
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

HUMAN MACHINE INTERFACE
PERFORMANCE AND INSTRUMENTATION FOR

HIGH AVAILABILITY SYSTEMS

Ana Lúcia Alves da Bárbara Caleço

Relatório Publico

MESTRADO EM ENGENHARIA INFORMÁTICA
Sistemas de Informação

2010

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

HUMAN MACHINE INTERFACE
PERFORMANCE AND INSTRUMENTATION

FOR HIGH AVAILABILITY SYSTEMS

Ana Lúcia Alves da Bárbara Caleço
PROJECTO

Trabalho orientado pelo Prof. Doutor José Manuel de Sousa de Matos Rufino

e co-orientado por Eng. Manuel António Sousa Dias

MESTRADO EM ENGENHARIA INFORMÁTICA
Sistemas de Informação

2010

Acknowledgements

I acknowledge many people...but in Portuguese because that is something that I

am very proud of. Thank you for letting me be Portuguese with so much proud!

Primeiro que tudo obrigada Mãe e Pai por esta oportunidade de vida e todas as

outras pequenas coisas que me fizeram chegar aqui. Obrigada Mãe pela força dada em

todos os sprints. Obrigada Pai por todas as paixões que me passaste, da História à

Aviação.

Agradeço a todos os professores que desde a primeira classe me deram notas boas

a justificar o meu esforço e empenho e me fizeram chegar aqui; ter a oportunidade de

tirar o curso que queria e na faculdade que escolhi. Se não fosse a visita de estudo no

12º Ano tinha perdido o prazer de pertencer à família, de que muito me orgulho de

pertencer, de alunos formados na Faculdade de Ciências da Universidade de Lisboa. Um

obrigada especial ao Professor Rufino que me acompanhou nesta demanda pelo Graal,

que culminou nesta tese, neste momento em que termino o Mestrado em Engenharia

Informática.

A todos os colegas que ultrapassaram os dias de aulas e as tardes infindáveis de

projectos a meu lado na Licenciatura – temos de voltar ao chinês no Alvaláxia para

comer vaca com molho de ostras e bife com batatas fritas.

Aos meus parceiros de mestrado, Nuno e João – aquelas manhãs para trabalhar

eram sempre para ler jornais online, gozar com o Veloso e dizer piadas com bastante

humor negro; todos os ‘Jogos Bonitos’ foram bem jogados! Mas em especial, um muito

obrigada por tudo o que fizeram num dos piores momentos da minha vida e que também

me ajudaram a ultrapassar: PMEs RULAM! E que ninguém vá auditar a nossa AJN09

que é a melhor empresa do mundo!

Sorte é coisa que não existe, mas 5 é um número que gosto bastante. Foi o número

que me trouxe aqui, a este mestrado, a este estágio, a esta empresa, a esta oportunidade

que sempre quis.

Obrigada à NAV por me acolher tão bem. Por me mostrar o que é o mundo do

trabalho a fazer algo que tanto gosto. Um obrigado ainda maior a todo o pessoal da

NAV que me recebeu e que viu que ser benfiquista é a melhor coisa do mundo! Grande

respeito pelos rivais sportinguistas que me fizeram acreditar em ‘Jesus’.

Especial obrigada à equipa ASD por quem tenho grande Estima e que puxou por

mim e acreditou em mim, de maneira que o meu programa tem Dias que até tira Bicas!

Manel D., tens aqui alguém para trabalhar e que tem sempre armas para lutar! Grande

respeito. Vocês são os maiores! Bica, já sabes, snooker time ao som da Lady GaGa ^_-

A todo o pessoal, que eu e o João mobilizamos para o grande desporto que é o

snooker…uma grande tacada ao som da música dos ‘chouriços’! Mas cuidado com o

Android… ^_-

Claro que não me esqueço dos dois pobres coitados (momento de revirar os olhos)

que saíram na rifa que dizia “Agora aturem os estagiários!”. Manel e Rui. Obrigada pela

disponibilidade da minha FIR, a qual tenho que actualizar para a época 2010/2011. Eu

sei que a impressora nunca mais foi a mesma depois de chegarmos, mas agora temos

copinhos de água para o AC não secar tanto o ar =þ AHHH! E obrigadinha pelos

brindes que nos foram dando, aos quais tínhamos de esperar pelos restos. Gostei muito

do meu kit de prevenção da Gripe A ^_-

Um especial abraço ao meu Amigo Secreto natalício pela caneca do SCP…estava

mesmo a precisar de um copo para as canetas lol

Agradecimentos ao Pipol lá de baixo por todos os bonitos e catitas momentos

vividos, entre conversas que não posso citar, piadas a fazer faísca, mas principalmente

pela grande disponibilidade para ajudar sempre que foi preciso. *bows*

Um obrigada ao meu chefe de serviço, Vermelhudo, que me fez a melhor

chamada para o telemóvel, a marcar a entrevista e, todo o apoio dado desde o princípio.

Também tenho de agradecer ao pessoal do Bar pela boa comida e grande simpatia,

às senhoras da limpeza pelos WCs impecáveis, os seguranças pela preocupação com o

meu frio no Inverno rigoroso que fez =þ e ao AC do meu gabinete por ser tão bom

agora nos dias de 40ºC como foi nos de 0ºC.

João, obrigada por tudo, tudo, tudo. Sempre.

A quem não mencionei, também um obrigada bem grande, como a minha

felicidade neste momento.

To Little Ana for what she was

and to Big Ana for what she became..

i

Abstract

Air Traffic Control (ATC) provides services whose objective is to manage aircrafts

to ensure safely orderly and expeditious flows of traffic.

The LISATM system has a number of Controller Working Positions equipped with

surveillance display applications, the Operator Display System (ODS). Due to

redundancy requirements, there are two equivalent applications developed with different

technologies. This project focused on the Air Situation Display System (ASD), an

application which provides a surveillance display with user-interaction capability and is

developed in Java technology. The application integrates the Radar Fallback keeping the

looks and feels from the ODS System, only being developed in a different programming

language.

Thus the present work focused on monitoring the performance of high availability

Real-Time Human-Machine Interface applications. Recommendations were endorsed

for quantifiable performance, being these activities accompanied by a corresponding

demonstration of results suitability for the intended context. Modules were defined in

order to instrument applications Human-Machine Interface High Performance and High

Availability (HMI-HPHA) with features necessary and sufficient for the pursuit of Real-

Time performance analysis. These modules were developed using JAVA technology

using the Java Management eXtensions (JMX), to manage the created agents.

All the monitoring services run in real-time so it can inform the managers of

changes of the application state as soon as it happens. This implies that the information

provided needs to be not only concise but also adequate to the context.

Keywords: High Availability and High Performance, Real-Time, Mission-Critical,

Human-Machine-Interface, Monitoring

ii

Resumo

O Controle de Tráfego Aéreo (ATC) presta serviços, cujo objectivo é direccionar

o fluxo de aeronaves para garantir a ordem, rapidez e segurança do tráfego, bem como

para dar informações aos pilotos.

O sistema LISATM tem um número de postos de trabalho, para os controladores,

equipado com aplicações de vigilância radar (Display System Operator - ODS). Devido

a requisitos de redundância, existem duas aplicações equivalentes desenvolvidas com

diferentes tecnologias. Este projecto focou-se no Air Display System (ASD). Aplicação

que fornece vigilância radar com capacidade de interacção com o utilizador, sendo

desenvolvido com tecnologia Java. A aplicação integra o Radar Fallback, mantendo o

aspecto e mecânica de utilização igual ao Sistema ODS, com a diferença a residir na

linguagem de programação.

O foco do presente projecto incidiu sobre o desempenho de aplicações de

Interface Homem-Máquina em Tempo-Real de elevada disponibilidade. Desta forma

foram elaboradas propostas de recomendações de desempenho quantificáveis a serem

incorporadas no ciclo de desenvolvimento de aplicações HMI-HPHA (Human-Machine

Interface High Performance and High Availability). Estas foram acompanhadas da

correspondente demonstração da adequabilidade ao contexto pretendido. Para isso

foram definidos e desenvolvidos módulos de forma a instrumentar a aplicação HMI-

HPHA com as funcionalidades necessárias e suficientes para a persecução da análise de

desempenho. Estes módulos foram desenvolvidos com recurso à tecnologia JAVA e às

ferramentas de automatização dos mesmos, usando Java Management eXtensions

(JMX) para gerir os agentes desenvolvidos.

Todos os serviços de monitoria foram executados em Tempo-Real de modo a

informar os gestores aquando de alguma mudança de estado da aplicação. Estas

informações necessitam não só de ser concisas, mas também adequadas ao contexto.

Palavras-Chave: Elevada Disponibilidade e Elevado Desempenho, Tempo-Real,

Missão-Crítica, Interface-Pessoa-Máquina, Monitoria

iii

Resumo Alargado

O Controle de Tráfego Aéreo (ATC) presta serviços, cujo objectivo é direccionar

o fluxo de aeronaves para garantir a ordem, rapidez e segurança do tráfego, bem como

para dar informações aos pilotos.

O sistema LISATM é o sistema proprietário da NAV Portugal E.P.E. para

desempenhar tais funções. Este está equipado com aplicações de vigilância radar

Display System Operator (ODS). Devido a requisitos de redundância, existem duas

aplicações equivalentes desenvolvidas com diferentes tecnologias. Este projecto focou-

se no Air Display System (ASD). Aplicação que fornece vigilância radar com

capacidade de interacção com o utilizador, sendo desenvolvido com tecnologia Java. A

aplicação integra o Radar Fallback, mantendo o aspecto e mecânica de utilização igual

ao Sistema ODS, com a diferença a residir na linguagem de programação.

