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Resumo 

Os astrócitos expressam uma variedade de receptores purinérgicos (P2), 

envolvidos na comunicação entre astrócitos e indutores de aumentos rápidos na 

[Ca2+]i. Os receptores metabatrópicos do ATP (P2Y) regulam o Ca2+ citoplasmático 

através da via de sinalização PLC-PKC, a qual está, também, envolvida na 

regulação da actividade dos transportadores de GABA, nomeadamente GAT-1 e 

GAT-3. No presente estudo foi analisada, a modulação dos transportadores de 

GABA nos astrócitos pela breve activação dos receptores P2Y e os seus aumentos 

de Ca2+ concomitantes. 

Foram realizadas experiências, de imagiologia de Ca2+, para caracterizar 

funcionalmente os subtipos de receptores P2Y, expressos em culturas corticais 

primárias imaturas (11-15 dias de cultura) e maduras (21-25 dias em cultura) 

enriquecidas em astrócitos. Realizaram-se ensaios, de recaptação de [3H]-GABA, 

para avaliar se os agonistas moduladores de Ca2+ afectam a actividade dos 

transportadores de GABA em astrócitos. 

Neste trabalho demonstrou-se que, tanto astrócitos imaturos como maduros 

expressam funcionalmente receptores P2Y, sendo o receptor mais preponderante, o 

P2Y1. Incubação com ATP (100 µM) durante um minuto inibe a actividade dos dois 

transportadores de GABA analisados. O efeito inibitório foi reproduzido, na presença 

da adenosina deaminase e pelo agonista específico dos receptores P2Y1,12,13 (2-

MeSADP). A inibição verificada na presença de 2-MeSADP é perdida, com os 

antagonistas dos receptores P2 (PPADS) e P2Y1 (MRS2179). O efeito do 2-

MeSADP é também perdido, com a incubação com U73122, inibidor da PLC, mas 

não com GF109203X, inibidor da PKC, indicando que este efeito é mediado por um 
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mecanismo dependente da PLC. A inibição dos GAT está também associada aos 

rápidos aumentos do Ca2+ intracelular, induzidos por estes receptores.  

Concluí-se que, uma activação breve dos receptores P2Y1 em astrócitos maduros 

induz aumentos intracelulares de Ca2+ e inibe os GAT em astrócitos, sugerindo que, 

estas duas funções astrocitárias podem estar relacionadas no controlo dos níveis 

extracelulares de GABA.   

 

Palavras-chave: Astrócitos; ATP; Receptores P2Y1; Sinalização por Cálcio; 

Transportadores de GABA 
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Abstract 

Astrocytes express a wide variety of purinergic (P2) receptors, that are involved in 

astrocytic communication through fast increases in [Ca2+]i. Of these, the metabotropic 

ATP receptors (P2Y) regulate the cytoplasmic Ca2+ through the PLC-PKC pathway, 

which is also involved in the regulation of GABA transporters activity, namely GAT-1 

and GAT-3. The present study analysed the modulation of GABA transport into 

astrocytes by the brief activation of P2Y receptors and their concurrent increases in 

cytoplasmatic Ca2+. 

Ca2+ imaging experiments were performed to functionally characterize the 

subtypes of P2Y receptors expressed in immature (11-15 days in culture) and mature 

(21-25 days in culture) primary cortical astroglial-enriched cultures. [3H]-GABA 

uptake assays were conducted to ascertain if the agonists that trigger Ca2+ increases 

affect GABA transporters activity in astrocytes. 

It is describe that both immature and mature astrocytes express functional P2Y 

receptors, with the P2Y1 receptor being the preponderant one. One min incubation 

with ATP (100µM) produced an inhibition on the activity of the two GABA transporters 

analysed. Inhibition was reproduced in the presence of adenosine deaminase and by 

a specific agonist for the P2Y1,12,13 receptor (2-MeSADP). The effect of 2-MeSADP 

was completely blocked when the cells were pretreated with general P2 (PPADS) 

and selective P2Y1 (MRS2179) receptor antagonists. Inhibition by 2-MeSADP was 

lost by incubation with the PLC inhibitor (U73122) but not by the PKC inhibitor 

(GF109203X), suggesting an involvement of the PLC pathway by a PKC-

independent mechanism. GAT inhibition by P2Y1 receptors is also associated with 

the rapid increases in intracellular Ca2+ produced by the activation of these receptors. 
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In conclusion, brief activation of P2Y1 receptors in mature astrocytes triggers Ca2+ 

increases and inhibits GABA transport into astrocytes, suggesting that the two main 

astrocytic functions can be related to control extracellular GABA levels. 

 

Key words: Astrocytes; ATP; Calcium Signalling; GABA Transporters; P2Y1 receptors 
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1| Introduction 

The Central Nervous System (CNS) has a highly refined structure composed by 

intimate associations of its basic cell types (e.g. neurons and glial cells). In the 

mammalian CNS, glial cells are about 10 times more abundant than neurons, and 

cover almost 50% of the total cell volume. Oligodendrocytes and microglia have long 

been recognized as having distinctive and precise functions in the CNS. In contrast, 

the role of astrocytes (the most predominant glial cell type, in terms of number, 

surface area and volume) started to be understood much later (Privat et al., 1995), 

still being a matter of intense research.   

 

1.1. Astrocytes 

In 1893, Michael von Lenhossek proposed the term “astrocyte” (astroglial cell) 

[Kettenmann & Verkhratsky 2008], and Andriezen (1893) described two types of 

astrocytes: the protoplasmatic (found in grey matter) possess few glial filaments, with 

irregular contours and extend sheet-like processes; the fibrous (found in white 

matter) displays many filaments, extended cylindrical branching processes in various 

directions and shows regular contours (Privat et al., 1995). Afterwards, a third type 

was identified, the radial cells, which have a preponderant role in neurogenesis, but 

also in neuronal patterning, migration, specification and/or differentiation during 

development (Campbell & Götz 2002). Radial glia spans through the entire white 

matter, perpendicularly to the axis of the ventricles, with unbranched and rectilinear 

processes arranged in bundles (Privat et al., 1995). After maturation, radial glia 

disappears in the majority of brain regions, with the exception in the retina (Müller 

cells), in the cerebellum (Bergmann glia cells) and in the periventricular organs, the 
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hypophysis and the raphe part of the spinal cord (tanycytes) [Privat et al., 1995]. 

Besides their difference in morphology and function in the CNS, the different types of 

astrocytes also differ in their antigenic phenotype and development characteristics 

(Privat et al., 1995).   

Traditionally, astrocytes were only perceived to be the chemical and physical 

insulators of the neuronal elements, enabling neurons to carry out the multiple 

functions of the brain. When their role in neuronal survival was acknowledged, they 

became known as “passive support cells”, and described as having a protective role 

in the synapse microenvironment, namely through the stabilization of the extracellular 

potassium concentration (Walz 2000) and the removal of neurotransmitters from the 

synapse (Henn & Hamberger 1971; Henn et al., 1974). 

 Several experimental evidences, in the 90s, identified the presence of voltage-

gated channels and neurotransmitters receptors on astrocytes, which correspond 

mostly to G protein-coupled metabotropic receptors (GPCRs) [Verkhratsky et al., 

1998]. The identification of these receptors, led to the proposal that astrocytes are 

also able to participate in other aspects of the nervous system function besides the 

protection of neurons. Now it is widely accepted that they can be involved in the 

regulation of synaptic neurotransmission, the control of adult neurogenesis and brain 

vascular tone. This gave rise to a novel concept, the “tripartite synapse” (Araque et 

al., 1999), consisting of synaptically associated glia and the traditional pre- and 

postsynaptic neuronal components. 

The seminal works of Cornell-Bell et al. (1990) and Charles et al. (1991) show that 

astrocytes do not only detect and respond to neuronal activity, but that they are also 

able to communicate with each other through increases in the intracellular calcium 
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concentrations ([Ca2+]i). The Ca2+ fluctuations emerge as responses to changes in the 

surrounding milieu, and lead to changes in astrocytic functions. Consequently, the 

Ca2+ increases do not represent passive responses, being the signal through which 

astrocytes respond, integrate, and transmit information.  

Communication between astrocytes occurs in the form of intercellular Ca2+ waves 

via gap junctions (Dermietzel et al., 1989; Finkbeiner 1992). Astrocytes can be seen 

as a highly dynamic “functional syncytium”, contacting with all other cellular elements 

in the brain, including neurons, oligodendrocytes, NG2+ glial cells, microglia, and 

vasculature. This “functional syncytium” can exchange molecules for signalling (e.g. 

inositol triphosphate – InsP3) or for metabolic activity (e.g. glucose and adenosine 5’-

triphosphate – ATP; Orellana et al., 2009). Moreover, Ca2+ signalling in astrocytes is 

also correlated with the release of various substances (“gliotransmitters”), including, 

among others, glutamate, ATP, D-serine, γ-amino butyric acid (GABA) and 

prostaglandin (Volterra & Meldolesi, 2005; Perea et al., 2009). These neuroactive 

substances not only modulate neuronal activity, which demonstrate the existence of 

neuron-to-astrocyte communication (Parpura et al., 1994; Pasti et al., 1997), but can 

also act as an autocrine/paracrine signal (Enkvist & McCarthy 1992).  

The astrocytic network is distinct from the binary signalling of neuronal networks, 

offering a chance of analogue information processing in the brain. 

 

1.2. Calcium (Ca2+) Signalling 

Cellular signalling via Ca2+, a ubiquitous intracellular second messenger, depends 

on the encoding and decoding of the Ca2+ signals (Berridge et al., 2000). The 

process of encoding corresponds to the transformation of environmental cues into 
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intracellular Ca2+ variations. Then these variations are interpreted and converted into 

a broad spectrum of physiological responses (decoding phase). This wide influence 

is due to the versatility of the Ca2+ signalling mechanism (in terms of speed, 

amplitude and spatiotemporal patterning), which is tightly regulated by a set of 

different mechanisms. These mechanisms include membrane Ca2+ transporters 

(present in the cell membrane and in the membrane of intracellular organelles) and 

cytoplasmatic Ca2+ buffers, which are involved in the accumulation, storage and 

release of Ca2+ (Berridge et al., 2000). In addition to the fundamental Ca2+-signaling 

toolkit, the crosstalk between Ca2+ and other intercellular pathways is also vital to 

create a versatile Ca2+ signalling network (Berridge et al., 2000).   

At rest, glial cells maintain the free [Ca2+]i at extremely low levels (30-400 nM), and 

upon stimulation, within milliseconds, the [Ca2+]i raises up to hundreds of nM or 

several µM in specific microdomains, while propagating the increase from cell to cell 

(Verkhratsky et al., 1998).  

Two crucial properties of astrocytes allow them to have an important impact on 

synaptic circuits. First, different stimuli [e.g. glutamate (Cornell-Bell et al., 1990); 

mechanical (Charles et al., 1991); electrical (Nedergaard 1994) and ATP (McCarthy 

& Salm 1991; van den Pol et al., 1992; Kriegler & Chiu 1993; Salter & Hicks 1994; 

Bernstein et al., 1996; Centemeri et al., 1997; Newman & Zahs 1997)] leads to an 

elevation of [Ca2+]i in culture astrocytes. Second, the increase in [Ca2+]i propagates, 

in a wave-like manner that can be restricted to one cell or be transmitted to 

neighbouring cells (Cornell-Bell et al., 1990; Charles et al., 1991). This spread can be 

described as a propagating wave, due to the shape of the temporal intercellular Ca2+
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change, which is predictable and similar for each point in the path and with a similar 

velocity between and within cells (Charles et al., 1991).  

All astrocytic [Ca2+]i changes tend to emerge as a wave-like phenomenon, 

travelling from one region to another as a transient rise in [Ca2+]i. Although, 

appearing similar, they are composed of separate and distinct phenomena (an initial 

spike, a sustained elevation, oscillatory intracellular waves, and regenerative 

intercellular waves; Kim et al., 1994). These distinct components of the astrocytic 

Ca2+ response are due to two different signal transduction pathways that are neither 

dependent nor entirely independent of each other (Kim et al., 1994). The ionotropic 

response, leads to a sustained elevation in [Ca2+]i related to a receptor-mediated 

sodium (Na+) and Ca2+ influx, depolarization, and voltage-dependent Ca2+ influx. In 

addition, it also evokes regenerative intercellular waves that propagate efficiently and 

without a decrease from cell to cell, possibly involving the Na+/Ca2+ exchanger (Duffy 

& Macvicar 1994; Jabs et al., 1994). The metabotropic response, in contrast, evokes 

a complex biphasic/oscillatory [Ca2+]i response (Glaum et al., 1990). An initial spatial 

Ca2+ spike that can propagate rapidly from cell to cell and involves the activation of 

phospholipase (PL) C, and the synthesis of InsP3, which acts on its receptors, and 

leads to the release of Ca2+ from the endoplasmic reticulum (ER). Then, it is followed 

by a plateau/oscillations phase, of various amplitudes and frequencies that 

propagates within cells and is sustained only in the presence of external Ca2+ (Glaum 

et al., 1990; Jensen & Chiu 1990). 
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1.2.1. Extracellular Messenger 

Ca2+ waves were initially thought to spread as a result of gap-junction metabolic 

coupling; however, this can only explain a short-term signalling. For long-range Ca2+ 

signalling, the action of the “de novo” generation of Ca2+ mobilizing second 

messengers (e.g. InsP3) in neighbouring cells induced by a diffusible factor is critical, 

augmenting the diffusion of InsP3 through gap junctions or acting on its own 

receptors (Hassinger et al., 1996).  

Ca2+ waves can still propagate between astrocytes which do not have functional 

contact with each other, and the properties of the Ca2+ signal (extent and direction) 

are affected by rapid superfusion of the extracellular medium (Hassinger et al., 

1996). ATP was later identified as the key extracellular messenger in this system 

(Guthrie et al., 1999). So, ATP has a pivotal role in the signalling of neuronal-glial 

networks, allowing homotypic communication (astrocyte-to-astrocyte), as well as 

heterotypic signalling, involving astrocytes and adjacent CNS cells.  

 

1.2.1.1. Purinergic Transmission 

The release of purines and pyrimidines occurs in response to neurotransmitter 

stimulation and to other physiological states. Furthermore, receptor activation is 

linked to a host of second messenger systems and other cell-to-cell signalling 

molecules, such as cytoplasmatic Ca2+, cyclic AMP (cAMP), InsP3, PLC, arachidonic 

acid (AA) and nitric oxide (Fields & Burnstock 2006). Therefore, ATP mediates a 

highly specific and diversified range of pathophysiological actions in various organs 

and systems. 
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In physiological conditions, the extracellular ATP concentration can be estimated 

to be between 2 and 100 μM (Ehrlich et al., 1988), although ATP-containing vesicles 

could reach concentrations up to 150 and 1000 mM. As a result, a transient ATP 

concentration at synaptic cleft might ascend to 1 mM or higher (Abbracchio et al., 

2006). 

Separate types of purine receptors P1 for adenosine (ADO) and P2 for ATP and 

adenosine 5’-diphosphate (ADP) were proposed by Burnstock (1978). The ADO/P1 

receptor family comprises the high-affinity receptors (A1 and A2A) and lower-affinity 

receptors (A2B and A3) [Sebastião & Ribeiro 2009]. The P2 receptors are divided into 

two main families: ATP-gated non-selective cation channels and G protein-coupled 

receptors, named P2X and P2Y, respectively (Burnstock & Kennedy 1985; 

Abbracchio & Burnstock 1994). The distinction into P2X and P2Y receptors is based 

on the pharmacology (Burnstock & Kennedy 1985), mechanism of action (Dubyak 

1991) and molecular cloning (Ralevic & Burnstock 1998) of the nucleotide receptors.  

Currently, seven P2X (P2X1–7 receptor subtypes) and at least eight P2Y 

(P2Y1,2,4,6,11,12,13,14 receptor subtypes) receptors have been identified, including 

receptors that are sensitive to purines, pyrimidines and sugar nucleotides 

(Abbracchio et al., 2006; Burnstock 2007b; Köles et al., 2007). The diversity could be 

even greater due to heteromeric/oligomeric assembly and alternative splicing of the 

subunits (Abbrachio et al., 2006). 

