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Resumo

A incidência de doenças ligadas ao sistema nervoso central (SNC) aumenta exponen-
cialmente depois dos 65 anos e o aumento da esperança média de vida vem aumentar a
população mundial com mais de 65 anos. Depressões, dor crónica, epilépsia e enxaque-
cas são algumas condições clı́nicas (distúrbios do SNC) que apresentam tratamento no
entanto, podem ser consideradas excepções perante a maioria dos distúrbios do SNC, que
incluem doenças neurodegenerativas e que têm muito poucas opções de tratamento. Al-
guns destes casos são a doença de Alzheimer, doença de Parkinson, esclerose amiotrófica
lateral, esclerose múltipla, cancro do cérebro, entre outras. O aumento do número de casos
com doenças neurodegenerativas veio então aumentar a necessidade de descoberta e de-
senvolvimento de novos fármacos que combatam e curem estas doenças. Por exemplo, a
doença de Alzheimer afecta actualmente 18 milhões de pessoas a nı́vel mundial e estima-
se que em 2025 o número de casos chegue aos 34 milhões. Este pequeno grande exemplo
demonstra a preocupação e a necessidade de novos fármacos que dêem esperança de cura
a estes e muitos outros casos de doenças neurodegenerativas. No entanto, esta é uma ta-
refa com dificuldades acrescidas face ao desenvolvimento de fármacos com alvos noutras
partes do organismo que não o cérebro. O tempo necessário para que um fármaco com
alvos no SNC chegue aos mercados pode ir de 12 a 16 anos, enquanto que um fármaco
que não actue no SNC vai de 10 a 12 anos. Esta grande diferença prende-se com a com-
plexidade do cérebro, a tendência desses fármacos para causar efeitos secundários e a
existência da barreira hemato-encefálica (BHE).

A BHE separa o fluı́do cerebroespinal do sangue em circulação, impedindo a livre
passagem da grande maioria das substâncias (mesmo as pequenas moléculas) da cor-
rente sanguı́nea para o cérebro. De entre estas substâncias encontram-se os fármacos,
estimando-se que cerca de 95% destes não consigam atravessar a barreira, deixando-nos
apenas uma infı́ma parte susceptı́vel de atravessá-la. Isto significa que fármacos que têm
efeito terapêutico noutras partes do organismo, são inúteis para alvos no SNC pela baixa
permeabilidade da BHE, tornando muito difı́cil o tratamento de infecções bacterianas e
virais no SNC através dos antibióticos convencionais. Muitas das doenças neurodege-
nerativas apresentadas acima poderiam ser tratadas com fármacos, enzimas ou genes já
descobertos, infelizmente estas não conseguem atravessar a BHE.
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Além desta clara dificuldade imposta pela fisiologia existe ainda outra relacionada
com a experimentação. A permeabilidade de um composto na BHE é convencional-
mente medida pelo logaritmo do coeficiente de partição sangue-cérebro, tratando-se de
uma medida da lipofilicidade. No entanto, a sua aquisição por ensaios experimentais é
muito dispendiosa e o processo moroso ainda mais quando estão em análise milhares de
compostos. Este processo integra a primeira fase de desenvolvimento de um fármaco
que pode demorar até dois anos e em que são analisados, em média, 10000 compostos.
São necessários até 16 anos para que um medicamento que actue do SNC chegue aos
mercados e seja comercializado, nesse sentido, é objectivo deste trabalho contribuir com
metodologias que visem a diminuição do tempo da primeira fase de desenvolvimento de
um fármaco e por conseguinte, a diminuição do número de anos final.

Para tal entramos no domı́nio da chamada quimio-informática, uma área na fronteira
entre a Quı́mica e a Informática, que tenta retirar informação útil contida nos compos-
tos quı́micos pela utilização e desenvolvimento de sistemas automatizados de recolha e
processamento de dados, algoritmos, técnicas computacionais e métodos estatı́sticos. A
utilização desta informação permite estabelecer correlações que só são possı́veis com
recurso aos computadores, às metodologias computacionais e à inteligência artificial. Es-
tes recursos disseminaram-se fortemente na indústria quı́mica e farmacêutica que fazem
investigação de novos produtos utilizando no processo métodos computacionais. A pro-
cura de metodologias que contribuam e favoreçam o desenvolvimento de novos compos-
tos é emergente havendo uma grande procura de especialistas nesta área.

Este trabalho, de forte componente computacional, faz uso de algoritmos de apren-
dizagem automática para determinar com melhor precisão se um determinado fármaco
pode passar a barreira hemato-encefálica. Outros estudos têm-se baseado sobretudo na
utilização de metodologias de aprendizagem standard usando como variáveis preditivas
propriedades fı́sicas e quı́micas dos compostos em análise. Neste trabalho utilizam-se des-
critores e impressões digitais moleculares (fingerprints) para analisar a diversidade estru-
tural existente num conjunto de compostos permitindo estabelecer medidas de semelhança
estrutural entre moléculas e com isso prever o comportamento de um composto ”desco-
nhecido”.

Assim, no âmbito do projecto foram desenvolvidas três metodologias baseadas no al-
goritmo do vizinho mais próximo, nas redes neuronais artificiais e nas Random forests
(floresta aleatória). Foram constituı́dos três conjuntos de dados (conjunto de dados I, con-
junto de dados II e conjunto de dados III) com 628 (374 BHE+/254 BHE-), 729 (466
BHE+/263 BHE-) e 950 (466 BHE+/484 BHE-) moléculas, respectivamente. Os dois
primeiros algoritmos testados foram o algoritmo do vizinho mais próximo e as redes
neuronais, os quais seguem uma mesma lógica baseada no uso das impressões digitais
moleculares. A partir destes, são geradas matrizes de similaridade onde é calculada uma
medidade de semelhança entre cada par de moléculas. Segue-se a análise em coordena-
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das principais que reduz a matriz num vector de coordenadas com n dimensões, que são
os descritores moleculares destes dois métodos. O algoritmo do vizinho mais próximo
foi treinado e testado com o conjunto de dados I e 30 descritores tendo sido aplicada a
validação cruzada com o método leave-one-out. Este algoritmo consegue prever correcta-
mente a classificação dos compostos em 81.75%, 76.57% e 79.78% para BHE+ (compos-
tos que passam a BHE), BHE- (compostos que não passam a BHE) e globalidade das duas
classes, respectivamente. A metodologia que implementa as redes neuronais também foi
treinada com o conjunto de dados I, tendo sido usados 40 descritores moleculares. O mo-
delo foi validado com validação cruzada 5-fold, obtendo-se os valores de 77.16%, 81.45%
e 79.68% para BHE+, BHE- e globalidade das duas classes, respectivamente.

O modelo das Random Forests foi construı́do com base em 1051 descritores molecu-
lares, de entre as impressões digitais moleculares foram também utilizados a massa mole-
cular, massa molecular média, número de anéis, número de ligações em anéis e número de
ligações possı́veis para cada átomo de um subconjunto definido (C, N, O, S, Br, I, Cl, F e
Na). Além da utilização de descritores moleculares diferentes dos que têm sido até agora
utilizados na literatura, a metodologia apresentada neste trabalho é nova e traz inovação
a esta área de desenvolvimento na medida em que faz uso da diferença percentual entre
as duas classes de compostos, 5% para BHE+ e 95% BHE-. A maior parte dos estudos
analisados na literatura apresentam conjuntos de dados populados maioritariamente por
compostos que atravessam a BHE, no entanto esta situação não transparece a realidade.
Nesse sentido, neste trabalho foi desenvolvido uma metodologia que efectua amostragens
diferenciadas usando uma estratégia de oversampling (sobre-amostragem) nos compostos
BHE- para melhor reflectir a realidade de modo a representar 95% de compostos BHE-
e apenas 5% de compostos BHE+. Os resultados demonstram-se bastante promissores,
conseguindo a Random Forest prever correctamente a classificação dos compostos em
92%, 77.2% e 82.6%, para BHE+, BHE- e globalidade das duas classes, respectivamente.
Esta metodologia apresenta os melhores resultados, ficando mesmo acima da maior parte
dos valores apresentados na literatura.

Com estes valores os principais objectivos desta tese são concretizados, tendo sido
feito um contributo bastante positivo para a área, principalmente para uma previsão mais
correcta da passagem de um composto pela barreia hemato-encefálica, o qual é um ponto
chave no desenvolvimento de fármacos para o tratamento de doenças ao nı́vel do SNC,
que precisam obrigatoriamente de passar a BHE. Neste trabalho apenas foram apresenta-
das as três metodologias que se revelaram mais promissoras e com os melhores resultados
embora ao longo do projecto tenham sido desenvolvidas e testada outras metodologias.

Face aos resultados obtidos é proposta de trabalho futuro a concretização de uma
aplicação que implemente a metodologia da Random Forest com vista a que seja um con-
tributo à Ciência e principalmente à área de desenvolvimento de novos fármacos, contri-
buindo para uma análise rápida de grandes bibliotecas de compostos, restringido o leque
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de compostos com necessária intervenção de ensaios experimentais, diminuindo também
o custo associado à investigação de compostos na primeira fase de desenvolvimento de
um fármaco.

Palavras-chave: Aprendizagem automática, Algoritmo do vizinho mais próximo,
Barreira hemato-encefálica, Floresta aleatória, Pré-triagem de fármacos in silico,
Quimio-informática, Redes neuronais
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Abstract

The increasing number of cases with neurodegenerative diseases has increased the
need to discover and develop new drugs to combat and cure these diseases. However, this
is a difficult task due to the existence of the blood-brain barrier (BBB), which prevents the
free passage of most substances from the bloodstream to the brain. Drugs are among these
substances and it is estimated that about 95% of these fail to cross the barrier, leaving us
only a small fraction likely to cross it.

Besides this clear difficulty imposed by physiology, logBB (blood-brain permeation
coefficient), a coefficient used to measure the ability of a compound to cross the BBB,
is difficult to acquire by experimental process, being very expensive and time consuming
even more when there are thousands of compounds under analysis. This process includes
the first phase of developing a drug that can take up to two years and could have in analysis
an average of ten thousands compounds. Thus, one of the objectives is to contribute with
methodologies to improve current methodologies for in silico compound pre-screening, so
that a reasonable level of confidence in the effectiveness of an unknown molecule passing
the BBB can be ascertained.

This work has a strong computational component and makes use of state-of-the-art
machine learning algorithms, namely the k-nearest neighbor algorithm, neural networks
and random forests to determine more accurately whether a particular drug can pass the
BBB. Molecular descriptors and molecular fingerprints are used to examine the structural
diversity existing in a number of compounds allowing to establish measures of structural
similarity between molecules and thereby predict the behavior of an ”unknown” com-
pound.

The methodology that uses random forests provides the best results, predicting cor-
rectly the classification of compounds in 92%, 77.2% and 82.6%, referring these values to
BBB+, BBB- and overall accuracies, respectively. Results achieved are on par and even
slighlty better compared to current results described in literature.

Keywords: Blood-brain barrier, Cheminformatics, in silico drug pre-screening,
k-Nearest Neighbor, Neural Networks, Random Forests
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Chapter 1

Introduction

1.1 Drug development

The process of drug development until it reaches the market can take at least 10 years. In
the worst case, it can take up to 16 years. Many are the compounds studied in the early
stages of the developing process, but very few can reach the final stages of the process.

Successful drugs have to fulfill some criteria, dependent of physicochemical proper-
ties and pharmacokinetic profile, including how the compound is absorbed, distributed,
metabolized, and excreted (ADME).

The drug development process can be divided into three major phases [Alzheimer’s
Drug Discovery Foundation, 23-07-2011] (see Figure 1.1):

Figure 1.1: Stages of drug development process, including compounds, volunteers and
time in each stage. Adapted from Alzheimer’s Drug Discovery Foundation [23-07-2011].

Basic science - at this level, the aim is to discover information about individual chemicals
and biological processes.

Drug discovery - develop specific chemicals and study their effects on identified disease

1



Chapter 1. Introduction 2

targets. When a potentially viable drug candidate is identified, the compound pro-
ceeds to laboratory testing against specific targets to determine its effect. This phase
requires a more sophisticated chemistry and it is performed tests on animal models
of disease. In study can be between 5000 to 10000 compounds, and it estimated
that only 250 will progress to pre-clinical development with animals.

Drug development - as outlined before, many of the chemical compounds do not reach
this phase. Nevertheless, when a chemical compound has an impact on a specific
target, human testing is conducted through chemical trials to show the safety and
efficacy so it may be approved as a drug and marketed. The drug development
phase is then divided into three phases which differs the number of volunteers take
to test the compounds. In phase I is study the effects on healthy human subjects (20
to 100 people), in the next phase are made a limited study of patients (100 to 500
patients), and finally, in phase III, are made comparative studies on a large number
of patients (1000 to 5000 patients). Only 5 of the 250 compounds reach the phase I.
However, just one will survive over the remaining phases and become an approved
drug.

The compound numbers presented above represent an average success rate among all
therapeutic areas.

It can be identified a fourth phase pointed out in Figure 1.1 as drug approval, that
corresponds to the authorisation process of the new drug and to the continued comparative
studies (phase IV of clinical trials).

1.2 Problem

It was described the overall perspective of drug development process, including com-
pound numbers and an average of the success rate for all therapeutic areas, but when
refering to Central Nervous System (CNS) drugs, they have only an 8% [Alzheimer’s
Drug Discovery Foundation, 23-07-2011] success rate of being approved and receive the
status of drug. This percentage is clearly lower when comparing with areas like the car-
diovascular, which has a 20% success rate. Among this low chance of success, the time
taken to bring a new CNS drug can reach 16 years compared with non-CNS drugs (12
years). This is attributable to various features, including the complexity of the brain,
the tendency to cause side effects on CNS, and the existency of the Blood-Brain Barrier
(BBB) that CNS drugs have to cross [Alavijeh et al., 2005].

Most organs of the body are perfused by capillaries with endothelial cells that have
small pores that allow the movement of small molecules from the circulation into the
organ. Although in brain capillary the diffusion is inhibited by the presence of tight
junctions between the endothelium cells, this property prevents most of the molecules of
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crossing the barrier leaving many of the CNS disorders without a therapy [Alavijeh et al.,
2005].

The features of BBB represent a problem in CNS drug development, when 95 per-
cent of molecules show poor or none permeability to BBB [Pardridge, 2005, King, 2011,
Tsaioun et al., 2009]. Therefore, BBB penetration is one of the keys that are taken into
account in chemical toxicological studies and in drug design [Zhang et al., 2008]. BBB
permeability of drug molecules is commonly measured by logBB which represent the
brain-to-blood (BB) concentration ratio. It is defined as the ratio of a drug concentration
in brain tissue to the drug concentration in blood. Although the measurement of logBB is
the most direct approach to know whether a molecule cross the BBB, the experiments are
very expensive and time consuming [Zhao et al., 2007] and constitute a hindrance when
are involved more than 5000 compounds.

1.3 Motivation

The Blood-Brain Barrier (BBB) is a membrane that separates circulating blood and the
brain extracellular fluid in the CNS. Some of main functions of this barrier comprises the
protection of the brain from foreign substances in the blood that may injure it, protection
against hormones and neurotransmitters in the rest of the body and maintenance of a
constant environment for the brain. Therefore, the BBB has special features that make it
almost impenetrable to most drugs. It has a selective permeability and the molecules that
generally cross are: nonpolar and lipophilic, properties related with high octanol/water
partition coefficient (logP) and low molecular/molar weight - smaller molecules are more
likely to pass through the BBB.

Due to the low permeability of BBB the process of discovering substances that cross
the membrane and are active on CNS is hard and slow, and requires, in the early stages, a
large number of chemical compounds.

The prediction of drug molecules permeability would be an useful tool to assist the
experimental drug discovery process [Doniger et al., 2000], decreasing the time of the
earliest stages and therefore, the time required for a drug reaches the market and us would
be considerably less.

Computacional approaches are needed and have been introduced as pre-screening
tools for large chemical databases to reduce the cost and enhance the speed of BBB per-
meability analysis [Li et al., 2005b, Zhang et al., 2008].

1.4 Objective

To address the problem of drug permeability of BBB a robust comparison of different
methodologies is needed. This thesis proposes the use of chemical information present in



Chapter 1. Introduction 4

molecules in an attempt to produce a novel computacional approach with better predic-
tive rates. Thus, the main assumption in this thesis, is that molecules sharing a similar
structure should have a similar behavior through the barrier and so, if a molecule crosses
the blood-brain barrier, a similar one must also cross the barrier.

Our aim is to test different approaches based on the structural similarity of molecules
for predicting BBB permeability of drug molecules, with high and balanced accuracy
rates for both BBB+ and BBB- molecules.

The final methodology intends to be a contribution for the drug development process,
at the early stages of compounds discovery, reducing the time expended in screening large
numbers of pre-clinical candidates compounds.

1.5 Structure of the thesis

The work is divided into six chapters. Starting with the introductory chapter (the first), it
is presented the pillars on which this thesis develops, with respect to the problem of low
permeability of BBB that leads to a further delay in the development of drugs that can
act on CNS, passing for the contributions that work intends to give for this research field,
being presented the objectives.

