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Resumo 
 

A imunidade inata constitui a primeira resposta dada por um hospedeiro quando 

atacado por agentes patogénicos. A resposta imune baseia-se em genes codificados na linha 

germinativa, chamados receptores de reconhecimento de padrões (PRRs). Estes conseguem 

distinguir o “Eu” do “não-Eu”, reconhecendo padrões moleculares conservados  ao longo da 

evolução dos vários agentes patogénicos, chamados padrões moleculares associados a 

agentes patogénicos (PAMPs). No caso dos vírus, um parasita intracelular obrigatório, os 

PAMPs mais importantes e mais estudados são o seu material genético, tal como o DNA 

genómico viral, RNA de cadeia dupla (ds) ou simples (ss) ou a estrutura RNA viral, 5’-

trisfosfato-RNA. Existem vários PRRs, que podem ser agrupados em classes: os receptores 

transmembranares do tipo Toll (TLRs), os receptores citoplasmáticos do tipo RIG-I (RLRs), os 

receptores do tipo Nod (NLRs) e os receptores do tipo AIM2 (ALRs). Os PRRs iniciam uma 

sinalização em cascata que culmina com a activação de factores de transcrição, que entre 

outros, vão induzir a produção e excreção duma citoquina, o interferão (IFN).  

Este grupo de citoquinas é composto por três classes, IFN tipo I (p.e IFN-α/β) , tipo II 

(p.e IFN-γ) ou do tipo III (p.e. IFN-λ). O IFN pode despoletar variados efeitos anti-virais. A 

cascata de sinalização estimulada pelo IFN inicia-se com a ligação do IFN ao seu respectivo 

receptor extra celular que ,através de fosforilações, permite a activação de receptores intra-

celulares. Já no interior da célula, sinalizadores de transdução e ativadores da transcrição 

(STATs) são recrutados e fosforilados, o que permite a formação de homo ou heterodímeros 

que migram para o núcleo. No núcleo, as STATs ligam-se a zonas promotoras de genes 

estimulados pelo IFN (ISGs), para promover a transcrição de mais de 300 ISGs com 

propriedades anti-virais. No caso do estímulo causado por IFN do tipo I, os complexos 

formados pelas STATs vão ligar-se ao elemento de resposta estimulado pelo IFN (ISRE). No 

caso do IFNs do tipo II, os complexos ligam-se à sequência activada pelo IFN-λ (GAS). Os ISGs 

facultam ao hospedeiro diversas estratégias para combater a infeção viral.  

 Apesar de os mamíferos possuírem um sistema imune bastante evoluído, os vírus 

também têm evoluído estratégias para evitar e/ou manipular as defesas do hospedeiro, 

dedicando uma parte substancial do seu genoma a estas estratégias. Estas podem ir desde 

uma interferência global na expressão e/ou síntese de proteínas das células do hospedeiro, 

ou serem mais específicas, diminuindo o impacto dos IFNs. O estudo destas interações, pode 

não só ser útil para conhecer os mecanismos de infecção do vírus, mas também para 

perceber melhor os mecanismos de defesa do hospedeiro. Estes conhecimentos podem 
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permitir o desenvolvimento de terapias e tratamentos anti-virais ou mesmo anti-

cancerígenos.  

A peste suína africana (ASF) é uma doença que nos porcos domésticos (Sus sacrofa) 

é tipicamente hemorrágica e leva normalmente à morte do hospedeiro. Contudo, as 

infecções são assintomáticas nos hospedeiros naturais, o javali, o porco selvagem e a 

carraça, sendo esta última, um dos principais vectores de transmissão do vírus da peste 

suína africana (ASFV), tornando o seu controlo difícil sem uma vacina. Nos últimos anos, 

devido ao grande desenvolvimento urbano e consumo de carne de porco, têm havido surtos 

de ASF em África, causando perdas devastadoras. O ASFV é um virus de DNA de cadeia 

dupla, o único arbovírus de DNA e o único membro da familia Asfaviridae, infectando 

principalmente macrófagos e monócitos. 

Tal como todos os vírus, o ASFV contém genes que manipulam a biologia da célula 

do hospedeiro, como por exemplo, genes que inibem a apoptose e respostas imunes 

controladas pelo factor nuclear kappa B (NFκB), entre outros. Contudo, ainda não foi 

demonstrado que algum gene do ASFV consiga inibir a resposta do IFN. Isto é 

surpreendente, pois o ASFV infecta macrófagos, um tipo de célula sensível ao IFN e porque a 

sua infecção persistente, é incompatível com uma resposta efectiva mediada por IFN. 

O K205R é um gene do ASFV sem função definida, mas ensaios preliminares de 

luciferase mostraram que este gene consegue inibir a resposta do IFN. Contudo, os 

mecanismos utilizados pelo K205R nesta inibição são desconhecidos. O objectivo desta 

dissertação de mestrado é tentar perceber melhor estes mecanismos e determinar a 

sequência mínima necessária para que o K205R tenha o efeito observado. 

O K205R foi isolado através de PCR, utilizando como molde o DNA genómico da 

estirpe do AFSV, BA71. Subsequentemente, foiclonado no plasmídeo pcDNA3, que contém 

um marcador molecular, a hemaglutinina (HA), a montante da zona de inserção do gene. 

Para determinar a extensão da ação do K205R, foram feitos ensaios de luciferase utilizando 

células transfectadas com repórteres de luciferase sobre o controlo dos promotores de IFN-

β, ISRE e GAS. O K205R mostrou inibição para todos os reporteres. Para tentar definir a zona 

do K205R responsável pelo efeito observado, fez-se uma previsão da estrutura secundária da 

proteína do K205R, recorrendo à bioinformática, que permitiu identificar uma sequência 

“coiled-coil” putativa, uma estrutura secundária associada a interações entre proteínas. 

Também é sugerida uma sequência putativa para um sinal de exportação nuclear (NES). Com 

base nesta análise foram construídos quatro fragmentos do K205R e posteriormente 

clonados no pcDNA3.  
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Depois de se verificar a sequencia correcta de DNA de cada um dos clones e 

expressão das suas proteinas em células vero transfectadas , o passo seguinte foi verificar a 

localização celular destes fragmentos através de imunofluorescência nestas mesmas células. 

Esta experiência permitiu verificar que de facto, os fragmentos que não tinham a sequência 

putativa NES, em comparação com células transfectadas com o K205R inteiro, tinham uma 

maior acumulação nuclear. 

Para estudar o mecanismo, e a que nivel o K205R actua para inibir a via de 

sinalização do ISRE, foi feito um “western blot” utilizando extractos proteicos de células 

VERO transfectadas com os diferentes fragmentos do K205R e posteriormente estimuladas 

com IFN-β durante 15 minutos e durante 45 minutos. Esta experiência permitiu verificar que 

a fosforilação da STAT1 diminui na presença do K205R, contudo, apenas um fragmento 

reproduziu este efeito. Este fragmento de 75 aminoácidos não contém a sequência, nem 

para a sequência “coiled-coil”, nem para NES. 

Esta dissertação de mestrado apresenta resultados consistentes com a existência de 

um NES funcional na sequência do K205R, uma inibição da fosforilação da STAT1 mediada 

pelo K205R, mas também apresenta uma abordagem para determinar os mecanismos 

utilizados pelo K205R para inibir a indução e o impacto do IFN-β. Contudo, mais experiências 

têm de ser feitas para realmente se comprovar a existência de um NES, como por exemplo, 

ensaios de imunofluorescência de células transfectadas com K205R na presença de 

Leptomicina B, um inibidor da exportação nuclear. Também será necessário estudar as vias 

de sinalização inibidas pelo K205R que não foram abordadas neste trabalho, tal como a via 

de indução de IFN-β e a via do GAS. 

 

Palavras-chave: Imunidade Inata, Interferão, Infeção, Virus, ASFV, K205R. 
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Abstract 
 

A key part of the innate response to virus infections is the interferon (IFN) response. 

This can limit virus replication and dissemination and is a critical factor in controlling virus 

infections, particularly persistent viruses. Many viruses encode proteins which interfere with 

induction of IFN and IFN-activated pathways and these can have important roles in virus 

pathogenesis and persistence. African Swine Fever (ASF) causes major economic losses in 

many African countries and is a threat to pig farming worldwide. There is no vaccine and 

therefore options for disease control are limited. In Europe, there is always the danger of 

accidental introduction of the virus, as indeed occurred in Portugal in 1957, causing severe 

financial losses. Thus, defining the mechanism of proteins involved in evasion of the host’s 

defense response and in virus virulence is of extreme interest, so we can understand the 

virus and try to develop strategies to reduce ASF impact. 

 ASFV is a large cytoplasmic DNA virus which encodes between 160 to 175 open 

reading frames. Many of its genes are not essential for replication in vitro, but are host 

evasion strategies facilitating virus replication and transmission in vivo. These include 

proteins which inhibit host defence systems. Surprisingly, since ASFV can survive as a 

persistent virus, no ASFV proteins have been described which inhibit the IFN response. 

However, the early gene K205R, might have an impact on IFN response. 

 Luciferase assays, shown inhibitions of IFN induction (IFN-β) and IFN-signalling (ISRE, 

GAS) pathways. Using a bioinformatics tool (Jpred), we got a predication of K205R protein 

secondary structure. Based on this prediction, deletion mutant fragments of K205R were 

constructed and used in immunofluorescence and western blot assays. The 

immunofluorescence results suggest the presence of a functional nuclear export signal (NES) 

motif in the K205R protein sequence. Western blot experiments suggested that K205R is 

affecting the phosphorylation status of STAT1, in cells stimulated with IFN-β (ISRE pathway).  

 Although it was not possible to clearly determine the minimum sequence needed 

for all the functions of K205R, the results suggest that K205R inhibition of the impact of IFN 

type I, depends on a sequence within amino acids 130 and 205, which affects STAT1 

phosphorylation. Further experiments should be done to investigate the mechanism of 

K205R inhibition in the pathways not covered on this thesis (IFN-β induction pathway and 

GAS pathway). The existence of functional NES also needs confirmation. 

 

Key Words: Interferon, Virus, Evasion, ASFV, K205R, NES, ISRE, STAT 
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Introduction 
 

The environment is full of pathogens that threaten the host with a large spectrum of 

infections. The first lines of defence against these threats are physical and chemical barriers: 

the skin, surface coating such as mucous secretions, tears, acid pH, etc. Most viral particles 

that land on the skin are inactivated by desiccation, acids or by other inhibitors formed by 

endogenous commensal microorganisms. Although these barriers represent a strong 

defence, they do not cover the entire host surface in contact with the environment, for 

example entry via the lungs and by the intestine, and they can fail (e.g. insect bites, bruised 

skin), or be evaded by a large spectrum pathological mechanisms. In order to stop the 

pathogenic invasion, a second line of defence has evolved in organism, called the Immune 

System (24). 

The primary function of the immune system is to detect structural features in the 

pathogens and mark them as distinct from host cells and thus to distinguish the self from 

non-self. This is essential for any immune response, as it permits the host to eliminate the 

pathogens without excessive damage to itself. Failure to recognize the self from non-self can 

result in autoimmune diseases (15). 

