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RESUMO 

O Vírus da Imunodeficiência Humana do tipo 1 e do tipo 2 (VIH-1 e VIH-2) são os agentes 

etiológicos do Síndrome de Imunodeficiência Adquirida (SIDA). Embora sejam semelhantes 

na sua organização estrutural e genómica, estes lentivírus humanos apresentam 

características antigénicas distintas e partilham uma semelhança genética de apenas 50%. 

Enquanto o VIH-1 é responsável pela pandemia mundial, a infecção pelo VIH-2 localiza-se 

sobretudo na África Ocidental, em alguns países europeus como Portugal e França, e na 

Índia. A infecção pelo VIH-2 tem melhor prognóstico, a progressão para a doença é mais 

lenta e há melhor controlo imunológico do que na infecção pelo VIH-1.  

Ao contrário do VIH-1, o arsenal terapêutico actualmente disponível para tratar a infecção 

por VIH-2 é reduzido. Os fármacos antiretrovirais em uso foram especificamente 

desenvolvidos para o VIH-1 e, consequentemente, a sua actividade pode ser reduzida ou 

nula no VIH-2. Este é o caso concreto dos inibidores não nucleosídicos da transcriptase 

reversa e de alguns inibidores da protease. Neste contexto, os inibidores de entrada 

poderão ser úteis para tratar a infecção por VIH-2. Contudo, a susceptibilidade dos isolados 

primários de VIH-2 aos inibidores de entrada é actualmente desconhecida. 

A susceptibilidade do VIH aos inibidores de entrada é determinada pela qualidade da 

interacção do vírus com os receptores celulares. O VIH-1 e VIH-2 são substancialmente 

diferentes a este nível. Por exemplo, o VIH-2 pode ligar-se ao co-receptor CCR5 

independentemente do receptor CD4 e da região V3 do invólucro. Por outro lado, as 

regiões C2, V3 e C3 do VIH-2 são substancialmente diferentes do VIH-1 a nível antigénico. 

Colectivamente, estes dados indicam que a estrutura e conformação das glicoproteínas de 

superfície do VIH-1 e VIH-2 são substancialmente diferentes e sugerem que a 

susceptibilidade e resistência dos dois tipos de vírus aos inibidores de entrada podem 

também ser diferentes.  

 

Os principais objectivos desta tese foram: 1) analisar as características moleculares, 

estruturais e evolutivas das regiões C2, V3 e C3 no VIH-1 e VIH-2; 2) comparar a 

susceptibilidade do VIH-1 e VIH-2 aos inibidores de entrada e avaliar o seu potencial 

terapêutico na infecção por VIH-2; 3) produzir um novo inibidor de fusão para o VIH-2. 

 

Para melhor compreender as potenciais diferenças destes dois vírus na resposta aos 

inibidores de entrada começámos por analisar as características moleculares, estruturais e 

evolutivas da região V3 e as regiões circundantes C2 e C3, num número significativo de 

vírus VIH-1 e VIH-2 isolados em Portugal e noutras regiões do globo, com recurso a 

diferentes metodologias de biologia evolutiva e computacional (Capitulo 2). Apesar da 
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menor variabilidade das 3 regiões no VIH-2, verificámos que a região C3 está sob forte 

selecção positiva e encontra-se exposta à superfície sugerindo que, tal como no VIH-1, esta 

região poderá constituir um domínio neutralizante. No entanto, ao contrário do VIH-1, a 

maioria das mutações adaptativas no VIH-2 são prejudiciais e levam à extinção das 

linhagens virais pelo que o efeito final é um forte constrangimento à variabilidade das 

regiões analisadas. Ao contrário do VIH-1, verificámos que a ansa V3 do VIH-2 se encontra 

oclusa no complexo glicoproteico do invólucro, numa conformação que parece ser 

estabilizada por interacções que mantém com alguns resíduos da regiões C2 e C3. Estes 

resultados são consistentes com o facto de a V3 não ser imunodominante no VIH-2, ficando 

assim mais protegida da resposta imunitária e das eventuais mutações que dela resultam. A 

forte conservação da V3, da C2 e da C3 também é consistente com a sua potencialmente 

importante actividade imunosupressora. Em conclusão, este primeiro estudo permitiu 

caracterizar algumas das características estruturais e funcionais que distinguem as 

glicoproteínas do invólucro do VIH-1 e do VIH-2 e que estão associadas às diferentes 

características biológicas e fenotípicas destes dois vírus. Estes dados podem ter impacto na 

resposta dos dois vírus aos inibidores de entrada (analisado no Capítulo 3) e no 

desenvolvimento de novas vacinas. 

  

No segundo estudo (Capítulo 3) comparámos a actividade antiviral dos antagonistas dos co-

receptores (AMD3100, TAK-779 e maraviroc) e dos inibidores de fusão (T-20 e T-1249) entre 

um grupo de 20 isolados de VIH-2 (19 isolados primários + um isolado laboratorial) e nove 

isolados de VIH-1 (sete isolados primários + dois isolados laboratoriais). Verificámos que a 

sensibilidade ao AMD3100 e ao TAK-779 é semelhante no VIH-1 e o VIH-2. No entanto, o 

perfil da curva dose-resposta do maraviroc (MVC) obtido para os isolados R5 foi diferente 

nos dois tipos de vírus. No VIH-2 os valores de IC90 foram significativamente mais elevados 

do que no VIH-1; por outro lado, os declives da curva dose-resposta foram mais baixos no 

VIH-2 do que no VIH-1. Colectivamente, estes resultados sugerem que poderão ser 

necessárias concentrações mais elevadas de MVC para tratar os doentes infectados pelo 

VIH-2. Adicionalmente, encontrámos uma correlação forte e de sentido inverso entre as 

susceptibilidade do VIH-2 ao MVC e o número de células T CD4+ dos doentes quando os vírus 

foram isolados. Vírus isolados em doentes em fase de SIDA foram menos susceptíveis ao 

MVC do que os vírus isolados em doentes com uma contagem de células T CD4+ superior a 

200 células/l. Ao contrário do VIH-1 não encontrámos qualquer correlação entre a carga 

da V3 e a susceptibilidade dos isolados R5 de VIH-2 ao MVC. De um modo geral, os nossos 

resultados sugerem que são necessários ensaios clínicos para avaliar a efectividade do MVC 

na infecção pelo VIH-2, determinar a dose terapêutica mais adequada e esclarecer se é 



 xi 

necessário fazer um ajuste de dose de acordo com a fase da doença. Adicionalmente, e 

uma vez que isolados VIH-2 X4 e populações duplas/mistas são totalmente ou parcialmente 

resistentes ao MVC, é de extrema importância o desenvolvimento de um ensaio de 

tropismo (genotípico e/ou fenotípico) para o VIH-2 de modo a determinar o tropismo antes 

do início da terapia com MVC. Sem o conhecimento prévio do tropismo viral, o tratamento 

com MVC poderá seleccionar espécies X4 minoritárias que estão associadas a maior 

resistência à neutralização e uma progressão mais rápida da doença. 

No que diz respeito aos inibidores de fusão, verificámos que o T-20 tem actividade 

reduzida no VIH-2, confirmando estudos anteriores realizados com dois isolados 

laboratoriais. Por outro lado, observámos uma elevada susceptibilidade deste vírus ao T-

1249, indicando que os inibidores de fusão são potencialmente eficazes na infecção pelo 

VIH-2. Assim, o desenvolvimento de um novo inibidor de fusão do VIH-2 foi o objectivo do 

último estudo desta tese (Capítulo 4).  

 

No Capítulo 4, desenvolvemos novos péptidos inibidores de fusão a partir da reconstrução 

de sequências ancestrais da glicoproteína gp36 do invólucro de VIH-2 e de Vírus de 

Imunodeficiência dos Símios (VIS). Com esta abordagem inovadora pretendemos incorporar 

a história evolutiva dos vírus na sequência dos péptidos e desta forma melhorar a 

tolerância destas moléculas aos polimorfismos naturais da sua região alvo bem como às 

mutações de resistência seleccionadas na sua presença. Obteve-se um péptido ancestral 

(P3) constituído por 34 aminoácidos, cuja sequência corresponde às posições homólogas 

628 – 661 da proteína Env do isolado VIH-1 HXB2 (ou 623 – 656 do isolado VIH-2 ROD). A 

sequência do P3 difere em 21 aminoácidos da sequência consenso de VIH-1, 14 aminoácidos 

da sequência do T-20 e 6 aminoácidos da sequência consenso de VIH-2. Ao contrário da 

natureza não-estruturada do T-20, o P3 tem uma conformação típica em hélice-, o que 

lhe poderá conferir maior a estabilidade contra a degradação proteolítica, bem como 

maior afinidade para a região alvo. Por outro lado, o P3 foi facilmente solúvel em soluções 

aquosas o que é uma vantagem num futuro desenvolvimento de uma fórmula farmacêutica. 

O P3 demonstrou ter uma forte actividade antiviral contra isolados primários e 

laboratoriais de VIH-1 e VIH-2 (IC50 médio, 11 nM para o HIV-1 e 63.8 nM para o HIV-2), 

incluindo variantes resistentes ao T-20 (IC50, 0.15 – 11.8 nM). Através da passagem 

consecutiva de vírus em cultura na presença do péptido, foi seleccionada uma mutação de 

resistência na região HR1 da gp41 (VIH-1), a qual é responsável pela redução da 

susceptibilidade do VIH-1 ao P3 em 120x. Nas mesmas condições, e após 60 dias em 

cultura, não foi possível seleccionar mutações de resistência ao P3 no VIH-2. Estes 

resultado, em conjugação com a sua forte ligação à glicoproteína transmembranar de um 
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isolado de VIH-2, indicam que, tal como outros péptidos baseados na região HR2 (T-20, T-

1249), o P3 inibe a entrada do VIH pela interacção com a região HR1 da gp41 e sugerem 

que a barreira genética para a resistência ao P3 é significativamente superior no VIH-2 do 

que no VIH-1. Neste estudo demonstrámos ainda que o P3 é significativamente menos 

antigénico do que o T-20 nos doentes infectados pelo VIH-1 o que poderá traduzir-se numa 

maior duração da eficácia clínica do P3 em comparação com o T-20. Os resultados obtidos 

com o P3 demonstram pela primeira vez que é possível desenvolver péptidos com 

actividade antiviral significativa utilizando metodologias de biologia evolutiva, pelo que 

esta abordagem poderá ser explorada no futuro para a produção de medicamentos 

peptídicos e, eventualmente, de vacinas. 
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ABSTRACT 

The general aims of this thesis were: 1) to examine the C2, V3 and C3 envelope regions of 

HIV-1 and HIV-2 at the molecular, evolutionary and structural levels; 2) to compare HIV-1 

and HIV-2 susceptibility to entry inhibitors and assess their potential value in HIV-2 

therapy; 3) to produce a new fusion inhibitor peptide using evolutionary biology based 

strategies.  

In the first study (Chapter 2), HIV-1 and HIV-2 were compared at the molecular, 

evolutionary and structural levels in the C2, V3 and C3 envelope regions. We identified 

significant structural and functional constrains to the diversification and evolution of C2, 

V3 and C3 in the HIV-2 envelope but not in HIV-1. In particular, we found that V3 in HIV-2 

is less exposed and more conserved than in HIV-1, suggesting fundamental differences in 

the biology and infection of these viruses as well as in their susceptibility to entry 

inhibitors. 