The second chapter is dedicated to the presentation of CNS barriers and mainly the
BBB, its characteristics and the functions that make it unique in the body, ending with a
background, where it is exposed some of the previous works in literature, with relevance
in the area.

Chapter three delineates the methods underlining the approaches developed, the ma-
chine learning algorithms, the statistical methods and also the tools used throughout the
work.

Chapter four focuses on data presentation and building of computacional approaches,
with emphasis for datasets constitution and algorithms implementation.

Moving on to results and discussion, they are topic for chapter five. It is presented the
results for each of the developed approaches, followed by comparison of results between
approaches and with the previous work presented in chapter two.

In the last chapter, beyond the conclusions of the work, some proposals are presented
for future work that could be constructed upon this project.

The appendices present the relevant computer program used both for data processing,
algorithm development and result analysis.



Chapter 2

State of the Art

This chapter is divided into three sections. Section 2.1 characterizes the barriers that are
part of CNS. Next, Section 2.2 focuses on the blood-brain barrier, being presented its
properties and funcionalities, and Section 2.3 summarises some of the previous studies.

2.1 CNS barriers

The CNS has two controlling barriers, that protects the brain interstitial fluid (ISF) from
blood circulating substances. The first and the largest is the BBB, and the second is the
blood-cerebrospinal fluid barrier (BCSFB). The BBB has the greatest control on the brain
homeostasis, acting as the first control line. More barriers could be identified, however
only this two are mentioned as they has a role in permeability of substances that circulates
in bloodstream [Cipolla, 2009]. The Figure 2.1 shows the localization of both barriers.

The BBB is formed by endothelial cells, astroglia, pericytes and basal lamina con-
necting the cellular systems. Endothelial cells form an almost impenetrable barrier by the
presence of tight junctions, while the other components contributes for the integrity of the
barrier. The next section focuses on the role and properties of this complex barrier.

The BCSFB regulates the passage of molecules from the blood to cerebrospinal fluid
(CSF), since it can exchange molecules with ISF. The barrier is then located between the
blood and the CSF in the epithelium of the choroid plexus. This along with arachnoid
membrane form a barrier between the blood and CSF. The passage of substances from
the blood through the arachnoid membrane is prevented by tight junctions. The arachnoid
membrane is generally impermeable to hydrophilic substances, and its role is forming
the Blood-CSF barrier is largely passive. The choroid plexus forms the CSF and actively
regulates the concentration of molecules in the CSF [Misra et al., 2003]. While endothe-
lium cells of choroid plexus capillaries are highly permeable to hydrophobic substances,
the epithelial cells are glued with tight junctions, although they are more permeable than
those find in BBB.

5
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Figure 2.1: Barriers at central nervous system: a) blood-brain barrier, and b) blood-
cerebrospinal fluid barrier. Endo - endothelial cells; bm - basement membrane; Peri -
pericytes; As endfoot - nearby astrocytes; bv - blood vessels; Ep - epithelial cells. Adapted
from Cipolla [2009].

2.2 Blood-Brain Barrier

The BBB represents 400 miles [Begley et al., 2000] of capillaries that separates the brain
from the bloodstream and it is composed of a continuous layer of endothelial cells sealed
by tight junctions, this characteristic distinguish BBB of blood vessels in other parts of the
body that have small poors for the movement of small molecules into the organ interstitial
fluid, Figure 2.2 shows the difference between a general capillary and a capillary located
in the brain. It is responsible by maintain the homeostasis of CNS, preventing the entry of
substances that can disturb the function of neurons. It prevents the entry of the majority
of molecules, except those that are small and lipophilic or those that enters via a mediated
transport, and are needed for the proper functioning of the brain. The BBB protects
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the brain from fluctuations in ionic composition that could disturb synaptic and axonal
signalling [Abbott et al., 2006].

Figure 2.2: Differences between general and brain capillaries [Dermietzel et al., 2006].

The transport through the BBB can occur via five different ways [Abbott et al., 2006,
Alavijeh et al., 2005, Cipolla, 2009] and are represented in Figure 2.3:

Figure 2.3: The five routes of transport via blood-brain barrier [Abbott et al., 2006].

Paracellular pathway - represents the diffusion of polar solutes through tight junctions.

Transcellular lipophilic pathway - correspond to a passive diffusion of lipid-soluble
agents, this depends on the physicochemical properties of molecules.
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Mediated proteins transport - influx transport systems responsible for the entry of nu-
trients and endogenous compounds, such as amino acids, monocarboxylic acids,
amines, hexoses, thyroid hormones, purine bases and nucleosides. Some trans-
porters act as active efflux pumps, they accounts for poor BBB permeability of
certain drugs, this transporters are able to expel a large number of very different
compounds from brain interstitial fluid. Among them is the transporter phosphory-
lated glycoprotein (P-gp), which is responsible for inhibit the entry of hydrophobic
drugs into the brain.

Receptor-mediated transcytosis - some proteins (as insulin and transferrin) enter in
brain by specific receptor-mediated endocytosis and transcytosis.

Adsorptive transcytosis - native plasma proteins, as albumin, are surrounded by positive
charges (cationization) to increase the transport via adsorptive-mediated endocyto-
sis and transcytosis.

In the development of CNS-drugs it is not enough to cross the BBB, the molecules
have to be in brain long enough to produce the desirable effect, and that depends of its
ADME properties. Considering the development of CNS-drus, they are absorved when
enter the blood capillaries and reach the brain, crossing the BBB. The transport can be
done through one of the five processes describe above, and in part depends of lipophilicity
and solubility of the drug. It can be thought that the greater the lipophilicity, greater will
be the permeability, however this is not necessarily true. High lipophilicity also shows
high affinity for metabolic enzymes, leading to a quick degradation of drug molecules.
After enter in bloodstream, a drug molecule distributes across the body. At the same
time, the elimination process start as a consequence of the metabolism and excretion.
Therefore, a drug has to be administrated in a proper dose, enough to reach its target and
produce its effect.

In short, the BBB is a very selective membrane that prevents the entry of most molecules,
making the most of drug molecules useless for CNS disorders. In CNS drug develop-
ment, the ability to permeate across the BBB is required, but nonetheless it does not mean
that will have a therapeutic effect. On the other hand, it is expected that non-CNS drug
molecules do not show ability to cross the BBB, preventing from potential side effects
[Zhang et al., 2008]. Figure 2.4 shows the distribution of compounds in order to molecu-
lar weight, in plot A is considered that 50% of the molecules cross the BBB and 50% of
the molecules are not able to cross it (same ratio of compounds), on the other hand plot B
considers prior probabilities of compounds classes, therefore only 5% of the compounds
cross the BBB and 95% of the compounds can not cross it. Looking at first plot, it can be
seen that below 500 Da most of the compounds are BBB+ compound and then the prob-
ability of passing is higher, and above that threshold most of the compounds are BBB-,
and then they do not cross the BBB. It is expected since the small molecules are much
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more capable of passing the BBB [Pardridge, 2005] than ”heavy” molecules. However
this is an inaccurate perspective since only 5% of molecules can cross the barrier, that is
what plot B intends to show. In fact, before the prior probabilities, it can be verified that
even lower than 500 Da most of the small molecules can not cross the barrier, and those
that get through are a small part.

Figure 2.4: Estimated density of molecular weight (MW) for BBB+ compounds (blue)
and BBB- compounds (black): A) considering the same ratio for both classes of com-
pounds, B) considering prior probabilities (95% BBB- and 5% BBB+).

2.3 Algorithms for in silico BBB permeability

This section attempts to present some of the previous work that contributed to this re-
search area: the prediction of BBB permeability of drug molecules. Several computa-
cional methods have been developed for the prediction of the BBB-penetrating (BBB+)
and -nonpenetrating (BBB-) agents to use as pre-screening tools to reduce the cost and
enhance the speed of the analysis. Table 2.1 summarises some of the previous work,
pointing out the relevant aspects for terms of comparison with our study case. For each of
the works was retained, when available, the number of descriptors, methods (being pre-
sented for the most of the cases the method that contribute for the best results), number of
molecules for the training and test sets, as well as available classification statistics.
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Table 2.1: Prediction accuracies and phi for BBB+ and BBB- compounds from different
studies reported in the literature.

no. molecules (p/n) Accuracy (%)

Year Study Descc Methodsa Training Test BBB+ BBB- Overall Phi

1999 Ajay 173 BNN 9000 139/136 92 71 81.8 -
2000 Crivori 72 PCA 46/64 49/71 90 65 74.8 -
2000 Cruciani - PCA 46/64 35 - - >75 -
2001 Trotter 72 SVM 81/91 256/48 78.9 60.4 76 -
2002 Doniger 9 SVM 154/120 25/25 82.7 80.2 81.5 -
2004 Adenot 67 PCA, PLS 1336/360 20/62 90 92 91 -
2005 Hu Li 199 SVM 276/139 - 88.6 75.0 83.7 0.645
2007 Zhao 19 R, PLS 832/261 451/49 98.2 87.8 97.2 -
2007 Zhao 19 R, PLS 1283/310 267/130 80.1 63.1 74.6 -
2008 Zhang 832b k-NN, SVM 124/20 99+267 - - 82.5-100 -

a BNN(Bayesian neural network), PCA (principal component analysis), SVM (support vector machine),
PLS (partial least squares), k-NN (k-Nearest neighbors), R (recursive partitioning models). b Descriptors
are divided into three classes and are tested separately. c Number of descriptors

Ajay and Murcko [1999] used a Bayesian neural network (BNN) to develop a model
that can distinguish between molecules that are CNS-active and CNS-inactive. The model
was conducted using 173 descriptors, of them 7 are non-structural (such as MW, number
of donors, number of acceptors) and 166 are structural (for example, the presence or ab-
sence of certain functional groups), and it was tested with an independent validation set of
275 molecules of known CNS activity. The cross-validation results show an overall accu-
racy of 81.8%, and 92% and 71% accuracies for CNS-active and CNS-inactive molecules,
respectively. It should be noted that this study is based on the prediction of CNS-active
and CNS-inactive, whereas in other studies, including the presented in this thesis are
based on BBB-permeability and BBB-nonpermeability. The difference, although slight,
exists since a molecule that is CNS-active is obliged to pass the BBB, but a CNS-inactive
molecule may or may not pass the BBB.

PCA (principal component analysis) and discriminant PLS (partial least squares) were
used by Crivori et al. [2000] to correlate data and build a model to access the BBB per-
meability of drug molecules. 72 simpler molecular descriptors were calculated from
3D molecular interaction fields with recourse to VolSurf program, some of them refer
to molecular size and shape, to size and shape of hydrophobic and hydrophilic regions,
hidrogen bonding, and others. The model was trained with 110 models and tested through
cross-validation with an independent set of 120 molecules, and the results show an over-
all accuracy of 74.8%, and 90% and 65% accuracies for BBB+ and BBB- molecules,
respectively. This work serves as base for Cruciani et al. [2000] that used the same train-
ing set of the previous work ([Crivori et al., 2000]) to predict the BBB penetration, and
the same program (VolSurf) to calculate the molecular descriptors. The model was built
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based on PCA analysis and tested through cross-validation with an independent set of 35
molecules. Results show values above 75% for the overall accuracy, the other measures
are not specified.

Trotter et al. [2001] used 172 molecules, 72 molecular descriptors and SVM to build
a model. It was tested with 304 molecules, and the results show an overall accuracy of
76%, and 78.9% and 60.4% accuracy for BBB+ and BBB- molecules, respectively.

Neural networks (NN) and support vector machine (SVM) were tested by Doniger
et al. [2000] to distinguish molecules capable of crossing the BBB from those that can
not cross it. The model was trained with 324 molecules and 9 molecular descriptors,
namely logP, MW, volume, surface area, percent of hydrophilic surface area, hydrogen
bond donors/acceptors, and 3D hydrogen bonding. To validate the model, 30 different
validation sets of 50 molecules were constituted through a ”bootstrapping approach”. Ac-
cording to this approach, molecules are selected at random from the complete dataset.
The best results were obtained with SVM: 82.7%, 80.2% and 81.5% for BBB+, BBB-
and overall accuracies, respectively.

PCA and PLS were also used by Adenot and Lahana [2004] to build a model. To train
the model, about 1696 molecules and 67 descriptors were used. Some of the descriptors
are number of atoms, number of heteroatoms, MW, molecular volume, polar surface area,
and others. The model was tested through cross-validation with a validation set of 82
molecules, and the results show an overall accuracy of 91%, and 90% and 92% accuracy
for BBB+ and BBB- molecules, respectively.

Li et al. [2005b] perform several models in their study: LR (logistic regression), LDA
(linear discriminate analysis), C4.5 DT (C4.5 decision tree), k-NN (k-nearest neighbor),
PNN (probabilistic neural network) and SVM. It was used 415 molecules and 199 de-
scriptors of the next classes: simpler molecular properties, molecular connectivity and
shape, electrotopological state, quantum chemical properties and geometrical properties,
and it was performed a 5-fold cross validation. Also in this study, the highest values
were obtained with SVM models with an overall accuracy of 83.7%, and 88.6% and 75%
accuracies for BBB+ and BBB- molecules, respectively.

Zhao et al. [2007] used recursive partioning and PLS, and two different training sets to
build models. These authors used 19 descriptors namely, excess molar refraction, overall
hydrogen-bond acidity/basicity, MW, polar surface area, logP, number of hydrogen bond-
ing donors/acceptors, and others. The first training set with 1093 molecules was tested
through a cross-validation with independent validation set of 500 molecules, and the re-
sults show an overall accuracy of 97.2%, and 87.8% and 97.2% accuracies for BBB+
and BBB- molecules, respectively. The second training set with 1593 molecules was
cross-validate with an independent validation set of 397 molecules, and the results show
an overall accuracy of 74.6%, and 80.1% and 63.1% accuracies for BBB+ and BBB-
molecules, respectively.
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Finally, Zhang et al. [2008] developed two methodologies including k-NN and SVM
with 144 molecules. It was also applied an applicability domain (AD) that defines the
area of the descriptors space in which models can accurately predict the target properties.
Considering that, some of the molecules, that are not included in the chemical space
of the modeling set, could not be predicted its classification. To test the models two
independent validation sets, with 99 and 267 molecules were used. Without applying the
AD, the test set achieves an overall accuracy of 82.5% and 59.0%. After applying the
AD, the overall accuracy increases to 100% and 83.3%, however there is a reduction of
the number of molecules for which the prediction could be made, mainly for the subset of
BBB- molecules.

The implementation of an SVM methodology seems to be generalized in most of the
studies described and most of the times the highest values of accuracy are associated with
it. Although the comparison of results could be wrong since datasets are usually different.
It is noteworthy that none of the studies take into account the imbalanced ratio between
both classes of molecules.
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Methods

In this chapter, the fundamentals of molecular representation and encoding are presented,
as well as the algorithms and statistical methods used. In Section 3.2 is presented the
molecular representation used to encode molecules structure and all the molecular de-
scriptors used to retain properties about molecules. Section 3.3 introduces the idea of
similarity between molecules, presenting some of the coefficients used to measure this
similarity. Section 3.1 makes a brief introduction to the tools used in this work to code
and implement approaches. Moving to methods part, in Section 3.4 are presented the
statistical methods and measures used to assess performance of the approaches. Finally,
Section 3.5 comprises the three machine learning algorithms used to build the three ap-
proaches presented in this work: k-Nearest Neighbor (k-NN), Neural Networks (NN) and
Random Forests (RF).

3.1 Tools

3.1.1 R

R is an open source programming language and software environment for statistical com-
puting and graphics, and it can be run in Windows. It is widely used for data analysis, and
it has the advantage of being highly extensible, easy and offers a wide variety of functions.
For this work it was installed R version 2.10.1. Principal Coordinates Analysis (PCoA),
k-NN, NN and RF models were coded using available implementation (packages) of R.

3.1.2 Python

Python is a high-level programming language [Python, 23-10-2010], often used as a
scripting language. It is free to use, with an open source license. For this work, it was used
Python version 2.7 to code and obtain SMILES representation of molecules of constituted
dataset, similarity matrices and molecular descriptors.

Python is widely used for bioinformatics and cheminformatics purposes [O’Boyle

13
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et al., 2008], due to its simple syntax and code readability, that make it an easy program-
ming language to learn, compared with other programmig languages.

3.1.3 OpenBabel

OpenBabel is an open-source C++ toolkit with interfaces in Python. Scripting languages
like Perl, Python and Ruby are ideally to solve common cheminformatics tasks, although
they can be slower than compiled languages. For this reason, cheminformatics toolkits
are often implemented in compiled languages, as C++ [O’Boyle et al., 2008]. This toolkit
can deal with many molecular file formats containing thousands of molecules, manipu-
late molecular data, supports molecular fingerprints, calculus of molecular descriptors, as
LogP, iteration over molecules and many others functions. OpenBabel has interfaces to
other programming languages (Perl, Ruby and Java), however the Python interface seems
to be the most used [O’Boyle et al., 2008]. It can be accessed from two Python modules:
(1) the standard Python bindings and (2) the Pybel.