The immune response to viral infection consists of an immediate innate and later an 

adaptive response. The innate response is the first line of defence and includes all defence 

mechanisms encoded by genes in the host’s germline which functions continually in a 

normal host without any prior exposure to the invading pathogen (15). As these mechanisms 

are broadly expressed and rapidly activated in a large number of cells, most viral invasions 

are resolved by the innate immune system without the intervention of the adaptive immune 

system, a second line of defence. The adaptive response consists in gene elements that 

somatically rearrange to assemble antigen binding molecules (antibodies) with high 

specificity for individual pathogens and lymphocyte-mediated response, usually called the 

humoral and cell-mediated responses (24). The innate and adaptive responses are often 

described as contrasting and distinct phases of the immune response. However, they usually 

act together. Thus, the innate system can inform the adaptive system by producing 

cytokines and by cell-cell interaction between dendritic cells (DC) and lymphocytes in the 

lymph nodes, providing the adaptive immune system essential information about the nature 

of the invading pathogen, triggering the adaptive mechanisms more appropriate to control 

the infection. In fact, it is clear that the adaptive response cannot be established without 

instructions from the precedent (24). 
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Innate Immunity  

The innate response is mediated by cytokines (soluble proteins such as interferons 

released from infected cells), local sentinel cells (dendritic cells and macrophages), a 

complex collection of serum proteins called complement and cytolytic lymphocytes called 

natural killer cells (NK cells). Other cells types, such as neutrophils and other granulocytic 

white blood cells, play an important role in innate defence in response to the initial burst of 

cytokines from dendritic cell, macrophages and infected cells (24). The innate defences relies 

on germline-encoded genes called the pattern recognition receptors (PRRs) (Figure 1), which 

recognizes a wide range of “non-self” targets, molecular patterns conserved through 

evolution in a wide range of pathogens, called pathogen-associated molecular patterns 

(PAMPs). These microbial molecules are evolutionarily conserved and hence shared between 

different microbial species (45, 91, 93). In addition, most PAMPs are essential for microbial 

growth, therefore rarely modified by the microorganisms as means to avoid innate 

recognition. Along with identification of “non-self” molecules, another key principle of the 

innate recognition is the aberrant localization of specific classes of molecules, like the 

introduction of nucleotides (RNAs and DNAs) into endosomes and cytoplasm (24, 54).  

All viruses propagate inside cells of the host they infect and depending on the virus, 

replication takes places in the cytoplasm or the nucleus, and is highly dependent of the 

involvement of cellular factors. The main viral PAMPs are glycoproteins of the virus particle 

and virus-derived nucleotide structures, being the latest particularly important for 

stimulation of innate antiviral defence (77). Viral-derived Double stranded (ds) RNA, genomic 

viral DNA, single-stranded (ss) RNA and the viral RNA structure 5’-triphospho-RNA, which is 

normally not present in the cytoplasm due to the 5’-cap of cellular mRNA are the most 

important and studied viral PAMPs (51, 91).  

The Toll-like receptors (TLRs) comprise the most studied family of PRRs. They are 

responsible for the recognition of a wide variety of microbial PAMPs, including virus, 

bacteria and fungi. They are constituted by transmembranar PRRs like TLR1, 2 and 4-6 and 

endosomal TLRs like TLR3 and 7-9 (55, 58, 118). The intracellular detection of viruses is also 

mediated by other cytoplasmatic sensors: the retinoic-acid-inducible gene I (RIG-I) helicase 

(RLH) family of proteins, which includes the RIG-I and the melanoma differentiation 

associated gene 5 (MDA5), which can sense RNA viruses (75, 115); Nod-like receptors (NLRs) 

family are also shown to engage with both DNA and RNA viruses, in particular the NLR 

NACHT, LRR and PYD domains-containing protein 3 (NALP3) (60); the absent in melanoma 2 

(AIM2)-like receptor family, which senses DNA viruses (14);  the DNA-dependent activator of 

IFN-regulatory factors (DAI), also known as Z-DNA binding protein I (ZBP1) (110); and KU70 
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(135). These receptors initiate a signalling cascade which culminates in the activation of 

transcription factors such as nuclear factor kappa B (NF-κB), interferon regulatory factors 

(IRFs) and activating protein-1 (AP-1) involved in the expression of inflammatory and IFN 

type 1 genes. (60, 97). 

 

 

The IFNs are a class II α-helical secreted cytokines that elicit distinct antiviral effects. 

They are grouped into three classes called type I, II and III, according to their amino acid 

sequence. Type I IFNs, discovered by Isaacs & Lindenmann in 1957 (53) , comprise a large 

group of molecules (IFN-α, -β, - ε, -τ, -δ,-κ) being IFN-α and IFN-β the most important in 

mammals concerning response to viral infection. There are multiple distinct IFN-α genes and 

one to three IFN-β genes. Type II IFN has a single member, the IFN-γ, also called “immune 

IFN”, and is secreted by mitogenically activated T cells and NK cells rather than in direct 

response to viral infection. Type III IFNs were described more recently and comprise IFN-λ1, -

λ2, -λ3, also referred to as IL-29, IL-28A and IL-28B, respectively (120). These cytokines are 

also induced in direct response to viral infection and appear to use the same pathway as the 

IFN-α/β genes to sense viral infection (85).  

The signal transduction pathways initiated upon IFN binding to cognate receptors at 

the cell surface requires the activation, through tyrosine phosphorylation of intracellular 

receptors. This role is associated with the Janus kinases (JAKs), a family of tyrosine kinases 

Detection of viruses in 
extracellular or 
endossomal locations 

Detection of viruses the cytoplasm 

Figure 1: Pattern recognition receptors (PRRS) overview in viral infection. Adapted from (139) 
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(TYK). Once phosphorylated, the receptors act as docking sites for the signal transduction 

and activators of transcription (STATs), which are phosphorylated upon recruitment to the 

receptor. Then, the STATs dissociate from the receptor, associated as homo- or 

heterodimers and migrate to the nucleus. In the nucleus, they bind to cis-acting elements 

found at the promoter regions of IFN-stimulated genes (ISGs) to promote the transcription 

of more than 300 ISGs (10). 

 

Toll-like Receptors (TLRs) 
 TLRs are membrane-bound PRRs expressed by a variety of cell types, including 

epithelial cells, although antigen-presenting cells such as dendritic cells and macrophages 

are the cells most prominently expressing them (55). There are 10 known in humans (TLR1-

10) and 12 in mice (TLR1-9 and 11-13). They are type I transmembrane proteins with 

ectodomains containing leucine-rich repeats (LRR) that mediate the recognition of PAMPs, 

transmembrane domain and an intracellular Toll-interleukin 1 (IL-1) receptor (TIR) domain, 

that mediates downstream signal transduction. Depending on the TLR, the TIR domain is 

involved in recruiting various intracellular adaptors molecules, which also contain a TIR 

domain. Different combinations of the adaptor molecules give rise to specificity in TLR 

signalling (12). Viral PAMPs can be detected either intracellularly or at the cell surface. TLR2 

and TLR4 are cell surface TLRs best known for their role in sensing bacterial and fungal 

PAMPs. However, TLR4 is also involved in the recognition of envelope proteins of some virus 

(3). The role of TLR2 in viral recognition and innate immunity was shown by demonstrating 

that mediates IFN I induction, in response to infection with vaccinia virus (VCV) and murine 

cytomegalovirus (MCMV) (7).  

TLR3, TLR7-9 are localized in intracellular vesicles such as the endosome or lysosome 

and the endoplasmic reticulum (ER) and are traditionally more clearly related to anti-viral 

immunity than cell surfaces TLRs. TLR3 appears to represent a more general sensor of viral 

infections, through the detection of viral-dsRNA molecules (5), a by-product of viral 

replication and transcription for both RNA and DNA viruses. TLR7 and TLR8 recognizes ssRNA 

derived from RNA virus infections and TLR9 recognizes DNA viruses (20, 46, 59). 

In the case of TLR7-9, endosome-mediated internalization of viruses or products of 

viral replication from lysed and/or apoptotic virus-infected cells (in case of TLR3) is a 

prerequisite for TLR-PAMP interaction. To expose the viral PAMP to the corresponding TLR, 

this process most likely involves degradation of a subset of virus particles in the endosome 

(33). TLR3 and TLR4 induction of type 1 IFN is mediated through the TIR-domain-containing 

adaptor-inducing IFN-β (TRIF). TRIF mediates the activation of IκB kinase ε (IKKε) and (TANK)-
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binding kinase 1 (TBK1), which phosphorylates the IFN regulatory factor 3 (IRF3), resulting in 

its dimerization and translocation to the nucleus, where it promotes gene transcription. TRIF 

also mediates the activation of NF-κB and AP1 through the kinase complex IKK α/β/γ and the 

mitogen- activated protein kinase (MAPK) cascade, respectively (58). These three 

transcription factors (IRF3, NF-κB, and AP1) coordinate the transcriptional regulation of the 

IFN-β gene (125). 

Induction of IFN-I through TLR2 and TLRs7-9 is mediated by the adaptor molecule 

myeloid differentiation primary response protein 88 (MyD88), which associates with the TIR 

domain of the TLRs, the interleukin-1 receptor–associated kinases (IRAK) 1, 2 and 4, and the 

tumor necrosis factor (TNF) receptor–associated factor (TRAF) 4 and 6. This results in 

downstream activation of IRF7, and of the IKK α/β/γ and the MAPK cascades, leading to NF-

κB and AP-1 activation (58). IRF7 is functionally similar to IRF3 and mediates the induction of 

IFN-β but, unlike IRF3, it also initiates the general induction of the IFN-α genes (72). TLRs7-9 

and IRF-7 appear to be constitutively expressed in only a subset of cells, the pDCs, which are 

characterized by high IFN production and can spearhead the early IFN response (57). 