In the second study (Chapter 3) we measured the baseline susceptibility of HIV-1 and HIV-2 

primary isolates to different fusion inhibitors and coreceptor antagonists, including 

enfuvirtide (T-20) and maraviroc (MVC). MVC inhibited HIV-2 R5 variants at significantly 

higher IC90 concentrations than HIV-1 variants. Moreover, as previously found in HIV-1, 

susceptibility of HIV-2 R5 variants to MVC was inversely related with CD4+ T cell counts at 

time of virus isolation. These results suggest that the structure of the envelope complex of 

R5 variants changes along the course of infection. More importantly, the results call for 

new clinical studies to evaluate the efficacy of MVC in HIV-2 infection and to determine its 

best therapeutic dosage in early and late stage disease. We also provide definitive 

evidence demonstrating that T-20 is not useful for HIV-2 therapy. 

In the final study (Chapter 4), we designed a new HIV fusion inhibitor peptide (P3) based 

on the ancestral sequences of the HIV-2 and SIV envelope genes. P3 has an -helix 

structure as demonstrated by circular dichroism. It has broad antiviral activity at the 

nanomolar range against HIV-1 and HIV-2 primary isolates, including HIV-1 variants 

resistant to T-20. Binding ELISA assays and selection of resistant mutants suggest that P3 

prevents viral fusion by binding to the transmembrane protein in the HR1 region. These 

studies provide proof of concept that viable antiviral peptides can be constructed using 

evolutionary biology strategies. Such strategies should be explored to enhance the 

production of peptide drugs and vaccines.  
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GENERAL INTRODUCTION 

The discovery of HIV 

The Acquired Immunodeficiency Syndrome (AIDS) was first described in 1981. Symptoms of 

immune suppression were observed in young homosexual men developing Kaposi´s sarcoma 

and Pneumocystis carinii pneumonia [1,2]. These cases were initially reported in 

individuals from the United States of America (USA), but shortly after similar observations 

were made in patients from Haiti [3], Europe [4] and Africa [5]. In 1982, the Centres for 

Disease Control (CDC), USA, coined the term ―acquired immunodeficiency syndrome‖ [6], 

and by 1983 the risk groups for contracting AIDS already included homosexuals, injection 

drug users, haemophiliacs [7], women maintaining sexual contacts with infected men [8,9], 

and infants (vertical transmission) [10]. 

Luc Montagnier and Françoise Barré-Sinoussi at Pasteur Institute (France) isolated the first 

virus from a patient with AIDS in 1983 [11]. It was reported to be a retrovirus belonging to 

the family of the human T-cell leukaemia viruses (HTLV), but distinct from each previous 

isolate. In the following year, a similar retrovirus (HTLV-III) was isolated by a group of 

American investigators [12]. The evidence produced confirmed that this retrovirus, later 

classified as Human Immunodeficiency Virus type 1 (HIV-1), was the causative agent of 

AIDS [13].  

In 1986, a new retrovirus distinct from HIV-1 was isolated in patients from Guinea-Bissau 

and Cape Verde Islands (West Africa) interned at a Lisbon (Portugal) hospital. They 

presented a clinical syndrome similar to AIDS [14,15]. The isolation and characterization of 

the second HIV virus, HIV type 2 (HIV-2), resulted from a successful collaboration between 

Pasteur Institute and the pioneer work of Maria Odette Santos Ferreira at Faculty of 

Pharmacy of Lisbon. 

The Nobel Foundation has recently acknowledged the discovery of HIV by rewarding Luc 

Montagnier and Françoise Barré-Sinoussi with the 2008 Nobel Prize for Medicine. 

 

The HIV/AIDS pandemic 

Since the beginning of the epidemic, more than 60 million people have been infected with 

HIV worldwide and almost 30 million people have died of AIDS-related causes [16]. At the 

end of 2009, there were an estimated 33 million people living with HIV, including 2.5 

million children with less than 15 years of age. Indeed, the number of people living with 

HIV tended to rise since the late 1990s due to high rates of HIV transmission, but also to 

the significant scale up of successful antiretroviral therapy. Nonetheless, the latest reports 
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indicate that the overall growth of the epidemic has now stabilized and the number of new 

infections and AIDS-related deaths are decreasing [17]. 

Over the last decade, the incidence of HIV infection has decreased by more than 25%, even 

in countries from sub-Saharan Africa. This region represents 68% of the global HIV 

prevalence, has the highest number of new infections and is still the only region, besides 

the Caribbean, where girls and women are significantly more affected than male 

individuals. There are, however, a few selected countries in Eastern Europe and Central 

Asia that escape this global trend. In these countries the incidence has increased by 25% 

and the HIV epidemics involves a complex association between injection drug users, sex 

workers, their sexual partners and men who have sex with men (MSM). Noticeably, there is 

also evidence of a re-emergence of HIV infection among MSM in North America and 

Western Europe [17]. 

In contrast to HIV-1 pandemic, HIV-2 infection is mainly restricted to West African 

countries, such as Guinea-Bissau [14,18], Gambia [19], Senegal [20] and Ivory Coast [21]. 

Notably, an increasing number of dual infections of HIV-1 and HIV-2 have been documented 

in HIV-2 endemic countries, and no evidence has been found of a protective effect of HIV-2 

against HIV-1 infection [22,23,24]. However, recent data indicates that HIV-2 prevalence is 

now decreasing, particularly in regions where the number of cases used to be particularly 

high [23,25,26].  

In Portugal, there were a total of 37201 notified cases of HIV/AIDS infection by the end of 

2009, the majority of which are associated to injection drug usage and heterosexual 

transmission. Over the last five years, the number of new infections is decreasing and 

heterosexual transmission is becoming the most frequent route of infection. Portugal is 

one of the few countries outside West Africa with a significant number of HIV-2 infection 

cases. Indeed, it represents 3.2% of the total notified cases of HIV/AIDS in Portugal [27]. 

 

The origin and genetic diversity of HIV 

Despite being considered human lentiviruses, humans are not the natural hosts of either 

HIV-1 or HIV-2. Compelling evidence has demonstrated that both viruses were introduced 

in human population by the zoonotic transmission of distinct lentiviruses naturally infecting 

non-human primates. While HIV-1 descends from the Simian Immunodeficiency Virus (SIV) 

infecting Pan troglodytes troglodytes chimpanzees (SIVcpz) [28], HIV-2 descends from SIVs 

endemic in Cercocebus torgnatus atys sooty mangabeys (SIVsmm) [29,30]. In fact, it seems 

that SIVs have entered the human population on 12 separate occasions, resulting in 12 

distinct phylogenetic (evolutionary) lineages (groups) of HIV. 



Introduction 

 5 

So far, HIV-1 has been classified into four groups (M, N, O and P). HIV-1 groups M and N 

descend from SIVcpz infecting West Central African chimpanzees communities, particularly 

the ones from Cameroon [31], while HIV-1 groups O and P are more closely related to SIVs 

infecting western lowland gorillas (SIVgor) from the same region [32,33]. Concerning HIV-2, 

a total of 8 groups (A to H) have been described [30,34,35,36]. They all descend from 

SIVsmm endemic in sooty mangabeys inhabiting the West African region [37,38]. 

The development of sophisticated phylogenetic analysis together with the availability of 

increasing number of well-characterized viral sequences, have allowed the possibility to 

estimate, with a reasonable level of confidence, the time when SIV zoonoses occurred 

[39]. Several studies point to the early 20th century as the time for the origin and initial 

spread of epidemic HIV strains [40,41,42,43]. Still, the first documented case of HIV-1 

infection was identified in a blood sample from 1959 stored in the Democratic Republic of 

Congo [44]. Noticeably, a recent study indicates that SIVs have been present in African 

primates for more than 32 000 years, suggesting that SIV transmission to humans may have 

occurred repeatedly over the ages [45]. Exposure to primate blood by bushmeat trade of 

wild animals (hunting, consumption as food source or other related activities) is one 

plausible route for the cross-species transmission [39], and even nowadays constitutes a 

risk for potentially new transmissions [46]. 

Changes in human behaviour like social disruption, urbanization and prostitution, or the 

use of non-sterilized needles might have significantly contributed for the establishment of 

the nascent HIV epidemics [39,43]. The epicentres for the initial spread of HIV-1 and HIV-2 

were probably the West Equatorial Africa and West Africa (respectively), due to the 

greatest diversity of HIV strains that have been co-circulating in these regions over the 

years [39].  

The dissemination of HIV in humans has resulted in the emergence of highly genetic diverse 

HIV strains. Indeed, extensive genetic heterogeneity is one of the key characteristics of 

HIV. Apart from the epidemiological patterns described above, the major mechanisms 

contributing for such variability are the lack of proofreading activity of the reverse 

transcriptase, high rate of replication, host selective immune pressures and recombination 

events during replication. Notably, these variants are unevenly distributed around the 

globe [47,48,49,50].  

The majority of HIV-1 strains found worldwide and responsible for the pandemic belong to 

group M [50]. These strains seem to have efficiently adapted to the new host, spreading 

around the world and generating multiple subtypes. In contrast, HIV-1 group O variants are 

restricted to the West Central African region, particularly in Cameroon, the country where 

also a limited number of group N and group P viruses have been identified [33,47].  
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HIV-1 group M can be divided into 9 subtypes or clades (A, B, C, D, F, G, H, J and K), 

representing phylogenetically linked strains of HIV-1 that are approximately at the same 

genetic distance from each other [48,49] and have arisen from just one cross-species 

transmission event [28,39]. Subtypes A and F can be further separated into sub-subtypes 

A1 – A5, and F1 – F2, respectively [48,49,51]. There are also numerous recombinant forms 

of HIV-1, which have a mosaic genome composed of regions from different subtypes. A 

recombinant form is classified as circulating recombinant form (CRF) if it is documented in 

at least three people without direct epidemiologic linkage. Otherwise it is classified as a 

unique recombinant form (URF) [48]. So far, there were already identified 49 CRFs and 

multiple URFs (Los Alamos Sequence Database, http://www.hiv.lanl.gov).  

The identification of subtypes and CRF is a useful strategy to track the dissemination of 

HIV in the worldwide pandemic [48,49]. Globally, the most prevalent HIV-1 genetic forms 

are subtypes A, B, C, CRF01_AE and CRF02_AG. Subtype A is primarily found in Central and 

Eastern Africa and in Eastern Europe, and subtype B is the main genetic form in Western 

and Central Europe, the Americas and Australia. Subtype C is responsible for 50% of the 

global prevalence and is predominant in India, China, Eastern and Southern Asia. Regarding 

the CRF01_AE and CRF_AG, each account for 5% of all HIV-1 infections worldwide and while 

the former circulates mainly in Southeast Asia, the latter is found in West Africa 

[47,48,49]. In Portugal, the most prevalent HIV-1 genetic forms are subtypes B and G and 

CRF14_BG [52,53,54]. 

As mentioned above, HIV-2 infection is primarily restricted to West Africa. Of the 8 

phylogenetic clades, only HIV-2 groups A and B are considered as endemic [36,39,55], with 

group A being frequent in the western part of West Africa (Senegal and Guine-Bissau and 

Cape Verde) and group B in Ivory Coast [21,56,57,58]. For all other HIV-2 clades, only a 

few cases have been documented, mostly in Sierra Leone and Liberia (groups C–F) [30,34] 

or Ivory Coast (groups G and H) [35,36]. The first recombinant form identified for HIV-2 

was an A/B recombinant isolated in a patient from Ivory Coast [30]. More recently, three 

additional HIV-2 A/B recombinants were identified in Japan [59]. Altogether, these findings 

culminated in the determination of the first CRF for HIV-2, the HIV-2 CRF01_AB [59]. 

