
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

COMPILING THE π-CALCULUS INTO A
MULTITHREADED TYPED ASSEMBLY LANGUAGE

Tiago Soares Cogumbreiro Garcia

MESTRADO EM INFORMÁTICA

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/12424814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

COMPILING THE π-CALCULUS INTO A
MULTITHREADED TYPED ASSEMBLY LANGUAGE

Tiago Soares Cogumbreiro Garcia

DISSERTAÇÃO

Projecto orientado pelo Prof. Doutor Francisco Martins

MESTRADO EM INFORMÁTICA

2009

Agradecimentos

Agradeço ao meu orientador, Francisco Martins, pelo seu apoio, paciência, rigor e
minúcia. Ensinou-me a ter força para “não morrer na praia”, a ter perseverança para
superar últimos 10% do trabalho sem descurar no primor. A qualidade cientı́fica que
imprime no seu trabalho foi fundamental para o desenvolvimento desta tese.

Agradeço também ao Vasco Vasconcelos por me ensinar a olhar pela primeira vez
algo que o sei de cor. Também por me relembrar da máxima: “premature optimisation is
the root of all evil”. O seu contributo é também marcante no produto final que apresento.

Aproveito para agradecer a ambos pela oportunidade de participar numa visão que me
permitiu trabalhar as fundações do meu conhecimento na licenciatura, desenvolver um
trabalho mais teórico no mestrado e que me abriu portas para um doutoramento promissor.
É uma honra trabalhar convosco.

iii

Resumo

Restrições fı́sicas e eléctricas limitam o aumento da velocidade do relógio dos proces-
sadores, pelo que não se espera que o poder computacional por unidade de processamento
aumente muito num futuro próximo. Em vez disso, os fabricantes estão a aumentar o
número de unidades de processamento (cores) por processador para continuarem a criar
produtos com aumentos de performance. A indústria fez grandes investimentos em pro-
jectos como o RAMP e BEE2 que permitem a emulação de arquitecturas multi-core, mos-
trando interesse em suportar as fundações para a investigação de software que se destina
a essas arquitecturas.

Para tirar vantagem de arquitecturas multi-core, tem de se dominar tanto a programa-
ção concorrente como a paralela. Com a grande disponibilidade de sistemas paralelos que
vai desde sistemas embebidos até a super computadores, acreditamos que os programa-
dores têm de fazer uma mudança de paradigma passando da programação sequencial para
a programação paralela e produzir software adaptado, de raiz, a plataformas multi-core.

O multithreading é uma escolha bem conhecida e usada pela indústria para desenvol-
ver sistemas explicitamente paralelos. Os locks são um mecanismo utilizado para sin-
cronizar programas multithreaded de uma forma altamente eficiente. Porém, é comum
surgirem problemas relacionados com concorrência como deter um lock tempo demais,
não compreender quando se usam locks leitores/escritores ou escolher um mecanismo
de sincronização desadequado. Estes problemas podem ser mitigados com recurso a
abstracções de concorrência.

Os tipos e as regras de tipos são formas simples e eficazes de garantir segurança. Os
tipos não são só usados por sistemas de tipos para garantir que programas não têm er-
ros de execução, mas servem também como especificações (verificáveis de uma forma
automática). A informação dada pelos tipos é expressiva o suficiente para representar
propriedades operacionais importantes, como segurança de memória. Os compiladores
que preservam tipos perduram a informação dada pelos tipos por todos os passos de
compilação, permitindo uma compilação mais segura e que preserva a semântica (re-
presentada pelos tipos).

Propomos um compilador que endereça os problemas que levantámos até agora:

• uma linguagem fonte com abstracções para concorrência e para o paralelismo;

v

• um compilador que se destine a uma arquitectura multi-core;

• uma tradução que preserve a informação dada pelos tipos.

Em relação à linguagem fonte, os cálculos de processos evidenciam-se como um bom
modelo de programação para a computação concorrente. O cálculo π, em particular, tem
uma semântica bem compreendida, consiste num conjunto pequeno de operadores em que
a comunicação é o passo fundamental de computação. Os cálculos de processos oferecem
esquemas de compilação natural que expõe o paralelismo ao nı́vel dos threads. Por estas
razões, escolhemos o cálculo π simplesmente tipificado como linguagem fonte.

Vasconcelos e Martins propõem o MIL como uma linguagem assembly tipificada para
arquitecturas multithreaded, um modelo que assenta numa máquina abstracta multi-core
com memória principal partilhada. Esta linguagem fortemente tipificada oferece as se-
guintes propriedades de segurança: de memória, de controlo de fluxo e de liberdade de
race conditions. O MIL contradiz a ideia que considera a associação entre a memória e
locks uma convenção, ao torná-la explı́cita na linguagem. O sistema de tipos faz cumprir
uma polı́tica de utilização de lock que inclui: proibir apanhar um lock em posse (fechado),
proibir libertar um lock que não está em posse e faz com que os threads não se esqueçam
de libertar todos os locks no final da sua execução.

Propomos uma tradução que preserva os tipos do cálculo π para o MIL. O cálculo π
é uma álgebra de processos para descrever mobilidade: uma rede de processos interliga-
dos computa comunicando ligações (ou referências a outros processos). No cálculo π, a
comunicação reconfigura dinamicamente a rede, fazendo com que os processos passem
a estar visı́veis a diferentes nós quando o sistema evolui. Ao traduzirmos o cálculo π
em MIL, partimos de uma linguagem onde os processos comunicam através de passa-
gem de mensagens e chegamos a uma linguagem onde threads comunicam por memória
partilhada.

O processo de compilação não é directo nem trivial: certas abstracções, como canais,
não têm uma representação complementar no MIL. Para ajudar a tradução, desenvolve-
mos, na linguagem de destino, uma biblioteca de tampões não limitados e polimórficos
que são usados como canais. Estes tampões não limitados são monitores de Hoare, daı́
introduzirem uma forma de sincronização aos threads que estejam a aceder o tampão,
e que encapsulam a manipulação directa de locks. A disciplina de locks do MIL per-
mite representar explicitamente a noção da transferência ininterrupta da região crı́tica dos
monitores—vai do thread que assinala a condição, e que termina, para o thread que está
à espera nessa mesma condição, e que é activado. Os tampões não limitados são uma
boa forma de representar canais, o que por sua vez simplifica a tradução, já que enviar
uma mensagem corresponde a colocar um elemento no tampão, e que receber uma men-
sagem equivale a retirar um elemento do tampão. Impomos uma ordem FIFO no tampão,
para assegurarmos que as mensagens enviadas têm a oportunidade de serem alguma vez
recebidas.

vi

A função de tradução que definimos é uma especificação formal do compilador. A
tradução do cálculo π para MIL comporta a tradução de tipos, de valores e de proces-
sos. Os compiladores que preservam os tipos dão garantias em termos de segurança (os
programas gerados não vão correr mal) e também em termos de correcção parcial (as
propriedades semânticas dadas pelos tipos perduram no programa gerado). O nosso re-
sultado principal é, portanto, uma tradução que preserva os tipos: o compilador gera
programas MIL correctos ao nı́vel dos tipos para processos π fechados e bem tipificados.
Outra preocupação da nossa função de tradução é que o programa gerado tente manter o
nı́vel de concorrência do programa fonte, o que inclui a criação dinâmica de threads e a
sincronização entre threads.

As contribuições deste trabalho são:

• Um algoritmo de compilação que preserva os tipos, mostrando a flexibilidade do
MIL num ambiente tipificado e race-free.

• Exemplos de programação e estruturas de dados feitos em MIL. Mostramos a im-
plementação de tampões polimórficos não limitados sob a forma de monitores, de
variáveis de condição genéricas (primitivas dos monitores) e de filas polimórficas.
Também descrevemos como codificar monitores na linguagem MIL.

• Ferramentas. Criámos um protótipo para o compilador de π para MIL, o que con-
siste em: o analisador sintáctico, o analisador semântico (estático) e o gerador
de código. Refinámos o protótipo do MIL: adicionámos suporte para tipos uni-
versais e existenciais, locks de leitores/escritores, locks lineares e tuplos locais.
Criámos uma applet Java que mostra de uma forma rápida e intuitiva o nosso
trabalho sem ser necessário qualquer instalação (desde que o navegador web su-
porte applets de Java): podemos gerar código MIL a partir de código π, alterar o
código MIL gerado e executá-lo. Os nossos protótipos estão disponı́veis on-line, em
http://gloss.di.fc.ul.pt/mil/: a applet Java, o código fonte e exem-
plos π e MIL.

Palavras-chave: cálculo π, multithreading, compilação certificada, compilação
conservadora de tipos, compilação orientada a tipos, monitores

vii

http://gloss.di.fc.ul.pt/mil/

Abstract

Physical and electrical constrains are compelling manufactures to augment the num-
ber of cores in each die to continue delivering performance gains. To take advantage of
the emerging multicore architectures, we need to master parallel and concurrent program-
ming. We encourage empowering languages with adequate concurrency primitives: fine-
grained for low-level languages and coarse grained for high-level languages. This way,
compilers can reuse fined-grained primitives to encode multiple coarse-grained primi-
tives.

Work in type-directed compilers (e.g., the Typed Intermediate Language for the ML
language) showed that using a strongly typed intermediate language increases not only
safety but also efficiency. Typed assembly languages (TAL) draw the benefits from hav-
ing type information from end-to-end, originating type-preserving compilers. Vascon-
celos and Martins proposed the Multithreaded Intermediate Language (MIL) as a typed
assembly language for multithreaded architectures, featuring an abstract multicore ma-
chine with shared memory that is equipped with locks.

We propose a type-preserving translation from a simply typed π-calculus into MIL.
Process calculi provide natural compilation schemes that expose thread-level parallelism,
present in the target architecture. By translating the π-calculus into MIL, we depart from
a language where processes communicate through message-passing and arrive in a lan-
guage where threads communicate through shared memory.

Our contributions consist of

• a translation function that generates MIL from the π-calculus;

• the translation is type-preserving;

• using an unbounded buffer monitor to encode channels;

• detailed examples in MIL (handling concurrency primitives and control-flow);

• implementations in MIL of condition variables, of polymorphic queues, and of an
unbounded buffer;

• a generic encoding of monitors in MIL.

Keywords: the π-calculus, multithreading, certified compiler, type-preserving
compilation, type-directed compilation, monitors

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Outline . 4

2 The π-Calculus 7
2.1 Syntax . 8
2.2 Operational Semantics . 10

3 A Multithreaded Intermediate Language 21
3.1 Syntax . 23
3.2 Operational Semantics . 25
3.3 Type Discipline . 28
3.4 MIL programming examples . 36
3.5 Types against races . 40

4 An Unbounded Buffer Monitor in MIL 43
4.1 The monitor . 47
4.2 Wait and Signal . 52
4.3 Polymorphic Queues . 53
4.4 Discussion . 59

5 Compiling π into MIL 61
5.1 The translation function . 61
5.2 Results . 69

6 Conclusion 93

A Example of code generation 97

Bibliography 101

xi

List of Figures

2.1 The echo server interaction from the server’s point of view. 7
2.2 Process syntax. 8
2.3 Type syntax. 10
2.4 Structural congruence rules. 13
2.5 Reaction rules. 14
2.6 Typing rules for the π-calculus . 17

3.1 The MIL architecture. 22
3.2 The lock discipline. 22
3.3 Instructions. 24
3.4 Abstract machine. 24
3.5 Operational semantics (thread pool). 25
3.6 Operational semantics (locks). 26
3.7 Operational semantics (memory). 27
3.8 Operational semantics (control flow). 28
3.9 Types. 29
3.10 Typing rules for values Ψ; Γ ` v : τ , subtyping rules Ψ ` τ <: τ , and

typing rules for types Ψ ` τ . 30
3.11 Typing rules for instructions (thread pool and locks) Ψ; Γ; Λ ` I 30

3.12 Typing rules for instructions (memory and control flow) Ψ; Γ; Λ ` I . . . 32
3.13 Typing rules for machine states. 36

4.1 An Hoare-style unbounded buffer monitor. 44
4.2 Execution view of two threads accessing the same monitor. 45
4.3 Execution view of two threads accessing the same monitor, following the

signal and exit regime. 45
4.4 Three nodes connected linearly. Each node, guarded by the same lock λ,

holds a value vi. 54
4.5 One node connected to another node. 55
4.6 A linked-list with one node and one sentinel. 56
4.7 Enqueuing the n-th value to a linked-list. 57
4.8 Dequeuing the first node of a linked-list. 59

xiii

Chapter 1

Introduction

1.1 Motivation

Physical and electrical constrains are limiting the increase of processor’s clock speed
in such a way that the computing power of each processing unit is not expected to in-
crease much more in a near future. Instead, manufactures are augmenting the number of
processing units in each processor (multicore processors) to continue delivering perfor-
mance gains. The industry is making big investments in projects, such as RAMP [39]
and BEE2 [3], that enable the emulation of multicore architectures, showing interest in
supporting the foundations for software research that targets these architectures.

To take advantage of multicore architectures, programmers must master parallel and
concurrent programming [33]. With the advent of major availability of parallel facilities
(from embedded systems, to super-computers), programmers must do a paradigm shift
from sequential to parallel programming and produce, from scratch, software adapted for
multicore platforms.

Multithreading is one of industry’s most accepted answer to write explicitly parallel
systems. Locks stand forth as a fundamental mechanism for writing highly-efficient mul-
tithreaded code [8]. Holding locks for too much time, misusing readers/writers locks,
and choosing the wrong synchronisation mechanisms are all frequent arising problems
encountered while developing multithreaded systems. Such problems can be mitigated
with the appropriate high-level concurrency abstractions. We need to empower low-level
languages with fine-grained concurrency primitives in a way that compilers for high-level
concurrent languages can take advantage of both efficiently and safely.

Types and type systems are a simple and effective way to ensure safety [9, 36]. Types
are not only used by type systems to free programs from executing errors, but serve as
specification (verifiable in an automatic manner) that captures important operational prop-
erties, such as memory safety. TIL, a type-directed optimising compiler for ML, showed
that using a strongly typed intermediate language could help optimisation [44]. Also, the
typechecker for TIL helped in making the development of the compiler faster and safer,

1

Chapter 1. Introduction 2

since programming errors would be caught early on.
TIL, however, only preserved types through approximately 80% of the compilation

process. Loosing type information in the last 20% seems to just move the problem one
(translation) step further. TIL was still translating to an untyped language in the end! This
thought stemmed the development of Typed Assembly Languages (TAL) [31] and Proof-
Carrying Code (PCC) [32], two techniques that introduce compiler certification, a formal
method that verifies the semantics of the generated code. Type-preserving compilers save
type information throughout every compilation stage, enabling both safer compilation and
better conservation of semantics — the ones captured by types.

We propose a compiler that addresses the issues raised so far.

• the source language must offer concurrency and parallel abstractions;

• the compiler must target a multicore architecture;

• the translation must preserve type information.

Regarding the source language, process calculi arise as an expressive programming model
for concurrent and parallel computing. The π-calculus [28], in particular, has well-
understood semantics, consists of a small set of primitives and operators, and its fun-
damental step of computation is communication. Process calculi provide natural com-
pilation schemes that expose thread-level parallelism [25]. We choose the simply typed
π-calculus as our source language [5, 21, 28].

The Multithreaded Intermediate Language (MIL) [47] is a multithreaded typed assem-
bly language for multicore architectures that have shared (main) memory. This strongly
typed language gives the following safety properties: memory safety, control-flow safety,
race-freedom safety, and deadlock-freedom safety [48]. MIL contradicts the statement
that “the association between locks and data is established mostly by convention” [43] by
making this association explicit in the language. The type system enforces a policy on the
lock usage that forbids locking an owned locked and unlocking an open lock, and makes
sure that threads do not forget to unlock owned locks.

Another possible choice for the target language of a compiler of a concurrent language
is the work from Feng and Shao [12], following the lines of program verification and
PCC. They propose a logic “type” system for static verification of concurrent assembly
programs, with support for unbounded dynamic thread creation and termination. Their
idea is to reflect specifications, defined as high-level logic, at the assembly level. Type
systems embed a limited array of security properties as part of its soundness proof. By
using types and typing rules you gain succinct but limited safety properties, the proof of
the program is generated automatically in the form of types. Frameworks like CAP [49,
50] give more flexibility with the cost of making the proof explicit. We choose the former
approach since the source language is already less expressive than MIL in terms of types.

Chapter 1. Introduction 3

In terms of a type-preserving compilation, there is no advantage in choosing an even more
expressive system like the latter.

There are various works in type-preserving compilation. We highlight the seminal
work from Morrisett et al. [31] that presents a five stage type-preserving compilation,
from System F [17] into a (sequential) typed assembly language. Their work shows the
various steps necessary to transform a high-level language into the chosen TAL, whilst
maintaining type information. Their TAL features high-level abstractions like tuples,
polymorphism, and existential packages.

In the context of process calculi compilation, Turner proposes an abstract machine
encoded in the π-calculus for running Pict [38] that is then translated into C [45]. The ab-
stract machine does not take types into consideration. C is not expressive enough to retain
the type information of the source language (a polymorphic version of the π-calculus).
Also, the generated code is sequential and therefore does not take into account multicore
architectures.

In the same line of development as Turner’s abstract machine, Lopes et al. [25] pro-
posed a multithreaded language (TTyCO) and an abstract machine for TyCO [46], an
asynchronous process calculus. TTyCO is an intermediate untyped language, featuring
threads and message-queues. This intermediate language lays at a higher-level than MIL.
In a sense, we implement the higher-level features of TTyCO that lack in MIL using the
unbounded buffer monitor. TTyCO gives no safety-properties. Since the target language is
untyped, no type-preserving results can be obtained. Our work continues the work done in
TTyCO by targeting a multithreaded typed assembly language through a type-preserving
compilation.

1.2 Contributions

The present work proposes a type-preserving translation from the π-calculus into MIL.
The π-calculus is a process algebra for describing mobility: a network of interconnected
processes compute by communicating references to processes (links) among them [28].
We choose a simple, simply typed version of the π-calculus [5, 21, 28].

MIL is an assembly language targeted at an abstract multicore machine equipped with
a shared main memory. By translating the π-calculus into MIL, we depart from a lan-
guage where processes communicate through message-passing and arrive in a language
where threads communicate through shared memory. The source and target languages as
well as their respective underlying models differ substantially. The former is declarative,
computation takes place as processes communicate, and synchronisation is made through
message-passing. The latter is imperative, the system evolves by evaluating instructions,
and synchronisation is made through shared memory.

Translation is not direct. Mapping π-processes into threads follows naturally, e.g. we

Chapter 1. Introduction 4

translate two processes running in parallel into two concurrent threads, but there is no
correspondence of channels in MIL. A by-product of our work is an unbounded buffer
monitor, a variant of Hoare’s bounded buffer monitor [20], entirely written in MIL, that is
used by our compiler to encode channels. The monitor provides a (polymorphic) FIFO-
ordered buffer that mediates the asynchronous communication between producers and
consumers.

As a proof of concept, we develop a program in Java that implements the presented
π-calculus type system (in the form of a typechecker) and the π-to-MIL translation func-
tion (in the form of a compiler). The MIL interpreter (and typechecker), the π-to-MIL
compiler, the examples presented in this work, and the code for the unbounded buffer
monitor are all available on-line [26].

The summary of our contributions is:

a translation function that maps terms of the π-calculus into MIL terms;

type-preserving compilation the main result is that the translation of typable (closed)
π-programs generates well-typed MIL programs;

detailed examples we document lock acquisition and control-flow manipulation in MIL
through a series of examples;

a generic encoding of monitors in MIL we precise code and data constituents of mon-
itors as well as give meaning to entering and exiting a monitor procedure;

condition variables we show a MIL implementation of condition variables that features
a representation of suspended threads in the form of continuations;

polymorphic queues we present a polymorphic implementation of queues;

polymorphic unbounded buffer monitor we show an implementation of a monitor in
MIL that represents an unbounded buffer, shielding the client code (the π-calculus
compiler in particular) from the hazardous task of direct lock manipulation;

MIL interpreter we updated the MIL tools (the typechecker and the interpreter);

π-to-MIL compiler we devised a prototype that includes a typechecker for the source
language and the π-to-MIL compiler.

1.3 Outline

The current chapter introduces our work. In the closing chapter we summarise our re-
sults and outline directions for further investigation. Chapters 2 and 3 describe the source

Chapter 1. Introduction 5

language (π-calculus) and the target language (MIL), respectively, and establish the foun-
dations for our contribution, which is presented in Chapters 4 and 5.

More specifically, in Chapter 2, we present a polyadic, simply typed, and asynchro-
nous π-calculus, by formalising its syntax and semantics. We omit the summation and
the matching operators from the calculus. The replication operator is restricted to input
processes only. Our goal is to expose the source language of our compiler.

Chapter 3 gives a thorough description of MIL, the target language of the translation,
covering both syntax and semantics. We devote one section to exemplify lock acquisi-
tion and transfer of control flow, two fundamental programming patterns that we apply
extensively in the run-time and in the generated code. The last section of the chapter
presents the two main results of MIL: that “well-typed machines do not get stuck” and
that well-typed machines do not have races.

Chapter 4 details the supporting code used by the translation, including polymorphic
queues, condition variables, and the encoding of Hoare-style monitor in MIL. We em-
ploy these generic elements in the implementation of an unbounded (polymorphic) buffer
monitor, used to encode π-channels in MIL. This chapter encloses our contribution in
MIL programming, yielding three libraries: queues, condition variables, and unbounded
buffer monitors.

Chapter 5 formalises the translation from the π-calculus into MIL. The unbounded
buffer monitor presented in Chapter 4 simplifies the translation, since sending and receiv-
ing messages from a channel may be viewed as appending and removing elements from
a buffer. We show the outcome of applying the translation function to a π-process. This
section includes a detailed proof of the main result of our work: a type-preserving com-
pilation, asserting that type-correct π-programs compile into type-correct MIL programs.

Chapter 2

The π-Calculus

The π-calculus, developed by Robin Milner, Joachim Parrow, and David Walker [28], is
a process algebra for describing mobility, in which processes “move” in a virtual space.
The underlying model is a network of interconnected processes that interact by commu-
nicating connection links (channels). Since connection links can be retransmitted, the
π-calculus is able to express dynamic reconfigurations of the network, where resources
become accessible to different parties as the system evolves.

As a motivation example, consider process echo server that bounces every message
received through a channel back to the sender process (the client). Figure 2.1 depicts
such an interplay with emphasis on the server. The server is accessible via link echo.
Before interaction the server maintains two placeholders to be filled upon data arrival: a
message msg that is illustrated by a dashed box in the figure (left) and a reply link rep-
resented by a circle enclosing a cross. After interaction the server uses the reply channel,
represented in Figure 2.1 (right) by a filled circle, to bounce the received value msg back
to the client, portrayed in the figure by a box holding two symbols (• �). The arrows from
msg to reply and from reply to the client show the data-flow of the echoed message.

In this chapter we describe the source language of our compiler: the π-calculus. We
begin by depicting the syntax of processes and of types on Section 2.1. Next, we cover
the operational semantics of the π-calculus and its type system.

Server

msg

×reply

Client

Before interaction:

echo

Server

• �msg

reply

Client

After interaction:

Figure 2.1: The echo server interaction from the server’s point of view.

7

Chapter 2. The π-Calculus 8

Values
v ::= x name

| n integer

Processes
P,Q ::= 0 inactive

| x〈~v〉 output
| x(~y).P input
| !x(~y).P replicated input
| P | Q parallel

| (ν x : ˆ[~T])P restriction

The syntax of T is defined in Figure 2.3.

Figure 2.2: Process syntax.

2.1 Syntax

The adopted π-calculus syntax is based on [27] with extensions presented in [42]: asyn-
chronous [5, 21], meaning that sending a message does not block; polyadic, correspond-
ing to the transmission of sequences of values; and simply typed with constants (integers).

Processes. The syntax, depicted in Figure 2.2, is divided into two categories: values
ranged over by v that represent names and integers; and processes ranged over by P,Q, . . .
that compose the network of processes. A name, ranged over by x, y, . . ., is either a link
or a placeholder for values. The value n is a meta-variable over integers that corresponds
to any possible integer. A vector above a symbol abbreviates a possibly empty sequence
of these symbols. For example ~x stands for the sequence of names x1 . . . xn with n ≥ 0.

Processes consist of the nil process 0, corresponding to the inactive process; the output
process x〈~v〉 that sends data ~v through a channel x; the input process x(~y).P that binds
a received sequence of values to names ~y in the scope of process P via a channel x; the
replicated input process !x(~y).P that represents an infinite number of input processes run-
ning in parallel; the parallel composition of processes P | Q that represents two processes
running in parallel; and the restriction process (ν x : ˆ[~T])P that creates a new channel
definition local to process P .

The following example is a possible implementation of the echo server depicted in
Figure 2.1.

!echo(msg, reply).reply〈msg〉 (2.1)

The process is ready to receive a message msg and a reply channel via channel echo.
Upon arrival, the message is bounced back to the server again through the reply link.

Definition 2.1.1. Process P is a sub-term of process Q iff

• Q is P ,

Chapter 2. The π-Calculus 9

• or Q is P ′ | Q′ and P is a sub-term of P ′,

• or Q is P ′ | Q′ and P is a sub-term of Q′,

• or Q is x(~y).P ′ and P is a sub-term of P ′,

• or Q is !x(~y).P ′ and P is a sub-term of P ′,

• or Q is (ν x : ˆ[~T])P ′ and P is a sub-term of P ′.

Types. In the π-calculus a name can assume a range of values during execution. For
example, a name can represent a number 1 or some channel. A type defines the set of
values a name accepts [9]. By saying that the name is of type integer, we suppose that the
given name can only represent integers during every step of execution. We call a language
typed, when names can be given types, the opposite of untyped languages.

Type systems keep track of types of names and are used to detect execution errors in
programs. We quote the definition from Benjamin Pierce [35]:

A type system is a tractable syntactic method for proving the absence of cer-
tain program behaviours by classifying phrases according to the kinds of val-
ues they compute.

We distinguish two forms of executing errors: trapped errors that cause computation to
stop immediately and untrapped errors that go unnoticed for a certain period of time. For
instance, if a machine halts computation when an integer value is used as a channel, then
this misuse is a trapped error. A form of an untrapped error is when a machine dwells
into an inconsistent state, but does not halt, which could happen upon sending a sequence
of three values through a channel that expects a sequence of two values. Safe languages
are free from untrapped errors, the class of errors harder to track. Languages may enforce
safety by performing run-time or compile-time (static) checks. Typed languages usually
employ both forms of safety checks. We call typechecking to the process that performs
the static checks on a typed language. The typechecker is the algorithm responsible for
typechecking the language.

Which errors should a type system detect? Let forbidden errors be the class of possible
errors caught by type systems. Forbidden errors should include all untrapped errors and
some trapped errors. Type systems therefore target safe languages and additionally catch
some trapped errors. We designate programs free from forbidden errors well-behaved. A
language where all of the (legal) programs are well-behaved is called strongly checked.

There are numerous advantages for having types and type systems. For example, a
code generator has additional hints for knowing how much memory a value needs. Ex-
ecution efficiency can be improved, because we can replace run-time checks by static

Chapter 2. The π-Calculus 10

T ::= int integer type

| ˆ[~T] channel type

Figure 2.3: Type syntax.

checks. Small-scale development is hastened by the feedback of the typechecker, reduc-
ing the number of debugging sessions. Type information is essential for development
tools, including refactoring tools, code analysis, code verification, and integrated devel-
opment environments. From the knowledge of dependencies between modules given by
types, compilers can perform partial compilation that reduces the overall compilation-
time. Language features captured by types are usually orthogonal, thus tend to reduce the
complexity of programming languages.

The π-calculus version we choose is monomorphic, strongly checked, and typed.
Monomorphism means that every program fragment (e.g., a value) can only have one
type, as opposed to polymorphism, in which a program fragment can have many types.
We assign type int to integers. The channel type ˆ[~T] describes a link that may communi-
cate a sequence of values each of which assigned to type Ti, respectively.

For example, type ˆ[int, ˆ[int]] captures the semantics of channel echo from Process 2.1
and corresponds to a channel type with two parameters, the first an integer type and the
second a channel type that communicates integers.

2.2 Operational Semantics

The semantics of the π-calculus expresses formally the behaviour of processes. With a
rigorous semantics we can identify if two processes have the same structural behaviour,
observe how a process evolves as it interacts, and analyse how links move from one
process to another.

We begin with name binding. Two constructors bind names.

Definition 2.2.1 (Binding). In (ν x : ˆ[~T])P the displayed occurrence of x is a binding
with scope P. In x(~y).P each occurrence of yi is a binding with scope P. An occurrence
of a name is bound if it is, or lies within the scope of, a binding occurrence of the name.
An occurrence of a name in a process is free if it is not bound. A process with only bound
names is said to be closed.

The bound name function can be inductively defined as:

Chapter 2. The π-Calculus 11

Definition 2.2.2 (The bound name function).

bn(0) = ∅
bn(x〈~v〉) = ∅

bn(x(~y).P) = {~y} ∪ bn(P)

bn(!x(~y).P) = bn(x(~y).P)

bn(P | Q) = bn(P) ∪ bn(Q)

bn((ν x : ˆ[~T])P) = {x} ∪ bn(P)

Contrarily to bound names, free names are globally defined. The free name function
can be defined as:

Definition 2.2.3 (The free names function).

fn(0) = ∅
fn(x〈~v〉) = {x} ∪ fn(~v)

fn(x(~y).P) = {x} ∪ fn(P) \ {~y}
fn(!x(~y).P) = fn(x(~y).P)

fn(P | Q) = fn(P) ∪ fn(Q)

fn((ν x : ˆ[~T])P) = fn(P) \ {x}
fn(v1 . . . vn) = fn(v1) ∪ · · · ∪ fn(vn)

fn(x) = {x}
fn(n) = ∅

For example, in process

!echo(msg, reply).reply〈msg〉

name echo is free and names msg and reply are bound.
Notice a name may occur both free and bound in the same expression. In the following

example name x appears bound and free:

x(y).y(x).0

The first displayed occurrence of name x is free, in the outer input process; the second
displayed occurrence of x is bound. In the scope of process 0 the use of name x targets
the parameter of link y and not the free name.