O foco do presente projecto incidiu sobre o desempenho de aplicações de

Interface Homem-Máquina em Tempo-Real de elevada disponibilidade. Desta forma

foram elaboradas propostas de recomendações de desempenho quantificáveis a serem

incorporadas no ciclo de desenvolvimento de aplicações HMI-HPHA (Human-Machine

Interface High Performance and High Availability). Estas foram acompanhadas da

correspondente demonstração da adequabilidade ao contexto pretendido através. Para

isso foram definidos e desenvolvidos módulos de forma a instrumentar a aplicação

HMI-HPHA com as funcionalidades necessárias e suficientes para a persecução da

análise de desempenho. Estes módulos foram desenvolvidos com recurso à tecnologia

JAVA e às ferramentas de automatização dos mesmos, usando Java Management

eXtensions (JMX) para gerir os agentes desenvolvidos.

Este passo foi precedido de um estudo intensivo da Framework e da sua

arquitectura de forma a determinar as componentes principais no processamento de

mensagens e de como estas eram tratadas de forma à sua informação ser apresentada de

forma correcta aos controladores.

Juntamente com o estudo da Framework, também foi efectuado o estudo das

mensagens de radar recebidas pela aplicação. Estas seguem um formato pré-

estabelecido pela EUROCONTROL denominado ASTERIX. Este formato serve de

protocolo também, de forma que está dividido por categorias de mensagens de forma a

facilitar a sua identificação e troca. Para este projecto foram monitorizadas as

mensagens ASTERIX de categoria 30. Estas contêm vários blocos de dados que por sua

vez contêm um ou vários registos que agrupam um ou mais itens. São estes registos

com os seus itens que darão origem às pistas a serem apresentadas no ecrã ao

iv

controlador com a informação associada numa etiqueta que identifica, nomeadamente a

aeronave, a sua altitude e é também apresentado o vector segundo a rota que a aeronave

segue.

Para desenvolver a ferramenta de monitoria foi de grande importância manter a

modularidade da mesma de forma a ser integrada na Framework de forma a não ser

necessário alterar demasiado código nesta. Assim, para desenvolver as classes

destinadas a recolher os dados ao longo do processamento de dados de uma mensagem,

foi criada uma interface a ser implementada pelas classes das componentes atrás

identificadas como sendo as componentes de uma mensagem ASTERIX categoria 30.

Depois, uma classe destinada a iniciar o processo de monitoria, com a criação do

MBean responsável pela análise dos valores e o seu registo no MBean Server também

criado, e também a finalizar o mesmo processo, foi desenvolvida. Esta classe permite

identificar uma mensagem mal entre na aplicação (lida de um Link), as várias fases por

que passa no processamento até finalmente ser feita a sua representação no ecrã. Esta

identificação é feita através de uma marca de tempo e da sua concatenação com um

identificador numérico por cada fase que o conteúdo da mensagem passa até ao número

de identificação da aeronave. Assim existe uma identificação unívoca das mensagens

recebidas que permite assegurar a sua atomicidade, sabendo que a mensagem que entrou

no tempo X é a que deu origem à apresentação Y, não havendo trocas de mensagens.

Todos os serviços de monitoria foram executados em Tempo-Real. As

informações obtidas necessitam não só de ser concisas, mas também adequadas ao

contexto. Para isso foram definidas métricas baseadas no tempo total de processamento,

isto é, desde a entrada de uma mensagem até à produção do seu resultado. Obtendo

vários valores em vários testes, as médias serviram para determinar, não só que a

aplicação opera numa zona de conforto, bem como, muito abaixo do prazo limite que

são os cinco segundos de rotação do Radar. Permitiram também definir padrões de

resultados que se mostraram dentro do expectável para cada cenário testado. Cenários

esses em que se avaliou as operações básicas que a aplicação efectua sobre as

mensagens recebidas: criação, actualização e remoção de uma pista. Foram também

feitos testes em cenários operacionais, ou seja, situações normais de tráfego aéreo, em

que, ao contrário dos anteriores cenários, as mensagens testados não eram de um tipo

único por cenário (criação, actualização ou remoção), mas de todos ao mesmo tempo.

Valores mais altos observados ocasionalmente requerem estudo mais aprofundado no

futuro, sendo que a maioria foram detectados devido a actividades da Java Virtual

Machine executar Garbage Collections.

Desta forma o projecto foi completado dentro dos pressupostos iniciais e com

sucesso.

v

Table of Contents

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Goals... 1

1.3 Host Institution ... 2

1.4 Work Team... 2

1.5 Documentation Produced ... 3

1.6 Document Organization.. 4

Chapter 2 CONFIDENTIAL... 5

Chapter 3 Air Traffic Management under a State of Art Perspective................... 6

3.1 Real Time systems and its goals... 7

3.2 Main Factors of a Real Time System ... 10

3.3 Classification of Real Time systems .. 12

3.4 Main Factors of a Mission Critical System .. 15

3.5 Real Time and High Performance .. 16

3.6 Performance Management.. 20

3.7 Summary... 21

Chapter 4 CONFIDENTIAL... 23

Chapter 5 Technologies... 24

5.1 Agents and Monitoring... 24

5.1.1 Implementation Approaches for the MBeanServer 26

5.1.2 Connection with the management console ... 27

5.2 Management Console ... 29

5.3 Summary... 30

Chapter 6 CONFIDENTIAL... 31

Chapter 7 CONFIDENTIAL... 32

Chapter 8 Conclusion and Future Work.. 33

vi

Table of Figures

Figure 1: LISATM main data flow…..6

Figure 2: Operational HMI Screen Capture………………………………………...…...8

Figure 3: ASD Radar Display…………………………………………………………..11

Figure 4: ATM as a Real-Time System……………………………………………...…14

Figure 5: Example of utility being high when near the deadline……………………….16

Figure 6: Example of utility being met or not while the deadline is not reached……....19

Figure 7: Traditional Hard Time deadline………………………………………..…….21

Figure 8: Traditional deadline (Hard deadline is a special case)……………………….21

Figure 9: LISATM and its Fallback System…………………………………………..35

Figure 10: ASD CSCI interface diagram……………………………………………….33

Figure 11: ASD Data Flow – Macro view………………………………………...……36

Figure 12: ASD Data Flow – Interface links representation………………………..….36

Figure 13: ASD Data Flow - Several Processing Nodes…………...…………..………37

Figure 14: ASD Data Flow – Boundary between the world and the application……....37

Figure 15: ASD chain of components…………………………………………...……..38

Figure 16: ASTERIX Messages Data flow from the input until it is presented in the

HMI…………………………………………………………………………………….38

Figure 17: MVC mapping into the ASD framework…………………...………………39

Figure 18: MVC Architecture Pattern………………………………………….………40

Figure 19: MVC pattern flow..40

Figure 20: JVM handles translations...39

Figure 21: JMX Java Technology levels……………………………………….………42

Figure 22 a): Each MBean has its own MBeanServer………………………….………44

Figure 22 b): All MBeans share a single server…………………………...……...……44

Figure 23: JMX architecture with a Connector and an Adapter…………..……………45

Figure 24: Overall picture of the JMX architecture with Connector……………….…..46

Figure 25: Data Block Structure………………………………………………..………53

vii

Figure 26: ASTERIX messages in ASD…………………………………………….….55

Figure 27: Data flow from a link until it is presented in the HMI with ASTERI5

messages…………………………………………………………………………..……55

Figure 28: Message Reader classes………………………………………………….....56

Figure 29: Base Client classes……………………………………………………….....56

Figure 30: Asterix Message Processor Classes……………………………………..….57

Figure 31: Base Track Manager Classes…………………………………………….....57

Figure 32: Base Track Manager Classes………………………………………….……58

Figure 33: TFC components..58

Figure 34: Presentation Manager Classes………………………………………………58

Figure 35: Sequence diagram from reading a message until the Cat30Processor……...59

Figure 36: Sequence diagram from Cat30Processor until the views are updated……...59

Figure 37: First Implementation of a Monitoring Class……………………………..…62

Figure 38: Monitoring Interface to be implemented………………………………..….63

Figure 39: Monitoring Class and the Classes to obtain the monitoring information…..63

Figure 40: MBeanServer Class Diagram……………………………………………….64

Figure 41: MBean Diagram Class………………………………………………...……65

Figure 42: Application Monitoring Class Diagram………………………………….....66

Figure 43: Scheme of the monitoring data flow for create and remove ASTERIX

category 30 messages……………………………………………………………..……68

Figure 44: Scheme of the monitoring data flow for update ASTERIX category 30

messages………………………………………………………………………………..68

Figure 45: First Phase test scenario………………………………………………….....70

Figure 46: Second phase test scenarios…………………………………………..…….71

Figure 47: Update 1 Item - Time of Processing Per Message for Run 1.........................74

Figure 48: Update 1 Item - Time of Processing Per Message for Run 3.........................75

Figure 49: Create and Remove - Time of Processing Per Message for Run 3................76

Figure 50: Normal Airborne Traffic Flow – Messages ASTERIX Category 30 Read Per

Second for Run 1...79

viii

Figure 51: Normal Airborne Traffic Flow – Messages ASTERIX Category 30 Read Per

Second for Run 3...80

Figure 52: Normal Airborne Traffic Flow – Messages ASTERIX Category 30 Processed

Per Second for Run 1...80

Figure 53: Normal Airborne Traffic Flow – Messages ASTERIX Category 30 Processed

Per Second for Run 3...81

Figure 54: Type of messages more common to be processed by the ASD.....................82

