s DNA showed a pattern where non-hybrid genomic compositions AA and PP 

exhibited the least 5-mC content. Hybrid triploid PAA showed the highest percentage while PA 

intermediate values. 

As mentioned before in order to expand the sample size, further fin’s DNA methylation analysis 

was applied to S. alburnoides and S. pyrenaicus individuals using another method, the Msp I / 

Hpa II assay. 

 

 

4.2.2. Msp I / Hpa II assay 

 

In order to calculate DNA methylation, isoschizomers of restriction enzymes with different 

methylation sensibilities were used. This technique allows inferring the methylation content of a 

sample by measuring the densitometry intensities from images of smears obtained from 

electrophoresed gels with samples digested with one and another isoschizomer. Although 

recognising the same restriction site CCGG site, they show different sensibilities to certain 

methylation states of cytosine. Whereas Hpa II does not cut if one or the other cytosine are fully 
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methylated (double strand), Msp I does not cleave if the external cytosine is fully or hemi 

methylated (single strand) (McClelland et al., 1994). So, even if not distinguishing all 

methylated states of CCGG sequences in the genome, they are a very good indicator of the 

methylation relative content, which could be calculated using the ratio between image 

densitometry results from both enzymes. Therefore, each DNA sample from fin was digested 

with either Hpa II or Msp I, run in two different lanes of an agarose gel and thereby the relative 

percentage of DNA methylation was calculated. Before, the efficiency of the restriction 

enzymes was confirmed by running in parallel the non-digested and the same DNA digested by 

Hsp II or Msp I (Fig 8A). An example of the Msp I/Hpa II assay is shown in Fig 8B where each 

sample was digested with either Msp I or Hpa II isoschizomers. In total, seven individuals from 

each genomic composition (PAA, PA, AA and PP) and three independent gels were analysed. 

Three PPA individuals were also studied. All the scan measurements were performed 

approximately between 1 and 4kb to guarantee that the saturation acquired in high and low 

molecular weight DNA was avoided. 

After densitometry analysis, methylation degree was obtained and statistical analysis was 

performed in order to compare the different genomic compositions. Thus, results show that the 

hybrid triploid PAA presented the highest methylation content (23,2%), comparing to PA 

(7,9%), AA (10,2%), PP (8,7%) and PPA (13,5%) (Fig 8C). As well as in the previous 

technique the non-hybrid genomic compositions, namely AA and PP possessed their genome 

less methylated than the triploid PAA. On the other hand, AA also showed more methylation 

content than PP. Here, PA presented the lowest methylation degree, almost 3-fold lower than 

PAA and almost 2-fold lower than PPA. PPA seemed to possess intermediate methylation 

content. Hence, it seemed that part of the pattern obtained by this method remained preserved 

comparing to the general pattern achieved in immunoassay technique with PAA showing a 

higher methylation patterns than all the other genomic compositions. 

In the statistical analysis, the dataset met the assumptions of homoscedasticity, however did not 

presented a normal distribution (assessed by Shapiro-Wilk test). Removal of one outlier that did 

not exhibit a normal distribution (one from PP which was confirmed by box-plot analysis) 

allowed the dataset to satisfy the ANOVA’s assumptions. Regardless of having datasets that 

fulfil or not ANOVA’s assumptions, two tests were performed, one including all data and 

another with the outlier removal. The first post hoc multiple comparisons Tukey test revealed 

that PAA possessed a significant higher methylation content comparing to the other genomic 

compositions PA (p=0.001), AA (p=0.006) and PP (p=0.002), but not to PPA, which did not 

differed significantly from any other genomic composition. AA and PP genomic compositions 

did not differ from each other as well as from diploid hybrid PA. Once PP outlier was removed 

the dataset interpretation remained the same although the significantly different presented 

changed p-values (p=0.000; p=0.002; p=0.000, respectively). 
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Fig 8 Msp I / Hpa II restriction assay. A Agarose gel presenting non-digested (nd), Hpa II (H) and Msp I (M) 

digested samples. B Example of an agarose gel of the Msp I/Hpa II assay, where lanes containing Hpa II and Msp I 

digested samples contained visible image densitometry variances. C DNA methylation percentage of each genomic 

composition analyzed (PAA, PA, AA, PP and PPA) and respective error bars. Statistical results (ANOVA) are also 

represented, * meaning statistically different with p<0,006 

 

Additionally, since the assumptions were not fulfilled for the whole dataset, non-parametric 

tests were also accomplished. Thus, Kruskal-Wallis test pointed to the PAA having significantly 

higher methylation degree comparing to PA (p=0.016) and to PP (p=0.010). Here, however, the 
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hybrid diploid PA do not show a significant lower methylation degree than PAA (p=0,210). All 

other comparisons were, as in parametric tests, not significantly different. 

 

5. DISCUSSION 
 

5.1 MicroRNAs expression as a post-transcriptional regulation mechanism 

MicroRNA expression profile of four libraries was assessed using NGS and microarrays 

hybridization. Since the proposal of this study was to compare different genomic compositions 

including different ploidy levels, the use of the same amount for each case, either in the NGS or 

in microarrays was  attempt in order to facilitate the comparison among samples. 

In the first approach, the platform used was Illumina technology which allowed obtaining a high 

volume of data. Thus, in this study, an overwhelming number of reads per library was provided, 

in comparison with the recent studies using the same platform. Whereas, on those, each run 

produced an average of only ≈ 6-10 million of high quality reads (Lu et al., 2010; Xu et al., 

2010), the current work yielded ≈ 43 million, approximately four to seven times more. 

