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Resumo 

Os microRNAs (miRNAs) contribuem de uma forma abundante para a fracção de 

RNAs não-codificantes eucariotas. Estes estão envolvidos na regulação negativa pós-

transcricional da expressão genética através da ligação com a região 3'-UTR dos transcritos 

de mRNA nascente, conjuntamente com várias outras proteínas ajudantes. Em mamíferos, 

manifesta-se principalmente através da inibição da síntese proteica. Actualmente, sabe-se 

que estas moléculas de RNA são reguladores moleculares mestre envolvidos em processos 

celulares que englobam a diferenciação, transdução de sinal, divisão celular e cancro. 

A expressão dos microRNAs parece ter uma assinatura específica para cada um dos 

tecidos. Ainda não está claro quais são os principais factores que controlam esta 

especificidade, porém vários autores têm postulado a existência de circuitos de regulação 

entre os factores de transcrição que controlam a expressão de miRNA e a regulação 

exercida pelo miRNA sobre a expressão do factor de transcrição. 

Recentemente, as sequências de DNA de todos os promotores de miRNA humanos 

foram caracterizados por imunoprecipitação da cromatina por Marson et al [1]. Começamos 

com estes dados e a primeira coisa que se fez foi recolher todas estas sequências, usando 

a versão do UCSC Genome Browser indicada no estudo anterior e tendo em conta as 

posições nele indicadas para cada um dos 550 promotores. Para este efeito, foi necessário 

escrever um pequeno programa.  

O presente trabalho tem como objectivo principal realizar uma caracterização in silico 

de todos estes promotores, estudando os factores de transcrição que possivelmente 

controlam a expressão de miRNAs. Procurou-se factores de transcrição que regulassem a 

expressão de cada um destes miRNAs e que, simultaneamente, fossem proteínas 

codificadoras alvo desses mesmos miRNAs. 

O primeiro passo na análise dos circuitos de regulação entre os microRNA e os 

factores de transcrição foi a predição dos locais de ligação (TFBS) destes últimos para todas 

as sequências de promotores de miRNA obtidas. Ou seja, dadas as sequências de 

promotores de cada um dos miRNAs, era necessário saber quais os factores de transcrição 

que a elas se poderiam ligar e regular sua transcrição dos respectivos miRNAs. 

Actualmente, existem vários programas disponíveis. No entanto, apesar de todos os 

esforços, esses algoritmos às vezes produzem muitos falsos positivos ou falsos negativos. 

Assim, um dos maiores problemas ainda existentes é como encontrar o software apropriado. 

Consequentemente, os investigadores costumam usar vários dos programas existentes. Nós 
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usamos o TFSEARCH 1.3, MAPPER 2, Match 1,0, Patch 1.0, P-Match 1.0, PROMO 3.0.2 e 

o TFBind. 

A primeira diferença entre todos estes programas é a maneira como as sequências 

dos promotores lhes podem ser enviadas. O MAPPER 2, foi o único que foi capaz de 

processar um arquivo FASTA contendo todas as sequências de promotores. Para o 

TFSEARCH 1.3 foi possível descarregar o EZRetrieve. Esta é uma ferramenta gratuita que 

se baseia no TFSEARCH e também processou o arquivo FASTA completo. Para o TFBind 

concebemos uma ferramenta similar ao EZRetrieve. Este programa lê um arquivo FASTA e 

envia cada sequência à ferramenta TFBind que está disponível online. Em seguida, guarda 

os ficheiros HTML que podem ser obtidos quando se realizam as pesquisas online. 

Para todas as outras ferramentas, era necessário um registo prévio nos locais onde 

elas se encontram disponíveis e, como tal, é necessário fazer o login antes de começar a 

usar essas ferramentas. Por este motivo, não foi possível conceber qualquer ferramenta 

para realizar esta pesquisa automaticamente. A única solução foi dividir nosso arquivo 

FASTA em vários arquivos pequenos e submeter cada um deles a cada uma dessas 

ferramentas. 

Tendo esta quantidade enorme de dados proveniente dos sete programas, foi 

necessário, então, uniformizá-los e prepará-los para serem analisados, tendo sido 

necessário desenvolver diversos programas para o efeito. As principais questões surgidas 

durante este processo foram o facto de algumas das aplicações usadas não permitirem 

restringir os resultados a genes de Homo Sapiens e, para além disso, a identificação dos 

genes não ser feita de forma uniforma, em virtude de os mesmos terem diversas 

designações. 

Para o efeito, descarregamos todos os genes de Homo Sapiens existentes na base 

de dados GenBank do NCBI. Além dos símbolos oficiais de cada gene, esta base de dados 

também contém os seus sinónimos. Depois de comparar os nomes dos genes, foi possível 

identificar a maioria dos genes obtidos nas aplicações de TFBS. No entanto, muitos deles 

permanecem por classificar ou não são genes de Homo Sapiens. 

Hoje em dia, é evidente que os processos pós-transcricionais desempenham um 

papel muito mais importante na regulação da expressão génica do que o anteriormente 

esperado. Assim, um passo crucial para a análise de funções reguladoras dos miRNAs é a 

previsão de seus alvos. Actualmente, existem diversos programas e bases de dados 

disponíveis. Nós usamos o Diana micro-T, Miranda, miRWalk, miRTarBase e uma base de 

dados publicada em 2010 por Saito T e P Sætrom [44].  
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Por comparação com o processo de análise das bases de dados de TFBS, estas 

revelaram uma melhoria considerável na forma de identificação dos genes, pois algumas 

delas usam identificadores únicos, quer sejam do GenBank ou do sistema Ensemble. Dado 

que os dados dos genes extraídos do GenBank também incluem os identificadores 

Ensemble, esta questão da identificação dos genes nas bases de dados de targets não 

obrigou a tanto esforço e permitiu certamente resultados mais fiáveis.  

A principal questão surgida com a análise das bases de dados de targets foi o 

volume de dados das mesmas. Estas bases de dados contêm geralmente milhões de 

registos e, apesar de os formatos das mesmas serem de muito mais fácil tratamento, 

obrigam a que se desenvolvam ferramentas para a extracção dos dados pretendidos. Refira-

se que a maior destas bases de dados por nós usadas contém cerca de 20 milhões de 

registos. 