Figure 55: Normal Airborne Traffic Flow – Time of Processing Per Message for

Computer C..85

Figure 56: Normal Airborne Traffic Flow – Heap Memory Usage for Computer C......86

Figure 57: Normal Airborne Traffic Flow – CPU Usage for Computer C......................86

Figure 58: Normal Airborne Traffic Flow – Heap Memory Usage for Computer B......87

Figure 59: Normal Airborne Traffic Flow – CPU Usage for Computer B......................87

Figure 60: Normal Airborne Traffic Flow – Heap Memory Usage for Computer A......88

Figure 61: Normal Airborne Traffic Flow – CPU Usage for Computer A.....................88

ix

Table of Tables

Table 1: Hard and Soft Real Time characteristics……………………………………...19

Table 2: Steps to develop a guide to monitor and evaluate an application

performance…………………………………………………………………………….24

Table 3: List of metrics to evaluate the application performance………………...……25

Table 4: Definitions for ASTERIX messages components...49

Table 5: Phase one - Time of Processing averages for the first test scenario..................74

Table 6: Phase one - Time of Processing averages for the second test scenario.............75

Table 7: Phase one - Time of Processing averages for the third test scenario................76

Table 8: Phase one - Time of Processing averages for the fourth test scenario..............77

Table 9: Phase one – Number of messages read per second averages for the fourth test

scenario..78

Table 10: Phase one – Number of messages processed per second averages for the

fourth test scenario...78

Table 11: Phase two – Time of Processing averages for the first test scenario...............83

Table 12: Phase two – Time of Processing averages for the second test scenario..........83

Table 13: Phase two – Time of Processing averages for the third test scenario..............83

Table 14: Phase two – Time of Processing averages for the fourth test scenario...........84

Table 15: Phase one – Number of messages read per second averages for the fourth test

scenario..84

Table 16: Phase one – Number of messages processed per second averages for the

fourth test scenario...84

x

Glossary

(Alphabetic order)

ACRONYM MEANING

ARTAS ATC Surveillance Tracker and Server

ASD NAV - Air Situation Display

ASTERIX All Purpose Structured Eurocontrol Survaillance Information

Exchange

ATCO Air Traffic Controller

ATSS ATO, TFC and Safety net System

ATD Actual Time of Departure

ATM Air Traffic Management

ATC Air Traffic Controller

ATO Actual Time Over

CVSM Conventional Vertical Separation Minimum

CWP Controller Working Position

DLS Data Link Server

DSTI NAV – Direcção de Sistemas e Tecnologias de Informação

EDI Eletronic Information Distribution

ENV Environment System

ETA Estimated Time of Arrival

ETD Estimated Time of Departure

EUROCONTROL European Organisation for the Safety of Air Navigation

FANS Future Air Navigation Systems (ICAO)

FDP Flight Data Processor

FIR Flight Information Region

FL Flight Level

FP ou FPL Flight Plane

FDPS Flight Data Processing System

xi

GSD NAV - Ground Situation Display

HMI Human-Machine-Interface

HPHA High Performance and High Availability

ICAO International Civil Aviation Organization

LISATM NAV - Lisbon Air Traffic Management System

NAV Navegação Aérea de Portugal

ODS NAV - Operator Display System

OJT On Job Training

OLDI On-Line Data Interchange

POACCS MILITARY FPL information (creation, modification and cancel)

PR Primary Radar

PSR Primary Surveillance Radar

RVSM Reduced Vertical Separation Minimum

SAC/SIC System Area Code/System Identification Code

SDPS Surveillance Data Processing System

SIMATM NAV - ATM Simulator

SIMATM-GS NAV - SIMATM Game Supervisor

SIMATM-PP NAV - SIMATM Pseudo Pilot

SIMATM-SE NAV - SIMATM Scenario Editor

SISINT NAV-DSTI: Sistemas – Interface com o utilizador

SISLOG NAV-DSTI: Sistemas – Logística

SISPRO NAV-DSTI: Sistemas – Produção

SISQUA NAV-DSTI: Sistemas – Gestão da Qualidade e Safety

SITA Speciallists in Air Transport Communications and IT Solutions

(Sociedade Internacional Telecomunicações Aeronáuticas)

SSR Secondary Surveillance Radar

STCA Short Term Conflict Alert

STS NAV - Supervisão Técnica de Sistemas

xii

TAR Terminal Approach Radar

TFC Track Flight Correlation System

TWR Tower

TMP Test Management Plan

VFR Visual Flight Rules

VSM Vertical Separation Minimum

xiii

Table of References

Ref. Document

[1]

U.S. DEPARTMENT OF TRANSPORTATION, FEDERAL AVIATION

ADMINISTRATION, Air Traffic Control – Chapter 2. General Control

Website:

http://www.faa.gov/air_traffic/publications/atpubs/ATC/atc0201.html

[2]

International Civil Aviation Organization (ICAO), Air Navigation Bureau

(ANB)

Website: http://www.icao.int/icao/en/trivia/peltrgFAQ.htm#23

[3]

Chambost, Germain in : Le filet de sauvegarde resserre ses mailles

Website :

http ://www.dgac.fr/html/publicat/av_civil/them_1/them_1_34_35.pdf

[4]

EUROCONTROL – SESAR

Website:

http://www.eurocontrol.int/sesar/public/subsite_homepage/homepage.html

[5]

Raymond, Eric Steven and Landley, Rob W. in: The Art of Unix Usability

Chapter 2. History: A Brief History of User Interfaces, 2004

Website: http://www.catb.org/~esr/writings/taouu/html/ch02.html

[6]
Can DCS HMI impact operator performance in: Control Global Community,

Usability Project - OPerations, 2009

[7]
Mintchel, Gary A. in: Plan Ahead to Build the Perfect HMI System,

ICONICS, November 2001

[8]
Boyko, Brian in: Fingerpointing, Frustrated Network Engineers, and the

Application Performance Blame Game, Network Performance Daily, 2007

[9]
Real User Monitoring

Website: http://en.wikipedia.org/wiki/Real_user_monitoring

[10]

Drakos, Nikos and Moore, Ross in: Network Performance Measurement and

Analysis - Design and Implementation of a WWW Workload Generator for

the NS-2 Network Simulator, 2001

[11] Passive Monitoring

xiv

Ref. Document

Website: http://en.wikipedia.org/wiki/Passive_monitoring

[12]

Fleury, Marc & Lindfors, Juha in: Enabling Component Architectures with

JMX – OnJava.Com, 2001

Website: http://onjava.com/pub/a/onjava/2001/02/01/jmx.html

[13]

Goff, Max in: Java in the management sphere, Part 2 – Java enters the

management arena with JMX and Java DMK

Website: http://www.javaworld.com/jw-11-1999/jw-11-management.html

[14]
Java Management Extensions

Website: http://en.wikipedia.org/wiki/Java_Management_Extensions

[15]
Pande, Manish & Ganesan, Rajeshwari in: Gathering Performance

Requirements – Computer Measurement Group, June, 2005

[16]
MVC - XEROX PARC 1978-79

Website: http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[17]
Burbeck, Steve in: Applications Programming in Smalltalk-80(TM): How to

use Model-View-Controller (MVC) - ParcPlace Systems, Inc, 1992

[18]
The Linux Information Project - GUI Definition

Website: http://www.linfo.org/gui.html

[19]
Piedad, Floyd in: High Availability: Design, Techniques, and Processes,

Prentice Hall PTR, 2001

[20]
Veríssimo, Paulo and Rodrigues, Luís in: Distributed Systems for System

Architectures, Kluwer Academic Publishers, 2001

[21]
Wieringa, Roel in: Design methods for reactive systems: Yourdon,

Statemate, and the UML, Elsevier Publishers, 2003

[22]
Flores-Mendez, Roberto A. in: Towards a Standardization of Multi-Agent

System Frameworks, XRDS Crossroads, June 1999

[23]

High-Performance HMI - The Seven Step Methodology to High-

Performance HMI

Website: http://www.pas.com/Solutions/High-Performance-HMI.aspx

[24]
Juvva, Kanaka in: Real-Time Systems

Website: http://www.ece.cmu.edu/~koopman/des_s99/real_time/

xv

Ref. Document

[25]

Singh, Arjun in: Communication Navigation Surveillance / Air Traffic

Management (Cns / Atm) Beyond 2012, GISdevelopment.net – Technology,

2004

[26]

Jensen's, E. Douglas - Real-Time for the Real World: My personal manifesto

about the widely misunderstood field of real-time systems, 2001-2010

Website: http://www.real-time.org/realtime.htm

[27]
Sun Microsystems, Inc., “Java Dynamic Management Kit 5.1 Tutorial –

June 2004”

[28]
Performance Definition – Business Dictionary

Website: http://www.businessdictionary.com/definition/performance.html

[29]
Model–view–controller

Website: http://en.wikipedia.org/wiki/Model–view–controller

[30]
Model-View-Controller – OO Books

Website: http://ootips.org/mvc-pattern.html

[31]

Model View Controller As An Aggregate Design Pattern

Website:

http://c2.com/cgi/wiki?ModelViewControllerAsAnAggregateDesignPattern

[32]
Model-View-Controller Pattern - How It Works

Website: http://www.enode.com/x/markup/tutorial/mvc.html

[33]

Java Coffee Break: Inside Java - The Java Virtual Machine, January 2000

Website:http://www.javacoffeebreak.com/articles/inside_java/insidejava-

jan99.html

[34]
Model-View-Controller – MSDN Microsoft patterns & practices

Website: http://msdn.microsoft.com/en-us/library/ms978748.aspx

[35]
Deacon, John in: Model-View-Controller (MVC) Architecture, Computer

Systems Development, Consulting and Training, 1995-2009

[36]
Ramachandran, Vijay in: Design Patterns for Building Flexible and

Maintainable J2EE Applications, January 2002

[37] Sullins, Benjamin G. and Whipple, Mark B. in: JMX in Action, Manning

xvi

Ref. Document

Publication, 2002

[38]
JVM Monitoring: JMX or SNMP?