Apart from the expected majority of 22nt reads containing miRNAs, it is intriguing that, by 

distributing the sequenced clean reads in a length plot, an evident peak of sequences with 31nt 

appears in the PAA genomic composition. Although it could be a technical artifact, it is not 

likely that this 31nt length sequences appeared randomly, since it is more evident on the triploid 

forms and it was not demonstrated any proportional increase in the other length classes. These 

triploid’s sequences were two times more frequent than in the other libraries, suggesting a 

higher expression of approximatly 31nt length particular sequences. Once reads were annotated, 

this peak was, in fact, mainly composed by unannotated sequences. So, it is possible that some 

classes of non-coding small RNA, other than miRNA are being expressed in triploid forms 

rather than in the other diploid genomic compositions analysed (AA, PA and PP). Given its 

length, it might be that this greater peak was caused by the increase of piRNA, ranging between 

24 and 30nt. Identified in germ cells (Siomi et al., 2011) and also somatic cells (Malone et al., 

2009), piRNAs are directly involved in transposon repression, which would justify its increase 

in the triploid form. However, further investigation should be accomplished. In addition, the 

same was verified to sequences composed by 33nt length. 

The majority of clean reads could be aligned to Danio rerio genome, since miRNAs are 

extremely conserved. Indeed, the obtained mapped reads, were higher than 60%, which is in 

accordance with former studies. Being this step a limiting phase to the whole analysis process, it 

was considered that the mapped reads allowed to greatly overcoming this step. Together, the 

high number of reads obtained, the length distribution indicating a high quantity of 22nt 
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sequences and the percentage of reads mapped to the reference genome in all the libraries, 

indicate the great quality of the samples. Further analysis could, then, be performed. 

An overall specific and common reads in each library, before the mapping, were also assessed.  

Is was interesting to verify that PP presented more exclusive sequences, as expected from 

another species, while within the complex it was the PAA presenting the higher percentage, 

which could be related with the greater amount of the unannotated sequences of 31 and 33 nts in 

the PAA library. 

After the genome alignment, sequences were annotated with several databases. MicroRNA 

proportions of each library were in accordance with other studies (Lu et al., 2010; Chen et al., 

2005). Reads from this class of non-coding small RNA was then converted to TPM to make the 

libraries comparable with each other. This type of conversion is very useful since the total reads 

were different among libraries. However, this measurement does not consider, for example, the 

extent of ribosomal RNA remaining in the sample which could vary between the libraries. 

Consequently, it does not reflect the real accurate abundance into the libraries. 

 

MicroRNA expression pattern 

Observing both methods, RNA-seq and microarrays, it was clear that miRNAs are mostly 

differentially expressed between Squalius pyrenaicus and the genomic compositions of Squalius 

alburnoides complex. This can be explained by the fact that PP is a different independent 

species with its own microRNA expression pattern. Additionally, it was verified that PP, had 

always its own microRNA expression down-regulated in comparison with the individuals from 

the complex. Since S. pyrenaicus is only a sperm donor to the complex, its expression is not 

affected by any event of polyploidization or hybridization. On the other hand, it makes sense 

that miRNAs in S. alburnoides were more expressed than in S. pyrenaicus, since the constant 

shifting in the forms could create genomic shock, sometimes overcome by gene silencing 

mechanisms. 

On the other hand, when comparing samples within the complex, the miRNA expression is 

expected to be different since constant new genome combinations are being formed causing 

genome instability. However, this did not seem to happen. In RNA-seq, when comparing the 

different forms of the complex by taking into account the number of miRNA significantly 

differently expressed and considering the number of up vs. down regulated as well as their fold-

change, no significant differences were observed. In the microarray technology, the pattern of 

the comparison within the complex seems to be the similar, with all the forms presenting similar 

profiles, but the PP showing a slightly distinct pattern. 

So in general the patterns between both methods are identical and thus, in spite of triploid 

hybrid (PAA) were differentially up-expressing a few miRNAs if compared to hybrid (PA), the 

results suggest that microRNAs do not have a major role in the genetic regulation of the 
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complex. The better technique to evaluate a transcriptome is still controversial. Hence, 

individual analysis of each miRNA was performed to comprehend if the differential up and 

down-regulated miRNA and their pattern were the same. Despite de similarity between the 

patterns obtained in both techniques, individual analysis did not show a reproducible result, 

contrarily to what was postulated by Willenbrock et al. (2009). Indeed, it was verified that the 

differently expressed miRNAs in both methods were mostly not the same.  

This could be have been originated by several reasons. Microarray analysis is always subjected 

to cross hybridization or background. Also, the indirect measurement through fluorescence, not 

having the sensibility to detect slightly differences of miRNA expression, is another huge 

limitation of this method that could have influenced these data. Besides, despite the 

conservation of miRNA among taxa, the using of Danio rerio genome for hybridization or 

mapping of the sequences could also be a limiting step to the reproducibility of this study. 

Since, both methods present different sensibilities, reproducibility might even be diminished 

due to the presence of low miRNA expression differences between the libraries. 

Interestingly, at least in RNA-seq, where almost no outliers were verified, the comparisons 

between triploid and diploids within the complex (PAA vs. PA and PAA vs. AA), were 

identified as the most similar. Besides, interesting to note was the fact that once considering all 

miRNAs, including the no significant differently expressed, the only comparison showing no 

significantly difference in the amount of up vs. down regulated miRNAs was PAA vs. AA. 

Those results are in accordance with the preferentially silencing of P alleles reported for 

mRNAs, suggesting that the miRNA is not playing a role in gene silencing, but rather adapting 

to the environment of a preferentially expression of just A alleles, possible potentiate by another 

regulatory mechanism . 