1. Python bindings are generated using SWIG (Simplified Wrapper and Interface Gen-
erator) [Beazley, 1996]. SWIG is a software development tool that connects pro-
grams written in C and C++ with a variety of high-level programming language. In
this way, it allows to use scripting languages with their C/C++ programs without
worrying about the underlying implementations details of each language. The file
generated by SWIG is then compiled and linked with the Python development li-
braries and OpenBabel, creating a Python extension module, openbabel. The bind-
ings provide access to the majority of the OpenBabel interfaces, namely the base
classes as OBMol, OBAtom, OBBond, and OBResidue.

2. Pybel module wraps the bindings automatically generated by SWIG to give a more
Pythonic 3 way to access OpenBabel [O’Boyle et al., 2008]. This module makes
easier to access features of the OpenBabel libraries from Python and a good fea-
ture is the possibility of using both modules at the same time, by converting Atom
and Molecule classes of Pybel to and from the OBAtom and OBMol of openbabel
module, even because Pybel does not have all of the methods present in OpenBabel
library.

Each module (openbabel and pybel) can be imported into a Python script using the
import openbabel and import pybel statement, respectively.

Readind and writing molecule files is one of the tasks where using Pybel is advan-
tageous. Pybel makes use of iterators from Python to iterate over collections of objects,

3It refers to a neologism: use Python language conventions and idioms, everything in the smallest
number of code lines.
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which simplifies a lot the processes and in a few lines of code we can read and write
molecule files, iterate over each atom in a molecule and some other features.

To use OpenBabel and Pybel it is necessary to download and install the binary installer
for Windows (OpenBabelGUI, version 2.3.0), which includes command-line tools and a
graphical user interface (GUI). Only then it is possible to install the OpenBabel Python
bindings, version 1.6, to Python 2.5, 2.6, 2.7 and 3.1. With OpenBabel library, custom
scripts can be coded without using a GUI or the command-line.

Some of the scripts were tested with Python version 3.1 and it was verified that some
features of OpenBabel did not work.

3.2 Molecular representation

3.2.1 SMILES - Simplified Molecular Input Line Entry Specification

Brown [2009] refers that despite their apparent simplicity, ”molecules are complicated
real-world objects”. SMILES (Simplified Molecular Input Line Entry Specification) lan-
guage is a specification for describing the structure of chemical molecules using short
ASCII strings and it contains the same informations that can be found in other represen-
tations (as in extended connection table, InChI, InChIKey) however it is more human-
readable and quite compact than the others. With this representation, molecules could be
encoded by more than one SMILES string, so it could not be used as a unique identifier
of a molecule structure. Nevertheless, in 1960s was proposed an algorithm that overcome
this feature and provides a canonical ordering of atoms in a molecule.

Canonicalization

The canonicalization generates one generic SMILES among all equally valid SMILES,
known as the ”unique SMILES”. Canonical SMILES are unique for each structure but it
depends of the canonicalization algorithm used to generate it. This type of SMILES are
generated regardless of the order of the atoms in the structure. Generic SMILES termed
refers to labeled molecular graph (atoms and bonds). SMILES that also describe isotopic
and chiral information are known as ”isomeric SMILES”, and an ”absolute SMILES”
represent a unique isomeric SMILES.

SMILES Specification Rules

There are rules that guide SMILES representation, corresponding to specification of atoms,
bonds, rings, branches, aromaticity, and disconnected structures [OpenSMILES, 12-05-
2011, Weininger, 1988, Brown, 2009].

Atoms - are represented by their atomic symbol, in square brackets. The symbol has
the same representation as in Periodic Table: first character is uppercase and the
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second, if exist, is lowercase. This rule is not applied if the atom is aromatic, for
this case, the first character is lowercase. Some elements, B, C, N, O, P, S, F, Cl,
Br and I are grouped in an ”organic subset”, and do not require brackets. When
represented without brackets, this elements have the following properties: number
of attached hydrogens conforms to the lowest normal valence is consistent with
explicit bonds, the atom’s charge is zero, and the atom has no isotopic and chiral
specification. The atoms inside brackets must have hydrogens and charge specified.
The charge is specified by a ”+n” or ”-n”, where n is a number.

Bonds - adjacent atoms are assumed to have single or aromatic bonds, other type of bond
has to be specified. Single, double, triple and aromatic bonds are represented by ’-’,
’=’, ’#’ and ’:’ respectively.

Rings - the first and the last atoms of a ring are labeled with numeric suffix to indicate
connectivity between non-adjacent atoms. If there is more than one ring in the
molecule structure, the label will be 2, and so on.

Branches - an atom with three or more bonds is called a branched atom, and is described
using parentheses.

Aromaticity - can be represented in the Kekulé form using alternating single and double
bonds with atoms in uppercase, or using the ”aromatic atoms” (in lowercase), with
no need of bond symbols.

Disconnected Structures - the ’.’ (dot) symbol is used to indicate not bonded atoms, and
represent disconnected and ionic compounds.

Isomeric SMILES

Describes rules to specify stereochemistry, which covers the cis/trans configuration around
a double bond and the chiral configuration of specific atoms in a molecule.

• The cis/trans configuration around double bonds is specified using the symbols ”\”
and ”/”; these symbols appear in pairs indicating relative directionality between the
connected atoms - ”same side” (cis) or ”opposite side” (trans).

• The configuration at tetrahedral carbon is specified by ’@’ or ”@@”. Considering
the chiral center, the remaining three atoms are written from left to right, that means,
in anticlockwise order using the ’@’ symbol. To describe atoms in a clockwise
order, then ”@@” symbols are used.
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3.2.2 Molecular descriptors

Molecular descriptors have been used as input for statistical studies as a source to make
assumptions in very different studies that treat the permeability of BBB to drug molecules
[Li et al., 2005a]. They aim to be descriptions of molecules that capture relevant aspects
of them, mainly quantitative descriptions of structural and physicochemical properties of
molecules.

In this work only structural properties of molecules (physicochemical properties) were
used as molecular descriptors. This class of descriptors provides values of physical prop-
erties of molecules [Brown, 2009]. Below are presented all the molecular descriptors used
in the context of this work.

Molecular Weight (MW) - represent a summation according to the number and type of
atoms that constitute the molecule.

Average Molecular Weight (AMW) - is a variation of MW, representing the mean of
MW by the total number of atoms present in the molecule.

LogP - represent the octanol-water partition coefficient and it is widely used in quantita-
tive structure-activity relationship (QSAR) methods as a descriptor of cell perme-
ability, providing a measure of solubility or lipophilicity of a molecule [Wildman
and Crippen, 1999], therefore it is an important parameter in the study of new drug
molecules [Brown, 2009]. Nevertheless, its measurements are time-consuming, ex-
pensive and difficult to get. To overcome these difficulties were developed methods
to calculate logP based on molecular structure. There are many different approaches
to perform this calculations but it can be highlighted two main approaches, regard-
ing to fragments methods and atom-based approach. LogP obtained through these
methods is often called ClogP [Wildman and Crippen, 1999, Daylight, 2-10-2011].

logP = log(
[solute]octanol

[soluteun−ionizedwater ]
) (3.1)

Number of Rings (NRing) - represent the number of rings in a given molecule.

Number of Bonds in Rings (NBRing) - represent the number of bonds in a ring, ignor-
ing the type of bond.

Multiplicity - for each of the following atoms, C, N, O, S, Br, I, Cl, F, and Na it was
considered the number of possible bonds that atoms can do, ignoring possible hy-
drogen bonds. Considering the carbon atom for example we could have: C-1, C-2,
C-3, C-4, that means, carbon bonded to one substituent atom 1 and bonded to three

1For the context of multiplicity, a substituent represent an atom or group of atoms substituted in place
of a hydrogen on the considered atom.
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hydrogens, carbon bonded to two substituent atoms and bonded to two hydrogens
and so on. For each atom are considered all possible multiplicities, and for each of
the multiplicities are counted the number of occurences in a molecule. So, we can
consider each multiplicity as a molecular descriptor (table 3.1).

Fingerprints – is a vector representation of molecules, in each molecule is encoded in a
binary string that each bit represents the presence or absence of a substructure. Each
bit of fingerprints, in a total of 1023, will be considered a molecular descriptor
in order to represent the presence of a particular piece in molecules, and it will
retain the number of occurences of the substructure encoded in the bit. Due to the
complexity of fingerprints, the next section is dedicated to present fingerprints and
their characteristics.

Table 3.1: Multiplicities used as molecular descriptors.

Element Atomic number-number of bonds

Carbon (C) 6-1, 6-2, 6-3, 6-4
Nitrogen (N) 7-1, 7-2, 7-3, 7-4
Oxygen (O) 8-0, 8-1, 8-2
Fluorine (F) 9-1

Sodium (Na) 11-0
Phosphorus (P) 15-4

Sulfur (S) 16-1, 16-2, 16-3, 16-4
Chlorine (Cl) 17-0, 17-1
Calcium (Ca) 20-0
Bromine (Br) 35-0, 35-1

Iodine (I) 53-1

3.2.3 Fingerprints

Molecular fingerprints are used to encode molecular structure in a series of binary digits
(bits) that represent the presence or absence of particular substructures in the molecule.
Fingerprints can be divided into two types: structure-key and hash-key fingerprints.

Structure-Key Fingerprints

The structure-key fingerprint is based on a dictionary of defined substructures to generate
a binary (0 or 1) string where each bit equates one substructure in the dictionary. So, in
this kind of fingerprints an on-bit (1) in seventh fingerprint position (fp2) corresponds to
a defined substructure in the dictionary.

2Abbreviation to refer to fingerprint position will be done in lowercase to distinguish from FP of False
Positives.
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This type of fingerprints was the start point to a new generation of fingerprints, the
hash-key fingerprints, since the oldest ones have several disadvantages. Some of them
are:

• Lack of generality. It is necessary to choose in advance the patterns to be included
in the ”dictionary” of keys, it reflects the nature of the research area in which dic-
tionary will be applied. So, because of that, it can hardly be used in other types of
research areas.

• Mostly zeros. As the dictionary of substructure keys are build by users, a typical
molecule will contain very few of the patterns represented by the structural key’s
bits.

• Patterns are not overlapped. Although a molecule shares portions with other pat-
terns, this type of fingerprints does not consider this. So, more complex molecules
are not accurately characterized.

Hash-Key Fingerprints

In hash-key fingerprints there are no predefined database of substructures, instead the
keys are generated based simply on the molecule. In this type of fingerprints, there is no
assigned meaning to each bit. This fingerprint enumerates multiple atom-bond paths from
each molecule, generally with a path length of 0 to 7.

With hashing method, the same bit can map several substructures, because of that a
match does not guarantee the presence of a particular substructure, on the contrary if a
fingerprint indicates the missing of a substructure then it certainly is.

Pybel provides four types of fingerprints, FP2 corresponds to a hash-fingerprint defi-
nition and it is the most common type [Babel, 4-11-2010].

The FP2 fingerprint type generates bits from 0 to 1024. For each molecule, pybel
returns an output record (figure 3.1) [dalke scientific, 6-7-2011].

Figure 3.1: Pybel representation of bits for a FP2 fingerprint.

This output contains a fingerprint with 6 groups of 5 lines, with exception for two of
the groups that have two more lines. Each group has 8 hexadecimal values and each of
these are 4 bits, so in total we should have 1024 bits for each fingerprint ((5 x 6 + 2) x 8
x 4 = 1024).
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Open Babel GUI gives a list of the chemical fragments used to set bits [Babel, 21-09-
2010]. Below is an example of an output showing the on-bits and respective fragments
for acetylsalicylic acid (commonly named Aspirin) represented by

C1 = CC = CC(= C1C(O) = O)OC(C) = O

0 6 1 6 <670>
0 6 1 6 5 6 1 8 1 6 1 6 <463>
0 6 1 8 1 6 <105>
0 6 1 8 1 6 1 6 <655>
0 6 1 8 1 6 5 6 1 6 <104>
0 6 5 6 <81>
0 6 5 6 1 6 <473>
0 6 5 6 1 8 1 6 <568>
0 6 5 6 1 8 1 6 1 6 <1018>
. . .

The first digit of each line of the output indicates whether the fragment is linear (0)
or cyclic (1) and the remaining digits indicate the atomic number and bond order alterna-
tively. For example, the first bit of the output (670) represent a carbon (atomic number 6)
bonded to another carbon by a single bond (1). If we have digit 2 instead of 1, it means
that carbons are bonded with a double bond, and so on.

3.3 Molecular similarity

Most of the times, molecular similarity is calculated with a coefficient that compares two
molecular fingerprints. Once we got the fingerprints representation of a molecule it is
easy to calculate a measure of similarity between two molecules. A similarity measure
based on fingerprints can be seen as a mathematical approach, in which on-bits in the
fingerprints are compared between two molecules. Molecules are described by the pres-
ence or absence of substructures, so four terms a, b, c, and d are considered, which are
represented in a two-by-two contingency table (Table 3.2).

Where:
a - count of bits on in object A but not in object B
b - count of bits on in object B but not in object A
c - count of bits on in both object A and object B
d - count of bits off in both object A and object B
n - total number of bits (a + b + c + d)
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Table 3.2: Contingency table representing the four terms that describe presence and ab-
sence of features between two molecules.

Molecule B
0 1 Total

Molecule A
0 d b d + b
1 a c a + c

Total a + d b + c n

A number of distance metrics can be calculated for binary fingerprints. All the mea-
sures applied in this work are actually similarity measures and thus represent the reverse
of a distance metric and so the distance can be obtained by subtracting the value from 1.0.

Similarity measures are often classified into two categories:

measures of co-occurence - range from 0 to 1 and their numerator usually consists of a
a + d.

measures of association - range from -1 to 1 and their numerator usually contain ad-bc.

Similarity measures

Next we define all the measures [Daylight, 3-12-2010] used in this work:

Cosine is the ratio of the bits in common to the geometric mean of the number of on bits
in the two molecules.

Cosine =
c√

(a+ c)(b+ c)
(3.2)

Dice is the ratio of the bits in common to the arithmetic mean of the number of on bits in
the two molecules.

Dice =
2.c

a+ b+ 2.c
(3.3)

Euclidean is function of d, so it is dependent on the double zeros.

Euclidean =

√
c+ d

a+ b+ c+ d
(3.4)

Forbes
Forbes =

c(a+ b+ c+ d)

(a+ c)(b+ c)
(3.5)

Hamman
Hamman =

(c+ d)− (a+ b)

a+ b+ c+ d
(3.6)
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Kulczynski represent the mean of the individual substructures similarities.

Kulczynski = 0.5(
c

a+ c
+

c

b+ c
) (3.7)

Manhattan
Manhattan =

a+ b

a+ b+ c+ d
(3.8)

Matching

Matching =
c+ d

a+ b+ c+ d
(3.9)

Pearson
Pearson =

c.d− a.b√
(a+ c) ∗ (b+ c) ∗ (a+ d) ∗ (b+ d)

(3.10)

Rogers-Tanimoto

Rogers− Tanimoto =
c+ d

2.a+ 2.b+ c+ d
(3.11)

Russel-Rao
Russel −Rao =

c

a+ b+ c+ d
(3.12)

Simpson is the best of the individual substructures similarities.

Simpson =
c

min((a+ c), (b+ c))
(3.13)

Tanimoto is independent of d. It represents the proportion of the on-bits shared.

Tanimoto =
c

a+ b+ c
(3.14)

Yule
Y ule =

c.d− a.b
c.d+ a.b

(3.15)

3.4 Statistical methods

3.4.1 Principal Coordinates Analysis

Principal Coordinates Analysis (PCoA), also known as Classical Multidimensional Scal-
ing (CMDS), is a statistical technique that provides a graphical representation of the pat-
tern of proximities in a given set of objects.

PCoA is an unsupervised statistical learning method and it can be seen as a clustering
method that determines natural groupings of objects based solely on their independent
variables, such as molecular descriptors. The supervised statistical learning methods use
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a different approach, that consists in using a priori information regarding the classes to
which the objects in a training set belongs, as k-NN and NN.

Figure 3.2: Molecules representation in a two dimensional space, after applying cmdscale
function, considering Tanimoto measures. The red and blue circles represent molecules
able to cross the barrier and not able to cross it, respectively.

PCoA objects are represented as points in a low dimensional (typically two or three)
Euclidean space, where distances between the points match the original distances as well
as possible. This technique is based on an eigenvalue equation where a symmetric matrix
M of n objects (n x n) with a (i, j)th entry, dij, gives a measure of the relationship between
the ith and jth objects. The basic idea is that the symmetric matrix contains distance in-
formations and the goal is to obtain a set of n points in p dimensions whose interdistances
approximate the matrix. Usually, PCoA is used to represent a set of objects in a two-
dimensional space, however a low number of dimensions may prove to be insufficient to
properly represent data. In this case, the number of dimensions should be increased. The
result is useless if the only purpose is to have a visual representation of data. Although,
PCoA can be used as a dimension reduction method, transforming the original matrix into
a simple and more small distance matrix. A simplified view of the method is as follow:

1. Assign points to arbitrary coordinates in a n-dimensional space;

2. Compute euclidean distances among all pairs of points;

3. Adjust coordinates of each point to get the best representation.

Principal Coordinates Analysis can be done in R by using the cmdscale function
[CRAN-R, 29-10-2010]. cmdscale() takes a n x n distance matrix M, and returns a n



Chapter 3. Methods 24

x p matrix Y, in which a row represents the coordinates of n points in p-dimensional
space for some p < n. The input has to be square and symmetric indicating relationships
between objects, in our case, between molecules.