Astrocytes express a wide repertoire of P2 receptors at different levels. This 

heterogeneous expression can be related with a differential recruitment and/or 

insertion into the plasma membrane, depending on the cell functional state and 

specific pathophysiological conditions (Burnstock 2007a). P2Y1,2,4,6,12,14 were already 
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functionally identified in astrocytes (Fields & Burnstock 2006). The activation of P2Y1 

and P2Y2 purinoceptors is both necessary and sufficient to produce a full propagation 

of Ca2+ waves, although exhibiting differences in the properties of this phenomenon 

(Fam et al., 2000; Fam et al., 2003; Fumagalli et al., 2003; Gallagher & Salter 2003). 

 

1.2.1.1.1. P2Y G Protein-Coupled Nucleotide Receptor 

The P2Y G protein-coupled receptors were first cloned in 1993 (Lustig et al., 1993; 

Webb et al., 1993). In general, the receptors are composed of 308 to 377 amino 

acids with a mass of 41 to 53 kDa after glycosylation. Although showing a high 

diversity in the amino acid composition (Shaver 2001), all members of the P2Y 

purinoceptor family share a characteristic subunit topology of an extracellular amino 

NH2 containing several potential glycosylation sites, seven transmembrane domains 

(TMD), with a high degree of sequence homology between the TM3-, TM6 and TM7-

spanning regions, and an intracellular COOH terminus. The third intracellular loops 

and COOH terminus vary considerably among P2Y subtypes, exhibiting several 

consensus binding/phosphorylation sites for protein kinases (PKs), thereby 

influencing the pattern and degree of coupling to the Gq/11, Gs and Gi proteins 

(Dubyak 1991; Barnard et al., 1994). 

A simplified pharmacological classification differentiates P2Y receptors into four 

subgroups: 1) purinoceptors such as P2Y1 (most potent agonists is ADP and its 

analogues), P2Y11 (ATP), P2Y12 (ADP and its analogues), P2Y13 (ADP and its 

analogues); 2) pyrimidinoceptors responding to either uridine 5’-triphosphate (UTP) 

[human P2Y4] or uridine 5’-diphosphate (UDP) [P2Y6]; 3) receptors of mixed 

selectivity responding to both ATP and UTP (P2Y2, rodent P2Y4 and, possibly, 
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P2Y11); and 4) the P2Y14 receptor, which exclusively responds to sugar nucleotides. 

The characteristics of the P2Y receptor subtypes, expressed in rat tissue, are 

summarized in Table 1. 

Table 1 – Characteristics of functionally defined P2Y receptors subtypes expressed in rat tissues. 

Receptor 
Type 

Distribution Principal Agonists Antagonists 
Transduction 
Mechanism 

P2Y1 

Brain (A), epithelial and 
endothelial cells, heart, 

placenta, platelets, prostate 
and skeletal muscle 

2-MeSADP(ns)=     
2-MeSATP(ns)> 

ADP(ns/E) 

PPADS(ns)= 
suramin(ns)>A3P5PS

(ns)=MR2179(s)> 
MRS2279(s)= 
MRS2500(s) 

Gq/G11; PLCβ 

activation 

P2Y2 

Bone marrow, brain (A), 
epithelial and endothelial cells, 

heart, kidney tubules, liver, 
lung, immune cells pancreas, 

skeletal muscle, spleen, 
stomach and vascular smooth 

muscle 

UTP(ns/E)=ATP 
(ns/E) 

Suramin(ns)> 
Reactive blue 2(ns) 

Gq/G11 and 
possibly Gi/o; 

PLCβ 

activation 

P2Y4 

Bone marrow, brain (A), 

endothelial cells, immune 
cells, intestine, liver, lung, 

pituitary, placenta and smooth 
muscle 

UTP(ns/E)=ATP 
(ns/E)=ITP(pa/E)=A

p4A(ns) 

Reactive blue 2 
(ns)=PPADS(ns)> 

suramin (ns) 

Gq/G11 and 
possibly Gi/o; 

PLCβ 

activation 

P2Y6 

Adipose tissue, bone, brain 
(A), epithelial cells, heart, 

intestine, kidney, lung, 
placenta, spleen, thymus and 

vascular smooth muscle 

UDP(ns/E)>UTP 
(ns/E)>ADP(ns/E)>

2-MeSATP(ns) 

Reactive blue 2(ns)> 
MRS2567(s)>PPADS

(ns)> suramin(ns)> 
MRS2578(s) 

Gq/G11; PLCβ 

activation 

P2Y11 
Bone, brain, cartilage, immune 

cells, intestine, liver, spleen 
not describe for rat not describe for rat 

Gq/G11 and 
GS; PLCβ 

activation and 
AC stimulation 

P2Y12 
Glial cells (A), platelets and 

spinal cord 

2-MeSADP(ns)> 
ADP(ns/E)>ATP 

(pa/E) 

Suramin(ns)> 
Cangrelor(ns)> 

Clopidogrel m.(ns)> 
Prasugrel m.(ns)> 

Reactive Blue 2(ns) 

Gi/o; AC 
inhibition 

P2Y13 

Bone marrow, brain (A
1
), 

heart, liver, lymph nodes, 
pancreas, peripheral 

leukocytes and spleen 

ADP(ns/E)>           
2-MeSADP(ns)>> 

ATP(ns/E) 

MRS2211(ns)> 
Cangrelor(ns)> 

Prasugrel m.(ns)> 
suramin(ns)= 
PPADS(ns)= 

Reactive Blue 2(ns) 

Gi/o
 
and G16;  
PLCβ 

activation and 
AC  inhibition 

P2Y14 

adipose tissue, bone marrow, 
brain (A), heart, intestine, lung, 

peripheral immune cells, 
placenta, spleen and stomach 

UDP-glucose 
No antagonists tested 

on rat; 
in human UDP (ca

2
)
 

Possibly 
Gq/G11 and 

Gi/o 

The table summarizes cloned rat P2Y-receptors that have been proved to mediate actions of extracellular nucleotides 

when expressed and studied in functional assay systems in rat. 

(A), including Astrocytes by functional evidences, such as Ca2+ imaging, protein kinase activation,  pharmacological and 

electrophysiological studies; (ca), Competitive Antagonist; (E), Endogenous ligand; (ns), Non-selective ligand; (pa), 

Partial Agonist; (s), Selective ligand; Clopidogrel m., active metabolites of clopidogrel; Prasugrel m., active metabolites of 

prasugrel; 1Fumagalli et al., 2004; 2Fricks et al., 2008.  

Table adapted from Abbracchio et al., 2006, Fields and Burnstock 2006 and von Kügelgen 2006. 
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P2Y receptors can be further subdivided into two groups: the P2Y1, P2Y2, P2Y4, 

P2Y6, and P2Y11 subgroup and the P2Y12, P2Y13, and P2Y14 subgroup. This new 

subdivision is based on 1) the phylogenetic and structural (i.e., protein sequence) 

similarity; 2) the presence of specific amino acid motifs in TM6 and TM7, proposed to 

be essential for binding to extracellular nucleotides; and 3) the selectivity of G protein 

coupling (Abbracchio et al., 2006).  

The coupling of the various P2Y receptors to certain G proteins was inferred from 

both indirect evidences, such as the measurement of intracellular levels of inositol 

phosphates, Ca2+, or cAMP and determination of pertussis toxin (PTX) sensitivity, 

and direct evidences, like the measurement of the impact of P2Y agonist on 

guanosine-5'-triphosphate (GTP) hydrolysis. The same P2Y receptor can couple to 

functionally distinct G proteins and signalling pathways involving different 

conformations of the receptor (Ralevic & Burnstock 1998). The division of the P2Y 

receptor subtypes based on G protein subtype preference is: 1) P2Y1 (Filtz et al., 

1994; Schachter et al., 1996), P2Y2 (Lustig et al., 1993; Chang et al., 1995) and P2Y6 

(Communi et al., 1996) all use as primary coupling Gq/G11,  to activate the PLC/InsP3 

endoplasmic reticulum Ca2+- release pathway. 2) P2Y4 (Communi et al., 1996) and 

P2Y11 (Communi et al., 1997) are couple to the activation of both PLC and the 

adenylyl cyclase (AC) pathways; this can result from the induction of more than one 

conformational state of this receptor, which enables associations with different Gα 

subunits. 3) P2Y12 (Hall & Hourani 1993; Hollopeter et al., 2001), P2Y13 (Communi et 

al., 2001) and P2Y14 (Chambers et al., 2000) almost exclusively couple to members 

of the Gi/o family of G proteins, inhibiting AC. Then, the profile of downstream Ca2+- 

dependent effectors will depend not only on the amplitude and duration of the Ca2+ 
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signals induced through different receptors (Dolmetsch et al., 1997), but also on the 

receptors expressed in each cell type (Ralevic & Burnstock 1998).  

As highlighted above, the primary transduction pathway of P2Y receptors is via 

interaction with heterotrimeric G proteins composed of α and βγ complex subunits, 

which then initiates the further downstream events. The traditional downstream 

effectors, mediating responses in the range of a few seconds, are the Gi activation 

associated with the inhibition of AC and decreased cAMP production and the 

coupling to Gq/11 proteins and subsequent stimulation of the membrane-bound PLC. 

The PLC activation catalyses the rapid hydrolysis of phosphatidylinositol biphosphate 

(PIP2) into two second messengers, InsP3, which mobilizes Ca2+, and diacylglycerol 

(DAG), which activates PKC – in the presence of Ca2+. The PKC activation is 

involved in the phosphorylation of intracellular proteins. Ca2+ can also establish a 

complex with the Ca2+-binding protein calmodulin, thus activating the calmodulin-

dependent kinases (CaMKs) and phosphatases (Communi et al., 1996; Simon et al., 

1995; White et al., 2003; Abbracchio et al., 2006). Additionally, P2Y receptor-induced 

responses often involve the signalling through second messengers (e.g. cAMP, DAG 

and Ca2+) towards small GTPases and/or the interaction with several signalling 

pathways, e. g. receptor tyrosine kinases, mitogen-activated protein kinase (MAPK), 

phosphatidylinositol 3-kinase (PI3-K), phospholipase A2 (PLA2) and phospholipase D 

(PLD), cell adhesion molecules, like αv integrins, PDZ domain-containing proteins; 

P2Y receptors might cross-talk via Gα-dependent signalling with other G protein-

coupled receptors. Also, they can cross-talk via Gβγ-dependent signalling or indirectly 

via Gα-dependent signalling with various ion channels, e.g., K+ channels, voltage-
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activated Ca2+ channels, Na+ channels and Cl- channels (Abbracchio et al., 2006; 

Köles et al., 2008).  

 

1.2.1.1.2. Complexity of Purinergic Signalling 

The biological complexity of purinergic receptors is greatly due to the properties of 

response elicited by different P2 receptors, being further augmented both by the 

conversion of ATP into ADO and other metabolites and receptor dimerization. 

ATP exerts a biphasic modulatory effect, with the P2Y receptor-mediated 

responses, being at much slower time scale than those mediated by P2X receptors, 

because the former are associated with generation of second messenger molecules 

and can also interact with receptors of other transmitters (Abbracchio et al., 2006). In 

addition, a significant modulatory effect of the physiological response induced by 

ATP is its rapid degradation and interconversion in its by-products, namely ADO, by 

several groups of membrane-associated ectonucleotidases (Zimmermann 2000). A 

mutual action between ADO and ATP signalling must be considered, as they 

frequently exert antagonist actions, and could function as a significant mechanism for 

glia to carry out the fine-tuning of synapses (Fields & Burnstock 2006).   

Co-localization of ADO A1 receptors and P2Y1 receptors occur in numerous 

regions of CNS (Ochiishi et al., 1999; Moore et al., 2000) and a possible interaction 

can change their pharmacological properties or generate new functions (Angers et 

al., 2002). The interaction between these receptors was reported in co-transfected 

cells (Yoshioka & Nakata 2001; Yoshioka et al., 2002) and also in brain tissue 

(Yoshioka et al., 2002), including astrocytes (Tonazzini et al., 2007). However, other 
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types of P2Y receptors can also form hetero-oligomers with A1 receptors, namely 

P2Y2 (Dickenson et al., 1998; Suzuki et al., 2006; Namba et al., 2010). 

P2Y receptors subtypes are highly diverse in terms of amino acid sequences and 

respond to several extracellular chemical signals of ubiquitous occurrence, which 

allow them to have specific physiological roles in cellular signalling. So, this primitive 

system, due to its diversity of actions, is in a good position to influence, either short-

term events that occur in neurotransmission and neuromodulation in the CNS or 

potent long-term (trophic) roles, including neuronal maturation, neurite outgrowth, 

expression of transmitter receptors and cytotoxicity (Figure 1; Burnstock 2007a).    



Modulation of γ-aminobutyric acid (GABA) uptake by P2Y1 metabotropic purinergic receptor in rat cortical astrocytes 

 

14 
 

Figure 1 – The tripartite synapse. With special emphasis on the transport of GABA into astrocytes and the 

intercellular signaling pathways activated by the P2Y1 like-family receptor. This diagram represents a comprehensive 
account of the metabolism of GABA and the signaling events mediated by the P2Y1 like-family receptor. Arrows with 
solid lines indicate established responses, whereas, arrows with dashed lines indicate responses not yet clearly 
elucidated. Full identification of the acronyms in this figure, is reported on the Abbreviations list   
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1.3.  γ – Aminobutyric Acid (GABA) 

γ-aminobutyric acid (GABA) was initially described, in mammalian brain tissue, 

independently by Awapara et al. (1950), Roberts & Frankel (1950) and Udenfriend 

(1950), and is widely accepted as the main inhibitory neurotransmitter in the adult 

mammalian CNS (Krnjević & Phillis 1963; Krnjević & Schwartz 1967; Dreifuss et al., 

1969), playing a critical role on the modulation of the magnitude and time course of 

synaptic signalling.   

One crucial function of astrocytes is to supply neurons with metabolic 

intermediates, and although lacking the enzyme responsible for synthesis of GABA 

from glutamate (Schousboe et al., 1977), astrocytes play a vital role in the de novo 

generation of GABA. Glutamine, the glutamate precursor, is synthesized in 

astrocytes due to the action of glutamine synthetase (GS), and is the main metabolite 

transferred from astrocytes to GABAergic neurons. GABA arises from glutamate via 

decarboxylation by the action of glutamate decarboxylase (GAD) in a pathway 

named “GABA shunt” (Wingo & Awapara 1950).  

In the nerve terminals, GABA can be released to the synaptic cleft via a Ca2+ 

dependent vesicular release (Sihra & Nicholls 1987) or Ca2+ independent release via 

transporter reversal (Belhage et al., 1993). Upon release, GABA interacts with 

GABAA, GABAC, and GABAB receptors; the first two are ionotropic and primarily 

located postsynaptically and the latter are metabotropic and localized both pre- and 

postsynaptically (Bormann 2000; Owens & Kriegstein 2002). The activation of these 

synaptic receptors is transient, and the signal is terminated rapidly by the removal of 

GABA from the extracellular space via a high affinity GABA transport system, after 

which GABA transaminase and then succinic semialdehyde dehydrogenase 
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metabolizes GABA into succinate, which enters the tricarboxylic acid cycle (Hertz & 

Schousboe 1987) and completes the “GABA shunt”. This uptake mechanism 

represents an efficient process for terminating the physiological actions mediated by 

GABA (Iversen & Neal 1968).  The involvement of neurons in this process is well 

known (Hösli & Hösli 1978). However, GABA is also taken up by surrounding 

astrocytes (Schousboe et al., 1977; Hertz et al., 1978), through a process that bears 

the characteristics of a high-affinity transport system closely resembling that in nerve 

terminals (Hertz & Schousboe 1987). 

 

1.3.1. GABA Transporters (GATs) 

Ambient GABA concentration in the synaptic cleft depends on neurotransmitter 

release, diffusion, and especially transporter function through plasma membrane 

GABA carriers. The GABA transporters (GATs) display a Michaelis constant (Km) in 

the high nanomolar to low micromolar range, which explains the capacity of these 

transporters to maintain sub-micromolar extracellular transmitter levels (Beckman & 

Quick 1998).     