Website: http://blogs.sun.com/jmxetc/entry/jmx_vs_snmp

[39] 1 - LISATM_Vision – NAV Presentation

[40]

Navegação Aérea de Portugal – NAV Portugal E.P.E., DSTI – Direcção de

Sistemas e Tecnologias de Informação. in: Air Situation Display – ASD:

Project Vision, Part, Version 0.0, 2003

[41]

Navegação Aérea de Portugal – NAV Portugal E.P.E., DSTI – Direcção de

Sistemas e Tecnologias de Informação. in: Air Situation Display – ASD:

Software Interface Specification, External interface definition; Version: 1.4,

2004

[42]

EUROCONTROL STANDARD DOCUMENT FOR SURVEILLANCE

DATA EXCHANGE, Part 1: All Purpose Structured Eurocontrol

Surveillance Information Exchange (ASTERIX); Version 1.29, 2002

[43] Asterix_in_ASD – NAV Presentation

[44]
SNMP Research – Secure Internet and Network Specialists

Website: http://www.snmp.com/index.shtml

[45]
ORACLE - Using JConsole to Monitor Applications

Website: http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

[46]

IBM - Using JConsole

Website:

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp?topic=/com

.ibm.java.doc.diagnostics.60/diag/tools/jconsole.html

[47]

Overview of Monitoring and Management

Website:

http://java.sun.com/j2se/1.5.0/docs/guide/management/overview.html

[48]

United States General Accounting Office – GAO in: PERFORMANCE

MEASUREMENT AND EVALUATION - Definitions and Relationships,

1998-2005

Website: http://www.gao.gov/special.pubs/gg98026.pdf

xvii

Ref. Document

[49]
Software performance testing

Website: http://en.wikipedia.org/wiki/Software_performance_testing

[50]
Molyneaux, Ian in: The Art of Application Performance Testing - Help for

Programmers and Quality Assurance, O'Reilly Media, January 2009

[51]
Gamma, Erich; et al in: Design patterns : elements of reusable object-

oriented software; Reading, Mass. : Addison-Wesley, 1995

[52]
Command pattern

Website: http://en.wikipedia.org/wiki/Command_pattern

1

Chapter 1

Introduction

1.1 Motivation

Currently, aviation has become a major mean of transport used by many people.

This increase in preference is due mainly to its fastness. The need to make business

travel in the shortest possible time for various destinations in aviation is the focal point

in the globalization that we are all engaged.

Another point in favour of this mode of transportation is the fact that it still is

considered the safest. The odds of something going wrong are very low but when there

is an accident, usually it ends up being a tragedy of greater proportions than a car

accident, for example.

Thus, in this transport branch the safety is paramount and all decisions are critical.

Safety is currently a huge concern in using technology which is updated regularly,

either in hardware or at the software level, as well as in simplifying the rules of

interaction between people, procedures and equipments [1] [2] [3] [4].

1.2 Goals

The forecast growth in air traffic requires the adoption of new technologies and

related procedures enabling the safe and efficient provision of Air Traffic Control

(ATC) services to a larger number of aircrafts. The best and most efficient service

depends on better tools provided to the controller and it requires applications to be more

efficient - hence the monitoring being so important.

As such, the main goal of this project is to develop a Real-Time monitoring

framework to obtain performance results from the Air Situation Display (ASD)

application itself. To achieve this goal it is necessary to analyse what a Real-Time

System is, considering its different flavours, and how an Air Traffic Management

(ATM) system can be integrated in this classification, having its concept and context

into account. Before that, there is the need to characterize the ATM system as a

2

Mission-Critical System and how it relates to Real-Time applications. The definition of

metrics and ways to interpret the results from the Real-Time monitoring activities in

order to improve the application performance is of vital importance to understand the

operations and other non-functional attributes of an ATM System [25].

1.3 Host Institution

The NAV Portugal E.P.E. [1] mission is the provision of priority Air Traffic

Services in the Flight Information Regions (FIR or RIV) under the Portuguese

responsibility - Lisbon and Santa Maria, ensuring compliance with national and

international regulations meeting the best safety conditions, enhancing capabilities by

focusing on efficiency while meeting environmental requirements. The company

operates in the mainland and the autonomous regions of Azores and Madeira.

The Centre for Air Traffic Control of Lisbon and Training Centre are part of the

Headquarters located at Lisbon International Aeroport. In the Azores, namely the island

of Santa Maria, is located the Centre for Oceanic Control. In addition to these two major

centres, the NAV Portugal has other infrastructure with air traffic services operating in

the Control Towers of Airports of Lisbon, Porto, Faro, Madeira, Porto Santo, Santa

Maria, Ponta Delgada, Horta, Flores and Cascais Aerodrome. For the full realization of

its mission of Air Traffic Control the NAV Portugal has a wide range of equipment and

installations (radar stations, radio aids and communications) in various parts of the

mainland and islands.

The system of air traffic management in Santa Maria Oceanic and phasing in the

service of a new generation of air traffic management in Lisbon were decisive steps to

maintain the NAV Portugal's among the leading providers of air navigation services [2].

1.4 Work Team

The host team in the company is part of the DSTI - Department of Systems and

Information Technology which mission is as follow:

• Conduct technical studies and monitor the operation of the Air Traffic

Management Support Systems, in compliance with national and international standards

applicable to the sector.

• Prepare development plans, ensuring the inclusion of projects in this area in the

Investment Plans and Activities.

3

• Develop projects related to the Strategic Investment and Development Operations

in the ATM, ensuring the delivery of the final product to the user, in compliance with

the requirements of quality, time and cost.

• Ensure representation of NAV Portugal in national and international

organizations in matters of a technical nature in ATM.

The DSTI is divided in four areas:

• SISINT - Systems User Interface

• SISLOG - Logistics Systems

• SISQUA - Quality Management Systems and Safety

• SISPRO - Production Systems

SISPRO is the host team where this work was developed. This area has the main

functions as follow:

• Define the architecture of ATM systems and the various tools to support Air

Traffic Management in accordance with operational requirements.

• Undertake projects to develop systems and operating software.

1.5 Documentation Produced

• Preliminary Report;

o Introduction to the Host Institution and the map of activities to develop

• State of Art - Relating Mission-Critical, Real-Time and Performance concepts;

o Study and aggregation of concepts of the Real-Time Systems and its flavours

and its relation to Application Performance

• KPI – Key Performance Indicators: Concepts of KPIs and Fuzzy Theory;

o Study and presentation of some KPIs and adaptation of the Fuzzy Logic to

the ATM System

• Air Situation Display fallback - ASD System Architecture, Components and Data

Flows;

o UML Description of the main components and data flows in the ASD

• ASTERIX Category 30 Messages - Design and implementation approaches to

monitor surveillance messages;

o Proposal of implementations to monitoring this type of ASTERIX messages

4

• Situation Point Reports:

o Description of the tasks developed and completed according to the schedule

defined and the resources available. Periodicity of one report per month of

work.

1.6 Document Organization

This document is organized as follows:

• Chapter 2 – Context and Air Traffic Management System Architecture

• Chapter 3 – State of Art

• Chapter 4 – Air Situation Display Architecture

• Chapter 5 – Technologies Used

• Chapter 6 – Design

• Chapter 7 – Results

• Chapter 8 – Conclusion and Future Work

5

Chapter 2

CONFIDENTIAL

6

Chapter 3

Air Traffic Management under a State of Art

Perspective

Aviation became one of the most common and used transportation for many

people. That came with the idea that’s the fastest and most secure and safe way to move

around the globe. But that fact demands that all activities incorporated in the area of Air

Traffic Management (ATM) are quite decisive and critical. That said we assume that an

ATM system must be Mission-Critical system [20].

A system like this must give robustness a great deal because a software failure may

lead to a catastrophic consequence. This way the Quality of Service (QoS) end-to-end

must be assured and determined by the users systems, in this case the HMIs [6][7]. We

must assume that a mission-critical system like the ATM system has as principal

requirement having all services available with high predictability. And the way to

achieve it is making the correct information pass through the system and be delivered at

the right place at the right time, validating this way a temporal line.

The concept of Mission-Critical is in general connected to the concept of Real-

Time [20], even if they are orthogonal between each other. These systems must assure

that an operation to be totally accurate depends on three main factors: logical

correctness, time to be executed and the instant in which it’s executed. These three

factors make the system predictable and deterministic.

Real Time systems are characterized to have time constraints well defined making

these systems more reliable than the normal ones, allowing precise data updates even if

this only happens a few times per second. Other important characteristic is that the

changes of the state of the system are according to the physical time, ie, the instant in

which the result is produced – deadline. So, the most important point in Real-Time is

the result produced according to its respective deadline, but the actions must be carried

7

out in its entirety – predictability is the essential requirement for these kinds of systems

and not performance. In this study these two requirements were converged.

Performance become this way a second requirement in the ATM system.

Performance stands for a completion of tasks before existing standards of accuracy,

completeness, cost and speed [28]. But to achieve it, Performance must be compared

with the settled goals, requirements and expectations, not only for the users but for the

application too [8].