 

RIG-I-like Receptors (RLRs) 
The two cytosolic PRRs, are RIG-I and MDA5 Highly relevant to viral-infection. They 

detect intracellular RNA species, and initiate downstream signalling and induction of 

cytokines (77). Both, RIG-I and MDA5, are homologous IFN-inducible proteins containing two 

amino-terminal caspase activation and recruitment domains (CARDs), a carboxy-terminal 

aspartate-glutamate-any amino acid-aspartate/histidine (DExD/H)-Box RNA helicase domain 

and a C-terminal regulatory domain (RD). The helicase domain and the RD interact with 

specific RNA species and the CARDs are responsible for downstream signalling and 

interaction with Mitochondrial antiviral-signalling protein (MAVS also known as IPS-1, VISA 

or Cardiff), which interacts downstream with TBK1-IKKi and IKK complexes, The adaptors 

TRAF3, TANK and TNF-receptor type 1-associated DEATH domain (TRADD) and the kinases 

TBK1 and IKKε are responsible for activation of NF-κB and the transcription factors IRF3 and 

IRF7 and subsequent synthesis of type I interferon (79, 130). Besides RIG-I and MDA5, the 

family of RLRs also includes a third member, LGP2, which lacks the CARD domains and may 

act as a negative regulator molecule, possibly by forming heterodimeric complexes with RIG-

I and MDA5, although the precise mechanism by which it works is still poorly understood 

(84). 
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Cytosolic DNA Sensors  
The identification of receptors and signalling components that mediate cytosolic 

interferon response has been the subject of intense study in the last years. The first 

molecule to be identified as a DNA sensor in the cytosol is DAI, a molecule that contains two 

binding domains for Z-DNA in the N-terminal and a centrally located region, presumably also 

having B-DNA-binding ability. The C-terminal region of DAI is essential for activation of 

downstream signalling pathways, mediating TBK1-IRF3 dependent type I IFN production 

(110). However, DAI-deficient mice and several cell types derived from them, including 

macrophages and mouse embryonic fibroblasts, have shown normal responses to synthetic 

DNA and DNA viruses, suggesting the existence of other cytosolic DNA sensors (123). In fact 

other cytosolic DNA sensors molecules have been described in the past few years, such as: 

Leucine-rich repeat (LRR) flightless-interacting protein 1 (LRRFIP1), which recognizes both 

cytosolic RNA and DNA, and subsequently recruits and activates β-catenin, which binds to 

IRF3 in the nucleus, contributing to the expression of IFN-β (129); RNA polymerase III, 

present in the cytoplasm, recognizes AT-rich DNA and transcribes it into RNA transcripts, 

recognized by RIG-I, activating its pathway (1, 17); DExD/H-box helicase 36 (DHX36) and 

DHX9, have been shown to sense CpG-A and CpG-B DNA, respectively, in the cytosol of 

human pDCs, recruiting MyD88 and leading to activation of IRF7 and NF-κB and subsequent 

IFN production (61); IFI16 and p204, IFN-inducible protein 16 (IFI16) and its closest murine 

homolog, p204, are members of the AIM2-like receptors family interferon, which belongs to 

inducible PYHIN (pyrin and HIN200 domain-containing proteins, also known as p200 or 

HIN200 proteins),. These proteins recognize DNA via its HIN domain and subsequently 

interacts with STING to activate TBK1-IRF3 complex, resulting in IFN-I production (119); 

Ku70, the more recently discovered, yet not completely characterized, cytosolic DNA sensor 

is part of heterodinamic Ku protein and induces the production of type III IFN, more 

precisely, the IFN-λ1. This induction is mediated by the activation of IRF1 and IRF7 (135).  

 

IFN transcription control  
As it was briefly mentioned above, the induction of IFN genes is dependent of 

signalling cascades, initiated by the activation of different types of PRRs. Despite the large 

diversity of PRRs found in cell membranes and cytosol and their signalling route, we can find 

common components downstream in the signalling cascades responsible for IFN production 

upon viral infection.  

The best-studied model of IFN induction is the production of IFN-β. The induction of 

IFN I, is primarily regulated at the level of transcription and requires no new cellular protein 



 

 21 

synthesis, where IRFs (mainly IRF3 and IRF7, but not only), NF-κB and c-jun/activating 

transcription factor (ATF)-2 heterodimer plays major roles. Prior to IFN-β induction, NF-κB 

and IRF3 are both cytoplasmatic and upon receipt of appropriate signalling, IRF3 is 

phosphorylated, causing conformational changes leading to its dimerization, which unveils 

its nuclear-localization signal (NLS). Translocated IRF3 remains in the nucleus until it is 

dephosphorylated. NF-κB is associated with its inhibitor, IκB, in the cytoplasm, signal 

generated during viral infection cause the phosphorylation of IκB and its subsequent 

ubiquitination and degradation by the proteasome, making the NLS of NF-κB accessible, thus 

allowing translocation of NF-κB to the nucleus. Optimal induction of IFN-β also required the 

binding of the c-jun/ATF-2 heterodimer to the promoter. The IRF3, NF-κB and c-jun/ATF-2 

complexes assemble on the promoter in a cooperative manner to form the so called 

enchaseosome. This model predicts that each transcription factor binds to IFN-β with limited 

affinity and that cooperativity between these factors is required for optimal induction. 

However, the IFN-β can respond independently to each inducer, resulting in some degree of 

IFN-β production. The consensus view is that binding of either IRF3 or IRF7 is essential for 

induction (49, 50). 

Induction of IFN-α is less well understood, but unlike IFN-β promoter, IFN-α genes 

promoters lack NF-κB sites, but contain several binding sites for the IRF family. The 

identification of the IRF family members which stimulates IFN-α genes is uncertain, but 

evidences show that IRF7 stimulates preferentially the IFN-α genes transcription, which is 

activated in a similar manner to IRF3. Upon viral infection, IRF7 is phosphorylated and 

translocated to the nucleus and forms a homodimer or a heterodimer with IRF3, and each of 

these dimers acts differentially on induction of IFN-I family members (49, 50). 

 

Signalling responses to IFN 
Type I IFNs binds to a common heterodimeric receptor of IFN-α (IFNAR) composed 

by IFNAR1 and IFNAR2. Prior to activation, the cytoplasmic tail of IFNAR1 and IFNAR2 is 

associated with TYK2 and JAK1, respectively. IFNAR2 is also associated with STAT2, which is 

weakly associated with STAT1 (95, 105, 113). Interferon binding to receptors induces their 

dimerization and subsequent phosphorylation of IFNAR1 by TYK2, creating a docking site for 

STAT2. Then, TYK2 phosphorylates STAT2 and STAT1 is phosphorylated by JAK1, enabling the 

formation of STAT1 and STAT2 heterodimer. In combination with IRF9, these proteins form a 

heterodimeric transcription factor known as ISGF3 (ISG factor 3). ISFG3 migrates to the 

nucleus, where it recognizes and binds to the IFN-stimulated response element (ISRE), 

present in the promoter region of ISGs (19, 121). ISGF3 formation and translocation to the 
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nucleus is dependent on the acetylation of all its components. In response to IFN 

stimulation, the acetyltransferase CBP (CREB-binding protein) acetylates IFNAR2, creating a 

docking site for IRF9, which associates to the receptor. Subsequently, IRF9, STAT1 and STAT2 

are acetylated and the ISGF3 complex forms and migrates to the nucleus. IRF9 acetylation is 

also required for DNA binding, suggesting that acetylation may play an important role in the 

ISRE-mediated ISG induction (113). Another interesting recent finding demonstrated that 

exposure of cells to IFN-β is followed by IKKε activation, which phosphorylates STAT1, 

resulting in ISGF3 formation and subsequent migration to the nucleus (114).  

Type II IFN also binds to receptors at the cell surface consisting of two subunits, the  

IFN-γ receptor (IFNGR)1 and IFNGR2, associated with JAK1 and JAK2, respectively. IFN-γ 

binding to receptors promotes the dimerazition of both subunits which activates JAK1 and 

JAK2. Then, each receptor chain is phosphorylated, creating docking sites for STAT1, which 

forms a homodimer and dissociates from the receptor chains after STAT1 phosphorylation, 

resulting in the transcription regulator IFN-γ activated factor (GAF).This complex is 

translocated to the nucleus where recognizes and binds to the regulatory sequence GAS 

(IFN- γ activated sequence) (19, 27). Of note, type I IFNs can activate, on a cell-type and 

context specific manner all seven members of the STAT family, leading to the formation of 

STAT homo/heterodimers, including STAT1 homodimer and subsequent induction of GAS 

promoted genes (106). 

Type III IFNs signalling response is not fully understand, but is very similar to type I 

IFN response. The receptors chains are formed by the interleukin receptors, IL-10Rβ and 

IL28Rα and signal transducing requires JAK1, STAT1-2 and ISGF3 (137). 

 

IFN-induced Antiviral state 
The antiviral state is conferred by the transcriptional regulation of the ISGs, induced 

by IFN. These genes activate a set of antiviral processes to reduce or prevent viral replication 

in infected cells and their dissemination to neighbourhood healthy cells, limiting viral 

infection spreading and, when necessary, giving enough time to start the adaptive immune 

machinery to eliminate the virus and infected cells. Several hundred of genes are 

upregulated upon IFN induction, but no single gene is pivotal and for any given virus a subset 

of genes is required to protect the host from the virus. Many of them have been studied 

intensively, e.g. Protein Kinase R (PKR), 2’5’Oligoadenylate synthase (OAS), Mx family.  

 One of the first ISGs to be linked with an antiviral response was the dsRNA-

dependent PKR. This enzyme is synthetized in an inactive form and, in response to the 

cofactor dsRNA, produced during viral replication, undergoes dimerizations and activation. 
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The best characterized substrate for PKR is the α subunit of the eukaryotic translational 

initiation factor 2 (eIF2α). This PKR phosphorylates eIF2α and prevents its recycling such that 

initiation of translations is halted. This interaction can also mark the cell for autophagy. 

Furthermore, the PKR is reported to be involved in other antiviral mechanism, including 

induction of apoptosis and cell-cycle arrest (111, 112, 134). 

 Another well studied ISG, the 2’5’OAS is also synthesized in an inactive form and 

uses dsRNA as co-factor. Its activation leads to RNase L activation, which degrades cellular 

and viral RNAs, preventing viral protein synthesis and in case of viral overload, the 

degradation of cellular dsRNA can lead to apoptosis or amplification of type I IFN by the RLRs 

(23, 70). 

MX and the MX family of genes encode large GTPases related to dynamin. These 

proteins limit viral replication by interaction with nucleocapside-like structures and limiting 

their cell localization (43). 

 Many other ISGs have important antiviral responses and different strategies are 

applied to fight viral infection. They can improve the efficiency of the IFN response globally, 

like ISG15, which can protect against degradation of proteins important for innate immunity 

(e.g. JAK1, STAT1, PKR, MxA, RIG-I, etc) (69, 136); They can also interfere with viral 

replication. For example, the Promyelocytic leukaemia (PML) nuclear bodies, which 

interferes with chromatin structure and promoter accessibility, impairing the replication of 

both RNA and DNA viruses (26), or Viperin (also known as CMV-inducible gene 5, cig5), 

which disrupts the formation of lipid rafts, important in the assembling process of some 

virus (122). APOBECs (Apolipoprotein B mRNA editing enzyme-catalytic polypeptide-like) and 

TRIMs (tripartite motif) are constitutively expressed proteins but upregulated by IFN-α/β. 

These so called “restriction factors”, can mutate viral genome and restrict replication of 

retroviruses, by cytidine deamination (APOBEC3F and 3G) (71, 103) or by interaction with 

viral capsides (TRIM5α) and subsequent formation of a complex which can be targeted for 

destruction by proteasomes (117). Another ISG involved in viral replication disruption is 

Adenosine deaminase RNA 1 (ADAR-1), which replaces adenosines with inosine in dsRNA, 

unwinding the dsRNA, disrupting viral replication (116).  
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Besides its important role in the innate immunity response (figure 2), the IFNs also 

play an important role in adaptive immune responses, providing the bridge between innate 

and adaptive immune response. Upregulation of class I major histocompatibility complex 

(MHC) molecules and components of the antigen-presenting machinery, are the most 

obvious examples. IFNs can also promote: maturation, activation and maintenance of NK-

cells populations; maturation of DCs; proliferation of antigen-specific CD8+ T cells; effector 

mechanisms of cytotoxic T cells and cell division of memory cytotoxic T cells (48). 