HIV-2 group A infection have also been documented in countries sharing socio-historical 

links to West Africa, such as, for example, Portugal and France [55,56,60]. It has been 

proposed that the independence war of Guinea-Bissau against Portugal (1963-1974), and 

the associated blood transfusions and sexual activities at that time, might have facilitated 

the spread of the virus out of West Africa [41,61]. HIV-2 group A is also found in other 

countries with historical and socio-economical ties to Portugal, like Brazil and India 

[26,55,62]. 
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HIV Genome and structure 

HIV-1 and HIV-2 are classified as belonging to the Retroviridae family, the 

Orthoretrovirinae subfamily and the Lentivirus genus [63]. 

HIV is a spherical enveloped virus with a diameter of approximately 110 nm (Figure 1). The 

envelope consists of a lipid bilayer spanned by the transmembrane glycoprotein (TM), 

which is anchored to the outer surface glycoprotein (SU). In the mature virion these 

heterodimers are associated as trimers. The envelope is surrounding internally by a matrix 

protein (MA). Inside the conic shaped viral capsid (CA) there are two identical copies of a 

positive sense single stranded RNA bound to nucleocapsid proteins (NC). The CA also 

encloses the viral enzymes reverse transcriptase (RT), integrase (IN), and protease (PR) 

and the four accessory proteins Nef, Vif, Vpr and Vpu (HIV-1) or Vpx (HIV-2) [64]. 

 

 

 

Figure 1. Schematic structure of the HIV particle. (Adapted from Taveira N, Borrego P, Bártolo I (2008) Biologia molecular de 

VIH. In: Antunes F, editor. Manual sobre SIDA. 3th ed. Lisbon: Permanyer Portugal. pp. 27-50.) 

 

Each RNA molecule is about 9800 nucleotides long and is delimited by long terminal 

repeats (LTR) at both 5’ and 3’ ends (Figure 2). It combines nine genes by the use of all 

three open reading frames. Three genes encode for structural or enzymatic proteins (gag, 

pol and env), two for regulatory proteins (tat and rev) and four for accessory proteins (nef, 

vif, vpr and vpu/vpx). The gag gene encodes the polyprotein precursor Pr55Gag that is then 

cleaved by the PR enzyme into the MA (with a molecular weight of 17 kDa, p17), CA (p24), 

NC (p7) and p6 proteins. This process generates the additional p1 and p2 spacer peptides. 

The pol gene encodes for the RT (p66 and p51 subunits), IN (p31), and PR (p15) enzymes. 

They are produced after PR processes the Pr160GagPol, a polyprotein precursor that is 

synthesized when the reading frame is shifted during the transcription of Pr55Gag. The env 

gene encodes for the glycosylated polyprotein precursor Pr160Env (or Pr140Env in HIV-2), 
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which is cleaved by a cellular protease into the SU (gp120 in HIV-1 or gp125 in HIV-2) and 

TM (gp41 or gp36) glycoproteins [64]. 

 

 

 

Figure 2. Genomic organization of HIV-1 and HIV-2. (Adapted from Taveira N, Borrego P, Bártolo I (2008) Biologia molecular 

de VIH. In: Antunes F, editor. Manual sobre SIDA. 3th ed. Lisbon: Permanyer Portugal. pp. 27-50.) 

 

 

HIV Life cycle 

Generally, the viral life cycle of HIV starts when the SU glycoprotein binds to the main 

receptor, the CD4, present in the cellular surface of the host cell (T-lymphocytes, 

monocytes, macrophages and dendritic cells). This interaction induces conformational 

changes in the SU, whereby the site for binding to a second receptor (co-receptor) 

becomes exposed. In vivo, the major co-receptors of HIV are the CCR5 and CXCR4 

chemokine receptors. Both CD4 and co-receptor binding leads to conformational changes in 

TM glycoprotein that result in the insertion of the fusion peptide of TM into the host 

cellular membrane and, consequently, on the fusion of the viral envelope with the host 

cell. Thereafter, the viral capsid is release into the cytoplasm (reviewed in [64]) (Figure 

3). 

After HIV uncoating, the RT enzyme starts the reverse transcription of viral RNA. In the 

first stage, a single DNA strand is synthesised using one of the two RNA molecules as a 

template and the tRNAlys molecule as a primer. Once the first complementary DNA strand 

(negative strand) is transcribed, the ARNase H subunit of RT enzyme (p51) degrades the 
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RNA template. A new positive DNA strand, complementary to the negative one, is then 

synthesized by the p61 subunit of RT. The double stranded DNA, together with the MA, NC, 

IN, RT and Vpr proteins (plus the Vpx in HIV-2), make the pre-integration complex (PIC), 

which is transported to the nucleus using the cytoplasmatic microtubules network. This 

process is mediated by the IN and Vpr (and Vpx in HIV-2). Still outside the nucleus, the IN 

enzyme digests the 3’ LTR of both DNA strands creating two recessive ends. The IN will 

later use these ends to unite (integrate) the viral DNA into an open region of the host 

chromosomal genome, thus generating a provirus. Proviral DNA can either remain latent 

(silent) in the host cell or be transcribed by the cellular machinery, progressing with the 

viral life cycle [64].  

 

 

Figure 3. The life cycle of HIV. (Adapted from http://www.niaid.nih.gov/topics/HIVAIDS/) 

 

The promoter region within the 5’ LTR mediates the transcription of the proviral DNA. 

Three classes of RNA are obtained: (1) completely spliced mensager RNA (mRNA) 

translating for Rev, Tat and Nef (early transcripts); (2) incomplete spliced mRNA encoding 

for Env, Vif, Vpr and Vpu/Vpx (late transcripts); (3) unspliced and complete mRNA 

molecules that translate for polyprotein precursors Pr55Gag and Pr160GagPol (late transcripts) 

and will be incorporated in the nascent viral particles as genomic RNA. Indeed, proteins 

from early transcripts (Tat and Rev) are required to complete the expression of the later 
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transcripts. Binding of Tat protein to the transactivation response region (TAR), a 

secondary structure downstream the LTR of the nascent RNA, is important for stable and 

efficient elongation of mRNA. The transport of unspliced and incompletely spliced mRNA 

outside the nucleus is dependent on Rev, which binds to the Rev responsive element (RRE) 

in the RNA env region before carrying them to the cytoplasm to be translated [64].  

Once the Env precursor poliproteins are translated, they are glycosylated in the Golgi 

apparatus before they oligomerize in trimers. The polyproteins are, then, cleaved into the 

SU and TM glycoproteins and transported to the cytoplasmatic membrane, where the 

assembly of the viral particles takes place. These particles include the genomic RNA and 

the polyprotein precursors Pr55Gag and Pr160GagPol. They bud from the cell by gemulation of 

the cytoplasmatic membrane, thus acquiring the lipid envelope already containing the 

TM/SU trimers (and some cellular membrane proteins). Finally, the Pr55Gag and Pr160GagPol 

polyproteins are processed into the functional proteins by the PR enzyme [64]. This final 

maturation of the viral particle (virion) occurs outside the host cell (Figure 4). 

 

 

 

Figure 4. Maturation of the virus particle. False-colored image of two HIV virus particles budding from a 

human T cell: (left) the CA protein is still associated with the viral membrane in the immature particle, 

whereas (right) the mature particle has a condensed core inside the virus shell. (Image by Klaus Boller, Paul-Ehrlich-

Institute, Germany; http://www.cell.com/Cell_Picture_Show-hiv) 

 

Several host restriction factors can hinder the retroviral replicative cycle [65]. Among 

these factors are APOBEC3G, TRIM5- and tetherin proteins. APOBEC3G, a member of the 

family of cytidine deaminases that is packaged within viral particles, induces G-to-A 

hipermutation and degradation of the nascent proviral DNA [65,66]. However, the viral 

protein Vif impairs the activity of this enzyme [65,66,67]. TRIM5- is a member of the 

tripartite motif protein family [65,68]. TRIM5- interacts with the viral capsid and blocks 

http://www.cell.com/Cell_Picture_Show-hiv
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uncoating, but its activity is highly dependent on species-specific compatibility [66,68,69]. 

It has been reported that, when compared to HIV-1, HIV-2 is more susceptible to TRIM5- 

but more resistant to APOBEC3G [70]. Tetherin is a recently identified host restriction 

factor that inhibits the release of new viral particles [71]. Vpu and Env proteins can 

neutralize tetherin’s activity in HIV-1 and HIV-2, respectively [71,72]. 

 

HIV Transmission 

The most common routes of HIV transmission include sexual contacts, contaminated blood 

or blood products (medical injections, blood transfusions, injection drug usage) and 

mother-to-child transmission (before, during and after birth or through breast feeding) 

[69]. Still, heterosexual transmission is the most frequent route of HIV-1 infection 

worldwide [17,66]. Several human- and HIV-specific determinants are required for efficient 

viral transmission. 

There is evidence that HIV-1 transmission is directly correlated with the level of virus in 

circulation [73,74]. Moreover, the concentration of HIV-1 in blood and genital secretions 

varies depending on the stage of disease [69,75]. Indeed, increasing rates of HIV-1 

transmission occur during the very early (acute) and later stages of infection (advanced 

disease), the periods when intense viral replication is observed and the highest levels of 

viral load are detected [66,69,75]. Notably, up to 50% of new HIV-1 infections are acquired 

from recently infected patients [76].  

The risk of HIV infection is also influenced by the presence of other sexually transmitted 

diseases, such as syphilis and herpes simplex virus-2. The erosion of skin or mucosa 

resulting from genital inflammation and ulceration can enhance HIV-1 sexual transmission 

[66,69,77], or even increase the concentration of HIV-1 in the genital tract of the infecting 

partner [69]. On the other hand, male circumcision offers a degree of protection against 

HIV-1 acquisition, probably because removing the penile foreskin eliminates an easily 

breached entry portal containing many cellular targets of HIV [66,69,76]. Successful 

antiretroviral treatment also has the potential to prevent HIV transmission, by reducing 

the levels of HIV in blood and genital secretions [78,79]. In addition, research for new HIV 

prevention strategies led to the development of microbicides as topical agents to be 

applied on the vagina or rectum in order to protect from sexually transmitted infections 

(STIs) [80,81]. The impact of this approach in the prevention of HIV transmission has been 

highlighted by the results from the recent CAPRISA trial, which reported the use of 

tenofovir (an antiretroviral agent) in a vaginal gel formulation as a safe and effective 

method that can reduce HIV acquisition by 54% [81]. Nevertheless, on a global perspective, 

better access to healthcare services and behaviour changes (like adoption of safer sex 
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practices), are key strategies to reduce the risk of HIV infection and have a significant 

impact in the shape of the current epidemics [17]. 

Despite using similar routes of transmission, the prevalence rates of HIV-2 are much lower 

than HIV-1 [26,55,62]. As in HIV-1, heterosexual transmission is the most common route of 

HIV-2 infection [27,82], but at significantly lower rates [83]. Mother-to-child transmission 

is a rare event in HIV-2 with rates below 5% when compared to almost 25% in HIV-1, in the 

same untreated population [26,84]. The reduced transmissibility of HIV-2 is probably linked 

to the markedly lower plasma viremia [25,84] and reduced viral shedding in the genital 

tract [62,79]. 