This technique gives, for each molecule, a vector of coordinates, allowing their simple
representation in space, that transmits similarities between molecules.

For our work, we are mainly interested in the classification of molecules in their ability
to cross the BBB. The original symmetrical matrix contains distances between molecules,
according to its structural similarity.

Figure 3.2 shows the molecules representation, in a two-dimensional space, where red
circles are molecules that can penetrate the BBB and blue circles molecules that can not
penetrate the BBB. Of the figure, some little clusters of just one color can be identified,
meaning that molecules with a clssification tend to be closer of molecules with the same
classification.

3.4.2 Statistical measures

In order to classify the results obtained from the algorithm’s analysis various statistical
measures are available [Carugo, 2007, Hripcsak and Rothschild, 2005, Baldi et al., 2000].

The degree of reliability of each prediction was estimated with the confusion matrix.
The matrix represents a classification of features in positive and negative. In our work, the
ability to cross the BBB is considered as the positive feature, so we refer them as ”positive
molecules”; on the other hand, the absence of the ability to cross the BBB is considered
the negative feature, so molecules are referred as ”negative molecules”.

From the confusion matrix we can define the four following quantities:

True Positives (TP) = number of positive molecules that are correctly predicted;
True Negatives (TN) = number of negative molecules that are correctly predicted;
False Positives (FP) = number of negative molecules that are (incorrectly) predicted

to be positive; and
False Negative (FN) = number of molecules that are predicted to be negative despite

they are positive.

The matrix is formed by two rows and two columns that report the number of the four
quantities previously explained. Each column of the matrix represents the instances in the
predicted class, while each row represents the instances observed in the class (Table 3.3).

Table 3.3: A confusion matrix.

Real
+ -

Predicted + TP FP
- FN TN
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Precision

Precision is defined as the proportion of the true positives against all the positive results.
It gives a rate of the ”positive molecules” (TP) that are correctly classified among the total
of molecules classified as ”positive molecules” (the sum of TP and FP).

Precision =
TP

TP + FP
(3.16)

Recall

Recall, or sensitivity, is a measure of the ability of a system to recognize all positive
cases, it is defined as the number of TP divided by the total number of elements that
actually belong to the positive class (the sum of TP and FN). This measure gives us a
proportion of ”positive molecules”, but, unlike precision, it is according to the total of
molecules that really are positive.

Recall =
TP

TP + FN
(3.17)

Precision and Recall are widely used for evaluate the correctness of a pattern recogni-
tion algorithm. Precision can be seen as a measure of exactness or fidelity, whereas recall
is a measure of completeness. Both of them may range from 0 to 1, the latter value being
associated with perfect predictions.

Accuracy

Accuracy computes the fraction of instances for which the correct result is returned, that
means, the proportion of true results (both TP and TN). Its values range between 0 and 1,
where 1 means that the predicted values are exactly the same as the given values. With this
measure both ”positive molecules” and ”negative molecules” are considered, in the global
of possible labels (”positive” and ”negative molecules” correct or incorrect classified).

Accuracy =
TP + TN

TP + FP + TN + FN
(3.18)

The measures explained so far do not take the true negative rate into account, so it
is necessary to resort to other measures to assess the performance of a binary classifier.
Moreover, none of the measures presented previously can alone describe perfectly a con-
fusion matrix. Even giving a measure of correctness values for both classes (positive
and negative), accuracy can sometimes fail in the true quality of a system, mainly when
classes are unbalanced. This lead us to another measure: the phi measure.
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Phi

Phi, or Matthews Correlation Coefficient (MCC), is a correlation coefficient between the
observed and predicted binary classifications. It takes into account true and false posi-
tives and negatives and is generally regarded as the more faithfully measure which can
be used even if the classes are unbalanced. Phi measure is generally regarded as being
one of the best measures to describe the confusion matrix, and consequently is widely
used in machine learning algorithms as a measure of the quality of binary classifications.
This measure returns values in the interval [-1,1], where -1 means that algorithm fails all
predictions, so is just need to change our interpretation to have a perfect predictor, 0 an
random prediction and 1 a perfect prediction.

Phi =
TP.TN − FP.FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.19)

BBB+ and BBB-

Defined by us, BBB+ represents the positive predictive rate, while BBB- represents neg-
ative predictive rate.

BBB+ =
TP

TP + FP
= Precision (3.20)

BBB− =
TN

TN + FP
(3.21)

3.4.3 Cross-Validation

Cross-Validation (CV) is a statistical technique to evaluate and compare learning algo-
rithms. It is widely used in predictive purposes, in order to assess performance of the
model. The idea behind CV is to split data into two subsets, one to train the model and
another one to test it. Then, successive rounds are performed using differents subsets for
train and test, and at the end of the performance results are averaged over the rounds.
The performance is tracked using statistical measures, as accuracy. There are many types
of CV, in this document is only considered two of them: leave-one-out cross-validation
(LOOCV) and k-fold cross-validation.

To perform a k-fold cross-validation the initial dataset is divided into k equally sized
subsets. In each iteration (k), k-1 subsets are choosen to train the model, and subsequently
the trained model will make predictions in the remaining subset used to test the model. In
this way, each of the subsets are crossed against the others. The present work comprise a
binary classification, therefore at the time of split data in k subsets it is common that each
of the subsets have around half the instances, in this way is ensured a good representativity
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of the dataset. Most of the times, the number of k equals 10, this value is choosen as being
a good compromise [Refaeilzadeh et al., 2009].

LOOCV works as a k-fold cross validation, where k equals the size of the dataset. In
each iteration (k), each instance of dataset is used to test the model, and the remaining
instances to train it, that means that each instance is successively ”left out” from the
dataset and used for validation. This type of CV is time-consuming when the number of
instances in dataset is high, due to the number of times that model would be trained.

3.5 Learning methods

3.5.1 k-Nearest Neighbor

k-Nearest Neighbor algorithm is a simple classification algorithm. It uses a space rep-
resentation of instances to classify other instances of unknown classes, so no model or
learning is performed. In k-NN, it can be identified two phases: the training and test-
ing phases. The training phase requires a training set used to populate a sample of the
search space with instances labeled with a known class. Based on the training phase, the
testing phase is perfomed, where it is possible to make class predictions for unknown
instances. k-NN measures the Euclidean distances between instances to be classified and
each instance of the training set, expressed in the following equation:

D =
√
|| x− xi ||2 (3.22)

After computing the distances measures for all possible pairs, k-NN sorts the distances
in increasing numerical order and ”saves” the k (number of neighbors) elements. Next,
the most frequent class is returned.

The following example is an illustration of the issues here discussed. In Figure 3.3 the
red circles represents molecules that can not cross BBB (BBB-), blue circles molecules
that can cross the barrier (BBB+) and green circle is a molecule of unknown class that
we want to know the classification based on their neighbor molecules. So, considering
the three closest neighbor molecules, the ”green molecule” will be assigned as passing
the BBB, because there are more ”blue molecules” than red; but, considering five clos-
est neighbor molecules, the ”green molecule” will be classified as not passing the BBB
because there are more ”red molecules”.
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Figure 3.3: Two-dimensional representation of molecules for classification using k-NN
algorithm.

The choice of the neighbor number depends upon the data, it is necessary to search
and choose the value that better fits to the data.

During an article reading, I found a phrase that perfectly depicts our approach: ”The
k-NN method works in line with the central premise of medicinal chemistry in that struc-
turally similar molecules have similar biological activities” [Dmitry A. Konovalov and
Heyden, 2007].

3.5.2 Neural Networks

A Neural Network (NN) is a computational structure composed of processing units (neu-
rons) that are connected by links and organized in layers. Neurons communicate with
each other sending signals through connections and information processing is made as
occur simultaneously in all neurons. Each neuron has input and output connections, and
each connection has a weight associated with it [Santos and Azevedo, 2005, Gentleman,
2009]. Then NN is a non-linear statistical data modeling used for classifications tasks, by
finding patterns and unlock relationships between input information and output. It makes
use of interconnected artificial neurons to process information that changes through an
iterative process, where weights between neurons are successively corrected. NN are
highly sensitive to the data and generally they have reduced ability to extrapolate beyond
the limits of the input variables.

Each NN has a architecture that determines how neurons are organized. Therefore,
three types can be distinguished:

• multi-layer network - consists of different parallel layers and corresponds to the
most widely used NN. The first and last layer are designated by input layer and
output layer, respectively and intermediate layers are designated hidden layers.
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• totally connected network - each neuron is connected to all neurons of network.

• single layer network - has two layers, input and output layer. Neurons are indepen-
dent of each other so they can be trained separately.

The architecture of a neural network determines how neurons are connected and they
can be subdivided into:

• recurrent network - connections between neurons form a directed cycle, where neu-
rons of the output layer can be connected to the neurons of the input layer.

• feed-forward network - connections are unidirectional (forward), so information
moves from the input neurons through hidden neurons and to the output neurons.

In our study case, we are interested in prediction of permeability of drug molecules,
based on the knowledge of the permeability of the molecules in training set. Then, NN
has to be capable of learning, increasing knowledge through experience.

NN in which correct classification of instances of training set are known have a super-
vised learning. If the produced classification match prior classification, then no need to
change the weights. Otherwise, the difference between the two classifications (value) is
used to modify the connection weight in the network. The weights are adjusted incremen-
tally until the training set matches the desired output as closely as possible to a maximum
number of defined iterations.

The NN implementation used was the one provided by software R, namely package
nnet [CRAN-R, 18-10-2010]. This package allows implementation of a feed-forward,
multi-layer neural network, with a single hidden layer 3.4.

The nnet package implements a NN that has a input layer (Figure 3.4), one hidden
layer and an output layer. Next it will be explain how to choose the number of neurons in
each of the layers.

Input layer

This layer represents the variables used for the NN learning process. For example, if
the molecular descriptors corresponds to coordinates vector from a PCoA analysis of a
similarity matrix, then the number of neurons in the input layer is equal to the number of
coordinates of the vector. nnet() automatically defines this from input data.
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Figure 3.4: Feed-forward network with a single hidden layer. Adapted from Santos and
Azevedo [2005]

Hidden layer

For this layer, nnet() allows to choose the number of neurons. There are some
empirically-derived rules of thumb, of these three are highlighted [Xu and Chen, 2008,
Heaton, 2008]:

• The number of hidden neurons should be between the input layer size and the output
layer size;

• The number of hidden neurons should never be more than twice as large as the input
layer;

• The number of hidden neurons should be 2/3 the size of the input layer, plus the
size of the output layer.
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Output layer

Molecules will be classified in passing or not passing the BBB (binary classification),
so the number of neurons in the output layer will be two. This feature is also automatically
defined by nnet().

3.5.3 Random Forest

The Random Forest (RF) algorithm [Breiman and Cutler, 18-5-2011] is based on the
features of decision trees, but instead of having only one tree, there is a collection of
decision trees. The algorithm grows many decision trees, in order to improve predictive
accuracy. It classifies one case using each tree in the new ”forest”, and choose a final
predicted outcome by combining the results across all trees using majority vote.

To understand how RF works, first it is necessary to introduce decision trees.

Decision Tree

A Decision Tree (DT) represents a set of rules that follows a hierarchy of classes and
values, used to classify instances. An instance is classified by starting to test the attribute
specified by the root and then following the branch corresponding to the value of the
attribute in the instance. This process is then repeated for the sub-tree with root on the new
node. The decision tree algorithm grows recursively trees from a training set, subdividing
this data set until the tree is just formed by ”pure nodes”, in that each node represents only
a single class, or the satisfaction of a criterion.

A DT has a defined structure based in the conception of a real tree, which is: root,
branch (values of the attributes/variables), internal nodes (the attributes/variables, with
two or more sub-trees that represent different paths) and leafs or ”pure nodes” (the classes).

There are two types of DT: classification and regression; however, we are just inter-
ested in classification DT. When a tree model is applied to a test set, each instance follows
a certain path, until the instance reaches a leaf, which will be assigned with the class of
the leaf.

DT has a mechanism of prunning, that plays an important role in producing smaller
and more accurate trees with more potential to classify new instances. The main goal of
prunning is removing parts of the tree that do not contribute to classification accuracy,
producing less complex trees.
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Random Forest

In a Random Forest, a DT grows according to the next steps:

• Considering N cases in the training set, it is necessary to proceed to a random
sample n with replacement. This sample will be the training set for growing the
tree.

• A number of m variables in a total of M are randomly selected and of these the
variable that better splits class instances 4 is chosen to split the node. The variable
chosen at each node is held constant.

• Although pruning is a common practice in DT, in Random Forest this feature is not
implemented.

In RF there is no need of cross-validation, the reason is that it performs a Out-Of-Bag
(OOB) while is training. As RF uses bootstrap samples for construct trees, one-third of the
cases of training set are left out and consequently they are not part of trees construction.
This feature is very important in small data sets where is not possible to have a large
independent test data set without undermine the scope and performance of the training
set. The left out instances constitute the OOB sample, which is used to estimate the
ensemble prediction performance.

The number of trees and minimum size node are two parameters in Random Forest.
There is not a maximum number of trees but 500 trees show to be sufficient in most cases,
so this is the default value [Svetnik et al., 2003]. The other parameter, minimum node
size, gives us the minimum number of nodes below which no split will be made, having
effect on the grown size of trees. In terms of classification, the default value is 1, ensuring
that trees grown until is maximum size.

Variable importance

RF gives a measure of how each variable contributes to the prediction accuracy that is
calculated in the course of training. Variable importance can be measured in terms of
the number of times each variable is selected by all trees in the RF. Two measures can be
defined to assess this variable importance: the mean decrease accuracy and mean decrease
Gini, described below.

4In our study case, class instances refers to the capability of molecules to cross (or not) the BBB.
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Mean decrease accuracy

This measure gives a value of how much accuracy would decrease if a variable was
removed. So, if a variable is irrelevant, its deletion should not have great impact in the
accuracy value, consequently, the mean decrease accuracy will be assigned with a very
low value. On the other hand, if a variable is important, its deletion has a great impact in
accucary value, so the mean decrease accuracy should be high.

Mean decrease Gini

The mean decrease Gini is a weighted mean of the individual trees improvement in the
splitting criterion produced by each variable [Strobl et al., 2006]. Gini index is calculated
for each variable, based on the node with lowest index. In each, the more informative
attribute is the one that has lower Gini index (impurity index). So, a low Gini index (higher
decrease in Gini) means that a particular variable plays a greater role in partitioning the
data into the defined classes.

Random Forest versus Decision Tree

In DT all descriptors are tested for the splitting process at each node, instead of that,
RF only tests a small number of the descriptors, making the search faster 5. Also, in
DT usuallys proceed to prunning in order to improve accuracy, which is usually done
via cross-validation, however with RF there is no need of prunning since each tree is
computed based in a bootstrap sample.

So, RF has several advantages [Breiman and Cutler, 18-5-2011], that make it one of
the best choices in very different cases, some of them are:

• high accuracy values compared to DT and other classification algorithms;

• allows thousands of input variables without variable deletion;

• it is possible to know which variables are more importante; and,

• leads well with imbalanced data sets.

RF were used with resorce to randomForest R library [CRAN-R, 10-4-2011]. This
package implements Breiman’s Random Forest algorithm [Breiman and Cutler, 18-5-
2011], based on Breinam and Cutler’s original Fortran code for classification and re-
gression.

5With randomForest package for R, the default is the square root of the number of descriptors.
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Chapter 4

Data

The current chapter focuses on implementation details. It starts with a description of the
drug molecules dataset (Section 4.1) and the way it was constituted (Section 4.2). Chapter
ends with Section 4.3 where is highlighted details behind implemented approaches.

4.1 Drug molecules dataset

For this work, a drug dataset of 950 molecules, with quantitatively measured logBB, was
compiled using data from previous publications discussing BBB permeability of drug
molecules. Molecules were divided into BBB+ and BBB- groups according to the as-
sumption pointed out in Li et al. [2005b] and Zhang et al. [2008], where compounds with
experimental lopBB <-1 were classified as relatively poor penetrators of the BBB barrier
(BBB-), while compounds with logBB >-1 were classified as relatively good penetrators
of the BBB (BBB+).

The dataset constitution suffered updates over the course of the work, in order to im-
prove the diversity of compounds, to increase the number of compounds and to constitute
a dataset that can approach the reality of the ratios between BBB- and BBB+. So, three
phases can be distinguished until the final dataset is constituted. Some of the tested mod-
els take as input the initial drug dataset instead of the final one, representing the first steps
of this work.