Depois de analisar todos os dados seleccionados, encontramos 38.773 loops, 

cobrindo 285 diferentes factores de transcrição e 417 miRNAs distintos. Estes loops 

envolvem factores de transcrição que regulam a expressão de um miRNA e que, 

simultaneamente, são proteínas codificadoras alvo desse mesmo miRNA. No entanto, cada 

loop é composto por um único factor de transcrição e um único miRNA. 

Uma vez que um único miRNA pode regular múltiplos genes e um único gene pode 

ser regulado por múltiplos miRNAs, é bastante natural pensar que miRNAs e factores de 

transcrição possam cooperar na regulação dos genes-alvo tanto a nível transcricional como 

a nível pós-transcricional. Na verdade, factores de transcrição e miRNAs funcionam juntos 

em redes reguladoras de genes que ainda não estão completamente identificadas nem 

compreendidas. Consequentemente, todos os loops identificados por este estudo devem ser 

vistos como componentes de módulos reguladores, em vez de loops isolados. Embora isto 

seja verdade, também podemos analisar individualmente cada um destes loops. 

Tendo em mente o facto de que esta é uma análise in silico, devemos estar cientes 

que a grande maioria de todos os loops detectados têm uma probabilidade muito baixa de 

serem loops reais. Portanto, futuras investigações devem começar pela definição de critérios 

de fiabilidade de todos os dados obtidos. Na verdade, todos estes dados exigem futuras 

investigações e necessitam de validações experimentais. 

Assim, este trabalho permitiu reunir e catalogar loops de regulação mistos entre 

factores de transcrição e miRNAs, em humanos, tendo sido todos os dados processados e 

armazenados numa base de dados relacional. Além disso, foi desenvolvida uma plataforma 

web de modo a permitir futuras investigações, pois apesar de ainda não compreendermos 
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perfeitamente o significado biológico destes circuitos, eles são provavelmente um importante 

mecanismo de regulação da expressão génica. Esta base de dados tem 36 tabelas e 

armazena mais de 2,5 milhões de registos. A interface web permite a procura de loops 

usando vários critérios de pesquisa e permite a análise de todos os detalhes de cada um 

dos loops, tais como os TFBS previstos, os targets, as pontuações associadas a cada 

previsão, etc. 

 

 

Palavras-Chave: microRNAs, Factores de Transcrição, Circuitos de Regulação, Bases de 
Dados de TFBS, Bases de Dados de Targets 

  



 
 

 

  



 
 

Abstract 

MicroRNAs (miRNAs) are an abundant class of eukaryotic non-coding RNAs. They 

are involved in the negative post-transcriptional regulation of gene expression. Their 

inhibitory action is exerted by binding to the 3’-UTR region of nascent mRNA transcripts 

together with several other helper proteins, and in mammals it is observed mainly as an 

inhibition of protein synthesis. These non-protein coding RNA molecules are master 

molecular regulators that have been found to be involved in cellular processes ranging from 

differentiation, cell division, signal transduction and cancer. 

MicroRNAs expression appears to have a tissue specific signature in which specific 

miRNAs are expressed preferentially in some tissues or organs. It remains unclear which are 

the main factors that control this tissue-specificity, however several authors have postulated 

the existence of a regulatory feedback loop between transcription factors controlling miRNA 

expression and the regulatory control exerted by miRNA over the transcription factor 

expression. 

Recently, the DNA sequences of all the human miRNA promoters have been 

characterized by chromatin-immunoprecipitation [1]. The present work has the main 

objective of performing an in silico characterization of all these promoters, studying the 

possible transcription factors controlling miRNA expression. We were looking for transcription 

factors regulating miRNA expression and being simultaneously the target protein-coding 

gene of that same miRNA. Despite the fact that we cannot yet understand the biological 

significance of these regulation loops, this must be an important mechanism of genes 

regulation. 

The purpose of this work was to assemble and characterize a catalogue of such 

mixed transcription factor/miRNA regulation loops in humans. All data was processed and 

stored in a relational database. Furthermore, a web platform was developed in order to 

enable further investigations. 

 

Keywords: microRNAs, Transcription Factors, Regulation Loops, TFBS Databases, Targets 

Databases 
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Background 
 

MicroRNAs (miRNAs) are small (≈22 nucleotides), non-protein coding RNA molecules 

known to regulate the expression of genes by binding to the 3’-untranslated regions (3’-UTR) 

of mRNAs. The first microRNA molecules, lin-4 and let-7, were identified in 1993 [2] and, 

since then, there has been a rapid progress in identifying more miRNAs and understanding 

their biogenesis, functionality and their target gene regulation. 

The majority of the miRNAs identified in the first 10 years were located in the 

noncoding regions between genes and transcribed by unidentified promoters. These miRNAs 

that are produced from their own genes are also known as intergenic miRNAs. In 2003, 

Ambros et al [3] also discovered some tiny noncoding RNAs derived from the intron regions 

of gene transcripts; these are intronic miRNAs, i.e., miRNAs produced from introns. A 

schematic description of miRNAs biogenesis is illustrated in Figure 1. 

Transcription factors (TFs) are proteins that either activate or repress genes 

transcription by binding to short cis-regulatory elements called transcription-factor binding 

sites. These binding sites are located in the upstream region of genes – the promoter region, 

which is located around the transcription start site (TSS). Post-transcriptionally, microRNAs 

repress mRNA translation by binding to partially complementary sites, called miRNA binding 

sites, in their target mRNAs. In animals, miRNA-mediated repression is often relatively weak, 

whereas transcription-factor-mediated repression can be much stronger [4]. 

Similarly to TFs, a single miRNA can regulate multiple genes, and a single gene can 

be regulated by multiple miRNAs. Thus, it seems quite natural to think that both miRNAs and 

TFs may cooperate in regulating the same target genes at the transcriptional and post-

transcriptional levels. However, the molecular mechanism and nature of this interaction has 

not yet been understood. 

TFs are essential for transcription by binding to transcription-factor binding sites. The 

resulting transcript is capped with a specially-modified nucleotide at the 5’ end, and 

polyadenylated with multiple adenosines - a poly(A) tail, at the 3’ end [5]. In the case of the 

miRNAs, this initial transcript, also known as primary miRNA (pri-miRNA), can be hundreds 

to thousands of nucleotides long and may contain several miRNA precursors. Each one is a 

hairpin loop structure composed by 60 to 80 nucleotides. 
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The double-stranded hairpin loop RNA structure is then recognized by a nuclear 

protein known as DGCR8 or “Pasha”. Pasha associates with the enzyme Drosha and orients 

this last one to excise the hairpin structure. The resulting hairpin, known as pre-miRNA, is 

exported from the nucleus to the cytoplasm in a process mediated by Exportin-5 protein. This 

transportation is energy-dependent, using GTP bound to the Ran protein [6]. 