The GATs belong to the SLC6 superfamily of Na+-dependent transporters, 

showing a net +1 inward charge movement due to the cotransport of two Na+, one 

Cl−, and one GABA molecule per cycle (Mager et al., 1993). Topologically, the 

members of this superfamily are composed of 12 TMD, with potential glycosylation 

sites between TM helices III and IV, and with both NH2- and COOH-termini facing the 

cytoplasm. These regions contain phosphorylation sites, one for protein kinase A 

(PKA) and 7 for PKC (Guastella et al., 1990), probably involved in the regulation of 

the transport process (Kanner 1994).  
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The importance of the transporters in the termination of neurotransmitter action is 

determined by the transport rates, the Michaelis constant for the transporter (as 

mentioned above), and the density and localization of these transporters at, or close, 

to the synapse (Beckman & Quick 1998).  

GABA transporters have a slow transport rate of about 10 units/sec (Mager et al., 

1993). In synapses in which responses are mediated through GPCRs, transporter-

mediated signalling effects could be attributed to the transporter directly (Beckman & 

Quick 1998). In “fast” synapses (ligand-gated ion-channel synapses) another type of 

transport action should exist due to the slow turnover rates of these transporters. 

Evidence suggests that this mechanism could be the sequestration of the transmitter 

at its binding sites within the transporter (Diamond & Jahr 1997).  

Neuronal and astrocytic GATs are pharmacologically heterogeneous (Iversen & 

Neal 1968; Bowery et al., 1979) and the existence of different populations of GATs 

was further supported by the cloning of four transporters subtypes in mouse brain, 

named GAT1-4 (López-Corcuera et al., 1992; Liu et al., 1992; Liu et al., 1993). The 

molecular cloning studies revealed the expression of 3 subtypes of transporters in rat 

brain: rGAT-1, rGAT-2 and rGAT-3 (Guastella et al., 1990; Borden et al., 1992). Of 

these, GAT-1 and GAT-3 are expressed exclusively in the CNS, whereas the GAT-2 

is localized in epithelial as well as in glial and neuronal cells (Liu et al., 1993; Borden 

1996; Conti et al., 1999). The contribution of a fourth GABA transporter in rat brain, 

BGT-1, remains to be determined (Borden 1996). GAT-1 exhibits the highest levels 

of expression in the cerebral cortex of adult rats, and although being mainly 

considered a neuronal GABA transporter (Swan et al., 1994; Durkin et al., 1995; 

Ribak et al., 1996a; Ribak et al., 1996b), it is also present, to a smaller extent, in 
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distal astrocytic processes, both in the brain (Minelli et al., 1995; Ribak & Brecha 

1996a; Ribak & Brecha 1996b; DeBiasi et al., 1998) and in the retina (Johnson et al., 

1996). The second most expressed GAT in the cortex, GAT-3, is predominantly 

expressed in distal astrocytic processes in direct contact with GABAergic neurons 

(Durkin et al., 1995; Minelli et al., 1996). A mature pattern of expression, for the 

predominantly GATs expressed in the cortex, is reached at postnatal day 30 for GAT-

1 and postnatal day 15 for GAT-3 (Conti et al., 2004).  

The different pharmacological properties and cellular localization in combination 

with the relative contribution of astrocytic and neuronal uptake support the idea that 

they differ functionally. GABA accumulated by astrocytes is either degraded and lost 

from the GABA pool or returned to neurons in a complex GABA-glutamine-glutamate 

shuttle (Schousboe 2000). Therefore, the inhibition of astrocytic GABA transport 

would enhance the pool of synaptic GABA and facilitate reuptake into nerve endings. 

Thus, in presynaptic neurons, GABA can be reused as a transmitter enhancing 

GABAergic neurotransmission, leading to an inhibition of excitability and preventing 

against epileptic seizures and other GABA related dysfunctions (Schousboe 2000). 

An increase in the extracellular levels of GABA due to the inhibition of GABA 

transport into astrocytes also leads to an enhanced tonic inhibition mediated by 

extrasynaptic slow desensitizing GABAA receptors (Walker & Semyanov 2007). 

Inhibitors of glial uptake should be of particular importance for the development of 

anticonvulsant drugs, like tiagabine, which targets GAT-1 (Iversen 2006).  

 



Modulation of γ-aminobutyric acid (GABA) uptake by P2Y1 metabotropic purinergic receptor in rat cortical astrocytes 

 

19 
 

1.3.1.1. Pharmacological Distinction of GABA Transporters 

The Km for GABA transport in neurons and astrocytes is 8 and 32 μM, 

respectively. Kinetic analysis of the cloned rat GABA transporters, expressed in rat 

brain, reveal a Km for GABA of 7, 8 and 12 μM for GAT-1, GAT-2 and GAT-3, 

respectively (Madsen et al., 2007). Among the classical transporters inhibitors, 

nipecotic acid and guvacine inhibit GAT-1, 2 and 3 come to the fore, but they have no 

effect on BGT-1. Diaminobutyric acid and 3-aminocyclohexane-carboxylic acid 

(ACHC) inhibit GAT-1 more potently than other transporters, whereas β-alanine 

shows the opposite selectivity (Borden 1996). The structures of another two 

compounds, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol (THPO) and 4,5,6,7-

tetrahydroisoxazolo[4,5-c]azepin-3-ol (THAO) were a breakthrough in the 

development  of highly potent GABA uptake inhibitors. The addition of a lipophilic 

diaromatic side chain led to the development of N‐4,4‐diphenylbut‐3‐en‐1‐yl‐nipecotic 

acid (N‐DPB‐nipecotic acid)/1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid 

hydrochloride (SKF89976A), a selective inhibitor of GAT-1 and 1-[2-[tris(4-

methoxyphenyl)methoxy]ethyl]-(S)-3-piperid inecarboxylic acid (SNAP-5114) which 

preferentially inhibits BGT-1/GAT-2 and GAT-3. Subsequently, a huge number of 

other compounds based on nipecotic acid and guvacine scaffold with various 

lipophilic aromatic side chains were synthesized and characterized as GAT inhibitors 

(Borden 1996; Madsen et al., 2007).  

 

1.3.1.1.1. Pathways involved in the regulation of GABA Transporters 

Recent evidence demonstrates that GATs and other neurotransmitter transporters 

in general are not passive players in the regulation of neuronal signalling.  Guastella 
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et al. (1990) speculated about the possible involvement of a variety of initiating 

factors and transduction cascades in the modulation of transport function, and since 

then further evidence has been gathered. This regulation can be receptor mediated 

(e.g. receptor couple to kinases/phosphatases activity and AA production) due to the 

existence of a signal directly associated with the transport process, or transporter-

mediated (e.g. pH changes and transmitter chronic treatment) that provides the 

“trigger” for regulation (Beckman & Quick 1998). 

 It seems that the most common modulation process of uptake depends on the 

phosporylation-dephosphorylation states of the transporter for members of the 

subfamily Na+/Cl- dependent carriers. The functional regulation can occur directly on 

the transporter protein through direct phosphorylation (Casado et al., 1993; Conradt 

& Stoffel 1997), or by changing the rate of the transmitter flux through the transporter 

as a result of the associations of the carrier with other synaptic proteins, such as 

syntaxin 1A (Quick et al., 1997; Beckman et al., 1998; Deken et al., 2000). The 

regulation of GATs activity by redistributing functional transporters from the plasma 

membrane to intracellular locations depends mainly on the activity of PKC, tyrosine 

kinases and phosphatases (Corey et al., 1994; Quick et al., 1997; Law et al., 2000). 

The stimulation of the AC/cAMP/PKA pathway, through the activation of ADO A2A 

receptors, is also involved in the facilitation of GAT-1 mediated transport by 

restraining the tonic PKC-mediated inhibition (Cristóvão-Ferreira et al., 2009). 

Mechanisms involving calmodulin (CaM) are also known to regulate transporter 

function (Ramamoorthy et al., 1992; Jayanthi et al., 1995; Gonçalves et al., 1997).  

Several hypotheses have been advanced to explain the regulation through these 

mediators, like the involvement of a classical regulatory pathway, alterations in the 
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rates of exocytosis/endocytosis of the transporter protein, or a sequestration of the 

transporters in a nonfunctional conformation (Beckman & Quick 1998).  

The involvement of pH (Sonders et al., 1997; Cao et al., 1997) and other second 

messengers, such as AA (Volterra et al., 1992; Trotti et al., 1995; Zhang &. Reith 

1996), are also known to modulate the activity of several transporters in neurons as 

well as in astrocytes, including glutamate, dopamine and GABA.    

Slower modulatory effects on transporters are also observed due to changes in 

mRNA levels or protein synthesis of the transporter after chronic treatment with 

transport inhibitors, or as a result of the spill over of the transmitter onto their 

receptors (Rattray et al., 1994; Thomsen & Suzdak 1995). 
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2| Aims 

 

The majority of synapses in the CNS are tripartite in nature, and signal processing 

in brain results from the continuous interaction between the elements that compose 

this structure (the pre- and postsynaptic components and the surrounding 

astrocytes). Thus, the coordination between the neuronal networks and the glial 

syncytium is crucial, due to the astrocytic involvement in several supportive functions 

(e.g. the control of neurotransmitters levels) and the gliotransmission phenomenon. 

ATP is a ubiquitous signalling molecule, and during its brief time in the 

extracellular space before being hydrolyzed to its metabolites, is one of the key 

triggers of calcium signalling responses in astrocytes, inducing the further release of 

gliotransmitters. Accordingly, it seems that the purinergic cascade plays a major role 

in both glial-glial networks and glia-neuron communication. 

  As detailed in the Introduction, calcium signalling-coupled to certain subtypes of 

metabotropic ATP (P2Y) receptors operate through PLC activation (Centemeri et al., 

1997), and GABA transport decreases when the PLC transducing system is 

modulated by specific enzymes (Gomeza et al., 1991; Cristovão-Ferreira et al., 

2009). Taking into consideration these findings, the main objective of this work was 

to clarify if these two astrocytic functions, Ca2+ waves and modulation of extracellular 

GABA levels, are related to each other and to identify the mechanisms involved. 
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Therefore, to unravel these questions and achieve the proposed aims, primary 

cultures of rat cortical astrocytes were prepared to: 

 

Task 1 – Characterize, in our culture conditions, which P2Y receptors subtypes 

mediated the [Ca2+]i increases in response to a brief application of P2Y receptors 

agonists. This task was performed in two time points 11-15 days in culture (DIC) and 

21-25 DIC; 

Task 2 – Investigate the influence of P2Y receptor activation on GABA transport 

modulation; 

 Task 2.1. – Study this influence through the application of pharmacological 

tools, characterized in task 1; 

Task 2.1. – Assess if the modulation of GABA transport by P2Y receptor 

activation is related to calcium signalling. This was approached in two ways: by 

preventing the P2Y-induced calcium rise and by interfering with the PLC pathway;  

Task 3 – Investigate the presence of the most important P2Y receptor functionally 

expressed in cultured astrocytes, as well as the two main GABA transporters 

expressed in cerebral cortex in mammals (GAT-1 and GAT-3); 
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3| Methodology 

 

3.1. Drugs and Antibodies 

The following antibodies and drugs were used: goat anti-mouse IgG or anti-rabbit 

conjugated to Alexa Fluor 488 and 588 from Invitrogen (Barcelona, Spain); rabbit 

polyclonal antibody anti-GAT-1, anti-GAT-3, mouse polyclonal anti-glial fibrillary 

acidic protein (anti-GFAP) and mouse polyclonal anti-microtubule-associated protein 

2 (anti-MAP2) from Millipore (Bedford, MA, USA); rabbit polyclonal antibody anti-

P2Y1R from Alomone Laboratories (Jerusalem, Israel);  mouse anti-cluster of 

differentiation molecule 11b (anti-CD11b) was a gift from R. Franco (University of 

Barcelona, Spain); goat anti-rabbit IgG conjugated to horseradish peroxidase from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA); rabbit monoclonal anti-GFAP from 

Sigma-Aldrich (St. Louis, USA); adenosine deaminase [E.C. 3.5.4.4, 200U/mg in 

50% glycerol (v/v), 10mM potassium phosphate] was purchased from Roche 

(Amadora, Portugal); 4-amino-n-[2,3-3H]butyric acid ([3H] GABA, specific activity 89.5 

Ci/mmol) from Amersham (Buckinghamshire, UK) and 4-amino-n-butyric acid (GABA) 

from Sigma (St. Louis, USA); acetoxymethyl bis(O-aminophenoxy)ethane-N,N, N’,N’-

tetraacetate (BAPTA-AM) was obtained from Molecular Probes (Eugene, OR, USA); 

2-methylthio-adenosine-5’-diphosphate (2-MeSADP), α-Cyclopiazonic Acid (CPA), 2-

[1-(3-dimethylaminopropyl) indol-3-yl]-3-(indol-3-yl) maleimide (GF109203X), N6-

methyl-2´-deoxyadenosine- 3´,5´-bisphosphate (MRS2179), (1R*,2S*)-4-[2-Iodo-6-

(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol 

dihydrogen phosphate ester tetraammonium salt (MRS2500), pyridoxalphosphate-6-

azophenyl-2',4'-disulfonic acid tetrasodium salt (PPADS), 1-(4,4-Diphenyl-3-butenyl)-
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3-piperidinecarboxylic acid hydrochloride (SKF89976A), 1-[2-[tris(4-

methoxyphenyl)methoxy]ethyl]-(S)-3-piperid inecarboxylic acid (SNAP 5114), 1-[6-

[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione 

(U73122) and  uridine-5'-diphosphate disodium salt (UDP) were purchased from 

Tocris (Avonmouth, UK); adenosine 5′-diphosphate sodium salt (ADP), adenosine 5′-

triphosphate disodium salt hydrate (ATP), uridine 5′-triphosphate trisodium salt 

dehydrate and ethyleneglycol bis(β-aminoethylester)-N,N,N’,N’-tetraacetate (EGTA) 

were bought from Sigma (St. Louis, USA). Enhanced chemiluminescence Western 

blotting system came from Amersham Biosciences (Buckinghamshire, UK). Stock 

solutions of drugs were prepared with dimethylsulphoxide or distilled water and kept 

at -20 ºC until used. Solutions of drugs were prepared from stock solutions diluted in 

culture medium and/or incubation buffer immediately before use.  

 

3.2. Primary Astroglial-enriched Cortical Cultures 

Animal handling and experiments were conducted according to the guidelines set 

in Directive 2010/63/EU of the European Parliament and the Council of the European 

Union. Primary astroglial-enriched cultures were prepared from offspring (postnatal 

day 0 to 2) of Wistar rats (Harlan, Barcelona, Spain), as described by Vaz et al. 

(2011). Briefly, the brains were dissected under sterile conditions. After the brains 

were dissected, the olfactory bulbs, hippocampal formations, basal ganglia and 

meninges were carefully removed in cold PBS solution (in mM: NaCL 140, KCl 2.7, 

KH2PO4 1.5 and NaHPO4 8.1, pH adjusted to 7.4). Cortex tissue were dissected 

gently by trituration in 4.5g/l glucose Dulbecco’s Modified Eagles Medium (DMEM, 

Gibco, Paisley, UK) and filtered through mesh of 230µm and centrifuged at 200g for 
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10 minutes (at room temperature). The pellet was resuspended in 4.5g/l glucose 

DMEM medium and filtered through a cell strainer (70µm; BD Falcon, Erembodegem, 

Belgium) and centrifuged at 200g for 10 minutes (at room temperature). Astrocytes 

readily stick to a plastic surface; so, the cells were seeded into 24-well plastic plates 

for Uptake experiments at a density of 4 × 104 cell/well, into T75 Cell Culture Flasks 

for Intracellular Calcium (Ca2+) measurements and Immunocytochemistry studies and 

in Tissue Culture Dish for Western Blot assays.   