Viral evasion of IFN responses 

In order to survive, viruses have evolved and dedicate a substantial part of their 

genome in strategies to circumvent the host defences. One of the main targets of these 

strategies is the IFN system, which constitutes a constant selective pressure in most viral 

infections, by its key role in detection, control and elimination of viruses. In the last years, 

many studies have been made regarding this topic and several molecular mechanisms (and 

respective involved proteins) have been described. We can summarise all these strategies 

into five main categories, by which viruses evade the IFN response: 

Figure 2: Schematic overview of type I interferon impact in response to viral infection. Recognittion of viral 
PAMPS through PRRs (TLRs, RLRs, cytoplasmatic DNA sensors) followed by production of IFN-β. Cellular  and 
signalling response to IFN-β followed by production of differents ISGs. Adapted from (12) 
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1) Interfering globally with host-cell expression and/or protein synthesis; 

2) Minimizing the induction IFN; 

3) Inhibiting IFN signalling; 

4) Blocking the action of ISGs; 

5) Replication strategies largely insensitive to IFN action.  

For each of these categories different molecular mechanisms have evolved in 

different viruses and most of the times a combination of more than one strategy has evolved 

in order to achieve efficient evasion of the IFN response. Consistent with this, most IFN 

antagonists are multifunctional proteins and their actions can vary at different stages of the 

virus infection and replication cycle (33, 96). 

 

Interfering globally with host-cell expression and/or protein synthesis  
The mechanism used by a virus to avoid the IFN system is a major factor influencing 

the molecular pathogenesis of a viral infection. This is especially obvious when it comes to 

viruses that have developed mechanisms to shut down cellular protein expression globally, 

including cellular gene transcription and mRNA processing or export. Viruses pursuing this 

strategy are unable to establish a persistent or latent infection and thus cause acute 

infections. This lifestyle limits the time for viral replication as a cell with inhibited protein 

synthesis will be die more rapidly or even be killed by other innate immune responses, such 

as the induction of apoptosis by tumor necrosis factor (TNF). Although many host-cell 

functions will be affected by inhibition of gene expression, a particularly important target for 

viruses is the IFN response. For example, mutation in proteins of Vesicular stomatitis virus 

(VSV) and foot-and-mouth-disease virus (FMDV), which are involved in inhibition cell-protein 

synthesis, generates attenuated strains with efficient IFN-induction (16, 28, 96). 

 

Minimizing the induction of IFN 
Given the pathway of IFN induction, virus can adopt two general strategies to keep 

IFN induction to a minimum without shutting down the entire cell, as discussed above. 

Viruses can either avoid detection by minimising their viral PAMPs or/and they can 

specifically block members of the IFN induction pathway. The most important viral PAMP is 

their genomic material, in particular dsRNA, which, until recently (127), was thought to be 

the only PAMP to clearly distinguish virus from host. Therefore, many viruses have adopted 

strategies focusing their genomic material, such as: tight control of viral replication and 

transcription in order to minimize production of dsRNA (e.g. transcribing gene in blocks in 

the same direction) or to “hide” from the host PRRs (e.g. positive-strand RNA viruses 
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replicating within intracellular membrane vesicles); encapsidating both genomic RNA and 

antigenomic RNA; protecting the 5’ end of their mRNA, avoiding recognition by RIG-I; 

integrating their genome in host chromosomes; protecting dsRNA from host PAMPs by 

producing dsRNA-binding proteins that sequester dsRNA. This last strategy as additional 

advantage, as it also minimizes the action of dsRNA-dependent ISGs, like PKR and 2’5’OAS. 

There are many well studied examples of dsRNA-binding proteins produced by viruses, such 

as NS1 of influenza A virus, E3L of poxviruses, sigma3 of reoviruses, VP35 of Ebola virus and 

US11 of herpes simplex virus (HSV) (96, 126). 

 Some viruses have also evolved strategies that target specific components of the TLR 

and RLR signalling pathways. The NS3/4a protein of Hepatitis C virus blocks the TLR3 

signalling by cleaving the TLR3 adaptor protein TRIF (65); VCV proteins A52 and A46 target 

multiple TIR proteins, including TRIF, to block TLR3 and TLR4 induction of IFN (44, 104). The 

V and C proteins of paramyxoviruses can inhibit the activity of MDA5 and RIG-I, respectively 

(6, 107). Further downstream, the NS3/4a protein of HCV can also inhibit the IRF3 signalling 

as it cleaves MAVS, disrupting its ability to signal to TBK1 and IKKε; the Npro of both Bovine 

diarrhea Virus (BVDV) and classic swine fever virus (CSFV), target IRF3 for proteosome-

mediated degradation. NF-κB is also targeted by some viruses, for example, the African 

swine fever virus (ASFV) encodes an IκB orthologue that inhibits the activity of  NF-κB (41). 

 

Inhibition of IFN signalling  
As discussed before, the Interferon signalling is responsible for the induction of 

several antiviral cellular enzymes (such as PKR, 2’5’OAS, Mx, PML, etc) and also some 

adaptive immune functions, like the upregulation of MHC I molecules. Also, some of the 

components involved in this IFN signalling pathway are common to all IFN subtypes. Besides, 

virus-infected cells with blocked IFN signalling would become resistant to IFN production, so 

there are clear advantages to the viruses in inhibiting the IFN signalling pathways. Indeed, 

there are examples of virus proteins inhibiting all components of this signalling cascade, 

from receptor signalling to the formation and activity of IFN-induced transcriptions factors. 

For example, poxviruses sequester IFN by producing soluble IFN-α/β-receptor homologues 

that are secreted by infected cells (4). IFN-receptors can also be downregulated by viruses 

(e.g. the K3 and K5 proteins of Human Herpes Virus 8, HHV-8, targets IFNGR1 for 

ubiquitination, endocytosis and degradation) (66) or have their JAK kinases disrupted (e.g. 

NS5 protein of Japanese encephalitis virus, JEV, interferes with Tyk2, possibly by activating 

tyrosine phosphatases) (68). Interfering with STATs is also a strategy used by some viruses, 

for example, Sendai Virus (SeV) inhibits IFN signalling by sequestering STATs, increasing their 
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turn over and altering the pattern of STAT1 phosphorylation, by a set of proteins encoded by 

P/V/C gene, namely the C proteins (31, 32, 73). More downstream in the signalling cascades, 

the human papillomavirus (HPV) 16 E7 multifunctional protein, interacts directly with IRF9, 

preventing the formation of ISGF3 (8). However, the inhibition of IFN signalling by itself may 

not be enough, because the delay in virus replication induced by IFN should buy enough 

time to the host, so than it is able to mount an acquired immune response to help resolve 

the infection, and this may be why viruses that block IFN signalling also block IFN production 

(96). 

 

Inhibition of IFN-induced antiviral enzymes (ISGs)  
As already mentioned, some of the viral IFN antagonists are multifunctional proteins 

and we have already seen that in fact those dsRNA-binding proteins serve a second purpose, 

besides minimizing IFN induction, namely the inhibition of some ISGs. PKR, 2’5’OAS, Mx 

proteins, ISG15, PML and APOBECs are all IFN-induced antiviral enzymes, that can be target 

to efficiently circumvent IFN antiviral state. More than just dsRNA binding seems necessary, 

since, at least PKR can be activated in a dsRNA-independent way by the PACT (PKR-

associated activator) and in many cases a direct interaction with PKR or 2’5’OAS/RNaseL 

system, has been demonstrated. For example the NS1 protein of influenza virus A that binds 

to directly to PKR (67) or the induction of RNase L inhibitor by human immunodeficiency 

virus (HIV) type 1 (78). ISG15, the ubiquitin-like protein can be targeted by the influenza B 

virus NS1 protein, which interacts with it and prevents the interaction  of ISG15 with its 

substrates (131). 

African Swine Fever Virus 

African swine fever was first described by Montgomery in 1921, and is characterized 

by a typical haemorrhagic disease of domestic pigs (Sus scrofa). In contrast, the infection of 

the natural hosts, the bushpig (Potamochoerus porcus) and the warthog (Phacochoerus 

aethiopicus) is characterized by the absence of clinical symptoms, reflecting the long term 

host-pathogen co-evolution. There are different ASFV isolates, which share common 

biological features, and the pathogenesis of the disease may range from rapidly lethal to 

very attenuated and chronic disease (63). The ASFV also infects soft ticks of the species 

Ornithodorus (O. moubata and O. erraticus), where the virus can persist for long periods of 

time (9, 92). These ticks play an important role in the transmission of the disease by feeding 

on warthogs, hence acting as vectors in the sylvatic cycle. In the domestic pig, the virus is 
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usually transmitted directly between pigs, however ticks may represent an important 

reservoir of the virus (22). 

The disease has been reported in several sub-Saharan countries and was introduced 

in Portugal in 1957 and 1960, where it remained endemic until the 1990s. On recent years, 

ASF was confined to African countries and Sardinia (22). There have been major outbreaks of 

ASF in Africa due to the increased urbanisation and pork consumption which, associated 

with the increasing commercial trade between countries, poses a constant threat to Europe. 

Recently, however, there was an ASF outbreak in Georgia , which had devastating 

consequences for pig industry and has spread to neighbouring regions. The genetic 

characterization of the ASFV isolate implicated in this outbreak suggested that it is closely 

related to isolates typically found in Mozambique and Madagascar (100). 

 

Virus structure and genome organization  
African swine fever virus (ASFV) is a large dsDNA virus, the only known DNA 

arbovirus and the only member of the family Asfarviridae (21, 22). The Asfarviridae it’s a 

member of the nucleo-cytoplasmatic large DNA virus (NCLDV) superfamily, which also 

includes Poxviridae, Iridoviridae, Phycodnaviridae, Mimiviridae and Marseilleviridae. These 

families share similarities in its gene complement and replication strategy, which occurs at 

least partially in the cytoplasm. ASFV has more similarities with the Poxiviridae, in terms of 

replication strategy (56). The ASFV’s virions have a complex multi-layered structure. The 

nucleoprotein core contains the viral genome, enzymes and other proteins necessary for the 

early stages of infection. This internal nucleoprotein is surrounded by a core shell and an 

internal envelope onto which the icosahedral capsid is assembled. It replicates in the 

cytoplasm and its genome varies in length between 170 and 190Kbp, containing terminal 

crosslinks and inverted terminal repeats. The variation in the genome length between 

different virus isolates is due to gain or loss of sequences in the left and right ends of the 

genome (21).  

This virus contains a number of open reading frames (ORFs), ranging from 160 to 

175 depending on the isolate. Of these, 110 are present as a single copy in the genomes of 

all isolates. The other ORFs belong to six different multigene families (MGF100, MGF110, 

MGF300, MGF360, MGF530 and P22 family) located near genome termini. The organization 

of these gene families suggests that they have evolved by a process of gene duplication and 

sequence divergence. Hence, the existence of multiple copies of several MGFs might give a 

selective advantage to the virus, representing a mechanism of virus immune evasion. In 

particular, the Vero adapted isolate BA71V and the low pathogenic isolates OURT88/3 and 
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NH/P68 have a deletion in the same region of the genome, which encodes 6 copies of 

MGF360 and 1 or 2 copies of MGF530 (22). Of the conserved ORFs, 39 encode proteins of 

known function, 42 contain motifs homologous to other proteins and 28 are of unknown 

function. Up to now, 17 ORFs have been identified as coding for structural proteins. As ASFV 

replicates in the cytoplasm, genes for enzymes and factors required for gene transcription 

and DNA replication are also included in the virus genome. There are many virus proteins 

that are non-essential for virus replication and are involved in interactions with the host, 

thus representing important factors for virus survival and transmission (22). 