  

Figure 1. MicroRNAs biogenesis: MicroRNAs are produced from either their own genes or from introns 

In the cytoplasm, the pre-miRNA hairpin is recognized and cleaved by the Dicer 

enzyme, and its binding partners, TRBP protein included. This complex removes the loop 
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region of the hairpin structure, releasing the miRNA:miRNA* duplex which is approximately 

22 nucleotides long. The strand of the miRNA duplex that is less thermodynamically stable is 

preferentially loaded into the RNA-induced silencing complex (RISC) [7], which includes 

Dicer, TRBP and Argonaute proteins. The strand loaded into the RISC complex is called the 

guide strand and directs the RISC complex to its mRNA target. The other strand, the 

passenger strand or miRNA*, is subsequently degraded by an unknown mechanism [8]. 

The mature miRNA loaded into to the RISC complex guides both to their mRNA 

target and usually binds to the 3’-UTR of the mRNA. This association may result in either 

cleavage or translational inhibition of the target mRNA, depending on the base pair 

complementarity between the miRNA and the mRNA target region. Perfect complementarity 

usually results in mRNA cleavage by the RISC complex, whereas imperfect base pairing 

leads to translation repression [8]. 
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Predicting transcription factor binding sites 
 

The first step in the analysis of the transcription factor/microRNA regulation loops was 

to predict the transcription factor binding sites (TFBS) for all sequences of miRNA promoters 

published by Marson et al [1]. Given the miRNAs promoters sequences, it was necessary to 

know which TFs could bind to those promoters and regulate their transcription. 

Currently, there are several programs available, e.g. AliBaba 2.1 [9], TFSEARCH 1.3 

[10], Genomatix MatInspector [11], MAPPER 2 [12], Match 1.0 [13], P-Match 1.0 [14], 

PROMO 3.0.2 [15] and TFBind [16]. Predicting TFBS using position weight matrices (PWM) 

is widely used and theoretically supported by Berg and von Hippel [17]. Each matrix relates a 

consensus sequence to the four bases and each score is proportional to the binding energy 

for the protein–DNA interaction [18]. Figure 2 illustrates this. 

 

Figure 2. Sp1 [T00757] Matrix on TRANSFAC 8.3 

Matrices and TFBS have been collected into databases such as TRANSFAC [19] and 

JASPAR [20]. However not only all matrices have their own specificity, as prediction also 

requires the quantification of the similarity between the each weight matrix and a potential 

TFBS detected in the sequence. 

In order to achieve a greater degree of accuracy, when comparing to the existing 

ones, several algorithms have been proposed in the last years. However, despite all efforts, 

these algorithms sometimes produce many false positives or false negatives. Thus, one of 

the major remaining problems is how to find the appropriate software. Consequently, 

investigators often use several of the existing programs. 
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Predicting microRNA targets 
 

Nowadays it is evident that post-transcriptional processes play a much more 

important role in the regulation of gene expression than previously expected. So, a crucial 

step for the analysis of regulatory roles of miRNAs is the prediction of their targets. Although 

we do not know exactly the precise way how miRNAs play their role, it is known that, in 

animals, miRNAs are able to repress the translation of target genes by binding to a small 

region of nucleotides that are present at the 3’-UTR region of the regulated gene [21]. This 

region, called “seed”, is located at positions 2-8 of the 5’ end of miRNAs and is known to 

contribute significantly to target recognition [22]. That is why most existing algorithms start by 

trying to find regions of 3’ UTR target gene that have strong Watson-Crick base pairing 

complementary to the miRNA seed sites. 

Since this initial step usually results in thousands of potential target sites and many 

false positives, most algorithms also use other prediction criteria such as conservation of the 

miRNA target sites in homologous genes and local miRNA-mRNA interaction with a positive 

balance of minimum free energy [23]. However, several other features have been 

experimentally and computationally identified, considering an individual target site level as 

well a global mRNA level [24]. 

Currently, there are several programs available, e.g. Diana micro-T [25], miRanda 

[26], PicTar [27], PITA [28], RNA22 [29] and TargetScan [30]. The several algorithms 

provide different predictions, and the degree of overlap between them is often poor or null 

[31]. Using GO (The Gene Ontology Consortium, 2000) has become a standard way to 

validate the functional coherence of genes in a target list. Nevertheless, this type of 

validation usually requires a statistical analysis to confirm statistical significance. 

Additionally, databases such as miRWalk [32] and miRTarBase [33] have been 

published. These databases aggregate target predictions from several programs and/or also 

store experimentally validated targets. 
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Results and Discussion 
 

It is known that the cell’s machinery is designed in order to minimize energy 

consuming, so why should a gene regulate the expression of a miRNA and being 

simultaneously his target, usually resulting in its own translational repression? 

The existence of such regulatory loops seems to reveal a complex mechanism of 

genes regulation. Therefore, we were looking for transcription factors regulating the 

expression of a miRNA and being simultaneously the target protein-coding gene of that same 

miRNA. Figure 3 illustrates this. 

 

Figure 3. Mixed transcription factor/miRNA regulation loops 

After analyzing all selected data (see Materials and Methods), we found 38773 of 

such loops, covering 285 distinct transcription factors and 417 distinct miRNAs. Despite the 

fact that we cannot yet understand the biological significance of these regulatory loops, their 

existence seems to be evident and should be experimentally validated.  

Since a single miRNA can regulate multiple genes and a single gene can be 
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regulated by multiple miRNAs, it is quite natural to think that both miRNAs and TFs may 

cooperate in regulating the same target genes at the transcriptional and post-transcriptional 

levels. In fact, the co-regulation of transcription factors and microRNAs in transcriptional 

regulatory networks is a subject that has been investigated by several authors [34] [35] [36] 

[37] [38] [39] [40] [41]. 