3.1 Real Time systems and its goals

Real-time systems are systems that deal with time. But what time is this? One of

the main problems in real-time systems design is how to relate the several dimensions

of time in a distributed system generating many issues:

• Modelling the interaction between the computer and the real world

• Maintaining temporal accuracy of measurements

• Accommodating important load versus finite resources

• Recognizing deadlines and urgency

• Tolerating faults

What is a real-time system? Systems whose progression is specified in terms of

timeliness requirements dictated by the environment, in other words, the need to

synchronize our actions with the environment. The environment has its own pace and

thus the system must be adapted to this pace and react according to the evolution of the

environment.

There are several classes in real-time:

• Hard real-time systems where timing failures are to be avoided

• Soft real-time systems where occasional timing failures are accepted

• Mission-critical real-time systems where timing failures should be avoided and

occasional failures are handled as exceptional events

All systems fail so the fact that measures are taken to secure timeliness

specifications in normal operation does not exempt the designer from either designing

for the worst-case situation, or endowing the system with the necessary mechanisms to

tolerate faults when they happen. This way, Reliable real-time means tolerating or

preventing timing faults according to a pre-defined fault model [20].

8

Real Time systems can be decomposed in three sub-systems: the controlled

object, the real time computation system and the human operator. Pictured in

Figure 4.

Figure 4: ATM as a Real-Time System

The function of a Real-Time computer system is to react to the controlled object

or operator stimulus between time intervals dictated by the application environment [9]

[10][24].

This type of computation leads to the concept of Real Time Computing (RTC)

[20] (the same as reactive computation [21]) in which a software study is made and

it’s subject to Real-Time constraints [31].

Referring to the goals of a Real-Time application exist two main goals:

optimization and predictability. The first one is based in meeting all the deadlines set

or minimize the ones which can be failed. This concept is known as hard deadlines.

The second goal represents what is possible to know about optimization (failed

deadlines) before the start of a given task which can be in a deterministic or stochastic

way. If it is deterministic, the exactly the information about the optimization is known

before the start of the task, if not, it is stochastic. In this case the concept is known as

soft deadlines. That happens because deterministic functions always return the same

result any time they are called with a specific set of input values and given the same

state of the database. Nondeterministic functions may return different results each time

they are called with a specific set of input values even if the database state that they

access remains the same. So the model is defined as the outcomes are precisely

determined through known relationships among states and events, without any room for

random variation. In such models, a given input will always produce the same output,

9

such as in a known chemical reaction. In comparison, stochastic models use ranges of

values for variables in the form of probability distributions.

The environment is unpredictable with irregular arrival patterns, for example, an

event-triggered message delivered. Thus taking this into account a sporadic pattern

assumes that input information arrives irregularly in bursts.

It is then to note that sporadic requests must be served within the inter-arrival time

without resource disruption. It has long-term regularity and so can be mapped onto a

periodic distribution which is adequate for treating sporadic events that are generated by

periodic distribution and also called event showers. These give us the rate of a

periodical distribution where we would have spread the event arrivals throughout the

period interval – arrival distributions are mere artefacts to represent the environment

behaviour.

It is important to define this if the ASD application has several levels of critical

tasks because it must be a predictable system as a Mission-Critical system must be. In

this specific use-case it was considered as a system of deterministic predictability

because there were no random state transactions, i.e., from a certain starting point the

same result would always be produced, respecting the deadline defined following a

strict timeline [30]. Then it was considered that every event was causally determined by

a chain of prior occurrences unbreakable which brings the idea of the ASD application

being Mission-Critical (as all the system it’s in). But this is somehow conceptual

because event-triggered systems react to significant events directly and immediately,

that is, it adapts well to overload and unexpected events, either from the same or

different representatives.

Thus fault tolerance is important in the control systems for mission-critical and

safety-critical systems such as the Air Traffic Management. Because of the provisions

to support dynamic operation the system allows selective dissemination of information

and allocation of resources. It is susceptible to event showers because when an external

event or burst of events occurs it is transformed into an event message of message

output which is sent to the interior of the application where one or several computing

elements process it, modify the application state and eventually produce outputs, just as

the messages arrive.

10

3.2 Main Factors of a Real Time System

Real-Time systems have three main factors to consider: deadlines, timeouts and

atomicity.

The first to consider, deadlines, represents the completion of a specific task within

a certain time having this way a more useful result than if the completion of the task is

beyond a certain time having less utility for the application [36]. This way we have a

timed action which is the execution of some operation such that its termination event

should take place within an interval from a reference real time instant:

• Deferral Time: the delay introduced before execution is requested, also known

as offset

• Termination Time: the difference between the termination (end) and request

(start) event timestamps in the timeline

• Execution Time: accounts for the duration of the computation in continuous

execution (maybe shorter than the termination time)

In ASD, the instant of completion of an action on a desired point of the timeline

consist in generating an output, usually graphical information for the controller

represented in his/her HMI. This output can have more than one view, i.e., be

represented in two or more different ways in the HMI. To measure this elapsed time the

evaluation will be the definition of the Termination Time of the action of the application

receiving and processing a message.

We can measure this factor assessing how soon the deadline is defined for the

processing of that input until it comes out in the right form of the output expected for

that information. When this time of processing an input to an output, the deadline is

exceeded and it means a low utility.

This idea is right but must be distinguished between results produced before de

deadline and results produced at the deadline.

Figure 5: Example of utility being high when near the deadline

11

Figure 6: Example of utility being met or not while the deadline is not reached

The differences in Figure 5 and 6, consists in the first one when nearing the

deadline the utility of some task is higher than before; and after the deadline the utility

gets less useful every time it gets further passed the deadline.

In Figure 6 the deadline is met or not. There are only two possible states of

usefulness of a task in relation to its deadline: the deadline is respected or not. This

means a binary outcome, 1 or 0, as the deadline is reached or not. It is a hard deadline

when every output obtained before the deadline has utility while every output produced

after that deadline has no utility at all for the application.

Being the ASD a mission-critical real-time application, there are more of soft

deadlines, being the first graphic more accurate to represent what happens in the ASD

application.

The second factor identified was timeout: specification of the utility of a given

task for the application as a function when it is finished. In the ASD application this

means that to consider a given task finished, it is necessary to check their atomicity over

its deadline. Only then the corresponding utility function can be obtained.

The last factor mentioned was atomicity which represents the property that states that if

at least one copy of a message was delivered to the addressee then any other recipients

of the same will also receive a copy of this message, i.e., the cycle in the system for a

particular data stream is completed and is considered finished or not. The atomicity

should be this way assured by a close monitoring in order to determine if a given task

has been completed totally and on time. It can guaranty that through the creation of a

tasks list where the critical tasks are identified by order and is defined for each one its

atomicity and deadline, as well as, the complete dataflow since the input until the

correspondent output.

12

3.3 Classification of Real Time systems

There are a variety of ways to classify Real-Time systems [26], but the goal of this

study only concentrates in classifying it about the application characteristics, more

precisely if the application is Hard Real-Time or Soft Real-Time, considering that it is

from a starting point a mission-critical system.

Starting with Hard Real-Time the accuracy of an operation after its deadline is

considered impractical for the application and may even cause a system failure. This

way the deadlines established are not negotiable and are determined by the physical

objects involved in the entire system which is resumed by the environment the system is

in and where the application operates. But the application may not fail itself. If some

task in the application is not completed in time, it may lead, none the same, to a

catastrophic result. Hard real-time systems are designed in terms of preventing timing

failures, however controlled timing failures are allowed in mission critical or soft real-

time systems.

These kinds of deadlines are then used when is imperative that an event happens

within a strict deadline or the application will fail entirely if it’s not accomplished

causing catastrophic consequences. The more demanding hard real-time or mission-

critical classes are, more they may face difficulties, like the lack of determinism of the

arrival pattern of competing client requests. Hard Time Deadline illustrated in Figure 7.

Figure 7: Traditional Hard Time deadline

The ASD should be the most deterministic as possible – temporal accuracy – with

the atomicity of tasks. With that the monitoring of the application and obtaining

accurate metrics to evaluate the performance of it is possible.

Unlike Hard Real-Time applications, Soft Real-Time applications allow some

latency which is compensated with some decrease in the Quality of Service. That

enables the application to reduce the latency constraints keeping it operating quickly

and repeatedly because its functionality depends on fast processing despite having some

delays. Soft real-time applications represent nowadays a great part of interactive

systems, trying to ensure timeliness specifications in a probabilistic way. Even under

13

soft real-time perspective the need for availability to fulfil probabilistic deadline

assurances exists.

Concerning the ASD application, the decrease in QoS to keep the application

operating is not feasible being it a Mission-Critical application.

But besides this counterpart this kind decision is at large used with HMIs that allow

interaction and execution of operations by its users.

This way the Real-Time applications are typically used when there is some concurrency

problems and exists the need to maintain a number of interconnected systems up to date

with changes in the situation. This fact makes the application less adaptable to changes

or updates which have to be well calculated and predicted. Traditional deadline

illustrated in Figure 8.

Figure 8: Traditional deadline (Hard deadline is a special case)

With these characteristics a Real-Time application allows artificial Hard

deadlines. For that a given task is ‘more in time’ or ‘more out of the time’ given the

prior types of deadlines mentioned before.

Now considering Soft VS Hard [28], they have differences but usually the applications

are a mix of the two, where the notion of Hard Real-Time only indicates that the

application has some Hard-time constraints. Therefore the terms Hard and Soft can

only be seen as designating the degrees of limitation of time the application has defined,

depending on the severity of the technological limitations of the same.

Table 1: Hard and Soft Real Time characteristics

14

Both characteristics from the two types of Real-Time can be applied to the ASD

application.