A number of genotypic and phenotypic evidence support the active selection of specific 

variants during HIV-1 transmission [76]. Newly infected individuals acquire only a limited 

number of variants (1-10) circulating in the source donor (bottleneck effect), the majority 

of which are only able to use the CCR5 coreceptor [85]. This is observed either in sexual or 

percutaneous routes of infection. Although the mechanisms underlying these observations 

are not totally clear, it seems that the availability, infectability and spatial distribution of 

early target cells might severely limit the variability of the initial viral population 

(reviewed in [76]). This should be particularly true in mucosal transmission where a small, 

focal infected founder population of cells expands locally before posterior dissemination 

and systemic infection [86]. HIV then evolves away (diverge) from the founder virus as 

soon as anti-HIV humoral and cellular immune responses arise after exposure (usually takes 

several weeks) [66]. 

 

HIV Pathogenesis 

The course of HIV infection can be divided into four stages: the acute phase (primary 

infection), the chronic asymptomatic phase, the early symptomatic phase and AIDS [87]. 

The acute phase is characterized by intense viral replication and massive loss of CD4+ T 

cells that takes place mainly in mucosal tissues, particularly in the gut [88]. At the early 

stages of infection, HIV transmission across the mucosal epithelial layers is enhanced by 

dendritic cells (DC) present at the lamina propria. This is where productive viral 

replication initially occurs mostly in memory CD4+ T cells. DCs also seem to contribute for 

HIV dissemination to draining lymph nodes and secondary lymphoid tissue throughout the 

organism (e.g. the gut-associated lymphoid tissue), where high levels of activated CD4+ T 

cells are present (reviewed in [66,89,90]). CD4+ T cell depletion is a combination of direct 

viral infection, activation-induced cell death and host-derived cytotoxic responses [91]. 

The integrin 47 mediates the migration of T cells to the gut-associated lymphoid tissue 

and is coexpressed with the CCR5 coreceptor in a small subset of metabolically activated 
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CD4+ T cells, in which it appears in a complex with CD4 [92,93]. Notably, this integrin is 

also an HIV-1 receptor [93]. Binding of HIV-1 gp120 to integrin 47 seems to facilitate cell-

to-cell spread of HIV-1 and may enhance viral propagation following mucosal transmission 

[92,93]. 

The majority of HIV-infected individuals develop flu-like symptoms (acute HIV syndrome), 

approximately two to four weeks following the transmission of the virus. Seroconversion, 

with detection of specific anti-HIV antibodies, usually occurs within 3 to 12 weeks after 

exposure. Among the first antibodies detected are those directed against the viral capsid 

(p24) [87,94]. Plasma viremia (or viral load) typically peaks at three to four weeks after 

infection and then decreases to a steady state (viral set-point) [66], due to HIV-specific 

cytotoxic T lymphocyte (CTL) responses and humoral responses (neutralizing antibodies) 

[89]. The viral set-point marks the beginning of the chronic stage and is an important 

determinant on the rate of disease progression in untreated patients [66,95] (Figure 5).  

 

 

 

Figure 5. The clinical and laboratorial course of untreated HIV-1 infection. (Adapted from Daskalakis D (2011) HIV 

Diagnostic Testing: Evolving Technology and Testing Strategies. Top Antivir Med. 2011;19(1):18-22) 

 

The chronic phase is the asymptomatic stage of HIV infection that lasts on average 

between 8 to 10 years in HIV-1 (it can be much longer in HIV-2) [70,96]. It is a period of 

clinical latency (silent infection) characterized by low levels of viral replication in the 

lymphoid tissue (viral reservoir) and constant antigen stimulation of the host immune 

system (immune activation) [96]. Persistent immune activation is manifested by increased 

turnover of T cells, monocytes and natural killer (NK) cells, high levels of CD4+ and CD8+ T 

cell apoptosis and polyclonal B cell activation which leads to generalized 

hipergammaglobulinemia (reviewed in [91]). It should be noted that in HIV-2 patients IgA 
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levels are not increased suggesting a selective B cell activation [97]. Chronic immune 

activation, which is a strong predictor of HIV disease progression, will eventually lead to 

the exhaustion of the immune system and occurrence or reactivation of opportunistic 

infections (e.g. candidiasis, pneumonia and tuberculosis) and development of neoplasic 

diseases (Epstein-Barr virus-related lymphomas, Kaposi’s sarcoma, etc) [66,87,96]. Clinical 

manifestations of these co-infections mark the onset of the early symptomatic phase [87]. 

In untreated patients, progression to AIDS occur by continuous loss of CD4+ T cells and 

rising viremia, as a consequence of intensifying viral replication from viral reservoirs and 

latently infected CD4+ T cells [66,96]. Ultimately, the level of CD4+ T lymphocytes drops 

below 200 cells/ml, defining the beginning of the AIDS stage [87,96]. 

Despite having similar proviral loads (n. of proviral DNA copies in PBMCs), at the same 

disease stage [70,98,99], HIV-1 and HIV-2 infections lead to very different immunological 

and clinical outcomes. Compared to HIV-1 infected patients, the majority of HIV-2 infected 

individuals have reduced general immune activation, normal CD4+ T cell counts, low or 

absent plasma viremia and absence of clinical disease [55,70,99,100,101,102]. Indeed, HIV-

2 infection is characterized by slow disease progression, long survival and reduced 

mortality rates [55,70,100,103,104,105,106]. These observations might be a consequence 

of the lower replication capacity of HIV-2 [107,108] and more effective immune response 

produced against HIV-2. In fact, most HIV-2 infected individuals have strong cytotoxic 

responses to Env and Gag proteins and raise autologous and heterologous neutralizing 

antibodies [55,109,110,111,112,113]. The lower state of immune activation in HIV-2 

patients may be related with the immunosuppressive activity of the C2, V3, and C3 

envelope regions of HIV-2 [19,20,21]. Nevertheless, with disease progression CD4+ T cell 

depletion becomes similar in HIV-1 and HIV-2 infections [102,114], most of the 

immunological differences are lost and the mortality risk is equivalent [55,70,105,106]. 

 

HIV ENVELOPE 

Molecular and structural organization of the viral envelope 

Viral entry into host cells is mediated by the envelope SU and TM glycoproteins, which are 

encoded by the env gene. These glycoproteins are attached by a noncovalent association 

and are assembled as trimers [3x(SU/TM)], representing up to 14 functional spikes on the 

surface of the mature virion [115,116].  

The SU glycoprotein is composed by five hypervariable regions, V1 to V5, separated by five 

more conserved regions, C1 to C5 (Figure 6). Hypervariable regions tend to form loops, 

stabilized by disulfide bridges. In its native trimeric conformation, SU has two domains, 
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one internal, hydrophobic in nature, and one external. After binding to the CD4 receptor, 

a major structural change occurs and a bridging sheet is formed between the V1/V2 stem 

and 20/21 in C4. While both the external domain and bridging sheet are involved in the 

interaction between the SU and the cellular receptors (CD4, CCR5 and/or CXCR4), the 

internal domain is essential for SU–TM association [64,115,117,118,119]. Also, interaction 

between SU and the integrin 47 gut-homing receptor is mediated by a conserved motif in 

the V2 loop of the bridging sheet [93]. Numerous glycosylation sites as well as major 

antigenic determinants, including neutralizing epitopes, can be found on the external 

domain [64,115,118,120]. 

The TM glycoprotein consists of one extracellular ectodomain, one transmembrane region 

and one intracytoplasmatic domain (Figure 6). The fusion peptide, at the hydrophobic N-

terminal end of the ectodomain, is followed by two -helices containing leucine zippers-

like motifs: heptad repeats 1 and 2 (HR1 and HR2, respectively). Separating these heptad 

repeats, there is a small loop defined by cysteine residues (CC, cysteine bridge). HR1 and 

HR2 contain repeated patterns of seven residues and are arranged as trimers. The fusion 

peptide and both HR1 and HR2 play a significant role on the fusion of the viral envelope 

with the host cellular membrane. On the other hand, the intracytoplasmatic domain 

mediates the binding of the envelope to the MA protein, during the maturation of new viral 

particles [64,115,117,121]. 

 

 

 

Figure 6. Schematic representation of SU and TM envelope glycoproteins. The SU glycoprotein is composed 

by five conserved (C1 to C5) and five variable (V1 to V5) domains. The TM glycoprotein contains the N-terminal 

fusion peptide (FP), two heptad repeats (HR1 and HR2), one transmembrane region (TM) and the 

intracytoplasmic domain. The figure is numbered according to the HIV-1 JR-FL isolate. (Adapted from Taveira N, 

Borrego P, Bártolo I (2008) Biologia molecular de VIH. In: Antunes F, editor. Manual sobre SIDA. 3th ed. Lisbon: Permanyer Portugal. pp. 27-50.) 

 

Mechanism of HIV entry 

The process of HIV entry generally involves three sequential steps occurring on the surface 

of the target cell: (1) binding of the SU glycoprotein to the CD4 receptor, (2) binding of the 

SU to the CCR5 and/or CXCR4 coreceptor and, finally, (3) fusion of the viral envelope with 

the cellular membrane (Figure 7). The mechanisms underlying these stages will be 

described in the next sections, and they characterize viral spread driven by cell-free 
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virions. Alternatively, HIV can disseminate through cell-to-cell contact using either viral 

synapses or membrane nanotubes [122,123].  

 

 

Figure 7. Model of the multi-step process of HIV entry. (Adapted from Tilton JC, Doms RW (2010) Entry inhibitors in the 

treatment of HIV-1 infection. Antiviral Res 85: 91-100.) 

 

Interaction with the CD4 receptor 

The CD4 receptor is a transmembrane protein with 58 kDa that exists on the surface of 

several cell lines, like T cells, monocytes, macrophages and DCs [64]. As mentioned above, 

it is often found in a complex with the integrin 47 in activated CCR5high/CD4+ T cells in 

the gut compartment [92,93]. Four domains compose the extracellular region of CD4, D1 to 

D4. Attachment to the viral SU glycoprotein occurs at the CDR2 sub-region, one of the 

three sub-regions of D1 domain [64]. 

Electrostatic forces are responsible for the interaction between CD4 (positive charge) and 

the SU (negative charge), which is stabilized by Van der Walls forces and hydrogen bonds 

[117]. This interaction promotes conformational changes in the SU, leading, as previously 

stated, to the formation of the bridging sheet and increasing the exposure of V1, V2, V3 

and C4. This results in the approximation of the viral envelope and the cellular membrane 

and the subsequent interaction of V3 with the coreceptor [64,115,121,124,125]. 

 

Interaction with the coreceptor 

In vivo, the major coreceptors for HIV entry are the CCR5 and CXCR4 G-protein coupled 

receptors that function as the natural receptors for  and  chemokines [64,118]. These 

receptors are integral membrane proteins with seven transmembrane helices, an 

extracellular N-terminus and three extracellular loops (ECLs) that form a small pocket 

[118]. CCR5 is predominantly expressed on the surface of memory T lymphocytes, 

activated T lymphocytes and macrophages, while CXCR4 is mainly found in T lymphocytes, 

monocytes, DCs and B lymphocytes [126].  
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Upon SU – CD4 binding, the viral V3 loop is projected into closed proximity to the cellular 

membrane where it can interact with the coreceptor [125]. Interaction with the viral SU 

involves two coreceptor regions. Initially, the N-terminal region binds to the SU core and 

the base of the V3 loop, and then the second extracellular loop (ECL2) binds to the V3 tip 

[125,127,128]. While both coreceptor regions are necessary for successful cell entry by 

variants using the CCR5 coreceptor, only ECL2 seems to be critical for CXCR4 usage 

[129,130,131].  