Definition 2.2.4. A substitution is a function that is the identity except on a finite set,
defined from values to names. A formula vσ represents the application of substitution σ
to value v, where:

nσ
def
= n xσ

def
= σ(x)

Chapter 2. The π-Calculus 12

As for processes, say Pσ, the substitution replaces each free occurrence of name x in
process P by xσ. We define the application of a substitution to processes (see the name
convention below) as:

0σ
def
=0

(x〈~v〉)σ def
=xσ〈~vσ〉

(x(~y).P)σ
def
=(xσ)(~y).Pσ

(!x(~y).P)σ
def
=!((x(~y).P)σ)

(P | Q)σ
def
=(Pσ) | (Qσ)

((ν x : ˆ[~T])P)σ
def
=(ν x : ˆ[~T])Pσ

We write {~v/~x} for the substitution σ such that xiσ = vi and yσ = y for y /∈ ~x.

For example, substituting z for x in process x〈2〉 | x(y).0 yields the following result,
where σ = {z/x}:

(x〈2〉 | x(y).0)σ

=(x〈2〉)σ | (x(y).0)σ

=xσ〈2σ〉 | (xσ)(y).0σ

=σ(x)〈2〉 | (σ(x))(y).0

=z〈2〉 | z(y).0

Definition 2.2.5 (Change of bound names). A change of bound names in process P is
the replacement of a sub-term of P in the form x(~y).Q by x(~z).Q{~z/~y} or in the form
(ν y : ˆ[~T])Q by (ν z : ˆ[~T])Q{z/y}, where z and ~z are not bound nor free in Q.

A congruence relation is an equivalence relation1 that satisfies some algebraic prop-
erties. Furthermore, if ≡ is a congruence relation on processes, then

• if P ≡ Q, then x(~y).P ≡ x(~y).P ;

• if P ≡ Q, then !x(~y).P ≡!x(~y).P ;

• if P ≡ Q, then P | R ≡ Q | R;

• if P ≡ Q, then (ν x : ˆ[~T])P ≡ (ν x : ˆ[~T])Q;

Process P is α-congruent with process Q, notation P ≡α Q, if Q results from P by
successive changes of bound names. For example,

echo(msg, reply).reply〈msg〉 ≡α echo(x, y).y〈x〉
1Equivalence relations are reflexive, symmetric, and transitive.

Chapter 2. The π-Calculus 13

(S1) If P ≡α Q, then P ≡ Q.

(S2) The Abelian monoid laws for parallel: commutative P | Q ≡ Q | P , associative
(P | Q) | R ≡ P | (Q | R), and having the inactive process as its neutral element
P | 0 ≡ P .

(S3) !x(~y).P ≡ x(~y).P | !x(~y).P

(S4) The scope extension laws:

(ν x : ˆ[~T]) 0 ≡ 0

(ν x : ˆ[~T]) (P | Q) ≡ P | (ν x : ˆ[~T])Q, if x /∈ fn(P)

(ν x : ˆ[~T]) (ν y : ˆ[~S])P ≡ (ν y : ˆ[~S]) (ν x : ˆ[~T])P

Figure 2.4: Structural congruence rules.

Name convention. For any given mathematical context (e.g., definition, proof), terms
are up to α-congruence and assume a convention (Barendregt’s variable convention [2]),
in which all bound names are chosen to be different from the free names and from each
other.

For example, process
x(y).y(x).0

breaks the convention, since the displayed occurrence x is both bound and free. The
following α-congruent term assumes the name convention:

x(y).y(z).0

Structural Congruence. The syntax differentiates processes that intuitively represent
the same behaviour. For example, process P | Q and process Q | P are syntactically
different, although our intuition about processes running in parallel is that the syntactic
order of these processes is irrelevant. Process (ν x : ˆ[]) y〈x〉 and process (ν z : ˆ[]) y〈z〉
are also syntactically different, but both represent an output channel sending a private
channel, regardless of the different choice of names.

The structural congruence relation, ≡, is the smallest congruence relation on pro-
cesses closed under rules given in Figure 2.4 that capture the intuition about the be-
haviour of processes. The structural congruence relation divides processes into equiv-
alence classes of terms, simplifying operational semantics rule (cf. Figure 2.5). Rule S1
brings the change of bound names into structural congruence; Rule S2 represents the
standard commutative monoid laws regarding parallel composition, having 0 as its neu-
tral element; Rule S3 allows replication to fold and unfold. Rule S4 allows for scope

Chapter 2. The π-Calculus 14

REACT
x(~y).P | x〈~v〉 → P{~v/~a}

P → P ′

PAR
P | Q→ P ′ | Q

P → P ′

RES
(ν x : ˆ[~T])P → (ν x : ˆ[~T])P ′

Q ≡ P P → P ′ P ′ ≡ Q′

STRUCT
Q→ Q′

Figure 2.5: Reaction rules.

extension. Notice that restriction order is of no importance, because terms assume the
name convention.

Reduction. The reduction relation→ defined over processes establishes how a compu-
tational step transforms a process, as defined in Figure 2.5. The formula P → Q means
that process P can interact and evolve (reduce) to process Q. We interpret rules (e.g.,
Figure 2.5) in form

A B

C

as A and B imply C. For instance, Rule REACT is an axiom, whereas for Rule PAR we
say that if P reduces to P ′ then P | Q reduces to P ′ | Q.

Rule REACT is the gist of the reduction rules, representing the communication along a
channel. An output process, x〈~v〉, can interact with an input process, x(~y).P , since they
share link x. Reduction sends output message ~v along channel x, resulting in process
P{~v/~y}.

Rule PAR expresses that reduction can appear as the left-hand side of a parallel compo-
sition. Rule RES governs reduction inside the restriction operator. With structural congru-
ence, Rule STRUCT, we are able to rearrange processes so that they can react. Structural
congruence and process reduction also bring non-determinism to the π-calculus, since we
can arrange different processes to react differently.

Consider a copy of the echo server (Process 2.1) running concurrently with a client
that sends number 10, as well as a channel for printing integers in the screen, say printInt.
The order in which these processes are composed in parallel is relevant for reduction.
The input must appear as the left-hand side and the output as the right-hand side, thus we
rearrange the terms applying rule S2.

echo〈10, printInt〉 | echo(msg, reply).reply〈msg〉 S2

≡echo(msg, reply).reply〈msg〉 | echo〈10, printInt〉 REACT

→printInt〈10〉

Chapter 2. The π-Calculus 15

By placing the process above in parallel with Process 2.1, interactions occur inside the
parallel composition (Rule PAR):

echo(msg, reply).reply〈msg〉 | echo〈10, printInt〉
| !echo(msg, reply).reply〈msg〉 PAR, REACT

→printInt〈10〉 | !echo(msg, reply).reply〈msg〉

With structural congruence and Rule STRUCT, we discard the copy of the echo server,
thereby simplifying the term.

echo(msg, reply).reply〈msg〉 | echo〈10, printInt〉
| !echo(msg, reply).reply〈msg〉

≡echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉 STRUCT, PAR, REACT

→printInt〈10〉 | !echo(msg, reply).reply〈msg〉

Suppose we have a client that sends number 20 along with a private channel to a copy
of the echo server.

echo(msg, reply).reply〈msg〉 | (ν x) (echo〈20, x〉 | x(y).P)

≡(ν x) (echo(msg, reply).reply〈msg〉 | echo〈20, x〉 | x(y).P) RES, PAR, REACT

→(ν x) (x〈20〉 | x(y).P) RES, REACT

→P{20/y}

By extending the scope of x to the server, we let interaction evolve inside the restriction
and the parallel operators. The server bounces the number 20 back to client x(y).P with
Rules RES and REACT. The scope of x is local to the client before reaction, since the scope
extension performed on the first step does not make the channel accessible to the server
— there are no occurrences of x in the server. After the first reduction, however, the name
“moves” to the server. This new scope availability is called scope extrusion. The virtual
movement from the client to the server is a kind of process mobility. A contrasting form
of process mobility is physical mobility, where processes move in a physical space, rather
than in a virtual space, for example a mobile phone moving in different cell sites.

Regard how two clients communicate with a copy of the echo server.

echo(msg, reply).reply〈msg〉 | echo〈10, r〉 | echo〈20, s〉

By letting reduction develop as is, the client sending channel r communicates with the
server.

echo(msg, reply).reply〈msg〉 | echo〈10, r〉 | echo〈20, s〉 PAR, REACT

→r〈10〉 | echo〈20, s〉

Chapter 2. The π-Calculus 16

But, if we reorder terms with structural congruence, we observe that the client sending
number 20 and channel s can also interact with the server.

echo(msg, reply).reply〈msg〉 | echo〈10, r〉 | echo〈20, s〉
≡echo(msg, reply).reply〈msg〉 | echo〈20, s〉 | echo〈10, r〉 STRUCT, PAR, REACT

→s〈20〉 | echo〈10, r〉

This example highlights the non-deterministic nature of the π-calculus. The same process
can yield different computational outcomes.

Type system. Before we explain the type system of the π-calculus, we introduce some
common grounds.

Definition 2.2.6 (Type environment). The type assignment, notation x : T , assigns a type
to a name, where x is the name of the assignment, and T is type of the assignment.

A type environment, or typing, ranged over by Γ, is an ordered list of type assignments
in the form of ∅, x1 : T1, . . . , xn : Tn, with x1 . . . xn distinct. The notation for the empty
type environment is ∅. Extending a type environment Γ with type assignment x : T , with
name x not mentioned in typing Γ, is of form Γ, x : T . The collection of names x1 . . . xn

declared in Γ is indicated by dom(Γ).

For example,
∅, echo : ˆ[int, ˆ[int]],msg : int, reply : ˆ[int]

is a type environment with three assignments: a channel echo that transmits an integer and
a channels of integers, a namemsg of type integer, and a channel reply that communicates
integers.

Type judgements are of form Γ ` v : T for values and of form Γ ` P for processes.
The former asserts that a value v has type T . The latter form asserts that process P
respects the type assignments in Γ. A typing environment Γ stands as the left-hand side
of both forms of judgement and declares the free names of the assertion.

A type system is a collection of axioms and inference rules. Figure 2.6 presents a
standard type system for the π-calculus. Type judgements can be either valid or invalid.
A valid type judgement is one that can be proved with an axiom or inference rule from a
given type system. We call the proof of the validity of a type judgement a typing deriva-
tion. A judgement is invalid if there is no valid judgement to prove that assertion. For
instance, Γ ` 3: int is a valid type judgement, yet Γ 0 3: ˆ[int] is an invalid type judge-
ment. Notice the notation 0 for invalid type judgements. A value v is well-typed in Γ,
for some Γ, if there is T such that Γ ` v : T . Similarly, given a typing Γ, a process P is
well-typed under that type environment if Γ ` P .

For typing the π-calculus we are concerned with communication, in particular check-
ing the usage of names. Typing values concerns integers and names. The axiom TV-BASE

Chapter 2. The π-Calculus 17

TV-BASE
Γ ` n: int

TV-NAME
Γ, x : T ` x : T

TV-NIL
Γ ` 0

Γ ` x : ˆ[~T] ∀vi ∈ ~v : Γ ` vi : Ti
TV-OUT

Γ ` x〈~v〉

Γ ` x : ˆ[T1, . . . , Tn] Γ, y1 : T1, . . . , yn : Tn ` P
TV-IN

Γ ` x(~y).P

Γ ` x(~y).P
TV-REP

Γ `!x(~y).P

Γ ` P Γ ` Q
TV-PAR

Γ ` P | Q
Γ, x : ˆ[~T] ` P

TV-RES
Γ ` (ν x : ˆ[~T])P

Figure 2.6: Typing rules for the π-calculus

states that integers are well-typed and assigned to type int. With rule TV-NAME the type
assigned to a name is the one found (declared) in the type environment.

As for typing processes, the inactive process 0 is well-typed, axiom TV-NIL. With
Rule TV-OUT, a name (of link type) is used as an output process with the arguments of the
expected type. Like all composite processes, the typing of the input process x(~y).P (with
rule TV-IN) depends upon the validity of its constituents, namely P . The continuation P
is therefore checked under a typing extended with parameters ~y (each yi is assigned to its
respective type Ti). To check a replicated process !x(~y).P with Rule TV-REP it is enough
to verify if one of its copies is valid. The validity of the parallel process, checked with
Rule TV-PAR, depends upon the validity of its parts. For typing restriction (ν x : ˆ[~T])P

(rule TV-RES) we check the continuation P under a typing augmented with binding x.
We show that environment ∅, echo : ˆ[int, ˆ[int]] is enough to typify the echo server

Process 2.1. Using rule TV-REP we derive

TV-NAME
∅, echo : ˆ[int, ˆ[int]] ` echo : ˆ[int, ˆ[int]] (1)

TV-IN
∅, echo : ˆ[int, ˆ[int]] ` echo(msg, reply).reply〈msg〉

TV-REP
∅, echo : ˆ[int, ˆ[int]] `!echo(msg, reply).reply〈msg〉

To type the echo server it is enough to type a copy of the server, Rule TV-REP. The
derivation proceeds by applying rule TV-IN. The sequent for typing name echo with
rule TV-NAME is direct. We are left with sequent (1) that also holds, where typing Γ

def
=

∅, echo : ˆ[int, ˆ[int]],msg : int, reply : ˆ[int]

TV-NAME
Γ ` reply : ˆ[int]

TV-NAME
Γ ` msg : int

TV-OUT
Γ ` reply〈msg〉

Therefore, Process 2.1 is well-typed under typing ∅, echo : ˆ[int, ˆ[int]].

Chapter 2. The π-Calculus 18

Lemma 2.2.7. If Γ ` P , then fn(P) ⊆ dom(Γ).

Proof. The proof follows by induction in the structure of P .

• Case P is 0. By definition of fn, fn(0) = ∅. Hence, fn(0) ⊆ dom(Γ).

• Case P is x〈~v〉. By definition of fn, fn(x〈~v〉) = {x} ∪ fn(~v). By hypothesis Γ `
x〈~v〉, thus (by rule TV-OUT) Γ ` x : ˆ[~T] and ∀vi ∈ ~v.Γ ` vi : Ti. By rule TV-NAME,
if Γ ` x : ˆ[~T], then x ∈ dom(Γ). By definition of ftv, ∀vi ∈ ~v.Γ ` vi : Ti if vi is a
base value, then it is not in the free names of fn(~v) if it is a name, by rule TV-NAME,
then vi ∈ dom(Γ). Hence, {x} ∪ fn(~v) ⊆ dom(Γ).

• Case P is x(~y).Q. By definition of fn, fn(x(~y).Q) = {x} ∪ fn(Q) \ {~y}. By
rule TV-IN, we have that Γ ` x : ˆ[~T] and Γ, ~y : ~T ` Q. Since we have Γ ` x : ˆ[~T],
then by rule TV-NAME x ∈ dom(Γ). Since we have Γ, ~y : ~T ` Q, then, by the
induction hypothesis, we have that fn(Q) ⊆ dom(Γ, ~y : ~T). By applying the set
theory and the definition of dom, we have:

fn(Q) ⊆ dom(Γ, ~y : ~T)

=fn(Q) ⊆ dom(Γ) ∪ dom(~y : ~T)

=fn(Q) ⊆ dom(Γ) ∪ {~y}
=fn(Q) \ {~y} ⊆ dom(Γ)

We have that x ∈ dom(Γ), hence

fn(Q) \ {~y} ⊆ dom(Γ)

={x} ∪ fn(Q) \ {~y} ⊆ dom(Γ)

=fn(x(~y).Q) ⊆ dom(Γ)

• Case P is !x(~y).Q. By rule TV-REP, we have that Γ ` x(~y).Q. Then, by the
induction hypothesis, we have that fn(x(~y).Q) ⊆ dom(Γ). Since fn(!x(~y).Q) =

fn(x(~y).Q), then fn(!x(~y).Q) ⊆ dom(Γ) holds.

• Case P is Q1 | Q2. By rule TV-PAR, we have that Γ ` Q1 and Γ ` Q2. Hence, by
the induction hypothesis, we have that fn(Q1) ⊆ dom(Γ) and fn(Q2) ⊆ dom(Γ).
By applying the set theory, we have

fn(Q1) ⊆ dom(Γ) = fn(Q1) ∪ fn(Q2) ⊆ dom(Γ) ∪ fn(Q2)

But fn(Q2) ⊆ dom(Γ), hence dom(Γ)∪ fn(Q2) = dom(Γ). By definition of fn, we
have fn(Q1 | Q2) = fn(Q1) ∪ fn(Q2). Hence fn(Q1 | Q2) ⊆ dom(Γ).

Chapter 2. The π-Calculus 19

• Case P is (ν x : T)Q. By hypothesis we have that Γ ` (ν x : T)Q, then, by
rule TV-RES Γ, x : T ` Q. Hence, by the induction hypothesis, fn(Q) ⊆ dom(Γ, x :

T). We apply the definition of function dom and the set theory:

fn(Q) ⊆ dom(Γ, x : T)

=fn(Q) ⊆ dom(Γ) ∪ dom(∅, x : T)

=fn(Q) ⊆ dom(Γ) ∪ {x}
=fn(Q) \ {x} ⊆ dom(Γ)

By definition of fn, we have that fn((ν x : T)Q) = fn(Q) \ {x}. Thus,

fn((ν x : T)Q) ⊆ dom(Γ)

Corollary 2.2.8. If ∅ ` P , then fn(P) = ∅.

Chapter 3

A Multithreaded Intermediate
Language

Vasconcelos and Martins introduced a multithreaded typed assembly language (MIL),
its operational semantics, and a type system that ensures that well-typed programs are
free from race conditions [47]. The type system proposed for MIL closely follows the
tradition of typed assembly languages [29–31], extended with support for threads and
locks, following Flanagan and Abadi [14]. With respect to this last work, however, MIL
is positioned at a much lower abstraction level, and faces different challenges inherent
to non-lexically scoped languages. Lock primitives have been discussed in the context
of concurrent object calculi [13], JVM [15, 16, 22, 23], C [18], C-- [40], but not in the
context of typed assembly (or intermediate) languages. In a typed setting, where programs
are guaranteed not to suffer from race conditions, MIL

• Syntactically decouples the lock and unlock operations from what one usually finds
unified in a single syntactic construct in high-level languages: Birrel’s lock-do-
end construct [4], used under different names (sync, synchronized-in, lock-in) in a
number of other works, including the Java programming language [6, 7, 13–16, 18];

• Allows for lock acquisition/release in schemes other than the nested discipline im-
posed by the lock-do-end construct;

• Allows forking threads that hold locks.

MIL is an assembly language targeted at an abstract multi-processor equipped with
a shared main memory. Each processor consists of a series of registers and of a local
memory for instructions and for local data. The main memory is divided into a heap
and a run pool. The heap stores tuples and code blocks. A code block declares the
registers types it expects, the required held locks, and an instruction sequence. The run
pool contains suspended threads waiting for a free processor. Figure 3.1 summarises the
MIL architecture.

21

Chapter 3. A Multithreaded Intermediate Language 22

CPU core 1

registers

local
memory

CPU core N

registers

local
memory

run pool heap

Figure 3.1: The MIL architecture.

r1 := new 1
λ, r2 := newLock
share r1 guarded by λ

r3 := testSetLock r2
if r3 = 0 jump critical

r1 [1] := 7
r4 := r1 [1]

unlock r2 done

(1)

λ 6∈Λ

λ∈Λ

(3)

λ∈Λ

(4)

Λ=∅

(5)

λ 6∈Λ

(2)

Figure 3.2: The lock discipline.

Chapter 3. A Multithreaded Intermediate Language 23

Lock discipline. We provide two distinct access privileges to tuples shared by multiple
processors: read-only and read-write, the latter mediated by locks. A standard test-and-
set-lock instruction is used to obtain a lock, thus allowing a thread to enter a critical
region. Processors read and write from the shared heap via conventional load and store
instructions. The policy for the usage of locks (enforced by the type system) is depicted
in Figure 3.2 (cf. Theorem 3.5.3), where λ denotes a singleton lock type and Λ the set of
locks held by the processor (the processor’s permission). Specifically, the lock discipline
enforces that:

(1) before lock creation, λ is not a known lock;

(2) before test-and-set-lock, the thread does not hold the lock;

(3) before accessing the heap, the thread holds the lock;

(4) unlocking only in possession of the lock;

(5) thread termination only without held locks.

3.1 Syntax

The syntax of our language is generated by the grammar in Figures 3.3, 3.4, and 3.9. We
rely on a set of heap labels ranged over by l, a set of type variables ranged over by α
and β, and a disjoint set of singleton lock types ranged over by λ and ρ.

Most of the machine instructions, presented in Figure 3.3, are standard in assembly
languages. Instructions are organised in sequences, ending in jump or in done. Instruc-
tion jump v transfers the control flow to the code block pointed by value v. Instruction
done frees the processor to execute another thread waiting in the thread pool. Our threads
are cooperative, meaning that each thread must explicitly release the processor (using the
done instruction).

Memory tuples are created locally, directly at processor’s registers using the new in-
struction. To share memory, tuples are transferred to the heap using the share instruction,
according to a chosen access policy: read-only or read-write (in which case it must be
guarded by a lock). A system implementing MIL must use some scheme of local memory
to store local tuples.

The abstract machine, generated by the grammar in Figure 3.4, is parametric on the
number N of available processors and on the number R of registers per processor. An
abstract machine can be in two possible states: halted or running. A running machine
comprises a heap, a thread pool, and an array of processors of fixed length N. Heaps are
maps from labels into heap values that may be tuples or code blocks. Shared tuples are

Chapter 3. A Multithreaded Intermediate Language 24

registers r ::= r1 | . . . | rR

integer values n ::= . . . | -1 | 0 | 1 | . . .
values v ::= r | n | l | pack τ, v as τ | v[τ] | 〈~v〉
authority a ::= read-only | guarded by λ
instructions ι ::=

control flow r := v | r := r + v | if r = v jump v |
memory r := new n | r := v[n] | r[n] := v |

share r a
unpack ω, r := unpack v |
lock λ, r := newLock |

r := testSetLock v | unlock v |
fork fork v

inst. sequences I ::= ι; I | jump v | done

The syntax of τ , λ, and ω is defined in Figure 3.9.

Figure 3.3: Instructions.

permissions Λ ::= λ1, . . . , λn

access mode π ::= ro | λ
register files R ::= {r1 : v1, . . . , rR : vR}
processor p ::= 〈R; Λ; I〉
processors array P ::= {1: p1, . . . ,N : pN}
thread pool T ::= {〈l1[~τ1], R1〉, . . . , 〈ln[~τn], Rn〉}
heap values h ::= 〈v1 . . . vn〉π | τ{I}
heaps H ::= {l1 : h1, . . . , ln : hn}
states S ::= 〈H;T ;P 〉 | halt

Figure 3.4: Abstract machine.

Chapter 3. A Multithreaded Intermediate Language 25

∀i.P (i) = 〈 ; ; done〉
〈 ; ∅;P 〉 → halt

(R-HALT)

P (i) = 〈 ; ; done〉 H(l) = ∀[~ω].(requires Λ){I}
〈H;T] {〈l[~τ], R〉};P 〉 → 〈H;T ;P{i : 〈R; Λ; I{~τ/~ω}〉}〉

(R-SCHEDULE)

P (i) = 〈R; Λ] Λ′; (fork v; I)〉 R̂(v) = l[~τ] H(l) = ∀[].(requires Λ){ }
〈H;T ;P 〉 → 〈H;T ∪ {〈l[~τ], R〉};P{i : 〈R; Λ′; I〉}〉

(R-FORK)

Figure 3.5: Operational semantics (thread pool).

vectors of mutable values protected by some lock λ, or else of constant values (identified
by tag ro). Code blocks comprise a signature and a body. The signature of a code block
describes the type of the registers and the locks that must be held by the processor when
jumping to the code block. The body is a sequence of instructions to be executed by a
processor.

A thread pool is a multiset of pairs, each of which contains the address (i.e., a label) of
a code block and a register file. Each processor is composed of a register file, a set of locks
(the locks held by the thread running at the processor), and a sequence of instructions (the
remaining ones for execution). The processor array of the abstract machine contains N
processors.

3.2 Operational Semantics

The operational semantics is presented in Figures 3.5 to 3.8. The run pool is managed by
the rules in Figure 3.5. Rule R-HALT stops the machine when it finds an empty thread
pool and all processors idle, changing the machine state to halt. Otherwise, if there is
an idle processor and at least one thread waiting in the pool, then rule R-SCHEDULE

assigns a thread to the idle processor. Rule R-FORK places a new thread in the pool; the
permissions of the thread are split in two: required by the forked code, and the remaining
ones. The thread keeps the latter set.

Operational semantics concerning locks are depicted in Figure 3.6. The instruc-
tion newLock creates an open lock ρ whose scope is the rest of the code block, allocates
the respective value 〈0〉ρ in the heap, and points register r to that (lock) tuple. A lock is an
uni-dimensional tuple holding a lock value (an integer), because the machine provides for
tuple allocation only; lock ρ is used for type safety purposes, just like all other singleton
types. Value 〈0〉ρ represents an open lock, whereas value 〈1〉ρ represents a closed lock.

The test-and-set instruction, present in many machines designed for multithreading,

Chapter 3. A Multithreaded Intermediate Language 26

P (i) = 〈R; Λ; (λ, r := newLock; I)〉 l 6∈ dom(H) ρ fresh
〈H;T ;P 〉 → 〈H{l : 〈0〉ρ};T ;P{i : 〈R{r : l}; Λ; I[ρ/λ]〉}〉

(R-NEWLOCK)

P (i) = 〈R; Λ; (r := testSetLock v; I)〉 R̂(v) = l H(l) = 〈0〉λ

〈H;T ;P 〉 → 〈H{l : 〈1〉λ};T ;P{i : 〈R{r : 0}; Λ] {λ}; I〉}〉
(R-TSL 0)

P (i) = 〈R; Λ; (r := testSetLock v; I)〉 H(R̂(v)) = 〈1〉λ

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : 1}; Λ; I〉}〉
(R-TSL 1)

P (i) = 〈R; Λ] {λ}; (unlock v; I)〉 R̂(v) = l H(l) = 〈 〉λ

〈H;T ;P 〉 → 〈H{l : 〈0〉λ};T ;P{i : 〈R; Λ; I〉}〉
(R-UNLOCK)

Figure 3.6: Operational semantics (locks).

is an atomic operation that loads the contents of a bit into a register and then turns that
bit on, i.e., sets the bit to 1. Some architectures, like IBM’s z/Architecture, serialise the
execution of all the processors upon handling a test-and-set (e.g., by blocking the bus) to
ensure the atomicity of the operation.

In MIL, we have the test-and-set-lock instruction (testSetLock). The sole differ-
ence between test-and-set and test-and-set-lock is the semantics given to the target of
the instruction, a bit in the case of the former, a tuple holding an integer in the lat-
ter case. A real-world implementation of MIL can represent the testSetLock by the
test-and-set instruction, and the uni-dimensional tuple by a bit. The testSetLock, also
atomic, stores the enclosed value in the left-hand register and turns the lock pointed by
the right-hand side register into 〈1〉λ. Applying the instruction testSetLock to a lock
in the unlocked state 〈0〉λ changes the lock into the locked state 〈1〉λ, loads value 0 to
register r, and adds lock λ to the permissions of the processor (Rule R-TSL0). Apply-
ing the instruction testSetLock to a closed lock, state 〈1〉λ, just places a 1 in register r
(Rule R-TSL1). Locks are waved using instruction unlock, as long as the thread holds the
lock (Rule R-UNLOCK).

An example of creating and then acquiring a lock follows, storing (a reference of)
lock λ in register r1.

λ, r1 := newLock

Remember the instruction newLock allocates the lock directly in the heap in the unlocked
state; register r1 holds a reference to the enclosed value. Next we try to acquire the open
lock 〈0〉λ present in register r1: the value 0 contained in lock is loaded to register r2.

r2 := testSetLock r1

Then we test the value in register r2, jumping to code block criticalRegion if the lock was
acquired; otherwise it jumps to code block tryAgain.