 

Pathogenesis and host immune response  
Macrophages and the monocyte lineage are the cells primarily infected by ASFV, 

with some evidence that endothelial cells can also be infected later in the infection (109). 

The acute disease is characterized by massive apoptosis of lymphocytes and haemorrhagic 

pathology with extensive vascular damage, probably due to molecules released from the 

infected macrophages, although infected endothelial cells may contribute to the 

pathogenesis (22, 109). The extent of lymphocyte apoptosis correlates with the level of ASFV 

replication and the virulence of the virus isolate (87). In the bushpig, there are lower levels 

of apoptosis and absence of clinical signs together with a containment of virus replication 

(88). Therefore the level of lymphocyte apoptosis may be dependent on the amount of 

secreted cytokines, which in turn depends on the number of infected macrophages (87). In 

agreement with this hypothesis is the fact that increased levels of TNF-α, IL-1α, IL-1β and IL-

6 were observed in sera from experimentally infected pigs, coinciding with the onset of 

clinical symptoms (101) and also an increased number of macrophages expressing these 

cytokines in areas of lymphocyte apoptosis (102). On the other hand, another study revealed 

that the transcriptional levels of TNFα and IL-6 were increased in macrophages infected with 

the low virulence NH/P68 isolate compared to the highly virulent L60 isolate, although has 

not been confirmed at the protein level (34).  A more recent study suggests a new 

hypothesis for the differences observed between acute ASF disease in the domestic pig, and 

the tolerable ASFV infection in wild pig species. This study reports a polymorphic variation of 

RELA (p65; v-rel reticuloendotheliosis oncogene homolog A), of three amino acids, between 

warthog RELA and domestic pig RELA. This variation is reflected in reduced NF-κB activity in 

vitro for warthog RELA but not for domestic pig RELA. This activity variation of RELA may 

underlie the difference between tolerance and rapid death upon ASFV infection (90). 

The immune response mounted after ASFV infection is highly complex and virus 

elimination probably requires both humoral and cellular immunity. Recovered animals are 
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usually resistant to challenge with homologous virus isolates, providing a model to study the 

mechanisms of protective immunity (63). Several experiments have shown that the passive 

transfer of antibodies from recovered, or convalescent pigs, delays the onset of clinical signs, 

reduces viraemia and increases survival rates after challenge with a related virulent isolate 

(124). In a later study, 85% of the animals receiving anti-ASFV antibodies survived infection 

with the E75 virulent isolate (83). These results suggest that antibody-mediated immunity is 

not by itself sufficient, but may play a role in protection. However, the generation of 

neutralizing antibodies during ASFV infections remains controversial. Three different ASFV 

neutralizing proteins have been proposed: antibodies against p72 and p54 inhibit virus 

attachment, while antibodies to p30 inhibit virus internalization (11, 42). However, in later 

studies it was shown that the immunization against p54 and p30 only conferred protection 

to 50% of tested animals (41), and the only detected effects were a delay in onset of clinical 

disease and reduction of viraemia (80). 

Several studies were done to explore the role of cell mediated immune responses 

during ASFV infection. After experimental infection with the non-haemadsorbing, non-fatal 

NH/P68 isolate, a positive correlation was observed between the stimulation of NK activity 

and the absence of clinical symptoms, suggesting that NK cells play an important role in this 

model of protective immunity (63). In addition to NK cells as mediators of protection, the 

generation of ASFV specific cytotoxic lymphocytes was demonstrated in the NH/P68 model 

(74, 86). However, the immunization with a recombinant protein expected to stimulate 

ASFV-specific cytotoxic T lymphocytes activity, failed to protect against the infection with the 

highly virulent L60 isolate (64). On the other hand, established immunity of pigs was 

abrogated by blocking CD8+ T cells in vivo with anti-CD8 monoclonal antibody, suggesting 

that CD8+ T cell mediated immunity does play a role in protection (86). 

Finally, both IFN-α and IFN-γ were shown to substantially reduce virus replication in 

swine monocytes and macrophages (25), and the cooperative action of both was able to 

cure lytically and persistently infected cells (89). Although these results were interpreted as 

evidence for a role of the IFN response in protection, the IFN treatment was done after 18h 

post-infection, a time at which the anti-viral state was already established. Importantly for 

the work described in this thesis, virus replication of ASFV in IFN-treated cells has been 

reported, an experiment which suggests that ASFV is able to subvert the Interferon response 

(89). 

In conclusion, the immune response against ASFV is mediated by multiple 

mechanisms of both innate and acquired immune responses and another level of complexity 

is added with the ability of the virus to modulate these immune responses. 
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Modulation of host defense response 

Large DNA viruses encode many proteins involved in the evasion of host immune 

responses. ASFV, contains approximately 90 proteins predicted to be involved in virus 

replication, therefore, the remaining 70 to 85 must include many proteins evolved for host 

evasion (22). 

As ASFV replicates in macrophages the virus may interfere with both the initial 

innate and later acquired immune response to infection by modulation of macrophage 

immunoregulatory proteins and hence macrophage function. Indeed, one of the major 

strategies used by the virus is the manipulation of different signalling pathways that lead to 

the induction of transcription of cytokines (22). 

One of the first evasion molecules described is the A238L protein with two dual 

functions: inhibition of NFкB (94) and NFAT activities (76). The A238L protein contains 

ankyrin repeats similar to those present in the IкB inhibitor of the host NFкB transcription 

factor in the centre of the protein (21). The mechanism suggested for the inhibition of NFкB 

mediated transcription of proinflammatory cytokines, chemokines, adhesion molecules and 

anti-apoptotic genes is through direct binding to NFкB and thus preventing its binding to 

DNA (94, 98, 108). The other function assigned to the A238L protein is the inhibition of 

calcineurin phosphatase activity and consequent inhibition of calcineurin activated pathways 

such as the activation of the NFAT transcription factor (76). In summary, A238L is predicted 

to act as a potent immunomodulatory protein with diverse inhibitory effects on the 

transcription of cellular genes regulated by NFкB and NFAT (22). In addition, the A238L 

protein also inhibits COX-2 expression (37), IL-8 induction and TNF-α expression (36, 94), 

expression of iNOS (39). Several of these functions are inhibited by targeting the p300 

coactivator of transcription (36, 38).  

A number of other proteins predicted to inhibit host signalling pathways are 

encoded in the ASFV genome. The ASFV j4R protein binds to the α-chain of nascent 

polypeptide-associated complex (α-NAC) (35). The α-NAC protein plays roles in both 

translation and transcription, more specifically as a co-activator of c-jun and is also a binding 

partner of Fas associated death domain (FADD). The interaction between J4R and α-NAC is 

therefore predicted to modulate the transcriptional activation of c-jun and TNF-α induced 

apoptosis (22). The ubiquitin-conjugating enzyme, UBCv, of ASFV has been shown to interact 

with a host nuclear protein SMCy and is involved in transcriptional regulation (13). The ASFV 

DP71L protein is similar to the neurovirulence-associated protein (ICP34.5) from herpes 
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simplex virus (HSV). Recently, comparisons between the known function of ICP34.5 and the 

unknown function of DP71L, have demonstrated that like ICP34.5, DP71L is required for the 

activation of PP1 phosphatase activity that is induced by ASFV infection (99) (Rivera et al., 

2007). However, the latest studies indicates that DP71L is not the only factor required to 

control eIF2α phosphorylation, by PP1 (133). More recently described, the ORF I329l gene, 

encodes a highly glycosylated protein expressed in the cell membrane and on its surface. In 

dsRNA stimulated cells, I329L has been shown to inhibit NF-κB and IRF3 activation. The 

mechanism of I329L inhibition is yet to be fully determined. One study points TRIF as 

possible target of I329L protein, as overexpression of TRIF reverted NF-κB and IRF3 inhibition 

(138). While another study, based on structural and interaction analysis, suggest that I329L 

binds to TLR3, acting as an antagonist (47). 

Inhibition of apoptosis is a common host evasion strategy used by viruses and ASFV 

has three proteins with this activity. The first protein, A224L, is similar to the inhibitor of 

apoptosis protein (IAP) family of apoptosis inhibitors, and has been shown to interact with 

caspase-3 and to promote cell survival (82). The second, the ASFV bcl-2 homologue A179L, 

has been recently demonstrated to bind to a specific Bcl-2 proapoptotic protein and in this 

way block the induction of apoptosis (30). Finally, the third protein, EP153R, is a C-type lectin 

homologue and the first to be described having anti-apoptotic properties, and might be 

involved in the control of the activity of cellular p53 (52). 

Another mechanism used by ASFV to modulate host responses is to express 

transmembrane proteins with similarity to host cell adhesion proteins. The characteristic 

haemadsorption observed in ASFV infected cells is due to the interaction between a CD2 like 

protein encoded by the virus (CD2v or EP402R) and its ligand expressed on the surface of red 

blood cells (RBC). This virus protein is also incorporated into the virus particle and mediates 

attachment of the virus to RBC (29). 

ASFV infection leads to the disruption of the trans-Golgi network with a 

consequently inhibition of MHC class I surface expression (81), thus providing a possible 

mechanism for evasion of cytotoxic T lymphocytes responses. 

The modulation of the interferon response by ASFV has only been described in the 

comparison of transcriptional profiles of macrophage cells infected with wild type virus and 

a deletion mutant virus lacking six MGF360 and two MGF530 genes. A reduction in a 2 to 3 

log on the virus titres was observed from the infection of macrophages with the mutant 

virus and early cell death was also observed. Microarray analysis revealed an up-regulation 

of several interferon stimulated genes (ISGs) mRNAs when the cells were infected with this 

mutant virus and in comparison with wild type, suggesting that MGF360 and/or MGF530 
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genes are involved in the inhibition of IFN response. Indeed, in contrast with the wild type 

virus infection, the mutant virus infected culture supernatant contained significant amounts 

of IFN-α (2). Notably, in porcine aortic endothelial infected cells, the IFN-α induced MHC 

class I expression is down-regulated (109).  

However, no individual ASFV gene has been demonstrated to inhibit the IFN 

response. This is very surprising as the virus: 1) Resides in macrophages, a unique IFN 

sensitive cell and 2) because of its persistent infection, a lifestyle incompatible with an 

effective IFN response. Thus the focus of this work has been to characterize an unsigned 

early gene first described by Yáñez in 1995 (132) . K205R, shown to inhibit IFN response in 

luciferase assays (Correia, S., unpublished work). However, the mechanisms by which this 

ASFV gene modulates the IFN response is unknown. The aim of this thesis is to further 

understand how K205R can modulate the IFN response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 35 

Materials and Methods 
 

Production of ASFV and purification of viral genomic DNA 

 
Cell culture 

VERO cell line was grown in Dulbecco's Modified Eagle Medium (DMEM, Gibco) with  

4.5g/L Glucose and 0.11g/L of Sodium Pyruvate, supplemented with 10% Fetal bovine serum 

(FBS, Gibco), penicillin(100u/mL)/streptomycin(100ug/mL) (Gibco) and 2mM of L-gluthamine 

(Gibco). All cells were maintained in a humidified atmosphere of 5% CO2, 95% balanced air at 

37 °C. Cell lines were passaged, using Trypsin-EDTA (Gibco) when enough confluence was 

observed, two/three times a week. 