Clearly, miRNAs cannot independently perform a single task in cells. Instead, 

miRNAs regulate cellular networks as network components in many cellular functions [42]. In 

fact, TFs and miRNAs function together in gene regulatory networks that are not yet 

completely identified and understood. Consequently, all loops identified by this investigation 

should be seen as components of regulatory modules, instead of isolated loops. Although 

this is true, we can also analyze each one of these individual loops. 

A similar loop was found in the developing of Drosophila melanogaster eye [43]. 

Author’s investigation revealed that, in nonstimulated cells, Yan represses miR-7 

transcription, whereas miR-7 RNA represses Yan protein expression in photoreceptors, by 

binding to sequences within its mRNA 3’ UTR. This mutually inhibitory relationship helps to 

partition the expression of Yan into eye progenitor cells and that of miR-7 into differentiating 

photoreceptors, contributing to these two alternative fates. According to the authors' 

conclusion, this mechanism can explain how signal transduction activity can robustly 

generate a stable change in gene-expression patterns. 

Keeping in mind the fact that this is an in silico analysis, we should be aware that the 

vast majority of all detected loops have a very low probability of being real loops. Therefore, 

further investigations should start by defining reliability criteria. As demonstrated in the 

Materials and Methods section, prediction of both TFBS and targets varies widely among all 

tools. To reduce the number of predictions and to try to raise the reliability of predicted 

results, the usual procedure is to consider only those results that are predicted by several 

algorithms. From now on, we will briefly analyze some of the results. 

Using databases concordance as reliability criteria, the pair hsa-mir-9/NFKB1 is the 

only loop predicted by all seven TFBS tools and five of the six miRNA targets databases 

used. However, because the average number of both predicted binding and target sites is 

very low, this result is not as good as it appears to be. An average of 10.86 binding sites per 

application and only 3.7 target sites were predicted. Nevertheless, there are several 

investigations relating NFKB1 with hsa-mir-9. 

If NFKB1 is involved in the loops with highest databases concordance, MYB 

transcription factor is involved in the most loops with the highest target sites average (see 
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Table 1 for details), considering TFBS and targets predicted by at least three databases. In 

fact, MYB is involved in twenty one of the first twenty five loops in these conditions. 

 
miRNA 

 
TF 

#TFBS 
Apps 

Avg. 
TFBS 

# Targets 
Apps 

Avg. 
Targets 

mir-150 MYB 4 9.25 5 32.33 
mir-7 SP1 5 97.00 3 24.00 
mir-182 MYB 5 21.00 3 21.00 
mir-124 SP1 5 766.80 3 21.00 
mir-519a MYB 4 34.00 3 19.00 
mir-7 NF1 4 18.75 3 18.00 
mir-497 MYB 4 1.50 3 17.00 
mir-424 MYB 5 15.40 3 17.00 

Table 1. Regulation loops that have the highest target sites average  

At this point, it is important to say that average target sites were calculated using only 

four databases, because the other two used databases do not indicate the number of target 

sites. MirTarBase contains experimentally validated targets and mirWalk contains published 

targets only. 

Considering mirTarBase as a reliable source of miRNA targets and selecting only 

loops with targets predicted by mirTarBase and whose TFBS were predicted by at least 4 

tools, we have the 26 regulation loops listed below in Table 2.  

 
mirNA 

 
TF 

Avg. 
#TFBS 

 #TFBS 
Apps 

#Targets 
Apps 

mir-9 NFKB1 10.86 7 5 
mir-15a NFKB1 3.00 7 4 
let-7a NFKB1 8.57 7 3 
mir-106a RUNX1 76.00 6 4 
mir-23b PLAU 2.33 6 4 
mir-146a NFKB1 2.50 6 3 
mir-101 FOS 6.80 5 5 
mir-429 ZEB1 8.40 5 5 
mir-16 MYB 2.40 5 4 
mir-122 SRF 16.60 5 4 
mir-200b ZEB1 8.40 5 4 
mir-200c ZEB1 3.20 5 4 
mir-218 SP1 32.80 5 3 
mir-124 SP1 766.80 5 3 
mir-141 ZEB1 3.20 5 3 
mir-124 AHR 30.80 5 3 
mir-200a ZEB1 8.40 5 3 
mir-27a SP1 170.80 5 3 
mir-612 TP53 16.50 4 5 
mir-124 NR3C1 48.00 4 5 
mir-150 MYB 9.25 4 5 
mir-221 FOS 11.75 4 4 
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mir-222 FOS 11.75 4 4 
mir-101 MYCN 5.00 4 4 
mir-103 CREB1 6.25 4 3 
mir-29b SP1 41.25 4 3 

Table 2. Regulation loops predicted by mirTarBase and at least four TFBS applications 

As we can see in Table 2, the average number of TFBS for the hsa-mir-124/SP1 loop 

is much higher than all other loops. This is because both Patch 1.0 and TFBind predicted 

hundreds of TFBS in this case. Nevertheless, this is not a unique case. Considering five 

TFBS tools and at least two miRNA targets databases, SP1 is also involved in regulations 

loops with several other miRNAs, besides hsa-mir-124, namely hsa-mir-425, hsa-mir-92b, 

hsa-mir-607, hsa-mir-505, hsa-mir-148a, hsa-mir-345 and hsa-mir-24. All these interactions 

have in common an average number of predicted TFBs much higher than usual (in this case, 

greater than 200 binding sites). 

In fact, as illustrated in Table 3, the total number of TFBS predicted in all loops 

involving SP1 is incomparably higher than any other transcription factor. The second TF in 

this list is RUNX1 and has less than half of predicted TFBS when compared with SP1. 

However the number of predicted loops is almost the same, considering both SP1 and 

RUNX1. 

TF Total BS Total loops Avg. BS 
SP1 98363 407 241.68 
RUNX1 47194 404 116.82 
REL 28645 206 139.05 
POU2F1 25739 294 87.55 
REPIN1 23023 299 77.00 
CREB1 19556 364 53.73 
FOS 18966 262 72.39 
PAX5 18285 344 53.15 
ELK1 15647 287 54.52 
TP53 14452 338 42.76 

Table 3. Top 10 of TFs by sum of predicted TFBS 

Since the number of predicted binding sites is a good indicator for the probability of a 

TF to regulate the transcription of a miRNA promoter sequence, further investigations should 

take into consideration the predicted TFBS average. Remarkably, the fifth place of this 

ranking is occupied by GATA1 that only has 67 predicted loops, each one with an average of 

87.04 predicted TFBS. Listing all loops predicted for GATA1, we can observe that there are 

six miRNAs for which all TFBS tools have predicted exactly the same number of binding 

sites. These miRNAs are hsa-mir-498, hsa-mir-518c, hsa-mir-520a, hsa-mir-520d, hsa-mir-

524 and hsa-mir-525 and they are all mapped to chromosome 19. This is interesting, since it 
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seems to reveal that GATA1 similarly regulates the transcription of these six miRNAs as if 

they were members of a regulatory module. 