 

Fusion 

Attachment of SU to CD4 and coreceptor promotes the approximation of the viral envelope 

and the cellular membrane and structural rearrangements of the TM glycoprotein. As a 

result, the fusion peptide becomes exposed and is inserted into the cytoplasmatic 

membrane, thus creating a prehairpin intermediate configuration of TM 

[132,133,134,135,136]. Notably, this intermediate state can be initiated by CD4 binding 

alone, but binding of a coreceptor enhances the process [137]. Then, the HR2 trimer folds 

back on an anti-parallel fashion towards the HR1 trimer, forming a six-helix bundle 

structure (6HB; final hairpin state) stabilised by the hydrophobic interactions between the 

HR1 domains in the center (central coiled-coil) and the HR2 domains outside. During this 

process, the viral envelope and the cellular membrane are brought together, leading to 

the formation of the fusion pore, through which the viral capsid enters the target cell 

[132,133,134,135,136] (Figure 8). 

An alternative model of cell free HIV-1 cell entry is via the endocytic pathway [138]. Time-

resolved imaging of single viruses and differential blocking of fusion by site-specific and 

universal inhibitors revealed that fusion with the cytoplasmatic membrane at the cell 

surface did not progress beyond the lipid mixing step [139]. Instead, HIV-1 was internalised 

upon CD4 and coreceptor interaction and complete fusion occurred only in endossomal 

compartments, leading to productive infection. Nonetheless, further studies are still 

needed to confirm the incidence and biological relevance of this pathway in HIV infection. 

 

 

Figure 8. Model of the envelope glycoprotein-mediated membrane fusion. (Adapted from Weiss CD (2003) HIV-1 gp41: 

mediator of fusion and target for inhibition. AIDS Rev. 2003 Oct-Dec;5(4):214-21.) 

javascript:AL_get(this,%20'jour',%20'AIDS%20Rev.');
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Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion have elucidated 

some differences observed in the mechanism of entry of these two viruses. Despite, higher 

affinity of gp120 (HIV-1) than gp125 (HIV-2) to the CD4 receptor [140], Env-mediated fusion 

seems to be more rapid in HIV-2 than HIV-1 [141]. This difference might be explained by 

distinct efficiencies of CD4-induced conformational changes of gp120 and gp125. In the 

context of the trimeric SU/TM glicoproteins, the rate at which coreceptor binding site 

becomes exposed after CD4 binding is faster in gp125 [141]. In fact, several HIV-2 strains 

have the ability to infect cells via CCR5 and CXCR4 but independently of CD4 [142], 

indicating that in its native state the HIV-2 envelope gp125 may adopt a CD4–induced 

conformation of gp125 that is stabilized (constricted) by interactions between the cysteine 

residues of the V1/V2 regions in the hydrophobic cavity of this glycoprotein [140]. 

 

Cell-to-cell viral entry 

Dissemination through cell-free virions is particularly advantageous for inter-host 

transmission and for viral spread between different compartments within each host. 

However, to efficiently infect a new cell, viral particles must overcome a number of 

biophysical (e.g. distance to the next cell) and immunological barriers (e.g. neutralizing 

antibodies). Cell-to-cell spread provides a fast and direct route of virus transmission that 

overcomes these barriers [122,123]. At least in vitro, HIV-1 infection by cell-to-cell 

contacts seems to be more efficient than by cell-free virus [143,144], but coreceptor 

antagonists and fusion inhibitors can efficiently inhibit both pathways at the nanomolar 

range [145,146,147,148,149]. 

Spreading of HIV-1 through cell-to-cell contact occurs via syncytia formation, viral 

synapses or membrane nanotubes. Syncytia results from fusion of HIV infected cells with 

adjacent cells and results in the formation of one multinucleated giant cell (see below). 

However, the relevance of syncytia formation for viral spread in vivo is still unclear [122]. 

In a virologic synapse, the HIV envelope glycoproteins expressed on the surface of the 

infected cells interact with the CD4 and CCR5/CXCR4 receptors of the target cell. 

Additional molecules stabilize this adhesive junction; e.g. the intercellular adhesion 

molecule 1 (ICAM1), on the infected cell, attaches with the lymphocyte function-associate 

antigen 1 (LFA1) on the target cell. Importantly, the recruitment of the cellular receptors 

and adhesion molecules requires the remodelling of the actin cytoskeleton. Viral assembly 

and budding are then polarized towards the viral synapse and virus is released into the 

synaptic cleft before fusing with target cell plasma membrane [150].  

The virologic synapse seems to be an important mechanism of compartmentalized viral 

amplification [122] and of early viral spread from the mucosal surfaces to secondary 
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lymphoid tissue (between DCs and T cells) during mucosal virus transmission [151] (Figure 

9). Recent data indicates that virologic synapses favours the endocytic entry of HIV [146]. 

 

 

 

Figure 9. Virologic synapse. A dendritic cell (left) presents HIV (green) to primary T cells (right) in an 

infectious synapse. (Image by David McDonald and Thomas Hope, Case Western University and Northwestern University; 

http://www.cell.com/Cell_Picture_Show-hiv) 

 

Alternatively, HIV-1 is also effectively transferred between T cells connected by membrane 

nanotubes [122,123]. The virus moves along the outside of nanotubes before attachment to 

the receptors of the target cell [152]. Such mode of transmission might be particularly 

efficient in secondary lymphoid tissue, which is full of susceptible target T cells [122]. 

To date, cell-to-cell transmission has only been described to HIV-1. It is still unclear 

whether HIV-2 uses these mechanisms with the same efficiency as HIV-1. 

 

Coreceptor usage, pathogenesis and disease progression 

As mentioned above, CCR5 and CXCR4 are the most important coreceptors in the 

pathogenesis of HIV infection in humans. R5 HIV viruses use CCR5 as a coreceptor for viral 

entry, while X4 viruses use CXCR4. Variants using both CCR5 and CXCR4 with equal 

efficiency are called dual-tropic (R5X4); the term dual/mixed (D/M) is applied to a mixed 

population of viruses using CCR5 and CXCR4 [126,153]. In contrast to HIV-1, in vitro studies 

show that some HIV-2 isolates may enter into cells using multiple alternative co-receptors 

besides CCR5 and CXCR4 (CCR1, CCR2b, CCR3, BOB) [126,142,154]. However, such a 

broader range of coreceptor usage does not appear to be associated with pathogenicity of 

HIV-2 [155,156]. 

http://www.cell.com/Cell_Picture_Show-hiv
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Generally, R5 viruses are characterized by having slow/low replication rates and by not 

inducing syncytia [126,153,157,158]. In contrast, X4 strains are syncytia inducing and have 

rapid/high replication patterns. R5 strains are frequently isolated in the acute and 

asymptomatic stages of infection, while X4 variants usually emerge at latter stages of 

infection. The evolution for X4 phenotype occurs in about 50% of HIV-1 infected patients, 

with decreasing CD4+ T cell counts and progression to AIDS [153]. Nonetheless, R5 strains 

can still persist in advanced stages of disease and be responsible for CD4+ T cells depletion 

in the absence of X4 variants [159,160]. Notably, for HIV-1, X4 variants are more sensitive 

to neutralization than coexisting R5 variants, which may contribute to the late emergence 

of X4-tropic viruses [161]. In contrast, X4 HIV-2 isolates are more resistant to 

neutralization and the emergence of the X4 strains in vivo seems to be related with escape 

from the neutralizing antibodies targeting the V3 region [113]. Indeed, besides being an 

important immunodominant region in HIV, inducing the production of neutralizing and non-

neutralizing antibodies [97,113,162,163,164,165,166], the V3 loop is also a major 

determinant of CCR5 or CXCR4 coreceptor usage. The global charge of the V3 region is a 

good predictor of CCR5/CXCR4 usage [167]. Increasing the V3 loop charge, by the presence 

of positively charged residues (R, K or H) at specific positions of the V3, is correlated with 

CXCR4 usage. In HIV-1 the relevant residues are at positions 11, 24 and 25, whereas in HIV-

2 positions 18, 19 and 27 seem to be the most important [111,127,168,169,170,171]. 

Notably, V3 loop subtype-specific conformation differences or truncations within this 

region, influence coreceptor interaction and sensitivity to CCR5 inhibitors (reviewed in 

[172] for HIV-1 and [97,113,169] for HIV-2). The glycosylation pattern of the V3 and V1/V2 

regions may also influence the coreceptor use of HIV-1 [173,174,175,176], but its impact 

on HIV-2 is still unclear [111]. Other regions beyond the V3 loop, and including the fusion 

peptide and the cytoplasmic tail of the TM glycoprotein, may also be important 

determinants of R5 to X4 switch in HIV-1 [176,177,178,179]. 

The CCR5 and/or CXCR4 coreceptor use of HIV-1 can be predicted by genotypic and 

phenotypic tests, currently available for both research and clinical use (when therapy with 

maraviroc is planned, see below). Common genotypic tropism inference tools are 

Geno2pheno[coreceptor] [180], WetCat [181] and WebPSSM [182]; the commercial TROFILE 

assay (Monogram Biosciences, USA) is the standard phenotypic tropism test used in clinical 

practice [183,184]. However, these tests are specific for HIV-1; similar tools designed for 

the prediction HIV-2 coreceptor usage haven’t been developed yet. 
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HIV entry inhibitors 

The introduction of highly active anti-retroviral therapy (HAART), a combination of three 

or four anti-HIV drugs, significantly decreased the morbidity and mortality of HIV infected 

patients. However, despite quick advances in the treatment of AIDS, several factors like 

drug resistance, limited patient adherence or drug-induced toxicity, have motivated the 

ongoing research for new molecules and targets of therapeutic intervention [185,186]. 

One decade ago, the available anti-HIV agents were classified into four groups: nucleoside 

reverse transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors 

(NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors 

(PIs) [187]. However, with increasing knowledge about the molecular mechanisms 

underlying the HIV entry process, the inhibition of viral entry has become one of the most 

attractive approaches in the research for new anti-HIV molecules. Enfuvirtide (FUZEON, 

Roche, Switzerland; T-20) was approved for clinical use in 2003 and represented the first 

agent of a new class of anti-HIV drugs, the entry inhibitors [188]. Four years later, 

maraviroc (SELZENTRY, Pfizer, USA; MVC) received the approval by the Food and Drugs 

Administration (FDA), USA, and joined T-20 at this new class [189]. As of 2007, the 

integrase inhibitor raltegravir (ISENTRESS, Merck, USA; RAL) has also been added to the 

anti-HIV therapeutic arsenal [190].  

Entry inhibitor molecules can be classified in four groups according to the step of viral 

entry that they target: inhibitors of the SU-CD4 interaction, CCR5 antagonists, CXCR4 

antagonists and fusion inhibitors [118,191]. T-20 is a fusion inhibitor, while MVC is a CCR5 

antagonist. 