Cultures of astrocytes were maintained for 11-15 Days in Culture (DIC) for 

Intracellular Calcium (Ca2+) Measurements in immature astrocytes and 21-25 DIC 

(mature astrocytes) for Intracellular Calcium (Ca2+) measurements, Uptake 

experiments, Western Blot assays and Immunocytochemistry studies. The cultures 

were maintained in appropriate medium [4.5 g/l glucose DMEM medium containing 

10% fetal bovine serum (FBS, Gibco, Paisley, UK) with 0.01% antibiotic/antimycotic 

(Sigma, Steinheim, Germany)] in a humidified atmosphere (5% CO2) at 37ºC. Culture 

medium was changed on the third day after seeding and every 7 days thereafter.  

The plated cells were then treated with two different procedures (for the 

Intracellular Calcium (Ca2+) Measurements and for Immunocytochemistry, in order to 

reduce contamination with microglia). (1) Intracellular Calcium (Ca2+) measurements 

in immature astrocytes (11-15 DIC): after the cultures reached confluence (7 DIC), 

the surface cells attached to the confluent astrocyte monolayer were removed by 

horizontal shaking for 3 hours at 300 rpm (37ºC and 5% CO2). After this protocol, 

cells were plated into the dishes four days before the Intracellular Calcium (Ca2+) 

measurements. (2) Intracellular Calcium (Ca2+) measurements and 

Immunocytochemistry studies in mature astrocytes (21-25 DIC): after the cultures 
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reached confluence (7 DIC), the surface cells attached to the confluent astrocyte 

monolayer were removed by horizontal shaking for 12-15 hours at 300 rpm (37ºC 

and 5% CO2) as described by McCarthy & de Vellis (1980). At the 9th DIC, astrocyte 

monolayers were treated with 8µM of cytosine-β-D-arabinofuranoside (ARA-C) for 2 

days to eliminate dividing cells (i.e. microglia). This treatment is not cytotoxic to 

quiescent contact-inhibited astrocytes (Hamby et al., 2006; Saura 2007). The cell 

cultures were subsequently shifted back into a drug-free medium and plated into the 

dishes on DIC 17 and used four days later.  

 

3.3. Intracellular Calcium (Ca2+) Measurements 

Four days before the Calcium Imaging Experiments in both immature and mature 

astrocytes, the cells were plated in γ-irradiated glass bottom microwell dishes 

(MatTek Corporation, Ashland, MA, USA) with a glass diameter of 14mm and glass 

thickness of 0.16-0.19mm. These dishes were previously coated with Poly-d-lysine 

for 1 hour and washed 3 times with sterile water. For Imaging Experiments, 

astrocytes had to be seeded in a dish with a glass coverslip, and due to its poor 

adherence to glass surfaces a coating procedure had to be adopted. This procedure 

was optimized for our culture conditions in our laboratory.  

The platting of the cells (5x104 cells/ml for 11-15 DIC astrocytes and 7x104 cells/ml 

for 21-25 DIC astrocytes) in microwell dishes, was made by trypsinization (1% 

trypsin-EDTA) for 2 minutes and this reaction was stopped by the addition of 4.5 g/l 

glucose DMEM medium containing 10% fetal bovine serum with 0.01% 

antibiotic/antimycotic. The different platting concentrations in the immature and 

mature cultures was due to the fact that in the 21-25 DIC assays a higher 
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concentration of cells were needed to originate regions of cells with a similar number 

of cells as the ones on the 11-15 DIC assays. Until the day of the experiment, the 

platted cells were maintained in suitable growing medium in a humidified atmosphere 

(5% CO2) at 37ºC. 

At the day of Ca2+ Imaging Experiments, astrocytes were loaded with the Ca2+-

sensitive fluorescent dye fura-2 acetoxymethyl ester (fura-2 AM; 5µM) at 22ºC for 45 

minutes. After loading, the cells were washed three times in external physiological 

solution (composition in mM: NaCl 125, KCl 3, NaH2PO4 1.25, CaCl2 2, MgSO4 2, 

D(+)-glucose 10 and HEPES 10; pH 7.4 adjusted with NaOH; Rose et al., 2003). The 

dishes with the plated cells were then placed on an inverted microscope with 

epifluorescent optics (Axiovert 135TV, Zeiss) equipped with a xenon lamp and band-

pass filters of 340 and 380 nm wavelengths. Throughout the experiments, the cells 

were continuously superfused at 1.5 ml/min by means of a roller pump with 

physiological solution. The tested P2Y receptor ligands were applied directly to single 

astroglial cells by pressure using a FemtoJet microinjector (Eppendorf, Hamburg, 

Germany) with an injection pressure of 15 psi for 0.3 seconds. Low Ca2+ solution (0.5 

mM CaCl2 + 1mM EGTA), CPA, or various blocking drugs (e.g. PPADS, MRS2179) 

were superfused 15-30 minutes before and during the third pressure application of an 

agonist (Fischer et al., 2009).  

Image pairs obtained every 250 ms by exciting the preparations at 340 and 380 

nm were used to obtain ratio images. Ratiometric dyes, such as fura-2 AM, correct 

for unequal dye loading, bleaching and focal-plane shift. Excitation wavelengths were 

changed using a high speed wavelength switcher, Lambda DG-4 (Sutter Instrument, 

Novato, CA, USA), and the emission wavelength was set to 510 nm. Image data 
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were recorded by a cooled CCD camera (Photometrics CoolSNAP fx) and processed 

and analysed using the software MetaFluor (Universal Imaging, West Chester, PA, 

USA). Regions of interest were obtained by defining the profile of the cells and 

averaging the fluorescence intensity within the delimited area. Intensity values were 

converted to [Ca2+]. For calibration purposes, the external Ca2+ of fura-2 AM-loaded 

cells were washed out  for 10 min (0 mM Ca2+/10 mM EGTA) before the ionophore 

ionomycin free acid (10 µM; Ascent, Bristol, UK) was added to permeabilize the cell 

membrane. After equilibration between intracellular and external Ca2+ (20 min), a 2 

mM Ca2+ solution was added. After another 10 min, a Ca2+-free + 2 mM Mn2+-

containing solution was washed in. Mn2+ enters  the  cells  and  quenches  the  Fura-

2  fluorescence  revealing  the  Fura-2-independent  background  fluorescence, 

which has to be subtracted from all measured fluorescence values for background 

correction (Lohr & Deitmer 2010). R is the ratio of fluorescence values measured with 

excitation wavelengths of 340 nm versus 380 nm throughout the experiment. Rmin 

(ratio value under Ca2+-free conditions), Rmax (ratio value under Ca2+-saturated 

conditions), Sf2 (fluorescence value measured at an excitation of 380 nm under Ca2+-

free conditions) and Sb2 (fluorescence value measured at an excitation of 380 nm 

under Ca2+-saturated conditions) were read from the calibration curves, with the 

background-corrected. It was assumed a dissociation constant (KD) of fura-2 and 

Ca2+ of 145 nM (Simpson 2005) and the free cytoplasmatic Ca2+ concentration in nM 

([Ca2+]i) was calculated according to the formula given by Grynkiewicz et al. (1985): 

[    ]     
          

         
   

   

   
. 

The determination of [Ca2+]i  values were performed using MetaFluor software. 
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For Ca2+ imaging experiments in astrocyte cultures, n represents the number of 

individual responsive cells in each experiment. A field with at least 40 cells was 

selected in which experiment, and the response of these cells to P2 agonists in 

different conditions was averaged.  

The wave amplitude was calculated by subtracting the maximum peak wave (12 

cycles of data acquisition around the maximum point) to the baseline level (25 cycles 

of data acquisition) before the stimulation. The percentage of alteration by 

manipulations with other agonists or incubation with antagonists (S3) was calculated 

with respect to the second response to the tested agonist (S2). In all assays, a first 

stimulation (S1) was used to establish the good functional viability of the tested cells 

and after the incubation with a drug, a new stimulation without the drug (S4/washout) 

was performed. The stimulations were separated by 30 min intervals. Within each 

experiment the average response (of all responsive cells in the field) in S1 was not 

appreciably different from S2 and neither from S4.   

Statistical analyses of Ca2+ imaging data were performed using GraphPad Prism 5 

(San Diego, CA, USA) software. Data are expressed as the mean ± S.E.M., and two-

sample comparisons were made using t tests and multiple comparisons were made 

using one-way analysis of variance (ANOVA) followed by Bonferroni correction post-

test. 

 

3.4. GABA Uptake Assays 

Determination of GABA uptake was obtained as described by Vaz et al. (2011). 

Briefly, astrocytes were preincubated for 3 hours at 37ºC (5% CO2) in serum-free 1g/l 

glucose DMEM (Gibco, Paisley, UK). Following preincubation, cells were rinsed once 
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in serum-free 1g/l glucose DMEM and allowed to equilibrate for 10 minutes in this 

medium. This medium was then exchanged with control serum-free 1g/l glucose 

DMEM or drug containing serum-free 1g/l glucose DMEM. In the experiments with 

ATP and 2-MeSADP, they were added 1 or 5 min before starting the GABA transport 

assays, to simulate, as much as possible, the fast and transient actions of P2Y 

agonists in astrocytes. The transport was initiated by addition of 30 µM [3H]GABA in 

a transport buffer composed of (in mM): NaCl 137, KCl 5.4, CaCl2.2H2O 1.8, MgSO4 

1.2 and HEPES 10, pH adjusted with Tris-Base to 7.40. Transport was stopped 1 

minute after [3H]GABA addition by rapidly washing the cells twice with ice-cold stop 

buffer composed of (in mM): NaCl 137 and HEPES 10, pH adjusted with Tris-Base to 

7.40) followed by solubilisation with 250µl of lyses buffer (NaOH 100mM and 0.1% 

SDS) at 37ºC for 1 hour. The amount of [3H]GABA taken up by astrocytes was 

quantified by liquid scintillation counting. GAT-1 and GAT-3 mediated GABA uptake 

was taken as the difference between the [3H]GABA uptake in the absence and in the 

presence of GAT-1 blocker, SKF 89976A (20µM) and the GAT-3 blocker, SNAP 5114 

(40µM), respectively. GAT-1 and GAT-3 blockers were added to astrocytes at the 

same time as the other drugs (ADA, BAPTA-AM, CPA, GF109203X, P2 antagonists 

and U73122). Neither the incubation with SKF 89976A nor the incubation with SNAP 

5114 alters the Ca2+ responses induced by 2-MeSADP 100 µM (Appendix I). 

Statistical analyses of the uptake data were performed using GraphPad Prism 5 

(San Diego, CA, USA) software. Data are expressed as the mean ± S.E.M., n 

represents the number of independent cultures. Two-sample comparisons were 

conducted using t tests; multiple comparisons were made using one-way analysis of 

variance (ANOVA) followed by Bonferroni correction post-test. 
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3.5. Western Blot Analysis 

Astroglial-enriched cultures (at the 21 DIC stage), were resuspended by 

homogenization in a 0.32M sucrose solution containing 10 mM Hepes, 1 mM EDTA 

and BSA 1 mg/ml with protease inhibitors (1 mM PMSF). The homogenates were 

incubated with rotation for 20 minutes at 4ºC and then centrifuged at 16,000 g for 15 

minutes at 4ºC. The supernatants were collected and the protein determined by the 

method of Bradford (1976) using the Bio-Rad protein assay kit (Bio-Rad 

Laboratories, Hercules, CA, USA).  

Equal amounts of protein were denaturated [GAT-1 and GAT-3 (150 μg): at 37ºC 

for 30 minutes; P2Y1 receptor (80 μg): at 70ºC for 10 minutes] in 1x sample buffer 

(10 mM Tris-HCl at pH 6.8, 7% sodium dodecyl sulphate (SDS), 2% glycerol, 20 mM 

dithiothereitol and 0.02% bromphenol blue) and subjected to SDS-PAGE (10% SDS-

polyacrylamide gel). Proteins were electrotransferred onto PVDF membranes, 

previously soaked in methanol, for 90 minutes at 400 mA in a transfer buffer. 

Membranes were incubated for 1 hour in a blocking solution with 5% of non-fat dry 

milk in phosphate buffer solution with 0.05% Tween 20 (10 x) at room temperature 

and probed with rotation, for 2 hours at room temperature, with appropriately diluted 

primary antibodies in 3% BSA in PBS-Tween 20 and 0.02% sodium azide: rabbit 

polyclonal anti-GAT-1 (1:100), rabbit polyclonal anti-P2Y1 (1:200) and rabbit 

polyclonal anti-GAT-3 (1:100) antibodies followed by secondary antibody goat anti-

rabbit IgG conjugated to horseradish peroxidise (1:10.000). Immunocomplexes were 

detected by enhanced chemiluminescence (ECL system). The protein amount was 

normalized by rabbit polyclonal antibody anti-β-actin (1:10.000), and the images were 

analysed using Image J software (NIH). 
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3.6. Immunocytochemistry 

At DIC 18, the cells were plated (4x104 cells/ml) into 24-well plates containing a 

glass coverslip coated with Poly-d-lysine as described in Intracellular Calcium (Ca2+) 

Measurements section of the Methods.  

The astroglial-enriched cultures, 5 days after platting, were washed twice for 5 

minutes in phosphate-buffered saline (PBS pH 7.40) and fixed with 4% 

paraformaldehyde (PFA) for 20 minutes at room temperature. After washing twice 

with PBS, the cells were preincubated for 30 minutes with PBS containing normal 

goat serum (NGS; 10%) and 0.03% Triton X-100. For double-labelling astrocytes and 

microglia and astrocytes and neurons, cultures were incubated (at room temperature 

for 1 hour) with the primary antibodies rabbit anti-GFAP (1:200) and mouse anti-

CD11b (1:500), and rabbit anti-GFAP (1:200) and mouse anti-MAP2 (1:100), 

respectively. For P2Y1 receptor localization, cultures were incubated (at room 

temperature for 3 hours) with the primary antibodies mouse anti-GFAP (1:200) and 

rabbit anti-P2Y1 (1:400). For GATs localization, cultures were incubated (at room 

temperature for 3 hours) with the primary antibodies rabbit anti-GFAP (1:200), mouse 

anti-GAT-1 (1:100) or mouse anti-GAT-3 (1:100). Next, the cells were rinsed in PBS-

Tween 20 0.05% for 3 times, 5 minutes each. Visualization of GFAP, CD11b, MAP-2, 

P2Y1 receptor, GAT-1 and GAT-3 positive cells was accomplished upon 1 hour 

incubation, at room temperature, with the secondary antibodies (in 10% NGS-PBS-

Triton X-100 0,03%) anti-rabbit IgG conjugated to Alexa Fluor 488 (1:500) for GFAP 

and anti-mouse IgG conjugated to Alexa Fluor 588 (1:500) for GAT-1; anti-rabbit IgG 

conjugated to Alexa Fluor 588 (1:500) for GFAP and anti-mouse IgG conjugated to 

Alexa Fluor 488 (1:500) for GAT-3; anti-mouse IgG conjugated to Alexa Fluor 488 
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(1:500) for GFAP and anti-rabbit IgG conjugated to Alexa Fluor 588 (1:500) for P2Y1; 

anti-rabbit IgG conjugated to Alexa Fluor 488 (1:500) and anti-mouse IgG conjugated 

to Alexa Fluor 588 (1:500) for CD11b and MAP-2.  

In negative controls, the primary antibody was omitted. Cells were washed with 

PBS-Tween 20, 3x5 minutes, before and after incubation with DAPI (1:15.000) for 5 

minutes. The cells were one last time washed in PBS, carefully dried and mounted 

on a small drop of Mowiol on a slide and dried for 24 hours at room temperature. 

Then the slides were kept at 4ºC. About 600 cells were counted in each culture to 

evaluate the percentage of microglia and neurons. The number of C11b- and MAP-2-

positive cells was expressed as a percentage of the total number of cells counted. 

Images were acquired using a Zeiss (Thornwood, NY, USA) Axiovert 200 and 

analysed with the help of the Image J software. 
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4| Results 

 

4.1. Pharmacological characterization of the P2Y receptors functionally 

expressed on astrocytes 

The purpose of these first series of Ca2+-imaging experiments was to functionally 

characterize the purinoceptors which mediates the Ca2+ signalling in rat primary 

astroglial-enriched cortical cultures with 10 to 15 DIC. This astroglial-enriched culture 

was obtained by a routinely laboratory procedure from our group, which was reported 

to have ≥ 95% GFAP positive cells.   