Phase I - Initial drug dataset

The initial dataset is comprised of 628 molecules, after elimination of replicated molecules,
and it have been accumulated from two sources: [Doniger et al., 2000] and [Li et al.,
2005b]. Of the total of molecules, there are 374 BBB+ and 254 BBB- molecules.

Phase II

In this phase, the initial dataset was updated with more 101 molecules, of which 92 BBB+
and 9 BBB-, taken from the work of [Zhang et al., 2008]. So, the dataset has reach a total

35
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of 729 molecules (466 BBB+ and 263 BBB-).

Phase III - Final drug dataset

To better account for the verified a priori probabilities of BBB permeability, a third dataset
was used for the final tests.

This last phase aims to decrease the lack of BBB- compounds, after have been high-
lighted that 95 percent of molecules do not show BBB permeability and only 5 percent
of the drug molecules cross the BBB [King, 2011, Pardridge, 2005, Tsaioun et al., 2009,
Pardridge, 2003]. Our initial dataset was so far of representing the reality of this estima-
tions, since it had much more BBB+ compounds than BBB- compounds. These percent-
ages represent a twist in the work and represent the starting point for a new approach.
Thus, the initial dataset suffered a new updated with more 221 BBB- molecules, selected
from [Zhao et al., 2007]. This final dataset is constituted by 950 molecules, of which 466
BBB+ and 484 BBB-.

The structure of the final dataset retains the following informations:

• an alphanumeric ID was defined for each molecule.

• the original name of the molecule as referred in the literature;

• a binary classification, p (pass BBB) or n (not pass BBB) defined based on the
logBB values; and,

• the SMILES representation of the molecules.

4.2 Data preparation and computational approach

In this section it will be describe the procedure until we have our data ready to test models.
The overall procedure contained the following four major steps:

Obtaining SMILES

SMILES representation of molecules was obtained using the Chemical Identifier Re-
solver [CIR, 18-5-2011], an online service, provided by [NCI/CADD, 18-5-2011]. This
service allows to convert a given structure identifier, as the common name of the molecule,
into another representation, as the SMILES representation, it also provides a structure ed-
itor. To obtain the SMILES representation of each molecule, a Python script was devel-
oped (Appendix A.1) that uses this web service for each molecule present in the dataset.
Some of the molecules were not recognized by the service, and so the original SMILES
provided by source articles were used. Next, duplicate SMILES were eliminated, since
several compounds had different names and the same SMILES representation.
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Obtaining molecular descriptors

The Python library Pybel was used to generate all the molecular descriptors described
in section 3.2.2 (MW, AMW, LogP, NRing, NBRing, multiplicities and fingerprints),
based on their SMILES representation. In appendix A.2 is shown the script used to obtain
MW and LogP.

The generated fingerprints were the hash-key fingerprints, somewhat similar to the
Daylight fingerprints [O’Boyle et al., 2008], taking as input SMILES representation of
molecules. Pybel provides four types of fingerprints, we use FP2 that corresponds to a
hash-fingerprint definition [Babel, 4-11-2010].

Obtaining and reducing similarity matrices

As described in section 3.4.2 there are several measures to describe molecular simi-
larity beyond the Tanimoto coefficient, for each of these measures a similarity matrix was
generated. The program devised (Appendix A.3) uses Pybel for calculating the FP2 fin-
gerprints, according to a hash-fingerprint definition [Babel, 4-11-2010] and then is calcu-
lated the respective measure for each pair of molecules. The matrix uses the drug dataset
of the phase I (628 molecules) and it is constructed comparing each molecule with all the
others.

The similarity matrices obtained were then reduced using the cmdscale() function of
software R. The resulting vectors were used to test k-NN and NN algorithms.

4.3 Implementations

4.3.1 Principal Coordinates Analysis

As mentioned earlier, the principal coordinates analysis was performed by using the
cmdscale() provided by R software. The script developed to perform this analysis is
described in Appendix A.4. This function takes as argument a distance matrix calculated
by the application of the metrics discussed. It also receives the classification of each
molecules to whether or not they cross the BBB. The result of the function is a vector
of n-dimensions that represent the principal coordinates necessary to display a molecule
in space. For each coefficient, was obtained vectors for 2, 5, 10, 20, 30, 40, and 50
coordinates. Only dataset I was subjected to PCoA.

4.3.2 k-NN

The k-NN implementation was the library knnflex [CRAN-R, 12-10-2010] which is a
CRAN package. Aggregation method (knnflex parameter) was changed to majority class,
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the option used for classifications, all the other parameters were left with the default value.
To use k-NN for classification a simple R script was developed (Appendix A.5), tak-

ing as input arguments the coordinate vectors provenients from a PCoA analysis. Fur-
thermore, MW and LogP were used as complement to principal coordinates, due to the
different orders of magnitude, these two properties were normalized according to the
equation 4.1, where x′ is the normalized value, xi the value to be normalized, x̄ the mean
of all values, and σ the standard deviation.

x′ =
xi − x̄
σ

(4.1)

σ =

√∑
(xi − x̄)2 (4.2)

Tests were performed with several dimensions (2, 5, 10, 20, 30, 40, and 50) and a
variable number of neighbors (1, 2, 4, and 8). Molecules of dataset I were used to train
model and it was validated by a leave-one-out cross validation. The distance matrix was
used with all the elements except one, which was tested against it and attributed a class to
the most frequent neighboring class. This procedure was repeated for all molecules and
final statistics classification were thus determined.

4.3.3 Neural networks

Neural Networks were used for classifications taking as input the principal coordinates
vectors obtained after a PCoA analysis of similarity matrices. Like in k-NN method,
the NN analysis was performed for all the similarity distances described in section 3.3
considering 2, 5, 10, 20, 30, 40, and 50 dimensions for coordinate vectors. Also here,
normalized values of MW and LogP were used to complement principal coordinates.
Initially, the number of neurons in the middle layer start with 3, however to investigate
the dependence of the model in terms of number of neurons, this number was varied (3,
5, 9, 15, 20, 25, 40).

The molecules of dataset I were randomly divided into ten subsets of approximately
equal size for conducting a 10-fold cross validation test of the prediction accuracy of the
statistical learning method. Each subset represents the test set and the left molecules were
used to train the model.

The choice of range and decay parameters of NN must be decided together, since the
choice of one will affect the choice of the other. The rang value corresponds to the initial
value of weights and this value is 0.1, which means that the values of the weights along
the iterations varies between -0.1 and 0.1. The speed at which the initial positive value
reaches the final negative value depends on the value of the decay that has an impact
on learning process of the neural network. Thus a very low decay value was chosen
so that the network can learn from data and the process only ends when it reaches the
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maximum number of iterations (1000). The trace parameter allows to choose between
tracing optimization or not. In our case, the option was set to false so the NN does not
choose only the best path and thus there are no information lost in the learning process.

4.3.4 Random Forest

randomForest R package software was used to implement the model (Appendix A.7).
The model was trained and tested with the molecules from dataset III and a set of 1051
molecular descriptors, which are listed in Table 4.1. All the molecular descriptors are
exclusively based in structural and physicochemical properties of molecules.

Table 4.1: Molecular descriptors used to build random forest model. MW - molecular
weight, AMW - average molecular weight, NRing - number of rings, NBRing - number
of bonds in rings.

Descriptors Number

fingerprints 1023
multiplicities 24

MW 1
AMW 1
NRing 1

NBRing 1

total 1051

Due to the very imbalanced dataset where class priors are highly unequal and im-
balanced, the idea of oversampling appear in order to solve this problem. The BBB-
molecules have a much larger prior probability (95 percent - should be the majority class)
than BBB+ molecules (5 percent - should be minority class). Oversampling will balance
training class priors, by increasing the class data points of BBB- in the training set by ran-
domly replicating existing class data points, in order to achieve a majority class. Figure
4.1 translates the process of oversampling for dataset III.

Figure 4.1: Oversampling process for dataset III.

Besides the problem of the imbalanced dataset, it was necessary to find an algorithm
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that was robust enough to handle the huge difference between the two classes of com-
pounds and the large amount of molecular descriptors. Random Forest was chosen as
capable of yielding exceptional performance with little need to tune parameters. The al-
gorithm is robust to irrelevant parameters, does not overfit and has shown its success on
many applications [Sug, 2010].

Since model was trained considering the real distribution of BBB+ and BBB- com-
pounds, appeared the question of how the validation set should be constituted. Then it was
considered two strands of validation sets, one considering prior probabilities (approach A)
and another without considering prior probabilities (approach B).

Approach A

This approach decides based on the knowledge of probabilities without data being pre-
sented (prior probabilities). Most of the times, these prior probabilities are a subjective
assessment of the experience, as in the present work, the prior probabilities of crossing
class molecules are an estimation based on existing knowledge of experience and early
cases. The classification model assumes that the ratio of molecules (equation 4.3) is
skewed in the dataset, and the model is used assuming a fixed probability of 5% BBB+
and 95% BBB-.

moleculesratio =
BBB+

BBB −+BBB+
(4.3)

The validation set considering prior probabilities was constituted of 95 molecules. It
comprises approximately 91 BBB- molecules and 4 BBB+ molecules randomly selected
from BBB- subset and BBB+ subset, respectively. After the selection of this molecules,
the left ones are the seeds for oversampling and constitution of training set.

Approach B

Unlike the previous approach, this approach does not apply the prior probabilities, instead
the classification models are used according to the probabilities of occurence within the
dataset.

The validation set is also constituted of 10% of the molecules however each class as
approximately 50 percent of BBB- and BBB+ molecules. The selection process is done
similarly.

Validation

As discussed in section 3.5.3, RF already performs an internal cross validation, nonethe-
less, we perform a 10-fold cross validation to avaliate the consistency and robustness of
the model, and avaliate the most and less important descriptors that are used in RF con-
struction and whether they keep constant throughout the iterations. Furthermore, a cross
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validation is needed since not all of the molecules can be used to train the model be-
cause oversampling can not choose some of the molecules to replicate. Then is necessary
validate the model behavior with different training sets after oversampling process.

For 10-fold cross validation, in each iteration the next four steps are performed:

1. Select 10% of all molecules from dataset according to the process describe above
for each type of validation set. The remaining are part of training set.

2. Oversampling the training set. All the BBB+ molecules are used to constitute pos-
itive part of the dataset (5%) and BBB- are randomly selected (with replacement)
and replicated until the final training set reaches the 10000 molecules, in order to
simulate 95% of negative part.

3. Construct the RF based on the training set obtained in 2.

4. Model test with the set determined in 1.
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Chapter 5

Results and discussion

This chapter now shows the results obtained with the methodologies presented and dis-
cusses their significance, comparing them to other efforts in the literature.

Many parameters can be used to represent the results of the classification and our
choice were made based on the importance of each one. Phi was chosen as the parameter
that best represent our results, since it represent an overall measure of the correctness of
the model to classify instances.

5.1 k-Nearest Neighbour

Starting with k-Nearest Neighbour analysis, a simple test was performed and is based on
the following question: ”could MW and LogP, separately or together, be used to correctly
classify molecules in BBB+ and BBB- molecules?”. MW and lipophilicity, as translated
by the LogP coefficient, are generally 2 important factors described in the literature that
may be able to explain why certain molecules cross the BBB. Figure 5.1 shows that they
are not enough to classify molecules, with Phi values being far below expectations (0.05,
0.20 and 0.27 for LogP, MW, MW+LogP, respectively). The presented data represent the
results of valiation sets according to a leave-one-out cross validation (LOOCV). From
these results arise the need to add more variables that can explain more and better the
chemical information contained in the molecules. A similarity coefficient was used for
fingerprints comparison. The most popular similarity measure for comparing chemical
structures is the Tanimoto coefficient [Godden et al., 2000]. PCoA brings dimension re-
duction of the Tanimoto similarity matrix (628x628) necessary because of the large size
that extends the model run time. Testing different dimensions is necessary to assert the
amount of structural information present in the molecules (and discrimined by Daylight
fingerprints) that may be able to contribute to predict BBB permeability. Besides that,
MW and LogP were added to the data sets to verify if their presence increased the predic-
tive power of the models (figure 5.1).

Tanimoto coefficient shows good results (phi value of 0.55) comparing to individually

43
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analysis of MW, LogP and MW+LogP meaning that principal coordinates catch most of
the information constant in these 2 properties (figure 5.1). The Tanimoto phi value only
gets better when molar weight is added, with a number of dimensions above 20. Any other
addition of parameters (tanimoto+LogP and tanimoto+MW+LogP) causes the decrease in
the number of phi, and so this kind of approach was not continued.

Figure 5.1: Measures of Phi for tested Tanimoto coefficient variants with k-NN algorithm,
according to a LOOCV.

Although many other similarity measures can be applied for chemical structures com-
parison represented by means of fingerprints (Section 3.3). Thus another coefficients were
evaluated, showing that higher values of phi can be achieved. Taking as reference the Tan-
imoto coefficient, Pearson coefficient reaches the highest phi value (figure 5.2) with 30
dimensions. Further, many of the used coefficients exceeds the highest Tanimoto value
(for 50 dimensions) with fewer dimensions (figure 5.2 and table 5.1).

It can be noted that coefficients like Cosine, Euclid, Kulczynski, Pearson and Simp-
son overpast those obtained with Tanimoto. The value obtained with Pearson coefficient
shows that 30 dimensions are enough to explain molecules and an increase of dimensions
does not mean increasing the explicative power, since the phi value tends to decrease after
the 30 dimensions.

In general the results were equivalent between coefficients, requiring a high number
of dimensions, with the exception of the coefficient of Forbes.
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Figure 5.2: Measures of Phi for all the evaluated coefficients with k-NN algorithm, ac-
cording to a LOOCV.

Table 5.1: Details of measures to Phi for some of the coefficients shown in Figure 5.2, for
k-NN algorithm. The best value obtained with the algortihm is highlighted in orange, and
for each coefficient is highlighted its best value in blue.

No. Dims

Similarity Measure 20 30 40 50

Cosine 0.5541 0.5346 0.5404 0.5506
Dice 0.5346 0.5463 0.5506 0.5382

Euclid 0.5550 0.5439 0.5463 0.5573
Hamman 0.5404 0.5431 0.5428 0.5533

Kulczynski 0.5661 0.5510 0.5484 0.5515
Matching 0.5435 0.5431 0.5463 0.5530

Pearson 0.5459 0.5769 0.5556 0.5448
Rogers-Tanimoto 0.5428 0.5439 0.5400 0.5506

Russel-Rao 0.5337 0.5318 0.5275 0.5481
Simpson 0.5530 0.5642 0.5484 0.5621

Tanimoto 0.5316 0.5494 0.5502 0.5537

Besides the number of dimensions, k-NN depends on the number of neighbors. Based
on this number, the algorithm classifies an object by a majority vote of its neighbors, with
the object being assigned to the class most common amongst its k nearest neighbours.
Figure 5.3 shows the dependency of phi value in order to the number of neighbors for
the coefficients and dimensions with highest values up to Tanimoto, namely Cosine and
Kulczynski with 20 dimensions, Euclid and Tanimoto with 50 dimensions, and Pearson
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and Simpson with 30 dimensions. Regarding to which number of neighbors is better, it
seems to exist a tendency inside each group of dimensions, however it is highly dependent
of which measure is used. For 20 dimensions, both Cosine and Kulczynski show higher
phi values for 1 and 2 than for 4 and 8 neighbors, being this separation higher for the last
coefficient. Nevertheless, in both cases the highest value is achieved with 2 neighbors,
then may be this value is the best choise for the 20 dimensions. Considering now the 50
dimensions, an improvement of the results with just 1 neighbor is evident, with a certain
distance of the values obtained with the other neighbors. Although, when the number of
dimensions is 30, the choice of how many neighbors should be used is not so obvious.
Simpson shows best results with 1 or 2 neighbors, however when the case is the Pearson
there is a clear bias in favor of 4 neighbors, corresponding this to the highest phi value
obtained by the algorithm. The results show that it is possible to make some assumptions
but they do not exclude the required analysis coefficient to coefficient.

Figure 5.3: Dependency of phi value in order to the number of neighbors.

5.2 Neural Networks

Like in k-NN approach, first of all it was analyzed the ability of MW and LogP to predict
the molecules class. Although in k-NN the validation sets were subject to a LOOCV, in
NN the sets were validated through a 10-fold cross validation. Once again, the phi val-
ues are low (0.07, 0.21 and 0.31 to LogP, MW and MW+LogP, respectively) reinforcing
the idea that just these properties are not sufficient for a correct prediction (figure 5.4).
Following the same procedure, fingerprints comparison with Tanimoto coefficient were
used as molecular descriptors after applying a dimension reduction of the original matrix,
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Table 5.2: k-NN classification results for several statistical measures. The algorithm
achieves its best phi value with Pearson coefficient (orange) and in blue are highlighted
the values higher than its measures.