 

Production of ASFV 
VERO cells were seeded in 150cm2 Flasks (7x106 cells/flask) and the next day 

infected with 1x10-3p.f.u/cell (plaque forming units) of BA71V strain of ASFV. After 9/10 

days, cells were scraped and collected by centrifugation (1300rpm for 5minutes). The 

supernatant was centrifuged for 2 hours at 18 000rpm. The resulting pellet was resuspended 

in DMEM and stored in aliquots at -80ºC, or processed to extract viral genomic DNA. 

 

Extraction of viral genomic DNA 
After centrifugation, the virus was resuspended in 1mL of TE buffer (10mM TrisCl 

pH8, 1mM of EDTA). SDS (10% stock from Sigma-Aldrich) and proteinase K (10μg/mL stock 

from 50μg/mL) was added to a final concentration of 0,5% and 50μg/mL, respectively. 

Sample was mixed by vortex and incubated O/N at 37ºC. Subsequently, the DNA was 

extracted and purified using routine phenol-chlorophorm and ethanol precipitation 

protocols. 

 

Plaque Assays 
 To determine the viral concentration, VERO cells (3.8x105/well in 6 well plate) were 

infected with serial dilutions of 1:10 (1mL DMEM) of the virus. On the next day, cells were 

covered with an overlay medium of DMEM containing 0.7% of agarose (4% stock from 

Gibco). After 5 days, overlay was carefully removed and cells fixed with 4% 

paraformaldehyde (PFA) for 10minutes, before being stained with Toluidine Blue (0.1% in 4% 

PFA), to facilitate the counting of the viral plaques. 
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Replication of viral DNA and preparation of the K205R fragments  
The ASFV open reading frame K205R was amplified from BA71V DNA by PCR (Table1) 

using Pfu polymerase (Fermentas) and cloned into the pcDNA3 plasmid in frame with an 

amino-terminal influenza haemaglutinin (HA) tag using EcoRI and XhoI restriction sites, 

according to the Fermentas restriction enzymes protocol. 

 The K205R fragments were amplified using the same PCR conditions (Table1) and 

cloned using the same restriction site and protocol as for the complete K205R. 

To confirm the correct size of the amplified PCR products, the samples were run on 

an agarose gel with a percentage (1%-1,5%) of the final PCR solution. After confirmation, the 

remaining PCR product was purified by DNA purifications columns (Qiagen) according to 

manufacturer’s protocol. Purified DNA (insert) and pcDNA3 plasmid (vector) were digested 

and ligated according to manufacturer’s protocol of Rapid DNA Dephos & Ligation Kit 

(Roche). In order to prevent self re-ligation of the vector and consequent false positive 

colonies, this kit included a dephosphorylation step of the vector. Ligation mix was used to 

transform chemical competent E.coli DH5α strain. The ligation mix was added to competent 

cells and left on ice for 30 minutes followed by heat shock at 42ºC for 45 seconds and 2 

minutes on ice, before plating in ampicillin agar plates, which were allowed to grow at 37ºC 

overnight. The resulting colonies were screened for successful ligation using restriction 

patterns of plasmid DNA, after EcoRI/XhoI digestion and agarose gel (0.7%-1.5% in 1x Tris-

acetate-EDTA, TAE) electrophoresis. The DNA was stained with Redsafe™ and observed 

under UV light. In frame insertion of the genes was confirmed by DNA sequencing of the 

clones with correct restriction pattern. 

The DNA quantifications were made using Nanodrop from Thermo Scientific 

 

Luciferase Assay 

Luciferase Reporters 
The reporter plasmid for the IFN-β promoter [pIFΔ(-125/+72)lucter], the IFN-β 

responsive plasmid [p(9-27ISRE)4tk∆(-39)lucter] and the IFN-γ responsive plasmid [p(IRF-

Table 1: PCR primers for K205R and K205R fragments and PCR standard conditions used for amplification using 
BA71V genomic DNA 
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1*GAS)6tk∆(-39)lucter] were kind gifts of Dr. S. Goodbourn. All these plasmids are fused 

with firefly luciferase gene. The pCMVβ plasmid contains a β-galactosidase gene under the 

control of human cytomegalovirus immediate early promoter. 

 

Reporter gene assay.  
VERO cells (5x104 cells/well, in a 24 well plate) were co-transfected with 100ng of 

reporter plasmid (IFN-β, ISRE, GAS,), 25 ng of β-galactosidase control plasmid and 300ng of 

pcDNA3HA with test gene or the empty pcDNA3HA plasmid, according to the Lipofectamine 

2000 protocol (Invitrogen). Seventy two hours post-transfection, the cells were either 

stimulated for five hours or not stimulated with 25μg/mL Poly (I:C) (dsRNA analog), 

1000U/ml human IFN-β or 100U/ml human IFN-γ, for cells transfect with IFN-β, ISRE and GAS 

luciferase reporters. The cells where then lysed and the luciferase activity was measured 

using the luciferase assay system (Promega) according to the manufacturer’s protocol. The 

variations in the transfection efficiency were corrected by dividing luciferase values by β-

galactosidase values. 

Western blot and antibodies.  

VERO cells (2,5x105cells/well in a 6-well plate) were transfected with 4μg of 

pcDNA3HA with test gene or 4μg of pcDNA3HA empty plasmid, using the manufacturer’s 

protocol of Lipofectamine 2000 (Invitrogene). Seventy two hours post-transfection, the cells 

were stimulated or not stimulated with 1000U/ml human IFN-β during the indicated periods 

of time. Cells were then harvested and lysed in lysis buffer (20mM TrisHCl, 150mM NaCl, 1% 

Triton X-100, 2mM EDTA) containing a protease and phosphatase inhibitor cocktail (Roche 

and Calbiochem). Protein concentration of the lysates was quantified using Bradford 

reagent. Cell lysates were resolved on 8%-15% SDS-PAGE, transferred, using semidry method 

(constant voltage of 12, for one hour and an half) to a polyvinylidene difluoride (PVDF) 

membrane and analyzed by immunoblot assay using the primary antibodies: rabbit anti-

STAT2 (C-20, Santa Cruz Biotechnology), rabbit anti-STAT1 (Upstate), rat monoclonal anti-HA 

HRP (horseradish peroxidase- conjugated, Roche), rabbit anti-phosphoTyr701-STAT1 (Cell 

Signaling), rabbit anti-phosphoTyr690-STAT2 (Abnova) and mouse anti-α-actin-HRP 

conjugated (Sigma). The bounded primary antibodies were then detected using HRP-

conjugated secondary antibodies: mouse anti-rabbit (Invitrogen) and goat anti-mouse 

(Sigma). As a standard procedure, after transfer, all membranes were blocked with 5% milk 

TBS 0,05% Tween-20 (TBST) (Sigma Aldrich), for at least for 1 hour. Alternatively, for 

visualization of phosphorylated proteins, membranes were blocked with 5% Bovine Serum 
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Albumin (BSA) 0,05% TBST. Membranes were washed in TBST for 10 minutes(3x), after each 

antibody incubation. The membranes were developed with ECL solution (ThermoScientific). 

 

Immunofluorescence and antibodies 

VERO cells (2.5x105cells/well in a 6 well plate) seeded on glass coverslips were 

transfected with 4μg of pcDNA3HA with test gene or empty pcDNA3HA, using 

Lipofectamine2000. Forty-eight hours post-transfection, cells were washed with phosphate 

buffer saline (PBS), fixed with 4% PFA for 20 minutes and permeabilized with PBS + 0.1% 

Triton X-100 (Sigma Aldrich) for 20 minutes. The cells were blocked with 5% goat serum PBS 

for thirty minute before antibody staining. Cells were incubated for 1 hour at room 

temperature for both primary and secondary antibodies. Antibodies used include: high 

affinity rat anti-HA primary antibody (Roche), diluted in 5% goat serum PBS; Texas Red dye-

conjugated affinipure goat anti-mouse IgG. The DNA was counterstained with 4',6-

diamidino-2-phenylindole (DAPI, 200ng/mL from Sigma) and examined using a fluorescence 

microscope Leica DMRA2. 
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RESULTS 
 

Luciferase Assays 

In order to determine if the K205R 

gene is able to manipulate the induction 

and impact of IFN, the viral gene was 

screened in luciferase reporter assays. In 

this system, cells are transfected with  

reporter plasmids containing the luciferase 

gene under the control of the IFN- β 

promoter, ISRE element or GAS element, 

together with pcDNA3 empty vector or 

pcDNA3HA-K205R, and the response is 

evaluated after stimulating the cells with 

the corresponding inducer: dsRNA 

analogue Poly I:C for the IFN-β luciferase, 

IFN-β for the ISRE luciferase and IFN-γ for 

the GAS luciferase. In this screening, the 

K205R protein inhibited all three luciferase 

assays (IFN-β, ISRE and GAS reporters).As 

can be seen (figure 3), the luciferase 

activities were clearly reduced in cells 

expressing K205R when compared with the 

control cells transfected with the empty 

plasmid, and stimulated with appropriate 

inducer. 

 

Bioinformatics 

To define which region of the K205R protein might be impacting in each of the three 

signalling pathways  that were shown to be inhibited in the luciferase assays, we used the 

Jpred program (18), which is a secondary structure prediction server (Annex 1 with 

prediction). This analysis uses algorithms that can predict three different protein structures 

(α-helix, β-strand and coiled-coil) with an accuracy of 81,5%. The analysis of the K205R 

predicted a coiled-coil motif with high probability. This particular coiled-coil motif is 34 

Figure 3: Luciferase assays results using K205R 
gene and three different luciferase reporters for 
IFN response. (A) IFN-β response stimulated with 
dsRNA analagog, PolyIC; (B) ISRE response, 
stimulated with IFN-β and (C) GAS response 
stimulated with IFN-γ 
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amino acids long, starting at amino acid 40 and ending at amino acid 74. Coiled-coil motifs 

typically functions in protein-protein interactions. Considering that K205R might be 

interacting with proteins from the IFN signalling pathways and therefore inhibiting its 

response, the approach used here tried to possibly determine the minimum sequence 

needed for the K205R’s observed effects. As K205R is a small protein, the strategy was to 

divide the protein in two parts of similar size without disrupting the coiled-coil motif. Two of 

the fragments (K205R129 and K205R108) contain an overlapping region and the other two 

(K205R97 and K205R75) are similar but exclude this overlapping region (figure 4). Fragments 

were named according to their protein size. In addition, K205R also contains a putative 

nuclear export signal (NES) between amino acid 80 and 89. 

 

 

 

 

 

 

Replication of viral DNA and preparation of the K205R fragments 

Vero cells were infected with BA71V and viral genomic DNA was extracted according 

to the protocol described above. The four different K205R fragments were amplified by PCR 

using the standard conditions already used for the complete K205R. The amplification of full 

length K205R was used as the positive control, while in the negative control, the DNA was 

replaced by MilliQ H20. Samples were run in a 1% agarose gel with a constant 100 voltage. 