 

5.2 DNA methylation as a pre-transcriptional regulation mechanism 

 

As microRNA were not significantly different expressed between the genomic compositions in 

S. alburnoides, a pre-transcriptional mechanism might be operating in order to overcome the 

genome instability created by the constant shifting of genomes within the complex. 

DNA methylation was then investigated using the same genomic compositions of the previous 

approach from several organs. Besides, some rare PPA could also be included in this analysis. 

On the other hand, two independent methodologies were used. 

In the first methodology, 5-methylcytosine relative percentage content was assessed in S. 

alburnoides complex and in S. pyrenaicus by organ. In spite of the exception observed in blood, 

in the majority of organs (liver, muscle and fin) the complex showed a confident higher 

methylation percentage than in S. pyrenaicus. Therefore, this suggests that this pre-
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transcriptional mechanism is operating in the allopolyploid complex, at least in some of the 

tissues. 

It is quite obvious the great differences among the analyzed tissues. Our results showed that 

blood cells possessed a higher 5-mC. Blood was found to be more methylated according to the 

few genes under expression (mainly globins). Contrarily, liver was described to possess a high 

variety of gene expression (Shen et al., 2006) and in our data, the tissue showing the lowest 

methylation was precisely the liver, which might be related with a higher gene expression in this 

tissue. Although the real sensibility of this method is unknown, the fold difference of 4 between 

blood and liver should be considered. Moreover, the pattern observed between tissues is 

constant in both species. 

In the second methodology, endonucleases with different sensibilities to methylation were used 

in order to answer the same question. Therefore, although the isoschizomers used do not 

distinguish all the cytosine states in CCGG sequences, it was considered an informative method 

to obtain the relative methylation content (Mhanni & McGowan et al., 2004). In fact, when 

methylation of fin was accessed by this method the pattern obtained was similar to the one 

obtained specifically in fin in the previous approach. Here, triploid hybrids showed a 

significantly higher methylation content than any of the diploids (PA, AA, PP), that did not 

show significantly different DNA methylation content between each other. Moreover, PPA 

which presented an intermediate DNA methylation did not exhibited any statistical differences 

from all the other genomic compositions.  

As by the conjugation of both methods, the DNA methylation content in the fin of hybrid 

diploid PA is uncertain, it only can be suggested that there is difference between PAA and PA, 

being the first more methylated than the last. 

Results point to the existence of a pre-transcriptional regulatory mechanism by DNA 

methylation in the triploid forms, rather than a massive post-transcriptional control. In an 

evolutionary point of view it does not make sense to waste energy transcribing genes that will 

then be regulated by miRNA through blocking the translation or destroying the transcripts. 

Thus, methylation should function as a primary step of regulation in order to buffer the 

polyploidy effect and, only then, microRNAs should be used as a tool to fine-tuning the 

allopolyploid expression of some essential genes is particular.  The lack of a clear effect on 

DNA methylation in the PPA form can be related with its poor statistical power (3 samples 

only). The fact that there are less PPAs in nature could be also related to a weak efficiency of 

DNA methylation, compromising the gene expression regulation and thus the normal 

development of the fish, eventually not surviving as much as the others forms.    
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7. APPENDIX 
 

 

FigS1 Length analysis of sequences identified as miRNA in each library, PA, PAA, AA and PP. 

 

 

 

 

 

Tab S1 Annotation of sequences of each library (AA, PP, PA and PAA) 
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Percent 

(%) 

Unique 

sRNAs 

Percent 

(%) 

Total 

sRNAs 

Percent 

(%) 

Unique 

sRNAs 

Percent 

(%) 

Total 

sRNAs 

Percent 

(%) 

miRNA 6300 0.30% 26168020 58.96% 6179 0.24% 18814080 44.22% 6595 0.39% 26938989 62.45% 6229 0.26% 18666251 42.95% 

unann 1905709 89.34% 12758390 28.75% 2324670 89.17% 15743617 37.00% 1506461 89.05% 12381313 28.70% 2139007 90.70% 18149423 41.76% 

rRNA 76055 3.57% 1661352 3.74% 67960 2.61% 1707323 4.01% 61014 3.61% 1687768 3.91% 74553 3.16% 2535056 5.83% 

snRNA 9275 0.43% 54724 0.12% 11681 0.45% 128340 0.30% 8156 0.48% 59797 0.14% 11183 0.47% 93142 0.21% 

snoRNA 5695 0.27% 67818 0.15% 7910 0.30% 91638 0.22% 7369 0.44% 99150 0.23% 9830 0.42% 163141 0.38% 

tRNA 73725 3.46% 2672865 6.02% 104313 4.00% 4494841 10.56% 54130 3.20% 1330317 3.08% 63677 2.70% 2813046 6.47% 

Exon 

antisense 
9435 0.44% 106634 0.24% 8874 0.34% 240268 0.56% 7753 0.46% 70305 0.16% 8224 0.35% 97637 0.22% 

Exon 

sense 
34528 1.62% 700137 1.58% 60998 2.34% 1027195 2.41% 29763 1.76% 459180 1.06% 34489 1.46% 791073 1.82% 

Intron 

antisense 
6844 0.32% 79469 0.18% 7759 0.30% 187842 0.44% 6062 0.36% 42862 0.10% 6242 0.26% 61297 0.14% 

Intron 

sense 
5512 0.26% 115119 0.26% 6731 0.26% 114563 0.27% 4311 0.25% 67837 0.16% 5010 0.21% 91026 0.21% 

Total 2133078 100% 44384528 100% 2607075 100% 42549707 100% 1691614 100% 43137518 100% 2358444 100% 43461092 100% 
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miR-name PA (TPM) AA (TPM) 
fold-change 