Analyzing now the sum of predicted TFBS per miRNA, we detected a miRNA that is 

in a similar situation as GATA1. As we can see in Table 4, hsa-mir-450a isn’t listed at top 10 

of miRNAs sorted by sum of predicted TFBS. In fact, hsa-mir-450a is the 47th of this rating. 

However, when sorted by the average of predicted TFBS, hsa-mir-450a is in the fourth 

position. This miRNA has only 81 predicted loops, each one with an average of 65.01 

predicted TFBS. 

miRNA Total BS Total loops Avg. BS 
mir-124 24782 215 115.27 
mir-365 10587 163 64.95 
mir-194 10145 182 55.74 
mir-425 9818 147 66.79 
mir-182 9703 160 60.64 
mir-191 9603 139 69.09 
mir-92b 9592 177 54.19 
mir-148a 9225 187 49.33 
mir-183 8858 151 58.66 
mir-96 8806 158 55.73 

Table 4. Top 10 of miRNAs by sum of predicted TFBS 

A closer look to the hsa-mir-450a predicted loops reveals the reason of this situation: 

Patch 1.0 predicted 802 TFBS for SP1 transcription factor. On the other end, only one 

application predicted SP1 as a target of hsa-mir-450a and this prediction only has four target 

sites. Once all miRNAs with loops sorted by the average of TFBS, we can see that hsa-mir-

124 has an average of 115.27 binding sites per loop, which is significantly higher than all the 

others. Second place is occupied by hsa-mir-191 but only has 69.09 predicted binding sites 

per loop. 

All these predictions rely on several other tools and, as postulated by GIGO (garbage 

in, garbage out) axiom, if invalid data is entered into a system, the resulting output will also 

be invalid. Therefore, it is important to start by defining validation criteria for all these 

predictions. Best validation would be to compare all predictions with experimentally validated 

targets. However, such datasets are too small to be used as benchmarks. 

Nevertheless, we can compare predictions of all databases in order to find differences 

and similarities. One possible way to do this is by using principal component analysis (PCA). 

We can also use clustering techniques and compare all resulting clusters. We started by 

selecting 55 of the most probable miRNAs with loops. For that, we started by computing an 

overall score for each loop (see Supplementary Material for details). This score uses all 
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scores calculated by each database (when available), the total number of databases with 

that prediction and also the average number of binding sites and targets. 

Using this score we selected the top 55 miRNAs and TFs. In order to be able to 

compare our results with some of the already known clusters, we added eight additional 

miRNAs, namely, hsa-miR-17, hsa-miR-18a, hsa-miR-19a, hsa-miR-20a, hsa-miR-15a, hsa-

miR-16, hsa-miR-34b and hsa-miR-34c. Subsequently, for each database, we collected all 

predictions for the 63 miRNAs and TFs with loops. For TFBS predictions we used the 

number of bind sites and for target predictions we used the number of predicted targets in 

every loop. 

After applying PCA, we can visually analyze how miRNAs are related to each other 

concerning the TFs that control their transcription (Figure 4; see also Supplementary 

Material for details), as predicted by each one of the databases. We can cluster these 

results, measuring the Euclidean distance of all miRNAs (for example). However, we can 

also cluster all data used to perform PCA analysis and get a cluster dendrogram as 

illustrated in Figure 5 (see also Supplementary Material for details). 

 

Figure 4. PCA analyses using PROMO 3.0.2 TFBS predictions 

 

 

Figure 5. Cluster dendrogram using PROMO 3.0.2 TFBS predictions 
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Having this additional information, it is possible, for example, to detect unrealistic 

predictions. After comparing all these graphical information we we’re able to identify several 

differences and similarities among all TFBS predictions. First similarity is that all predictions 

separate hsa-mir-124 from all other miRNAs. However, TF Search and Patch 1.0 have 

grouped hsa-mir-124 with hsa-mir-96, hsa-mir-182 and hsa-mir-183. Match 1.0 predictions 

are slightly different from all others because this is the only cluster dendrogram with two 

distinct major groups of miRNAs, having hsa-mir-124 grouped in one of them, however 

separated from all other miRNAs of that group. We must remember that these clusters were 

obtained using a subset of TFs (top 55). 

We used three known clusters in order to validate these predictions: 

• mir-15a/mir-16 

• mir-34b/mir-34c 

• mir-17-92 cluster, which includes mir-17, mir-18a, mir-19a, mir-20a, mir-19b and 

mir-92a 

None of these databases, using top 55 TFs, completely predicted the mir-17-92 

cluster. All of them grouped just four miRNAs, namely, mir-17, mir-18a, mir-19a, mir-20a. 

PROMO 3.0.2 and Patch 1.0 were able to group mir-19b and mir-92a in other cluster. TFBind 

has clustered these two miRNAs with mir-106a. The mir-15a/mir-16 cluster was predicted by 

all TFBS databases except Match 1.0 and P-Match 1.0. The mir-34b/mir-34c cluster was 

predicted by all TFBS databases except P-Match 1.0. We were also able to detect three 

other groups of miRNAs that were clustered by all TFBS databases. These clusters are: 

• mir-302a, mir-302b, mir-302c and mir-302d 

• mir-181c and mir-181d 

• mir-374a and mir-374b 

All, except Match 1.0 have also grouped: 

• mir-200a and mir-200b 

• mir-23a and mir-27a 

Performing this very same analysis for targets databases reveals much more 

differences than similarities. For example, when comparing Diana micro-T [25] with SVM 

[44], there are five exactly equal clusters: 

• mir-181c and mir-181d 

• mir-374a and mir-374b  

• mir-17 and mir-20a  
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• mir-130b and mir-148a  

• mir-106a and mir-20b  

After comparing several clusters with the already known ones, Diana micro-T 

predictions reveal more accuracy then SVM predictions because it was able to predict the 

mir-15a/mir-16 cluster. MirTarBase and mirWalk are not comparable with the previous two 

databases because the first one contains experimentally validated targets and the other 

contains published targets only. MiRanda predictions are not comparable with any of the 

previous ones either, because each one of these databases contains a subset of the 55 

selected miRNAs. One of them contains conserved miRNAs and the other non-conserved 

miRNAs. Because of this fact, these databases are not even comparable with each other. 