 The mean resting [Ca2+]i was 191.33 nM ± 3.29 nM (n = 659 cells). Challenge of 

cultured rat cortical astrocytes with several ATP concentrations (from 10-9 to 10-3 M) 

for a brief period of time (0.3 s) elicited a concentration dependent increase in the 

[Ca2+]i (Figure 2a). The dynamic of these responses was characteristic of a response 

mediated by the activation of P2 metabotropic purinoceptors (P2Y), where a transient 

[Ca2+]i rise followed by a fast decline to the resting level (Figure 2b) was observed. A 

stimulation time of 0.3 seconds was used, since in previous work from our laboratory 

this duration of stimulation was used to functionally characterize the P2Y receptors in 

the glial-derived C8-D1A cell line (Vaz et al., 2008), and also due to the fast time 

course of nucleotide degradation by ectonucleotidases (Cunha et al., 1994; 

Dunwiddie et al., 1997; Cunha et al., 1998). The amplitude of the initial [Ca2+]i 

transient and the number of responding cells is  highly dependent on ATP 

concentration, the threshold for the Ca2+ elevation above basal levels being 

approximately between 1-10 µM ATP (Figure 2a; n = 100 responsive cells from two 

independent cultures, P < 0.01). An activation near the maximal was reached in the 
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presence of 100 μM ATP (Figure 2a; n = 100 responsive cells from two independent 

cultures, P < 0.01).  

 

Application of ATP and ADP (100 μM each 

for 0.3 s) caused a marked and reproducible 

[Ca2+]i increase in the majority of the cells 

(83%± 2.4%; total analysed cells = 114 from 

two independent cultures) with a similar Ca2+ 

wave amplitude, 1846 nM ± 148.8 nM and 2176 

nM ± 160.9 nM, respectively (Figure 3). 

Although UTP evokes [Ca2+]i increases in 77 % 

of studied cells (total analysed cells = 131 of 

one culture), the amplitude of the evoked Ca2+ 

response is significantly smaller (1045 nM ± 

Figure 3 – P2Y receptor agonist-induced 
[Ca

2+
]i responses on cortical astrocytes 

(11-15 DIC). All tested agonists (100 μM) were 

pressure applied at the same cells, for 0.3 s at 
20 min intervals between different agonists. 
Agonist effects are shown as the response 
(wave amplitude) during S3 - agonist-induced 
response signal. Mean ± S.E.M. of 49-101 
responsive cells from 1-2 independent 
cultures; ***, P < 0.001 significant differences 
between S3 vs. S2, assessed by the Student’s 
t-test. The results represent only responsive 
cells.  

Figure 2 - Effect of ATP on [Ca
2+

]i responses. (a) Dose-dependent changes in [Ca
2+

]i elicited by various ATP 

concentrations (10
-9

 -10
-3

 M). ATP was pressure applied at the same cells, for 0.3 s at 20 min intervals between 

concentrations. Mean ± S.E.M. of 100 responsive cells from 2 independent cultures; **, P < 0.01 vs basal levels 

[Ca
2+

]i, assessed by one-way ANOVA followed by Bonferroni correction. The results represent only responsive 

cells. (b) Representative change in [Ca
2+

]i signal illustrating the transient response upon a brief application (0.3 s) 

of ATP (100 μM) at time point 30 s (arrow) consisting of an initial [Ca
2+

]i peak followed by a fast decline.   
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96.71 nM; n = 101 responsive cells from one culture, P < 0.001) from the one 

mediated by ATP (Figure 3). The stimulation with UDP only evokes a response in 

44% ± 2.5% of the analysed cells (111 cells), with an increase in intracellular Ca2+ of 

639.7 nM ± 67.60 nM (n = 49 responsive cells from two independent cultures, P < 

0.001; Figure 3).  

The agonist profile is in agreement with the presence of P2Y1,2,4,6,12,13 receptors, 

so which P2Y receptor-subtypes are functionally coupled to [Ca2+]i increases induced 

by ATP and ADP (100 μM) using antagonists for P2 and P2Y receptors was analysed 

(Figure 4). 

 

 

 

 

 

 

 

 

The involvement of P2 receptors on this effect, as seen in figure 4, was confirmed 

by significantly reduced response to ATP (in terms of wave amplitude) in the 

Figure 4 – Effects of inhibitors of P2/P2Y receptor antagonists on the [Ca
2+

]i response to ATP and ADP. 

Summary plot of the influence of PPADS (30 μM), MRS2179 (30 μM) and MRS2500 (1 μM) on the [Ca
2+

]i 
response to ATP (100 μM) and ADP (100 μM). ATP and ADP were pressure-applied four times for 0.3 s each at 
intervals of 20 min. After establishing two stables responses to the agonists, ATP or ADP (S1 and S2), an 
antagonist-containing solution was superfused 15 min before and during the third agonist application (S3), 
followed by washout for another 30 min (S4) Effects are shown as the response (%) during S3 - agonist-induced 
response signal upon drug incubation vs. S2 - the control signal (ATP or ADP stimulation in a drug-free medium). 
Mean ± S.E.M. of 12-27 responsive cells from 2-4 independent cultures; ***, P < 0.001; significant differences 
between S3 vs. S2, assessed by the Student’s t-test. The results represent only responsive cells. 
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presence of nonselective P2X/P2Y receptor antagonists, PPADS (% of inhibition = 

74% ± 3.8%; n = 25 responsive cells from 4 independent cultures, P < 0.001). The 

bath application (for 15 minutes) of the P2Y1 competitive antagonist, MRS2179 (30 

μM), and the more selective P2Y1 antagonist, MRS2500 (1 μM), depressed the ATP-

induced [Ca2+]i response (Figure 4). Bath application of MRS2179 (30 μM) reduce the 

Ca2+-response induced by ATP to 43% ± 5.6% of its original amplitude (n = 26 

responsive cells from 2 independent cultures, P < 0.001) and bath application of 

MRS2500 (1 μM) reduce the Ca2+-response induced by ATP to 14% ± 2.7% of its 

original amplitude (n = 26 responsive cells from 2 independent cultures, P < 0.001). 

Exposure of astrocytes to ADP (physiological agonist of P2Y1,12,13) resulted in a 

similar response of the ATP induced Ca2+-increases (Figure 3). The ADP-induced 

response was fully abolished by PPADS and MRS2500 (% of inhibition = 99% ± 

0.03% in PPADS- treated cultures, n = 39 responsive cells from 2 independent 

cultures, P < 0.001; % of inhibition = 97% ± 1.5% in MRS2500-treated cultures, n = 

12 responsive cells from 2 independent cultures, P < 0.001). Similarly to the ATP-

induced response, MRS2179 caused a pronounced inhibition of ADP-induced [Ca2+]i 

response, reducing the response to 27% ± 3.9% of its original amplitude (n = 27 

responsive cells from 2 independent cultures, P < 0.001; Figure 4). 

When ATP or ADP were applied in a Ca2+-low bath solution (0.5 mM CaCl2
  + 1 

mM EGTA for 15 min; free Ca2+ = 123 nM and bound Ca2+ = 0.49964 mM. Data 

obtained using the “Chelator” program by Schoenmakers et al. 1992) to reduce the 

contribution of extracellular Ca2+, the Ca2+ response still exhibited the characteristic 

transient [Ca2+]i raise, although to a lesser extent of its original amplitude, 67% ± 

3.2% (n = 88 responsive cells from 4 independent cultures, P < 0.001) and 65% ± 
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Figure 5 – Influence of Ca
2+

 low medium or 
depletion of intracellular Ca

2+
 stores on the 

[Ca
2+

]i response to ATP and ADP. Summary plot 

of the influence of Ca
2+

 low medium (0.5 mM CaCl2 
+ 1 mM EGTA) or CPA (10 μM) incubation for 15 
min, on the [Ca

2+
]i response to ATP (100 μM; white 

bars) and ADP (100 μM; black bars). After 
establishing two stables responses to the agonists, 
ATP or ADP (S1 and S2), a Ca

2+
-free solution or 

CPA were superfused 15 min before and during the 
third agonist application (S3), followed by washout 
for 30 min (S4) Effects are shown as the response 
(%) during S3 - agonist-induced response signal 
upon specific medium (Ca

2+
-low or CPA) incubation 

vs. S2 - the control signal (ATP or ADP stimulation 
in a normal medium). Mean ± S.E.M. of 56-111 
responsive cells from 2-4 independent cultures, ***, 
P < 0.001; significant differences between S3 vs. 
S2, assessed by the Student’s t-test. The results 
represent only responsive cells. 

2.3% (n = 56 responsive cells from 2 independent cultures, P < 0.001), respectively 

(Figure 5, left panel). The incubation of CPA (10 μM for 15 min),  the Ca2+-ATPase 

pump inhibitor of the endoplasmic reticulum, was used to deplete the intracellular 

Ca2+ pools (Figure 5, right panel). The CPA incubation produced a rise in the basal 

[Ca2+]i level (mean resting [Ca2+]i of 469 nM ± 77 nM on the ATP assay and 761 nM ± 

194 nM on the ADP assay)  presumably due to “capacitative Ca2+ entry” or store-

operated Ca2+ entry (Koizumi et al., 2002; Bouron et al., 2005; Rubini et al., 2006). 

The ATP and ADP effects on the [Ca2+]i response were inhibited in the presence of 

CPA (ATP-induced response reduced to 67% ± 1.8% of its original amplitude, n = 

111 responsive cells from 3 independent cultures, P < 0.001; ADP-induced response 

reduced to 56% ± 3.2% of its original amplitude, n = 56 responsive cells from 3 

independent cultures, P < 0.001; Figure 5, right panel). 

 

 

 

In summary, the results indicated that, as already described by others (Fumagalli 

et al., 2003; Fischer et al., 2009), immature cortical astrocytes express functional 

P2Y receptors, namely P2Y1, and other subtypes are likely to be present, such as the 
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UTP sensitive-receptors (P2Y2,4), being difficult to discriminate between P2Y2 and 

P2Y4 due to the lack of agonists and antagonists.   

Functional maturity of GABA transporters in astrocytes is reached approximately 

at the third week in culture (Conti et al., 2004).  During astrocytic development, the 

expression levels of P2Y receptors also change. Zhu & Kimelberg (2001) reported an 

up-regulation of P2Y2 receptors during hippocampal astrocytes development (from 

5% to 38% of GFAP positive cells), whereas the expression of P2Y1 receptors was 

similar at all ages (around 31% of GFAP positive cells). The receptor mRNAs were 

always translated into functional P2Y1 receptors, but the up-regulation of mRNA for 

P2Y2 receptors was not accompanied by more P2Y2 functional receptors (Zhu & 

Kimelberg 2001).  

Thus, due to the objective of this work, the next series of experiments were 

designed to functionally characterize the subtypes of P2Y receptors in cultured 

astrocytes with 21 to 25 DIC. Besides leading to increases in intracellular Ca2+ on 

astrocytes, ATP can also act on various purinoceptors in neurons and microglia. After 

reaching confluence (7-10 DIC), astrocytes stop proliferating due to contact inhibition, 

and microglia starts to propagate rapidly (Saura 2007); then, the culture conditions 

were set to minimize microglial proliferation, and estimation of the proportion of 

microglia was evaluated.  

Astrocytes used after 21-25 DIC in culture were previously subjected to an 

additional treatment of 12-15 hours of orbital shaking (at 7 DIC) and then at 9th DIC, 

ARA-C (8 μM) was added to the DMEM medium for 2 days. For the characterization 

of the culture, astrocytes were immunostained for the classic glial marker, glial 

fibriallary acidic protein (GFAP), the neuronal marker, microtubule-associated protein 
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2 (MAP2) and the microglial marker, cluster of differentiation molecule 11b (CD11b). 

Both the astrocytes in culture subjected to the normal medium change as the 

astrocytes subjected to the shaking and the ARA-C treatment can be described as 

monolayers of astrocytes exhibiting a flattened and polygonal morphology. Cultures 

grown without any treatment besides the normal medium change contained a 

substantial number of contaminating microglia (11% ± 1.3%, n = 5 cultures; Figure 

6a; Appendix II). The number of CD11b-positive cells was substantially reduced 

(Figure 6b; Appendix II), but not eradicated, by the shaking and ARA-C treatment 

(3.6% ± 1.2%, n = 6 cultures; Appendix II) and 93% ± 0.93% (n = 6 cultures; 

Appendix II) of cultured rat astrocytes stained positively for GFAP. Neuronal 

contamination in both conditions was null (n = 6 cultures; Appendix II).  

 

In the three-week cultures (21-25 DIC), spontaneous [Ca2+]i oscillations occurred 

more frequently by comparison with cultures with 10-15 DIC, although the mean 

baseline level [Ca2+]i was slightly lower (150 nM ± 30 nM, n = 406 responsive cells). 

After 21-25 DIC, the tested agonists evoked [Ca2+]i increases in astrocytes (Figure 

7a), with a similar dynamics (an initial [Ca2+]i peak followed by a fast decline) as 

observed after 11-15 DIC. Pressure-application of ATP (100 μM) induced a 

Figure 6 - Characterization of primary enriched-astroglial cultures containing different percentage of 
microglia. Astrocytes are labelled in red, microglia in green and nuclei in blue. Representative 

immunofluorescent micrographs of the two types of cultures with 21-25 DIC: (a) without treatment (n = 5 cultures) 
and (b) shake (15 h) + ARA-C (n = 6 cultures) for GFAP and CD11b. Scale bar: 25 μM 
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Figure 7 - P2Y receptor agonist-induced [Ca
2+

]i responses on cortical  astrocytes (21-25 DIC). (a) [Ca
2+

]i  

maps showing three time points (0, 41 and 150 seconds) with all tested agonists pressure-applied for 0.3 s at 
time point 30 seconds. (b) Dose-dependent changes in [Ca

2+
]i elicited by various ATP ( ) and 2-MeSADP ( ) 

concentrations (10
-9

-10
-3 

M). ATP and 2-MeSADP were pressure applied at the same cells, for 0.3 s at 20 min 
intervals between concentrations Data are expressed as Mean ± S.E.M. of 84 responsive cells from 2 
independent cultures; *, P < 0.05; **, P < 0.01; ***, P < 0.001 vs basal levels [Ca

2+
]i, assessed by one-way 

ANOVA followed by Bonferroni correction. (c) Summary plot of the P2 and P2Y1 agonist effects of on the [Ca
2+

]i 
in astrocytes with 21 to 25 DIC. (d) Summary plot of the effects of UTP and UDP on the [Ca

2+
]i in astrocytes, in 

two different maturation time points (11-15 DIC – white bars; 21-25 DIC – black bars). Agonist effects (in c and d) 
are shown as the response (%) during S3 - agonist-induced response signal vs. S2 - the control signal (ATP 
stimulation). Mean ± S.E.M. 37-76 responsive cells from 2 independent cultures; **, P < 0.01; ***, P < 0.001; 
significant differences between S3 vs. S2; ns, not significant, assessed by the Student’s t-test. The results 
represent only responsive cells. 

substantial increase on the [Ca2+]i, with the threshold for the Ca2+ elevation above 

basal levels between 1-10 µM of ATP (Figure 7b). The concentration-response 

relationships (Figure 7b) for ATP and 2-MeSADP (activates P2Y1,12,13 receptors) 

show that the minimal concentration at which 2-MeSADP evoked a Ca2+-response 

above the baseline level was lower than that required for ATP, with 2-MeSADP being 

about 1000 times more potent than ATP (n = 84 responsive cells of 2 independent 

cultures).  

Application of 2-MeSADP induced a maximal response at 100 μM. At this 
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concentration 2-MeSADP causes a Ca2+-response 1.71 times more potent than the 

one induced by 100 µM ATP (n = 84 responsive cells from 2 independent cultures, P 

< 0.001; Figure 7c) and a Ca2+-response 1.90 times more potent than the one 

induced by 100 µM ADP (n = 75 responsive cells from 2 independent cultures, P < 

0.001; Figure 7c). At 100 µM the responses induced by ATP and ADP are similar 

(Figure 7c). 