Coefficient Dims Accuracy Precision Recall F BBB+ BBB- Phi TP TN FP FN

Cosine 20 0.7866 0.8109 0.8369 0.8237 0.8109 0.7479 0.5541 313 181 73 61
Euclid 50 0.7882 0.8114 0.8396 0.8252 0.8114 0.7510 0.5573 314 181 73 60

Kulczynski 20 0.7898 0.8306 0.8128 0.8216 0.8306 0.7328 0.5661 304 192 62 70
Pearson 30 0.7978 0.8175 0.8503 0.8336 0.8175 0.7657 0.5769 318 183 71 56

Tanimoto 50 0.7866 0.8093 0.8396 0.8241 0.8093 0.7500 0.5537 314 180 74 60
Simpson 30 0.7898 0.8253 0.8209 0.8231 0.8253 0.7383 0.5642 307 189 65 67

resulting in an improvement of the ability to predict (phi value of 0.5792). To Tanimoto
vector coordinates were add MW, LogP and MW+LogP, but it was not achieve a signifi-
cant improvement in the phi value, 0.5792 to 0.5811 (figure 5.4), moreover is necessary
an increase in dimension number passing from 40 to 50. Since, no relevant improvements
were made with addition of MW and LogP, also here it no longer be applied.

Figure 5.4: Measures of Phi for tested Tanimoto coefficient variants with NN algorithm,
according to a 10-fold cross validation.

The next step includes analysis of all the other coefficients refered in section 3.3.
The measure of similarity that provides a better value of phi is the Simpson coefficient
with 40 dimensions (0.5818). It is noted that, for the same number of dimensions, other
coefficients stay very close to this value, as the case of Tanimoto and Pearson. Table 5.3
discriminates the small differences for some of the coefficients.
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Results show an increasing of phi value as the number of dimensions increases. A
high number of dimensions (tested up to 50 dimensions) translates a better representation
of molecules, and it seems to be important to get a good result with NN algorithm. Fur-
thermore, the results between coefficients are similar and show the same tendency, with
exception of the Forbes distance that remains significantly below other measures.

Table 5.3: Details of measures to Phi for some of the coefficients shown in Figure 5.5, for
NN algorithm. The best value obtained with the algortihm is highlighted in orange, and
for each coefficient is highlighted its best value in blue.

No. Dims

Similarity Measure 30 40 50

Cosine 0.5311 0.5260 0.5753
Dice 0.5340 0.5460 0.5672

Kulczynski 0.5365 0.5373 0.5363
Pearson 0.5335 0.5738 0.5797

Russell-Rao 0.5224 0.5373 0.5377
Simpson 0.5113 0.5818 0.5789

Tanimoto 0.5212 0.5792 0.5777

Figure 5.5: Measures of Phi for all the evaluated coefficients with NN algorithm, accord-
ing to a 10-fold cross validation.

In this approach the number of neurons of middle layer was variable to assess its
impact in increasing the predictive power. Considering the 5 highest phi values, it was
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Table 5.4: NN classification results for several statistical measures. The algorithm
achieves its best phi value with Pearson coefficient (orange) and in blue are highlighted
the values higher than its measures.

Coefficient Dims Accuracy Precision Recall F BBB+ BBB- Phi TP TN FP FN

Pearson 50 0.7984 0.7361 0.7595 0.7463 0.7361 0.8399 0.5797 18.5 31 6.6 5.9
Simpson 40 0.7968 0.7716 0.7403 0.7532 0.7716 0.8145 0.5818 19.4 30 5.8 6.8

Tanimoto 40 0.7952 0.7474 0.7555 0.7480 0.7474 0.8316 0.5792 18.8 30.5 6.5 6.2

analyzed the number of neurons in the middle layer (figure 5.6). Overall, an increase in
the number of neurons results in an increase of phi value, however the number of neurons
does not seem to have a bias inside a group of dimensions. For 40 dimensions, Simpson
has achieve its best value with 40 neurons, whereas Tanimoto just needs 25 neurons to
achieve the best results. Moreover, with 50 dimensions, Pearson gets its best value with
25 neurons, while Cosine gets it with 40 neurons, and Dice shows that the number of
neurons in middle layer is highly dependent on the coefficient, being necessary only 9
neurons. It is further noted that although the phi value increases with an increase of the
number of neurons, the classification process becomes much slower.

Figure 5.6: Dependency of phi value in order to the number of neurons in middle layer.

5.3 Random Forests

RF emerged as a new approach, completely different of the used with the previous algo-
rithms. It makes use of the assumption that 95 percent of the molecules can not reach
the brain, to build a model that uses a oversampling of the dataset III to simulate such
percentages.
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As our dataset is highly imbalanced, it was needed to test two different constitution of
validation sets, in which pretends to be a mirrow of the BBB+/BBB- ratio in training set.
The goal is to verify with which validation set a better classification is achieved, the next
three sections show the results obtained for each approach and side by side the results of
the two validation sets for the most relevant measures. Both validation sets were validate
according to a 10-fold cross validation, being presented for each of the 10 iterations the
results for several statistical measures besides their mean.

5.3.1 Approach A

Moving through the analysis of results, in table 5.5 are presented the values obtained for
each measure for each iteration of the 10-fold cross validation process from the evaluation
of the validation set without considering prior probabilities, the final row represent the
mean of the iterations. It is presented the mean accuracy, precision, BBB+, BBB- and Phi
of 82.6%, 92.0%, 92.0%, 77.2%, and 67.4%, respectively.

Table 5.5: Random Forest results represented in several statistical measures, for approach
A. The validation process follows a 10-fold cross validation, being represented the results
obtained at each validation iteration, and its mean.

Iteration Accuracy Precision Recall F BBB+ BBB- Phi TP TN FP FN

1 0.8737 0.3889 0.8750 0.5385 0.3889 0.9870 0.5305 7 76 11 1
2 0.8842 0.3077 0.6667 0.4211 0.3077 0.9756 0.4003 4 80 9 2
3 0.8211 0.1579 0.7500 0.2609 0.1579 0.9868 0.2883 3 75 16 1
4 0.8526 0.1765 1.0000 0.3000 0.1765 1.0000 0.3868 3 78 14 0
5 0.8947 0.3077 0.8000 0.4444 0.3077 0.9878 0.4548 4 81 9 1
6 0.8842 0.1667 0.6667 0.2667 0.1667 0.9880 0.2937 2 82 10 1
7 0.9263 0.4167 1.0000 0.5882 0.4167 1.0000 0.6199 5 83 7 0
8 0.8632 0.2143 0.6000 0.3158 0.2143 0.9753 0.3010 3 79 11 2
9 0.9263 0.3750 0.6000 0.4615 0.3750 0.9770 0.4378 3 85 5 2

10 0.8526 0.2000 0.6000 0.3000 0.2000 0.9750 0.2858 3 78 12 2

mean 0.8779 0.2711 0.7558 0.3897 0.2711 0.9853 0.3999 3.7 79.7 10.4 1.2

5.3.2 Approach B

In table 5.6 the mean accuracy, precision, BBB+, BBB- and Phi are of 87.8%, 27.1%,
27.1%, 98.5%, and 40%. For the first case, the values of Phi are in the range of 55.1% 78.5%,
and to the second are in the range of 28.6% 62.0%, both cases indicates that there are some
worst RF pulling down the Phi value.
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Table 5.6: Random Forest results represented in several statistical measures, with ap-
proach B. The validation process follows a 10-fold cross validation, being represented the
results obtained at each iteration, and its mean.

Iteration Accuracy Precision Recall F BBB+ BBB- Phi TP TN FP FN

1 0.8632 0.9268 0.7917 0.8539 0.9268 0.8148 0.7347 38 44 3 10
2 0.8947 0.8781 0.8781 0.8781 0.8781 0.9074 0.7855 36 49 5 5
3 0.8316 0.9429 0.7021 0.8049 0.9429 0.7667 0.6846 33 46 2 14
4 0.8632 0.9000 0.8000 0.8471 0.9000 0.8364 0.7281 36 46 4 9
5 0.7895 0.9032 0.6222 0.7368 0.9032 0.7344 0.5987 28 47 3 17
6 0.7579 0.9000 0.5745 0.7013 0.9000 0.6923 0.5507 27 45 3 20
7 0.8105 0.9167 0.6875 0.7857 0.9167 0.7458 0.6428 33 44 3 15
8 0.8421 0.9167 0.7333 0.8148 0.9167 0.7966 0.6930 33 47 3 12
9 0.8632 0.9512 0.7800 0.8571 0.9512 0.7963 0.7415 39 43 2 11

10 0.7474 0.9697 0.5818 0.7273 0.9697 0.6290 0.5774 32 39 1 23

mean 0.82632 0.92052 0.71512 0.80070 0.92052 0.77196 0.67369 33.5 45 2.9 13.6

5.3.3 Approach A versus Approach B

Analysing the table 5.7 we can get, just by considering the Phi value, that is necessary a
balanced validation set to proper validate the model. The values BBB+ and BBB- (prob-
ability of hitting the classification for BBB- and BBB+) in the validation set considering
prior probabilities, 98.5% and 27.1%, respectively, show that BBB+ molecules presented
are not sufficient to evaluate the predictive potencial of the generated RFs, since it can
classify equally well both classes of molecules when considering a validation set without
prior probabilites.

randomForest package of R allows saving RFs, and in case of choosing just one tree
is necessary a careful analysis that can not be based only on the Phi value. The choice
should reflect the analyse of the other measures that are as important for the study case,
even if the phi value may decrease a bit. As the passage of molecules through the BBB
is an exception, it is more important to correctly classify the minority class, so there is a
higher cost for misclassifying the minority class than misclassifying the majority class.
For example, in table 5.6, the second iteration is the high value of Phi (78.5%) however,
it has the lowest probability of hitting the classification of BBB+ molecules (87.8%). On
the other hand, the lower value of Phi (57.7%) has the higher probability of hitting the
classification of BBB+ with 97%. This example shows the importance of analysing all
the measures and not being restricted to just one.

From now on, it will be only considered for analysis the results obtained for the vali-
dation set that not consider the prior probabilities (Approach B).
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Table 5.7: Comparison of the accuracy, precision, BBB+, BBB-, and Phi for the validation
sets considering approaches A and B.

Measures

Approach Accuracy Precision BBB+ BBB- Phi

A 0.8779 0.2711 0.2711 0.9853 0.3999
B 0.8263 0.9205 0.9205 0.7720 0.6737

5.3.4 Variable importance analysis

Moving on to importance analysis of molecular descriptors, as mentioned earlier, it was
performed an analyse of the most important variables (Figure 5.7) by selecting in each
iteration the twenty more important, and for the less important variables it was select
the twenty-five less important (figure C.2 of appendice). The presented value of mean
decrease accuracy for each variable is a mean of all iteration where variable appear. This
is only valid for the more important variables, for the less important the value of the mean
decrease accuracy is zero. In figure 5.7 is also presented the frequence of the variables,
it was scaled (multiplied by a factor of 0.001) just to appear at the same plot, then a
frequence of 0.01 in reality corresponds to 10 and then it means that the variable are
present in all the iterations (10).

Figure 5.7: Mean decrease accuracy and frequence of the twenty more important vari-
ables.

Starting with the more important variables, of the 29 variables collected from the
iterations, 14 (about 48%) are presented in all iteration and represent the highest values of
mean decrease accuracy, further only 3 (about 1%) of them are presented in one iteration.



Chapter 5. Results and discussion 53

Figure 5.8: Number of the bonds in rings and its distribution among BBB- and BBB+
molecules.

As each fingerprint encodes a substructure it is easy to extract from these descriptors
information about which specific molecular characteristics are important for the BBB+
and BBB- predictions. Therefore, in the figure C.1 (Appendix C) are shown the 14 more
important variables and the 10 less important presented in all iterations with the respective
molecular substructure, when applied.

Figure 5.8 shows the frequence of the number of bonds in rings in relation with both
classes of compounds. 52% of the BBB+ compounds have between 0 to 10 and 21 to 25
bonds in rings, it is important to highlight that 14% of the molecules do not have rings
(zero bonds in rings) and only 0.2% of the BBB- compounds do not have rings. Regarding
BBB- compounds, 43% of them have 11 to 15 and up to 26 bonds in rings. With 16 to 20
bonds in rings both classes has approximately the same representativity. Considering the
last range as a threshold, above it compounds have a higher probability of being classified
as BBB-, below it compounds have a higher probabibility of being classified as BBB+.
The values are concordant with an increase in hydrophobicity of molecules as the number
of rings increase.

Table 5.8: Molecular weight and its average (AMW): comparison and distribution in
BBB+ and BBB- molecules.

MW AMW

label min max min max

n 109.13 1879.66 5.38 21.93
p 42.08 1085.15 4.24 24.67
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Random Forests choose oxygen with one single bond as the most important variable to
distinguish between BBB+ and BBB- compounds. Figure 5.9 represents the distribution
of the number of oxygens with a single bond in both classes of molecules. Unlike the other
molecular descriptors analyzed, with this variable there is a bigger separation between
the number of appearances between BBB+ and BBB- compounds. 86% of the BBB+
compounds have 0 to 2 oxygens with single bond, whereas 72% of the BBB- compounds
have above 3 oxygens with single bond (until a maximum of 24).

An interesting fact is that AMW is an important molecular descriptor and its values
are similar in both classes, nonetheless, the maximum of AMW is a bit higher for BBB+
compounds than BBB- compounds, this can be explained by the larger number of atoms
in higher MW compounds.

Figure 5.9: Distribution of oxygens with single bond among BBB- and BBB+ molecules.

5.4 Discussion

Table 5.9 resumes the principal results obtained for the three methodologies presented in
this work and the results for some of the studies presented at section 2.3. It shows some
similarities between k-NN and NN algorithms, with similar values of overall accuracy
and phi. The difference remains in which class of compounds is predicted with highest
accuracy: the k-NN predicts better BBB+ compounds, whereas the NN predicts better
the BBB- compounds. The higher predictive power of BBB+ compounds with k-NN is
expected since the dataset I has a larger number of BBB+ than BBB- compounds, which
will have more representativity in chemical space of training set. The NN is better able to
handle with an imbalanced dataset (dataset I) having a good predictive power for BBB-
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compounds, even as these were a minority. Regarding the number of dimensions and the
overall accuracy, k-NN algorithm has better results with a lower number of dimensions,
which is advantageous. The literature signals that MW and logP are two important vari-
ables for BBB studies, although, the presence of them does not bring an improvement
for classification when the fingerprint data is being used for classification, suggesting that
those variables can, in any way, be implicity derived from the fingerprints. The addition
of informative variables conjugated with coordinates from an PCoA analysis seems to
be a good representation for compounds and retain the necessary information for a good
prediction of classes, being worse with informative variables.

The search for better results leads us to an approach that uses Random Forests. Then,
adding RF results to the analyse, it shows a higher phi value, which is in accordance with
a more robust approach, that can handle a highly imbalanced dataset (95% of BBB- and
5% of BBB+ compounds) getting a higher predictive capability for the minority class
of compounds (BBB+), an important. That means that the used variables, namely some
fingerprints, MW, AMW, the number of times that appear oxygen with single bond and
the number of bonds in rings, are important as molecular descriptors and allow a correct
classification in BBB+ or BBB-.

Table 5.9: Methodologies and studies comparison. The best results with k-NN, NN and
RF.

Accuracy (%)

Molecules (p/n) Descriptors Methods BBB+ BBB- Overall Phi

628 (374/254) 30 k-NN 81.75 76.57 79.78 0.5769
628 (374/254) 40 NN 77.16 81.45 79.68 0.5818
950 (466/484) 1051 RF 92.05 77.2 82.63 0.6737

Studies

Ajay and Murcko [1999] 92 71 81.8 -
Doniger et al. [2000] 82.7 80.2 81.5 -
Li et al. [2005b] 88.6 75.0 83.7 0.645
Zhang et al. [2008] - - 82.5-100 -
Adenot and Lahana [2004] 90 92 91 -
Zhao et al. [2007] 98.2 87.8 97.2 -
Zhao et al. [2007] 80.1 63.1 74.6 -

Next, it will be made a comparison between the results obtained with RF (since they
are the best results) with the presented results from previous works (section 2.3). It should
be noted that a direct comparison may not be appropriate because of the differences be-
tween methodologies, namely the different algorithms and descriptors used to build up
the models and the way as it is assessed the correctness of the models. Most studies
[Ajay and Murcko, 1999, Crivori et al., 2000, Cruciani et al., 2000, Zhao et al., 2007,
Zhang et al., 2008] validate their models using external (and independent) validation sets,
whereas in our approach the RF model is validated through a more stringent 10-fold cross
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validation process, being the obtained result the average of all 10 iterations. Of the ten
studies presented, six of them deserve comments, the remaining four show values lower
than ours.

Ajay and Murcko [1999] work has the particularity of being a little bit different of the
remaining works, including the presented. The main goal is to predict which compounds
are CNS-active or CNS-inactive, instead of the prediction in BBB+ or BBB-. However, it
is a good case for comparison since it shows similarities with our methodology that imple-
ments RF. It uses a very large dataset of compounds to train his model ( 9000 compounds)
and obtain good results and in our case, the methodology makes use of oversampling to
constitute a dataset of 10000 ”compounds”, the results are similar showing that our ap-
proach can reproduce a real data set of compounds and can be used as a valid data set.