 

Inhibitors of gp120-CD4 interaction 

Several strategies have been pursued in order to block the interaction between SU and 

CD4. So far none has resulted in a clinical useful anti-HIV drug. One of the earliest was the 

development of recombinant soluble CD4 (rsCD4) molecules, which function as molecular 

decoys inhibiting the ability of SU to attach to cell-associated CD4. Despite good activity in 

vitro against lab-adapted HIV-1 strains, in vivo the levels of rsCD4 were too low to inhibit 

primary isolates [192]. Another example of a molecule that mimics the CD4 receptor is the 

PRO-542, a tetravalent CD4-IgG2 fusion protein in which the heavy and light chains in the 

variable domain of IgG2 were replaced by the D1 and D2 domains of the human CD4 

receptor [193,194]. Preliminary results supported the development of PRO-542 for salvage 

therapy of advanced HIV-1 disease [195], but only modest reductions in HIV-1 viremia were 
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observed in phase I and II clinical trials. No further studies are currently ongoing for this 

molecule [191].  

BMS-488043 is a small-molecule that binds with great affinity to SU and seems to prevent 

the CD4-induced conformational changes in SU [196,197]. It has strong antiviral activity 

against HIV-1 but not against HIV-2 or SIV [197,198] and the development of this molecule 

stopped at phase II trials.  

Ibalizumab (TNX-355) is an anti-CD4 monoclonal antibody that binds to the D2 domain of 

CD4 [199]. It acts as a post-attachment inhibitor such that instead of preventing SU-CD4 

binding it seems to decrease the flexibility of CD4 and hinder the access of CD4-bound SU 

to HIV coreceptors [191]. Promising results were obtained in vivo, leading to significant 

decrease of viremia and increase of CD4+ T cell counts in combination with an optimized 

background therapy [200]. Additional studies for this compound are being prepared [191]. 

 

CCR5 antagonists 

The observation that 32-CCR5 mutation confers resistance to HIV-1 infection in 

homozygous individuals (or delayed rates of disease progression in heterozygous patients) 

without significant clinical impact, has encouraged different approaches of 

pharmacological blockade of the SU-CCR5 interaction in an effort to inhibit HIV infection 

[118].  

CCR5 antagonists can be divided in three groups according to the size of the molecule: 

large molecules, such as the PRO-140, an anti-CCR5 monoclonal antibody; medium size 

molecules, e.g. AOP-RANTES and PSC-RANTES, derivatives of RANTES, a CCR5 natural 

ligand; and small-molecules, like TAK-779, MVC and vicriviroc [118,201]. PRO-140 is a 

strong inhibitor of HIV-1 B and non-B subtypes and is currently on phase II clinical trials 

[201]. Natural occurring ligands of CCR5 receptor block HIV infection but have a potential 

undesirable agonist activity on CCR5. RANTES derivatives have been developed in order to 

maintain anti-HIV activity while reducing the agonistic effects on CCR5. PSC-RANTES is now 

being tested as a microbiocide [118]. Small molecules block the CCR5 coreceptor, 

hindering the SU-CCR5 interaction, and have demonstrated potent inhibition of HIV-1 

replication in vitro [191]. TAK-779 was one of the first compounds of this group [202]. It 

binds to residues lining a cavity formed by the 1, 2, 3 and 7 transmembrane helices of 

CCR5 ECLs [148]. It is highly selective to CCR5 and is a potent antiviral agent, but its 

clinical development was discontinued due to high toxicity [201,203]. Vicriviroc (SCH-D) is 

an orally bioavailable second-generation compound (based in a previous molecule, SCH-C) 

highly active against a large spectrum of HIV-1 primary isolates, that has progressed to 

phase III clinical trials [118,204,205]. However, vicriviroc didn’t achieve the primary 
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efficacy endpoint of these studies and it was decided not to pursue for regulatory 

approval. Further development of vicriviroc was suspended. 

As mentioned above, MVC is the only coreceptor antagonist approved for clinical use in HIV 

infection. MVC acts as a functional antagonist of CCR5. It inhibits the binding of the CCR5 

natural ligands (like, MIP-1, MIP-1 and RANTES), blocks chemokine-induced signal 

transducing events and once bound to CCR5 it doesn’t trigger the release of intracellular 

calcium and fails to induce CCR5 internalization [145]. MVC interacts with residues lining a 

cavity formed by the by the 2, 3, 6 and 7 transmembrane helices of CCR5 ECLs [206]. MVC 

has potent antiviral activity (in the nanomolar range) against HIV-1 groups M and O [145] 

and occupies physically and functionally the coreceptor for a prolonged period, which 

might explain the delayed recovery of viral replication once the drug is discontinued in 

MVC treated patients [207,208]. 

MVC is administered orally twice daily and in combination with other antiretroviral agents 

for the treatment of HIV-1 infection in treatment-experienced patients infected with 

CCR5-tropic viruses. Twice daily dosing regimens include 2x150 mg (when co-administrated 

with potent CYP3A inhibitors, e.g. PIs, except Tripanavir/Ritonavir), 2x300 mg (with drugs 

that are not potent CYP3A inhibitors or CYP3A inducers, e.g. NRTIs), and 2x600 mg (with 

potent CYP3A inducers, e.g. efavirenz) [209]. MVC is only active against viruses using 

exclusively the CCR5 coreceptor [145]; therefore it is necessary to test for coreceptor 

usage before starting therapy [210]. The efficacy of MVC was confirmed in a pair of phase 

III clinical trials, MOTIVATE 1 and 2 [211,212]. Only patients infected exclusively with R5 

viruses, as screened by the phenotypic Trofile assay, with viremia above 5000 copies/ml 

and failing previous triple-class treatment were enrolled in these studies. Significant 

increase of CD4+ T cell counts and reduction of plasma viral load to undetectable levels (< 

50 copies/ml) were observed in the MVC arms when compared to the placebo arms of the 

studies. MVC has also shown equivalent activity to efavirenz in treatment-naive patients 

(MERIT clinical trial) [213]. 

 

Resistance to CCR5 antagonists 

Escape from or resistance to CCR5 antagonists usually occur through two primary 

pathways: emergence of X4-tropic variants or the adaptation of viruses to use the CCR5 

coreceptor in the presence of the antagonist [214]. 

In vivo, the most common mechanism associated with treatment failure is the expansion of 

pre-existing CXCR4-using variants, which were not previously identified by the tropism test 

at baseline nor completely suppressed by other drugs of the regimen [214]. Close to 55% of 

the subjects failing MVC therapy in the MOTIVATE 1 and 2 trials, presented D/M or X4 
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viruses [211]. Rapid shifts in the viral population towards CXCR4-using strains were also 

associated with high levels of resistance against vicriviroc [215]. Nevertheless, the 

circulating variants tend to revert to R5-tropic viruses upon MVC’s therapy cessation [216], 

suggesting that those transitional X4 strains and D/M populations carry a fitness cost in 

vivo [217]. The emergence of CXCR4-using variants promoted by CCR5 antagonists could, at 

least theoretically, accelerate disease progression. However, there is not enough evidence 

presented to date by clinical studies that would support such concern [214,217].  

Evolution to MVC resistance in R5 variants has also been documented. These viruses can 

entry into cells by using the antagonist-bound form of CCR5 as well as the free coreceptor 

(reviewed in [214,218]). This fact results in a plateau effect of the dose-response curve, 

since increasing drug concentrations has no impact on viral replication, and is consistent 

with a non-competitive mechanism of resistance. Additionally, there is evidence that 

altered CCR5 use may evolve during the course of HIV-1 infection such that R5 variants 

isolated from late-stage disease (and with lower levels of CD4+ T cell counts) have reduced 

susceptibility to inhibition by CCR5 natural ligands and entry inhibitors, like the CCR5 

antagonists [219,220]. Similar results were obtained with RANTES in HIV-2 [221]. These 

observations have motivated new clinical studies designed to evaluate the potential 

clinical benefit of starting therapy at earlier disease stages [118]. 

The resistance to CCR5 antagonists is usually, but not exclusively, dependent of the 

accumulation of amino acid changes on the V3 region, although with no consistent pattern 

between patients (reviewed in [214]). In addition, V3 loop truncations leads to resistance 

to CCR5 antagonists in both HIV-1 and HIV-2 [222,223]. Sequence changes can directly or 

indirectly modify the conformation of the V3 loop; resistance seems to result from an 

altered use of the CCR5 coreceptor, in a way that the V3 loop crown may no longer be 

needed to interact with the ECL2 of CCR5 to mediate infection [214]. Noticeably, however, 

R5 HIV-1 isolates resistant to CCR5 antagonists can exhibit enhanced sensitivity to 

neutralizing antibodies [222,224], hence one can expect that there might be additional 

selective pressures in vivo (e.g. the humoral immune response) that limit the sequence 

changes that can be tolerated during escape from these entry inhibitors, without 

compromising viral fitness or replication capacity [214]. 

 

CXCR4 antagonists 

While there are numerous CCR5 antagonists with different structures, the number of 

CXCR4 antagonists available is more reduced and their structure is similar to AMD3100, one 

of the first small molecules of this group to enter in clinical trials [225,226]. Despite strong 

activity against X4 strains in vitro, the clinical development of AMD3100 was discontinued 
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due to cardiac abnormalities [225,227]. Interestingly, however, one side effect noted was 

increased release of CD34+ pluripotent stem cells from the bone marrow into the blood. 

This led to the development of AMD3100 as a hematopoietic stem cell mobilizer 

(plerixafor; MOZOBIL, Genzyme, USA) [118,191].  

Subsequent studies resulted in the identification of AMD070, a compound orally 

bioavailable with similar antiviral activity to AM3100 [228]. However, this molecule is no 

longer being developed due to results of abnormal liver histology in preclinical studies. 

Toxicities of these two compounds have raised the concern of the long-term safety of 

targeting CXCR4, since this coreceptor seems to be important for multiple physiological 

processes [118,191]. Like SDF-1, the CXCR4 natural ligand, these antagonists are positively 

charged and of basic nature. They bind strongly to the negatively charged surface of the 

coreceptor, hampering its’ interaction with the SU glycoprotein [229]. AMD3100 and 

AMD070 bind to the ECL2 of CXCR4 [201,230]. 

Noteworthy, the blockade of CXCR4 results in the shift from X4 to R5 phenotype in HIV-1 

primary isolates [231].  

 

Fusion inhibitors 

Peptides derived from HR1 and HR2 sequences in the TM glycoprotein can inhibit HIV 

infection by competitive binding to their complementary regions. T-20 (former DP-178) and 

C34 were among the first fusion inhibitors developed in the 1990s [147,232,233], and since 

then peptide fusion inhibitors have been extensively exploited [149]. T-20 (36 amino acids) 

and C34 (34 amino acids) are linear peptides that mimic the HR2 sequence and inhibit virus 

entry by binding to the HR1 core, exposed at prehairpin intermediate state of TM, thereby 

blocking the subsequent formation of the six-helix bundle structure and viral fusion 

[132,233,234,235] (Figure 10). They inhibit both virus-cell fusion and cell-to-cell contact at 

the nanomolar range [147,232,233]. Although C34 displays stronger antiviral activity than 

T-20, the poor solubility of C34 under physiological conditions hindered its potential as a 

drug candidate [149]. The sequence of T-20 corresponds to amino acids 638-673 of the HIV-

1 LAI isolate [147,232]. T-20 binds to HR1 but, in contrast to C34, it doesn’t form a 6HB 

with the HR1 regions. The mechanism of action of T-20 seems to involve also the 

interaction with lipids of the target cell membrane [234,236]. T-20 inserts into the 

external layer of the cell plasmalemma, preferentially in fluid phase lipid membranes, and 

can reach local high concentrations. This way, cell membranes act as T-20 reservoirs, 

enabling direct contact of the peptide with its gp41 target region, thereby favouring its 

inhibitory activity. Noticeably, cell membranes also play a role in the mode of action of 
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second (e.g. T-1249) and third generation fusion inhibitor peptides (e.g. Sifuvirtide) 

developed latter [237,238]. 