Chapter 3. A Multithreaded Intermediate Language 27

P (i) = 〈R; Λ; (r := new n; I)〉 |~0| = n

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : 〈~0〉}; Λ; I〉}〉
(R-NEW)

P (i) = 〈R; Λ; (share r a; I)〉 R(r) = 〈~v〉
l 6∈ dom(H) π is λ when a = guarded by λ else ro
〈H;T ;P 〉 → 〈H{l : 〈~v〉π};T ;P{i : 〈R{r : l}; Λ; I〉}〉

(R-SHARE)

P (i) = 〈R; Λ; (r := v[n]; I)〉 H(R̂(v)) = 〈v1..vn..vn+m〉π π ∈ {ro} ∪ Λ

〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : vn}; Λ; I〉}〉
(R-LOADH)

P (i) = 〈R; Λ; (r := r′[n]; I)〉 R(r′) = 〈v1..vn..vn+m〉
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : vn}; Λ; I〉}〉

(R-LOADL)

P (i) = 〈R; Λ; (r[n] := v; I)〉 R̂(v) 6= 〈 〉 R(r) = l H(l) = 〈v1..vn..vn+m〉λ λ ∈ Λ

〈H;T ;P 〉 → 〈H{l : 〈v1.. R̂(v)..vn+m〉λ};T ;P{i : 〈R; Λ; I〉}〉
(R-STOREH)

P (i) = 〈R; Λ; (r[n] := r′; I)〉 R(r′) 6= 〈 〉 R(r) = 〈v1..vn..vn+m〉
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : 〈v1..R(r′)..vn+m〉}; Λ; I〉}〉

(R-STOREL)

Figure 3.7: Operational semantics (memory).

if r2 = 0 jump criticalRegion −− λ is locked in code block ’ criticalRegion ’
jump tryAgain −− λ is unlocked in this instruction sequence

Control flow instructions are depicted in Figure 3.8 and discussed in the end of this sec-
tion.

Rules related to memory manipulation are described in Figure 3.7. They rely on the
evaluation function R̂ that looks for values in registers, in the pack constructor, and in the
application of universal types.

R̂(v) =

R(v) if v is a register
pack τ, R̂(v′) as τ ′ if v is pack τ, v′ as τ ′

R̂(v′)[τ] if v is v′[τ]

v otherwise

Rule R-NEW creates a new tuple in register r, local to some processor, of a given
length n; its values are all initialised to zero. Sharing a tuple means transferring it from
the processor’s local memory into the heap. After sharing the tuple, register r records the
fresh location l where the tuple is stored. Depending on the access method, the tuple may
be protected by a lock λ, or tagged as read-only (rule R-SHARE). Values may be loaded
from a tuple if the tuple is local, if the tuple is shared as a constant, or if the lock guarding
the shared tuple is held by the processor. Values can be stored in a tuple when the tuple

Chapter 3. A Multithreaded Intermediate Language 28

P (i) = 〈R; Λ; jump v〉 H(R̂(v)) = {I}
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R; Λ; I〉}〉

(R-JUMP)

P (i) = 〈R; Λ; (r := v; I)〉 R̂(v) 6= 〈 〉
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : R̂(v)}; Λ; I〉}〉

(R-MOVE)

P (i) = 〈R; Λ; (r := r′ + v; I)〉
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : R(r′) + R̂(v)}; Λ; I〉}〉

(R-ARITH)

P (i) = 〈R; Λ; (if r = v jump v′;)〉 R(r) = v H(R̂(v′)) = {I}
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R; Λ; I〉}〉

(R-BRANCHT)

P (i) = 〈R; Λ; (if r = v jump ; I)〉 R(r) 6= v

〈H;T ;P 〉 → 〈H;T ; {i : 〈R; Λ; I〉}〉
(R-BRANCHF)

P (i) = 〈R; Λ; (ω, r := unpack v; I)〉 R̂(v) = pack τ, v′ as
〈H;T ;P 〉 → 〈H;T ;P{i : 〈R{r : v′}; Λ; I[τ/ω]〉}〉

(R-UNPACK)

Figure 3.8: Operational semantics (control flow).

is held in a register, or the tuple is in shared memory and the lock that guards the tuple is
among the processor’s permissions.

The reduction rules for control flow, illustrated in Figure 3.8, are straightforward.
When the processor executes an instruction jump v, rule R-JUMP, the processor transfers
the control flow to the code block pointed by R̂(v). With rule R-MOVE, the processor
copies value R̂(v) to register r. Arithmetic instructions are handled with rule R-ARITH:
the processor expects as operands a register r′ and a value v, and stores the computation
in register r. Rules R-BRANCHT and R-BRANCHF govern both cases of a conditional
jump, which test the equality of register r with value v and either jumps to code block
pointed by value R̂(v′) upon success, or continues executing instruction I upon failure.
Finally, rule R-UNPACK copies the value v′ inside the package v into register r.

3.3 Type Discipline

The syntax of types is depicted in Figure 3.9. A type of the form 〈~τ〉π describes a heap
allocated tuple: shared and protected by a lock λ if π is λ, or shared and read-only if π is ro
(cf. Figure 3.4). For example the type 〈int, int〉λ represents a shared tuple type, protected
by lock λ, that holds two values of the integer type. A type 〈~τ〉 describes a local tuple

Chapter 3. A Multithreaded Intermediate Language 29

types τ ::= int | 〈~τ〉π | 〈~τ〉 | ∀[~ω].(Γ requires Λ) |
λ | α | ∃ω.τ | µα.τ

type variable or lock ω ::= α | λ
register file types Γ ::= r1 : τ1, . . . , rn : τn

typing environment Ψ ::= ∅ | Ψ, l : τ | Ψ, λ : : Lock | Ψ, α : : TyVar

Figure 3.9: Types.

created directly in a register. A type of the form ∀[~ω].(Γ requires Λ) describes a code
block: a thread jumping into such a block must instantiate all the universal variables ~ω
(type variables α or singleton lock types λ), it must also hold a register file type Γ, as
well as the locks in Λ. We omit the empty universal quantifier abstraction and the empty
lock set from code types when necessary, thus ∀[].(Γ requires Λ)

def
= Γ requires Λ and

∀[~ω].(Γ requires ∅) def
= ∀[~ω].Γ. The heap representation of a lock is an uni-dimensional

tuple; the singleton lock type λ is used to describe the type of the value enclosed in a lock.
Types ∃α.τ are conventional existential types. With type ∃λ.τ we are able to existen-

tially quantify over lock types, following [14]. The scope of a lock extends until the end
of the instruction sequence that creates it, cf. rule T-NEW. There are situations, however,
in which we need to use a lock outside its scope. Consider a thread where λ ∈ Ψ. If
this thread jumps to label l where λ /∈ Ψ, then it may happen that we need to mention λ
again (reintroduce λ in Ψ). For the code block pointed by label l it suffices to know that
such a lock exists. Please refer to rule T-UNPACK for more information regarding the
introduction of a lock λ in Ψ.

As usual, the recursive type is defined by µα.τ . We take an equi-recursive view of
types, not distinguishing between a type µα.τ and its unfolding type τ [µα.τ/α].

There are four bindings:

• in the code type ∀[~ω].(Γ requires Λ) each displayed occurrence of ωi is a binding
with scope (Γ requires Λ);

• in the existential type ∃ω.τ ω is a binding with scope τ ;

• in the recursive type µα.τ type variable α is a binding with scope τ ;

• finally, in the code fragment l ∀[~ω].(Γ requires Λ){I} each displayed occurrence
of ωi is a binding with scope (Γ requires Λ) and scope I .

Function ftv(τ) denotes the set of free type variables in τ , and flt(τ) the set of free sin-
gleton lock types in τ .

Chapter 3. A Multithreaded Intermediate Language 30

∀ω ∈ ftv(τ).ω : : kind(ω) ∈ Ψ

Ψ ` τ
(T-TYPE)

Ψ ` τ1 <: τ2 Ψ ` τ2 <: τ3

Ψ ` τ1 <: τ3

Ψ ` τi
Ψ ` r1 : τ1, . . . , rn+m : τn+m <: r1 : τ1, . . . , rn : τn

(S-TRANS,S-REGFILE)

Ψ ` τ
Ψ ` τ <: τ

Ψ, ~ω : : kind(~ω) ` Γ <: Γ′

Ψ ` ∀[~ω].(Γ requires Λ) <: ∀[~ω].(Γ′ requires Λ)
(S-REFLEX,S-CODE)

Ψ ` τ ′ <: τ

Ψ, l : τ ′; Γ ` l : τ
Ψ; Γ ` r : Γ(r) Ψ; Γ ` n : int (T-LABEL,T-REG,T-INT)

Ψ ` τ Ψ; Γ ` v : τ ′[τ/ω] ω /∈ τ,Ψ τ ′ 6= 〈 〉
Ψ; Γ ` pack τ, v as ∃ω.τ ′ : ∃ω.τ ′

∀i.Ψ; Γ ` vi : τi
Ψ; Γ ` 〈~v〉 : 〈~τ〉

(T-PACK,T-TUPLE)

Ψ ` τ Ψ; Γ ` v : ∀[ν~ω].(Γ′ requires Λ) τ 6= 〈 〉
Ψ; Γ ` v[τ] : ∀[~ω].(Γ′[τ/ν] requires Λ[τ/ν])

(T-VALAPP)

Figure 3.10: Typing rules for values Ψ; Γ ` v : τ , subtyping rules Ψ ` τ <: τ , and

typing rules for types Ψ ` τ .

Ψ; Γ; ∅ ` done (T-DONE)

∀i.Γ(ri) 6= 〈 〉 Ψ; Γ ` v : ∀[].(Γ requires Λ) Ψ; Γ; Λ′ ` I
Ψ; Γ; Λ] Λ′ ` fork v; I

(T-FORK)

Ψ, λ : : Lock; Γ{r : 〈λ〉λ}; Λ ` I[λ/ρ] λ 6∈ Ψ,Γ,Λ, I

Ψ; Γ; Λ ` ρ, r := newLock; I
(T-NEWLOCK)

Ψ; Γ ` v : 〈λ〉λ Ψ; Γ{r : λ}; Λ ` I λ 6∈ Λ

Ψ; Γ; Λ ` r := testSetLock v; I
(T-TSL)

Ψ; Γ ` v : 〈λ〉λ Ψ; Γ; Λ ` I
Ψ; Γ; Λ] {λ} ` unlock v; I

(T-UNLOCK)

Ψ; Γ ` r : λ Ψ; Γ ` v : ∀[].(Γ requires (Λ] {λ})) Ψ; Γ; Λ ` I
Ψ; Γ; Λ ` if r = 0 jump v; I

(T-CRITICAL)

Figure 3.11: Typing rules for instructions (thread pool and locks) Ψ; Γ; Λ ` I .

Chapter 3. A Multithreaded Intermediate Language 31

The type system is presented in Figures 3.10 to 3.13. Typing judgements target a
typing environment Ψ that maps heap labels to types, type variables to kind TyVar, and
singleton lock types to kind Lock. Function kind(·) returns the kind associated with the
given singleton lock type, or type variable.

kind(ω) =

{
Lock if ω is λ
TyVar if ω is α

We keep track of type variables and of singleton lock types in the typing environment for
checking if types are well-formed (cf. rule T-TYPE). Instructions are checked against a
typing environment Ψ, a register file type Γ holding the current types of the registers, and
a set Λ of lock variables: the permission of (the processor executing) the code block.

Typing rules for values are illustrated in Figure 3.10. Heap values are distinguished
from operands (that include registers as well) by the form of the sequent. A formula
Γ <: Γ′ allows “forgetting” registers in the register file type, and is particularly useful in
jump instructions where we want the type of the target code block to be more general (ask
for less registers) than those active in the current code [31]. As an example, consider the
subtyping relation (r1 : int, r2 :〈int〉λ) <: (r1 : int), where we “forget” register r2; we expect
a register file type with a register r1 holding an integer type, the remaining registers are
disregarded. Rule T-TYPE makes sure types are well-formed, which is to only include
type variables and singleton lock types present in scope. The rules for value application
and for pack values, T-VALAPP and T-PACK, work both with type variables α and with
singleton lock types λ, taking advantage of the fact that substitution τ ′[τ/ω] is defined
only when τ is not a singleton lock type and ω is a type variable, or when both τ and ω
are singleton lock types. In either case, type τ must be well-formed.

The rules in Figure 3.11 capture most part of the policy over lock usage. Rule T-DONE

requires the release of all locks before terminating the processor terminates the thread.
Rule T-FORK splits permissions into sets Λ and Λ′: the former is transferred to the forked
thread according to the permissions required by the target code block, the latter remains
with the processor.

As an example, consider typechecking an instruction sequence fork l; done that forks
label l and concludes. Let the processor permissions be lock λ for this instruction se-
quence. Furthermore, let Ψ

def
= λ : : Lock, l : ∀[].(Γ requires(λ)) and Γ stand for any

possible register set that ftv(Γ) = ∅. Then, the inference tree for fork l; done is as fol-
lows:

ftv(Γ) = ∅
T-TYPE

Ψ ` ∀[].(Γ requires (λ))
S-REFLEX

Ψ ` ∀[].(Γ requires (λ)) <: ∀[].(Γ requires (λ))
T-LABEL

Ψ; Γ ` l : ∀[].(Γ requires (λ))
T-DONE

Ψ; Γ; ∅ ` done
T-FORK

Ψ; Γ;λ ` fork l; done

Chapter 3. A Multithreaded Intermediate Language 32

Ψ; Γ{r : 〈 ~int〉}; Λ ` I | ~int| = n

Ψ; Γ; Λ ` r := new n; I
(T-NEW)

Ψ ` λ Ψ; Γ ` r : 〈~τ〉 Ψ; Γ{r : 〈~τ〉λ}; Λ ` I
Ψ; Γ; Λ ` share r guarded by λ; I

(T-SHAREL)

Ψ; Γ ` r : 〈~τ〉 Ψ; Γ{r : 〈~τ〉ro}; Λ ` I
Ψ; Γ; Λ ` share r read-only; I

(T-SHARER)

Ψ; Γ ` v : 〈τ1..τn+m〉π Ψ; Γ{r : τn}; Λ ` I τn 6= λ π ∈ Λ ∪ {ro}
Ψ; Γ; Λ ` r := v[n]; I

(T-LOADH)

Ψ; Γ ` v : 〈τ1..τn+m〉 Ψ; Γ{r : τn}; Λ ` I τn 6= λ

Ψ; Γ; Λ ` r := v[n]; I
(T-LOADL)

Ψ;Γ`v : τn Ψ;Γ`r :〈τ1..τn+m〉λ Ψ;Γ{r :〈τ1..τn+m〉};Λ`I τn 6=λ,〈 〉 λ∈Λ

Ψ;Γ;Λ ` r[n] := v; I
(T-STOREH)

Ψ;Γ`v: τ Ψ;Γ`r: 〈τ1..τn..τn+m〉 Ψ;Γ{r:〈τ1..τ..τn+m〉};Λ`I τ 6=λ,〈 〉
Ψ; Γ; Λ ` r[n] := v; I

(T-STOREL)
Ψ; Γ ` v : τ Ψ; Γ{r : τ}; Λ ` I τ 6= 〈 〉

Ψ; Γ; Λ ` r := v; I
(T-MOVE)

Ψ; Γ ` r′ : int Ψ; Γ ` v : int Ψ; Γ{r : int}; Λ ` I
Ψ; Γ; Λ ` r := r′ + v; I

(T-ARITH)

Ψ; Γ ` v : ∃ω.τ Ψ, ω : : kind(ω); Γ{r : τ}; Λ ` I ω 6∈ Ψ,Γ,Λ

Ψ; Γ; Λ ` ω, r := unpack v; I
(T-UNPACK)

Ψ; Γ ` r : int Ψ; Γ ` v : int Ψ; Γ ` v : ∀[].(Γ requires Λ) Ψ; Γ; Λ ` I
Ψ; Γ; Λ ` if r = v jump v; I

(T-BRANCH)
Ψ; Γ ` v : ∀[].(Γ requires Λ)

Ψ; Γ; Λ ` jump v
(T-JUMP)

Figure 3.12: Typing rules for instructions (memory and control flow) Ψ; Γ; Λ ` I .

Chapter 3. A Multithreaded Intermediate Language 33

Notice that after forking the permission over lock λ is lost, thereby allowing thread termi-
nation.

Rules T-NEWLOCK, T-TSL, T-UNLOCK, and T-CRITICAL are about lock manipu-
lation and therefore constitute part of the enforced lock discipline. Rule T-NEWLOCK

assigns type 〈λ〉λ to the register r that holds a reference to the newly created lock. The
new singleton lock type λ is recorded in Ψ, so that it may be used in the rest of the
instructions I . Rule T-TSL requires that the value under test is a lock in the heap (of
type 〈λ〉λ) and records the type of the lock value λ in register r. This rule also disallows
testing a lock already held by the processor. Rule T-UNLOCK makes sure that only held
locks are unlocked. Rule T-CRITICAL ensures that the processor holds the exact locks
required by the target code block, including the lock under test. A processor is guaran-
teed to hold the tested lock only after (conditionally) jumping to the critical region. A
previous test-and-set-lock instructions may have obtained the lock, but the type system
records that the processor holds the lock only after the conditional jump. As an example
consider a processor that tries to acquire a lock λ and jumps to a label l if successful.
Let Ψ

def
= λ : : Lock, l : (r1 :〈λ〉λ) requires (λ).

T-REG
Ψ; (r1 :〈λ〉λ) ` r1 : 〈λ〉λ (1) λ /∈ ∅

T-TSL
Ψ; (r1 :〈λ〉λ); ∅ ` r2 := testSetLock r1; if r2 = 0 jump l; I

The inference for (1) is as follows.

T-REG
Ψ; (r1 :〈λ〉λ, r2 :λ) ` r2 :λ (2) Ψ; (r1 :〈λ〉λ, r2 :λ); ∅ ` I

T-CRITICAL
Ψ; (r1 :〈λ〉λ, r2 :λ); ∅ ` if r2 = 0 jump l; I

The typing judgement above is valid if Ψ; (r1 : 〈λ〉λ, r2 : λ); ∅ ` I . Finally, the inference
for (2), Ψ; (r1 : 〈λ〉λ, r2 :λ) ` l : (r1 : 〈λ〉λ, r2 :λ) requires (λ), concludes the example by
showing the subtyping.

ftv(〈λ〉λ) = {λ} Ψ(λ) = λ : : Lock
T-TYPE

Ψ ` 〈λ〉λ
S-REGFILE

Ψ ` (r1 :〈λ〉λ) <: (r1 :〈λ〉λ, r2 :λ)
S-CODE

Ψ ` (r1 :〈λ〉λ) requires (λ) <: (r1 :〈λ〉λ, r2 :λ) requires (λ)
T-LABEL

Ψ ` l : (r1 :〈λ〉λ, r2 :λ) requires (λ)

Notice the application of subtyping to the target of instruction jump, where the code type
assigned to l is (r1 : 〈λ〉λ) requires (λ), the register file of the processor at that point
is (r1 : 〈λ〉λ, r2 :λ), and Ψ ` (r1 : 〈λ〉λ) <: (r1 : 〈λ〉λ, r2 :λ). We “forget” the lock value in
register r2. Rule S-CODE expects the same permission set (λ) in either code type of the
subtyping relation. If the subtyping relation would allow Ψ ` (r1 : 〈λ〉λ) <: (r1 : 〈λ〉λ, r2 :

λ) requires (λ), then we would be able to “forget” held locks, permitting a thread to

Chapter 3. A Multithreaded Intermediate Language 34

finish without unlocking all previously held locks. If the subtyping relation would admit
Ψ ` (r1 : 〈λ〉λ) requires (λ) <: (r1 : 〈λ〉λ, r2 :λ), then we would be able add a lock to the
permissions set without using testSetLock, enabling race conditions and unlocking open
locks. Both of these cases invalidate the lock policy, thus they do not typecheck.

The typing rules for memory and control flow are depicted in Figure 3.12. Operations
for loading from (T-LOADH), and for storing into (T-STOREH), shared tuples require that
the processor hold the right permissions (the locks for the tuples it reads from, or writes
to).

For example, consider a lock λ known to the processor, let the register file type of that
processor be (r1 : 〈int〉λ), and let us assume that the processor is trying to load the integer
contained in the tuple without having lock λ held. The following judgement does not hold
because lock λ is not in the lock set.

T-REG
λ : : Lock; (r1 :〈int〉λ) ` r1 : 〈int〉λ int 6= λ′ λ /∈ ∅

T-LOADH
λ : : Lock; (r1 :〈int〉λ); ∅ 0 r2 := r1[1]; I

Notice that int 6= λ′ avoids the direct manipulation of locks.
A subtlety of rule T-STOREH is that subtyping applies to the value being placed in the

tuple, which allows to “forget” registers of stored code blocks. In the following example
we store a code block in a shared tuple. Consider a lock λ and a label l known to a
thread, Ψ

def
= λ : : Lock, l : (r1 : int, r2 : int), and let the register file of the thread be Γ

def
=

r1 : 〈(r1 : int)〉λ. Although the code type (r1 : int, r2 : int) pointed by l is different from the
expected type (r1 : int) to be stored in the tuple, (r1 : int) is more general than (r1 : int, r2 :

int), thus the following type judgement holds.

(1) Ψ; Γ ` 〈(r1 : int)〉λ Ψ; Γ;λ ` I (r1 : int) 6= λ′, 〈 〉 λ ∈ λ
T-STOREH

Ψ; Γ;λ ` r1[1] := l; I

The relevant part is the sequent (1), where we observe subtyping:

ftv(int) = ∅
T-TYPE

Ψ ` int
S-REGFILE

Ψ ` (r1 : int, r2 : int) <: (r1 : int)
S-CODE

Ψ ` (r1 : int, r2 : int) <: (r1 : int)
T-LABEL

λ : : Lock, l : (r1 : int, r2 : int); Γ ` l : (r1 : int)

Local tuples are affected by rules T-NEW, T-SHARER, T-SHAREL, T-LOADL, and
T-STOREL. Upon checking a processor that allocates a local tuple of size n in register r,
we record, in the register file type, that register r is of a local tuple type that consists
of n integer types. Storing a value in, or loading a value from, a local tuple requires no
particular permission, rules T-LOADL and T-STOREL. Like shared tuples, it is disallowed

Chapter 3. A Multithreaded Intermediate Language 35

to store/load lock values in/from local tuples. Shared tuples and local tuples have a big
difference: the type of each component of a shared tuple is constant, whereas the type of
each component of a local tuple changes after each store. For example, consider that we
want to store a label l in a local tuple of type 〈int〉 contained in register r1. Let Ψ

def
= l :

(r1 : int). The following judgement holds.

Ψ; (r1 :〈int〉) ` l : (r1 : int) Ψ; (r1 :〈int〉) ` r1 :〈int〉 (1) (r1 : int) 6= λ, 〈 〉
T-STOREL

Ψ; (r1 :〈int〉); ∅ ` r1[1] := l; done

Where (1) is Ψ; (r1 :〈(r1 : int)〉); ∅ ` done that holds, by T-DONE.
The type system enforces that a local tuple is stored in only one register, special

care is therefore taken to disallow duplications and aliasing of local tuples, via the var-
ious premises τ 6= 〈 〉 in the rules. With local tuples in only one place (a register),
rules T-SHAREL and T-SHARER transform only one local tuple type into a shared tuple
type, not having to keep track of other references to that value. We outline an example
of the application of rule T-MOVE that disallows aliasing a local tuple from register r1 to
register r2. The following instruction sequence does not typecheck.

∅; (r1 :〈int〉) ` r1 : 〈int〉 〈int〉 = 〈 〉
T-MOVE

∅; (r1 :〈int〉); ∅ 0 r2 := r1; I

Restricting the abstraction of local types is fundamental to eliminate alias, see rules
T-PACK and T-VALAPP. Consider code block move that moves the contents of register r1

to register r2 and then jumps to a continuation code block in register r3.

move ∀[τ] (r1 :τ , r3 :(r1 :τ ,r2 :τ)) {
r2 := r1
jump r3
}

Local tuple types must be restricted from the instantiation in the universal operator, oth-
erwise a thread jumping to code block move could send a local tuple in register r1, which
would be then copied to register r2. That is the reason why the following typing judgement
fails, where Ψ

def
= move : ∀[τ].(r1 :τ, r3 : (r1 :τ, r2 :τ)), l : (r1 :〈int〉, r2 :〈int〉)

Ψ; (r1 :〈int〉) ` l : (r1 :〈int〉, r2 :〈int〉) (1) (r1 :〈int〉, r2 :〈int〉) 6= 〈 〉
T-MOVE

Ψ; (r1 :〈int〉); ∅ 0 r3 := l; jump move[〈int〉]

Let Γ
def
= (r1 : 〈int〉, r2 : (r1 :〈int〉, r2 :〈int〉)). The judgement above fails because the se-

quent (1) fails:

ftv(〈int〉)=∅
T-TYPE

Ψ ` 〈int〉 Ψ; (r1:〈int〉,r2:(r1:〈int〉,r2:〈int〉))`move : 〈int〉=〈 〉
T-VALAPP

Ψ;(r1:〈int〉, r2:(r1 :〈int〉, r2 :〈int〉)) 0 move[〈int〉] :
T-JUMP

Ψ; (r1:〈int〉, r2:(r1 :〈int〉, r2 :〈int〉)); ∅ 0 jump move[〈int〉] :

Chapter 3. A Multithreaded Intermediate Language 36

∀i.Ψ ` Γ(ri) Ψ; ∅ ` R(ri) : Γ(ri)
Ψ ` R : Γ

(reg file, Ψ ` R : Γ)

∀i.Ψ ` P (i)

Ψ ` P
Ψ ` R : Γ Ψ; Γ; Λ ` I

Ψ ` 〈R; Λ; I〉
(processors, Ψ ` P)

∀i.Ψ ` li : ∀[~ωi].(Γi requires) Ψ ` Ri : Γi{~τi/~ωi}
Ψ ` {〈l1[~τ1], R1〉, . . . , 〈ln[~τn], Rn〉}

(thread pool, Ψ ` T)

τ = ∀[~ω].(Γ requires Λ) Ψ, ~ω : : kind(~ω); Γ; Λ ` I
Ψ ` τ{I} : τ

∀i.Ψ; ∅ ` vi : τi r, 〈 〉 /∈ vi
Ψ ` 〈~v〉π : 〈~τ〉π
(heap value, Ψ ` h : τ)

∀l.Ψ ` H(l) : Ψ(l)

Ψ ` H
(heap, Ψ ` H)

` halt
Ψ ` H Ψ ` T Ψ ` P

` 〈H;T ;P 〉
(state, ` S)

Figure 3.13: Typing rules for machine states.

Rule T-UNPACK unpacks either a conventional or a lock existential type. A new entry
α : : TyVar or λ : : Lock is added to Ψ, according to the nature of ω. The new type variable
or singleton lock type may then be used in the rest of the instructions I .

The rules for typing machine states are illustrated in Figure 3.13. The heap value rule
for code blocks places each type variable and singleton type ~ω of the universal abstraction
in Ψ, so that they may be used in the rest of the instructions I . The heap value rule for
shared tuples restricts the contents of a shared tuple to integers, labels, packed values, and
instantiations of types, thereby leaving out registers and local tuples. For example, the
following heap value does not typecheck, because there are registers and local tuples in
the heap value 〈r1, 〈2〉〉ro:

r, 〈 〉 ∈ 〈r1, 〈2〉〉ro
heap value

Ψ 0 〈r1, 〈2〉〉ro :

The remaining rules are straightforward.

3.4 MIL programming examples

We introduce MIL programming by showing common patterns that are used throughout
the design of the supporting code and in the translation function. We show how to acquire
locks and how to compose code blocks.

Chapter 3. A Multithreaded Intermediate Language 37

Acquiring locks. To illustrate lock manipulation we select a case in point of inter-
process communication: mutual exclusion. Two threads compete to enter a critical region
to write in a common tuple. In this example, each thread uses a different algorithm to ac-
quire the lock protecting the shared data: one uses spin-lock, another one uses sleep-lock.
Code block main initialises the tuple and launches both threads, referred by labels sleep

and spin.

main() {
λ, r1 := newLock −− create the lock
r2 := malloc 1 −− allocate a tuple holding an integer
r2 [1] := 0 −− initialise the tuple with a zero
share r2 guarded by λ
fork sleep[λ] −− start ’sleep’ in a new thread
fork spin[λ] −− start ’spin’ in a new thread
done
}

In code block spin, we observe a standard technique for acquiring a lock called spin-
lock, where the processor actively tries to acquire the lock (busy wait). A processor spin-
locking cannot execute another thread until the lock is acquired.

spin ∀[λ](r1 : 〈λ〉λ, r2 : 〈 int 〉λ) {
r3 := testSetLock r1 −− try to acquire the lock
if r3 = 0 jump criticalRegion[λ] −− when successful enter the critical region
jump spin[λ] } −− otherwise try again

In the critical region, the threads increment the integer in the tuple.

criticalRegion ∀[λ](r1 : 〈λ〉λ, r2 : 〈 int 〉λ) requires (λ) {
r3 := r2 [1] −− load the value of the tuple
r3 := r3 + 1 −− increment it
r2 [1] := r3 −− and store the result
unlock r1
done
}

In code block sleep, we notice another well-known technique for acquiring a lock
called sleep-lock. This strategy is cooperative towards other threads, because each time
instruction testSetLock fails, the thread releases the processor and tries again later.

sleep ∀[λ] (r1 : 〈λ〉λ, r2 : 〈 int 〉λ) {
r3 := testSetLock r1 −− try to acquire the lock
if r3 = 0 jump criticalRegion[λ] −− when successful enter the critical region
fork sleep[λ] −− otherwise create a thread to try again
done −− and terminates this thread
}

These two techniques have advantages over each other. A spin-lock is faster. A sleep-
lock is fairest to other threads. When there is a reasonable expectation that the lock will
be available (with exclusive access) in a short period of time it is more appropriate to

Chapter 3. A Multithreaded Intermediate Language 38

use a spin-lock. The sleep-lock technique, however, does context switching, which is an
expensive operation (i.e., degrades performance).