Since TFs and miRNAs function together in gene regulatory networks and some of 

these networks are partially identified, we can use this knowledge to validate these 

predictions as well to analyze new findings. Besides the number of target and binding sites 

and clustering information, a deeper analysis should also include databases scores, when 

available. For example, miRanda uses mirSVR scores [46]. However, different score 

calculation methods are used among both targets and transcription factors binding sites 

databases. Since scores are not comparable among different databases, this analysis 

requires previous normalization or should be done separately for each prediction in every 

database. 

Nevertheless this is a very useful type of analysis because it can reveal loops that are 

hidden when we just look for the number of target sites. For example, after analyzing all 

loops of miRanda conserved miRNAs with highest scores we were able to find a loop with a 

single target site than can be very promising due to its high score. Six of the seven TFBS 

applications used predicted that FOS regulates hsa-mir-148a transcription and the average 

number of binding sites is 46.5. However, only SVM and miRanda conserved databases 

predicted that FOS is a target of hsa-mir-148a. Worse than that, both databases predicted 

that a single target site and SVM score is very far from being one of highest of that database. 

However, the mirSVR score is one of the highest for all targets predicted by miRanda and 

involved in the potential regulation loops detected. 

We found 38773 potential regulation loops, most of them predicted by a single 

database and some others predicted by several databases. To reduce the number of 

predictions, investigators often consider only those predictions that are common to several 

databases and assume this overlap as a higher-quality subset of predictions. However, this 

is not necessarily true. In fact, as indicated by Ritchie W et al. [45], this can be a trap. They 
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suggest that searching for overlaps between miRNA target prediction algorithms should be 

discouraged owing to a lack of utility and rationale. For this reason and because we did not 

want to restrict future investigations, we decided to publish results from all used databases, 

despite the certainty that the vast majority of these predictions are not real loops. 

All these data demand for further investigations and experimental validations. 

However, the ultimate goal of this investigation was to identify transcription factors regulating 

miRNA expression and being simultaneously the target protein-coding gene of that same 

miRNA. As result of this work, we assembled and characterized a catalogue of such mixed 

transcription factor/miRNA regulation loops in human. All data was stored in a relational 

database and a web platform was developed in order to enable further investigations (Figure 

6 is a screen shot of this platform). 

This database has 36 tables and stores over than 2.5 million records. The web 

interface allows a search for loops using several search criteria and analyzes all details of 

every loop such as predicted TFBS and targets, scores of each prediction, etc. 

 

Figure 6. Screen shot of regulation loops web platform 
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Conclusions 
 

Since cell’s machinery is designed in order to minimize energy consuming, it would 

be unlikely for a gene to regulate the expression of a miRNA and being simultaneously his 

target, usually resulting in its own translational repression at a post-transcriptional level. 

However, this in silico analysis has found 38773 potential loops, covering 285 distinct 

transcription factors and 417 distinct miRNAs. Some of these loops have a great probability 

of being experimentally confirmed. Although not being the ultimate goal of this investigation, 

we also computed a score for each predicted loop. With this or any other scoring system it is 

possible to guide experimental validations of predicted loops. 

Despite the fact that we cannot yet understand the biological significance of these 

regulatory loops, their existence seems to be evident and this must be an important 

mechanism of genes regulation. In order to enable further investigations, we developed a 

web platform through which all data can be analyzed. 
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Materials and Methods 
 

In 2008, Marson et al characterized the DNA sequences of all human miRNA 

promoters by chromatin-immunoprecipitation [1]. Their work provided, among other data and 

information, a table with human miRNA promoters and associated proteins and genomic 

features (Table S7). All human coordinate information upon which this investigation was 

based it was downloaded in January 2005 from the UCSC Genome Browser (hg17, NCBI 

build 35). 

We started from these data and the first thing done was to collect all sequences from 

the indicated version of UCSC Genome Browser, according to the TSS positions of all 550 

promoters. For that purpose it was necessary to write a small program. One of the 

sequences (hsa-mir-142) was later discarded due to its huge length (406435 nucleotides). 

Having all these promoters’ sequences, it was then necessary to predict TFBS for all 

of them.  For that, we initially used nine programs, namely AliBaba 2.1, Genomatix 

MatInspector, Mapper 2, Match 1.0, Patch 1.0, P-Match 1.0, PROMO 3.0.2, TFBind and 

TFSEARCH 1.3. Each program has its own specificities and it was necessary to deal with 

that in order to harmonize both inputs and outputs. 

Their first difference is the way how promoter sequences can be send to them. 

MAPPER 2 it was the only one that was able to process a FASTA file containing all promoter 

sequences. For TFSEARCH 1.3 we were able to download EZRetrieve. This is a free tool 

that relies on TFSearch and has also processed the complete FASTA file. For TFBind we 

conceived a tool similar to EZRetrieve. This program reads a FASTA file and sends each 

sequence to the TFBind tool that is available online. Then saves the HTML outputs that can 

be seen when we perform the online search. 

For all the others, a previous register on the sites where these tools are available was 

necessary. Therefore, it is necessary to login before starting to use these tools. Because of 

that, it was not possible to conceive any tool to perform this search automatically. The only 

solution it was to split our FASTA file into several small files and submit each one of them to 

each one of these tools. 

Having all these huge amount of data, it was then necessary to prepare it to be 

analyzed. AliBaba 2.1 results were discarded because of output complexity and outdated 

version of TRANSFAC. Genomatix MatInspector results were also discarded because they 

use matrices of their own and it is not a free software tool. 
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Consequently, it was necessary to analyze outputs from seven programs. EZRetrieve 

produced a table indicating the number of binding sites for each pair of predicted 

transcription factor and miRNA promoter sequence given to it as input. Since the number of 

binding sites is a good indicator for the probability of a TF to regulate the transcription of a 

miRNA promoter sequence, we decided to write a tool to parse all output files of each 

prediction program in order to count all binding sites for each pair transcription factor/miRNA 

promoter. Figure 7 is a screen shot of this tool. 