The Response Time stands for the interval that mediates between the occurrence

of an input and the occurrence of the first related output event, can be both Hard as can

be Soft because both of the concepts are seen as degrees of limitation of time depending

on the task: which will have a Hard deadline and which can run with some latency

having a Soft deadline then. The maximum and the minimum response times are

relevant variables of real-time systems. The first because it measures the capability of

handling the dynamics of controlled processes: slow systems cannot control fast

changing processes adequately. The second, because together with the first it measures

the variance of the speed of the computer response: quality of control is affected by the

latter. The Peak-load Performance by the contrary can only be characterized as Hard

Real Time because the QoS must be predictable and cannot suffer data degradation so

the application can keep operating. This would mean that the ATCs would see

inaccurate data which would not represent the current information.

Because the environment is such a fundamental constituent in an ATM system the

Control of Pace can only be consider to be Hard Real Time. The environment is what

dictates what is happening and give the information inputs for the ASD to operate over.

The fundamental concept in ATM is Safety. That said is only logical to consider it a

Hard Real Time characteristic for the ASD application. It’s necessarily critical in a

Mission-Critical application.

The Size of Data Files would not be that large, so it can be considered like having

a small/medium size, but despite this, there will be some links in the application

transferring a large flow of data needing attention if some of the data are lost or not.

The Redundancy Type for instance should be active for when the main

application ODS fails there will be a fallback that permit the ATCs keep working -

ASD. The Last Picture that is displayed to the ATCs when the system fails for some

reason does not indicate that exist roll-backs. This way the Data Integrity is kept as in

the Soft-Real Time, ie, assure the data integrity at long-term in the system, for the

application to be always up to date with current and correct information which can be

accessed at any time by the ATCs as needed, even if it is the last information available

to let the controllers work from that point on in a more old manner.

Error Detection in other hand is something that should be accomplished by an

autonomous monitoring.

Thus, the ASD application is a Real Time application with time constraints well

defined but they are more of Soft ones. The Radar rotation time is the hard deadline the

15

application should respect. But some tasks may become more critical and have Hard

deadlines, like an alarm, for example, and it will requires immediate attention from the

controller, so the monitoring should keep this tasks under great attention because if an

alarm message is lost along the application processing it may lead not only to an

incident but to an accident – life-critical.

All of these points make real-time application monitoring so important. Because it

permit to keep track if something wrong happens in the load flow of the application at

real-time and that fact can be notified in real-time too, as to control the situation as soon

as possible, keeping rate control (helps balance system load) without glitches: Safety

properties specify that wrong events never take place – Any delivered message is

delivered to all correct participants; and Liveness properties specify that good events

eventually take place – Any message sent is delivered to at least one participant.

But Liveness is not compatible with the expectations for the ASD application,

where the time is used to guarantee synchronization with the environment and the user

who produce inputs and receives outputs, like other entities. This is done by defining

timeliness properties introducing safety conditions.

There is a catch in this situation, that is fully synchronous models do not satisfy the

needs of the application because they do not allow timelines specifications. On the other

hand, correct operation under fully synchronous models is very difficult to achieve, if

possible, in large-scale infrastructures like mission-critical systems, since they present

poor baseline timeliness properties.

3.4 Main Factors of a Mission Critical System

Large-scale mission-critical systems like Air Traffic Management resort to

dynamic techniques in order to secure deadlines under the uncertain circumstances

encountered in the complex environment they normally address. Considering this, three

main factors can be defined for a Mission-Critical application: high availability,

integrity and data availability [26].

The first one – high availability – is fundamental in these systems because it is

possible to measure the network performance as well as the application itself, so it may

serve the users all the time, 24/7, setting the degree of continuity of operation of the

system during a given period of time. This is possible if the features, visibility and

access to any HMI [19] are assured by the application through a close monitoring using

high availability tools.

Integrity it is when secrets are shared between two reliable endpoints with

identification mechanisms so the authenticity of a peer can be validated. This way all

16

the application components must be reliable for keeping the system safety and the QoS

as expected in a Mission-Critical system. It also means that a specific message has its

specific output to the operator monitored and that it is not swapped with other message

and its respective output so the real output for each message it’s the correct one and not

other from an other message.

The third and last main factor is data availability, ie, the degree to which a system

accurately record and report transactions, as messages or system states.

Being the ASD application Mission-Critical the data availability must be assured

always because in case of some kind of failure in the system the information displayed

by the application to the ATC must be frozen – Last Picture – in that moment and only

resumed with current data. The data in between does not interest and should not be

displayed by the application and is stopped at the input, that is to say, the action of

reading messages coming from the links stop until the application recover. For that we

must separate data availability from possible failure events so we can determine the

existence or not of some data lost.

Based in this main factors and the ASD application it was taken into account the

degree of reliability of the application used by the ATM operators – the ATCs – by

monitoring the application to ensure that the degree of availability of application data is

the highest possible, meeting the expectations and stipulated goals, both in data and

temporal mean.

3.5 Real Time and High Performance

Addressing the problem of maintaining the performance of the application within

specified limits - it’s really important not only achieve all the deadlines defined but also

in a fast way even if Real-Time is not a synonymous of great speed. What we can

understand as ‘in a fast way’ is keeping the right pace, in other words, not letting

bottlenecks happen in some part of the path in the data flow until it’s represented to the

ATC and not delivering the data faster than it can be processed the right way.

Exists some objects devoted to performance/Quality of Service management. These

are known as metric objects and serve to collect statistical information about system

evolution and have methods that compute statistical functions about utilization of

resources. The goal of Quality of Service is to ensure that QoS specification for a given

service remains within the specified parameters for the duration of service provision.

One solution to the problem is monitoring the application to ensure that the Quality of

Service remains within the parameters since the start of application, and detect

17

deviations early enough. Monitoring may even indicate the systematic failure of a QoS

parameter.

Thus the main requirement in a Real-Time system is predictability and not

performance, but in this study the objective was converge these two.

But what is meant by application monitoring? It is a paradigm representing the set

of activities aiming at knowing the state and evolution of the ASD application during its

operation. System devices monitoring is the basis of most tactical management

functions. As a matter of fact, tactical management relies on the reactive system

principle:

• The loop of monitoring – state acquisition

• Control – state modification

Acquisition is performed through sensors which may be implemented either in

hardware or in software. The monitoring subsystem must acquire information both by

polling or sampling the managed system state. In this matter monitoring incorporates

notions on input-output sensing and actuating.

With this work the goal was to extend this basic function to real-time application

monitoring. It is the real-time supervision of the state of the application and of the

evolution of the same that needs attention, both processing and timely reaction. In

consequence a monitoring subsystem was needed to be created that follows these events

and extracts state information in real-time: Periodically for state samples and upon their

occurrence for events.

This way there are two types of application monitoring that were considered:

proactive monitoring and preventive monitoring. In the first case there is a managing

console to periodically monitor the health of the application and to identify problems

and possible slowdowns consequences – latency. This approach has one problem

coming from a constant and automatic surveillance creates an increase in network traffic

leading to slowdowns. This may be a problem at a first glance but concerning the ASD

application it only represents a residual increase to be considerate as a real problem.

Now concerning the second type of monitoring, there is a search for failure points in the

application and identification of potential weaknesses before they become real (possible

catastrophic consequence) or need some repair. Therefore preventive monitoring

analyzes the data transmitted in real time before any negative impact on the actual

application is effective. Just like the previous type of monitoring this one presents some

problems too namely the high costs that requires a prediction in terms of expenditure of

resources but as like the previous one, this was considered a residual problem. Thus the

solution were converging the two concepts addressed, using a monitoring system that

18

takes the initiative to verify periodically the application state as well as searching for

failing points and identify potential weaknesses.

After considering the types of monitoring, some methods of collecting information

to monitor were identified and collected in a list based on the construction of a guide to

describe a performance philosophy to follow [23].

1. Develop guide performance philosophy for the application

2. Obtain monitoring data that already exists to compare with the

guide developed before

3. Establish specific performance targets to monitor the

application in various modes of operation

4. Perform tasks of analysis to determine the points that lead to

performance targets to be achieved or not

5. Design and develop graphics in view of the guide developed

6. Constantly evaluate the guide developed for updates as the

application is developing or being altered

Table 2: Steps to develop a guide to monitor and evaluate an application performance

So how such a guide can be defined? First of all the goals to achieve with the

application must be set, such as response times or updates in real time. Then it is

necessary to identify potential problem areas or situations and possible locations of

probable congestion – bottlenecks - during the normal processing of the application. A

more careful inspection can lead to the discovery of a component responsible for a

poorer performance of the application. This is an iterative process because when the

area in question is improved others may present possible congestion in turn. Therefore

this process must be repeatedly systematically until the targets are reached. Finally, as a

last step, a methodical process must be followed and have the attention focused on this

as well so that after setting the targets the probable changes made to improve

enforcement have real impact on its performance. Thus the most frequent tasks will

deserve more attention than a task carried out less often even if it takes less processing

time than the one that is done more often.

Continuing to monitor systematically brings together a range of information

relating to various indicators of performance over the various nodes in the application.

After the congestion detected using this procedure exist the need to solve it and it

goes through two possible strategies: change the environment in which the application

19

is inserted or improve the application itself. The best approach, more realistic and

efficient is to improve the application and its components than the environment.

After this main step, determining some metrics is possible to evaluate the

application performance. Some are linear while others represent statistical values, but

the main goal is to have the most possible global comprehensive idea about the

application performance in context [10][15].

i.

Set periods of use as:
• Heavy,
• Medium,
• Light,
• Very light.

ii. Identify the time intervals in which the periods in i. occur.

iii. List the transfers made during the periods in i.

iv. Calculate the average arrival of messages (messages / second) for each

period.

v. Determine if there is another parallel workload to the main one that

generates additional load.

vi. List the criticality of each transaction message.

vii.