(log2 AA/PA) 
p-value 

dre-let-7f 113.657.675 55.894.703 -1,023911635 0 

dre-miR-1 905.279.251 295.271.587 -1,616320351 0 

dre-miR-126* 2.902.810 1.433.382 -1,018027002 0 

dre-miR-130a 153.926 73.224 -1,07184845 9,62E-16 

dre-miR-133c 929.585 267.886 -1,794967603 0 

dre-miR-150 3.228.512 1.547.161 -1,061246056 0 

dre-miR-15a* 203.767 100.035 -1,026415572 2,72E-22 

dre-miR-19b* 95.277 43.258 -1,139161023 8,07E-07 

dre-miR-29b 6.936.421 3.460.665 -1,003142172 0 

dre-miR-301a 315.966 143.969 -1,134011125 9,39E-51 

dre-miR-499 1.907.157 545.460 -1,805878304 0 

dre-miR-736 14.604 0,2704 -15,7209089 4,71E+04 

dre-miR-107b 812.981 2.840.855 1,805031656 0 

dre-miR-122 36.150.666 153.866.005 2,089580388 0 

dre-miR-18c 207.476 835.201 2,009178978 0 

dre-miR-194a 4.679.917 11.083.141 1,243811956 0 

dre-miR-199 3.488.379 7.059.442 1,016997361 0 

dre-miR-19c 603.419 1.466.502 1,28114701 0 

dre-miR-19d 468.965 1.134.179 1,274096189 4,07E-258 

dre-miR-202* 116.604 1.246.606 3,418316377 0 

dre-miR-20b 401.275 2.802.103 2,803846805 0 

dre-miR-22a 796.831.195 1.813.913.849 1,186759904 0 

dre-miR-375 380.179 1.657.560 2,124310345 0 

dre-miR-459 53.550 505.131 3,237699103 0 

dre-miR-459* 12.982 74.125 2,513447538 1,10E-32 

dre-miR-726 53.318 157.487 1,562538174 6,22E-39 

dre-miR-93 2.566.212 5.237.411 1,029213464 0 

miR-name AA (TPM) PAA (TPM) 
fold-change 

(log2 PAA/AA) 
p-value 

dre-miR-103 58.423.287 26.749.903 -1,127009869 0 

dre-miR-107 2.448.601 1.050.365 -1,221066957 0 

dre-miR-107b 2.840.855 692.343 -2,036766338 0 

dre-miR-122 153.866.005 58.154.544 -1,403710691 0 

dre-miR-18c 835.201 224.569 -1,894964651 0 

dre-miR-196a 21.629 0,7363 -14,84231374 1,69E+06 

dre-miR-19c 1.466.502 710.981 -1,044496127 2,78E-243 

dre-miR-202* 1.246.606 133.913 -3,218637635 0 

dre-miR-203a 1.119.534 454.890 -1,299308718 4,62E-264 

dre-miR-203b 1.210.782 604.909 -1,001149102 1,37E-184 

dre-miR-20b 2.802.103 863.301 -1,698574423 0 

dre-miR-2188* 40.329 19.788 -1,027191828 2,25E+06 

dre-miR-22a 1.813.913.849 504.265.746 -1,846849804 0 

dre-miR-457b 16.447 0,4142 -15,27713738 5,59E+05 

dre-miR-724 29.989.054 12.305.029 -1,285187955 0 

dre-miR-726 157.487 60.514 -1,379891888 1,84E-30 

dre-miR-93 5.237.411 1.938.976 -1,433558877 0 

dre-miR-130b 768.286 1.726.142 1,167835782 0 

dre-miR-141 606.743 1.264.809 1,059762074 4,87E-214 

dre-miR-146b 1.603.712 4.865.041 1,601036882 0 

dre-miR-19b* 43.258 101.010 1,223459257 1,66E-11 

dre-miR-31 79.307 201.790 1,347334566 1,08E-40 

dre-miR-96 550.192 2.170.447 1,979985126 0 

miR-name PA (TPM) PAA (TPM) 
fold-change 

(log2 PAA/PA) 
p-value 

dre-miR-1 905.279.251 314.949.288 -1,523243338 0 

dre-miR-133a* 1.870.993 825.566 -1,1803487 0 

dre-miR-133c 929.585 463.633 -1,003603533 1,17E-137 

dre-miR-27b 9.833.899 4.479.179 -1,134529217 0 

dre-miR-27d 1.884.439 759.990 -1,310082754 0 

dre-miR-34c 221.849 100.320 -1,144968797 3,75E-32 

dre-miR-499 1.907.157 920.133 -1,051509299 0 

dre-miR-724 28.170.605 12.305.029 -1,19494249 0 

dre-miR-736 14.604 0,5062 -14,81629654 5,57E+08 

dre-miR-146b 1.257.606 4.865.041 1,951771958 0 

dre-miR-20b 401.275 863.301 1,105272383 1,34E-150 

dre-miR-223 173.167 357.101 1,044168148 3,04E-49 

dre-miR-192 32.442.988 78.679.109 1,278073922 0 

dre-miR-31 96.204 201.790 1,068685896 7,77E-25 

dre-miR-375 380.179 1.072.914 1,496783692 0 

dre-miR-429b 11.823 25.080 1,084941193 4,80E+08 

dre-miR-459 53.550 519.775 3,278928765 0 

dre-miR-459* 12.982 127.010 3,290357524 6,00E-89 

dre-miR-96 769.632 2.170.447 1,495751504 0 

miR-name AA (TPM) PP (TPM) 
fold-change 

(log2 PP/AA) 
p-value 

dre-miR-1 295.271.587 40.404.979 -2,869437549 0 

dre-miR-101a 120.276.597 38.647.035 -1,637926315 0 

dre-miR-107b 2.840.855 857.115 -1,728764507 0 

dre-miR-10b 1.671.979 567.806 -1,558086728 0 

dre-miR-10d 117.834 17.861 -2,721871115 3,25E-65 