 

Figure 7. Screen shot of TF summarize tool 

Besides the specificities of each output, this tool had to deal with the fact the we were 

only interested in results from Homo Sapiens (HS) and some programs gave us more than 

that. Thus, when not indicated in the output result, it was necessary to test each matrix 

against matrices databases in order to verify if we were in the presence of a human matrix or 

not. Same verification was performed with gene symbols, when necessary. Applied these 

filters and totalized all binding sites, it became obvious that there are significant differences 

among all prediction programs (Table 5; see also Supplementary Material for details). 
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Application 

TFBS 
HS Genes 

TFBS 
Other Genes 

Total 
TFBS 

 
Pct. 

TFSEARCH 1.3 22064 19084 41148 2.40 
MAPPER 2 80318 96734 177052 10.33 
P-Match 1.0 103935 6638 110573 6.45 
Match 1.0 138336 54381 192717 11.25 
PROMO 3.0.2 111377 108704 220081 12.85 
Patch 1.0 185326 106627 291953 17.04 
TFBind 502931 176858 679789 39.68 

Table 5. Total of binding sites per application 

After joining data from all seven TFBS prediction tools we found 64701 distinct pairs 

of human TF/miRNA promoters. However the vast majority (75.47%) of all TFBS human 

predictions is predicted by only 1 or 2 applications. The way these pairs are distributed by the 

number of applications that have simultaneously predicted them is illustrated in Table 6 (see 

also Supplementary Material for details). 

# applications TF/miRNA pairs Pct. 
1 36461 56.35 
2 12370 19.12 
3 8012 12.38 
4 3830 5.92 
5 2842 4.39 
6 902 1.39 
7 284 0.44 

Table 6. Pairs of TF/miRNA promoters simultaneously predicted by TFBS prediction applications  

Another issue related with these predictions is genes names. These outputs usually 

indicate a gene name and the identification of which matrix was used to get each prediction. 

However, genes names are not always compatible among the several databases, because 

most genes have more than one name. This is illustrated in the next table with some 

examples obtained in NCBI online database. 

Gene Also known as 
FOS AP-1; C-FOS 
HOXD10 HOX4; HOX4D; HOX4E; Hox-4.4 
MYB fg; Cmyb; c-myb; c-myb_CDS 
MYC MRTL; c-Myc; bHLHe39 
NFKB1 p50; KBF1; p105; EBP-1; MGC54151; NFKB-p50; NF-kappaB; NFKB-p105; 

NF-kappa-B; DKFZp686C01211 
TP53 P53; LFS1; TRP53; FLJ92943 
LHX1 LIM1; LIM-1; MGC126723; MGC138141 
MYCN NMYC; ODED; MODED; N-myc; bHLHe37 
RELA p65; NFKB3; MGC131774 
RUNX1 AML1; CBFA2; EVI-1; AMLCR1; PEBP2aB; AML1-EVI-1  

Table 7. Different gene names 
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We downloaded all Homo Sapiens genes registered in the NIH genetic sequence 

database GenBank from the NCBI site. Besides the official gene symbols, this file also 

contains their synonyms or alias. After comparing gene names, we were able to identify most 

of the genes listed in the outputs of the TFBS applications. However, many of them remain 

unclassified or are not Homo Sapiens genes. This is illustrated in Table 8 (see also 

Supplementary Material for details). 

Application HS Genes Other Genes 
TFSEARCH 1.3 61 49 
MAPPER 2 232 357 
P-Match 1.0 33 16 
Match 1.0 83 46 
PROMO 3.0.2 58 32 
Patch 1.0 139 164 
TFBind 89 47 

Table 8. Total number of different genes predicted by TFBS prediction applications  

The next step was the prediction of miRNA targets. For this purpose, we started by 

using miRWalk target published predictions. A file with all miRNAs names was sent to 

mirWalk and this application returned a total of 7307 targets representing 2654 different 

genes. All these gene names were compared with Homo Sapiens genes predicted by all 

TFBS applications and with their synonyms as well. 

After comparing mirWalk gene names, we found 163 genes with the same name as 

the names of transcription factors predicted by TFBS tools. These 163 distinct genes, 

according to mirWalk predictions, are targets of 102 distinct miRNAs. Loops were found for 

82 distinct transcription factors, covering 85 distinct miRNAs (Table 9; see also 

Supplementary Material for details). It is important to remember that our miRNAs list is a 

subset of all miRNAs, since we are analyzing the sequences from Marson et al [1]. In fact, all 

targets databases also predicted targets related to other miRNAs. 

Application TFs miRNAs loops 
TFSEARCH 1.3 20 24 43 
MAPPER 2 53 49 140 
P-Match 1.0 9 31 39 
Match 1.0 27 45 92 
PROMO 3.0.2 29 50 122 
Patch 1.0 42 50 124 
TFBind 45 73 186 

Table 9. Distinct TFs/miRNAs with loops, using mirWalk 

The next database used was Diana micro-T v3.0. This database has about 2.5 million 

records and targets are identified by Ensemble ID. Since GenBank also contains Ensemble 
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IDs, we wrote a program in order to extract from Diana database all records in which the 

target gene is one of the genes predicted by the TFBS applications. After comparing gene 

ID’s, we found 279 genes with the same Ensemble ID as the ones of transcription factors 

predicted by TFBS tools. According to Diana micro-T predictions, these 279 distinct genes 

are targets of 417 distinct miRNAs. Loops were found for 259 distinct transcription factors, 

covering 346 distinct miRNAs (Table 10 ; see also Supplementary Material for details). 

Application TFs miRNAs loops 
TFSEARCH 1.3 51 233 682 
MAPPER 2 201 324 3571 
P-Match 1.0 31 306 1133 
Match 1.0 74 327 2278 
PROMO 3.0.2 57 319 1765 
Patch 1.0 116 338 3513 
TFBind 84 344 4313 

Table 10. Distinct TFs/miRNAs with loops, using Diana 

We also analyzed miRanda databases. There are four of them, combining good and 

non-good mirSVR scores with conserved and non-conserved miRNAs. However, we only 

analyzed good mirSVR scores databases. In these databases genes are identified by 

GeneBank ID (NCBI Entrez ID) and we started by writing a program in order to extract from 

these databases all records in which the target gene is one of the genes predicted by the 

TFBS applications. 