We demonstrate a deadlock that arises from using spin-lock in machines with only
one processor in the following example.

start ∀[λ] (r1 :〈λ〉λ) requires (λ) {
fork release[λ] −− release takes the lock
jump spinLock[λ] −− spin−lock no longer holds λ
}
release ∀[λ] (r1 :〈λ〉λ) requires (λ) {

unlock r1
done
}
spinLock ∀[λ] (r1 :〈λ〉λ) {

r2 := testSetLock r1
if r2 = 0

jump someComputation[λ] −− will never happen
jump spinLock[λ]
}

Code block main cedes its permission over λ after forking code block release. Since there
is only one processor and the spin-lock is not a cooperative algorithm, thread release

is never executed, therefore leaving the system in a dead-lock. In case of a dual-core
processor, the program terminates smoothly.

Continuation-passing style. Continuations [41] represent a state of control flow, a sus-
pended computation. Continuations permit transfer of control, allowing programs to
store, or activate, “the meaning of the rest of the program”. These suspended compu-
tations encompass a static part and a dynamic part, for example, a label to a code block
and a snapshot of the processor’s registers. A MIL thread pool item is a representation of
a continuation.

The continuation-passing style (CPS) [1] is a style of programming in which oper-
ations parametrise their return point through the use of continuations. This program-
ming model is used as an intermediate language in various compilers for functional lan-
guages [1, 19, 31]. In MIL, a continuation consists of a label to a code block and the
environment, which is the data that the continuation has direct access to (via registers). In
the following examples we represent the environment as a single value of an abstract type.
We show how to abstract the type of the environment with the universal quantification and
with the existential quantification.

As an example using the universal type, we implement the addition and the multipli-
cation of integers following the CPS. The continuation is composed by registers r1 and r4,
representing the environment and the continuation label, respectively. The result of the
addition is stored in register r2. The abstracted environment remains untouched through-
out computation.

Chapter 3. A Multithreaded Intermediate Language 39

add ∀[τ](r1 :τ , r2 : int , r3 : int , r4 :(r1 :τ ,r2 : int)) {
r2 := r3 + r2 −− perform computation
jump r4 −− deliver the result
}
mul ∀[τ](r1 :τ , r2 : int , r3 : int , r4 :(r1 :τ ,r2 : int)) {

r2 := r2 ∗ r3 −− perform computation
jump r4 −− deliver the result
}

The composition of two operations is exemplified by the implementation of expres-
sion 3 + 5 ∗ 7 as a CPS operation. The operation is divided into two steps. First, we
perform the multiplication of 5 ∗ 7; second, we add the result to 3. Before jumping to the
multiplication, sum creates a new continuation for operation mul that proceeds in sum 2

and accesses the continuation of sum.

sum ∀[τ](r1 :τ , r4 :(r1 :τ ,r2 : int)) {
r2 := new 2 −− create a new environment
r2 [1] := r1
r2 [2] := r4
share r2 read-only
r1 := r2 −− set the new environment
r2 := 5 −− the left operand
r3 := 7 −− the right operand
r4 := sum 2 −− the continuation label
jump mul[〈τ ,(r1:τ ,r2 : int) 〉ro] }

In the second step of the computation we calculate 3 + 35; since value 35 is present
in register r2, we only need to move value 1 to register r4. The fundamental part of
the composition of CPS operations is passing the top-level continuation. The first two
lines of sum 2 restore the top-level continuation passed by code block sum (through code
block mul). The top-level continuation is then passed to add, which is activated upon
performing the addition of integers.

sum 2 (r1:〈τ ,(r1 :τ ,r2 : int) 〉ro , r2 : int) {
−− restore the continuation of ’sum’
r4 := r1 [2]
r1 := r1 [1]
−− r2 holds 35
r3 := 3
jump add[int]
}

A program using code block main is sketched as follows:

main () {
r1 := 0 −− a bogus environment
r4 := exit −− the continuation label
jump sum[int]
}
exit (r2 : int) {

Chapter 3. A Multithreaded Intermediate Language 40

external printInt r2 −− outputs 38 to the screen
done
}

As an example of using CPS with existential types, we rewrite code block sum for
using the existential quantifier over the environment, instead of the universal.

add (r1 :∃ α.〈(r1 :α,r1 : int),α〉ro , r2 : int , r3 : int) {
r2 := r2 + r3
τ ,r1 := unpack r1 −− unpack the closure
r3 := r1 [1] −− load the continuation
r1 := r1 [2] −− load the environment
jump r3 −− jump to the continuation
}

Passing a continuation of this form is simpler, since it is represented by a single value.
The creation and activation (of continuations), however, entails packing and unpacking
the tuple. We show the implementation of the expression 35 + 3 using add.

main () {
r1 := new 2
r1 [1] := 0 −− a bogus environment
r1 [2] := finish
share r1 read-only
r1 := pack int, r1 as ∃ α.〈(r1 :α,r1 : int),α〉ro
r2 := 35
r3 := 3
jump add
}
finish (r1 : int , r2 : int) {

external printInt r2
}

3.5 Types against races

We split the results in three categories: the standard “well-typed machines do not get
stuck”, the lock discipline, and races. We omit the proofs for the following results since
they are easily adapted from [47], which targets a previous, simpler version of MIL. The
first result is divided into theorems of progress and of preservation.

Theorem 3.5.1 (Progress). If ` S, then either S is halt or else S → S ′.

Theorem 3.5.2 (Preservation). If ` S and S → S ′, then ` S ′.

The lock discipline is embodied in the following theorem (cf. Figure 3.2).

Theorem 3.5.3 (Lock discipline). Let Ψ ` H and Ψ ` 〈R; Λ; (ι;)〉.

1. If ι is λ, := newLock, then λ 6∈ dom(Ψ).

Chapter 3. A Multithreaded Intermediate Language 41

2. If ι is := testSetLock v and H(R̂(v)) = 〈 〉λ, then λ 6∈ Λ.

3. If ι is v[] := or := v[], and H(R̂(v)) = 〈 〉λ, then λ ∈ Λ.

4. If ι is unlock v and H(R̂(v)) = 〈 〉λ, then λ ∈ Λ.

5. If ι is done, then Λ = ∅.

For races we follow Flanagan and Abadi [14]. We start by defining the set of permis-
sions of a machine state, by gathering the permissions of the running threads with those in
the run pool, and with the set of unlocked locks in the heap. Remember that a permission
is a set of locks, denoted by Λ.

Definition 3.5.4 (State permissions).

LP = {Λ | i ∈ [1..R] and P (i) = 〈 ; Λ; 〉}
LT = {Λ | 〈l, 〉 ∈ T and H(l) = ∀[].(requires Λ){ }}
LH = {{λ | l ∈ dom(H) and H(l) = 〈0〉λ}}

L〈H;T ;P 〉 = LP ∪ LT ∪ LH
Lhalt = 22L

We are interested only in mutual exclusive states, that is, states whose permissions do
not “overlap.” Also, we say that a state has a race condition if it contains two processors
trying to access the heap at the same shared location.

Definition 3.5.5. Mutual exclusive states. halt is mutual exclusive; S 6= halt is mutual
exclusive when i 6= j implies Λi ∩ Λj = ∅, for all Λi,Λj ∈ LS .

Accessing the shared heap. A processor of the form 〈R; ; (ι;)〉 accesses the shared
heap H at location l, if ι is of the form v[] := or of the form := v[], l = R̂(v),
and H(l) = 〈 〉λ, for some λ.

Race condition. A state S has a race condition if S = 〈H; ;P 〉 and there exist i and j
distinct such that P (i) and P (j) both access the shared heap H at some location l.

Notice that the definition above allows two threads to access the heap at the same
read-only location, since λ in 〈 〉λ denotes a lock (and not ro). We can show that typable
mutual exclusive states do not have races.

Theorem 3.5.6. If S is a mutual exclusive typable state, then S does not have a race
condition.

Also, typability and mutual exclusion are two properties of states preserved by reduc-
tion.

Chapter 3. A Multithreaded Intermediate Language 42

Theorem 3.5.7. Let S → S ′. Then,

1. If ` S, then ` S ′;

2. If S is mutual exclusive, then so is S ′.

The proof of each result is by a conventional case analysis on the reduction rules. For
the second, we note that the rules that manipulate locks (R-FORK, R-NEWLOCK, R-TSL

0, and R-UNLOCK) all preserve the disjointedness of state permissions.

Corollary 3.5.8 (Types against races). If S is a mutual exclusive typable state and S →∗

S ′, then S ′ does not have a race condition.

Chapter 4

An Unbounded Buffer Monitor in MIL

The monitor presented in [20] is a module of a concurrent system with a specific interface,
consisting of shared data and procedures. Monitors represent a shared resource protected
by a form of mediator that synchronises concurrent accesses to the data. The only way
threads access the shared data of a monitor is through the procedures of that module, thus
providing information hiding for code. We say that a thread is inside or within a monitor
if the thread is executing a monitor’s procedure, and that a thread is outside a monitor if
the thread is not executing code of a monitor.

Monitors provide two forms of synchronisation for threads accessing shared data,
through mutual exclusion and through cooperation. The first form, mutual exclusion, is
enforced by the policy of monitor access: there may exist at most one thread within a
monitor. Concurrent calls to procedures of the same monitor are therefore serialised.

Condition variables represent the availability of a resource. Threads operate these
variables from within a monitor: primitive wait for suspending a thread and primitive
signal for resuming a thread. We say that condition variables are a cooperative synchroni-
sation form, because scheduling is performed by the threads themselves with the common
goal of optimising effective execution.

Figure 4.1 describes an implementation of an unbounded buffer monitor, inspired by
the example of the bounded buffer monitor found in [20, p. 552]. The buffer is unbounded
because there is no limit in the number of stored elements. We designate by producers the
threads placing elements in the buffer and by consumers the threads removing elements
from the buffer. The condition variable nonempty represents the existence of elements in
the queue. Whenever the buffer is empty, as in its initial state, the consumer waits (sus-
pends itself) until the producer has made the queue nonempty. The producer cooperates
with the suspended consumer by signalling (issuing a signal on) the condition variable
that represents the element availability, thereby reactivating the consumer.

There is an invariant that threads invoking a signal must abide, i.e., a thread may
only signal when the predicate that embodies the condition is true. Issuing a signal in the
remove procedure would invalidate the invariant of the nonempty condition. A unbounded

43

Chapter 4. An Unbounded Buffer Monitor in MIL 44

unbounded buffer:monitor
begin buffer:queue of Element;

nonempty:condition;
procedure append(x:Element);

begin buffer.enqueue(x);
nonempty.signal

end append;
procedure remove(result x:Element)

begin if buffer . isEmpty then nonempty.wait;
x := buffer .dequeue

end remove;
buffer := createQueue;

end unbounded buffer;

Figure 4.1: An Hoare-style unbounded buffer monitor.

buffer monitor may only signal the condition nonempty when there is at least one element
in the buffer queue, thus after enqueuing an element.

O-J. Dahl gives an overview of the different semantics of the signal primitive in var-
ious implementations of monitors [11]. Hoare’s own proposal is referred as signal and
urgent wait. The thread invoking a signal blocks while the thread that got reactivated
finishes execution. By issuing a signal the thread blocks, yields exclusive control over
the shared data temporarily, and then resumes execution, with exclusive access over the
resource. If there are no threads waiting on a condition variable upon invoking a signal,
the signaller thread proceeds execution.

Figure 4.2 illustrates the execution of two threads accessing an unbounded buffer as
described by Hoare. Thread a tries to remove an element from an empty buffer at time t1
and is put to wait. Thread b adds an element to the buffer at time t2 and invokes a signal,
getting held up. At the same time thread a resumes execution and terminates at time t3.
Thread b is reactivated at time t3 and exits the remove procedure.

A possible implementation of this kind of monitor—that opts for the signal and urgent
wait regime—uses two queues for storing suspended threads. One queue holds processes
trying to enter the monitor to enforce mutual exclusion. Another queue stores threads
suspended by wait. The scheduler places the continuation of a thread issuing a signal in
the queue of threads trying to enter the monitor with the highest priority and executes the
next thread held up in the wait queue.

Another regime O-J. Dahl characterises is signal and exit, in which the threads leave
the monitor after issuing a signal, i.e., the last instruction of a procedure. The critical
region is taken away from the thread issuing a signal and given to a thread held up by the
condition variable (exclusively).

Figure 4.3 illustrates the regime for signal and exit. The notable difference is that

Chapter 4. An Unbounded Buffer Monitor in MIL 45

b
a

t1 t2 t3
Time

Thread
suspended flow
executing flow

Figure 4.2: Execution view of two threads accessing the same monitor.

b
a

t1 t2 t3
Time

Thread
suspended flow
executing flow

Figure 4.3: Execution view of two threads accessing the same monitor, following the
signal and exit regime.

thread b terminates after issuing a signal at time t2. Since signal is the last operation of
the append procedure, the semantics of the monitor present in Figure 4.1 is the same with
both regimes. The control flow of thread a remains the same as in Figure 4.2.

Our MIL version of the unbounded buffer monitor exports one code block for creating
the monitor and two other code blocks that encode the procedures of the monitor. The
signatures of the code blocks are listed bellow.

createBuffer ∀[Element] (r1 :createContinuation(Element))
append ∀[Element] (r1 :BufferMonitor(Element), r2 :Element)
remove ∀[Element] (r1 :BufferMonitor(Element), r2 :removeContinuation(Element))

Element is the type of the elements in the monitor, and BufferMonitor is the type of the un-
bounded buffer monitor. Code blocks createBuffer and remove follow the continuation-
passing style. Henceforth we follow these conventions: the continuation is a pair con-
sisting of a code block and an environment; the type of the environment is abstracted
(from the continuation) by the existential type, and the register file of the continuation
expects the environment in register r1. Let the type of the continuations of createBuffer

and remove be:

createContinuation(Element) def= ∃α.〈(r1 :α, r2 :BufferMonitor(Element)), α〉ro

removeContinuation(Element) def= ∃α.〈(r1 :α, r2 :Element), α〉ro

The continuation of the creation operation expects the newly created monitor in register r2.
The continuation of the remove procedure expects the removed element in register r2.

We illustrate the usage of the unbounded buffer monitors with a traditional producer/-
consumer example. Code block main creates a monitor for a buffer of integers and starts
three threads (code block launchThreads): a producer (code block producer) that repeat-
edly appends integers to the buffer, and two identical consumers defined by code block

Chapter 4. An Unbounded Buffer Monitor in MIL 46

consumer. Repeatedly, each consumer removes and processes an integer from the buffer.

main() {
−− create the base (empty) environment
r2 := new 0
share r2 read-only −− 〈〉ro
−− create the continuation
r1 := new 2
r1 [1] := launchThreads −− set the code block
r1 [2] := r2 −− set the environment
share r1 read-only −− 〈(r1:〈 〉ro , r2 :BufferMonitor(int)), 〈 〉ro 〉ro
r1 := pack 〈〉ro , r1 as ∃ α.〈(r1 :α,r2 :BufferMonitor(int)), α〉ro
jump createBuffer[int] −− instantiate the type of the messages (int)
}
launchThreads(r1:〈〉ro , r2 :BufferMonitor(int)) {
−− the environment is the monitor
r1 := r2
fork producer
fork consumer
fork consumer
done
}
consumer(r1:BufferMonitor(int)) {
−− create the continuation
r2 := new 2
r2 [1] := consumeNext −− set the code block
r2 [2] := r1 −− the environment is the monitor
share r2 read-only −− 〈(r1:BufferMonitor(int), r2 : int), BufferMonitor(int) 〉ro
r2 := pack BufferMonitor(int), r2 as ∃ α.〈(r1 :α,r2 : int),α〉ro
fork remove[int]
done
}
consumeNext(r1:BufferMonitor(int), r2 : int) {
−− process the element in r2
jump consumer
}
producer(r1:BufferMonitor(int)) {
−− set the element
r2 := 2 −− 2 as an example
−− produce the element
fork append[int]
jump producer
}

The three operations (monitor creation, append, and remove) described above is all
we need in order to compile the π-calculus as presented in Chapter 5. The rest of this
chapter is organised in three parts. The first part introduces the operations related to the
unbounded buffer; the second part presents the wait and signal operations; the last part
shows polymorphic queues we use to implement the buffer and condition variables.

Chapter 4. An Unbounded Buffer Monitor in MIL 47

4.1 The monitor

Monitors provide a way to unify a synchronisation form (mutual exclusion), shared data,
and the body of code that performs the accesses in a module. Monitors also provide
condition variables. To encode these module in MIL we consider its three constituents:
mutual exclusion, shared data, and code. MIL enforces race freedom by imposing mutual
exclusion in the access of shared data. This form of synchronisation is also enforced by
monitors. MIL establishes an association between data and locks, since every memory
region (in the heap) is protected by a lock. The type of MIL code that accesses shared
data is identifiable by requiring exclusive access to a lock. Our encoding of a monitor
is delimited by the lock: all the data protected by lock λ and all the code that requires
lock λ constitute a monitor, which we may identify by λ. In contrast to a code block
that requires a specific lock λ, a code block that requires a lock of any (singleton) type is
considered code that may be used by any monitor. Acquiring a lock through testSetLock
corresponds to threads trying to enter in a monitor.

We represent the data of the unbounded buffer as a tuple that holds the attributes
(fields) of the monitor present in Figure 4.1: the buffer , the nonempty condition variable,
and the monitor’s lock. Type BufferMonitor(Element) applies the existential quantification
over the monitor’s lock, thereby allowing the processor to manipulate the monitor without
“knowing” its lock, hence λ /∈ Ψ. We can insert the lock of the monitor in the scope of the
processor by unpacking the monitor of type BufferMonitor(Element) (cf. rule T-UNPACK),
which yields type UnpackedBufferMonitor(λ,Element). Code blocks of the monitor, re-
quiring permission for the lock of the monitor, expect a monitor value to be unpacked.
The references to the constituents of the monitor are immutable throughout the life-cycle
of the monitor, thus we choose the tuple to be read-only. To enable introducing the lock of
the monitor into the scope of a thread, we abstract the singleton lock type as an existential
type.

BufferMonitor(Element) def= ∃ λ.UnpackedBufferMonitor(λ,Element)

UnpackedBufferMonitor(λ,Element) def= 〈Queue(λ,Element),Condition(λ),〈λ〉λ〉ro

Condition(λ) def= Queue(λ,waitContinuation(λ))

waitContinuation(λ) def= ∃ α.〈(r1 :α) requires (λ),α〉ro

Notice that a type Queue(λ,α) represents a queue storing elements of type α protected by
lock λ. By choosing queues to the elements of the unbounded buffer, we impose a FIFO
order upon the elements therein, guaranteeing that all requests will be processed. In our
implementation the condition is technically a queue of continuations.

Creating unbounded buffers. For creating the monitor the thread needs to create a tu-
ple and store therein two queues and a lock. This cannot be performed in one step (in a sin-
gle code block), because the operation for creating queues expects a continuation. The op-

Chapter 4. An Unbounded Buffer Monitor in MIL 48

eration for creating queues is divided into code blockscreateBuffer, createBufferCondition,
and initBuffer.

The thread executing the first code block creates the monitor’s lock and prepares the
registers for creating a queue of elements: the environment in register r2 and the continu-
ation code block in register r3.

createBuffer ∀[Element] (r1 :createContinuation(Element)) {
λ, r3 := newLock −− create the lock of the monitor
−− create the environment for createQueue
r2 := new 2
r2 [1] := r1 −− store the continuation of ’createBuffer ’
r2 [2] := r3 −− store the monitor’s lock
share r2 read-only
r3 := createBufferCondition[λ,Element]
jump createQueue[λ,Element,BufferEnv(λ,Element)]
}

The environment for code block createBufferCondition consists of a read-only tuple hold-
ing the continuation for code block createBuffer and the monitor’s lock 〈λ〉λ, respectively.

BufferEnv(λ,Element) def= 〈createContinuation(Element),〈λ〉λ〉ro

In the second code block (createBufferCondition), the thread prepares the registers
for creating a queue of continuations, which represents the condition variable nonempty.
Upon the creation of the queue, the thread continues executing in code block initBuffer .

createBufferCondition ∀[λ,Element] (r1 :Queue(λ,Element),
r2 :BufferEnv(λ,Element)) {

r3 := new 3 −− allocate the new environment
r3 [1] := r1 −− store the buffer in the internal environment
r1 := r2 [1] −− load the continuation of ’createBuffer ’
r3 [2] := r1 −− store the continuation of ’createBuffer ’
r1 := r2 [2] −− load the monitor’s lock
r3 [3] := r1 −− store the monitor’s lock
share r3 read-only
r2 := r3
r3 := initBuffer [λ,Element] −− set the code block of the continuation
jump createQueue[λ,waitContinuation(λ),BufferEnv2(λ,Element)]
}

The environment for the continuation code block initBuffer is a tuple divided into a
queue of elements, the continuation for createBuffer, and the monitor’s lock.

BufferEnv2(λ,Element) def= 〈Queue(λ,Element),createContinuation(Element),〈λ〉λ〉ro

Code block initBuffer stands for the third and final stage of the monitor construction,
where the thread allocates and initialises the tuple with the buffer queue, the condition,
and the lock of the monitor. Afterwards, the thread unpacks and activates the continuation
of code block createBuffer, which expects the unbounded buffer monitor in register r2.

Chapter 4. An Unbounded Buffer Monitor in MIL 49

initBuffer ∀[λ,Element] (r1 :Condition(λ), r2 :BufferEnv2(λ,Element)) {
r3 := new 3 −− allocate the monitor
r3 [2] := r1 −− store the condition variable ’nonempty’
r1 := r2 [1] −− load ’buffer ’ from the internal environment
r3 [1] := r1 −− store ’buffer ’ in the monitor
r1 := r2 [3] −− load the lock of the monitor
r3 [3] := r1 −− store the lock
share r3 read-only −− 〈Queue(λ,Element),Condition(λ),〈λ〉λ〉ro
r4 := r2 [2] −− load the continuation of ’createBuffer ’
r2 := pack λ, r3 as BufferMonitor(Element) −− abstract the monitor’s lock
λ,r4 := unpack r4 −− unpack the continuation
r1 := r4 [2] −− load the environment
r4 := r4 [1] −− load the code block
jump r4 −− proceed
}

Appending elements. The monitor operation append places one element in the buffer
and signals the nonempty condition variable. The operation accepts elements in regis-
ter r2 of type Element, and a monitor in register r1. The thread starts by unpacking the
monitor, thereby introducing the lock in the scope (cf. rule T-UNPACK). In code block
appendAcquire, the thread spin-locks to acquire exclusive access to the monitor’s lock,
jumping to code block appendEnqueue on success. This pattern, which consists of the
first three code blocks, is repeated for the remove procedure.

append ∀[Element] (r1:BufferMonitor(Element), r2 :Element) {
λ,r1 := unpack r1 −− unpack the monitor’s lock
r3 := r1 [3] −− load the lock
jump appendAcquire[λ,Element] −− try to acquire exclusive access
}
appendAcquire ∀[λ,Element] (r1:UnpackedBufferMonitor(λ,Element),

r2 :Element,r3:〈λ〉λ) {
r4 := testSetLock r3 −− try to acquire the lock
if r4 = 0 jump appendEnqueue[λ,Element] −− lock acquired, continue
jump appendAcquire[λ,Element] −− otherwise, repeat
}

The two following code blocks implement the body of the append procedure (vide
Figure 4.1). The thread enqueues the element in the buffer (code block appendAcquire)
and sets as continuation code block appendSignal, where the thread issues a signal.

appendEnqueue ∀[λ,Element] (r1:UnpackedBufferMonitor(λ,Element),
r2 :Element) requires (λ) {

r3 := new 2 −− allocate the continuation
r3 [1] := appendSignal[λ,Element] −− store the code block
r3 [2] := r1 −− store the environment
share r3 read-only
r3 := pack UnpackedBufferMonitor(λ,Element),r3 as enqueueContinuation(λ)
r1 := r1 [1] −− load the buffer

Chapter 4. An Unbounded Buffer Monitor in MIL 50

jump enqueue[λ,Element]
}
appendSignal ∀[λ,Element] (r1:UnpackedBufferMonitor(λ,Element)) requires (λ) {

r2 := r1 [2] −− load the condition variable
r1 := r1 [3] −− load the monitor’s lock
jump signal[λ]
}

Removing elements. Operation remove takes an element from the buffer of a monitor
that is present in register r1 and transfers it to the continuation in register r2. In the same
way as for appending elements in the unbounded buffer, the first two code blocks try
to enter the monitor. Code block remove unpacks the packed monitor and places the
lock of the monitor in scope. Then, the thread jumps to removeAcquire, where it tries
to acquire the monitor’s lock, and then tries to enter the monitor by continuing to code
block testCondition.

remove ∀[Element] (r1:BufferMonitor(Element),r2:removeContinuation(Element)) {
λ, r1 := unpack r1 −− unpack the monitor’s lock
r3 := r1 [3] −− load the lock
jump removeAcquire[λ,Element] −− acquire the monitor’s lock
}
removeAcquire ∀[λ,Element] (r1:UnpackedBufferMonitor(λ,Element),

r2 :removeContinuation(Element), r3:〈λ〉λ) {
r4 := testSetLock r3
if r4 = 0 jump testCondition[λ,Element]
jump removeAcquire[λ,Element]
}

Code block testCondition maps directly into the line of code

if buffer . isEmpty then nonempty.wait

present in procedure remove of Figure 4.1. Before checking if there are elements in the
queue (instruction if r5 = 0 jump wait[λ]) the thread primes the suspended thread as a
continuation in case the queue is empty, thus preparing the registers for code block wait,
which continues on code block dequeueWaitCont. If the test fails (i.e., there are elements
in the queue), then the thread restores the environment of the thread to prepare the registers
for code block dequeueWaitCont.

testCondition ∀[λ,Element] (r1 :UnpackedBufferMonitor(λ,Element),
r2 :removeContinuation(Element),
r3 :〈λ〉λ) requires (λ) {

−− create an environment for the continuation
r4 := new 2
r4 [1] := r2 −− store the continuation of operation ’ remove’
r4 [2] := r1 −− store the unpacked monitor
share r4 read-only
−− r4: 〈removeContinuation(Element),UnpackedBufferMonitor(λ,Element)〉ro

Chapter 4. An Unbounded Buffer Monitor in MIL 51

r2 := r1 [2] −− load the condition
r5 := r1 [1] −− load the buffer
r5 := r5 [2] −− load the buffer’s size
r1 := r3 −− set the lock of the monitor for the wait operation
−− create the continuation for wait
r3 := new 2
r3 [1] := dequeueWaitCont[λ,Element] −− set the continuation of wait
r3 [2] := r4 −− store the environment
share r3 read-only
−− r3: 〈(r1 :RemvEnv(λ,Element)) requires (λ),RemvEnv(λ,Element)〉ro
r3 := pack RemvEnv(λ,Element),r3 as waitContinuation(λ)
if r5 = 0 jump wait[λ] −− wait until an element arrives
r1 := r4 −− restore the environment
jump dequeueWaitCont[λ,Element] −− otherwise dequeue and activate cont.
}

The thread proceeds to code block dequeueWaitCont, which maps to code

x := buffer .dequeue

(the second line of procedure remove present in Figure 4.1). In MIL, the thread sets up
the registers for code block dequeue, with the queue of elements in register r1 and the
continuation in register r2. The continuation proceeds in code block activateWaitCont and
holds an environment of type RemvEnv(λ,Element).

dequeueWaitCont ∀[λ,Element] (r1:RemvEnv(λ,Element)) requires (λ) {
r2 := new 2
r2 [1] := activateWaitCont[λ,Element]
r2 [2] := r1
share r2 read−only
−− r2: 〈(r1 :RemvEnv(λ,Element),r2:Element) requires(λ),RemvEnv(λ,Element)〉ro
r2 := pack RemvEnv(λ,Element),r2 as dequeueContinuation(λ,Element)
r1 := r1 [2] −− load the monitor
r1 := r1 [1] −− load the buffer
jump dequeue[λ,Element]
}

The type of the environment of code block dequeueWaitCont is a read-only tuple that is
divided into the continuation of code block remove (in the first position) and the unpacked
unbounded buffer (in the second position).

RemvEnv(λ,Element) def= 〈removeContinuation(Element),
UnpackedBufferMonitor(λ,Element)〉ro

After dequeuing the element from the buffer and placing it in register r2, the thread
running code block activateWaitCont exits the monitor, by releasing the lock of the mon-
itor and by activating the continuation of code block remove.

activateWaitCont ∀[λ,Element] (r1 :RemvEnv(λ,Element),
r2 :Element) requires (λ) {

r4 := r1 [2] −− load the monitor

Chapter 4. An Unbounded Buffer Monitor in MIL 52

r4 := r4 [3] −− load the monitor’s lock
unlock r4 −− unlock the monitor’s lock
r3 := r1 [1] −− load the continuation
λ,r3 := unpack r3 −− unpack the continuation
r1 := r3 [2] −− load the environment
r3 := r3 [1] −− load the code fragment
jump r3 −− continue
}

4.2 Wait and Signal

We represent a condition variable in MIL as a (initially empty) queue of continuations that
are waiting on that condition. Manipulating the condition’s queue is performed through
the usual operations wait and signal. A wait operation is issued from inside a monitor
and causes the calling thread to suspend itself until a signal operation occurs. Waiting on
a condition (in register r2) amounts to enqueuing the continuation of the wait operation
(in register r3) in the condition’s queue. Notice that the lock (in register r1) protecting
the queue is the same lock used to enforce mutual exclusion access to the monitor op-
erations. Also notice that the lock is released after enqueuing the continuation, allowing
other threads to use the monitor, and that the thread terminates (vide code block release).

wait ∀[λ] (r1 :〈λ〉λ,r2 :Condition(λ), r3 :waitContinuation(λ)) requires (λ) {
−− the continuation is released
r4 := new 2
r4 [1] := release[λ]
r4 [2] := r1
share r4 read-only −− 〈(r1:〈λ〉λ) requires (λ),〈λ〉λ〉ro
r4 := pack 〈λ〉λ,r4 as waitContinuation(λ)
r1 := r2 −− set the queue
r2 := r3 −− set the element to enqueue
r3 := r4 −− set the continuation
jump enqueue[λ,waitContinuation(λ)]
}
release ∀[λ] (r1 :〈λ〉λ) requires (λ) {

unlock r1 −− release the monitor’s lock
done −− terminate the thread
}

The type of the continuation for code block wait is a read-only pair holding a code
block and an environment, as usual. The code block of the continuation requires exclu-
sive access to the lock of the monitor, since the blocked thread that is embodied by this
continuation is inside the monitor (in the critical region). The register file of the continu-
ation’s code block expects the environment in register r1.

waitContinuation(λ) def= ∃ α.〈(r1 :α) requires (λ),α〉ro

Chapter 4. An Unbounded Buffer Monitor in MIL 53

We opt for signal and exit regime. There is an implicit notion of an uninterrupted
transfer of ownership of the monitor’s lock that goes from the signalling thread that fin-
ishes, to the thread waiting on a condition that resumes execution, which fits nicely in
MIL’s lock discipline. Execution also shifts from the signal operation to a thread waiting
on the target condition variable (represented by a continuation). The transference of lock
permission and execution is carried out by jumping to the code block of the continuation
without releasing the lock of the monitor. By enforcing that no other instruction follows a
signal primitive, we reuse the processor of a signalling thread to execute a delayed thread,
both underlining this idea of transfer of control and simplifying the implementation.