Figure 4: Schematic representation of K205R protein with putative motifs and K205R fragments 

Figure 5: Amplification of K205R DNA fragments, visualized on 1,5% agarose gel  electrophoresis, using DNA 

ladder Hyperladder IV (M). K205R129 with 387pb (a1), K205R108 with 324bp (b2), K205R75 with 225bp (c3) 

and K205R97 with 291bp (c5). Each PCR fragment reactions contains a negative control in which DNA 

replaced with H
2
0 was also analyzed for each fragment, respectively (a2), (b1), (c2) and (c3). Total K205R 

amplification was used as a control (c1) 

a b c 

1 2 M 1 2 M 1 2 3 4 5 M 
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The size of the resulting DNA bands corresponded to K205R total gene (618bp), to K205R129 

(387bp), to K205R108 (324bp), to K205R97 (291bp) and K205R75 (225bp) (figure 5).The 

bands were excised from the agarose gel and the DNA extracted using QIAGEN columns. The 

different DNA fragments were digested with EcoRI and XhoI restriction enzymes, ligated into 

pcDNA3HA and transformed in E.coli DH5α strain. The twelve colonies were harvest and 

their plasmid DNA extracted and digested with same enzymes used for cloning in 

pcDNA3HA. In order to identify the colonies that contained the ligated inserts, these samples 

were run in a 1,5% agarose gel.  From these twelve colonies, only five had a band with the 

desired size, near 600bp. To confirm correct insertion of k205R gene, three of plasmid DNA 

extracts were sent to sequencing and the selected one with the correctly cloned fragment 

was used for further experiments. (annex 2).  

A similar protocol was followed for all K205R fragments. For fragments K205R129 

and K205R97, it was used 5’primer of K205R with the respective 3’primer of each fragment 

(Fgure  5 (a) and (c)). In the case of the K205R108 and K205R75, 3’primer of K205R was used 

with respective 5’ primer of each fragment (figure 5 (b) and (c)). Although the PCR empty 

controls of K205R75 and K205R97 had some amplification, the fragment’s DNA was 

uncontaminated and with the expected size. Again, the resulting DNA was cloned into 

pcDNA3HA plasmid and transformed in E.coli DH5α strain. For each fragment, the DNA from 

up to three clones with the correct insert size (figure 6) was sequenced and only one correct 

clone was used for further experiments. 

 

a b 

Figure 6: Digested DNA 
extracted from 
transformed bacteria 
with K205R129 (a), 
K205R97 (c2), 
K205R7108 (b) and 
K205R75 (c1)  

c 

1 2 
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The next subsequent step was to see 

if each K205R fragment clone, when 

transfected into cells resulted in protein 

expression with the expected size. Therefore, 

Vero cells were transfected with each K205R 

fragment, cells were lysed and run in a 15% 

SDS gel. The western blot anti-HA tag showed 

indeed, that each one of the fragments is 

beeing expressed and with te correct size 

(Figure 7).  

Immunofluorescence 

The K205R protein localization at cytoplasm has been previously described (40). In 

order to understand which and if any part of K205R protein is important for its localization, 

Vero cells previously transfected with each K205R fragment were immunostained (figure 8). 

In fact, it was clear that the K205R fragments, that did not contain the putative NES, 

K205R108 and K205R75, localised in the nucleus. (figure 8). However, of the fragments 

which included the putative NES, only K205R129 was clearly expressed only in the 

cytoplasm. The K205R97 fragment localised equally in both, the nucleus and the cytoplasm.  

STAT1 and STAT2 Western Blot 

The K205R viral protein was shown to inhibit the three reporters in luciferase assay. 

Only the response to type I IFN (ISRE reporter) was further investigated in this study. This 

pathway can be disrupted by viruses targeting the ISGF3 complex, often impacting on STAT1 

and STAT2. These two proteins can be targeted by the virus for degradation, altering 

phosphorylation levels and traficking of STAT to the nucleus (96). To further understand how 

and which K205R fragment could affect this signalling pathway, Vero cells were transfected 

with each fragment and, 48h post transfection, the cells were stimulated with IFN-β (to 

activate the ISRE pathway) for 15 minutes and 45 minutes before lysis and protein 

extraction. Western blot was made and the STAT1 and STAT2 protein levels and 

phosphorylation status were accessed by incubating the membranes with specific antibodies 

for phosphorylated STAT1 (Tyr701)  and STAT2 (Tyr690), and for total STAT1 and STAT2 

protein. Differences were only observed regarding STAT1 phosphorylation, which was 

parcially inhibited in the presence of full K205R protein and in the presence of K205R75 

fragment, but no its total protein level. Regarding STAT2, no significant differences were 

observed, both in phosphorylation or protein level (figure 9). 

Figure 7: Western blot expression of K205R 
and K205R protein fragments in Vero cells, 
with expected molecular weight (ladder in 
kilodalton). 

25 
20 

15 

10 
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Figure 8:Imunofluorescence results. Vero cells were immunostained with DAPI for 
nucleus observation and test gene with Texas Red. Images taken using Leica’s DMRA2. 

Figure 9: Western blot for STAT 1 and STAT 2, total protein and phosphorylation after IFN-β stimulus for 
the indicated times in cells previously transfected with full K205R and its fragments.  

A 
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Discussion 
 

The interferon (IFN) system is critical to anti-viral immunity. Not surprisingly, 

therefore, viruses have evolved a variety of different anti-IFN strategies, with the objective 

of surviving sufficient time to replicate The ASFV gene K205R is particularly interesting as it is 

able to not only inhibit the induction of expression of IFN-β, but also the impact of type I and 

type II IFN.  

Luciferase assays showed that K205R not only seems to interfere with IFN signaling 

pathways, by inhibition of ISRE and GAS (Figure 3) in cells stimulated with IFN-β and IFN-γ, 

respectively, but also to inhibit the production of IFN-β in cells stimulated with dsRNA 

homolog, Poly I:C. Comparing the results of luciferase activity of cells transfected with the 

empty vector, with results from K205R transfected cells, we can see a significant (3-fold) 

inhibition of IFN-β and ISRE. In the case of GAS-luciferase activity, an 8-fold inhibition can be 

observed. These results encouraged us to further understand the mechanisms involved in 

K205R inhibitions of IFN responses. 

Using a bioinformatics analysis of K205R protein, we obtained a prediction of 

pK205R putative secondary structures, which gave a clue about of possible K205R function.   

Interestingly, pK205R has a putative coiled-coil motif 34 residues long, between amino acids 

41 and 75, with a prediction probability greater than 90%, according to Lupas prediction 

(18). The coiled-coil motif consists of two to five right-handed α-helices wrapped around 

each other into a left-handed helix to form a supercoil. This kind of motif is often associated 

with protein interaction. In fact, this prediction tool also suggests an α-helix structure for the 

first half (approximately) of pK205R, which corroborates with the coiled-coil prediction.  This 

suggests K205R interacts with other proteins, namely with proteins involved in IFN 

production and IFN signaling pathways, according to the luciferase results. The analysis also 

suggested that K205R has a putative nuclear export signal (NES) between residues 80 and 89 

(LGAIIAQLEI). 

Based on this analysis, a series of deletion mutants of K205R was constructed using 

cloning techniques. As the K205R is a small protein, primers were design to divide pK205r by 

half. Two of the fragments (K205R129 and K205R108) contained a common region of 33 

amino acids. The other two fragments (K205R97 and K205R75) correspond to the first ones 

but without the common region. After confirmation of correct amplification and cloning of 

each fragment in pcDNA3HA, in frame with the HA tag, each fragment was transfected into 

untreated VERO cells in order to confirm their expression and predicted molecular weight 



 

46 

 

(annex 2), using the western blot technique (described in methods). All fragments were 

expressed and with the predicted molecular weight.  

The next was to see if the putative NES sequence influenced the localization of 

K205R. A immunofluorescence assay was done using Vero cells transfected with K205R or its 

fragments, all cloned with an HA peptide “immunotag” at the N-terminal. Cells were 

immunostained for the HA tag to visualize the fragments and with DAPI to visualize the cell 

nucleus. The entire K205R protein localizes mostly in the cytoplasm, but levels of K205R can 

be seen in the nucleus (figure 8). This suggests K205R is moving between the nucleus and 

the cytoplasm, presumably the result of a functional NES sequence. Consistent with this 

idea, cells transfected with fragments not containing the putative NES motif (K205R108 and 

K205R75), accumulate the K205R protein fragments in their nucleus. The K205R129 and 

K205R97 fragments, which include NES motif, on the other hand, are preferentially 

cytoplasmically located. The K205R97 fragment, which also contains the NES, is present in 

both nucleus and cytoplasm, but with more protein localized in the cytoplasm (figure 8). 

These results suggest that the putative NES sequence is indeed a functional NES 

sequence. More experiments must be done to further define the minimal sequence 

necessary for the activity of the NES motif in K205R. As a first approach, point mutations in 

the putative NES motif and subsequent observation of cellular localization of mutated 

protein could be done. Another approach would be using cells transfected with full K205R 

protein in the presence of  Leptomycin B, an inhibitor of nuclear export (62). 

The putative coiled-coil motif of K205R suggests it may be interacting with other 

proteins, presumably with a role the IFN responses. At least two members of the STAT 

protein family play an important role in the signaling pathways activated in response to IFN. 

STAT 1 and STAT 2 are common targets of viral proteins that can sequester STATs, increase 

their turn over or alter the pattern of STAT phosphorylation, an important step for the 

formation of the two transcription factors, STAT1-STAT2 heterodimer and STAT1 

homodimer, critical for the response to IFN-α/β and IFN-γ, respectively. Western blot results 

for IFN-β treated cells suggests that K205R is not affecting STAT1 or STAT2 turnover as total 

protein level of both STATs did not change with entire K205R or fragments. However, the 

level of phosphorylated STAT 1 seems to be lower in the presence of full K205R protein. 

Surprisingly the only fragment which maintains this effect on STAT 1 phosphorylation was 

K205R75, a fragment without the coiled-coil and NES putative motif. Even more suprising is 

the lack of effect in K205R108 transfected cells, as this fragment includes the K205R75 

fragment. Despite this, western blot result suggest that K205R inhibition of ISRE pathway 

observed in the luciferase assays, might be due to an alteration of STAT1 phosphorylation 
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pattern, but this effect may occur without a direct interaction between STAT1 and K205R, as 

this effect is only preserved in the K205R75 fragment. It is also possible that K205R interacts 

with STAT1 but this interaction is not dependent of the putative coiled-coil motif. More 

experiments must be done to unveil the mechanism involved on K205R-dependent 

modification the phosphorylation status of STAT1. For example, a western blot at could can 

be done to investigate if K205R interacts or not with STAT1. By immunoprecipitating STAT1 

and incubating it with α-HA antibody we can determine the existence the interaction. It is 

also possible to verify this by immunostaining STAT1 and K205R we can see their cellular 

localization and determine whether they colocalize, if so, confirm the possible STAT1-K205R 

interaction hypothesis. If no evidences of interaction are observed, K205R may be affecting a 

protein upstream  in the signaling cascadeof STAT1 in the IFN-response signaling pathway, 

for example JAK1, which is responsible for STAT1 phosphorylation in response to IFN-α/β 

and also in response to IFN-γ, activator of the GAS pathway. In this case, JAK1 expression 

levels and turnover rates in the presence of K205R and K205R75 should be observed. 