In Figure 7d, it can be observed that the detected responses to the pyrimidine 

nucleotide UTP (P2Y2,4 agonist) and UDP (P2Y6 agonist) on the functional mature 

astrocytic cultures were lower than the response evoked on 10-15 DIC cultures (% of 

UTP induced response (% of control) = 47% ± 3% at 10-15 DIC and 32% ± 4% at 21-

25 DIC, n = 40 responsive cells from 2 independent cultures, P < 0.01; % of UDP 

induced response (% of control) = 30% ± 2% at 10-15 DIC and 2% ± 0.52% at 21-25 

DIC, n = 37 responsive cells from 2 independent cultures, P < 0.01).  

Consistent with the observations in immature astrocytes, PPADS completely 

abolished the ATP-induced transient [Ca2+]i elevations (Figure 8), with an inhibition of 

98% ± 0.91% of the ATP-induced response (n = 39 responsive cells from 2 

independent cultures, P < 0.001; Figure 8) and additionally the 2-MeSADP-induce 

[Ca2+]i elevation is also completely abolished (inhibition of 99% ± 0.23%; n = 31 

responsive cells from 3 independent cultures, P < 0.001; Figure 8). The same effects 

were observed when the cells were pretreated with MRS2179 (ATP-induced 

response: inhibition of 76% ± 4%, n = 60 responsive cells from 3 independent 

cultures, P < 0.001; 2-MeSADP-induced response: inhibition of 97% ± 1%, n = 68 

responsive cells from 3 independent cultures, P < 0.001; Figure 8). The residual 

effects of ATP on Ca2+-wave, when P2Y1 receptor was blocked, could be explained 
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by the presence of other P2Y receptor, probably of the P2Y2,4 subtype. Indeed, 

although the responses to UTP are only detected in a few cells (10 out of 50 cells), in 

the presence of the P2Y1,12,13 antagonists, MRS2179, UTP evoked a mean response 

of 47% ± 17% of its original amplitude in 8 of the 10 responsive cells (1 culture).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The brief application of 2-MeSADP, in these culture conditions, is also mainly 

dependent on the Ca2+ release from intracellular stores located within the ER, as 

Figure 8 – Effects of inhibitors of P2/P2Y receptor antagonists on the [Ca
2+

]i response to ATP and 2-
MeSADP. Summary plot of the influence of PPADS (30 μM) and MRS2179 (30 μM) on the [Ca

2+
]i response to 

ATP (100 μM) and 2-MeSADP (100 μM). ATP and 2-MeSADP were pressure-applied four times for 0.3 s each at 
intervals of 20 min. After establishing two stables responses to the agonists, ATP or 2-MeSADP (S1 and S2), an 
antagonist-containing solution was superfused 15 min before and during the third agonist application (S3), 
followed by washout for another 20 min (S4) Effects are shown as the response (%) during S3 - agonist-induced 
response signal upon drug incubation vs. S2 - the control signal (ATP or 2-MeSADP stimulation in a drug-free 
medium). Mean ± S.E.M. of 31-68 responsive cells from 2-3 independent cultures; ***, P < 0.001; significant 
differences between S3 vs. S2, assessed by the Student’s t-test. The results represent only responsive cells. 

Figure 9 – Influence of Ca
2+

 low medium or depletion of 
intracellular Ca

2+
 stores on the [Ca

2+
]i response to 2-

MeSADP. Summary plot of influence of Ca
2+

 low medium 

(0.5 mM CaCl2 + 1 mM EGTA) or CPA (10 μM) incubation 
for 15 min, on the [Ca

2+
]i response to 2-MeSADP (100 μM). 

After establishing two stables responses to the agonist, 2-
MeSADP (S1 and S2), a Ca

2+
-free solution or CPA were 

superfused 15 min before and during the third agonist 
application (S3), followed by washout for another 20 min (S4) 
Effects are shown as the response (%) during S3 - agonist-
induced response signal upon specific medium (Ca

2+
-low or 

CPA) incubation vs. S2 - the control signal (2-MeSADP 
stimulation in a normal medium). Mean ± S.E.M. of 94-168 
responsive cells from 3 independent cultures, ***, P < 0.001; 
significant differences between S3 vs. S2, assessed by the 
Student’s t-test. The results represent only responsive cells. 
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seen in figure 9. Stimulated Ca2+ increases induced by 2-MeSADP are attenuated in 

a low-Ca2+ concentration medium (% of inhibition of 42.7% ± 2.6%, n = 168 

responsive cells from 3 independent cultures, P < 0.001), and when intracellular Ca2+ 

stores were depleted by incubation with CPA, they were significantly reduced (% of 

inhibition of 69% ± 2.2%, n = 94 responsive cells from 3 independent cultures, P < 

0.001).    

Taken together, the results of the present study suggest that the main P2Y 

receptor subtype functionally expressed on astrocytes is a P2Y1 receptor, coupled to 

release of intracellular Ca2+, and shows that these purinoceptors participate in the 

propagation of Ca2+ elevations between 

cortical astrocytes. The results also show 

that the pharmacological characteristics of 

the predominant P2Y receptor, coupled to 

Ca2+ signalling in astrocytes, is similar in 

both immature and mature astrocytes. 

  

4.2. Presence of P2Y1 receptor, 

GAT-1 and GAT-3 on mature astrocytes 

The presence of P2Y1, GAT-1 and GAT-

3 on 21-25 DIC enriched-astrocytic cultures 

was addressed and confirmed by Western 

blot analysis (Figure 10, right panel). Two 

immunoreactive bands of apparent 

Figure 10 – Presence of P2Y1 receptor, GAT-1 
and GAT-3 on astrocytes (21-25 DIC). (a) 

Representative immunocytochemistry, astrocytes 
labeled green and P2Y1 receptor labeled red (left) 
and Western blot showing the expression of P2Y1 
receptor (37 kDa). (b) Representative 
immunocytochemistry, astrocytes labeled green and 
GAT-1 labeled  red (left) and Western blot showing 
the expression of GAT-1 (67 kDa). (c) 
Representative immunocytochemistry, astrocytes 
labeled red and GAT-3 labeled green (left) and 
Western blot showing the expression of GAT-3 (70 
kDa).  
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molecular weights of 37 and approximately 90 kDa were recognised by the anti-P2Y1 

antibody. The antibodies against GAT-1 and GAT-3 revealed a single band at the 

apparent molecular mass of 67 and 70 kDa, respectively. In addition, 

immunocytochemical studies clearly showed that both GATs and P2Y1 purinoceptor 

are localised on mature astrocytes (Figure 10, left panel).   

 

4.3. P2Y1 receptor modulation of GABA Transporter activity on astrocytes 

The uptake of GABA depends on two main transporters, GAT-1 and GAT-3, which 

under our culture conditions accounted for 41% ± 2.4% (n = 20 cultures) and 52% ± 

2.5% (n = 22 cultures) of the total transport, respectively.   

Before evaluating the influence of any drug on GABA uptake, experiments were 

designed to define the incubation time (one or five min) and concentration (1-100 μM) 

of the endogenous ligand, ATP (Figure 11a). Effects of 1 min and 5 min were 

compared to know if 1 min incubation was a too short time period to induce a 

significant modulation on GABA transport into astrocytes. Due to technical 

constrains, periods of incubation shorter than 1 min cannot be used. Incubation times 

longer than five minutes were considered to be too long and that they did not mimic 

the temporal patterns of a physiological model of Ca2+ signalling in astrocytes. 

Incubations with 1 min of ATP reveal a different dynamics of the Ca2+-response 

comparing to the 0.3 s stimulation, in Ca2+-imaging experiments (Appendix III). The 

different dynamics is probably associated to a response depending on both a 

metabotropic and ionotropic receptors (Kim et al., 1994). At 1 min incubation, ATP 

(100 µM) caused an inhibition of 22% ± 6.3% (n = 6, P < 0.05; Figure 11a, left panel) 

on GAT-1 mediated transport. GAT-3 mediated transport was also reduced (% of 
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inhibition = 28% ± 5.3%, n = 5, P < 0.05; Figure 11a, right panel) under similar 

experimental conditions (100 μM of ATP for 1 minute). The effect of ATP after 5 min 

incubation was not significantly different from that observed after 1 min incubation 

time (Figure 11a), thus, in the remaining experiments, a 1 min incubation time period 

with 100 µM was used. To ascertain whether extracellular ADO endogenously 

released by astrocytes could influence the [3H]GABA uptake modulation by ATP, 

astrocytes were incubated for 15 min with adenosine deaminase (1 U/mL), an 

enzyme that catabolises adenosine into inosine. [3H]GABA was then added after the 

ATP incubation, and its uptake was compared with the uptake by astrocytes 

Figure 11 – Influence of ATP on GAT-1 and GAT-3 mediated transport on cortical astrocytes. (a) 

Concentration-dependent of ATP at two different incubation time: 1 min (white bars) and 5 min (black bars) on 
[
3
H]GABA uptake mediated by GAT-1 (left panel) and GAT-3 (right panel). The ordinates represent [

3
H]GABA 

uptake as percentage of the control  value in the same experiments, which was taken as 100%. Data are 
expressed as Mean ± S.E.M.; *, P < 0.05, assessed by one-way ANOVA followed by Bonferroni correction. (b) 
Exogenous application of ATP (100µM) for 1 minute inhibited GABA Transporter 1 (white bars) and GABA 
Transporter 3 (black bars), even in the presence of adenosine deaminase, ADA (1U/ml), which was added 30 
minutes before the addition of ATP. Data are expressed as in (a), **, P < 0.01, assessed by the Student’s t-test 
(c) Summary plot of the influence of incubation with ADA, which inhibits the accumulation of extracellular 
adenosine, on the [Ca

2+
]i response to ATP in astrocytes (on the [Ca

2+
]i  maps, stimulation point is represented by 

an arrowhead). After establishing two stables responses to the agonists, ATP (S1 and S2), an ADA-containing 
solution was superfused 30 min before and during the third agonist application (S3), followed by washout for 
another 30 min (S4) Effects are shown as the response (%) during S3 - agonist-induced response signal upon 
drug incubation vs. S2 - the control signal (ATP stimulation in a drug-free medium - c). Mean ± S.E.M. of 67 

responsive cells from 2 independent cultures; ***, P < 0.001; ns, not significant, assessed by the Student’s t-test.. 
The results represent only responsive cells. 
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incubated in the absence of ATP and in the presence of ADA. The incubation with 

ADA had no effect on ATP-induced modulation of GAT-1 and GAT-3 (n = 5, P < 0.01; 

Figure 11b) nor the Ca2+-response induced by ATP (n = 67 responsive cells from 2 

independent cultures, P < 0.001; Figure 11c). This data indicates that the effect on 

GABA transport is due to ATP itself, rather than the action of ADO, since ADO 

mediated effects were abolished by incubation with ADA. 

According to the data in Intracellular Ca2+ measurements, the P2Y1 receptor is 

probably the major contributor for the fast increases in Ca2+ in mature astrocytes. 

Therefore, the P2Y1 receptor involvement on this modulation of [3H]GABA uptake in 

astrocyte-enriched primary cortical culture was examined through the application of 

its agonist (2-MeSADP) and P2 (PPADS) and P2Y1 (MRS2179) antagonists. First, 

three different 2-MeSADP concentrations (1-100 µM) were tested (Figure 12a). GAT-

1 mediated transport was significantly decreased when astrocytes were incubated 

with 10 μM 2-MeSADP (% of inhibition = 21% ± 8.9%, n = 5, P < 0.05). A similar 

result was obtained with a 100 μM concentration (% of inhibition = 23% ± 10%, n = 5, 

P < 0.01). 2-MeSADP only induced a significant inhibition of GAT-3 mediated 

transport at the highest concentration tested (100 µM), inhibiting the transport by 

33% ± 7% (n = 5, P < 0.05). Incubations with 1 min of 2-MeSADP reveal a similar 

dynamics of the Ca2+-response comparing to the 0.3 s stimulation, in Ca2+-imaging 

experiments (Appendix III). 

The inhibitory effects of 2-MeSADP (100 μM) on GAT-1 and GAT-3 were lost 

when astrocytes were previously incubated with P2 and P2Y1 antagonists (Figure 

12b and 12c), PPADS (30 μM; GAT-1: n = 5, P < 0.001; GAT-3: n = 6, P < 0.01) and 

MRS2179 (30 μM; GAT-1: n = 5, P < 0.05; GAT-3: n = 6, P < 0.01). The results 
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indicate that in these conditions, GABA transport is inhibited by the activation of P2Y1 

receptor.  

 

 

 

 

 

 

 

 

 

 

 

 

P2Y1 receptor modulates GATs activity, so it was hypothesized that this action 

could be related to the main physiological actions evoked by this receptor, the [Ca2+]i 

response. To test this hypothesis, astrocytes were preloaded with BAPTA-AM (20 

μM, for 30 min) to chelate intracellular calcium, as expected 2-MeSADP did not lead 

to significant increase in [Ca2+]i (n = 174 responsive cells from 3 independent 

cultures, P < 0.001; Figure 13a). As shown in figure 13b, the preincubation of 

Figure 12 – Influence of P2Y1 on GAT-1 and GAT-3 mediated transport on cortical astrocytes. (a) 

Concentration-dependent effect of 2-MeSADP (1-100 µM) on [
3
H]GABA uptake mediated by GAT-1 (white bars) 

and GAT-3 (dark bars), after 1 min incubation. Application for 1 minute of 2-MeSADP (100µM), causes an 
inhibition of GABA Transporter 1 (b) and GABA Transporter 3 (c), and this effect is inhibited when astrocytes 
where preincuabated with P2 non selective (PPADS) and P2Y1 (MRS2179) antagonists for 15 min. The ordinates 
represent [

3
H]GABA uptake as percentage of the control value in the same experiments, which was taken as 

100%. Data are based on 1-min uptake and are expressed as Mean ± S.E.M.; *, P < 0.05; **, P < 0.01; assessed 
by one-way ANOVA followed by Bonferroni correction. 
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BAPTA-AM greatly attenuated the inhibitory action of 2-MeSADP on GAT-1 (% 

GABA uptake = 95% ± 7.9%; n = 4, P < 0.05; Figure 13b, left panel - white bars) and 

on GAT-3 (% GABA uptake = 94% ± 9.6%; n = 4, P < 0.05; Figure 13b, left panel – 

black bars). After depleting the Ca2+ stores through incubation with CPA (10 μM, for 

15 min), the effect of 2-MeSADP on [3H]GABA uptake, in both GAT-1 and GAT-3, 

was also lost (n = 5, P < 0.05; Figure 13b, right panel). 

 

Figure 13 – Influence of Ca
2+

 on GAT-1 and GAT-3 mediated transport modulation induced by 2-MeSADP 
on cortical astrocytes. (a) Time course changes in the [Ca

2+
]i in response to the 0.3 s stimulation of 100 µM 2-

MeSADP in astrocytes control cells (left) and in cells preloaded for 30 min with 20 μM BAPTA-AM (right). 

Extracellular solution contained 2 mM CaCl2. This one experiment is representative of the 3 experiments done. 
(b) Exogenous application for 1 minute of 2-MeSADP (100µM), does not inhibited the GAT-1 (white bars) and 
GAT-3 (black bars) transport activity in BAPTA-AM-loaded cells (20 µM for 30 min; left) and after depletion of 
intracellular Ca

2+
 stores with CPA (10 μM for 15 min; right), c represents the effect of 2-MeSADP in the absence 

of BAPTA-AM or CPA. The ordinates represent [
3
H]GABA uptake as percentage of the control value in the same 

experiments, which was taken as 100%. Data are expressed as Mean ± S.E.M.; *, P < 0.05; assessed by the 
Student’s t-test. 
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Activation of P2Y receptors induces activation of different transduction signal 

cascades, namely PLC/IP3/DAG/Ca2+-release/PKC pathway (Abbracchio et al., 

2006). Therefore, the requirement of PLCγ and PKC on the inhibition of GAT-1/3 

mediated transport induced by 2-MeSADP was evaluated. As shown in figure 14a, 

the stimulation of [Ca2+]i increases induced by 2-MeSADP was almost completely 

prevented by pretreatment of 20 min with a supramaximal concentration (3 μM) of 

U73122, the membrane-permeable inhibitor of PLC (inhibition of 92% ± 1.6%; n = 

116 responsive cells from 3 independent cultures, P < 0.001; Figure 14a).  