O-J. Dahl shows that, according to the criteria chosen in [11], the regime we choose is
a (programming) restriction of the signal and urgent wait. The motivation for our choice
is twofold. First, the programming restriction does not affect the implementation of the
unbounded buffer. Second, the implementation in MIL becomes simpler, since we do not
need to worry about the continuation of operation signal.

The signal code block first checks if there are no delayed threads to signal, in which
case terminates. Otherwise, the thread dequeues a suspended thread and proceeds to code
block signalDequeue.

signal ∀[λ] (r1 :〈λ〉λ, r2 :Condition(λ)) requires (λ) {
r3 := r2 [2] −− load the length of the queue
if r3 = 0 jump release[λ] −− no continuations to signal, finish
r1 := r2 −− set the queue of continuations
r2 := new 2
r2 [1] := signalDequeue[λ]
r2 [2] := 0 −− an empty environment
share r2 read-only
−− r2: 〈(r1 : int , r2 :waitContinuation(λ)) requires(λ), int 〉
r2 := pack int, r2 as dequeueContinuation(λ,waitContinuation(λ))
jump dequeue[λ,waitContinuation(λ)]
}

In code block signalDequeue, the thread activates the continuation of code block wait.

signalDequeue ∀[λ] (r1: int , r2 :waitContinuation(λ)) requires (λ) {
λ,r2 := unpack r2 −− unpack the continuation
r3 := r2 [1] −− the code fragment
r1 := r2 [2] −− the environment
jump r3 −− proceed
}

4.3 Polymorphic Queues

Queues are the foundational data structure for the implementation of monitors, used for
holding elements in the unbounded buffer and for serving as condition variables. A simple

Chapter 4. An Unbounded Buffer Monitor in MIL 54

v1

λ

v2

λ

v3

λ

Figure 4.4: Three nodes connected linearly. Each node, guarded by the same lock λ, holds
a value vi.

representation for queues is using a linked-list divided into nodes that are interconnected
linearly, as depicted by Figure 4.4. Each node holds a value and a reference to the next
element in the queue.

Node(λ,α) def= 〈α,Node(λ,α)〉λ

Consider that a queue is a tuple holding a reference for the first node of the queue. How
could we represent an empty queue? We would need a witness value for every type, which
is impossible if we want a general propose implementation of queues whose values may be
of any type. For typing proposes we design queues as an encoding of simple objects, using
the existential type. Pierce and Turner proposed Object-Oriented Programming (OOP)
using the existential type [37]. We follow Morrisett’s encoding of simple objects in typed
assembly languages [29]. Encoding queues as simple objects provides encapsulation of
the representation, which in turn enables constructing queues without access to a witness
value. In our implementation, a queue has two stages in its life-cycle. An initial stage S1
when it is created. A secondary stage S2 after the first value is enqueued, in which the
queue is represented by a linked-list.

A queue is a shared tuple divided into its representation and its length (the number of
values enqueued).

Queue(λ,α) def= µ Q.〈QueueRep(Q,λ,α),int〉λ

The representation of a queue is an existential value that encapsulates the implementation
details of a given stage.

QueueRep(Q,λ,α) def= ∃S.〈S,enqueueHandler(Q,λ,S,α),dequeueHandler(Q,λ,S,α)〉ro

An implementation of a queue’s stage consists of the state of the queue S and two code
blocks (which we designate handlers), one for enqueuing, and another one for dequeuing.
Each of the handlers is specialised for state S.

The operation to enqueue elements in values of type Queue(λ,α) is listed below. The
typechecking rule T-UNPACK ensures that the type S of the state can be used abstractly
in the remaining of the code block. This way the state can only be passed to the enclosed
code blocks (the handlers). The enqueue operation unpacks the representation of the
queue and passes the state to the respective handling code block (present in the second
position of the tuple).

Chapter 4. An Unbounded Buffer Monitor in MIL 55

3

λ

r1

0

λ

r2

Figure 4.5: One node connected to another node.

enqueue ∀[λ,α] (r1 :Queue(λ,α), r2:α, r3 :enqueueContinuation(λ)) requires (λ) {
r4 := r1 [1] −− load the representation of the stage of the queue
S, r4 := unpack r4 −− unpack the representation
r5 := r4 [2] −− load the handler for enqueue
r4 := r4 [1] −− load the state of the queue
jump r5 −− proceed in the handler for enqueue
}

enqueueContinuation(λ) def= ∃α.〈(r1 :α) requires (λ),α〉ro

We omit the operation to dequeue elements from values of type Queue(λ,α), because the
only difference is loading the code block handling dequeue that is held in third position
of the stage tuple, instead of the enqueue handler (in the second position).

On stage S2 the queue is represented by a linked-list that is composed by nodes, as
portrayed by Figure 4.4. Each node pairs a value picked from αwith a node. The recursive
type follows.

Node(λ,α) def= 〈α,Node(λ,α)〉λ

We show an example of the creation of two nodes that is illustrated by Figure 4.5.
Consider that the processor holds lock λ.

1 r1 := new 2 −− allocate node 1
2 share r1 guarded by λ
3 r2 := new 2 −− allocate node 2
4 share r2 guarded by λ
5 r1 [1] := 3 −− set the value of node 1 as 3
6 r1 [2] := r2 −− link node 1 to node 2
7 r2 [1] := 0 −− set the value of node 2 as 0
8 r2 [2] := r2 −− link node 2 to itself

The node holding 3 is pointed by register r1. The node holding 0 is pointed by register r2.
The first node is connected to the second, which is connected to itself.

Linked-lists consist of two entry points for accessing a series of linearly intercon-
nected nodes, the first and last nodes of the list. The type of linked-lists

LinkedList(λ,α) def= 〈Node(λ,α),Node(λ,α)〉λ

Chapter 4. An Unbounded Buffer Monitor in MIL 56

3

λ

r1 0

λ

r2

λ

r3

Figure 4.6: A linked-list with one node and one sentinel.

corresponds to a pair of nodes protected by lock λ. The last node is a sentinel, that allows
for algorithmic simplifications. We choose double-ended lists because they enable fast
adds and fast removes.

Consider the nodes of the previous example, referred by registers r1 and r2. The
following example, illustrated by Figure 4.6, shows the creation of a linked-list, holding
the number 3:

1 r3 := new 2 −− allocate the list
2 r3 [1] := r1 −− store to the first node (the head of the list)
3 r3 [2] := r2 −− store to the sentinel (the tail of the list)
4 share r3 guarded by λ

Code blocks handling the enqueue operation for a specific stage are of the abstract
type

enqueueHandler(Q,λ,S,α) def= (r1:Q, r2 :α,
r3 :enqueueContinuation(λ), r4:S) requires (λ)

where the continuation is of type

enqueueContinuation(λ) def= ∃ α.〈(r1 :α) requires (λ),α〉ro

The handler expects a queue in register r1, the element to enqueue in register r2, a contin-
uation in register r3, the state of the handler in register r4, and the lock λ held.

The enqueue handler for stage S2 is listed below. Notice that the type of the state for
this stage is LinkedList(λ,α), present in register r4. Figure 4.7 illustrates what happens to
the list when a value is enqueued, the expected algorithm for enqueuing in linked-lists.
First, the thread creates and initialises a sentinel. Then, the thread stores the new value in
the last node and connects that node to the sentinel. Lastly, the thread stores the sentinel
node in the linked-list and jumps to code block enqueueFinish.

enqueueNormal ∀[λ,α] (r1:Queue(λ,α), r2:α, r3:enqueueContinuation(λ),
r4 :LinkedList(λ,α)) requires (λ) {

r6 := new 2 −− create the new sentinel
share r6 guarded by λ

Chapter 4. An Unbounded Buffer Monitor in MIL 57

vn

λ

v1

λ

vn

λ

. . .

λ

Figure 4.7: Enqueuing the n-th value to a linked-list.

r6 [1] := r2 −− copy the value to the sentinel as well
r6 [2] := r6 −− link new node to itself
r5 := r4 [2] −− the sentinel will become the last valid node
r5 [1] := r2 −− set the value of the last node
r5 [2] := r6 −− point to the sentinel
r4 [2] := r6 −− store the new sentinel
jump enqueueFinish[λ,α]
}

In the following code block, the thread increments the count of elements in the queue
and activates the continuation in r3.

enqueueFinish ∀[λ,α] (r1 :Queue(λ,α), r3:enqueueContinuation(λ)) requires (λ) {
r2 := r1 [2]
r2 := r2 + 1 −− increment the count of elements
r1 [2] := r2
α,r2 := unpack r3 −− unpack the continuation
r1 := r2 [2] −− load the environment
r2 := r2 [1] −− load the code block
jump r2 −− proceed
}

Code blocks are of type dequeueHandler(Q,λ,S,α) for handling the dequeue operation
expect a queue in register r1, a continuation in register r2, and the state of their represen-
tation in register r3.

dequeueHandler(Q,λ,S,α) def= (r1:Q, r2:dequeueContinuation(λ,α), r3:S) requires (λ)

The continuation of the dequeue code block is of type dequeueContinuation(λ,α), re-
quires exclusive access to lock λ, and expects the dequeued element in register r2.

dequeueContinuation(λ,α) def= ∃ αe.〈(r1:αe,r2:α) requires(λ),αe〉ro

The dequeue handler for stage S2 performs the usual algorithm for dequeuing in
linked-lists, as illustrated by Figure 4.8: simply sets the head of the linked-list to the sec-
ond node. Afterwards, the thread executing the handler decrements the elements count
and proceeds with the continuation.

Chapter 4. An Unbounded Buffer Monitor in MIL 58

dequeueNormal ∀[λ,α] (r1:Queue(λ,α), r2:dequeueContinuation(λ,α),
r3 :LinkedList(λ,α)) requires (λ) {

r4 := r1 [2]
r4 := r4 − 1 −− decrement the count of nodes
r1 [2] := r4
α,r4 := unpack r2 −− unpack the continuation
r5 := r3 [1] −− load the first node
r2 := r5 [1] −− load the value to be passed to the continuation
r5 := r5 [2] −− load the second node
r3 [1] := r5 −− point the head of the queue to the second node
r1 := r4 [2] −− load the environment
r4 := r4 [1] −− load the code block
jump r4 −− jump to the continuation
}

We are left with the representation for stage S1. Our idea is to delay the creation of the
linked-list until the first element is enqueued. The enqueue handler for this stage installs
the representation for stage S2. The thread executing this handler creates the linked-list
that denotes the new state, prepares the tuple for the new representation, and jumps to
enqueueFinish, incrementing the count of elements and activates the continuation.

enqueueInitial ∀[λ,α] (r1 :Queue(λ,α), r2:α,
r3 :enqueueContinuation(λ), r4:int) requires (λ) {

r6 := new 2 −− allocate the sentinel
share r6 guarded by λ
r6 [1] := r2 −− set the (arbitrary) value for the sentinel
r6 [2] := r6 −− link to itself
r5 := new 2 −− allocate the first node
r5 [1] := r2 −− store the value
r5 [2] := r6 −− link to the sentinel
share r5 guarded by λ
r4 := new 2 −− allocate the linked− list
r4 [1] := r5 −− store the first node
r4 [2] := r6 −− store the sentinel
share r4 guarded by λ
r2 := new 3
r2 [1] := r4 −− store the implementation (linked−list)
r2 [2] := enqueueNormal[λ,α] −− store the enqueue method
r2 [3] := dequeueNormal[λ,α] −− store the dequeue method
share r2 read-only
r1 [1] := pack LinkedList(λ,α), r2 as QueueRep(Queue(λ,α),λ,α)
jump enqueueFinish[λ,α]
}

The dequeue method of the initial stage is undefined and implemented as an endless
loop, because the invariant of “no value is dequeued from an empty queue” is preserved
throughout the supporting code.

dequeueInitial ∀[λ,α] (r1 :Queue(λ,α),
r2 :dequeueContinuation(λ,α), r3:int) requires (λ) {

Chapter 4. An Unbounded Buffer Monitor in MIL 59

v1

λ

vn

λ

λ

. . .v

λ

Figure 4.8: Dequeuing the first node of a linked-list.

jump dequeueInitial[λ,α]
}

The creation of a queue prepares stage S1, delaying the creation of a linked-list until
the first value is enqueued. This stage has no state, thus we represent it with an arbitrary
integer, e.g., number 0. The operation assembles the initial representation for this stage
and initialises the count of elements in the queue to zero.

createQueue ∀[λ,α,αe] (r2:αe, r3 :(r1 :Queue(λ,α),r2:αe)) {
r4 := new 3
r4 [1] := 0 −− store the state
r4 [2] := enqueueInitial [λ,α] −− store a label to the enqueue method
r4 [3] := dequeueInitial [λ,α] −− store a label to the dequeue method
share r4 read-only
r4 := pack int, r4 as QueueRep(Queue(λ,α),λ,α)
r1 := new 2 −− create the queue
r1 [1] := r4 −− store the implementation
r1 [2] := 0 −− the queue is empty
share r1 guarded by λ
jump r3 −− jump to the continuation
}

QueueCreateCont(λ,α,αe)
def= (r1:Queue(λ,α), r2:αe)

4.4 Discussion

We are able to divide the code into three separated modules: unbounded buffer monitor,
condition variables, and queues. The queues module, for example, may be used without
requiring the other modules. The source code consists of 20 type declarations and 24 code
blocks, totalling 259 lines of code.

Turner [45] uses a single queue to hold both the messages and the input processes wait-
ing for messages, taking advantage of an invariant by which queues never contain both
messages and input processes simultaneously. Our initial attempt for the supporting code

Chapter 4. An Unbounded Buffer Monitor in MIL 60

followed a Turner-like version. The data structure implementing π-channels contained ad-
dresses of two different queues (one for output messages and another for input processes).
The version we present in this thesis is the monitor-based implementation, discussed in
the current chapter, also uses two queues: one to hold the messages in the monitor’s
buffer, the other to implement the condition variable, which, remarkably are instances of
the same abstract data type: Queue(λ,Element) and Queue(λ,WaitContinuation(λ)).

An improvement over our previous implementation is the smaller code size and the
clarity of the code. The monitor-based version has less 60 lines of code than the Turner-
like version, a decrement of about 20%. One reason for the decrease of the code size
in the monitor-based version is that we were able pull the process replication out of the
supporting code and into the translation.

Chapter 5

Compiling π into MIL

This chapter presents a translation of the simply typed pi-calculus extended with integer
values (described in Chapter 2) into the multithreaded intermediate language (described
in Chapter 3). The translation is extremely simplified by using the unbounded buffer
monitor (described in Chapter 4) to manage channels. We first present the translation,
then the main result of the translation—type preservation—, and finally we discuss the
choices made.

5.1 The translation function

Translation functions map terms of the source language into terms of the target language.
These functions are typically recursive, because they are defined concerning the grammar
of the source language, which is also usually recursive. To generate MIL code from the
π-calculus we must produce a program that simulates the source π-process.

The translation from the π-calculus into MIL comprises the translation T [[·]] of types,
V~x[[·]] of values, and P [[·]] of programs (closed π-processes). Our main result is a type-
preserving [31] translation, meaning that we assert that the type information in the source
language is preserved and that the generated programs will not get stuck. We use the
unbounded buffer monitor to act a channel, hence the type of a channel is translated into
the type of an unbounded buffer. The translation of values includes memory allocation and
register manipulation. The translation of processes entails dynamic creation of threads
and communication through shared memory.

Types of the π-calculus have a direct representation in the supporting library, thus the
translation is straightforward.

T [[int]] def
= int

T [[ˆ[~T]]]
def
= BufferMonitor(〈T [[~T]]〉ro)

We write T [[T1 . . . Tn]], or T [[~T]], for the sequence of types T [[T1]], . . . , T [[Tn]]. The inte-
ger type of the π-calculus is translated in the corresponding type of MIL. A π-channel

61

Chapter 5. Compiling π into MIL 62

is translated into an unbounded buffer monitor whose elements are read-only tuples of
values: integer values or unbounded buffers (channels). As an example, consider the
translation of type ˆ[int]:

T [[ˆ[int]]] = BufferMonitor(〈T [[int]]〉ro)

= BufferMonitor(〈int〉ro)

The translation V~x[[·]] of values loads into register r3 a value from the environment ~x
(addressed by register r1), or moves into the same register an integer literal. The environ-
ment ~x is a sequence of names x1 . . . xn. The base empty environment is ∅. By augment-
ing environment ~x with name y we get environment ~xy. By concatenating environment ~x
with environment ~y we get environment ~x~y, or x1 . . . xny1 . . . xm.

V~x[[v]]
def
=

{
r3 := r1[i] if v ∈ ~x
r3 := v otherwise

The translation of a π-program P [[P]] yields a heap, containing several code blocks,
among which we find main.

P [[P]]
def
= main(){E∅(∅, ∅); I}]H

where (H, I) = P∅,∅[[P]]

Operator] is the disjoint union of sets. Block main prepares an empty environment,
E∅(∅, ∅), for the top level process, which is then translated by P∅,∅[[P]]. In all cases reg-
ister r1 contains the current environment, the address of a read-only tuple containing the
free names in the process. Instructions therefore expect a register file in which register r1

has type 〈T [[Γ(~x)]]〉ro, where ~x is the environment of process P .
Function EΓ(~x, ~y) generates an instruction sequence that creates a new environment as

a copy of the current environment ~x (in register r1 of type 〈T [[~T]]〉ro where ~T are the types
of ~x) extended with environment ~y in register r2 (of type 〈T [[~T ′]]〉ro), leaving the newly
created environment in register r1. By Γ(v) we mean T where Γ ` v : T (cf. Figure 2.6);
in other words, T when v : T ∈ Γ, or int if v is an integer literal.

EΓ(~x, ~y)
def
= (r3 := new |~x~y|

∀ i ∈ {1, . . . , |~x|}

{
r4 := r1[i]

r3[i] := r4

∀ i ∈ {1, . . . , |~y|}

{
r4 := r2[i]

r3[i+ |~x|] := r4

share r3 read-only −−〈T [[Γ(~x~y)]]〉ro

r1 := r3)

First, a new environment is allocated, as a local tuple, and filled with the elements from
environments ~x and ~y. Next, the tuple is made shared for reading, allowing multiple

Chapter 5. Compiling π into MIL 63

threads to access the environment without contention. Lastly, the address of the newly
created environment is copied to register r1, as required by the continuation code. For
example, the instructions generated by EΓ(printInt; echo,msg; reply) are:

r3 := new 3 −− |printInt ;echo;msg;reply|
r4 := r1 [1] −− i = 1
r3 [1] := r4
r4 := r1 [2] −− i = 2
r3 [2] := r4
r4 := r2 [1] −− i = 1
r3 [3] := r4
r4 := r2 [2] −− i = 2
r3 [4] := r4
share r3 readonly
r1 := r3

A process P is translated by function P~x,Γ[[P]], parametric on a sequence of names ~x
and on a π-calculus typing environment Γ, where Γ ` P and fnP ⊆ {~x}. The result of
the translation is a pair composed by a heap H and a sequence of instructions I . This
function is defined by cases.

The translation of the inactive process is direct: the thread is terminated and an empty
heap produced.

P~x,Γ[[0]]
def
= (∅,done)

For example, the translation of the program represented by inactive process P [[0]] gener-
ates the following MIL code.

main () {
−− EΓ(∅, ∅)
r3 := new 0 −− |∅|
share r3 read-only
r1 := r3
−− P∅,∅[[0]]
done
}

For the translation of the output process, the registers are laid out as expected by code
block append in the monitor of Chapter 4: register r1 contains the (address of) channel xi
(that is, the monitor), and register r2 contains (the address of) the tuple with values ~v (that
is, the element to append to the buffer in the monitor). The control is then transferred to

Chapter 5. Compiling π into MIL 64

code block append.

P~x,Γ[[xi〈~v〉]]
def
= (∅, I) where

I = (r2 := new |~v|

∀ j ∈ {1, . . . , |~v|}

{
V~x[[vj]]
r2[j] := r3

share r2 read-only −−〈T [[Γ̂(~v)]]〉ro

r1 := r1[i]

jump append[〈T [[Γ̂(~v)]]〉ro]

Definition 5.1.1. An evaluation type function Γ̂(v) is defined for well-typed values as

Γ̂(v) =

{
Γ(v) v ∈ dom(Γ)

int otherwise

We use the notation Γ̂(v1 . . . vn) for the sequence Γ̂(v1), . . . , Γ̂(vn).
Let the π-calculus typing

Γ = ∅, printInt : ˆ[int], echo : ˆ[int, ˆ[int]],msg : int, reply : ˆ[int]

and let the environment ~x = printInt; echo;msg; reply. Consider the translation of the
output process P~x,Γ[[reply〈msg〉]]. The generated instruction sequence is:

−− ...
r2 := new 1
r3 := r1 [3] −− V~x[[msg]]
r2 [1] := r3
share r2 read-only −− 〈int〉ro
r1 := r1 [4] −− load ’reply’
jump append[〈int〉ro]
}

The generated instruction sequence expects a register r1 of type 〈T [[Γ(~x)]]〉ro. The trans-
lation of the environment’s type is:

〈T [[Γ(~x)]]〉ro = 〈T [[Γ(echo)]], T [[Γ(msg)]], T [[Γ(reply)]]〉ro

= 〈T [[ˆ[int, ˆ[int]], T [[int]], T [[ˆ[int]]]]]〉ro

= 〈BufferMonitor(〈int,BufferMonitor(〈int〉ro)〉ro),

int,BufferMonitor(〈int〉ro)〉ro

The translation of an input process is as follows.

P~x,Γ[[xi(~y).P]]
def
= (H]H ′, jump l) where

ˆ[~T] = Γ(xi)

Γ′ = Γ, ~y : ~T

(H ′, I ′) = P~x~y,Γ′
[[P]]

Chapter 5. Compiling π into MIL 65

H =l (r1 :〈T [[Γ(~x)]]〉ro) {
r2 := new 2

r2[1] := l′

r2[2] := r1

share r2 read-only

r2 := pack 〈T [[Γ(~x)]]〉ro, r2 as removeContinuation(〈T [[~T]]〉ro)

r1 := r1[i]

jump remove[〈T [[~T]]〉ro]

}
l′ (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[~T]]〉ro) {EΓ′

(~x, ~y); I ′}

Labels l and l′ are fresh. The resulting instruction jump l executes code block l in heapH ,
which prepares registers r1 and r2, and then transfers control to the monitor’s code block
remove. Channel xi (that is, the monitor) is loaded in register r1; the continuation for P
is loaded at register r2, as witnessed by type 〈T [[Γ(~x)]]〉ro. The code for remove transfers
the control back to l′ (in heap H), where the current environment is again in register r1,
and the values that replace ~y (that is, the element removed from the monitor’s buffer) is in
register r2. The current environment ~x is then extended with ~y and process P is executed.

For example, consider the translation of a copy of the echo server, where the typ-
ing Γ = ∅, echo : ˆ[int, ˆ[int]].

Pecho,Γ[[echo(msg, reply).reply〈msg〉]]

The generated code is:

−− ...
jump l5
}
l5 (r1 :Env) {

r2 := new 2
r2 [1] := l6
r2 [2] := r1
share r2 read-only
r2 := pack Env, r2 as removeContinuation(〈int,BufferMonitor(〈 int 〉ro) 〉ro)
r1 := r1 [2] −− load ’echo’
jump remove[〈int,BufferMonitor(〈int 〉ro) 〉ro]
}
l6 (r1 :Env, r2 :〈 int ,BufferMonitor(〈 int 〉ro) 〉ro) {
−− EΓ(printInt; echo,msg; reply)
r3 := new 4 −− |printInt ;echo;msg;reply|
r4 := r1 [1] −− i = 1
r3 [1] := r4
r4 := r1 [2] −− i = 2
r3 [2] := r4

Chapter 5. Compiling π into MIL 66

r4 := r2 [1] −− i = 1
r3 [3] := r4
r4 := r2 [2] −− i = 2
r3 [4] := r4
share r3 read-only
r1 := r3
−− P~x,Γ1 [[reply〈msg〉]]
r2 := new 1
r3 := r1 [3] −− V~x[[msg]]
r2 [1] := r3
share r2 read-only −− 〈int〉ro
r1 := r1 [4] −− load ’reply’
jump append[〈int〉ro]
}

−− The type of the environment

Env def= 〈BufferMonitor(〈 int 〉ro), BufferMonitor(〈 int ,BufferMonitor(〈 int 〉ro) 〉ro) 〉ro

where the π-calculus typing Γ1 = Γ,msg : int, reply : ˆ[int] and the environment ~x =

echo;msg; reply, both related to the output process reply〈msg〉.
The translation of the replicated input process is identical, except for the code block

l′ (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[~T]]〉ro) {fork l; EΓ′
(~x, ~y); I ′}

that starts the continuation of the removed element by forking a copy of the translation
of the input process at code block l, thus unfolding one copy of the replicated input. For
example, consider the translation of the echo server. This translation corresponds to the
replicated version of the previous example (translating a copy of the echo server). The
difference in the output is code block l2, which we rewrite accordingly:

l6 (r1 :Env, r2 :〈 int ,BufferMonitor(〈 int 〉ro) 〉ro) {
fork l5 −− P~x,Γ[[!echo(msg, reply).reply〈msg〉]]
−− EΓ(printInt; echo,msg; reply)
r3 := new 4 −− |printInt ;echo;msg;reply|
r4 := r1 [1] −− i = 1
r3 [1] := r4
r4 := r1 [2] −− i = 2
r3 [2] := r4
r4 := r2 [1] −− i = 1
r3 [3] := r4
r4 := r2 [2] −− i = 2
r3 [4] := r4
share r3 read-only
r1 := r3
−− P~x,Γ1 [[reply〈msg〉]]
r2 := new 1
r3 := r1 [3] −− V~x[[msg]]
r2 [1] := r3

Chapter 5. Compiling π into MIL 67

share r2 read-only −− 〈int〉ro
r1 := r1 [4] −− load ’reply’
jump append[〈int〉ro]
}

The parallel process P | Q is translated by forking the execution of P and ofQ, whilst
(read-only) environment ~x is shared by both new threads (executing the sub-processes).

P~x,Γ[[P | Q]]
def
= (H]HP]HQ, I)

where

(HP , IP) = P~x,Γ[[P]]

(HQ, IQ) = P~x,Γ[[Q]]

H = {lP : (r1 :〈T [[Γ(~x)]]〉ro){IP}}] {lQ : (r1 :〈T [[Γ(~x)]]〉ro){IQ}}]HP]HQ

I = (fork lP ; fork lQ; done)

Labels lP and lQ are fresh. For illustrating an example of the translation of the parallel
composition, we translate the communication between a client that sends the number 10

and a channel printInt and the echo server:

P~x,Γ[[echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉]]

Let Γ = ∅, printInt : ˆ[int], echo : ˆ[int, ˆ[int]] and ~x = printInt; echo. An excerpt of the
generated MIL code follows.

−− ...
−− P~x,Γ[[echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉]]
fork l3
fork l4
done
}
l3 (r1 :Env) {
−− P~x,Γ[[echo〈10, printInt〉]]
r2 := new 2
r3 := 10 −− V~x[[10]]
r2 [1] := r3
r3 := r1 [1] −− V~x[[printInt]]
r2 [2] := r3
share r2 read−only
r1 := r1 [2]
jump append[〈int, BufferMonitor(〈 int 〉ro) 〉ro]
}
l4 (r1 :Env) {
−− P~x,Γ[[!echo(msg, reply).]]reply〈msg〉
jump l5
}
−− ...

Chapter 5. Compiling π into MIL 68

In the translation of scope restriction, a new monitor is created for channel y and added
to the current environment. In instruction sequence I , register r1 is loaded with the con-
tinuation, and control transferred to operation createBuffer. The code for createBuffer
transfers the control back to l, where the current environment is again in register r1 and
the newly created monitor is in register r2. Before proceeding with the code for P , this
channel (monitor) must be appended to the current environment: in register r2 we create a
one-place environment containing the channel, which is then concatenated to the current
environment via instructions prescribed by EΓ′

(~x, y).