dre-miR-122 153.866.005 48.185.996 -1,674988688 0 

dre-miR-133a* 1.114.803 106.229 -3,391539216 0 

dre-miR-1388 236.118 90.717 -1,38006319 5,17E-51 

dre-miR-1388* 222.149 47.474 -2,22631813 2,34E-103 

dre-miR-140* 4.882.107 2.232.683 -1,128725485 0 

dre-miR-142a-3p 6.662.006 3.251.726 -1,034750957 0 

dre-miR-142a-5p 1.260.800 395.067 -1,674170192 0 

dre-miR-148 31.835.418 14.698.574 -1,11495651 0 

dre-miR-152 17.876.274 2.943.381 -2,602499857 0 

dre-miR-15a* 100.035 32.668 -1,614554817 1,56E-21 

dre-miR-16b 150.319.499 69.253.826 -1,118066482 0 

dre-miR-182 1.988.305 329.497 -2,593201844 0 

dre-miR-183 2.855.049 842.544 -1,760691571 0 

dre-miR-18c 835.201 195.536 -2,094689194 0 

dre-miR-190b 36.499 18.096 -1,012186103 1,78E+07 

dre-miR-199* 3.487.927 1.090.019 -1,678016563 0 

dre-miR-196a 21.629 0,5875 -15,16801859 1,50E+04 

dre-miR-19c 1.466.502 674.035 -1,121483627 4,38E-271 

dre-miR-200a 1.021.302 397.183 -1,362533756 1,27E-255 

dre-miR-202* 1.246.606 54.524 -4,514970346 0 

dre-miR-206 144.591.602 33.359.102 -2,115831404 0 

dre-miR-20b 2.802.103 700.592 -1,999863568 0 

dre-miR-216a 5.237.861 1.594.371 -1,7159904 0 

dre-miR-2184 255.044 125.970 -1,017665967 6,50E-30 

dre-miR-2187* 112.652 42.538 -1,405048818 9,80E-19 

dre-miR-2188* 40.329 16.216 -1,314399639 1,35E+03 

dre-miR-219 759.499 262.281 -1,533934765 1,08E-225 

dre-miR-22a 1.813.913.849 786.809.883 -1,205018953 0 

dre-miR-34 763.104 337.018 -1,179054042 1,30E-147 

dre-miR-34b 71.872 24.442 -1,556067492 1,04E-10 

dre-miR-375 1.657.560 264.632 -2,647001662 0 

dre-miR-455 71.196 30.317 -1,231669189 1,20E-03 

dre-miR-455b 46.863 18.096 -1,372778479 4,69E+00 

dre-miR-457b 16.447 0,1175 -17,09480417 3,38E-02 

dre-miR-459 505.131 34.548 -3,869983483 0 

dre-miR-459* 74.125 0,6816 -16,73067534 4,40E-49 

dre-miR-462 4.280.771 1.847.016 -1,212674297 0 

dre-miR-724 29.989.054 8.242.125 -1,863347765 0 

dre-miR-93 5.237.411 1.261.113 -2,054156271 0 

dre-miR-96 550.192 193.186 -1,509944615 3,04E-157 

dre-miR-139 1.676.260 4.747.154 1,501816913 0 

dre-miR-150 1.547.161 4.459.255 1,527179368 0 

dre-miR-222 4.226.247 13.343.923 1,658733877 0 

dre-miR-31 79.307 161.693 1,027737108 4,96E-15 

dre-miR-458 1.585.913 3.686.277 1,216850854 0 

miR-name PA (TMP) PP (TPM) 
fold-change 

(log2 PP/PA) 
p-value 

dre-miR-1 905.279.251 40.404.979 -4,4857579 0 

dre-miR-101a 219.416.889 38.647.035 -2,505244937 0 

dre-miR-10a 838.713 406.818 -1,043793704 2,42E-130 

dre-miR-10b 1.732.367 567.806 -1,609274597 0 

dre-miR-10d 142.799 17.861 -2,999101115 1,30E-90 

dre-miR-133a* 1.870.993 106.229 -4,138554587 0 

dre-miR-133b 11.504.603 5.398.862 -1,091483954 0 

dre-miR-133c 929.585 346.888 -1,422116855 7,01E-245 

dre-miR-1388* 121.240 47.474 -1,352656241 7,36E-19 

dre-miR-142a-3p 7.364.819 3.251.726 -1,179444373 0 

dre-miR-142a-5p 880.904 395.067 -1,156887461 1,36E-164 

dre-miR-142b-5p 61.431 26.087 -1,235635824 2,46E-01 

dre-miR-148 35.250.058 14.698.574 -1,261949434 0 

dre-miR-152 18.381.215 2.943.381 -2,642685926 0 

dre-miR-15a* 203.767 32.668 -2,640970388 4,91E-116 

dre-miR-16b 154.730.506 69.253.826 -1,159791979 0 

dre-miR-181a* 637.032 254.291 -1,324885443 5,04E-146 

dre-miR-182 2.432.917 329.497 -2,884349868 0 

dre-miR-183 2.981.859 842.544 -1,823388105 0 

dre-miR-199* 3.056.968 1.090.019 -1,487748168 0 

dre-miR-202* 116.604 54.524 -1,096653969 3,31E-10 

dre-miR-206 98.111.579 33.359.102 -1,556342958 0 

dre-miR-216a 5.450.939 1.594.371 -1,773517401 0 

dre-miR-216b 1.540.422 608.230 -1,340636751 0 

dre-miR-2184 336.366 125.970 -1,416951691 2,06E-80 

dre-miR-2187* 141.640 42.538 -1,73540464 3,42E-40 

dre-miR-218b 369.980 119.625 -1,62892836 6,83E-113 

dre-miR-219 950.217 262.281 -1,857143717 0 

dre-miR-27b 9.833.899 4.480.642 -1,134058077 0 

dre-miR-27d 1.884.439 867.221 -1,119663498 0 

dre-miR-29b 6.936.421 3.457.603 -1,004419235 0 