By itself, U73122 slightly inhibited [3H]GABA uptake, although not significantly 

different from that observed in the control condition (% of GABA uptake upon U73122 

incubation for GAT-1 = 83% ± 14%, n = 3; % of GABA uptake upon U73122 

incubation for GAT-3 = 82% ± 11%, n = 4; Figure 14b). The inhibitory action of 2-

MeSADP on GAT-1- and GAT-3-mediated transport was fully prevented by U73211 

(Figure 14b). The GAT-1 and GAT-3 transport after 1 min exposure to 100 μM 2-

MeSADP was respectively 61% ± 3% (n = 11) and 66% ± 5.2% (n = 14) of the value 

in the control condition (without 2-MeSADP or U73122). In the presence of U73122, 

and after adding 2-MeSADP, GAT-1 and GAT-3 transport was respectively 88% ± 

8% (n = 3, P < 0.01) and 103% ± 7.7% (n =4, P < 0.01) of the value in the control 

condition (without 2-MeSADP or U73122). The GAT-1 and GAT-3 mediated transport 

when preincubated with U73122 alone did not differ significantly from [3H]GABA 

uptake induced by 2-MeSADP after preincubation with U73122 (GAT-1: n =3; GAT-3: 

n = 4; Figure 14b).   
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The influence of PKC upon GABA uptake (Figure 15) was investigated by using its 

general inhibitor, GF109203X (1 μM for 20 min). The results in figure 15b show that 

in the presence of GF109203X alone, GAT-1 mediated transport increased up to 

127% ± 10.8% (n = 5, P < 0.05) and GAT-3 mediated transport increased up to 157% 

± 18%, n = 6, P < 0.05) in comparison with the control condition (without 

GF109203X); however, the PKC inhibition did not prevent the 2-MeSADP-induced 

decrease in GAT-1 (n = 5; P < 0.05; Figure 15a, white bars) and GAT-3 (n = 6, P < 

0.05; Figure 15a, black bars).  

Figure 14 – P2Y1 modulates GABA uptake in cortical astrocytes, through a PLC-dependent mechanism.  

(a) Summary plot of the influence of U73122 (3 μM) incubation on the [Ca
2+

]i response to 2-MeSADP (100 μM). 
After establishing two stables responses to the agonist, 2-MeSADP (S1 and S2), a U73122 solution was 
superfused 20 min before and during the third agonist application (S3), followed by washout for another 20 min 
(S4) Effects are shown as the response (%) during S3 - agonist-induced response signal upon U73122 incubation 
vs. S2 - the control signal (2-MeSADP stimulation - c ). Mean ± S.E.M. of 116 responsive cells from 3 
independent cultures, ***, P < 0.001; significant differences between S3 vs. S2, assessed by the Student’s t-test. 
The results represent only responsive cells. (b) Application for 1 minute of 2-MeSADP (100µM), does not 
inhibited the GAT-1 (white bars) and GAT-3 (black bars) transport activity in U73122-loaded cells. The ordinates 
represent [

3
H]GABA uptake as percentage of the control value in the same experiments, which was taken as 

100%. Data are expressed as Mean ± S.E.M.; **, P < 0.01; assessed by the Student’s t-test. 
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Figure 15 – P2Y1 modulates GABA uptake in cortical astrocytes, through a PKC-independent mechanism.  

(a) Consequence of manipulating PKC activity upon GAT-1 (white bars) and GAT-3 (black bars) mediated GABA 
transport. Inhibiting PKC activity, by GF109203X (1 μM), enhanced the baseline uptake. Application for 1 minute 
of 2-MeSADP (100 µM), still inhibited the GAT-1 (white bars) and GAT-3 (black bars) transport activity in 
GF109203X-loaded cells. The ordinates represent [

3
H]GABA uptake as percentage of the control value in the 

same experiments, which was taken as 100%. Data are expressed as Mean ± S.E.M., *, P < 0.05, **, P < 0.01, 
ns, not significant, assessed by the Student’s t-test. (b) Summary plot of the influence of GF109203X (1 μM) 
incubation on the [Ca

2+
]i response to 2-MeSADP (100 μM). After establishing two stables responses to the 

agonist, 2-MeSADP (S1 and S2), a GF109203X solution was superfused 20 min before and during the third 
agonist application (S3), followed by washout for  30 min (S4) Effects are shown as the response (%) during S3 - 
agonist-induced response signal upon GF109203X incubation vs. S2 - the control signal (2-MeSADP stimulation - 
c). Mean ± S.E.M. of 150 responsive cells from 4 independent cultures, ***, P < 0.001; significant differences 

between S3 vs. S2, assessed by the Student’s t-test. The results represent only responsive cells.  

In addition, it was observed that pretreatment with GF109203X enhanced the 

transient Ca2+-signal induced by 2-MeSADP, with a 1.2 fold increase of the response 

to 2-MeSADP after preincubation with the PKC inhibitor (n = 150 responsive cells 

from 4 independent cultures, P < 0.01 Figure 15b).  
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5| Discussion 

The present study revealed that, as described in immature astrocytes (Fumagalli 

et al., 2003; Fischer et al., 2009), a brief activation of P2Y1 receptors on mature 

astrocytes also generates transient Ca2+ elevations. Furthermore, it is shown, for the 

first time that the activation of P2Y1 receptors leads, to an inhibition of GAT-1 and 

GAT-3 activity in mature astrocytes. The pharmacological profile of the receptors 

resembles the ADP-preferring receptor P2Y1 phenotype (Abbracchio et al., 2006; von 

Kügelgen 2006), since a subtype-specific antagonist and a general P2 receptor 

antagonist prevented the transporter modulations. The expression studies data 

reported here also demonstrates the presence of the P2Y1 receptor as well as the 

GATs (GAT-1 and GAT-3), in agreement with previous studies (Minelli et al., 1995; 

Minelli et al., 1996; Burnstock 2007a). The P2Y1 receptor exerts its biological effects 

through the activation of downstream signalling pathways, such as the 

PLC/DAG/InsP3/Ca2+ mobilization/PKC, and it seems that the PLCβ signalling is 

involved in the inhibition of the GABA transport mediated by P2Y1 both on GAT-1 and 

GAT-3. However, the modulation of both GATs induced by P2Y1 activation does not 

depend on PKC activity.    

The conclusion that P2Y1 receptor is involved in Ca2+ increases in mature 

astrocytes (21-25 DIC) derives from 5 pieces of evidence:  

(i) A brief application of the P2 agonists (e.g. ATP and 2-MeSADP) induces a 

spatial Ca2+ spike that rapidly returns to baseline levels. The Ca2+ response induced 

by ATP is mainly dependent on the intracellular Ca2+ stores, and only partially on the 

extracellular Ca2+, and the same dependence is observed in the response mediated 

by 2-MeSADP. When the extracellular [Ca2+] was reduced (from 2 mM to 0.5 mM), 
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the response dynamics seen is the same as when P2 agonists were applied in 

normal medium. These properties of the Ca2+ increases are characteristic of a 

metabotropic response mediated by P2Y receptors (Kim et al., 1994);  

(ii) ATP, ADP and 2-MeSADP are P2Y1 receptor agonists (Table 1). 2-MeSADP 

has a higher affinity than ADP (Waldo & Harden 2004) and ATP is a partial agonist 

with a reduced intrinsic activity when compared with that of ADP, and its actions in 

native P2Y1 receptors in tissues are likely to be due to ADP formation from ATP by 

the action of ectoenzymes (Zimmermann 2000). 2-MeSADP is not selective for rat 

P2Y1 receptors and can bind to other P2Y receptors (Table 1), in particular P2Y12 

(Hollopeter et al., 2001; Simon et al., 2002) but also to the P2Y13 receptor (Fumagalli 

et al., 2004). The P2Y13 receptor in rat, in contrast with P2Y1 and P2Y12, displays a 

higher relative potency for ADP than for 2-MeSADP (Fumagalli et al., 2004). 

Consequently, the possibility of other P2Y receptors contributing to the Ca2+-increaes 

cannot be entirely ruled out;  

(iii) The selective P2Y1 antagonist MRS 2179 (Boyer et al., 1998) antagonized the 

response to ATP and to a larger extent than the one induced by 2-MeSADP. 

MRS2179 does not inhibit P2Y subtypes other than the P2Y1 receptor at the 

concentration used (von Kügelgen 2006), although it can have some antagonistic 

activity at the P2X1 receptor, but is 11-fold more selective for P2Y1 receptors vs. 

P2X1 (Brown et al., 2000); 

(iv) PPADS (30 μM) antagonizes the response of both ATP and 2-MeSADP. This 

drug antagonizes both P2X and P2Y receptors, being more efficient at the P2Y1 

receptor subtype than at the P2Y12/13 receptor (Nicholas 2001; Marteau et al., 2003); 
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(v) P2Y1 is expressed in these cells. In Western blot studies, a multiline pattern (37 

and approximately 90 kDa) was detected by an antibody against P2Y1 receptor; 

which agrees with the data obtained by Quintas et al. (2011) in 30 DIC astrocytes 

using the same primary antibody. The P2Y1 receptor has a predicted molecular mass 

(expected from datasheet) of 66 kDa, so the 37 kDa band obtained here could 

represent deglycosylated form of the receptor (Yoshioka 2001). The band with a 

higher molecular weight may result from P2Y1 receptor oligomerisation (Tonazzini et 

al., 2008) or be due to a high temperature protein denaturation (Waldo & Harden 

2004). 

After establishing the nature of the P2Y receptors responsible for Ca2+-signalling in 

mature astrocytes, I focused on the major objective of the work and found that a brief 

(1 min) application of P2 receptors agonists (ATP and 2-MeSADP) in enriched 

mature-astroglial primary cultures led to the inhibition of activity in GABA transporter, 

the effect being shown either into GAT-1 and GAT-3 activity. ATP released has a 

short (< 200 ms) in situ half-life in the hippocampus (Dunwiddie et al., 1997; Cunha et 

al., 1998) due to its rapid enzymatic degradation to ADP and ADO, although in the 

cerebral cortex its action is more prolonged (Cunha et al., 1994). ADO modulates 

both pre- and postsynaptic components and also has nonsynaptic actions in the 

nervous system, mainly through activation of the A1 and A2A high affinity receptors 

(Sebastião & Ribeiro 2009). The extracellular accumulation of this important 

neuromodulator occurs as a breakdown product of ATP metabolism and also by its 

release from neurons and glial cells (Sebastião & Ribeiro 2000). Previous studies 

from our group reported that ADO, at a low concentrations, reduces [3H]GABA 

uptake by acting on A1 receptors (Cristóvão-Ferreira et al., 2011). Very low ADO 
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levels are detected over a long period of incubation with ATP in cortical astrocytes 

(Lai & Wong 1991; Wink et al., 2003), which could be explained in situ by the 

presence of a feed forward inhibition mechanism of ecto-5’-nucleotidase 

(Zimmermann 1996). In the assays reported here, it seems that the inhibitory action 

of extracellular ATP in the GATs activity, during a 1 min treatment,  does not depend 

on its hydrolysis into adenosine, since: (i) removal of extracellular ADO (i.e. in the 

presence of ADA) does not affect the inhibition of [3H]GABA uptake induced by one 

minute incubation with 100 μM ATP, (ii) the ADP analogue, 2-MeSADP, caused a 

slightly higher inhibition of the GABA transport than the one induced by ATP, which 

also suggests that their effects are not mediated by extracellular catabolism into 

ADO, and (iii) the inhibitory action of 100 μM ATP is slightly lower after an incubation 

for 5 min in comparison with an incubation of only 1 min.  

An alternative approach to assess the possible involvement of adenosine in the 

inhibitory effect of [3H] GABA uptake mediated by ATP would be the inhibition of the 

activity of the ecto-enzyme NTPDase 2. This ecto-enzyme is widely expressed in rat 

cortical astrocytes in culture (Wink et al., 2006). However, the sole commercial 

available inhibitor of ecto-ATPases, 6-N,N-Diethyl-D-b-g-dibromomethylene 

adenosine triphosphate (ARL 67156), only inhibits effectively the action of the human 

NTPDase2 (Iqbal et al., 2005; Lévesque et al., 2007). On the other hand, the 

influences of ATP on GAT activity, even in the presence of ADA, do not definitively 

exclude the involvement of A1 receptors on the modulation of GABA uptake, because 

no assay was performed when the A1 receptor was blocked with DPCPX. This 

procedure was not adopted due to the possible formation of A1-P2Y1 receptor 

heteromers. Due to the formation of these heteromers, A1 receptor signalling 
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pathway could be impaired upon incubation with 2-MeSADP, the P2Y1 receptor 

agonist (Tonazzini et al., 2008).  

The pharmacological characterization of the effects observed in GAT activity 

strongly suggests that the observed inhibition on GABA uptake into astrocytes is 

mediated by the ADP-preferring receptors P2Y1. P2Y1 receptors are involved in this 

effect since a subtype-specific P2Y1 receptor antagonists and a general P2 receptor 

antagonists completely inhibit the modulation of the transporter induced by 2-

MeSADP. The influence of nucleotide metabolism in the effect of 2-MeSADP also 

has to be considered due to the metabolic instability of the 2-MeSADP (Alvarado-

Castillo et al., 2005). In tested conditions (1 min incubation of 100 µM 2-MeSADP) 

the formation of metabolites are probably negligible, taking into account the work of 

Quintas et al. (2011) in mature astrocytes. Thus, after 1 hour of incubation of mature 

astrocytes with 100 µM 2-MeSADP, there is an accumulation of approximately 30 μM 

2-MeSAMP, and in the case of 2-MeSADO (which activates ADO A3 receptor) the 

accumulation of this metabolite can even be neglected even after 3 hours of 2-

MeSADP incubation (Quintas et al., 2011). An increase in the [3H]GABA uptake was 

observed upon pretreatment of astrocytes with PPADS (P2 receptor antagonist) and  

MRS2179 (P2Y1 receptor antagonist), suggesting that GAT activity could be under 

tonic modulation by endogenous adenine nucleotides, such as it has been observed 

in glycine transporters (Jiménez et al., 2011). 

 In the CNS, GABA release is under the modulation of P2Y (Illes & Ribeiro, 2004), 

either enhancing it via the P2Y1 receptor (Saitow et al., 2005) or inhibiting the release 

through the P2Y4 receptor activation (Donato et al., 2008). In glial cells, the activation 

of P2X receptors (e.g. P2X1 and P2X2/P2X3 heteromer) modulates the extracellular 
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GABA levels, probably through a reduction in the efficacy of the uptake process 

(Neal et al., 1998). Wang et al. (2002) also reported an enhancement of GABA 

release mediated by the activation of P2X7 in astrocytes, although this process 

occurs through a mechanism independent from GABA transporter activity. Outside 

the CNS, the renal betaine/GABA transporter (BGT1) activity is inhibited by both P2 

receptors (via uracil nucleotide-preferring receptors, P2Y2,4) or by ADO, through A1 

receptors (Kempson et al., 2008). This redundant function of P2 receptors may be 

associated to the existence of a dual role for each P2 subtype, depending on the 

conditions of ATP exposure (James & Butt 2002). A transient exposure to micromolar 

levels of ATP activates purinoceptors of high-affinity (P2Y and the rapidly 

desensitising P2X receptors, such as P2X1), causing an increase in glial [Ca2+]i that 

is linked to the release of gliotransmitters (e.g. ATP and glutamate; Volterra & 

Meldolesi, 2005). Consequently, ATP will accumulate in the extracellular space, 

reaching higher concentrations (in the millimolar range), which are sufficient to 

activate P2Y receptors and also low-affinity P2X7 receptors (James & Butt 2002). The 

neurochemical studies reported here are broadly consistent with the findings of a 

GATs modulation due to an activation of P2 receptors, namely the P2Y1 receptor 

subtype. 

In astrocytes, increases in extracellular GABA may be caused either by a 

functional inhibition of the transporter by a wide variety of signalling cascades 

(Gadea & López-Colomé 2001), a Ca2+-independent reversal of the carrier-mediated 

transport system at the level of the plasma membrane (Levi & Gallo 1995) or by a 

Ca2+-independent reversal of GATs triggered by glutamate uptake (Héja et al., 2009). 