As mentioned above, T-20 was the first entry inhibitor approved for clinical use, under the 

generic name enfuvirtide. It is indicated, in combination with other antiretroviral agents, 

for the treatment of HIV-1 infection in treatment-experienced patients with evidence of 

viral replication despite ongoing HAART [239]. The recommended dosage is 90 mg twice 

daily by subcutaneous injection. Phase III clinical trials (TORO 1 and 2) confirmed the 

efficacy of T-20 when combined with an optimized based regimen in HIV-1 infected 

patients failing previous treatment [240,241]. Co-administration of T-20 has even 

significantly improved the response rates to newer agents like MVC [191,211]. There is, 

however, considerable variability (up to 500 fold) in the T-20 sensitivity of HIV-1 primary 

isolates within subtypes B and non-B [242,243,244]. This variability can be explained by 

the genetic heterogeneity of Env in the HR1/HR2 regions of TM and also in the V3 region of 

SU [244]. In fact, it has been suggested that the genetic variability of HR1/HR2 regions 

between HIV-1 and HIV-2, especially between the 36-45 codons of HR1, is responsible for 

the lack of activity of T-20 observed on HIV-2 [245,246]. 

Second generation peptides were developed based on the consensus sequences of HIV-1, 

HIV-2 and SIV strains. In addition, these new peptides were designed to include different 

functional domains of HR2 region: the pocket-binding domain (PBD), the HR core (3HR) and 

the lipid-binding domain (LBD) [235] (Figure 10). T-1249 is a representative second 

generation peptide with 39 amino acids that contains the three regions (PBD-3HR-LBD) and 

has potent activity against both HIV-1 and HIV-2 [247,248]. The stronger antiviral activity 

of T-1249 over T-20 and C34 is attributed to the inclusion of the multiple functional 

domains, since C34 only contains the PBD-3HR segment and T-20 the 3HR-LBD [234]. It is 

even active against most T-20- resistant variants [248,249]. However, the disadvantage of 

longer peptides like T-1249 might be the production cost and reduced delivery efficiency 

[235]. In fact, the clinical development of T-1249 was halted after phase I/II clinical trials 

apparently due to formulation issues [250]. 

The main limitations of peptide fusion inhibitors are their high production cost and poor 

bioavailability. T-20 has a short half-life because it is easily degraded by proteolytic 

enzymes in the blood. Consequently, it must be administered subcutaneously twice a day, 

causing adverse reactions at the site of injection in the majority of the patients [239]. 

Additionally, being therapeutic proteins, one can speculate that anti-drug antibodies might 

develop during peptide therapy and reduce its clinical efficacy [251,252]. Though, the 

antigenicity of T-20 has not been characterized to date. 
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Figure 10. Schematic representation of the functional domains in HR1 and HR2 regions of the TM 

glycoprotein and the target sites of HIV fusion inhibitors. (A) The HR2 region contains tree functional 

domains: 1, pocket-binding domain (PBD, in purple); 2, HR core in the center (3HR, black); 3, lipid-binding 

domain (LBD, in red). The HR1 region contains one 3HR and one pocket-forming domain (PFD, in green). 

Interaction between the 3HRs results in the hairpin structure, which is stabilised by the connection of the PDB 

and the PFD. Dashed lines represent the interactions between the residues located at e and g positions in HR1 

and the a and d positions in HR2, respectively. Sequences of selected peptide fusion inhibitors, and their 

corresponding functional domains, are presented. (B) Model of the envelope glycoprotein-mediated membrane 

fusion and the proposed mechanism of action for T-20 and C34 antiviral activity. (Adapted from (A) Pan C, Liu S, Jiang S 

(2010) HIV-1 gp41 fusion intermediate: a target for HIV therapeutics. J Formos Med Assoc 109: 94-105.; (B) Liu S, Jing W, Cheung B, Lu H, Sun 

J, et al. (2007) HIV gp41 C-terminal heptad repeat contains multifunctional domains. Relation to mechanisms of action of anti-HIV peptides. J 

Biol Chem 282: 9612-9620.) 
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Rational design strategies are being used to improve the stability of the peptide helix, 

leading to the development of the third generation of fusion inhibitors. Peptides with 

increased -helix content and reduced random coiled conformation are less susceptible to 

proteolytic degradation in the serum and have higher binding affinity to its target 

[149,235]. This stabilization can be achieved by the introduction of charged residues to 

create salt-bridges between the turns of the helix. Sifuvirtide, a peptide based in C34, is a 

good example of the third generation fusion inhibitors [253]. It has 93% of -helical 

content, while T-20 and T-1249 only have 12-20% and 49%, respectively [149,235,253,254]. 

Sifuvirtide is now under development and showed promising results in phase II clinical 

studies being active against a broad range of HIV-1 isolates, including T-20- resistant 

strains. Although Sifuvirtide shows a better pharmacokinetic profile than T-20, it is still 

administered as a subcutaneous injection [253]. To our knowledge, Sifuvirtide hasn’t been 

tested on HIV-2, but since its sequence is solely based on HIV-1, it is highly likely that it 

won’t be active against this virus [245]. 

Alternative approaches have also resulted in the development of short peptides composed 

of D-amino acid residues (D-peptides). They bind to the hydrophobic pocket presented on 

HR1 trimers and are resistant to proteases, thereby having the potential for oral 

bioavailability. The clinical efficacy of these peptides is yet to verify, since they are still 

under the early stages of development [118,250].  

Research for HR1 based peptides that target the HR2 region has been much more limited. 

Generally, monomeric HR1 peptides such as N36 and N46 are highly hydrophobic, have 

tendency to aggregate under physiologic conditions and are less active than HR2 based 

peptides. As an alternative, chimera peptides were designed by fusing N-peptides with a 

highly trimerized model peptide (e.g. IQN17, N28Fd). These chimeras form stable uniform 

trimers under physiological conditions and show enhanced antiviral activity. However, due 

to their large size, these chimeras are more expensive and difficult to produce than HR2-

based peptides [149,235,255]. 

Another example is targeting the fusion peptide instead of the heptad repeats: VIRIP is a 

natural peptide corresponding to the C-proximal region of α1-antitrypsin and inhibits a 

wide variety of HIV-1 strains [256]. It hasn’t reached clinical stage development yet [250]. 

Despite recent advances in peptide modification to improve potency and stability, research 

efforts have also focused on the development of small molecule fusion inhibitors. They 

should have better bioavailability and lower costs of production. One example of such a 

compound is ADS-J1, which prevents membrane fusion by binding to the hydrophobic 

pocket of gp41, thereby hampering six-helix bundle formation. It inhibits HIV-1 infection at 
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the low M range. None of these molecules have progressed to clinical studies yet 

[149,235,250]. 

 

Resistance to fusion inhibitors 

Since T-20 is the only fusion inhibitor approved for clinical use, most of the resistance data 

regarding fusion inhibitors is available only for this drug. The majority of the mutations 

associated with T-20 resistance are found within the 36-45 positions of HR1 region (Table 

1), and especially in the GIV motif (codons 36-38) [235,257]. 

 

Table 1. Mutations associated to T-20 resistance in the HR1 region of gp41 * 

gp41 position 36 37 38 39 40 41 42 43 44 45 

HIV-1 HXB2 G I V Q Q Q N N L L 

Mutations1,2 D/E/V/S V/T E/A/M/G G H  T/Q/H D/K/S/Q M M 

1Mutations in bold represent the most common high-level resistance mutations. 

2Other less frequently observed mutations include Q32/H/R, L33S/T, Q56K/R and L54M. 

*(Adapted from Eggink D, Berkhout B, Sanders RW (2010) Inhibition of HIV-1 by fusion inhibitors. Curr Pharm Des 16: 3716-3728.) 

 

T-20 has a low genetic barrier to resistance, since a significant decrease in viral 

susceptibility (range, 2- to 1100-fold) can be caused by a single mutation. Double 

mutations frequently increase the level of resistance expected from the effects of 

individual substitutions [235,258]. Mutations in the HR2 region also contribute to T-20 

resistance, and seem to represent secondary or compensatory mutations [259]. These 

substitutions coexist with the mutations of HR1 and increase the affinity of HR2 for the 

mutated HR1, thereby favouring HR1-HR2 association over HR1- T-20 binding [235]. T-20- 

resistant variants display lower biological fitness than original isolates [260,261] and seem 

to be more susceptible to antibody neutralization [260]. 

Additional mutations associated with T-20 resistance can also occur in the V3 loop of the 

SU glycoprotein [242]. In fact, coreceptor specificities can modulate HIV-1 susceptibility to 

T-20 and other fusion inhibitors [242,262,263]. In the TORO clinical trials, the sensitivity of 

D/M viral populations to T-20 was higher than CCR5- or CXCR4-using viruses [264]. Some 

authors suggested a kinetic model in which the susceptibility to T-20 is directly 

proportional to the length of time during which HR1 is exposed and accessible to T-20 and 

inversely proportional to coreceptor binding affinity and coreceptor density (reviewed in 

[265]). 

It has been found that natural polymorphisms in T-20- resistant positions are more 

frequently observed in HIV-1 non-B subtypes than on subtype B viruses [244,266]. Some of 

these mutations are even related to specific subtypes. One of the most common 
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polymorphisms in these studies is N42S (>60% in non-B subtypes), which is associated with 

enhanced susceptibility to T-20 [267], and is frequently found subtypes A, G and C, but not 

in F. Other examples include Q56R/K in subtype A and L54M in the CRF14_BG recombinant 

form. Nonetheless, whether T-20 susceptibility is dependent on HIV-1 subtype is still not 

entirely clear, since T-20 has only been tested against very few highly divergent non-B 

isolates [244,245].  

The majority of mutations associated to second and third generation fusion inhibitors’ 

resistance are also mapped to the HR1 regions [268,269,270]. Although some of these 

mutations are cross-resistant to T-20, they often require different substitutions at the 

same positions. For instance, at position 38 only charged amino acids  (E/R/K) cause 

resistance to T-1249; this particular finding suggests that T-20 and T-1249 might exhibit 

similar inhibition modes that trigger comparable but not identical escape routes [269].  

 

 

HIV EVOLUTION 

Evolutionary biology is a fast-evolving field that has been fuelled over the last couple of 

decades by escalating amounts of sequence data. Along with the increasing availability of 

such data, numerous methodologies have been developed to describe and quantify the 

processes underlying the genealogical relationships among a set of genes or organisms 

(phylogenetic analyses) [271,272].  

RNA viruses, which are responsible for many emerging diseases, have become an important 

area of study in this field. Accordingly, there is more genomic sequence data for HIV than 

for any other virus and this has supported our current knowledge of HIV origin, evolution 

and molecular epidemiology. The recent development of high throughput sequencing 

methods promises even greater opportunities to study HIV biology and infection, as 

genome sequencing of single DNA/RNA molecules is now much faster [271,273]. 