dre-miR-338 12.396.633 4.443.744 -1,480100717 0 

dre-miR-34 828.513 337.018 -1,297698687 4,91E-187 

dre-miR-34b 125.181 24.442 -2,356581361 7,78E-57 

dre-miR-455b 48.218 18.096 -1,413900977 7,44E-01 

dre-miR-460-5p 68.618 33.843 -1,019729615 7,56E+01 

dre-miR-499 1.907.157 584.258 -1,706746125 0 

dre-miR-724 28.170.605 8.242.125 -1,773102299 0 

dre-miR-725 494.465 224.913 -1,136501354 2,56E-84 

dre-miR-736 14.604 0,2585 -15,78583977 4,48E+04 

dre-miR-9 302.528.068 148.560.600 -1,026017452 0 

dre-miR-93 2.566.212 1.261.113 -1,024942808 0 

dre-miR-96 769.632 193.186 -1,994178238 0 

dre-miR-146b 1.257.606 3.026.578 1,267007526 0 

dre-miR-25 1.912.952 4.012.014 1,068525966 0 

dre-miR-722 6.497.592 17.639.604 1,440841112 0 

miR-name n3 (TPM) PP (TPM) 
fold-change 

(log2 PP/n3) 
p-value 

dre-miR-1 314.949.288 40.404.979 -2,962514561 0 

dre-miR-101a 129.040.246 38.647.035 -1,739391454 0 

dre-miR-10a 861.690 406.818 -1,082785428 9,16E-144 

dre-miR-10b 1.294.951 567.806 -1,189427509 3,63E-260 

dre-miR-10d 74.780 17.861 -2,065839615 7,91E-23 

dre-miR-133a* 825.566 106.229 -2,958205888 0 

dre-miR-1388 190.745 90.717 -1,072200404 8,96E-23 

dre-miR-1388* 121.718 47.474 -1,358333017 2,78E-19 

dre-miR-141 1.264.809 584.493 -1,113661887 2,92E-228 

dre-miR-142a-3p 8.774.285 3.251.726 -1,432075871 0 

dre-miR-148 41.618.374 14.698.574 -1,501544404 0 

dre-miR-152 14.611.000 2.943.381 -2,311508716 0 

dre-miR-15a* 134.373 32.668 -2,040293244 7,43E-50 

dre-miR-182 3.741.277 329.497 -3,50519355 0 

dre-miR-183 5.595.580 842.544 -2,731463744 0 

dre-miR-192 78.679.109 38.458.784 -1,032667472 0 

dre-miR-19b* 101.010 47.944 -1,075075943 8,93E-06 

dre-miR-200a 1.061.409 397.183 -1,418104907 5,84E-281 

dre-miR-202* 133.913 54.524 -1,296332711 4,88E-20 

dre-miR-206 72.478.391 33.359.102 -1,119470475 0 

dre-miR-216a 3.330.105 1.594.371 -1,062580293 0 

dre-miR-216b 1.347.642 608.230 -1,147748415 1,40E-255 

dre-miR-2184 265.755 125.970 -1,077016641 1,62E-35 

dre-miR-219 593.404 262.281 -1,177901351 8,21E-111 

dre-miR-375 1.072.914 264.632 -2,019475009 0 

dre-miR-454b 515.404 246.535 -1,063911257 1,64E-78 

dre-miR-34b 63.505 24.442 -1,377507845 1,81E-04 

dre-miR-459 519.775 34.548 -3,911213145 0 

dre-miR-459* 127.010 0,6816 -17,50758532 2,82E-110 

dre-miR-96 2.170.447 193.186 -3,489929742 0 

dre-miR-129* 7.786.965 16.003.635 1,039266583 0 

dre-miR-139 1.982.923 4.747.154 1,259434196 0 

dre-miR-150 2.224.288 4.459.255 1,003459102 0 

dre-miR-222 6.587.731 13.343.923 1,018329318 0 

dre-miR-489 5.315.329 11.643.323 1,131271964 0 

dre-miR-92b 1.992.357 4.900.621 1,298488398 0 

Tab S2 Significantly miRNA up- and down-regulated, their TPM, fold-change and respective p-value of the 

following comparisons PA-AA; AA-PAA; PA-PAA; AA-PP; PA-PP; PAA-PP 
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dre-miR-142a-
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dre-miR-
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dre-miR-190b             
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dre-miR-9             
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Fig S2 Graphical representation of each Significantly up- and down-regulated miRNA in each pair-wise comparison in high-

throughput sequencing. Black squares represent the miRNA that are significantly up-or down-regulated in only one comparison, 

while colored squares different from black or white squares represent the ones significantly up- or down-regulated in more than one 

pair- wise comparison. White squares showed the inexistence of significantly up or down expression of the respective miRNA. 
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PA-PAA AA-PAA PA-AA 

miR-name PA PAA 
fold-change 

(log2 PAA/PA) 
miR-name AA PAA 

fold-change 

(log2 PAA/AA) 
miR-name PA AA 

fold-change 

(log2 AA/PA) 