Define the:
• Current average,
• Expected average,
• Maximum average

for each response time of each transaction.

viii. Determine the response time limit of the external systems to which the

application is connected or dependent of (Future Work).

ix. Set patterns of arrival of requests and the percentage of arrivals for

different workloads.

x. Determine the operational workload through the browsing patterns in the

application made by the operator (Future Work).

xi.

Set response times to expected and current transactions in terms of:
• Average,
• Maximum,
• Values of percentage.

Table 3: List of metrics to evaluate the application performance

20

This can be resumed into a specific metric:

Delivery Time: interval between the send event of message and the deliver event:

• How steady (constant) is the delivery delay as seen by one participant;

• How tight (simultaneous) is a delivery to multiple participants.

Thus it is possible to identify transactions in the system that response times are not

acceptable and a viable solution is to re-examine the design of the application or its

code. So a performance problem can be identified for delays or non-response by the

system causing some component to reaches a deadline for a given limit stipulated

response. This is possible with systematic monitoring in order to discover where the

bottlenecks are.

In addition to these solutions is still possible to detect some performance issues

with other techniques for improving performance. These may be the optimization of the

code, caching strategy, distributed computing, self-tuning, among others. This is already

encompassed within the other part that follows the monitoring that is the management

and control of the application, but that falls outside the scope of this study.

3.6 Performance Management

There are several ways to monitor and manage application performance and maybe

the first idea to come to mind is recording everything in a log. But besides the logs,

there are other ways of collecting data for analysis: agents installed on application

components, synthetic monitoring which simulates transactions and activity logs,

sniffers, real user monitoring, and so on [22]. One of the most known methods of

management access is the Simple Network Management Protocol (SNMP) [44] but

the ASD application and its structure must be taking into account: it was developed

using JAVA.

Real User Monitoring is a passive monitoring technology thus not affecting the

normal system operations, despite recording all interactions by the user with the

application [9][11]. This method differs from the synthetic (active) monitoring because

it is based on the income and outcome traffic to perform the data analysis and

measurement. This method determines if the application users are being served quickly

and without errors and can identify the application component that is failing. This

allows defining the current Quality of Service and detecting errors and slowdowns that

could lead to catastrophic consequences. There is a disadvantage because the problems

can only be discovered after they occur.

21

3.7 Summary

The three main concepts for this study were: Mission Critical, Real Time and

Performance. ATM is a critical activity and that incurs the possible risk of loss of lives,

and is thus a Mission-Critical and Critical-Life activity. To avoid some catastrophe is

necessary to ensure the Quality of Service (QoS) through systems that provide services

in a predictable way and with a full-time monitoring to assess their reliability and

availability of data in order the QoS to be as high as possible. Three factors

contributing to this are the high system availability and security on the integrity of the

system to maintain the aforementioned QoS, and ultimately the availability of data in

the system so that the ASD operators can have correct data to interact with.

Real-Time represents a temporal specifications counting on three main points: The

timing of events related with the execution of real-time communication and

computation actions – deadlines; the patterns of arrival of events – sporadic; and the

definition of triggering conditions – time lattices. Real-time applications are in essence

reactive or responsive. Most part of what they do is related with responding to events

produced by the environment and by human users. They must respond according to pre-

specified timings. The basic thing about timing is being able to specify action durations

and event positions or timestamps in the timeline. Thus real-time tasks main classes can

be described as: Aperiodic tasks - impossible to treat deterministically; Periodic tasks -

the workhorse of static scheduling design; Sporadic tasks - serve applications that do

not have a regular behaviour (request arrival is not periodic). That’s why real-time

applications can be classified as: Hard real-time where any failure to meet timeliness

requirements may have a high cost associated. Every task must be always timely in

order to avoid costly timing failures - also called time-critical. Not providing the service

within the (deadline) interval carries a cost. The criticality of the application is given by

the cost of failure versus the benefit of normal operation; Soft real-time applications

accept occasional failures to meet timeliness requirements. The application should often

enough be timely, ie, it can fail to meet timeliness specifications provided if they do not

occur with too high a probability and great deviation or lateness degree. Many

interactive systems are non real-time systems, but the truth is that a fair number of them

should indeed have been designed as soft real-time systems where user requirements

were respected, just like the ASD application; A Mission-critical real-time application

where any failure to meet timeliness requirements may have a cost associated and the

occasional failure to meet those requirements is considered an exception. It guarantees

that timelines requirements are systematically met. However these applications are

usually complex and/or the environment behaviour is not totally specified such that

timeliness cannot be fully guaranteed. The occasional occurrence of timing faults is

tolerated but should be considered exceptional as the service risks being provided near

22

or after the original recurrently deadline because of timing failures considerable

degradation may take place.

Monitoring the application can thus be made through the use of agents located in

various parts of it that will transmit status information to the managing agent in order

to evaluate if everything is within the expected parameters, or if there is something that

can or must be optimize. But this monitoring is only possible if metrics are defined by a

guide performance. That will permit the study of the results and understand not only

their meaning but assess too their usefulness. This process also includes the control and

management of application and its components, but falls outside the scope of the current

study.

Thus, it is possible to cast a more accurate and reliable picture of the general

definition of performance and their properties - accuracy, completeness, cost and speed

obtaining important data that would justify a systematic and permanent monitoring of

an ATM application such like the Radar- Fallback ASD application.

23

Chapter 4

CONFIDENTIAL

24

Chapter 5

Technologies

5.1 Agents and Monitoring

The Java Virtual Machine provides a platform-independent way of executing code,

by abstracting the differences between operating systems and CPU architectures. Java

Runtime Environments are available for a wide variety of hardware and software

combinations, making Java a very portable language [33]. A schematic representation is

presented in Figure 20.

Figure 20: JVM handles translations

Java Management Extensions (JMX) is a specification for monitoring and

managing Java applications [12][14][37]. It enables a generic management system to

monitor an application; raise notifications when the application requires attention; and

change the state of the application to remedy problems. Like other management

standards, JMX is a public specification and many vendors of commonly used

monitoring products support it. In the JMX Java technology the various resources are

represented by objects called MBeans thus allowing the defined classes to be loaded

and instantiated dynamically with application management or monitoring, as well as,

breaking the application into components that can be swapped out. The MBeans

development is based in the Java Dynamic Management Kit (DMK) [13][27] in

which given a resource in the Java programming language - either an application, a

service or an object representing a device - its instrumentation is how its management

interface is exposed for management. Thus, the management interface is the set of

attributes and operations that are visible to managers that need to interact with that

resource. Therefore, instrumenting a resource makes it manageable.

25

Figure 21: JMX Java Technology levels

In Figure 21 is schematically represented the various levels presented in the JMX

architecture. The first level, the probe level, contains the MBeans (probs). This level is

also known as Instrumentation Level. Then we have the level where exists the MBean

Server, the agent level, serving as a broker between MBeans and applications, ie, the

bond interface between the other two levels. Finally, the third level, remote

management level, is where the remote applications can access the MBean Server

through connectors using RMI or HTTP/SOAP protocols or adapters using, for

instance, HTML/HTTP and SNMP protocols to connect to the management console. In

the first case it is possible to establish full remote access and in the second is just an

adaptation of a given API to another protocol.

The JMX enables a centralized management and monitoring in which MBeans act

as wrappers for applications, components and other resources and all actions taken on

these are allowed through the MBean Server. It keeps track of all the existing MBeans,

exposing interfaces that allow their manipulation. It also dynamically loads MBeans

(MBeans are added or removed when necessary), adds and finds components (nodes in

the application) and sends notifications. This ensures scalability for both agents and

manager as each application that acts as a server allows customization of classes

through an own interface.

JMX agents are this way autonomous and intelligent because they embody in

themselves tasks such as polling and filtering of events considered less important. This

allows any reduction in network traffic and mainly makes management applications

more robust by making services and devices to be treated as manageable objects.

JMX presents a more appropriate way to monitor and manage the ASD application

because some disadvantages existe in using SNMP, even if it was combined with JMX.

For instance, the power of expression of SNMP/SMI is limited. It is ideally suited to

26

describe and monitor numeric gauges and counters (scalar or tabular), but describing

complex data is much more awkward. Some things that appear to be trivial in JMX, like

for example, returning a thread stack trace, can reach incredible levels of complexity in

SNMP. This way describing complex configuration can also rapidly become not

feasible because the MIB that makes it possible to manage the JVM through SNMP is

closed. The JVM SNMP Agent is also closed because it doesn't have a public API. The

possibility of evolution for SNMP interfaces is thus limited [38].

5.1.1 Implementation Approaches for the MBeanServer

There are two ways of implementing the monitoring agent that access to resources

and receive their notifications - the MBeanServer.

Figure 22 a): Each MBean has its own MBeanServer

In this first approach, pictured in Figure 23 a), for each MBean developed a

dedicated server is created and it only manages this MBean and exposes its interface to

the monitoring console.

Figure 22 b): All MBeans share a single server

27

In the latter case, in Figure 22 b), all created MBeans will be registered on a single

server. Therefore the server knows all the resources that are being monitored and allows

them to be managed in the monitoring console.

Advantages and Disadvantages

Given the hypothesis in Figure 22 a), a distributed solution, in which each MBean

represented a particular type of resource or set of pre-defined resources, if its server

fails for some reason, it is always possible to continue monitoring all the other MBeans

registered in other dedicated servers.

Thus, if there is a fault it does not affect any monitoring of the application but only

a particular feature or feature set, continuing the management of others.