The same experiment done for ISRE pathway should be done for the GAS pathway, 

as K205R seems to affect this pathway in luciferase assays. I would expect to observe a 

similar result to the one observed for the ISRE pathway as they have STAT1 in common. 

For technical reason it was not possible to do the luciferase assays done for K205R 

with its fragments, but it would be interesting to see which or if any of the fragments could 

inhibit IFN-β, ISRE and GAS signaling pathways. It would be expected to see an inhibition of 

ISRE pathway with at least K205R75 fragment.  

The inhibition of IFN-β induction pathway by K205R observed in the luciferase assays 

was not further investigated in this thesis work. However it would be also very interesting to 

further investigate this signaling pathway. Besides repeating the luciferase assay with the 

fragments, experiments should be done to determine at what level of the IFN-induction 

pathway K205R was acting. Despite the PRRs sensing ASFV, IRF3 and/or IRF7 will always be 

involved on the IFN induction, so it would be of interest to determine if K205R affects them 

and later with its fragments, if changes were observed with K205R. This could be done using 

similar approaches used for the signaling responses to IFN, either by western blot and 

immunofluorescence to access protein levels and the phosphorylation status of IRF3/7. 

After characterization of the K205R role in Vero cells, it should be confirmed if the 

same applies using an experimental model more closely related to ASFV host target, such as 

porcine macrophages, or the porcine macrophage IPAM cell line (128). 

This work may be viewed as an approach to determine how the multifunctional ASFV 

gene K205R is able to inhibit both the induction and the impact of IFN. The K205r putative 
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secondary protein structure and functional motifs were explored by bioinformatics. Based 

on the bioinformatic data, deletion mutant fragments of K205R were constructed and used 

in immunofluorescence and western blot assays. The immunofluorescence results are 

consistent with the presence of a functional NES motif in the K205R protein sequence. 

Western blot experiments suggested that K205R is affecting the phosphorylation status of 

STAT1, in cells stimulated with IFN-β. Although it was not possible to clearly determine the 

minimum sequence needed for all the functions of K205R, the results suggest that K205R 

inhibition of the impact of IFN type I, depends on a sequence within amino acids 130 and 

205. 
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Annex 1: Results from Jpred analysis for K205R secondary structure  

 

 
                : 1---------11--------21--------31--------41--------51--------61--------71--------81--------91--------101-------111-------121-------131-------141-------151-------161-------171-------181-------191-------201--  

OrigSeq         : MVEPREQFFQDLLSAVDQQMDTVKNDIKDIMKEKTSFMVSFENFIERYDTMEKNIQDLQNKYEEMAANLMTVMTDTKIQLGAIIAQLEILMINGTPLPAKKTTIKEAMPLPSSNTNNDQTSPPASGKTSETPKKNPTNAMFFTRSEWASSKTFREKFLTPEIQAILDEQFANKTGIERLHAEGLYMWRTQFSDEQKKMVKEMMKK  

 

Jnet            : ----HHHHHHHHHHHHHHHHHHHHHHHHHHHHH---HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH----HHHHHHHHHEEEEEE----------HH-----------------------------------EEEEE------HHHHHH---HHHHHHHHHH--------HEE----EEEE-----HHHHHHHHHH--  

jhmm            : ----HHHHHHHHHHHHHHHHHHHHHHHHHHHHH--HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH--HHHHHHHHHHHEEEEE---------HHHHH---------------------------------EEEEE------HHHHHH---HHHHHHHHHHH------HHH-----EEEE-----HHHHHHHHHH--  

jpssm           : ---HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH---EEEE----EE------------H-HHHHHHHHHHHH----EEEEE---EEEEEEEE----------------------------------------------EEEEE--------HHHHHH--HHHHHHHH-----------EE----EEEEE----HHHHHHHHHH--  

 

Lupas 14        : -----------------------------------------------CCCCCCCCCCCCCCCCCCCCC-----------------------------------------------------------------------------------------------------------------------------------------  

Lupas 21        : ----------------------------------------cccccccCCCCCCCCCCCCCCCCCCCCCccccccc---------------------------------------------------------------------------------------------------------------------------------- 

Lupas 28        : ----------------------------------------CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC----------------------------------------------------------------------------------------------------------------------------------  

 

 
 

Notes 

Key: 

Jnet            - Final secondary structure prediction for query 

jalign          - Jnet alignment prediction 

jhmm            - Jnet hmm profile prediction 

jpssm           - Jnet PSIBLAST pssm profile prediction 

 

Lupas           - Lupas Coil prediction (window size of 14, 21 and 28) 

 

Note on coiled coil predictions  - = less than 50% probability 

                                 c = between 50% and 90% probability 

                                 C = greater than 90% probability 
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Annex 2: DNA and protein information of K205R and K205R fragments 
 
K205R 
Insert sequence(618bp): 
ATGGTTGAGCCACGCGAACAGTTTTTTCAAGACCTGCTTTCAGCAGTGGATCAACAAATGGACACTGTAAAAAATGACATAAAAGACATCATGAA
AGAAAAAACATCTTTTATGGTGTCATTCGAAAACTTTATAGAACGTTACGATACCATGGAAAAAAATATTCAAGACCTTCAGAATAAGTACGAAG
AAATGGCGGCCAACCTTATGACCGTCATGACGGATACAAAAATTCAGCTTGGAGCCATTATCGCCCAACTTGAGATTCTGATGATAAATGGCACT
CCACTTCCGGCAAAAAAAACAACGATTAAGGAGGCTATGCCCCTACCTTCATCAAACACGAACAATGATCAAACGAGTCCTCCCGCCTCAGGCAA
AACAAGTGAAACACCTAAAAAAAATCCCACGAATGCAATGTTCTTCACGCGTAGCGAATGGGCATCCTCGAAAACTTTTCGAGAAAAGTTTTTAA
CACCAGAAATTCAGGCCATATTGGATGAGCAGTTTGCAAACAAGACCGGGATCGAAAGATTGCATGCCGAGGGTCTTTACATGTGGAGAACCCA
ATTCTCTGACGAACAGAAGAAAATGGTCAAAGAGATGATGAAGAAGTAA 
 
Protein sequence: 
MVEPREQFFQDLLSAVDQQMDTVKNDIKDIMKEKTSFMVSFENFIERYDTMEKNIQDLQNKYEEMAANLMTVMTDTKIQLGAIIAQLEILMINGTPL
PAKKTTIKEAMPLPSSNTNNDQTSPPASGKTSETPKKNPTNAMFFTRSEWASSKTFREKFLTPEIQAILDEQFANKTGIERLHAEGLYMWRTQFSDEQK
KMVKEMMKK 

Protein size – 205 a.a. 
Protein predicted molecular weight – 25 Kda 

 
 
K205R129 
Insert sequence(387bp): 
ATGGTTGAGCCACGCGAACAGTTTTTTCAAGACCTGCTTTCAGCAGTGGATCAACAAATGGACACTGTAAAAAATGACATAAAAGACATCATGAA
AGAAAAAACATCTTTTATGGTGTCATTCGAAAACTTTATAGAACGTTACGATACCATGGAAAAAAATATTCAAGACCTTCAGAATAAGTACGAAG
AAATGGCGGCCAACCTTATGACCGTCATGACGGATACAAAAATTCAGCTTGGAGCCATTATCGCCCAACTTGAGATTCTGATGATAAATGGCACT
CCACTTCCGGCAAAAAAAACAACGATTAAGGAGGCTATGCCCCTACCTTCATCAAACACGAACAATGATCAAACGAGTCCTCCCGCCTCAGGCAA
AACAAGTTAA 
 
Protein sequence: 
MVEPREQFFQDLLSAVDQQMDTVKNDIKDIMKEKTSFMVSFENFIERYDTMEKNIQDLQNKYEEMAANLMTVMTDTKIQLGAIIAQLEILMINGTPL
PAKKTTIKEAMPLPSSNTNNDQTSPPASGKTS 
 Protein size – 129 a.a. 
 Protein predicted molecular weight – 16 Kda  
 
K205R108 
Insert sequence (324bp): 
CCGGCAAAAAAAACAACGATTAAGGAGGCTATGCCCCTACCTTCATCAAACACGAACAATGATCAAACGAGTCCTCCCGCCTCAGGCAAAACAA
GTGAAACACCTAAAAAAAATCCCACGAATGCAATGTTCTTCACGCGTAGCGAATGGGCATCCTCGAAAACTTTTCGAGAAAAGTTTTTAACACCA
GAAATTCAGGCCATATTGGATGAGCAGTTTGCAAACAAGACCGGGATCGAAAGATTGCATGCCGAGGGTCTTTACATGTGGAGAACCCAATTCT
CTGACGAACAGAAGAAAATGGTCAAAGAGATGATGAAGAAGTAA 
 
Protein sequence: 
MAYPYDVPDYAEFPAKKTTIKEAMPLPSSNTNNDQTSPPASGKTSETPKKNPTNAMFFTRSEWASSKTFREKFLTPEIQAILDEQFANKTGIERLHAEGL
YMWRTQFSDEQKKMVKEMMKK 
 Protein size – 108 a.a. 

Protein predicted molecular weight – 14 Kda 
 
K205R97 
Insert sequence(291bp): 
ATGGTTGAGCCACGCGAACAGTTTTTTCAAGACCTGCTTTCAGCAGTGGATCAACAAATGGACACTGTAAAAAATGACATAAAAGACATCATGAA
AGAAAAAACATCTTTTATGGTGTCATTCGAAAACTTTATAGAACGTTACGATACCATGGAAAAAAATATTCAAGACCTTCAGAATAAGTACGAAG
AAATGGCGGCCAACCTTATGACCGTCATGACGGATACAAAAATTCAGCTTGGAGCCATTATCGCCCAACTTGAGATTCTGATGATAAATGGCACT
CCACTTTAG 
  
Protein sequence: 
MVEPREQFFQDLLSAVDQQMDTVKNDIKDIMKEKTSFMVSFENFIERYDTMEKNIQDLQNKYEEMAANLMTVMTDTKIQLGAIIAQLEILMINGTPL 

Protein size – 97 a.a. 
Protein predicted molecular weight – 13 Kda 

 
K205R75 
Insert sequence(225bp): 
ATGGCTTACCCATACGATGTTCCAGATTACGCTGAATTCACACCTAAAAAAAATCCCACGAATGCAATGTTCTTCACGCGTAGCGAATGGGCATC
CTCGAAAACTTTTCGAGAAAAGTTTTTAACACCAGAAATTCAGGCCATATTGGATGAGCAGTTTGCAAACAAGACCGGGATCGAAAGATTGCAT
GCCGAGGGTCTTTACATGTGGAGAACCCAATTCTCTGACGAACAGAAGAAAATGGTCAAAGAGATGATGAAGAAGAAGTAA 
 
Protein sequence: 
MAYPYDVPDYAEFTPKKNPTNAMFFTRSEWASSKTFREKFLTPEIQAILDEQFANKTGIERLHAEGLYMWRTQFSDEQKKMVKEMMKK 
 Protein size – 75 a.a. 
 Protein predicted molecular weight – 11 Kda 
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