dre-miR-138 1438,455571 3679,903729 
1,355147 

dre-miR-1 670,8754596 1364,706792 
1,024474 

dre-miR-21 599,8715926 1812,790567 
1,595487 

dre-miR-216a 219,6610442 466,5061274 
1,086617 

dre-miR-731 256,6414897 2663,880165 
3,375703 

dre-miR-218a 2070,481914 7408,732279 
1,83926 

dre-miR-461 4558,437178 9235,208453 
1,018605 

gga-miR-16 317,6265596 733,0500565 
1,20658 

dre-miR-219 1267,67071 2750,17599 
1,117344 

gga-miR-16 302,634403 733,0500565 
1,276336 

hsa-miR-101 301,8310603 686,3624263 
1,185229 

dre-miR-220 3022,605213 12457,27626 
2,043124 

dre-miR-18b 403,0683027 160,2894175 
-1,33035 

mmu-miR-182 161,4975685 1275,568843 
2,981556 

dre-miR-461 4558,437178 12714,96747 
1,479917 

dre-miR-730 273,5457394 124,4309714 
-1,13644 

dre-mir-2195 735,8703522 1838,73356 
1,321189 

dre-miR-736 159,3925713 398,6929839 
1,322694 

  

 
 

dre-miR-133b* 327,0046938 146,151169 
-1,16185 

hsa-let-7c 349,4342798 9701,119889 
4,795058 

  

 
 

dre-miR-150 370,1015537 177,6471028 
-1,05891 

mmu-miR-30b 152,4010478 431,8255768 
1,502576 

  

 
 

dre-miR-21 1812,790567 850,2621106 
-1,09223 

dre-miR-430j 1606,445471 721,7334086 
-1,15433 

  

 
 

dre-miR-218a 7408,732279 3427,61997 
-1,11202 

dre-miR-731 4058,182532 256,6414897 
-3,98301 

  

 
 

dre-miR-220 12457,27626 1968,809222 
-2,66159 

hsa-miR-101 1055,155267 301,8310603 
-1,80564 

  

 
 

dre-miR-92a 2118,457633 916,6390649 
-1,20859 

mmu-miR-182 1141,927365 161,4975685 
-2,82189 

  

 
 

hsa-let-7c 9701,119889 317,4261084 
-4,93366 

  

 
 

  

 
 

mmu-miR-128a 278,9958266 136,6893095 
-1,02934 

  

 
 

  

 
 

mmu-miR-204 365,9374704 167,3167848 
-1,12901 

  

  

  

 
 

mmu-miR-30b 431,8255768 182,8911024 
-1,23946 

  

 
 

AA-PP PA-PP PAA-PP 

miR-name AA PP 
fold-change 

(log2 PP/AA) 
miR-name PA PP 

fold-change 

(log2 PP/PA) 
miR-name PAA PP 

fold-change 

(log2 PP/PAA) 

dre-let-7i 159,142843 327,4284296 1,040857 dre-let-7d 136,4516524 406,1454148 1,573606 dre-let-7d 111,4047089 406,1454148 1,866186 

dre-miR-10b 228,9624689 645,8372041 1,496059 dre-let-7g 266,5696426 605,3692407 1,183303 dre-let-7g 302,341468 605,3692407 1,001637 

dre-miR-10c 252,8313137 622,5497683 1,300014 dre-let-7i 120,6948859 327,4284296 1,439815 dre-let-7i 139,990832 327,4284296 1,225847 

dre-miR-10d 267,8024464 650,5633634 1,28052 dre-miR-10b 253,6338095 645,8372041 1,348423 dre-miR-10b 222,8644357 645,8372041 1,535004 

dre-miR-133c 204,3541472 437,4421004 1,098021 dre-miR-10c 239,4676561 622,5497683 1,378358 dre-miR-10c 218,8896262 622,5497683 1,507986 

dre-miR-152 203,9544825 623,0186754 1,611028 dre-miR-146a 170,6363373 362,9753868 1,088947 dre-miR-152 165,4944843 623,0186754 1,912492 

dre-miR-18c 145,5630749 376,3897888 1,370583 dre-miR-152 189,0797369 623,0186754 1,720281 dre-miR-18c 139,4113059 376,3897888 1,43288 

dre-miR-19a* 231,2052271 465,2634815 1,008874 dre-miR-16b 189,6920456 380,8804699 1,005679 dre-miR-194a 123,551188 271,9044635 1,137991 

dre-miR-19d 198,4410834 507,1893273 1,353814 dre-miR-18c 161,4518834 376,3897888 1,221123 dre-miR-19a* 208,6598164 465,2634815 1,156895 

dre-miR-203b 254,0827841 610,7246723 1,265224 dre-miR-202* 124,0962397 285,1451856 1,200237 dre-miR-19d 208,2293621 507,1893273 1,284351 

dre-miR-216a 271,1875335 794,7285439 1,353814 dre-miR-203b 276,2361606 610,7246723 1,14462 dre-miR-202* 121,023283 285,1451856 1,236412 

dre-miR-216b 149,1759311 367,0698505 1,265224 dre-miR-203b* 134,3638403 283,0156844 1,074737 dre-miR-203b 230,3059411 610,7246723 1,406971 

dre-miR-301c 189,4219526 505,7132706 1,551171 dre-miR-216a 219,6610442 794,7285439 1,855183 dre-miR-203b* 120,6223843 283,0156844 1,230384 

dre-miR-430a 600,0683073 1281,558605 1,29904 dre-miR-216b 117,4001073 367,0698505 1,644621 dre-miR-216b 117,693046 367,0698505 1,641026 

dre-miR-729 178,9672727 372,7389443 1,29904 dre-miR-218a 2070,481914 6336,472263 1,613713 dre-miR-220 1968,809222 9807,7695 2,316602 