In the second case, represented in Figure 22 b) by a centralized approach with a

single server to expose the interfaces of all the MBeans and the features that they

characterize may seem not only more intuitive but also avoids creating multiple server

instances when only one can do the same job.

The problem here is if the server fails, it is impossible to monitor any MBean that

exists until the server recover from the failure.

There were three solutions:

• Have a centralized approach with a fallback. In that case when the server

fails the other will soon be set up and register again all the MBeans;

• Implement a distributed approach where each MBean has its own server

ignoring the overhead that this may cause in the application if it makes a

negligible impact for the same;

• Use a composite version: distributed and centralized in which the relatable

MBeans are aggregated on the same server and others on another server. It

runs multiple servers but each one has its own related MBeans.

5.1.2 Connection with the management console

Implementation Approaches

There is the possibility, given the JMX technology, to use two modes of connection

/ communication with the management console: connector or adapter. These two

modes are pointed out in Figure 23.

28

Figure 23: JMX architecture with a Connector and an Adapter

The two modes of connection presented in Figure 25 have some differences and are

characterized as following:

Connector:
• Serves to establish the total remote access
• It is itself a management tool easy to use with the MBeanServer
• It supports the common protocols such as HTTP / SOAP and RMI

o RMI (Remote Method Invocation) is easy to use and it is
transparent to the users with objects to be passed as values, ie, the
parameters of its methods are all developed in Java

Adapter:
• Adaptation of a certain API to other protocol
• It is more limited than a connector
• It only allows two different interfaces to work together, that is, converts

the interface of a particular class to another interface expected by the
client

• It is a linear translation
• It does not present an effective management

Advantages and Disadvantages

Because the JMX technology is developed in JAVA, like the ASD application, the

best choice is using a connector, like presented in Figure 24, as it is not necessary any

kind of translation between the two actors who manage the monitoring: MBeanServer

and JConsole (Management Console), as well as the application itself where certain

feature are being monitored.

29

Figure 24: Overall picture of the JMX architecture with Connector

When the agent and server are created locally, and not remotely, and the MBeans

are registered locally too, the communication through an RMI connector is

automatically established. This is because the RMI (over TCP / IP) is a Java specific

protocol, being dependent on language.

This approach also allows remote access but it is necessary to define the RMI

connector specifically for remote access to the management console, i.e., it has to be

configured in order to establish the connection between the MBean Server and the

Management Console. All this is transparent to the user, as stated above, so everything

seems to be done locally. Hence the local monitoring is done the same way but

automatically without the need to configure the RMI connector.

5.2 Management Console

The Java Monitoring and Management Console (JConsole) tool allows accessing a

great variety of information, such as [47]:

• Number of classes loaded and threads running

• Virtual machine uptime, system properties, and JVM input arguments

• Thread state, thread contention statistics, and stack trace of live threads

• Memory consumption

• Garbage collection statistics

• Low memory detection

• On-demand deadlock detection

• Operating system information

It uses the extensive instrumentation of the Java virtual machine to provide

information on performance and resource consumption of applications running on the

Java platform using Java Management Extension (JMX) technology. [45]

30

JConsole is a JMX-compliant GUI tool that when is connected to a Java

application, it displays information about the application - including its memory usage,

the running threads and the loaded classes. This information allows monitoring the

behaviour of the application and the JVM, and can be useful in understanding

performance problems, memory usage issues, hangs or deadlocks – all the things the

API provides as a base. [46]

The JConsole was used for testing and will be used for maintenance of the

framework. This way limit values that do not exist yet can be determine, concerning the

application performance time in reading and processing the messages, for example. The

tests can be performed locally but it will be remotely used in the operational system.

5.3 Summary

The Java virtual machine (JVM) is instrumented for monitoring and management,

providing built-in ("out-of-the-box") management capabilities for both remote and local

access. The platform instrumentation also provides information on performance,

resource consumption, and the JVM and logging settings of applications running on the

Java platform. It includes a platform MBean server (management agent) and platform

MBeans that a JMX management application can use. Its API provides access to

information a diversity of information.

To obtain the information from the resources gathered in the MBean through the

MBean Server and displaying these in real-time and in a personalised way to get the

most important and relevant information about the application performance exist the

JConsole. This GUI tool gives a range of information not only about the state of the

application but about the state of the JVM itself like Heap and CPU usage information,

as well as, detecting deadlocks which is very important to improve the application

performance. The JConsole not only allows a monitoring the application but also

manage the same through performing Garbage Collections (GCs) or other operations

defined by the console operator.

31

Chapter 6

CONFIDENTIAL

32

Chapter 7

CONFIDENTIAL

33

Chapter 8

Conclusion and Future Work

Having as the main goal of this study to develop a Real-Time monitoring

framework to obtain performance results from the Air Situation Display application,

this was accomplished.

The determination of ‘what to’ quantify about the application performance was

established and then the capacity of ‘how to’ quantify. This was achieved through the

study of the framework, its design and implementation. Understanding these factors the

monitoring framework design and implementation was done in order to be added to the

existing framework without changing it too much and keeping the desired modularity to

the monitoring function. To support that, the choice of using the JMX technology was

very useful because it allowed an intuitive manner of developing a real-time monitoring

conjugating the fact the ASD application was developed in Java and the fact that the

JMX is also a Java technology with the necessary elements available to develop a good

monitoring framework.

After this, the behaviour of the application was tested in a variety of test scenarios

in order to obtain results to compare to what was determined as expected in this kind of

application. There were not any other values to compare to, so there was the need to test

the application performance for basic actions established a priori as the main actions

possible to happen in the application. For that, a specific type of input messages the

application reads and processes was chosen as the more significant to serve for testing

the monitoring framework. Thus, metrics were defined based in this type of messages

that bring information about the Tracks representing the aircrafts and its characteristics

to the Air Traffic Controller to manage through the Air Situation Display HMI. These

results and consequent metrics calculation were obtained to establish the ASD

performance when reading and processing these messages from the input (link) until the

output (HMI), that is to say, measuring the performance for the entire path a message

follow through the application components. From this overall view of the application

performance it is possible to see if the application is performing in the expected time

34

interval, detecting also if some messages are discarded when some values overpass the

defined Deadline of the five seconds of the Radar rotation.

The values obtained in the tests showed that the ASD was working, for the test

scenarios, in a very good comfort zone. Some messages may seam to be lost because

they are registered as processed but they don’t have a time of processing in the end.

This happens because they represent the messages that update only the Model and not

the View. This means that putting the agent only at the very end of the chain may not be

the right answer to the problem and more agents need to be placed along the data flow

to get more accurate results in order to not lose messages that in fact were well

processed. This also means that now it is possible to have values to characterize the

limit the application performance can reach in order to keep working well and without

problems. And if these limits are surpassed or the average of the values begins to exceed

the values established with this study, notifications are generated by the monitoring

framework in order to alert for that case.

The ASD application has then proven to be a deterministic application as expected,

even if the determinism in this application is located in a determined interval obtained

by the monitoring results, in other words, it has a deterministic interval where it

operates with good performance with a set of rules and indicators which defines

boundaries and tells what to do to be successful in solving problems within these

boundaries. About the phase two of tests performed, the results identified indicate that

exists a possible problem with the performance of the Garbage Collections made by the

application itself besides the ones performed by the JVM. This will care of attention in

the future work. With this work done, it is possible to expand the monitoring to other

type of messages and to all the ASD Interface Links.

However, being the ATM a large-scale system inserted in an unpredictable

environment, defining the application with synchronous model is very difficult to

achieve in a mission-critical system like this. This way attending to the obtained values

in the tests and to tolerate partial synchrony of the system while securing timeliness

proprieties, a better model to characterize the application is a Quasi-Synchronous

Model. That is, it can be reliable with bounds on response time can be defined during

limited periods of its operation [20].

35

Figure 62: Distribution of termination times

In Figure 62 is represented the probability density function of a message to be

delivery and processed. The worst-case termination time corresponds to the Radar

Rotation Time that is five seconds, representing the Deadline to be respected. But this

value is much higher than the average case, such that it becomes useless. So, the

assumption of a shorter, artificial bound increases the expected responsiveness.

Thus the next step in evolving the monitoring framework already implemented

goes through the monitoring of another type of ASTERIX messages, this time Category

62 messages. Those messages contain the information needed in the Ground Situation

Display (GSD) which is the application used in the Tower by the Tower Air Traffic

Controllers. It is the equivalent to the ASD but for the airport traffic control instead of

the en-route traffic control.

The GSD is an independent application from the ASD even if they belong to the

same applications family tree. This way, there will be the need to analyse the design and

implementation of the GSD to understand the different points from the ASD (chain

components and the data flow), because in general they are much the same, for once, the

flow of data arriving to the GSD are inferior to the flow of data in the ASD. But some

adaptation will be needed to be performed to the actual monitoring framework in order

to accommodate the monitoring for the GSD.

The GSD has the same characteristics already studied in the ASD, representing this

way a Mission-Critical Real-Time application. So the same metrics and results of this

kind of application will be expected with the values collected in the monitoring of this

application. Of course that the metrics established for the ASD may suffer some

adaptation as the rest, but the performance evaluation to the GSD application consists in

the same performance with Soft Real-Time deadlines; limit values that will characterize

the comfort zone to work and when an alert should be sent to the management console

informing of abnormal behaviour and poor performance by the GSD application. Those

factors will be determined by the basic actions the application perform since the input of

36

a message until the output be represented in the HMI, leading to collecting values to

identify the limits of a good performance (the deterministic interval), having in this

work a good base to follow up and develop even more the framework.