The starting point of this project was Doniger et al. [2000] study, having been used
all the compounds presented by him in our datasets. When comparing with this study,
RF methodology obtained higher predictive values for BBB+ and overall accuracies, and
for BBB- accuracy it loses in -0.3%. This apparent difference in classifying correctly the
BBB- molecules is compensated in the present approach with a signicant increase in the
classication of BBB+ molecules.

Li et al. [2005b] study is the only one that presents a phi value for comparison, that is
just a slightly lower than ours, further BBB+ and BBB- accuracies has higher values. Only
the overall accuracy is slightly greater than our. These values show that only one statistial
measure is not enough to classify a model, looking at phi values, they do not show sig-
nificant differences between models, although accuracies values highlight improvements
with RF methodology. The results are from 5-fold cross validation process, therefore a
comparison of RF model with this should be more appropriate, than with others.

The highest overall accuracy value is presented by Zhang et al. [2008]. These authors
value is only slightly smaller that the presented study. Further, when it is used the ap-
plicability domain (AD), the overall accuracies increases to 100%. This value would be
perfect was not the decrease of the capability to predict the classification of only 60%
of the compounds. These authors’s methods appear inefficient and cannot be used alone,
being always necessary the help of other tools that can give a classification for all com-
pounds. It also should be note that values for BBB+ and BBB- accuracies are not given,
and so it is not possible to make a more deep comparison.

The methodology proposed by Adenot and Lahana [2004] shows good results for all
analysed accuracies. Although our methodology can reach a slightly better predictive
classifications for BBB+ compounds.

Finally, Zhao et al. [2007] presents accuracies values for two training datasets. One of
them (the lowest) with 1093 compounds shows the highest predictive power when com-
paring with all the previous studies and our methodology. However, the results obtained
with the second training set with 1593 compounds deserve some comments. The increase
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of the number of compounds leads to a huge decrease in the predictive power to -18.1.
-24.7 and -13.5 in BBB+, BBB- and overall accuracies, respectively. The results are sur-
prising since it should lead to more accurate results with an improvement in variability of
chemical space. This however is not verified, quite the contrary, all accuracies decrease,
mainly the BBB- accuracy, showing that this methodology may not appear very robust
to changes in the variables domain. The second training set appears too biased towards
a strong emphasis on BBB+ molecules. This could be the origin for a worst predictive
power for BBB- compounds, impairing all the other measures, and is concordant with
some of the present study results obtained with a skewed dataset.

Table 5.10: Classes of molecular descriptors used in studies reported in literature and in
this work.

Study (reference) Classes of molecular descriptors

Ajay and Murcko [1999] simple molecular properties, structural properties

Doniger et al. [2000] simple molecular properties, geometrical properties

Li et al. [2005b] simple molecular properties, molecular connectivity and
shape, electrotopological state, quantum chemical prop-
erties, geometrical properties

Zhang et al. [2008] simpler molecular properties, molecular connectivity and
shape, electrotopological state, geometrical properties

Adenot and Lahana [2004] simple molecular properties, geometrical properties

Zhao et al. [2007] simple molecular properties, geometrical properties,
quantum chemical properties

this work simple molecular properties, structural properties

Li et al. [2005b] presents the molecular descriptors divided into 5 classes, (table B.1
of Appendix B) which was completed with one more class, named structural properties,
in order to include the molecular descriptors used in this work.

Moving on to an analysis of the molecular descriptors used in the 6 studies analyzed
earlier, it was made an attempt to categorize them according to the several classes of
molecular descriptors (Table 5.10). All the studies build up models based on simpler
molecular descriptors ([Ajay and Murcko, 1999, Li et al., 2005b, Zhao et al., 2007, Zhang
et al., 2008, Doniger et al., 2000, Adenot and Lahana, 2004]). The importance of this
class of descriptors seems to be a generalized idea among the studies, and it is also con-
cordant with the results obtained for RF model, in which some of the descriptors of this
class were present in importance variable analysis (namely MW, AMW, number of bonds
in rings, and others). Ajay and Murcko [1999] study is the only one that uses the same
classes of molecular descriptors of the RF model, although in a much smaller number,
166 of the 173 descriptors are structural whereas in this work it was used 1023 struc-
tural descriptors. As mentioned before, the goal of the studies is different, although the
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comparison serves to demonstrate that good results are achieved considering these two
classes of descriptors: simpler molecular and structural properties, besides that Li et al.
[2005b], Zhao et al. [2007] and Zhang et al. [2008] works using a wider range of descrip-
tors do not show a much higher and generalized improvement in accuracies values. This
shows that structural descriptors retain and can represent most of the others descriptors in
BBB+/BBB- classification. Nevertheless, the addition of descriptors belonging to other
classes of descriptors could be a good test for Random Forests to show their relevance in
an importance analysis.

The number of compounds used to train logBB models is very limited in most of the
studies. Therefore, BBB models developed from these limited datasets and used for high-
throughput screening of drug compounds may result in large predictive errors, since many
groups of compound will be outside the chemical space of the compounds used to set up
the models. It should exist an effort for the constitution of larger datasets.

Random Forests seem to be a good approach, handling prior probabilities and highly
imbalanced dataset, giving very good results whereas other approaches have so far not
proved as robust.
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Conclusion

Several works identified the failure to pay sufficient attention to the prediction and assess-
ment of the ability of compounds to cross the BBB [Alavijeh et al., 2005] as a restriction
in the CNS drugs development. The number of cases with CNS disorders has experienced
a huge growth over the years and the time taken for CNS drugs to reach the markets is
bigger than other therapeutic areas, so there is a need for more research that can lead with
CNS therapeutic needs.

Thus, computational approaches have been increasingly used to assist in the discovery
of useful information on the huge quantity of chemical information produced nowadays
by the pharmaceutical industry. This work demonstrates how these approaches can be
used to assist in the search for compounds that are able to cross the blood-brain barrier, in
a simple, fast and inexpensive way, and tries to be a contribution for this important area
of research.

At the beginning of this work it was pointed out a premise that is the basis of the
present study: similar molecules have similar behaviors. Previous studies have proven
the correctness of this idea, and once again the idea is supported by the computational
methodologies developed in this work, which make use of the structural information re-
tained in molecules to perform comparisons and classify molecules based on the clas-
sification of similar molecules. Of the three statistical learning methods tested, Ran-
dom Forests appear to give a higher prediction accuracy than other methods, mainly for
molecules that are able to cross the BBB.

The use of the structural features of the molecules, as molecular fingerprints, seems to
be a good approach and quite enough to correctly classify and label molecules in BBB+
and BBB- with high probability, assessed by several statistical measures. For Random
Forest, the most relevant measures (accuracy and phi) reach 92.1%, 77.2%, and 82.6% for
BBB+, BBB-, and overall accuracies, and 0.674 for phi, which corresponds to the mean
classification after a 10-fold cross validation. The phi value is not yet a common measure,
and so it was only found a value in the literature to compare. The result obtained with
Random Forests approach is higher, however is still far away of being a perfect classifier
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(1.0).
Further, the use of prior probabilities of BBB+ and BBB- molecules seems to con-

tribute positively for the increase of the accuracy and phi values when comparing with
simpler statistical methods based on k-Nearest Neighbours and Neural Networks method-
ologies. Even with a very small percentage of positive molecules in the oversampled train-
ing set, the model can predict and hit the classification of these molecules with high prob-
ability. To conclude, Random Forests seem to be the best approach of the ones tested. It
produces a highly accurate classifier, when compared to k-NN, NN and other tested algo-
rithms not presented in this document. It can handle thousands of input variables without
variable deletion, and can deal with imbalanced datasets still providing good classification
results.

The use of Random Forests in chemistry, even for this same problem, is not new, but
this approach brings novelty by the used variables and their number, the oversampling and
application of the prior probabilities, such that Random forest implementation of software
R states the option although this has not yet been implemented.

In the future, it would be interesting to develop a tool that implements the method-
ology that uses Random Forests and apply it to real world problems, for example in a
drug development project to determine if study molecules are able to cross the BBB. A
possible extension of this work would also include an update of the current data set to
form a set of real data without the negative replication of molecules as in this work, and
the use of other variables and molecular descriptors, known as having influence in the
BBB permeability. The dataset update would imply a much larger dataset. Thus, a much
more chemically diverse dataset would be available publicly aiming for better prediction
models and understanding of the chemical nature of the Blood-Brain Barrier.
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Methodologies

The current appendix begins the series of two appendices. This first comprises the code
samples developed during the project and they were used to perform some tasks and im-
plement the approaches. The first two sections represent pyhton scripts to obtain SMILES
representation for the molecules of the constituted dataset. The second script allows to
get the similarity matrices, which is a representation of how similar the molecules are.
The remaining four correspond to implementations in R for a PCoA analysis of similarity
matrices, a k-NN, NN and Random Forest analysis, constituing the three methodologies
developed.

A.1 Obtaining SMILES from compound names

Python script to obtain SMILES representation of molecules at section 4.2. It is used as a
first step of this work, where SMILES will then be used to get molecular descriptors.

import urllib
compounds = open(’article_smiles.txt’)
output = open(’article_smiles.csv’,"w")
erro = ’<h1>Page not found (404)</h1>’
excep = ’not found’
# 1. use http://proxy.di.fc.ul.pt:3128 for http proxying
proxies = {’http’: ’http://proxy.di.fc.ul.pt:3128’}
# 2. iterate over compounds names at file
for l in compounds.readlines():

comp = l.strip()
# 3. passing compound name via URL
_url = ’http://cactus.nci.nih.gov/chemical/structure/’+ comp +’/

SMILES’
# 4. open URL for reading
filehandle = urllib.urlopen(_url, proxies=proxies) # or filehandle

= urllib.urlopen(_url), when it is not necessary to specify
proxies

# 5. retrieve the corresponding SMILES from URL
smiles = filehandle.read().strip()
filehandle.close()
if smiles == erro :
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output.write(comp + ’, ’ + excep + ’\n’)
else :

# 6. write SMILES to output file
output.write(comp + ’, ’ + smiles + ’\n’)

compounds.close()
output.close()

A.2 Obtaining molecular descriptors: MW and LogP

Python script to obtain molecular weight and LogP from SMILES representation of molecules
at section 4.2. They were used as coordinates for k-NN and NN approach to assess its
contribution for the prediction of molecules class.

import pybel
fichIn = open(’smiles.txt’)
fichMW = open(’mw.txt’, "w")
fichLogp = open(’logp.txt’, "w")
# 1. read SMILES
for l in fichIn.readlines():

smiles = l.strip()
# 2. read molecule from a string
mol = pybel.readstring("smi", smiles)

# 3. write molecular weight of molecule
fichMW.write(str(mol.molwt) + ’\n’)

# 4. dictionary containing descriptor value: LogP
descvalues = mol.calcdesc(["LogP"])

# 5. write LogP
fichLogp.write(str(descvalues) + ’\n’)

fichIn.close()
fichMW.close()
fichLogp.close()

A.3 Similarity matrices for PCoA analysis

Python script to get the similarity matrices for all the similarity measures described in
section 3.3. Matrices complete the data preparation phase (section 4.2).

import pybel
from math import sqrt
import csv

# 1. equations that define which of the similarity measures
# a - number of 1 bits in object A but not in object B
# b - number of 1 bits in object B but not in object A
# c - number of 1 bits in both objects
# d - number of 0 bits in both objects

def tanimoto(a,b,c,d):
return c / (a + b + c)

def cosine(a,b,c,d):
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return c / sqrt((a + c) * (b + c))
def dice(a,b,c,d):

return (2.0 * c) / (a + b + 2 * c)
def euclid(a,b,c,d):

return sqrt((c + d) / (a + b + c + d))
def forbes(a,b,c,d):

return c * (a + b + c + d) / (a + c) * (b + c)
def hamman(a,b,c,d):

return ((c + d) - (a + b)) / (a + b + c + d)
def kulczynski(a,b,c,d):

return 0.5 * (c / (a + c) + c / (b + c))
def manhattan(a,b,c,d):

return (a + b) / (a + b + c + d)
def matching(a,b,c,d):

return (c + d) / (a + b + c + d)
def pearson(a,b,c,d):

return (c * d - a * b) / sqrt((a + c) * (b + c) * (a + d) * (b + d
))

def rogers_tanimoto(a,b,c,d):
return (c + d) / (2 * a + 2 * b + c + d)

def russell_rao(a,b,c,d):
return c / (a + b + c + d)

def simpson(a,b,c,d):
return c / min((a + c),(b + c))

def yule(a,b,c,d):
return (c * d - a * b) / (c * d + a * b)

# 2. generates similarity matrices for the methods defined above, it
receives a list with compound names, a list with corresponding
SMILES and method name

def dist_matrix(smi_names, smi_list1, smi_list2, method) :
objA = []
objB = []
a = 0.0
b = 0.0
c = 0.0
d = 0.0
dist = 0.0
if method == ’tanimoto’ :

dist = tanimoto
elif method == ’cosine’ :

dist = cosine
elif method == ’dice’ :

dist = dice
elif method == ’euclid’ :

dist = euclid
elif method == ’forbes’ :

dist = forbes
elif method == ’hamman’ :

dist = hamman
elif method == ’kulczynski’ :

dist = kulczynski
elif method == ’manhattan’ :

dist = manhattan
elif method == ’matching’ :

dist = matching
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elif method == ’pearson’ :
dist = pearson

elif method == ’rogers_tanimoto’ :
dist = rogers_tanimoto

elif method == ’russell_rao’ :
dist = russell_rao

elif method == ’simpson’ :
dist = simpson

elif method == ’yule’ :
dist = yule

# 3. output file name
name_matrix = ’matriz_’ + method + ’.csv’
matrix = open(name_matrix,"wt")
matrix.write(’ , ’)
for i in smi_names :

matrix.write(i + ’, ’)
matrix.write(’\n’)
for i,j in zip(smi_names,smi_list1):

matrix.write(i + ’, ’)
for l in smi_list2:

smiles = [j,l]
# 4. create a list of the two molecules to be compared

mols = [pybel.readstring("smi", x) for x in smiles]
# 5. calculate their fingerprints

fps = [x.calcfp() for x in mols]
# 6. obtain their on-bits

objA = fps[0].bits
objB = fps[1].bits
# 7. calculus of a, b, c and d parameters
for _i in objA :

for _j in objB:
if _j == _i :

c += 1
a = len(objA) - c
b = len(objB) - c
d = 1024 - c - a - b

# 8. passing parameters for method
mydist=dist(a,b,c,d)

# 9. calculus of coefficient for the method
coefficient = 1 - mydist
print (coefficient)
matrix.write(str(coefficient) + ’, ’)
c = 0.0

matrix.write(’\n’)
matrix.close()

# 10. run function to generate similarity matrices
def run():

import pybel
from math import sqrt
import csv
fich = open ("file.dat", "r")
names = []
list1 = []
list2 = []
reader = csv.reader(fich, delimiter="," )
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for r in reader :
names.append(str(r[0]))
list1.append(str(r[1]))
list2 = list1

fich.close()
# 11. create list with methods, of which we want to obtain

similarity matrix
met=[]
met.append(’tanimoto’)
met.append(’cosine’)
met.append(’dice’)
met.append(’euclid’)
met.append(’forbes’)
met.append(’hamman’)
met.append(’kulczynski’)
met.append(’manhattan’)
met.append(’matching’)
met.append(’pearson’)
met.append(’rogers_tanimoto’)
met.append(’russell_rao’)
met.append(’simpson’)
met.append(’yule’)

# 12. for each method, call function that retrieves similarity
matrix

for m in met:
dist_matrix(names, list1, list2, m)

if __name__=="__main__":
run()

A.4 Principal Coordinates Analysis

R script to perform a principal coordinates analysis (PCoA) of the similarity matrices
calculated (section 4.3.1).

#script: principal coordinates analysis
# 1. function to perform the principal coordinates analysis, it

receives the number of dimensions (k), the similarity matrix (
dat_matrix), the file with classification (p or n) for each
molecule (file_classification), and the name of the output file

pcooa <- function(k, dat_matrix, file_classification, output){
# 2. read similarity matrix
dat <- read.table(dat_matrix,header=T,sep=",")
# 3. reduce original matrix to a k-dimensional vector
result <- cmdscale(dat,k)
# 4. read file with classification for each molecule
nomes <- read.csv(file_classification, header = TRUE, sep = ";",

quote="\"", dec=".")
# 5. each label (n and p) is assigned with a color
cols <- c("blue","red")[nomes$np]
# 6. plot molecules in a 2-dimensional space
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plot(result, col=cols, xlab="Dimension 1", ylab="Dimension 2",main
="cmdscale()")

# 7. write k-dimensional vector to file
write.table(result, file=output, sep=",", row.names=T, quote=FALSE)

}

# call pcooa function
pcooa(40, "matriz_tanimoto.txt", "dadosNP.csv", "cmdscaleK40_tanimoto.

txt")

# run pcooa function: build string name of the different files with
similatity matrix, and for each file run the pcooa function with
each of the dimensions defined

runPCOOA <- function() {
metodos<-c("tanimoto", "cosine", "tanimoto+mwlogP", "tanimoto+mw", "

tanimoto+logP", "dice", "euclid", "forbes", "hamman", "
kulczynski", "manhattan", "matching", "pearson", "
rogers_tanimoto", "russell_rao", "simpson","yule")

for (met in metodos) {
for (K in c(2, 5, 10, 20, 30, 40, 50)) {
matriz <- paste("matriz","_",met,".txt", sep="")
output<-paste("cmdscaleK",K,"_",met,".txt", sep="")
pcooa(K, matriz, "dadosNP.csv", output)

}
}

}
runPCOOA()

A.5 k-Nearest Neighbor

R script to implement a k-Nearest Neighbor approach, receiving coordinates vectors from
PCoA analysis (section 4.3.2).