P~x,Γ[[(ν y : T)P]]
def
= (H]H ′, I) where

T = ˆ[~T]

Γ′ = Γ, y : T

(H ′, I ′) = P~xy,Γ′
[[P]]

H = l (r1 :〈T [[Γ(~x)]]〉ro, r2 :T [[T]]) {
r3 := new 1

r3[1] := r2

share r3 read-only −−〈T [[T]]〉ro

r2 := r3

EΓ′
(~x, y)

I ′}
I = (r2 := new 2

r2[1] := l

r2[2] := r1

share r2 read-only

r1 := pack 〈T [[Γ(~x)]]〉ro, r2 as createContinuation(〈T [[~T]]〉ro)

jump createBuffer[〈T [[~T]]〉ro])

Label l is fresh.
Consider the process representing an echo client communicating with the echo server

(ν echo : ˆ[int, ˆ[int]]) (echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉)

Let Γ = ∅, printInt : ˆ[int], echo : ˆ[int, ˆ[int]]. By applying PprintInt,Γ[[·]] to the process
above we get the following instruction sequence.

−− ...
r2 : def= new 2
r2 [1] : def= l2
r2 [2] : def= r1
share r2 as read-only

Chapter 5. Compiling π into MIL 69

r1 : def= pack EnvInit as createContinuation(〈int,BufferMonitor(〈 int 〉ro) 〉ro)
jump createBuffer[〈int ,BufferMonitor(〈 int 〉ro) 〉ro]
}
l2 (r1 : EnvInit , r2 :BufferMonitor(〈 int ,BufferMonitor(〈 int 〉ro) 〉ro)) {

r3 : def= new 1
r3 [1] : def= r2
share r3 read-only
r2 : def= r3
−− EΓ(printInt, echo)

r3 : def= new 2
r4 : def= r1 [1]
r3 [1] : def= r4

r4 : def= r2 [1]
r3 [2] : def= r4
share r3 read-only
r1 : def= r3
−− P~x,Γ[[!echo(msg, reply).]]reply〈msg〉
−− ...
}
−− ...
−− The type of the environments
EnvInit def= 〈BufferMonitor(〈 int 〉ro) 〉ro

Appendix A encloses the full listing of the translation

P [[(ν printInt : ˆ[int]) (ν echo : ˆ[int, ˆ[int]])

(echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉)]]

5.2 Results

The main result of our compiler states that our translation produces type correct MIL
programs from type correct π-terms (closed processes).

For the remaining of this chapter let heap H0 stands for the supporting code and
let Ψ0 be a type environment such that Ψ0 ` H0. We have not attempted to hand-check
the typability of the 250-plus lines of H0; instead we have run it through the MIL type
checker [26], which implements the type system described in Chapter 3 and that has been
used to type check various non-trivial programs. Furthermore, let H stands for the hy-
pothesis.

First we introduce Propositions 5.2.1 and 5.2.2, whose proofs we omit since they are
standard and can easily be found in the literature (for instance [42]). We present proofs for
the remaining propositions and lemmas. The main result is Theorem 5.2.11, that ensures
the type preserving translation of our compiler.

Chapter 5. Compiling π into MIL 70

Proposition 5.2.1. If Ψ; Γ; Λ ` I , Ψ′ is well-formed, ∀l ∈ dom(Ψ).Ψ(l) = Ψ′(l), and
∀ω ∈ dom(Ψ).Ψ(ω) = Ψ′(ω), then Ψ′; Γ; Λ ` I .

Proposition 5.2.2. If Ψ; Γ; Λ ` I , Γ′ is well-formed, and Γ <: Γ′, then Ψ; Γ′; Λ ` I .

Proposition 5.2.3 is useful for checking that a buffered monitor type is well-formed,
with rule T-TYPE. This proposition is used in the proof of Proposition 5.2.4 and in the
proof of Lemma 5.2.10.

Proposition 5.2.3. The free type variables of a buffer monitor type is the free type vari-
ables of its parameter: ftv(BufferMonitor(τ)) = ftv(τ).

Proof. The proof is done from bottom-up, meaning that we start by getting the free
names of the type definitions present in BufferMonitor and finish getting the free names
of BufferMonitor(τ).

By the definition of enqueueContinuation, we have

ftv(enqueueContinuation(λ)) = ftv(∃ α.〈(r1 :α) requires (λ), α〉ro)

By the definition of ftv and using simple operations of set theory:

ftv(∃ α.〈(r1 :α) requires (λ), α〉ro) = ftv(〈(r1 :α) requires (λ), α〉ro \ {α}
= (ftv((r1 :α) requires (λ)) ∪ ftv(α)) \ {α}
= (ftv(α) ∪ ftv(λ) ∪ ftv(α)) \ {α}
= ({α} ∪ {λ} ∪ {α}) \ {α}
= {λ}

Hence, ftv(enqueueContinuation(λ)) = {λ}.
By definition of enqueueHandler:

ftv(enqueueHandler(α, λ, β, τ)) = ftv((r1 :α, r2 :τ,

r3 :enqueueContinuation(λ),

r4 :β) requires (λ))

By applying the definition of ftv, we have

ftv((r1 :α, r2 :τ, r3 :enqueueContinuation(λ), r4 :β) requires (λ))

= ftv(α) ∪ ftv(τ) ∪ ftv(enqueueContinuation(λ)) ∪ ftv(β) ∪ {λ}
={α} ∪ ftv(τ) ∪ ftv(enqueueContinuation(λ)) ∪ {β} ∪ {λ}

But we have that ftv(enqueueContinuation(λ)) = {λ}, hence,

{α} ∪ ftv(τ) ∪ ftv(enqueueContinuation(λ)) ∪ {β} ∪ {λ}
={α} ∪ ftv(τ) ∪ {λ} ∪ {β} ∪ {λ}

Chapter 5. Compiling π into MIL 71

Therefore,
ftv(enqueueHandler(α, λ, β, τ)) = {α, λ, β} ∪ ftv(τ)

By definition of dequeueContinuation we have

ftv(dequeueContinuation(λ, τ)) = ftv(∃β.〈(r1 :β, r2 :τ) requires (λ), β〉ro)

By applying the definition of ftv we obtain

ftv(∃α.〈(r1 :α, r2 :τ) requires (λ), α〉ro)

= ftv(〈(r1 :α, r2 :τ) requires (λ), α〉ro) \ {α}
=(ftv((r1 :α, r2 :τ) requires (λ)) ∪ ftv(α) \ {α}
=((ftv(α) ∪ ftv(τ) ∪ ftv(λ)) ∪ {α}) \ {α}
=(({α} ∪ ftv(τ) ∪ {λ}) ∪ {α}) \ {α}

Next we use the set theory to simplify the expression

(({α} ∪ ftv(τ) ∪ {λ}) ∪ {α}) \ {α} = {λ} ∪ ftv(τ)

Therefore, ftv(dequeueContinuation(λ, τ)) = {λ} ∪ ftv(τ).
By applying the definition of dequeueHandler, we get

ftv(dequeueHandler(α, λ, β, τ))

= ftv((r1 :α, r2 :dequeueContinuation(λ, τ), r3 :β) requires (λ))

Next, we use the definition of function ftv

ftv((r1 :α, r2 :dequeueContinuation(λ, τ), r3 :β) requires (λ))

= ftv(α) ∪ ftv(dequeueContinuation(λ, τ)) ∪ ftv(β) ∪ ftv(λ)

={α} ∪ ftv(dequeueContinuation(λ, τ)) ∪ {β} ∪ {λ}

Since ftv(dequeueContinuation(λ, τ)) = {λ} ∪ ftv(τ), hence,

{α} ∪ ftv(dequeueContinuation(λ, τ)) ∪ {β} ∪ {λ}
={α} ∪ ({λ} ∪ ftv(τ)) ∪ {β} ∪ {λ}

Simplifying the expression, we obtain

{α} ∪ ({λ} ∪ ftv(τ)) ∪ {β} ∪ {λ} = {λ, α, β} ∪ ftv(τ)

Thus, ftv(dequeueHandler(α, λ, β, τ)) = {λ, α, β} ∪ ftv(τ).
We apply the definition of QueueRep.

ftv(QueueRep(α, λ, τ))

= ftv(∃ β.〈β, enqueueHandler(α, λ, β, τ), dequeueHandler(α, λ, β, τ)〉ro)

Chapter 5. Compiling π into MIL 72

Again, we apply the definition of ftv.

ftv(∃ β.〈β, enqueueHandler(α, λ, β, τ), dequeueHandler(α, λ, β, τ)〉ro)

= ftv(〈β, enqueueHandler(α, λ, β, τ), dequeueHandler(α, λ, β, τ)〉ro) \ {β}
=(ftv(β) ∪ ftv(enqueueHandler(α, λ, β, τ))∪

ftv(dequeueHandler(α, λ, β, τ))) \ {β}
=({β} ∪ ftv(enqueueHandler(α, λ, β, τ))∪

ftv(dequeueHandler(α, λ, β, τ))) \ {β}

But we have

ftv(enqueueHandler(α, λ, β, τ)) = {λ, α, β} ∪ ftv(τ) and

ftv(dequeueHandler(α, λ, β, τ)) = {λ, α, β} ∪ ftv(τ).

Hence,

({β} ∪ ftv(enqueueHandler(α, λ, β, τ))∪
ftv(dequeueHandler(α, λ, β, τ))) \ {β}

=({β} ∪ ({λ, α, β} ∪ ftv(τ)) ∪ ({λ, α, β} ∪ ftv(τ))) \ {β}
={λ, α} ∪ ftv(τ)

Therefore, ftv(QueueRep(α, λ, τ)) = {λ, α} ∪ ftv(τ).
By the definition of Queue, we get

ftv(Queue(λ, τ)) = ftv(µ α.〈QueueRep(α, λ, τ), int〉λ)

By the definition of ftv, we have

ftv(〈QueueRep(α, λ, τ), int〉λ) \ {α}
=(ftv(QueueRep(α, λ, τ) ∪ ftv(int) ∪ {λ}) \ {α}
=(ftv(QueueRep(α, λ, τ) ∪ ∅ ∪ {λ}) \ {α}
= ftv(QueueRep(α, λ, τ) \ {α} ∪ {λ}

But we know that ftv(QueueRep(α, λ, τ)) = {λ, α} ∪ ftv(τ), thus we get

ftv(QueueRep(α, λ, τ) \ {α} ∪ {λ} = ({λ, α} ftv(τ)) \ {α} ∪ {λ}

Again, simplifying the expression.

({λ, α} ∪ ftv(τ)) \ {α} ∪ {λ} = ftv(τ) ∪ {λ}

Chapter 5. Compiling π into MIL 73

Hence, ftv(Queue(λ, τ)) = {λ} ∪ ftv(τ).
By the definition of waitContinuation, we obtain

ftv(waitContinuation(λ)) = ftv(∃α.〈(r1 :α) requires (λ), α〉ro)

By definition of ftv we have

ftv(∃α.〈(r1 :α) requires (λ), α〉ro)

= ftv(〈(r1 :α) requires (λ), α〉ro) \ {α}
=(ftv((r1 :α) requires (λ)) ∪ ftv(α)) \ {α}
=((ftv(α) ∪ ftv(λ)) ∪ {α}) \ {α}
=(({α} ∪ {λ}) ∪ {α}) \ {α}
={λ}

Therefore, ftv(waitContinuation(λ)) = {λ}.
By definition of Condition.

ftv(Condition(λ)) = ftv(Queue(λ,waitContinuation(λ)))

We have that ftv(Queue(λ, τ)) = {λ} ∪ ftv(τ), thus

ftv(Queue(λ,waitContinuation(λ))) = {λ} ∪ ftv(waitContinuation(λ))

We also have ftv(waitContinuation(λ)) = {λ}, therefore,

{λ} ∪ ftv(waitContinuation(λ)) = {λ} ∪ {λ}

Hence, ftv(Condition(λ)) = {λ}.
By definition of UnpackedBufferMonitor we have

ftv(UnpackedBufferMonitor(λ, τ)) = ftv(〈Queue(λ, τ),Condition(λ), 〈λ〉λ〉ro)

By the definition of ftv we get

ftv(〈Queue(λ, τ),Condition(λ), 〈λ〉λ〉ro)

= ftv(Queue(λ, τ)) ∪ ftv(Condition(λ)) ∪ ftv(〈λ〉λ)
= ftv(Queue(λ, τ)) ∪ ftv(Condition(λ)) ∪ (ftv(λ) ∪ ftv(λ))

= ftv(Queue(λ, τ)) ∪ ftv(Condition(λ)) ∪ ({λ} ∪ {λ})

Since ftv(Queue(λ, τ)) = {λ} ∪ ftv(τ) and ftv(Condition(λ)) = {λ}, hence,

ftv(Queue(λ, τ)) ∪ ftv(Condition(λ)) ∪ ({λ} ∪ {λ})
=({λ} ∪ ftv(τ)) ∪ {λ} ∪ ({λ} ∪ {λ})
={λ} ∪ ftv(τ)

Chapter 5. Compiling π into MIL 74

So, ftv(UnpackedBufferMonitor(λ, τ)) = {λ} ∪ ftv(τ).
Finally, by the definition of BufferMonitor, we have

ftv(BufferMonitor(τ)) = ftv(∃λ.UnpackedBufferMonitor(λ, τ))

We apply the definition of function ftv and get

ftv(∃λ.UnpackedBufferMonitor(λ, τ)) = ftv(UnpackedBufferMonitor(λ, τ)) \ {λ}

But we know that ftv(UnpackedBufferMonitor(λ, τ)) = {λ} ∪ ftv(τ), hence,

ftv(UnpackedBufferMonitor(λ, τ)) \ {λ} = ({λ} ∪ ftv(τ)) \ {λ}

Thus, we have that ftv(BufferMonitor(τ)) = ftv(τ).

Proposition 5.2.4 is helpful for checking that a translated type is well-formed (and
closed) and that is not a local tuple type or a singleton lock type (needed to store and
move translated values). It is used in proof of Lemma 5.2.6, of Lemma 5.2.9, and of
Lemma 5.2.10.

Proposition 5.2.4. Function T [[T]] generates a closed type (ftv(T [[T]]) = ∅) either of the
form ∃λ.τ (the translation of a channel type ˆ[~T]) or of the form int (the translation of an
integer type int).

Proof. The proof follows by induction on the definition of function T [[·]].

• Case T is int. By definition of the translation, T [[int]] = int. We have that ftv(int) =

∅, by the definition of ftv.

• Case T is ˆ[T1, . . . , Tn], we have the translation

T [[ˆ[T1, . . . , Tn]]] = BufferMonitor(〈T [[T1, . . . , Tn]]〉ro)

By Proposition 5.2.3, we have that

ftv(BufferMonitor(〈T [[T1, . . . , Tn]]〉ro)) = ftv(〈T [[T1, . . . , Tn]]〉ro)

By definition of ftv we have

ftv(〈T [[~T]]〉ro) =
⋃
i

ftv(T [[Ti]])

By induction hypothesis T [[T1]], . . . , T [[Tn]] are closed types, thus⋃
i

ftv(T [[Ti]]) = ∅

Hence, T [[ˆ[T1, . . . , Tn]]] is closed.

Type T [[ˆ[T1, . . . , Tn]]] is of the form ∃λ.τ , because, by definition of T [[·]] and of
BufferMonitor, we have:

T [[ˆ[T1, . . . , Tn]]] = ∃λ.UnpackedBufferMonitor(〈T [[T1]], . . . , T [[Tn]]〉ro)

Chapter 5. Compiling π into MIL 75

We use Proposition 5.2.5 in the proof of Lemma 5.2.10 to assert that environments are
closed.

Proposition 5.2.5. Type 〈T [[~T]]〉ro is closed.

Proof. The proof is straightforward. By definition of ftv, we have ftv(〈T [[~T]]〉ro) =⋃
i ftv(T [[Ti]]). By Proposition 5.2.4, ftv(T [[Ti]]) = ∅, thus, ftv(〈T [[~T]]〉ro) = ∅.

Lemma 5.2.6 shows that the translation of a value V~x[[v]] is type-preserving, thus the
translation of the value’s type is assigned to register r3. This lemma is used in the proof
of Proposition 5.2.7.

Lemma 5.2.6. If

1. Γ ` v : T ,

2. Γ1(r1) = 〈T [[Γ(~x)]]〉ro,

3. fn(v) ⊆ ~x, and

4. Ψ; Γ1{r3 : T [[T]]}; ∅ ` I ,

then, Ψ; Γ1; ∅ ` (V~x[[v]]; I).

Proof. A value can either be a name or a base value (an integer). The proof is done by
inspection on the structure of value v.

Case v is n. By hypothesis, we have Γ ` n : int, Γ1(r1) = 〈T [[Γ(~x)]]〉ro, fn(n) ⊆ {~x}.
By definition of V ·[[·]], we have V~x[[n]] = (r3 := n). Our goal is to prove that Ψ; Γ1; ∅ `
(r3 := n; I).

T-INT
Ψ; Γ1 ` n : int Ψ; Γ1{r3 : int}; ∅ ` I int 6= 〈 〉

T-MOVE
Ψ; Γ1; ∅ ` (r3 := n; I)

By the definition of T [[·]], we have T [[int]] = int, thus, Ψ; Γ1{r3 : int}; ∅ ` I is given by
hypothesis.

Case v is xi. By hypothesis we have that Γ ` xi : T , Γ1(r1) = 〈T [[Γ(~x)]]〉ro, fn(xi) ⊆ ~x,
and Ψ; Γ1{r3 : T [[T]]}; ∅ ` I .

By definition of V~x[[·]], we have V~x[[xi]] = (r3 := r1[i]). We want to prove that judge-
ment Ψ; Γ1; ∅ ` (r3 := r1[i]; I) holds. Since xi ∈ ~x and Γ1(r1) = 〈T [[Γ(~x)]]〉ro, then

Γ1(r1) = 〈T [[Γ(~x)]]〉ro

= 〈T [[Γ(x1)]], . . . , T [[Γ(xi)]], . . . , T [[Γ(xn)]]〉ro

= 〈T [[Γ(x1)]], . . . , T [[T]], . . . , T [[Γ(xn)]]〉ro

Chapter 5. Compiling π into MIL 76

Let 〈~τ〉ro = 〈T [[Γ(~x)]]〉ro, where ∀τj ∈ ~τ .τj = T [[Γ(xj)]]. In particular we have that

τi = T [[Γ(xi)]] = T [[T]]

Then, the following judgement tree holds:

Γ1(r1) = 〈~τ〉ro
T-REG

Ψ; Γ1 ` r1 : 〈~τ〉ro Ψ; Γ1{r3 : τi}; ∅ ` I
Prop. 5.2.4

τi 6= λ ro ∈ {ro}
T-LOADH

Ψ; Γ1; ∅ ` r3 := r1[i]; I

Where Ψ; Γ1{r3 : T [[T]]}; ∅ ` I is given by hypothesis.

With Proposition 5.2.7, we have that copying a range of values ~v into a local tuple
(present in register r2) fills the local tuple with the translation of each π-value. This
proposition is used in the proof of Lemma 5.2.9 and in the proof of Lemma 5.2.10.

Proposition 5.2.7. If we have a sequence of values ~v (|~v| = n), a sequence of names ~x,
a π-typing Γ, a MIL-typing Ψ, an instruction sequence I , and Γ1 = (r1 : 〈T [[Γ(~x)]]〉ro, r2 :

〈τ1..τm〉) where

1. m >= n,

2. fn(~v) ⊆ ~x,

3. ∀vi ∈ ~v.Γ ` vi : Ti, and

4. Ψ; (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ̂(~v)]], τn+1..τm〉); ∅ ` I ,

then Ψ; Γ1; ∅ ` ∀ j ∈ {1, . . . , n}(V~x[[vj]]; r2[j] := r3); I .

Proof. We want to prove

Ψ; Γ1; ∅ ` ∀ j ∈ {1, . . . , n}(V~x[[vj]]; r2[j] := r3); I

We prove by induction on n.

Base case (n = 0). Our goal becomes Ψ; Γ1; ∅ ` I .
By hypothesis we have Ψ; Γ1{r2 : 〈τ1, . . . , τm〉}; ∅ ` I and Γ1(r2) = 〈τ1, . . . , τm〉. But

Γ1 = Γ1{r2 : 〈τ1, . . . , τm〉}, thus the proof for our goal is given by hypothesis.

Induction step. We prove the induction step n = k + 1. First we get to the induction
hypothesis. Let ~v = ~wvk+1 and Γ3 = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : 〈T [[Γ̂(~w)]], τk+1..τm〉). By
hypothesis, we have Γ ` vk+1 : Tk+1, Γ3(r1) = 〈T [[Γ(~x)]]〉ro, and fn(vk+1) ⊆ {~x}, then

Γ ` vk+1 : Tk+1 Γ3(r1) = 〈T [[Γ(~x)]]〉ro fn(vk+1) ⊆ {~x} (1)
Lem. 5.2.6

Ψ; Γ3; ∅ ` (V~x[[vk+1]]; r2[k + 1] := r3; I)

Chapter 5. Compiling π into MIL 77

Sequent (1) is Ψ; Γ3.1; ∅ ` (r2[k + 1] := r3; I), where

Γ3.1 = Γ3{r3 : T [[Tk+1]]} = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ̂(~w)]], τk+1..τm〉, r3 :T [[Tk+1]])

We have that T [[Tk+1]] = T [[Γ̂((vk+1))]]. Sequent (3) follows.

Γ3.1(r3) = T [[Γ̂(vk+1)]]
T-REG

Ψ; Γ3.1 ` r3 : T [[Γ̂(vk+1)]] (2) (3)
Prop. 5.2.4

T [[Γ̂(vk+1)]] 6= λ, 〈 〉
T-STOREL

Ψ; Γ3.1; ∅ ` (r2[k + 1] := r3; I)

Sequent (2) is Ψ; Γ3.1 ` r3 : 〈T [[Γ̂(~w)]], τk+1..τm〉 and checked by rule T-REG. Se-
quent (3) is Ψ; Γ3.2; ∅ ` I , where

Γ3.2 = Γ3.1{r2 : 〈T [[Γ̂(~wvk+1)]], τk+2..τm〉}
= (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ̂(~v)]], τk+2..τm〉, r3 :T [[Tk+1]])

By hypothesis we have that Ψ; (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ̂(~v)]], τk+2..τm〉); ∅ ` I , there-
fore. by Proposition 5.2.2, we have that Ψ; Γ3.2; ∅ ` I holds. Hence, by induction hypoth-
esis, we prove our case:

Ψ; Γ1; ∅ ` (∀ j ∈ {1, . . . , k + 1}(V~x[[vj]]; r2[j] := r3); I)

Proposition 5.2.8 asserts that copying a range of values from a read-only tuple into a
local tuple stores each type in the appropriate location (as expected). This proposition is
used in the proof of Lemma 5.2.9.

Proposition 5.2.8. If

• Ψ; Γ ` v : 〈τ ′1..τ ′n~τ ′〉ro,

• ∀τ ∈ τ ′1..τ ′n.τ 6= λ, 〈 〉, Ψ; Γ ` r : 〈~ττ1..τm〉, rt /∈ dom(Γ), and

• Ψ; Γ{r : 〈~ττ ′1..τ ′n..τm〉}; Λ ` I with m >= n,

then, Ψ; Γ; Λ ` ∀j ∈ {1 . . . n}.(rt := v[j]; r[j + |~τ |]); I .

Proof. The proof is by induction on n.

Base case (n = 0). Our goal is to prove that the following judgement holds.

Ψ; Γ; Λ ` ∀j ∈ ∅.(rt := v[j]; r[j + |~τ |]); I or simply Ψ; Γ; Λ ` I

Since Γ1{r : 〈~ττ1..τm〉} is Γ1, then Ψ; Γ; Λ ` I is Ψ; Γ1{r : 〈~ττ1..τm〉}; Λ ` I . Hence,
this case is proved by hypothesis.

Chapter 5. Compiling π into MIL 78

Induction step (n > 0). Our goal is to check that

Ψ; Γ1; Λ `∀j ∈ {1 . . . n+ 1}.(rt := v[j]; r[j + |~τ |]); I

First we want to prove the induction hypothesis. Let I1 = (r[n + 1 + |~τ |] := rt; I).
Let Γ1.1 = Γ1{r : 〈~ττ ′1..τ ′n+1τn+2..τm〉} and Γ1.2 = Γ1.1{rt : τ ′n+1}. All premises are given
by hypothesis, except the following tree.

H
Ψ; Γ1.1 ` v : 〈τ ′1..τ ′n+1~τ

′〉ro
(1)︷ ︸︸ ︷

Ψ; Γ1.2; Λ ` I1

H
τ ′n+1 6= λ

T-LOADH
Ψ; Γ1.1; Λ ` (rt := v[n+ 1]; I1)

Sequent (1) follows.

Γ1.2(rt) = τ ′n+1
T-REG

Ψ; Γ1.2 ` rt : τ ′n+1 (2) (3)
H

τ ′n+1 6= λ, 〈 〉
T-STOREL

Ψ; Γ1.2; Λ ` (r[n+ 1 + |~τ |] := rt; I)

Sequent (2) is Ψ; Γ1.2 ` r : 〈~ττ ′1..τ ′n..τm〉 and is given by rule T-REG. Sequent (3) is
Ψ; Γ1.2{r : 〈~ττ1..τm〉}. We have that

Γ1{r : 〈~ττ ′1..τ ′n+1..τm〉} <: Γ1.2{r : 〈~ττ ′1..τ ′n+1..τm〉}

Therefore, by Proposition 5.2.2 we have

Ψ; Γ1.1{r : 〈~ττ ′1..τ ′n+1..τm〉}; Λ ` I

Thus, by induction hypothesis, we have that this case holds.

Lemma 5.2.9 shows that merging environments preserves the types in the merged
environment. Used in the proof of Lemma 5.2.10.

Lemma 5.2.9. If Ψ; (r1 :〈T [[~x~y]]〉ro); ∅ ` I , then Ψ; (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ(~y)]]〉ro); ∅ `
(EΓ(~x, ~y); I).

Proof. By definition of the environment-merge function we have:

EΓ(~x, ~y) =(r3 := new |~x~y|; I1)

with I1 =(∀ i ∈ {1, . . . , |~x|}.(r4 := r1[i]; r3[i] := r4); I2),

I2 =(∀ i ∈ {1, . . . , |~y|}.(r4 := r2[i]; r3[i+ |~x|] := r4); I3),

I3 =(share r3 read-only; r1 := r3; I),

n =|~x|, and

m =|~y|.

Chapter 5. Compiling π into MIL 79

Let Γ1 = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ(~y)]]〉ro) and Γ2 = (r1 :〈T [[~x~y]]〉ro).
Our goal is to prove that Ψ; Γ1; ∅ ` (EΓ(~x, ~y); I) holds.

(1)︷ ︸︸ ︷
Ψ; Γ1{r3 : 〈 ~int〉}; ∅ ` I1 |~x~y| = | ~int|

T-NEW
Ψ; Γ1; ∅ ` (r3 := new |~x~y|; I1)

Let Γ1.1 = Γ1{r3 : 〈 ~int〉} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : 〈T [[Γ(~y)]]〉ro, r3 : 〈 ~int〉). If Ψ; Γ1.1; ∅ `
r1 : 〈T [[Γ(~x)]]〉ro (rule T-REG), ∀τ ∈ T [[Γ(~x)]] 6= λ, 〈 〉 (by Proposition 5.2.4), Ψ; Γ1.1 `
r3 : 〈 ~int〉 (rule T-REG), r4 /∈ dom(Γ1.1), sequent (2) Ψ; Γ1.1{r3 : 〈Γ(~x), ~int〉}; ∅ ` I2, and
| ~int| >= |~x|, then, by Proposition 5.2.8, sequent (1) holds.

We are left with proving sequent (2) Ψ; Γ1.2; ∅ ` I2, with

Γ1.2 = {r3 : 〈Γ(~x), ~int〉} = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ(~y)]]〉ro, r3 :〈Γ(~x), ~int〉)

If Ψ; Γ1.2; ∅ ` r2 : 〈T [[Γ(~y)]]〉ro (rule T-REG), ∀τ ∈ T [[Γ(~y)]] 6= λ, 〈 〉 (by Proposi-
tion 5.2.4), Ψ; Γ1.2 ` r3 : 〈Γ(~x), ~int〉 (rule T-REG), r4 /∈ dom(Γ1.2), sequent (3) is

Ψ; Γ1.2{r3 : 〈Γ(~x~y)〉}; ∅ ` I3

and | ~int| = |~y|, then, by Proposition 5.2.8, sequent (2) holds. Let

Γ1.3 = {r3 : 〈Γ(~x~y)〉} = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ(~y)]]〉ro, r3 :〈Γ(~x~y)〉)

We need to prove that sequent (3) Ψ; Γ1.3; ∅ ` I3 holds.

Γ1.3(r3) = 〈T [[Γ(~x~y)]]〉
T-REG

Ψ; Γ1.3 ` r3 : 〈T [[Γ(~x~y)]]〉 (4)
T-SHARER

Ψ; Γ1.3; ∅ ` (share r3 read-only; r1 := r3; I)

Let

Γ1.4 = Γ1.3{〈T [[Γ(~x~y)]]〉ro : =}(r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ(~y)]]〉ro, r3 :〈Γ(~x~y)〉ro)

Sequent (4) is Ψ; Γ1.4; ∅ ` (r1 := r3; I), which we typecheck following.