dre-miR-731 256,6414897 522,3280636 -1,59678 dre-miR-220 3022,605213 9807,7695 1,698133 dre-miR-301c 165,289818 505,7132706 1,613322 

dre-miR-736 398,6929839 1001,792206 -1,16399 dre-miR-301c 242,8555231 505,7132706 1,058221 dre-miR-375 268,8741838 549,6946433 1,031699 

dre-miR-738 442,4871206 1292,41234 1,416716 dre-miR-729 176,1723912 372,7389443 1,081178 dre-miR-729 136,3337675 372,7389443 1,451023 

mmu-miR-125b 328,8487648 713,9371963 1,094701 dre-miR-734 171,729555 350,9909059 1,031295 dre-miR-734 154,4614388 350,9909059 1,184187 

dre-mir-2191 162,6651403 326,9928051 1,05847 dre-miR-736 159,3925713 1001,792206 2,651927 dre-miR-736 220,0463175 1001,792206 2,186704 

dre-mir-2192 332,7944554 1078,03281 1,025202 dre-miR-738 267,7511134 1292,41234 2,271102 dre-miR-738 234,6685546 1292,41234 2,46137 

dre-mir-2194 186,9493369 375,9941443 1,329233 hsa-let-7c 349,4342798 5515,166511 3,980311 hsa-let-7c 317,4261084 5515,166511 4,118912 

dre-mir-2197 373,8842152 855,3062769 1,546359 hsa-miR-19b 139,6205186 289,9594861 1,05434 hsa-miR-19b 142,2276003 289,9594861 1,02765 

dre-mir-126b 247,8363054 674,1322243 1,05847 dre-mir-2193 160,545137 344,9340487 1,103342 mmu-miR-204 167,3167848 365,0934951 1,125684 

dre-mir-429b 143,5718312 296,0953497 -3,38732 dre-mir-2194 172,737604 375,9941443 1,122128 ZF_miR_10 121,9171369 275,5895935 1,17662 

dre-miR-150 370,1015537 175,0629255 -1,08005 dre-mir-2198 158,1858937 326,7529619 1,046579 dre-mir-2192 484,6278325 1078,03281 1,153452 

dre-miR-153c 3116,071494 1102,89264 -1,49844 dre-mir-126b 261,3305088 674,1322243 1,367156 dre-mir-2194 133,4670171 375,9941443 1,494227 

dre-miR-21 1812,790567 433,7710233 -2,06321 dre-mir-429b 121,1906804 296,0953497 1,288783 dre-mir-126b 216,1637042 674,1322243 1,640907 

dre-miR-219 2750,17599 909,248173 -1,59678 dre-miR-1 995,5780691 354,1455923 -1,49119 dre-mir-429b 118,2283136 296,0953497 1,324486 

dre-miR-301a 638,7544143 285,0613192 -1,16399 dre-miR-10a* 561,534992 274,2219506 -1,03403 dre-miR-1 1364,706792 354,1455923 -1,94618 

dre-miR-455 536,0667789 267,1498353 -1,00476 dre-miR-132* 277,4149923 126,7518689 -1,13004 dre-miR-10a* 592,3386896 274,2219506 -1,11108 

dre-miR-92a 2118,457633 202,4578879 -3,38732 dre-miR-18b 403,0683027 161,7663361 -1,31711 dre-miR-138 3679,903729 1601,051501 -1,20065 

dre-miR-93 1240,150483 432,6950831 -1,51909 dre-miR-20b 1106,533693 443,284902 -1,31974 dre-miR-20b 1212,259286 443,284902 -1,45139 

hsa-miR-222 514,174752 247,7269738 -1,05351 dre-miR-430j 1606,445471 448,1451358 -1,84183 dre-miR-219 1824,404592 909,248173 -1,00468 

hsa-miR-24 458,4164918 228,5695167 -1,00403 dre-miR-731 4058,182532 522,3280636 -2,95781 dre-miR-27c* 316,0475878 145,5427252 -1,1187 

mmu-miR-30b 431,8255768 203,5634713 -1,08497 dre-miR-92a 1268,648168 202,4578879 -2,6476 dre-miR-430j 981,328233 448,1451358 -1,13077 

  

  dre-miR-93 1088,51548 432,6950831 -1,33094 dre-miR-454b 752,8606933 298,9947071 -1,33226 

  

  hsa-miR-101 1055,155267 301,7223407 -1,23776 dre-miR-731 2663,880165 522,3280636 -2,3505 

  

  hsa-miR-24 539,0417034 228,5695167 -1,21966 dre-miR-92a 916,6390649 202,4578879 -2,17873 

  

  hsa-miR-25 643,8886886 276,4751076 -2,56958 dre-miR-93 1031,21535 432,6950831 -1,25292 

  

  mmu-miR-182 1141,927365 192,3614067 -1,42111 hsa-let-7b 763,5127941 330,6040025 -1,20755 

  

  mmu-miR-451 552,2364494 206,219223 -1,23776 hsa-miR-101 686,3624263 301,7223407 -1,18575 

  

  

  

  hsa-miR-222 501,0934837 247,7269738 -1,01633 

  

  

  

  hsa-miR-25 572,2903711 276,4751076 -1,0496 

  

  

  

  mmu-miR-182 1275,568843 192,3614067 -2,72925 

  

  

  

  mmu-miR-451 457,1860258 206,219223 -1,1486 

  

  

  

  dre-mir-2195 1838,73356 605,3180209 -1,60295 

Tab S3 Significantly miRNA up- and down-regulated, their pixel intensity and respective fold-

change of the following comparisons PA-PAA; AA-PAA; PA-AA; AA-PP; PA-PP; PAA-PP  

 