#script: kNN analysis
# 1. function to perform the kNN analysis, it receives the file with

vector of coordinates (file), the number of dimensions of the
vector (ndim), the file with classification (p or n) for each
molecule (file_classification), the number of neighbors (k)

library(knnflex)
k_nn<-function(file, ndim, namedist, file_classification, k) {

n_oks <- 0; n_fails <- 0; t_pos <- 0; t_neg <- 0; f_pos <- 0; f_neg
<- 0

# 2. read coordinates vector
results <- read.table(file,header=T,sep=",", dec=".")
# 3. read file with classification for each molecule
nomes <- read.csv(file_classification, header = TRUE, sep = ";",

quote="\"", dec=".")
cl <- nomes$np
siz <- nrow(results)
vec <- (1:siz)

# 4. leave-one-out cross validation
for(i in 1:siz) {

# 5. definition of training and test sets



Appendix A. Methodologies 67

train<-vec[-i]
test<-vec[i]

# 6. calculus of symmetric matrix with the distances to be used
for k-NN predictions

kdist <- knn.dist(results)
# 7. prediction of test set
pred <- knn.predict(train, test, cl, kdist, k=k, agg.meth="

majority")
cat(pred,"\n")
if(cl[test]==pred){
n_oks <- n_oks+1
if(pred == "p")

t_pos <- t_pos + 1
else

t_neg <- t_neg + 1
}

else {
n_fails <- n_fails+1
if (pred == "p")

f_pos <- f_pos + 1
else

f_neg <- f_neg + 1
}

}
# 8. calculus of measures
bbb_p <- t_pos / (f_pos + t_pos)
bbb_n <- t_neg / (f_neg + t_neg)
accuracy <- n_oks / (n_oks + n_fails)

precision <- bbb_p
recall <- t_pos / (t_pos + f_neg)
F <- 2 / (1 / precision + 1 / recall)
Phi=(t_pos * t_neg - f_pos * f_neg) / sqrt((t_pos + f_pos) * (t_pos

+ f_neg) * (t_neg + f_pos) * (t_neg + f_neg))
cat(ndim, "kNN", namedist, k, accuracy, precision, recall, F, bbb_p,

bbb_n, Phi, t_pos, t_neg, f_pos, f_neg, "\n", sep=",")
# 9. write measures to file
cat(ndim, "kNN", namedist, k, accuracy, precision, recall, F, bbb_p,

bbb_n, Phi, t_pos, t_neg, f_pos, f_neg, "\n", sep=",", file="
output_kNN.txt", append = TRUE)

flush.console()
}

# run k_NN function: build string name of the different files with
coordinates vectors, and for each file run the k_NN function with
each of the dimensions and neighbors defined

run<-function() {
metodos<-c("tanimoto+mwlogP", "tanimoto+mw", "tanimoto+logP","

tanimoto", "cosine", "dice", "euclid", "forbes", "hamman", "
kulczynski", "manhattan", "matching", "pearson", "
rogers_tanimoto", "russell_rao", "simpson", "yule")

for (met in metodos) {
for (d in c(2,5,10,20,30,40,50)) {
for (k in c(1,2,4,8)) {

fname<-paste("cmdscaleK",d,"_",met,".txt", sep="")
k_nn(fname,d,met,"dadosNP.csv",k)

}
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}
}

}
run()

# call k_NN function
k_nn("cmdscaleK30_pearson.txt",30,"pearson","dadosNP.csv",4)

A.6 Neural Networks

R script to implement a neural network, which also receives coordinates vectors repre-
senting chemical information present in molecules (section 4.3.3).

#script: NN analysis
# 1. function to perform the NN analysis, it receives the file with

vector of coordinates (file), the number of dimensions of the
vector (ndim), the file with classification (p or n) for each
molecule (file_classification), the number of iterations to perform
n-fold cross validation (n=10), and the number of neurons in
middle layer (size)

library(nnet)
cval_nnet<-function(file, ndim, namedist, file_classification, n, size,

decay=1e-5, maxit=1000) {
# 2. read coordinates vector

file_input <- read.table(file,header=T,sep=",", dec=".")
# 3. read file with classification for each molecule
classif <- read.csv(file_classification, header = TRUE, sep = ";",

quote="\"", dec=".")
cl <- classif$np
len <- nrow(file_input)
smp <- sample(1:len,len)
dat <- file_input[smp,]
cls <- cl[smp]
s_tpos <- 0; s_tneg <- 0; s_fpos <- 0; s_fneg <- 0; s_accuracy <- 0;

s_precision <- 0; s_recall <- 0; s_F <- 0; s_Phi <- 0; s_bbb_n
<- 0

# 4. 10-fold cross validation
for(i in 1:n) {

# 5. randomly select 1/10 of the dat for test
_sample <- seq(((len*0.1)*i-(len*0.1)+1),(len*0.1)*i) # amostra

<- seq((62*i-62+1),62*i)
test <- dat[_sample,]
train <- dat[-_sample,]
targets <- class.ind(cls)

# 6. build neural network
network <- nnet(train, targets[-_sample,], size=size, rang=0.1,

decay=decay, maxit=maxit, trace=FALSE, MaxNWts = 3000)
print(predict(network,test))
# 7. build confusion matrix
conf_matrix <- table(max.col(targets[_sample,]), max.col(predict(

network, test)))
tpos <- conf_matrix[1,1]; tneg <- conf_matrix[2,2]; fpos <-

conf_matrix[1,2]; fneg <- confusion_matrix[2,1]
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total <- sum(conf_matrix)
# 8. calculus of measures for each iteration

accuracy <- (tpos + tneg) / total
precision <- tpos / (tpos + fpos)
recall <- tpos / (tpos + fneg)
F <- 2 / (1 / precision + 1 / recall)

Phi=(tpos * tneg - fpos * fneg) / sqrt((tpos + fpos) * (tpos +
fneg) * (tneg + fpos) * (tneg + fneg))

bbb_n <- tneg / (fneg + tneg)
# 9. measures sum
s_tpos <- s_tpos + tpos
s_tneg <- s_tneg + tneg
s_fpos <- s_fpos + fpos
s_fneg <- s_fneg + fneg
s_accuracy <- s_accuracy + accuracy
s_precision <- s_precision + precision
s_recall <- s_recall + recall
s_F <- s_F + F
s_Phi <- s_Phi + Phi
s_bbb_n <- s_bbb_n + bbb_n

}
# 10. calculus of measures mean
m_tpos <- s_tpos / n
m_tneg <- s_tneg / n
m_fpos <- s_fpos / n
m_fneg <- s_fneg / n
m_accuracy <- s_accuracy / n
m_precision <- s_precision / n
m_recall <- s_recall / n
m_F <- s_F / n
m_Phi = s_Phi / n
m_bbb_p <- m_precision
m_bbb_n <- s_bbb_n / n
cat(ndim, "NN", namedist, size, m_accuracy, m_precision, m_recall,

m_F, m_bbb_p, m_bbb_n, m_Phi, m_tpos, m_tneg, m_fpos, m_fneg,
"\n", sep=",")

# 11. write measures to file
cat(ndim, "NN", namedist, size, m_accuracy, m_precision, m_recall,

m_F, m_bbb_p, m_bbb_n, m_Phi, m_tpos, m_tneg, m_fpos, m_fneg,
"\n", sep=",", file="output_nnet.txt", append = TRUE)

}

# run NN function: build string name of the different files with
coordinates vectors, and for each file run the NN function with
each of the dimensions and number of neuros in middle layer defined

run<-function() {
metodos<-c("tanimoto+mwlogP", "tanimoto+mw", "tanimoto+logP", "

tanimoto", "cosine", "dice", "euclid", "forbes", "hamman", "
kulczynski","manhattan","matching", "pearson", "rogers_tanimoto
", "russell_rao", "simpson", "yule")

for (met in metodos) {
for (d in c(2, 5, 10, 20, 30, 40, 50)) {
for (size in c(3,5,9,15,20,25,40)) {

fname<-paste("cmdscaleK",d,"_",met,".txt", sep="")
cval_nnet(fname,d,met,"dadosNP.csv",10,size)

}
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}
}

}
run()

# call NN function
cval_nnet("cmdscaleK20_russell_rao.txt",20,"russell rao","dadosNP.csv

",10,5)

A.7 Random Forests

R script to implement the Random Forest approach following the methodology of section
4.3.4.

library(randomForest)
randomforest <- function(n_it, n_val){

dat<-read.table("rf_descriptors.txt")
# 1. molecules classification
bbb = dat[,1]
the_data<-1:nrow(dat)
# 2. assign array wts with probabilities for each molecule: if

molecule does not cross the BBB (n) has a probability of 0.95,
else has a probability of 0.05

wts<-c()
for( i in 1:nrow(dat)) {

if(dat[i,1]==’n’) {
wts<-c(wts,0.95)

}
else {

wts<-c(wts,0.05)
}

}
s_tpos <- 0; s_tneg <- 0; s_fpos <- 0; s_fneg <- 0; s_accuracy <- 0;

s_precision <- 0; s_recall <- 0; s_F <- 0; s_Phi <- 0; s_bbb_n
<- 0

available_inds<-the_data
# 3. perform n_it-fold cross validation
for (i in 1:n_it){

# choose one of the lines between 4. or 5.
# 4. select validation set indices without considering prior

probabilities
val_inds <- sample(available_inds,n_val)
# 5. select validation set indices considering prior

probabilities
val_inds<-sample(available_inds, n_val, prob=wts, replace=TRUE)
# 6. select training set indices obtained by subtracting the

validation set to all dataset
train_inds <- the_data[-val_inds]
available_inds<-available_inds[-val_inds]
# 7. select weights for training set
wts_train_set<-wts[train_inds]
# 8. select validation set from the previously defined indices
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val_set<-dat[val_inds,]
# 9. perform oversampling on training set indices, considering

probabilities
train_inds2<-sample(train_inds,10000,prob=wts_train_set, replace=

TRUE)
# 10. select training set from the indices defined in 9.
train_set<-dat[train_inds2,]
# 11. random forest construction with training set
bbb_rf <- randomForest(bbb ˜ ., data = train_set, importance=TRUE

)
# 12. predict classification for validation set
bbb_pred <- predict(bbb_rf, val_set)
tabela <- table(observed = dat[val_inds, "bbb"] , predicted =

bbb_pred)
# 13. write importance variable to csv file
out_importance <- paste("imp_it",i,".csv", sep="")
importance <- bbb_rf$importance
write.csv(importance, file = out_importance)

tpos <- tabela[2,2]; tneg <- tabela[1,1]; fpos <- tabela[1,2];
fneg <- tabela[2,1]

total <- sum(tabela)
# 14. calculus of measures for each iteration
accuracy <- (tpos + tneg) / total
precision <- tpos / (tpos + fpos)
recall <- tpos / (tpos + fneg)
F <- 2 / (1 / precision + 1 / recall)
Phi <- (tpos * tneg - fpos * fneg) / sqrt((tpos + fpos) * (tpos +

fneg) * (tneg + fpos) * (tneg + fneg))
bbb_n <- tneg / (fneg + tneg)
bbb_p <- precision
# 15. measures sum
s_tpos <- s_tpos + tpos
s_tneg <- s_tneg + tneg
s_fpos <- s_fpos + fpos
s_fneg <- s_fneg + fneg
s_accuracy <- s_accuracy + accuracy
s_precision <- s_precision + precision
s_recall <- s_recall + recall
s_F <- s_F + F
s_Phi <- s_Phi + Phi
s_bbb_n <- s_bbb_n + bbb_n
cat(accuracy, precision, recall, F, bbb_p, bbb_n, Phi, tpos, tneg

, fpos, fneg, "\n", sep=",")
}
# 16. calculus of measures mean
n = n_it
m_tpos <- s_tpos / n
m_tneg <- s_tneg / n
m_fpos <- s_fpos / n
m_fneg <- s_fneg / n
m_accuracy <- s_accuracy / n
m_precision <- s_precision / n
m_recall <- s_recall / n
m_F <- s_F / n
m_Phi = s_Phi / n
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m_bbb_p <- m_precision
m_bbb_n <- s_bbb_n / n
cat(m_accuracy, m_precision, m_recall, m_F, m_bbb_p, m_bbb_n, m_Phi,

m_tpos, m_tneg, m_fpos, m_fneg, "\n", sep=",")
}
randomforest(10,95)
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Molecular descriptors

In this appendix is comprised the different classes and respective molecular descriptors
that are presented in several studies reported in literature and in the present work.

Table B.1: Classes and molecular descriptors used in studies reported in literature and in
this work. Adapted from Li et al. [2005b].

Class Molecular descriptors

simpler molecular
properties

LogP, molecular weight, average molecular weight, numbers of rings, number
of bonds in rings, rotatable bonds, H-bond donors, and H-bond acceptors, atom
counts, bond counts

molecular connectiv-
ity and shape

molecular connectivity indices, valence, path, cluster, path/cluster molecular
connectivity indices, kappa molecular shape indices, flexibility index, differ-
ential connectivity indices, Kier and Hall connectivity, graph’s radius and di-
ameter, counts of different vertices, counts of paths and edges between different
types of vertices

electrotopological
state

electrotopological state indices, topological, and atom type electrotopological
state indices, Weiner index, Platt index, Shannon and Bonchev-Trinajstic infor-
mation indices, centric index, Altenburg index, Balaban index, Harary number,
Schultz index, PetitJohn R2 index, PetitJohn D2 index, mean distance index,
PetitJohn I2 index, information Weiner, Balaban RMSD index, graph distance
index

quantum chemical
properties

polarizability index, hydrogen bond acceptor basicity (covalent HBAB), hydro-
gen bond donor acidity (covalent HBDA), molecular dipole moment, absolute
hardness, softness, ionization potential, electron affinity, chemical potential,
electronegativity index, electrophilicity index, most positive charge on H, C,
N, O atoms, most negative charge on H, C, N, O atoms, most positive and
negative charge in a molecule, sum of squares of charges on H,C,N,O and
all atoms, mean of positive charges, mean of negative charges, mean absolute
charge, relative positive charge, relative negative charge

geometrical proper-
ties

length vectors (longest distance, longest third atom, 4th atom), molecular van
der Waals volume, solvent accessible surface area, molecular surface area, van
der Waals surface area, polar molecular surface area, sum of solvent accessible
surface areas of positively charged atoms, molecular rugosity, molecular glob-
ularity, hydrophilic region, hydrophobic region, capacity factor, hydrophilic-
hydrophobic balance, hydrophilic intery moment, hydrophobic intery moment,
amphiphilic moment

structural properties molecular fingerprints (fp1 to fp1023), presence/absence of functional groups
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Appendix C

Results

This appendix holds some of the results, that are part of the analysis and discussion of the
thesis but for being less important are recorded here. Figure C.1 represent the variables
importance analysis, made in the context of the random forest approach. It shows the
14 most important variables, that contributes for a higher decrease in accuracy in case
of variable deletion, and 9 of the less important variables. Next figure shows all the less
important variables collected from each iteration and they frequence among these. For
example, variables with a frequence of 10 means that are present in all the iterations.

Figure C.1: Importance variables analysis and its molecular structures.
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Figure C.2: Frequence of the twenty less important variables.



Glossary

ADME Absorbed Distributed Metabolized Excreted
AMW Average Molecular Weight

BBB Blood-Brain Barrier
BBB+ passing BBB molecules
BBB- non-passing BBB molecules
BCSFB Blood-Cerebrospinal Fluid Barrier

CMDS Classical Multidimensional Scaling
CNS Central Nervous System
CSF Cerebrospinal Fluid
CV Cross-Validation

DT Decision Tree

FN False Negatives
FP False Positives

ISF Brain Intersticial Fluid

k-NN k-Nearest Neighbor

LOOCV Leave-One-Out Cross-Validation

MCC Matthews Correlation Coefficient
MW Molecular Weight

NBRing Number of Bonds in Rings
NN Neural Network
NRing Number of Rings

PCoA Principal Coordinates Analysis

RF Random Forest
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SMILES Simplified Molecular Input Line Entry Specifica-
tion

SWIG Simplified Wrapper and Interface Generator

TN True Negatives
TP True Positives
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