Γ1.4(r3) = 〈T [[Γ(~x~y)]]〉ro
T-REG

Ψ; Γ1.4 ` r3 : 〈T [[Γ(~x~y)]]〉ro (5) 〈T [[Γ(~x~y)]]〉ro 6= 〈 〉
T-MOVE

Ψ; Γ1.4; ∅ ` (r1 := r3; I)

Sequent (5) is Ψ; Γ1.4{r1 : 〈T [[Γ(~x~y)]]〉ro}; ∅ ` I . By hypothesis

Ψ; (r1 :〈T [[~x~y]]〉ro); ∅ ` I

We have (r1 : 〈T [[~x~y]]〉ro) <: Γ1.4{r1 : 〈T [[Γ(~x~y)]]〉ro} (rules S-CODE and S-REGFILE).
Hence, by Proposition 5.2.2, we have that (5) holds, thus Ψ; (r3 :〈T [[Γ(~x~y)]]〉); ∅ ` I3 also
holds.

Chapter 5. Compiling π into MIL 80

Lemma 5.2.10 ensures that the translation function P~x,Γ[[P]] is type-preserving, help-
ful for proving our main result.

Lemma 5.2.10. If Γ ` P , fn(P) ⊆ ~x, and P~x,Γ[[P]] = (H, I), then ∃Ψ such that

1. ∀l ∈ dom(Ψ0).Ψ(l) = Ψ0(l),

2. Ψ ` H , and

3. Ψ; (r1 :〈T [[Γ(~x)]]〉ro); ∅ ` I .

Proof. The proof for this lemma is by induction on the structure of P .

Case P is 0. By definition of the translation function we have

P~x,Γ[[0]] = (∅,done)

We need to prove that ∃Ψ such that 1) ∀l ∈ dom(Ψ0).Ψ(l) = Ψ0(l), 2) Ψ ` ∅, and 3)
Ψ; (r1 : 〈T [[Γ(~x)]]〉ro); ∅ ` done. Let Ψ = Ψ0. Hence, 1) holds, 2) follows by the typing
rule for the heap, and 3) is a direct application of rule T-DONE.

Case P is xi〈~v〉. By definition of the translation function we have that

P~x,Γ[[xi〈~v〉]] = (∅, I)

with I = (r2 := new |~v|; I1),

I1 = (∀ j ∈ {1, . . . , |~v|}(V~x[[vj]]; r2[j] := r3); I2),

I2 = (share r2 read-only; r1 := r1[i]; jump append[〈T [[Γ̂(~v)]]〉ro]), and

Γ1 = (r1 :〈T [[Γ(~x)]]〉ro).

By hypothesis, we have that Γ ` xi〈~v〉 and that fn(xi〈~v〉) = {xi} ∪ fn(~v) ⊆ ~x. We
need to prove that ∃Ψ such that 1) ∀l ∈ dom(Ψ0).Ψ(l) = Ψ0(l), 2) Ψ ` ∅, and 3)
Ψ; (r1 :〈T [[Γ(~x)]]〉ro); ∅ ` I .

Let Ψ = Ψ0. Then 1) and 2) holds as for the previous case. We are left with proving
that judgement 3) holds. We check the following judgement.

Ψ; Γ1{r2 : 〈 ~int〉}; ∅ ` I1 |~v| = n
T-NEW

Ψ; Γ1; ∅ ` r2 := (new |~v|; I1)

Let

Γ1.1 = Γ1{r2 : 〈 ~int〉} = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈 ~int〉) and

Γ1.2 = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ̂(~v)]]〉).

We use Proposition 5.2.7 to prove sequent Ψ; Γ1.1 ∅ ` I1. For that we need to show:

Chapter 5. Compiling π into MIL 81

(i) ∀vi ∈ ~v : Γ ` vi : Ti,

(ii) fn(~v) ⊆ ~x, and

(iii) Ψ; Γ1.2; ∅ ` I2.

We have (i) using rule TV-OUT and the hypothesis; for (ii) we use the hypothesis and the
definition of fn. So, we prove (iii).

Γ1.2(r2) = 〈T [[Γ̂(~v)]]〉
T-REG

Ψ; Γ1.2 ` r2 : 〈T [[Γ̂(~v)]]〉 (1)
T-SHARER

Ψ; Γ1.2; ∅ ` (share r2 read-only; r1 := r1[i]; jump append[〈T [[Γ̂(~v)]]〉ro])

Let Γ1.3 = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[Γ̂(~v)]]〉ro). Since xi ∈ ~x, therefore

〈T [[Γ(~x)]]〉ro = 〈T [[Γ(x1)]], . . . T [[Γ(xi)]], . . . , T [[Γ(xn)]]〉ro

We are left with proving sequent (1), Ψ;Γ1.3;∅`(r1 := r1[i];jump append[〈T [[Γ̂(~v)]]〉ro]).

Γ1.3(r1) = 〈T [[Γ(~x)]]〉ro
T-REG

Ψ; Γ1.3 ` r1 : 〈T [[Γ(~x)]]〉ro (2)
Prop. 5.2.4

T [[Γ(xi)]] 6= λ
T-LOADH

Ψ; Γ1.3; ∅ ` (r1 := r1[i]; jump append[〈T [[Γ̂(~v)]]〉ro])

Next, we prove judgement (2) Ψ; Γ4; ∅ ` jump append[〈T [[Γ̂(~v)]]〉ro], where

Γ1.4 = Γ1.3{r1 : T [[Γ(xi)]]} = (r1 :T [[Γ(xi)]], r2 :〈T [[Γ̂(~v)]]〉ro)

By hypothesis and rule TV-OUT Γ̂(~v) = ~T ; by hypothesis and by definition of T [[·]]
T [[Γ(xi)]] = BufferMonitor(〈T [[~T]]〉ro). Hence, we rewrite sequent (2) as Ψ;Γ1.4;∅ `
jump append[〈T [[~T]]〉ro] and Γ1.4 as (r1 : BufferMonitor(〈T [[~T]]〉ro), r2 : 〈T [[~T]]〉ro). Let
Γ1.5 = (r1 : BufferMonitor(α), r2 : α). We have that Γ1.4 = Γ1.5{〈T [[~T]]〉ro/α} and
〈T [[~T]]〉ro 6= 〈 〉, for proving rule T-VALAPP.

Prop. 5.2.5
ftv(〈T [[~T]]〉ro) = ∅

T-TYPE
Ψ ` 〈T [[~T]]〉ro

ftv
ftv(α) = {α}

Prop. 5.2.3
ftv(BufferMonitor(α))={α}

ftv
ftv(α)={α} {α}∪{α}={α}

∪
ftv(BufferMonitor(α)) ∪ ftv(α) = {α}

ftv
ftv(Γ1.5) = {α} {α} \ α = ∅

\
ftv(Γ1.5) \ {α} = ∅

ftv
ftv(∀[α].(Γ1.5)) = ∅

T-TYPE
Ψ ` ∀[α].(Γ1.5)

S-REFLEX
Ψ;∀[α].(Γ5) <: ∀[α].(Γ1.5)

T-LABEL
Ψ; Γ1.4 ` append : ∀[α].(Γ1.5)

T-VALAPP
Ψ; Γ1.4 ` append[〈T [[~T]]〉ro]

T-JUMP
Ψ; Γ1.4; ∅ ` jump append[〈T [[~T]]〉ro]

We know that Ψ0(append) = ∀[α].(Γ1.5) = ∀[α].(r1 :BufferMonitor(α), r2 :α).

Chapter 5. Compiling π into MIL 82

Case P is xi(~y).Q. By definition of the translation function, we have:

(H, jump l) =P~x,Γ[[xi(~y).Q]]

with H =HQ]H ′,
(HQ, IQ) =P~x~y,Γ′

[[Q]],

H ′ ={l : Γ1{I1}}] {l′ : Γ2{I2}},
I1 =(r2 := new 2; I1.1),

I1.1 =(r2[1] := l′; I1.2),

I1.2 =(r2[2] := r1; I1.3),

I1.3 =(share r2 read-only; I1.4),

I1.4 =(r2 := pack 〈T [[Γ(~x)]]〉ro, r2 as ∃α.〈Γ3, α〉ro; I1.5),

I1.5 =(r1 := r1[i]; I1.6),

I1.6 =jump remove[〈T [[~T]]〉ro],

I2 =(EΓ′
(~x, ~y); IQ),

Γ1 =(r1 :〈T [[Γ(~x)]]〉ro),

Γ2 =(r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[~T]]〉ro), and

Γ3 =(r1 :α, r2 :〈T [[Γ′(~y)]]〉ro) = (r1 :α, r2 :〈T [[~T]]〉ro).

Labels l and l′ are fresh.
By hypothesis, we have that Γ ` xi(~y).Q and fn(xi(~y).Q) ⊆ ~x. Let Γ(xi) = ˆ[~T] and

Γ′ = Γ, ~y : ~T . Our goal is to prove that ∃Ψ such that 1) ∀l ∈ dom(Ψ0).Ψ(l) = Ψ0(l), 2)
Ψ ` H , and 3) Ψ; Γ1; ∅ ` jump l.

Since we have that Γ ` xi(~y).Q, then Γ′ ` Q and Γ ` xi : ˆ[~T], rule TV-IN. By the
definition of free names fn(xi(~y).Q) = ({xi} ∪ fn(Q)) \ {~y}. Simplifying the expression

({xi} ∪ fn(Q)) \ {~y} ⊆ {~x}
=(({xi} ∪ fn(Q) \ {~y}) ∪ {~y}) ⊆ {~x} ∪ {~y}
={xi} ∪ fn(Q) ⊆ {~x~y}
=fn(Q) ⊆ {~x~y}

By ΓQ ` Q, fn(Q) ⊆ {~x~y}, and the induction hypothesis, we have that ∃ΨQ such that

(i) ∀l ∈ dom(Ψ0).ΨQ(l) = Ψ0(l),

(ii) ΨQ ` HQ, and

(iii) ΨQ; Γ1; ∅ ` IQ.

Let Ψ = ΨQ, l : Γ1, l
′ : Γ2, with l and l′ fresh. Judgement (i) holds, hence, ∀li ∈

dom(Ψ0).Ψ(li) = Ψ0(li) also holds. By the heap typing rule, if Ψ ` HQ and Ψ ` H ′,

Chapter 5. Compiling π into MIL 83

then Ψ ` HQ] H ′. By Proposition 5.2.1, since ΨQ ` HQ and Ψ = ΨQ, l : Γ1, l
′ : Γ2,

then Ψ ` HQ. We are left with proving that Ψ ` H ′ to prove that Ψ ` H holds. First, we
prove that Ψ ` l Γ1{I1}. By applying the typing rule for heap values, we get

(1.1) |int, int| = 2
T-NEW

Ψ; Γ1; ∅ ` (r2 := new 2; I1.1)

We are left with sequent (1.1) Ψ; Γ1.1; ∅ ` I1.1, where

Γ1.1 = Γ1{r2 : 〈int, int〉} = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈int, int〉)

Let Γ1.2 = Γ1.1{r2 : 〈Γ2, int〉} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : 〈Γ2, int〉). For rule T-LABEL we
have Ψ(l) = Γ2. For rule T-STOREL Γ2 6= λ, 〈 〉.

(1.2.1)︷ ︸︸ ︷
ftv(Γ2) = ∅

T-TYPE
Ψ ` Γ2

S-REFLEX
Ψ ` Γ2 <: Γ2

T-LABEL
Ψ; Γ1.1 ` l′ : Γ2

Γ1.1(r2) =〈int, int〉
T-REG

Ψ; Γ1.1 ` r2 :〈int, int〉
(1.2)︷ ︸︸ ︷

Ψ; Γ1.2; ∅ ` I1.2
T-STOREL

Ψ; Γ1.1; ∅ ` (r2[1] := l′; I1.2)

Sequent (1.2.1) follows.

Prop. 5.2.5
ftv(〈T [[Γ(~x)]]〉ro)=∅

Prop. 5.2.5
ftv(〈T [[~T]]〉ro)=∅

∪
ftv(〈T [[Γ(~x)]]〉ro) ∪ ftv(〈T [[~T]]〉ro) = ∅

ftv
ftv(Γ2) = ∅

We typecheck instruction sequence I1.2 via judgement (1.2). For rule T-STOREL, we have
that 〈T [[Γ(~x)]]〉ro 6= λ, 〈 〉.

Γ1.2(r1) = 〈T [[Γ(~x)]]〉ro
T-REG

Ψ; Γ1.2 ` r1 : 〈T [[Γ(~x)]]〉ro
Γ1.2(r2) = 〈Γ2, int〉

T-REG
Ψ; Γ1.2 ` r2 : 〈Γ2, int〉 (1.3)

T-STOREL
Ψ; Γ1.2; ∅ ` (r2[2] := r1; I1.3)

Let Γ1.3 = Γ1.2{r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉). Next,
we prove sequent (1.3) Ψ; Γ1.3; ∅ ` I1.3.

Γ1.3(r2) = 〈Γ2, 〈T [[Γ(~x)]]〉ro〉
T-REG

Ψ; Γ1.3 ` r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉 (1.4)
T-SHARER

Ψ; Γ1.3; ∅ ` (share r2 read-only; I1.4)

Let Γ1.4 = Γ1.3{r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro).
We continue by proving judgement (1.4) Ψ; Γ1.4; ∅ ` I1.4.

(1.5) (1.6) ∃α.〈Γ3, α〉ro 6= 〈 〉
T-MOVE

Ψ; Γ1.4; ∅ ` (r2 := pack 〈T [[Γ(~x)]]〉ro, r2 as ∃α.〈Γ3, α〉ro; I1.5)

Chapter 5. Compiling π into MIL 84

Let Γ1.5 = Γ1.4{r2 : ∃α.〈Γ3, α〉ro} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : ∃α.〈Γ3, α〉ro). Now we have
to prove two judgements: (1.5) Ψ; Γ1.4 ` pack 〈T [[Γ(~x)]]〉ro, r2 as ∃α.〈Γ3, α〉ro and (1.6)

Ψ; Γ1.5; ∅ ` I1.5. First, we address sequent (1.5). For rule T-PACK we have that

• α /∈ 〈T [[Γ(~x)]]〉ro, by Proposition 5.2.4,

• α /∈ Ψ, by change of bound names, and

• 〈(r1 :α, r2 :〈T [[Γ(~y)]]〉ro), α〉ro 6= 〈 〉.

For sequent (1.5) we have the following induction tree.

Prop. 5.2.5
ftv(〈T [[Γ(~x)]]〉ro) = ∅

T-TYPE
Ψ ` 〈T [[Γ(~x)]]〉ro

Γ1.4(r2) = 〈Γ3, α〉ro{〈T [[Γ(~x)]]〉ro/α}
T-REG

Ψ; Γ1.4 ` r2 : 〈Γ3, α〉ro{〈T [[Γ(~x)]]〉ro/α}
T-PACK

Ψ; Γ1.4 ` pack 〈T [[Γ(~x)]]〉ro, r2 as ∃α.〈Γ3, α〉ro

With respect to rule T-LOADH, since xi ∈ ~x (by hypothesis), then

Γ(~x) = Γ(x1), . . . ,Γ(xi), . . . ,Γ(xn)

We now address judgement (1.6).

Γ1.5(r1) = 〈T [[Γ(~x)]]〉ro
T-REG

Ψ; Γ1.5 ` r1 : 〈T [[Γ(~x)]]〉ro (1.7)
Prop 5.2.4

T [[Γ(xi)]] 6= λ
T-LOADH

Ψ; Γ1.5; ∅ ` (r1 := r1[i]; I1.6)

Now, we typecheck instruction sequence I1.6, using judgement (1.7) Ψ; Γ1.6; ∅ ` I1.6.
Let Γ1.6 = Γ1.5{r1 : T [[Γ(xi)]]} = (r1 : T [[Γ(xi)]], r2 : ∃α.〈Γ3, α〉ro), and Γ1.7 = (r1 :

BufferMonitor(β),r2 :∃α.〈(r1 :α, r2 :β), α〉ro). By definition of T [[·]], we have T [[Γ(xi)]] =

BufferMonitor(〈T [[~T]]〉ro). Notice that Γ1.7 = Γ1.6{〈T [[~T]]〉ro/β}. By definition of ftv and
Proposition 5.2.3, we have that

ftv(∀[β].Γ1.7)

= ftv(Γ1.7) \ {β}
=(ftv(BufferMonitor(β)) ∪ ftv(∃α.〈(r1 :α, r2 :β), α〉ro)) \ {β}
=(ftv(BufferMonitor(β)) ∪ ftv(〈(r1 :α, r2 :β), α〉ro) \ {α}) \ {β}
=(ftv(BufferMonitor(β)) ∪ (ftv((r1 :α, r2 :β)) ∪ ftv(α)) \ {α}) \ {β}
=(ftv(BufferMonitor(β)) ∪ ((ftv(α) ∪ ftv(β)) ∪ ftv(α)) \ {α}) \ {β}
=(ftv(BufferMonitor(β)) ∪ (({α} ∪ {β}) ∪ {α}) \ {α}) \ {β}
= ftv(BufferMonitor(β)) \ {β}
={β} \ {β}
=∅

Chapter 5. Compiling π into MIL 85

Thus, ftv(∀[β].Γ1.7) = ∅. For rule T-VALAPP, we have 〈T [[~T]]〉ro 6= 〈 〉.

Prop. 5.2.5
ftv(〈T [[~T]]〉ro) = ∅

T-TYPE
Ψ ` 〈T [[~T]]〉ro

ftv(∀[β].(Γ1.7)) = ∅
S-REFLEX

Ψ ` ∀[β].(Γ1.7) <: ∀[β].(Γ1.7)
T-LABEL

Ψ; Γ1.6 ` remove : ∀[β].(Γ1.7)
T-VALAPP

Ψ; Γ1.6 ` remove[〈T [[~T]]〉ro] : Γ1.6
T-JUMP

Ψ; Γ1.6; ∅ ` jump remove[〈T [[~T]]〉ro]

For asserting that Ψ(remove) = ∀[β].(Γ1.7), we follow the scheme on the case for the
output process, where we prove that Ψ(append) = ∀[α].(Γ5). Hence, Ψ ` l Γ1{I1} holds.

We continue by proving Ψ ` {l′ : Γ2{I2}}. By induction hypothesis, we have that
ΨQ; (r1 :〈T [[Γ′(~x~y)]]〉ro); ∅ ` IQ. Hence, by Proposition 5.2.1, Ψ; (r1 :〈T [[Γ′(~x~y)]]〉ro); ∅ `
IQ holds. By Lemma 5.2.9, we prove Ψ; Γ2; ∅ ` (EΓ′

(~x, ~y); IQ), where (EΓ′
(~x, ~y); IQ) is

I2. Given that Ψ ` H ′(l) and Ψ ` H ′(l′), hence, Ψ ` H ′ (heap typing rule). Since we
have Ψ ` H ′ and Ψ ` HQ, then, by the heap typing rule, we have that Ψ ` H .

Finally, we prove 3) Ψ; Γ1; ∅ ` jump l, thereby concluding our proof for this case.

Ψ(l) = Γ1

Prop. 5.2.5
ftv(〈T [[Γ(~x)]]〉ro) = ∅

ftv
ftv(Γ1) = ∅

T-TYPE
Ψ ` Γ1

S-REFLEX
Ψ ` Γ1 <: Γ1

T-LABEL
Ψ; Γ1 ` l : Γ1

T-JUMP
Ψ; Γ1; ∅ ` jump l

Case P is !xi(~y).Q. The proof is similar to the previous case apart from typechecking
the following code block:

l′ Γ2 {fork l; EΓ′
(~x, ~y); IQ}

Where P~x~y,Γ′
[[Q]] = (HQ, IQ) and Γ2 = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : 〈T [[~T]]〉ro). The type

inference for this case is

∀i.Γ2(ri) 6= 〈 〉

Prop. 5.2.5
ftv(〈T [[Γ(~x)]]〉ro) = ∅

T-TYPE
Ψ ` 〈T [[Γ(~x)]]〉ro

S-REGFILE
Γ1 <: Γ2

S-CODE
Γ1 <: Γ2

T-LABEL
Ψ; Γ2 ` l : ∀[].(Γ2) Ψ; (r1:〈T [[Γ′(~x~y)]]〉ro); ∅ ` IQ

T-FORK
Ψ; Γ2; ∅ ` (fork l; EΓ′

(~x, ~y); IQ)

By induction hypothesis, we have that ΨQ; (r1 :〈T [[Γ′(~x~y)]]〉ro); ∅ ` IQ. Hence, by Propo-
sition 5.2.1, Ψ; (r1 :〈T [[Γ′(~x~y)]]〉ro); ∅ ` IQ holds. By Lemma 5.2.9, we prove Ψ; Γ2; ∅ `
(EΓ′

(~x, ~y); IQ).

Chapter 5. Compiling π into MIL 86

Case P is Q1 | Q2. By the definition of the translation function we have:

(H, I) = P~x,Γ[[Q1 | Q2]]

with H = {lQ1 : Γ1{IQ1}}] {lQ2 : Γ1{IQ2}}]HQ1]HQ2 ,

I = (fork lQ1 ; fork lQ2 ; done),

(HQ1 , IQ1) = P~x,Γ[[Q1]],

(HQ2 , IQ2) = P~x,Γ[[Q2]], and

Γ1 = (r1 :〈T [[Γ(~x)]]〉ro).

By hypothesis, Γ ` Q1 | Q2 and fn(Q1 | Q2) ⊆ ~x. Our goal is to prove that ∃Ψ such that

1. ∀l ∈ dom(Ψ0).Ψ(l) = Ψ0(l),

2. Ψ ` H , and

3. Ψ; Γ1; ∅ ` I .

Since Γ ` Q1 | Q2, using rule TV-PAR Γ ` Q1 and Γ ` Q2. By definition of
function fn, we have that fn(Q1) ∪ fn(Q2) ⊆ ~x, therefore, we have fn(Q1) ⊆ ~x and
fn(Q2) ⊆ ~x. From Γ ` Q1, Γ ` Q2, fn(Q1) ⊆ ~x, and fn(Q2) ⊆ ~x, we have, by the
induction hypothesis, that ∃ΨQ1 ,ΨQ2 such that

• ∀l ∈ dom(Ψ).ΨQ1(l) = ΨQ2(l) = Ψ0(l),

• ΨQ1 ` HQ1 ,

• ΨQ2 ` HQ2 ,

• ΨQ1 ; Γ1; ∅ ` IQ1 , and

• ΨQ2 ; Γ1; ∅ ` IQ2 .

Because ΨQ1 ` HQ1 and ΨQ1 ; Γ1; ∅ ` IQ1 , then, the heap values rule assures that we
have ΨQ1 ` HQ1]{lQ1 : Γ1{IQ1}}. Using similar arguments, ΨQ2 ` HQ2]{lQ2: Γ1{IQ2}}
follows. By construction of the translation function, the labels in dom(H) are always
fresh, thus ΨQ1 ∩ ΨQ2 = ∅. Let Ψ = ΨQ1 ∪ ΨQ2 , lQ1 : Γ1, lQ2 : Γ1, with l and l′ fresh.
By definition of the typing environment, we have that 1) holds. By Proposition 5.2.1 a)
Ψ ` HQ2] {lQ1 : Γ1{IQ1}} and b) Ψ ` HQ2] {lQ2 : Γ1{IQ2}}, entailing that 2) Ψ ` H
holds, by the heap values rule.

Next we address 3). Our goal is to prove that

Ψ; Γ1; ∅ ` (fork lQ1 ; fork lQ2 ; done)

Chapter 5. Compiling π into MIL 87

holds. We have that Ψ(lQ1) = ∀[].Γ1.

Γ1(r1) = 〈T [[Γ(~x)]]〉ro

Γ1(r1) 6= 〈 〉

Prop. 5.2.5
ftv(〈T [[Γ(~x)]]〉ro) = ∅

ftv
ftv(Γ1) = ∅

T-TYPE
Ψ ` Γ1

S-REFLEX
Ψ ` Γ1 <: Γ1

T-LABEL
Ψ; Γ1 ` lQ1 : ∀[].Γ1 (1)

T-FORK
Ψ; Γ1; ∅ ` (fork lQ1 ; fork lQ2 ; done)

The second part of this proof follows similarly to the first. We have that Ψ(lQ2) = ∀[].Γ1.

Γ1(r1) 6= 〈 〉

Prop. 5.2.5
ftv(〈T [[Γ(~x)]]〉ro) = ∅

ftv
ftv(Γ1) = ∅

T-TYPE
Ψ ` Γ1

S-REFLEX
Ψ ` Γ1 <: Γ1

T-LABEL
Ψ; Γ1 ` lQ2 : ∀[].Γ1

T-DONE
Ψ; Γ1; ∅ ` done

T-FORK
Ψ; Γ1; ∅ ` (fork lQ2 ; done)

Case P is (ν y : T)Q. By definition of P~x,Γ[[·]] we have that

P~x,Γ[[(ν y : T)Q]] =(H, I)

with H =l Γ2 {I2}]HQ,

T =ˆ[~T],

Γ′ =Γ, y : T , and

(HQ, IQ) =P~xy,Γ′
[[Q]].

Where

I2 = (r3 := new 1; I2.1),

I2.1 = (r3[1] := r2; I2.2),

I2.2 = (share r3 read-only; I2.3),

I2.3 = (r2 := r3; I2.4), and

I2.4 = (EΓ′
(~x, y); IQ).

Chapter 5. Compiling π into MIL 88

And

I = (r2 := new 2; I1.1),

I1.1 = (r2[1] := l; I1.2),

I1.2 = (r2[2] := r1; I1.3),

I1.3 = (share r2 read-only; I1.4),

I1.4 = (r1 := pack 〈T [[Γ(~x)]]〉ro, r2 as ∃β.〈(r1 :β, r2 :T [[T]]), β〉ro; I1.5), and

I1.5 = jump createBuffer[〈T [[~T]]〉ro].

With Γ1 = (r1 : 〈T [[Γ(~x)]]〉ro), Γ2 = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : T [[T]]), and Γ3 = (r1 :

〈T [[Γ′(~xy)]]〉ro. By hypothesis, Γ ` (ν y : T)Q and fn((ν y : T)Q) ⊆ ~x hold. Also Γ′ `
Q, applying both Γ ` (ν y : T)Q and rule TV-RES. By the free names definition we have
that

fn((ν y : T)Q) ⊆ {~x}
=fn(Q) \ {y} ⊆ {~x}
=(fn(Q) \ {y}) ∪ {y} ⊆ {~x} ∪ {y}
=fn(Q) ⊆ {~xy}

Hence, by induction hypothesis, we have that ∃ΨQ such that

• ∀li ∈ dom(Ψ0).ΨQ(li) = Ψ0(li)

• ΨQ ` HQ

• ΨQ; Γ3; ∅ ` IQ.

Our goal is to prove that ∃Ψ such that 1) ∀lj ∈ dom(Ψ0).Ψ(lj) = Ψ0(lj), 2) Ψ ` H ,
and 3) Ψ; Γ1; ∅ ` I . Let Ψ = ΨQ, l : Γ2, with l fresh (by definition of the translation
function). Since label l is fresh (by hypothesis) and ∀li ∈ dom(Ψ0).ΨQ(li) = Ψ0(li) (by
induction hypothesis), then, by definition of the typing environment, 1) holds.

Now we address 2). By Proposition 5.2.1 and by induction hypothesis, if ΨQ ` HQ,
then Ψ ` HQ. Judgement Ψ ` {l : Γ2{I2}} holds if Ψ; Γ2; ∅ ` I2, by the heap value
typing rule. Let Γ2.1 = Γ2{r3 : 〈int〉} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : T [[T]], r3 : 〈int〉). For
rule T-STOREL, we have that T [[T]] 6= λ, 〈 〉, by Proposition 5.2.4.

Γ2.1(r2) = T [[T]]
T-REG

Ψ; Γ2.1 ` r2 : T [[T]]

Γ2.1(r3) = 〈int〉
T-REG

Ψ; Γ2.1 ` r3 : 〈int〉 (1)
T-STOREL

Ψ; Γ2{r3 : 〈int〉}; ∅ ` (r3[1] := r2; I2.2)
T-NEW

Ψ; Γ2; ∅ ` (r3 := new 1; I2.1)

Chapter 5. Compiling π into MIL 89

The proof proceeds with sequent (1) Ψ; Γ2.1; ∅ ` I2.1. Let Γ2.2 = Γ2.1{r3 : 〈T [[T]]〉} =

(r1 :〈T [[Γ(~x)]]〉ro, r2 :T [[T]], r3 :〈T [[T]]〉).

Γ2.2(r3) = 〈T [[T]]〉
T-REG

Ψ; Γ2.2 ` r3 : 〈T [[T]]〉
(2)︷ ︸︸ ︷

Ψ; Γ2.2{r3 : 〈T [[T]]〉ro}; ∅ ` I2.3
T-SHARER

Ψ; Γ2.2; ∅ ` (share r3 read-only; I2.3)

Let Γ2.3 = Γ2.2{r3 : 〈T [[T]]〉ro} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : T [[T]], r3 : 〈T [[T]]〉ro). We prove
judgement (2).

Γ2.3(r3) = 〈T [[T]]〉ro
T-REG

Ψ; Γ2.3 ` r3 : 〈T [[T]]〉ro (3) 〈T [[T]]〉ro 6= 〈 〉
T-MOVE

Ψ; Γ2.3; ∅ ` (r2 := r3; I2.4)

We are left with proving judgement (3)

Ψ; (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈T [[T]]〉ro, r3 :〈T [[T]]〉ro); ∅ ` (EΓ′
(~x, y); IQ)

By induction hypothesis we have that Γ′ ` Q and that Γ′ = Γ, y : T , thus 〈T [[T]]〉ro =

〈T [[Γ′(y)]]〉ro and 〈T [[Γ(~x)]]〉ro = 〈T [[Γ′(~x)]]〉ro hold. So, we can rewrite sequent (3) as

Ψ; (r1 :〈T [[Γ′(~x)]]〉ro, r2 :〈T [[Γ′(y)]]〉ro, r3 :〈T [[Γ′(y)]]〉ro); ∅ ` (EΓ′
(~x, y); IQ)

By Lemma 5.2.9, sequent (3) holds if we show Ψ; Γ3; ∅ ` IQ. By induction hypothesis,
we have that ΨQ; Γ3; ∅ ` IQ. Then, by Proposition 5.2.2, sequent (3) holds. Hence,
Ψ ` {l : Γ2{I2}} holds. By the heap typing rule, if Ψ ` HQ and Ψ ` {l : Γ2{I2}}, then
Ψ ` H .