As reported here, the stimulation of P2Y1 purinoceptors in rat astrocytes causes a 
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propagation of Ca2+ increases, mainly dependent on the Ca2+ ions liberated from 

internal stores. Therefore, experiments were designed to emphasize the importance 

of intracellular Ca2+ and its signalling system via the PLC/InsP3 pathway on the 

regulation of GABA transporter activity by the 2-MeSADP. When Ca2+ mobilization 

was blocked using BAPTA-AM or CPA during the acute incubation with 2-MeSADP, 

the P2Y1,12,13 agonist no longer induces an inhibition on [3H]GABA uptake. Although 

incubation of BAPTA-AM and CPA modulate the [Ca2+]i, these compounds by itself 

did not affect [3H]GABA uptake, suggesting that the 2-MeSADP-induced inhibition of 

uptake is not a direct effect of [Ca2+]i increase and actually a modulation of uptake by 

down-stream Ca2+-dependent pathways. More direct evidence for the existence of a 

functional link between 2-MeSADP-induced raise in [Ca2+]i and inhibition of [3H]GABA 

uptake is provided by the results showing that the inhibitory actions of 2-MeSADP on 

GAT-1 and GAT-3 transport are blocked by U73122 (PLC inhibitor), suggesting a role 

for PLC and, accordingly, for InsP3 on this process. A complementary approach could 

be made using U73343, an inactive analogue of U73122 (Bleasdale et al., 1990). It 

would be expected that the incubation with this compound does not affect the 

inhibitory modulation of GATs activity induced by 2-MeSADP. Therefore, this release 

of intracellular Ca2+ can provide a plausible explanation for the findings that show that 

the activation of the P2Y1 receptor reduces GABA transporter activity. A regulatory 

Ca2+-dependent mechanism had already been reported to act on neurotransmitter 

transporters (Parpura et al., 1995; Nishio et al., 1995), and to couple to some 

pathways (Figure 16), like PLA2 (Chéramy et al., 1996; Duarte et al., 1996; Cunha & 

Ribeiro 1999) or CaM (Llinás et al., 1985; Sitges et al., 1995; Gonçalves et al., 1997; 

Gadea et al., 2002). These pathways are also induced upon P2Y receptor activation 
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Figure 16 – Possible models of GABA transport modulation on astrocytes. (a)  When the membrane 

phospholipids are acted upon phospholipase A2 (PLA2), arachidonic acid (AA) is formed. AA can modulate 
GABA transporter (GAT) activity through a direct interaction with the transporter or through changes in 
membrane fluidity. (b) In the absence of phosphorylation, syntaxin 1A can bind to many partners, including the 
GAT. Phosphorylation by Ca

2+
/calmodulin kinase II (CaMKII) strengthens the GAT/syntaxin 1A interaction, 

resulting, inhibiting GAT function. For more details see text.    

in astrocytes (Bronstein et al., 1988; Bruner & Murphy 1990; Erb et al., 2006; Figure 

1).  

The PLA2 reaction is the primary pathway through which AA is cleaved from the 

sn-2 position of membrane phospholipids (Balsinde et al., 1999). AA formation will 

stimulate the activation of some specific PKC isoforms (Murakami & Routtenberg 

1985; Shinomura et al., 1991; Hardy et al., 1994), and also leads to an increase in 

extracellular GABA levels in a PKC-dependent way (Chéramy et al., 1996) but also 

independently of the activation of this intercellular modulator (Breukel et al., 1997). 

However, in the former case, the observed effects are largely due to a marked 

facilitation of the release process rather than to uptake inhibition (Chéramy et al., 

1996).  

 

 

 

The possibility that PKC could mediate the [3H]GABA uptake inhibition is very 

strong, since the PLC-PKC pathway is one of the main pathways elicited after P2Y1 
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activation (Abbracchio & Burnstock 1994), and this pathway is also involved in the 

transporter activity modulation in astrocytes (Gomeza et al., 1991). Considering the 

results reported here, it seems that PKC activation is not essential to the inhibition of 

the high-affinity transport system for GABA exerted by 2-MeSADP in glial cells, 

because the 2-MeSADP effect was insensitive to the PKC inhibitor, GF109203X. This 

result can be explained by the role of PKC in the astrocytic Ca2+ increases, as PKC is 

essential in the negative regulation of P2Y1 receptors, fundamental after high 

frequency stimulation (Fam et al., 2003; Hardy et al., 2005; Weng et al., 2008). The 

negative regulation was confirmed, in the conditions studied, as a pretreatment with 

GF109203X greatly increased the 2-MeSADP-induced Ca2+ mobilization and induced 

a higher relative percentage of inhibition of [3H]GABA uptake in comparison to when 

2-MeSADP was incubated alone. GF109203X increases [3H]GABA uptake, because 

endogenous PKC activity can, by itself, tonically inhibit GATs activity (Cristóvão-

Ferreira et al., 2009). To complete these observations, it would be important to 

perform assays where astrocytes were incubated with a known PKC activator, in 

order to evaluate if the effect of 2-MeSADP on transporter activity was lost in the 

presence of the PKC activator. An activation of PKC is associated with a decrease in 

surface expression of GATs (Corey et al., 1994) and the inhibition of the [Ca2+]i 

increases in astrocytes (Weng et al., 2008).  

As reported herein, Ca2+ seems to play a pivotal role in modulating [3H]GABA 

uptake. The modulation of the GABA transport independently of PKC that was 

identified in this work, suggests that GABA transporter modulation can be due to an 

alteration on the binding affinity of the substrate or other associate proteins, rather 

than, for example, being regulated by the transporter trafficking as an acute response 
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to PKC activation (Chen et al., 2004). Hence, a mechanism that might explain a 

PKC-independent modulation of GAT is through an action of AA (Breukel et al., 

1997) directly interfering with the transporter molecule or be due to secondary 

changes in the membrane fluidity (Chan et al., 1983; Barbour et al., 1989; Volterra et 

al., 1992; Trotti et al., 1995). 

 Another Ca2+-linked mechanism for regulating GABA transporter activity is due to 

the Ca2+/calmodulin complex. In synaptossomes, GABA uptake was already shown 

to be greatly reduced by Ca2+ in a concentration-dependent manner, in which, at 

least in the micromolar range of concentration of Ca2+ (1-10 μM), it appears to 

involve the Ca2+/calmodulin-stimulated phosphatase 2B, calcineurin (Gonçalves et 

al., 1997; Gonçalves et al., 1999). In the present work, it was observed that Ca2+ 

elevations induced by 2-MeSADP, on average, evoke an increase of 1 to 2 μM in 

[Ca2+]i, at which concentrations GABA uptake is still significantly inhibited in 

synaptossomes (Gonçalves et al., 1997) and in which the calcineurin can be 

activated (Ingebritsen et al., 1983; Wera & Hemmings 1995). CaM-dependent protein 

kinase II (CaMKII) was also reported to participate in the modulation of glycine 

transport in Müller glia cells, and the effect of CaMKII was mimicked by a transient 

Ca2+ increase (Gadea et al., 2002). In agreement with the results of Gonçalves et al. 

(1997), the former study also reported that trifluoperazine (a calmodulin inhibitor) 

does not alter the normal GABA uptake process (Gadea et al., 2002). However, this 

drug is also known to inhibit PKC activity (Le Peuch et al., 1983), thus an effect of 

CamKII on GAT activity independently of PKC could not be excluded in the work of 

Gonçalves et al. (1997), so a modulation of the transporter activity through an action 

of CaMKII appears to be a better candidate. 
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Ca2+/calmodulin complex modulates the activity of several target molecules, such 

as CaMK, protein phosphatases, adenylyl cyclases, phosphodiestereases (Van Eldik 

et al., 1982), and nitric oxide synthase (Stuehr 1999), and it can also interact with 

transporter proteins (Jayanthi et al., 1994; Jayanthi et al., 2000; Fog et al., 2006) or 

syntaxins (Ohyama et al., 2002), through CaMKII. Among these molecules, syntaxin 

1A has a very important action on endogenous regulation of transport function, and it 

has been reported to be expressed in astrocytes (Parpura et al., 1995; Jeftinija et al., 

1997). This molecule is a nervous system-specific plasma membrane protein which 

is better known as a regulator of vesicle fusion and trafficking and vesicle docking of 

synaptic vesicles (Rothman 1996). Syntaxin 1A is also capable of regulating GABA 

transporters, both functionally and physically (Quick et al., 1997; Beckman et al., 

1998) and acts as a positive regulator of GAT-1 surface expression (Deken et al., 

2000; Horton & Quick 2001). Mechanisms of the effects of syntaxin 1A include not 

only changes in transporter trafficking but also alterations in the rate of transport. The 

NH2 tail of GAT-1 can bind to the H3 domain of syntaxin 1A, and this interaction limits 

the tail participation in substrate translocation, causing a decrease in substrate 

transport (Deken et al., 2000). Thus, a good hypothesis to explain a PKC 

independent regulatory mechanism would be through a regulation of the interaction 

between GABA transporters and syntaxin 1A due to CaMKII activation. A similar 

modulation was already observed in other transporters, such as in the dopamine 

(Fog et al., 2006) and serotonin transporter (Ciccone et al., 2008), both of them 

belong to the sodium- and chloride-dependent neurotransmitter transporter family 

SLC6, like GATs. The effects of CaMKII can be related to a change in the binding 
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between the transporter and syntaxin 1A (Ciccone et al., 2008), or even directly in 

the syntaxin 1A protein (Ohyama et al., 2002; Ciccone et al., 2008). 

The inhibition of the GABA transport reported in this work could be in agreement 

with the fact that ATP released during high neuronal activity can act through P2 

receptors exerting a neuroprotective mechanism, namely through increased 

extracellular GABA levels. From all P2Y receptors described, only the ones that are 

known to be couple to Gq/G11 proteins (P2Y1-6) have been implicated in CNS 

disorders (Burnstock 2008), pointing towards the importance of the calcium signalling 

in astrocytes. P2Y1 receptors are implicated in epileptogenesis in a Ca2+-dependent 

manner (Kumaria et al., 2008), and their inhibition and, consequently, the inhibition of 

Ca2+ increases evoked by the activation of this receptors, was suggested as an 

important therapeutic strategy for epilepsy (Burnstock 2008). Interestingly, however, 

an acute administration of the P2Y1 receptor agonist (ADPβS) induces an anxiolytic-

like behavioural profile in rats, and this effect is antagonized PPADS and MRS2179 

(Kittner et al., 2003), suggesting that the anxiolytic-like effect of ADPβS is mediated 

through the PLC pathway and nitric oxide formation (Kittner et al., 2003), which is 

known to reduce GABA uptake in hippocampal synaptossomes (Cupello et al., 1997). 

Although, 2-MeSADP is not so metabolically stable as ADPβS, the latter agonist is 

only effective in the endogenously expressed P2Y1,12 receptor of humans and P2Y13 

in both humans and mouse (von Kügelgen 2006). Then, data reported in this work 

could provide a direct evidence for this action, in which a purinergic effect dependent 

on PLC activity modulates the activity of GABA transporters. Meanwhile, the 

importance of nitric oxide on the modulation of GABA transporters was revealed to 

be related with its effect on the interaction between syntaxin 1A and GAT-1 (Fan et 
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al., 2006). In addition, an acute treatment (30 min) with the GAT inhibitor tiagabine 

(Borden 2006) also induces anxiolytic-like effects in rats (Schmitt et al., 2002), and 

the results were confirmed by in GAT1 knockout mice (Liu et al., 2007).  

Therefore, the present observed interaction between P2Y1 receptor-mediated 

signalling pathway and GAT activity might be of particular interest for further studies, 

including the design of new therapeutic strategies in the treatment of anxiety. 

  



Modulation of γ-aminobutyric acid (GABA) uptake by P2Y1 metabotropic purinergic receptor in rat cortical astrocytes 

 

70 
 

  



Modulation of γ-aminobutyric acid (GABA) uptake by P2Y1 metabotropic purinergic receptor in rat cortical astrocytes 

 

71 
 

6| Conclusions 

 

This aptitude of Ca2+ increases, mediated by the P2Y1 purinoceptor to regulate the 

GABA transport activity raises the question as to the physiological significance of this 

action. This regulation acquires even more relevance both due to the diverse 

functions of purines in the control of several behavioural pathways and to their role in 

the coordination of the long-distance glial signalling pathway (Ca2+ waves), since in 

addition to providing physiological modulatory actions, astrocytic function could be 

related to neurological disorders and psychiatric conditions.  

The data in this report fits the hypothesis advanced by Ciccone et al. (2008), 

according to which calcium-mediated signals act as a trigger for controlling 

neurotransmitter transporters. One of the calcium triggers involved in this action can 

be evoked by the P2Y1 receptors, as described in this report. The influence of Ca2+ 

on GABA transport activity can occur through a modulation of the interaction between 

syntaxin 1A and the transporter protein (Deken et al., 2000), thus keeping the 

transporter functionally silent, awaiting a cell signal “informing” that it is important to 

remove the neurotransmitter from the synaptic cleft.  

In conclusion, a brief activation of P2Y1 receptor in astrocytes triggers Ca2+ waves 

and inhibits GABA transport into astrocytes, suggesting that the two main astrocytic 

functions can be related; therefore, this could represent a feedback regulation 

mechanism through astrocytes, controlling the extracellular GABA levels.    
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8| Appendix I 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A-I – Effects of GABA Transporters inhibitors on the [Ca
2+

]i response to 2-MeSADP. Summary 

plot of the influence of SKF89976A (20 μM) and SNAP5114 (40 μM) on the [Ca
2+

]i response to 2-MeSADP 
(100 μM). 2-MeSADP was pressure-applied four times for 0.3 s each at intervals of 30 min. After establishing 
two stables responses to the agonists, 2-MeSADP (S1 and S2), an GAT inhibitor-containing solution (either 
SKF89976A or SNAP5114) was superfused 20 min before and during the third agonist application (S3), 
followed by washout for another 30 min (S4) Effects are shown as the response (%) during S3 - agonist-
induced response signal upon drug incubation vs. S2 - the control signal (2-MeSADP stimulation in a drug-free 
medium). Mean ± S.E.M. of 57-67 responsive cells from 1 culture; ns, not significant differences between S3 
vs. S2, assessed by the Student’s t-test. The results represent only responsive cells. 
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9| Appendix II 

 

 

 

 

 

 

 

  

  

Figure A-II – Quantification of GFAP-, CD11b and MAP2-positive cells in two different astrocytic culture 
conditions. Summary of percentage of cells showing GFAP-, CD11b and MAP2-positive cells, from cultures 

(25 DIC) without any treatment (besides normal medium change; white bars) and cultures (25 DIC) subjected to 
shake + ARA-C procedure (15 h orbital shaking + 8 µM of ARA-C for 2 days; black bars).  
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10| Appendix III 

 

 

  

Figure A-III – Effect of ATP and 2-MeSADP with two stimulations times (0.3 s and 60 s). (a) Left, 

representative change in [Ca
2+

]i signal illustrating the transient response upon a brief application (0.3 s) of ATP 

(100 μM) at time point 30 s (arrow) consisting of an initial [Ca
2+

]i peak followed by a fast decline. Right, 

representative change in [Ca
2+

]i signal illustrating the biphasic response upon prolonged application (60 s, 

horizontal bar) of ATP (100 μM) consisting of an initial [Ca
2+

]i peak followed by a lower but sustained [Ca
2+

]i 

plateau. (b) Left, representative change in [Ca
2+

]i signal illustrating the transient response upon a brief application 

(0.3 s) of 2-MeSADP (100 μM) at time point 30 s (arrow) consisting of an initial [Ca
2+

]i peak followed by a fast 

decline. Right, representative change in [Ca
2+

]i signal upon prolonged application (60 s, horizontal bar) of 2-

MeSADP (100 μM),    showing a response with a similar dynamics as the response upon 0.3 s stimulation. Mean 

± S.E.M. of 45 responsive cells from 1 culture. The results represent only responsive cells. 
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