The one with non-conserved miRNAs has about 3.3 million targets and, after 

comparing gene ID’s, we found 288 genes with the same gene ID as the ones of 

transcription factors predicted by TFBS tools. According to this database, these 288 distinct 

genes are targets of 336 distinct miRNAs. Loops were found for 252 distinct transcription 

factors, covering 144 distinct miRNAs (Table 11 ; see also Supplementary Material for 

details). 

Application TFs miRNAs loops 
TFSEARCH 1.3 38 83 241 
MAPPER 2 184 132 1063 
P-Match 1.0 28 116 367 
Match 1.0 70 123 737 
PROMO 3.0.2 56 136 714 
Patch 1.0 112 137 1159 
TFBind 86 143 1587 

Table 11. Distinct TFs/miRNAs with loops, using miRanda non-conserved miRNAs 

The miRanda database with conserved miRNAs has about one million targets and, 

after comparing gene ID’s, we found 284 genes with the same gene ID as the ones of 
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transcription factors predicted by TFBS tools. According to this database, these 284 distinct 

genes are targets of 228 distinct miRNAs. Loops were found for 259 distinct transcription 

factors, covering 193 distinct miRNAs (Table 12; see also Supplementary Material for 

details). 

Application TFs miRNAs loops 
TFSEARCH 1.3 47 150 542 
MAPPER 2 193 187 2424 
P-Match 1.0 29 175 675 
Match 1.0 74 186 1460 
PROMO 3.0.2 57 190 1360 
Patch 1.0 121 189 2269 
TFBind 86 192 2870 

Table 12. Distinct TFs/miRNAs with loops, using miRanda conserved miRNAs 

This analysis was also performed using mirTarBase, a database with experimentally 

validated targets. As expected, numbers are much lower. After comparing gene names, we 

found 90 genes with the same name as the names of transcription factors predicted by TFBS 

tools. According to mirTarBase, these 90 distinct genes are targets of 93 distinct miRNAs. 

Loops were found for 58 distinct transcription factors, covering 70 distinct miRNAs (Table 13 

; see also Supplementary Material for details). 

Application TFs miRNAs loops 
TFSEARCH 1.3 11 19 25 
MAPPER 2 27 36 49 
P-Match 1.0 6 15 15 
Match 1.0 17 31 37 
PROMO 3.0.2 21 35 50 
Patch 1.0 27 39 62 
TFBind 32 51 73 

Table 13. Distinct TFs/miRNAs with loops, using mirTarBase 

Very recently, Saito T and Sætrom P have also published a database with miRNAs 

targets [44]. This database has almost 20 million target sites and was created using a two-

step Support Vector Machines (SVM). We decided to incorporate this database in our 

analysis and, as expected, numbers are much higher. Similarly to the previous database we 

started by writing a program in order to extract from these databases all records in which the 

target gene is one of the genes predicted by the TFBS applications. 

After comparing gene names, we found 283 genes with the same name as the names 

of transcription factors predicted by TFBS tools. These 283 distinct genes, according to these 

predictions, are targets of 412 distinct miRNAs. Loops were found for 278 transcription 

factors, covering all 412 miRNAs (Table 14; see also Supplementary Material for details). 
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Application TFs miRNAs loops 
TFSEARCH 1.3 59 386 2684 
MAPPER 2 218 412 15461 
P-Match 1.0 32 411 4513 
Match 1.0 78 411 9082 
PROMO 3.0.2 57 411 8137 
Patch 1.0 131 411 14305 
TFBind 84 411 18191 

Table 14. Distinct TFs/miRNAs with loops, using SVM 

As demonstrated by previous tables, prediction of both TFBS and targets varies 
widely among all tools.  
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Supporting Information 
 

Supplementary file 1: Marson_Cell08_S7.xlsx 

Human miRNA promoters and associated TSS positions. 

 

Supplementary file 2: mirna_prom.fasta 

Sequences of miRNA promoters that have been collected from the UCSC Genome Browser 

(hg17, NCBI build 35), taking into consideration chromosomes and TSS positions indicated 

in supplementary file 1. 

 

Supplementary file 3: HSGenes.xlsx 

All identified genes, aliases and matrices. 

 

Supplementary file 4: LOOPS01_stats.xlsx 

All predictions about TFs regulating miRNA expression and being simultaneously the target 

protein-coding gene of that same miRNA. This file also contains scores and some statistics 

for each loop. 

 

Supplementary file 5: LOOPS02_by_targetsDB.xlsx 

All predicted loops organized by targets database. 

 

Supplementary file 6: TFBS01_TFSEARCH.xlsx 

TFBS predicted by TFSEARCH. 

 

Supplementary file 7: TFBS02_MAPPER.xlsx 

TFBS predicted by MAPPER 2. 

 

Supplementary file 8: TFBS03_TFBIND.xlsx 

TFBS predicted by TFBind. 

 

Supplementary file 9: TFBS04_MATCH.xlsx 

TFBS predicted by Match 1.0. 

 

Supplementary file 10: TFBS05_PMATCH.xlsx 

TFBS predicted by P-Match 1.0. 
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Supplementary file 11: TFBS06_PATCH.xlsx 

TFBS predicted by Patch 1.0. 

 

Supplementary file 12: TFBS07_PROMO.xlsx 

TFBS predicted by PROMO 3.0.2. 

 

Supplementary file 13: TARGETS01_mirWalk.xlsx 

Targets predicted by mirWalk for all identified genes. 

 

Supplementary file 14: TARGETS02_mirTarBase.xlsx 

Targets validated by mirTarBase for all identified genes. 

 

Supplementary file 15: TARGETS03_svm.xlsx 

Targets predicted by SVM for all identified genes. 

 

Supplementary file 16: TARGETS04_DianaMicroT.xlsx 

Targets predicted by Diana micro-T v3.0 for all identified genes. 

 

Supplementary file 17: TARGETS05_miRanda_cons.xlsx 

Targets predicted by miRanda conserved miRNAs for all identified genes. 

 

Supplementary file 18: TARGETS06_miRanda_nonc.xlsx 

Targets predicted by miRanda non-conserved miRNAs for all identified genes. 

 

Supplementary file 19: PCA_clusters.xlsx 

Cluster dendrograms and graphics from PCA analysis. 
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