We now prove 3). Let Γ1.1 = Γ1{r2 : 〈int, int〉} = (r1 : 〈T [[Γ(~x)]]〉ro, r2 : 〈int, int〉). We
have that Ψ(l) = Γ2. Notice that on rule T-STOREL we have that Γ2 6= λ, 〈 〉.

Prop. 5.2.5
ftv(T [[Γ(~x)]]) = ∅

ftv(〈T [[Γ(~x)]]〉ro) = ∅
Prop. 5.2.4

ftv(T [[T]]) = ∅
∪

ftv(〈T [[Γ(~x)]]〉ro) ∪ ftv(T [[T]]) = ∅
ftv

ftv(Γ2) = ∅
T-TYPE

Ψ ` Γ2
S-REFLEX

Ψ ` Γ2 <: Γ2
T-LABEL

Ψ; Γ1.1 ` l : Γ2

Γ1.1(r2) = 〈int, int〉
T-REG

Ψ; Γ1.1 ` r2 : 〈int, int〉 (4)
T-STOREL

Ψ; Γ1{r2 : 〈int, int〉}; ∅ ` (r2[1] := l; I1.2)
T-NEW

Ψ; Γ1; ∅ ` (r2 := new 2; I1.1)

Chapter 5. Compiling π into MIL 90

Next, we prove sequent (4) Ψ; Γ1.2; ∅ ` I1.2, where Γ1.2 = Γ1.1{r2 : 〈Γ2, int〉} = (r1 :

〈T [[Γ(~x)]]〉ro, r2 :〈Γ2, int〉). Again, for rule T-STOREL, we have that 〈T [[Γ(~x)]]〉ro 6= λ, 〈 〉.

Γ1.2(r1) = 〈T [[Γ(~x)]]〉ro
T-REG

Ψ; Γ1.2 ` r1 : 〈T [[Γ(~x)]]〉ro
Γ1.2(r2) = 〈Γ2, int〉

T-REG
Ψ; Γ1.2 ` r2 : 〈Γ2, int〉 (5)

T-STOREL
Ψ; Γ1.2; ∅ ` (r2[2] := r1; I1.3)

Let

Γ1.3 =Γ1.2{r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉} = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈Γ2, 〈T [[Γ(~x)]]〉ro〉)
Γ1.4 =Γ1.3{r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro} = (r1 :〈T [[Γ(~x)]]〉ro, r2 :〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro)

Sequent (5) is Ψ; Γ1.3; ∅ ` I1.3, which we typecheck as follows.

Γ1.3(r2) = 〈Γ2, 〈T [[Γ(~x)]]〉ro〉
T-REG

Ψ; Γ1.3 ` r2 : 〈Γ2, 〈T [[Γ(~x)]]〉ro〉
(6)︷ ︸︸ ︷

Ψ; Γ1.4; ∅ ` I1.4
T-SHARER

Ψ; Γ1.3; ∅ ` (share r2 read-only; I1.4)

We have that T = ˆ[~T]. Let Γ3 = Γ2{β/〈T [[Γ(~x)]]〉ro} = (r1 : β, r2 : T [[T]]). We are left
with sequent (6).

(7)

(8)︷ ︸︸ ︷
Ψ; Γ1.5; ∅ ` jump createBuffer[〈T [[~T]]〉ro] 〈T [[Γ(~x)]]〉ro 6= 〈 〉

T-MOVE
Ψ; Γ1.4; ∅ ` (r1 := pack 〈T [[Γ(~x)]]〉ro, r2 as ∃β.〈Γ3, β〉ro; I1.5)

Sequent (7) is Ψ; Γ1.4 ` pack 〈T [[Γ(~x)]]〉ro, r2 as ∃β.〈Γ3, β〉ro. We have that

〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro 6= 〈 〉

and

〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro =

=〈(r1 :〈T [[Γ(~x)]]〉ro, r2 :T [[T]]), 〈T [[Γ(~x)]]〉ro〉ro =

=〈(r1 :β, r2 :T [[T]])︸ ︷︷ ︸
Γ3

, β〉ro{〈T [[Γ(~x)]]〉ro/β}

Sequent (7) follows.

Prop. 5.2.5
ftv(T [[Γ(~x)]]) = ∅

ftv
ftv(〈T [[Γ(~x)]]〉ro) = ∅

T-TYPE
Ψ ` 〈T [[Γ(~x)]]〉ro

Γ1.4(r2) = 〈Γ1, 〈T [[Γ(~x)]]〉ro〉ro
T-REG

Ψ; Γ1.4 ` r2 : 〈Γ1, 〈T [[Γ(~x)]]〉ro〉ro (7.1)
T-PACK

Ψ; Γ1.4 ` pack 〈T [[Γ(~x)]]〉ro, r2 as ∃β.〈Γ3, β〉ro

Chapter 5. Compiling π into MIL 91

Sequent (7.1) is β /∈ 〈T [[Γ(~x)]]〉ro,Ψ. By Proposition 5.2.4, β /∈ 〈T [[Γ(~x)]]〉ro and by
change of bound names, β /∈ Ψ. Let Γ1.5 and Γ′1.5 be

Γ1.5 =Γ1.4{r1 : ∃β.〈Γ3, β〉ro} = (r1 :∃β.〈(r1 :β, r2 :T [[T]]), β〉ro, r2 :〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro)

Γ′1.5 =Γ1.5{α/〈T [[T]]〉ro}
Γ′1.5 =(r1 :∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro, r2 :〈Γ2, 〈T [[Γ(~x)]]〉ro〉ro)

where T [[T]] = BufferMonitor(〈T [[~T]]〉ro)

Next, we typecheck sequent (8).

Prop. 5.2.5
ftv(T [[~T]]) = ∅

ftv
ftv(〈T [[~T]]〉ro) = ∅

T-TYPE
Ψ ` 〈T [[~T]]〉ro (9) 〈T [[~T]]〉ro 6= 〈 〉

T-VALAPP
Ψ; Γ1.5 ` createBuffer[〈T [[~T]]〉ro] : Γ1.5

T-JUMP
Ψ; Γ1.5; ∅ ` jump createBuffer[〈T [[~T]]〉ro]

We have that Ψ(createBuffer) = ∀[α].(r1 : ∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro). By
definition of ftv,

ftv(∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro)

= ftv(〈(r1 :β, r2 :BufferMonitor(α)), β〉ro) \ {β}
=(ftv((r1 :β, r2 :BufferMonitor(α))) ∪ ftv(β))) \ {β}
=((ftv(β) ∪ ftv(BufferMonitor(α))) ∪ ftv(β)) \ {β}
=(({β} ∪ ftv(BufferMonitor(α))) ∪ {β}) \ {β}
= ftv(BufferMonitor(α))

By Proposition 5.2.3 and by the definition of ftv, we have that

ftv(BufferMonitor(α)) = ftv(α) = {α}

Hence, ftv(∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro) = {α}. Finally, we prove sequent (9)

Ψ; Γ1.5 ` createBuffer : ∀[α].(Γ′1.5).

(Ψ, α : : TyVar)(α) = α : : kind(α)

ftv(∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro) = {α}
T-TYPE

Ψ, α : : TyVar ` ∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro
S-REGFILE

Ψ, α : : TyVar ` r1 :∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro <: Γ1.5
S-CODE

Ψ ` ∀[α].(r1 :∃β.〈(r1 :β, r2 :BufferMonitor(α)), β〉ro) <: ∀[α].(Γ1.5)
T-LABEL

Ψ; Γ1.5 ` createBuffer : ∀[α].(Γ′1.5)

Chapter 5. Compiling π into MIL 92

With judgement (9) proved, judgement

Ψ; Γ1; ∅ ` I

holds, thus we conclude our proof.

Theorem 5.2.11 is our main result, which warrants that the top-level translation of a
well-typed π-process produces a type-correct MIL program.

Theorem 5.2.11. If ∅ ` P , then ∃Ψ such that ∀li ∈ dom(Ψ0).Ψ(li) = Ψ0(li) and Ψ `
P [[P]].

Proof. By Corollary 2.2.8, since we have ∅ ` P , then fn(P) = ∅. By definition of P [[·]],

P [[P]] =main(){E∅(∅, ∅); IP}]HP

where (HP , IP) = P∅,∅[[P]]

Since we have ∅ ` P and fn(P) = ∅, hence, by Lemma 5.2.10, we have that ∃Ψ such that

• ∀lj ∈ dom(Ψ0).ΨP (lj) = Ψ0(lj),

• ΨP ` HP , and

• ΨP ; (r1 :〈〉ro); ∅ ` IP .

Let Ψ = ΨP ,main : (). We need to prove that 1) ∀li ∈ dom(Ψ0).Ψ(li) = Ψ0(li)

and 2) Ψ ` P [[P]]. By construction, we know that main /∈ dom(ΨP), hence, 1) holds.
By the typing rule for heap values, if Ψ ` HP and Ψ ` {main : () {E∅(∅, ∅); IP}},
then Ψ ` P [[P]] holds. Since ΨP ` HP and main /∈ dom(ΨP), then, by Propo-
sition 5.2.1, Ψ ` HP holds. We just need to show Ψ ` {main : () {E∅(∅, ∅); IP}}.
If ΨP ; (r1 : 〈〉ro); ∅ ` IP , then, by Proposition 5.2.1, Ψ; (r1 : 〈〉ro); ∅ ` IP . By defini-
tion of E ·(·, ·), we have (E∅(∅, ∅); IP) = (r3 := new 0; share r3 read-only; r1 := r3; IP),
then

T-REG
Ψ; (r3 :〈〉) ` r3 : 〈〉 Ψ; (r3 :〈〉ro); ∅ ` IQ 〈〉ro 6= 〈 〉

T-MOVE
Ψ; (r3 :〈〉ro); ∅ ` (r1 := r3; IP)

T-SHARER
Ψ; (r3 :〈〉); ∅ ` (share r3 read-only; r1 := r3; IP)

T-NEW
Ψ; ∅; ∅ ` (r3 := new 0; share r3 read-only; r1 := r3; IP)

Hence, 2) Ψ ` P [[P]] holds.

Chapter 6

Conclusion

Summary. This work presents a type-preserving translation from the π-calculus into
MIL that is supported in all its extent by [10]. We depart from the π-calculus, a process
algebra where communication is the elementary computation step, and process mobility
expresses dynamic reconfiguration of the network of processes. We arrive at (compile
into) MIL, a language for an abstract machine that consists of multiple cores (processors)
and a main shared memory.

MIL is a multithreaded typed assembly language with a powerful type system that
enforces both race-freedom and deadlock-freedom [47, 48]. The threading model is co-
operative, meaning that threads must explicitly relinquish the processor resource. The
language’s primitive synchronisation mechanism is locks. MIL also enforces a safe usage
over locks.

The compilation is not direct, nor trivial: certain abstractions, like channels and name
binding, have no definite representation in MIL. To support the translation, we devise, in
the target language, a library of polymorphic unbounded buffers that act as π-channels.
These unbounded buffers are Hoare’s monitors [20], which introduce a form of synchro-
nisation for threads accessing the buffer, and encapsulate direct lock manipulation. The
lock discipline of MIL allows for a safe transfer of the monitor’s critical region that goes
from the signalling thread, which finishes, to the thread waiting in a condition, which
activates. Unbounded buffers are an effective way to represent channels that simplifies
the translation: sending a message corresponds to placing an element in the buffer, and
receiving a message amounts to removing a message from the buffer. We impose a FIFO
ordering to the buffer, in order to make sure sent messages are eventually received.

The translation function is a formal specification of the compiler. The compilation of
the π-calculus into MIL comprises the translation of types, of values, and of processes.
Type-preserving compilers give confidence in terms of safety (generated programs will
not get stuck) and also in terms of partial correctness (semantic properties given by types
are preserved). Our main result is a type-preserving translation [31]: the compiler pro-
duces type-correct MIL programs from well-typed (closed) π-processes. Another concern

93

Chapter 6. Conclusion 94

of code generation is ensuring that the translated processes are concurrent, which includes
the dynamic creation of threads and the synchronisation between threads.

The contributions of this work are:

• A type-preserving compilation algorithm from the π-calculus into MIL that wit-
nesses the flexibility of the target language in a typed (hence race-free) scenario.

• MIL programming examples and data structures. We show the implementation of
polymorphic unbounded buffer monitors, generic condition variables, and polymor-
phic queues. We also describe how to encode a monitor in MIL.

• Tools. We created a prototype for the π-to-MIL compiler that consists of: the
parsers, the typechecker, and the code generator. We refined the MIL typechecker,
and refined the MIL interpreter, by adding support for universal and existential
types, readers/writers and linear locks, and local tuples. We also implemented a
Java applet that quickly showcases our work without installation (on browsers that
support Java applets): we can compile our version of the π-calculus into MIL, edit
the generated MIL code, and execute it. All of our work is available on-line [26].

Related work. As related work, we take into analysis Pict, a compiler that translates
from the π-calculus into C; a type-preserving compiler that targets a typed assembly lan-
guage; an abstract machine for a process calculus; and a multithreaded virtual machine
that is the target of a process calculus.

Pict [45] is a compiler from the π-calculus into C. Turner defines an abstract machine
encoded in the π-calculus to represent the run-time behaviour of translated C programs
and proves this abstract machine is correct with respect to the source language. After-
wards, Turner refines the abstract machine to improve its efficiency and approximate it
to the behaviour of the generated code (e.g., uses an environment machine to represent
name binding, instead of using substitution). In Pict, there is no concurrency at run-time.
Processes are executed by a sequential scheduler. Contrary to Pict, our compiler produces
concurrent (multithreaded) code. Variable binding is also very different: Pict uses the
variable binding of C, since there is no support for closures in C, the environment of a
process must be manually created. MIL represents name binding in a tuple that indexes
all names known by a process at a given time. The π-calculus version of Pict is richer
than the one we use, having support for recursive types, polymorphism, and type infer-
ence. The type system present in MIL features polymorphism and recursive types, so we
believe that a type preserving translation from the polymorphic π-calculus into MIL is
possible. The focus of our work is to show a type-preserving translation in a concurrent
setting, not to show a translation from a polymorphic language into a typed assembly
language, like [31]. In Pict there is concerns about memory usage; MIL abstracts these
concerns.

Chapter 6. Conclusion 95

Greg Morrisett et al. present a type-preserving translation from System F [17] into
TAL (a typed assembly language) in five compilation stages [31]. The first compilation
stage converts code into the continuation-passing style (or closure-passing style). In the
second compilation stage, called closure conversion, the translation separates program
code from data, thereby rewriting functions to expect one additional argument (their free
variables). The third compilation step is called hoisting and places nested functions in
the root level. The forth compilation step makes memory allocation explicit. The final
translation step performs mostly syntactic translations, e.g., converts from variables into
registers.

A key difference from [31] to our work is that there is no concurrency in System-F
nor in TAL. The compiler we present does not perform the continuation-passing style
conversion, since the π-calculus has no call-and-return constructs, i.e., the control flow is
already explicitly passed via channels (continuations). The third, forth, and fifth stages
are present in the translation from the π-calculus into MIL. For example, we have closure
conversion whenever we find threads passing continuations to other threads. We perform
explicit memory allocation, like in the forth stage. Our approach towards name binding is
to enclose the free names in a tuple. Morrisett’s compiler expects unlimited registers and
represents each variable with a different register.

Our compiler is inspired by the work of Lopes et al. that presents an abstract ma-
chine for running multithreaded code [24] (TTyCO) generated from the process calculus
TyCO [46]. The target language is register based, multithreaded, and features queues that
represent lightweight channels, i.e., a thread may enqueue messages and continuations
that are dequeued (reduced) whenever a message and a continuation are present at the
same time in the same queue. This data structure is also present in Turner’s abstract ma-
chine and is called channel queue. There are key differences between the compiler we
present and this work. First, they do not present a translation function, instead just sketch
a compilation algorithm. Second, TTyCO lays at a higher-level than MIL (e.g., there are
no queues in the latter). Third, TTyCO is untyped and with no safety properties, therefore
no type-preservation result is possible.

Paulino et al. devised a virtual-machine [34] that executed TyCOIL, still an untyped
language. This work is based on the specification of the abstract machine described
in [24]. One immediate difference between TTyCO and TyCOIL is that the latter features
locks as a synchronisation primitive. MIL is the evolution of TyCOIL: queues disappear,
frames turn into tuples, and the language becomes strongly typed. Continuing the work
on multithreaded intermediate languages, the work by Vasconcelos et al. extends MIL’s
type system to check that programs are exempt from deadlocks at compile time [48].

Future work. We separate future work into two stances: more theoretical results about
the translation function and MIL extensions. The type system of the source language is

Chapter 6. Conclusion 96

simpler than the target language. We would like to understand how much more could we
enrich the type system of the π-calculus without altering MIL’s type system or loosing
the type-preserving result. We also plan to prove the correctness of translation. We would
like to understand the completeness of the translation function, i.e., to figure out which
behaviours of π-processes are left out.

Related to extending the target language, we envision two points. First, to develop a
version equipped with a compare-and-swap primitive rather than locks, allowing in par-
ticular to obtain a wait-free implementation of queues. Second, to elaborate a model that
closely adheres more to multicore processors as we know them, in particular adding sup-
port for memory hierarchies and forgoing the direct allocation of arbitrary-length tuples
directly on registers.

Appendix A

Example of code generation

The following MIL program is the outcome of

P [[(ν printInt : ˆ[int]) (ν echo : ˆ[int, ˆ[int]])

(echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉)]] =

l1 (r1 :〈 〉ro , r2 :BufferMonitor(〈 int 〉ro)) {
r3 := new 1
r3 [1] := r2
share r3 read-only
r2 := r3
r3 := new 1 −− E([],[printInt])
r4 := r2 [1]
r3 [1] := r4
share r3 read-only
r1 := r3
r2 := new 2 −− Translation of new echo:ˆ[int , ˆ[int]]

−− (echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉)
r2 [1] := l2
r2 [2] := r1
share r2 read-only
r1 := pack 〈BufferMonitor(〈int 〉ro) 〉ro , r2

as createContinuation(〈 int , BufferMonitor(〈 int 〉ro) 〉ro)
jump createBuffer[〈int , BufferMonitor(〈 int 〉ro) 〉ro]
}
l2 (r1 :〈BufferMonitor(〈 int 〉ro) 〉ro ,

r2 :BufferMonitor(〈 int , BufferMonitor(〈 int 〉ro) 〉ro)) {
r3 := new 1
r3 [1] := r2
share r3 read-only
r2 := r3
r3 := new 2 −− E([printInt],[echo])
r4 := r1 [1]
r3 [1] := r4
r4 := r2 [1]
r3 [2] := r4

97

Appendix A. Example of code generation 98

share r3 read-only
r1 := r3
fork l3 −− Translation of echo〈10, printInt 〉

−− | !echo(msg, reply).reply〈msg〉
fork l4
done
}
l3 (r1 :〈BufferMonitor(〈 int 〉ro),

BufferMonitor(〈 int , BufferMonitor(〈 int 〉ro) 〉ro) 〉ro) {
r2 := new 2 −− Translation of echo〈10, printInt〉
r3 := 10
r2 [1] := r3
r3 := r1 [1] −− printInt
r2 [2] := r3
share r2 read-only
r1 := r1 [2]
jump append[〈int, BufferMonitor(〈 int 〉ro) 〉ro]
}
l4 (r1 :〈BufferMonitor(〈 int 〉ro),

BufferMonitor(〈 int , BufferMonitor(〈 int 〉ro) 〉ro) 〉ro) {
jump l5 −− Translation of !echo(msg, reply).reply〈msg〉
}
l5 (r1 :〈BufferMonitor(〈 int 〉ro),

BufferMonitor(〈 int , BufferMonitor(〈 int 〉ro) 〉ro) 〉ro) {
r2 := new 2
r2 [1] := l6
r2 [2] := r1
share r2 read-only
r2 := pack 〈BufferMonitor(〈int 〉ro),

BufferMonitor(〈 int , BufferMonitor(〈 int 〉ro) 〉ro) 〉ro ,
r2 as removeContinuation(〈int, BufferMonitor(〈 int 〉ro) 〉ro)

r1 := r1 [2] −− load ’echo’
jump remove[〈int, BufferMonitor(〈 int 〉ro) 〉ro]
}
l6 (r1 :〈BufferMonitor(〈 int 〉ro),

BufferMonitor(〈 int , BufferMonitor(〈 int 〉ro) 〉ro) 〉ro ,
r2 :〈 int , BufferMonitor(〈 int 〉ro) 〉ro) {

fork l5
r3 := new 4 −− E([printInt, echo],[msg, reply])
r4 := r1 [1]
r3 [1] := r4
r4 := r1 [2]
r3 [2] := r4
r4 := r2 [1]
r3 [3] := r4
r4 := r2 [2]
r3 [4] := r4
share r3 read-only
r1 := r3

Appendix A. Example of code generation 99

r2 := new 1 −− Translation of reply〈msg〉
r3 := r1 [3] −− msg
r2 [1] := r3
share r2 read-only
r1 := r1 [4]
jump append[〈int〉ro]
}
main () {

r3 := new 0 −− E([],[])
share r3 read-only
r1 := r3
r2 := new 2 −− Translation of new printInt :ˆ[int]

−− new echo:ˆ[int, ˆ[int]]
−− (echo〈10, printInt〉 | !echo(msg, reply).reply〈msg〉)

r2 [1] := l1
r2 [2] := r1
share r2 read-only
r1 := pack 〈〉ro , r2 as createContinuation(〈 int 〉ro)
jump createBuffer[〈int 〉ro]
}

Bibliography

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1991.

[2] Hendrik P. Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

[3] BEE2 Website. http://bee2.eecs.berkeley.edu/.

[4] Andrew Birrell. An Introduction to Programming with Threads. Technical Re-
port 35, Digital Systems Research Center, Palo Alto, California, 1989.

[5] Gérard Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702,
INRIA Sophia-Antipolis, 1992.

[6] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In Proceedings of OOPSLA’02,
pages 211–230. ACM, 2002.

[7] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-
free Java programs. In Proceedings of OOPSLA’01, pages 56–69. ACM, 2001.

[8] Bryan Cantrill and Jeff Bonwick. Real-world Concurrency. Queue, 6(5):16–25,
2008.

[9] Luca Cardelli. Type Systems. In Allen B. Tucker, editor, The Computer Science and
Engineering Handbook, pages 2208–2236. CRC Press, 1997.

[10] Tiago Cogumbreiro, Francisco Martins, and Vasco T. Vasconcelos. Compiling the
pi-calculus into a multithreaded typed assembly language. ENTCS, 241:57–84,
2009.

[11] Ole-Johan Dahl. A Note on Monitor Versions: an Essay in the Honour of C. A. R.
Hoare. In Jim Davis, Bill Roscoe, and Jim Woodcock, editors, Millennial Perspec-
tives in Computer Science, Cornerstones of Computing, pages 91–98. PALGRAVE,
2000.

101

http://bee2.eecs.berkeley.edu/

Bibliography 102

[12] Xinyu Feng and Zhong Shao. Modular verification of concurrent assembly code
with dynamic thread creation and termination. In Proceedings of ICFP’05, pages
254–267. ACM Press, 2005.

[13] Cormac Flanagan and Martin Abadi. Object Types against Races. In Proceedings
of CONCUR’99, volume 1664 of LNCS, pages 288–303. Springer, 1999.

[14] Cormac Flanagan and Martin Abadi. Types for Safe Locking. In Proceedings of
ESOP’99, volume 1576 of LNCS, pages 91–108. Springer, 1999.

[15] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java. ACM
SIGPLAN Notices, 35(5):219–232, 2000.

[16] Cormac Flanagan and Stephen N. Freund. Type Inference Against Races. In Pro-
ceedings of SAS’04, volume 3148 of LNCS, pages 116–132. Springer, 2004.

[17] Jean-Yves Girard. The System F of Variable Types, Fifteen Years Later. Theoretical
Computer Science, 45(2):159–192, 1986.

[18] Dan Grossman. Type-Safe Multithreading in Cyclone. In Proceedings of TLDI’03,
volume 38(3) of SIGPLAN Notices, pages 13–25. ACM, 2003.

[19] Jr. Guy Lewis Steele. RABBIT: A Compiler for SCHEME. Master’s thesis, MIT AI
Lab, 1978.

[20] C. A. R. Hoare. Monitors: an operating system structuring concept. Communica-
tions of the ACM, 17(10):549–557, 1974.

[21] Kohei Honda and Mario Tokoro. An Object Calculus for Asynchronous Commu-
nication. In Proceedings of ECOOP’91, volume 512 of LNCS, pages 133–147.
Springer, 1991.

[22] Futoshi Iwama and Naoki Kobayashi. A new type system for JVM lock primitives.
In Proceedings of ASIA-PEPM’02, pages 71–82. ACM, 2002.

[23] Cosimo Laneve. A type system for JVM threads. Journal of Theoretical Computer
Science, 290(1):741–778, 2003.

[24] Luı́s Lopes, Fernando Silva, and Vasco T. Vasconcelos. Compiling Process Calculi.
DCC 98–3, DCC-FC & LIACC, Universidade do Porto, March 1998.

[25] Luı́s Lopes, Fernando Silva, and Vasco T. Vasconcelos. A Virtual Machine for the
TyCO Process Calculus. In Proceedings of PPDP’99, volume 1702 of LNCS, pages
244–260. Springer, 1999.

[26] MIL Website. http://gloss.di.fc.ul.pt/mil/.

http://gloss.di.fc.ul.pt/mil/

Bibliography 103

[27] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[28] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes,
Part I/II. Journal of Information and Computation, 100:1–77, 1992.

[29] Greg Morrisett. Typed Assembly Language. In Advanced Topics in Types and Pro-
gramming Languages, pages 137–176. MIT Press, 2005.

[30] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A realistic
typed assembly language. In Proceedings of CSSS’99, pages 25–35, 1999.

[31] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed
Assembly Language. ACM Transactions on Programing Language and Systems,
21(3):527–568, 1999.

[32] George C. Necula. Proof-carrying code. In Proceedings of POPL’97, pages 106–
119. ACM Press, 1997.

[33] Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue,
3(7):26–29, 2005.

[34] Hervé Paulino, Pedro Marques, Luı́s Lopes, Vasco T. Vasconcelos, and Fernando
Silva. A Multi-Threaded Asynchronous Language. In Proceedings of PaCT’03,
volume 2763 of LNCS, pages 316–323. Springer, 2003.

[35] Benjamin C. Pierce. Types And Programming Languages. MIT Press, 2002.

[36] Benjamin C. Pierce. Advanced Topics In Types And Programming Languages. MIT
Press, 2004.

[37] Benjamin C. Pierce and David N. Turner. Object-Oriented Programming Without
Recursive Types. In Proceedings of POPL’93, pages 299–312. ACM Press, 1993.

[38] Benjamin C. Pierce and David N. Turner. Pict: A Programming Language Based on
the Pi-Calculus. In Proof, Language and Interaction: Essays in Honour of Robin
Milner, Foundations of Computing, pages 455–494. MIT Press, 2000.

[39] RAMP Website. http://ramp.eecs.berkeley.edu/.

[40] Norman Ramsey and Simon P. Jones. Featherweight concurrency in a portable as-
sembly language, 2000.

[41] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computa-
tion, 6(3-4):233–248, 1993.

http://ramp.eecs.berkeley.edu/

Bibliography 104

[42] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[43] Nir Shavit. Technical perspective transactions are tomorrow’s loads and stores.
Communications of the ACM, 51(8):90–90, 2008.

[44] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Pe-
ter Lee. TIL: a type-directed, optimizing compiler for ML. SIGPLAN Notices,
39(4):554–567, 2004.

[45] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, LFCS, University of Edinburgh, 1996.

[46] Vasco T. Vasconcelos. Processes, functions, and datatypes. Theory and Practice of
Object Systems, 5(2):97–110, 1999.

[47] Vasco T. Vasconcelos and Francisco Martins. A Multithreaded Typed Assembly
Language. In Proceedings of TV’06, pages 133–141, 2006.

[48] Vasco T. Vasconcelos, Francisco Martins, and Tiago Cogumbreiro. Type inference
for deadlock detection in a multithreaded typed assembly language. Presented at
PLACES’09, 2009.

[49] Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building certified libraries for
PCC: Dynamic storage allocation. In Proceedings of ESOP’03, 2003.

[50] Dachuan Yu and Zhong Shao. Verification of safety properties for concurrent as-
sembly code. In Proceedings of ICFP’04, 2004.

	Introduction
	Motivation
	Contributions
	Outline

	The pi-Calculus
	Syntax
	Operational Semantics

	A Multithreaded Intermediate Language
	Syntax
	Operational Semantics
	Type Discipline
	MIL programming examples
	Types against races

	An Unbounded Buffer Monitor in MIL
	The monitor
	Wait and Signal
	Polymorphic Queues
	Discussion

	Compiling pi into MIL
	The translation function
	Results

	Conclusion
	Example of code generation
	Bibliography