Basic principles of evolutionary biology and phylogenetic analysis will be briefly introduced 

in the following sections, and the focus will be on the methodologies applied in Chapters 2 

and 4. 

 

Mechanisms of viral evolution 

RNA viruses share common characteristics that make them particularly good models to 

study evolution: high mutation rates, small genomes, large population sizes and short 

generation times with high number of offspring. All these factors contribute for the 

exceptionally high mutation rate observed in HIV-1, 2.4x10-5 mutation/replication [274]. It 
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is worth mentioning that the rate of nucleotide substitutions in the env gene is higher in 

HIV-2 (10.2x10-3 nucleotides/year) than in HIV-1 (6.4x10-3 nucleotide/year) [275]. These 

mutations include substitutions, duplications, deletions and insertions. Reverse 

transcription is the process that contributes the most for the introduction of point 

mutations, due to the lack of 3’-5’ exonuclease activity of the viral RT enzyme. Another 

potential error-prone step is the synthesis of viral genomic RNA (from proviral DNA) by the 

host RNA polymerase II, which also lacks proof reading activity [273,276]. Hypermutation, 

with high-density accumulation of specific nucleotide substitutions, can also contribute to 

the mutation spectrum; in particular, the G-to-A hypermutation is frequently induced by 

the host APOBEC3 family cytidine deaminases [277]. Polymorphisms are generated when 

these mutations are passed to the offspring and coexist with the original form of the gene. 

At a polymorphic site, two or more variants of a gene circulate in the population 

simultaneously [278]. In HIV, the viral population infecting a single individual is composed 

of a group of variants often referred to as quasispecies. 

Together with the elevated mutation rates, recombination between different viral variants 

is equally responsible for the abundant genetic variability of HIV. In fact, between 8.3x10-4 

and 1x10-5 recombinations per site can occur during each replication cycle in HIV-1 

[279,280], exceeding the estimated genomic mutation rate. Recombination occurs when a 

cell is infected by two different strains and leads to the production of virions that pack an 

RNA molecule from each strain (heterodimeric DNA). Once these virions infect a new cell, 

reverse transcription will produce a mosaic genome by exchange of genes or gene 

fragments during the minus DNA strand synthesis, due to template switching of the viral RT 

between the two RNA strands [272,276]. 

Although events like mutation and recombination are significant sources of genetic 

variation, there are other evolutionary forces that affect the frequency of the mutant in 

the population, namely natural selection and genetic drift [281]. Whenever a new 

mutation is generated, it either becomes fixed or is eliminated from the population 

depending on (1) the degree to which the mutation increases or decreases (respectively) a 

virus ability to survive/reproduce in the current environment (fitness) and on (2) the size 

of the actual population. One mutation is beneficial or advantageous if it increases virus 

fitness relative to wild-type, deleterious if it decreases relative fitness or neutral if it has 

no significant fitness effect (as measured by the selection coefficient). The process of 

natural selection will favour the fixation of beneficial mutations by increasing their 

frequency in the population (positive selection) and promote the elimination of deleterious 

mutations by reducing their incidence (negative selection). Selection does not affect the 

frequency of neutral mutations. In HIV infection, the importance of natural selection as 
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driver of molecular evolution is typically illustrated by the strong selective pressure 

imposed by neutralizing antibody responses over the envelope gene [282,283,284,285]. 

In contrast to the highly deterministic evolutionary pattern of natural selection, random 

genetic drift is a stochastic process in which mutation frequencies fluctuate randomly 

through time, with no tendency towards increase or decrease, until the mutations either 

become fixed or eliminated. Mutation frequencies are affected by natural selection and 

genetic drift at the same time, but the rate at which a mutation becomes fixed through 

deterministic or stochastic forces depends on the distribution of the selective coefficients 

and on the effective population size (size of an idealized population which would have the 

same capacity for genetic variation as the population being studied). The smaller the 

effective population size, the larger the effect of chance events and, as such, more 

important is the role of genetic drift in determining the frequency and fate of mutations. 

If a mutation under negative selection is not entirely deleterious it can also become fixed 

due to random genetic drift, although this requires more generations than expected for a 

neutral mutation [273,278,281]. 

 

An introduction to phylogeny reconstruction 

Multiple alignment of sequences 

In order to study the relationship between a group of genes or gene fragments and infer 

about their evolutionary history, phylogenetic methods consider the similarity between 

those genes, assuming that they are homologous (share a recent common ancestor). 

Therefore, these sequences (nucleotides or amino acids) need to be aligned appropriately, 

so that each of their homologous sites can be compared in the same alignment column 

(positional homology). This means that sequences are arranged in rows in a way that 

similar nucleotides or amino acids are placed above each other at the same vertical 

position. Gaps are inserted in positions where there are insertions and/or deletions, in 

order to optimize the alignment [272,278]. The alignment procedure can be performed 

automatically with a number of multiple alignment algorithms incorporated in several 

software and web-based tools, like ClustalX [286]. It is critical for phylogenetic inference 

that sequences are unambiguously aligned. Therefore it is good practice to visual inspect 

the alignment produced, especially for highly variable sequences, and if necessary do some 

manual editing, like correction of obvious alignment errors, deletion of ambiguously 

aligned segments and removal of overly gapped columns. In the presence of nucleotide 

sequences coding for proteins it is often useful to generate the nucleotide alignment based 
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on a previous codon/amino acid alignment in order to maintain the reading frame. Doing 

otherwise would invalidate further codon-based analysis [272,287].  

 

Accounting for homoplasy and recombination events 

Reliable estimates of the phylogenetic relationship between genes are only possible if they 

share a common evolutionary history. However, some events like recombination and 

homoplasy might affect phylogenetic inference and should be carefully considered when 

performing this type of analysis. Homoplasy is defined by the sharing of identical character 

states that cannot be explained by inheritance from the common ancestor of a group of 

taxa. One example is the independent evolution of a similar feature in separate lineages, 

starting from either a different ancestral state (convergent evolution) or from a similar 

ancestral state (parallel evolution). This can result in two sequences that have higher 

similarity than it would be expected by chance but that are not homologous (evolutionarily 

related) to each other [272,288].  

A recombination event also violates the homology assumption since it allows sites to move 

freely between different genetic backgrounds, swapping the evolutionary histories within 

the gene under study. This can have a profound effect on the models of evolution and 

phylogenetic tree inferred from the alignment (see below) and on several features of 

molecular evolution, like detection of selection pressures [289]. Numerous approaches 

have been developed to identify the molecular footprint of recombination. One way to 

handle with the recombination is to identify potential recombination breakpoints within 

the dataset, quantify the level of support for their locations, and finally identify sequences 

or clades involved in putative recombination events. This is methodology is implemented in 

the Simple Breakpoint Recombination (SBP) and Genetic Algorithm Recombination 

Detection (GARD) methods [290]. Hence, the alignment can then be split into non-

recombinant sequence fragments, which are allowed to evolve independently from each 

other and according to their own phylogenetic tree [289].  

 

Models of evolution 

The evolutionary relationship among genes and organisms are best illustrated in typically 

structured diagrams called phylogenetic trees. These trees are generally reconstructed 

under a specified model of sequence evolution (or model of substitution). Instead of 

making a direct (observational) comparison between sequences to calculate their 

evolutionary divergence or dissimilarity (genetic distance), models of evolution produce 

more realistic estimates of genetic distance using a statistical approach to describe the 
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stochastic (or probabilistic) process of substitution in nucleotide or amino acid sequences; 

importantly, they can account for multiple substitutions at the same site (multiple hits, 

like, A  G  C), including reverse mutations (A  G  C  A) [272,291]. In the case of 

nucleotide sequence, these models make basic assumptions about the base composition, 

rate, and frequency of base substitutions among different sites and the nature of these 

substitutions. The process of nucleotide substitution can be generalized into a Markov 

process, which uses a Q matrix that specifies the relative rates of change of each 

nucleotide along the sequence in a total of eight free parameters.  

 

 

Figure 11. Instantaneous rate matrix Q. Each entry represents the instantaneous substitution rate from 

nucleotide i to j; , mean instantaneous substitution rate; a - l, relative rate parameters describing the relative 

rate of each nucleotide substitution to any other; A - T, frequency parameters corresponding to the 

nucleotide frequencies; the sum of each row is equal to zero. (From Strimmer K, von Haeseler A (2009) Genetic distances and 

nucleotide substitution models. In: Lemey P, Salemi M, Vandamme AM, editors. The Phylogenetic Handbook: A Practical Approach to 

Phylogenetic Analysis and Hypothesis Testing. Cambridge: Cambridge University Press. pp. 111-125.) 

 

The simplest model of evolution, the Jukes-Cantor model, specifies that the equilibrium 

frequencies of all four bases are 25% each and that all substitutions are equally likely 

[292]. Assuming, for instance, unequal transition and transversion substitution frequencies, 

will increase the complexity of the models. If all parameters are specified, then the 

General Time Reversible (GTR) model is derived [293,294]. Besides the parameters of the 

Q matrix, one must take into consideration the heterogeneous rate of nucleotide 

substitutions for different positions in a sequence. For instance, in protein coding genes 

the third codon positions mutate usually much faster than the first or second positions 

because, in general, it doesn’t lead to amino acid change (silent substitution). A common 

approach is to use a gamma distribution (+G) to model this heterogeneity and/or include 

class of invariant sites (+I) [272,291,295]. 

These Markov nucleotide models are nested models. This means that by starting with the 

most-complex model (GTR+G+I), one can derive all other models by restricting the possible 

values of one or more parameters. So, in order to choose the best-fit model of evolution 

for a particular dataset, nested models can be compared using statistical approaches like 
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the hierarchical likelihood ratio test (hLRT) or the Akaike’s information criterion (AIC); 

both procedures for model comparison are implemented in the software jModeltest [296]. 

 

A measure of the genetic diversity in the alignment can be obtained by averaging all 

genetic distances between the sequences, as estimated by the model of evolution. An 

alternative and much simpler approach to access the diversity (of nucleotides or amino 

acids) is to calculate the Shannon Entropy, which is a quantitative measure of uncertainty 

in a dataset [297]. It should be noted, however, that phylogenetic history of the sequences 

is not considered in this procedure. Instead, Shannon entropy analyses the variability of 

each column of the alignment independently, by assigning a score that incorporates both 

the observed number of different nucleotides (or amino acids) and their frequencies 

(http://www.hiv.lanl.gov). It is, thus, possible to study the variability along the 

alignment, or to have global measure of the diversity by averaging the scores from all the 

positions. 

 

Phylogenetic tree reconstruction 

A phylogenetic tree consists of external nodes and internal nodes connected by branches. 

External nodes (terminal nodes or tips) represent the taxa under study (organisms or 

individuals belonging to the same or different species). A group of taxa that share the 

same branch is a ―cluster‖ or ―clade‖, and have a monophyletic origin. An internal node is 

the most recent common ancestors (MRCA) of all the branches and tips arising from that 

node. The branching-pattern, or the order of the nodes, defines the topology of the tree, 

and the length of the branches can be proportional to genetic distances or to a time unit 

[278]. 

Phylogenetic trees are inferred by two main approaches: distance methods or character-

state (discrete) methods. Distance based methods are usually more rapid and compute 

pairwise genetic distances between all sequences into a distance matrix. These methods 

can either use an optimality criterion to search for different tree topologies (e.g. Fitch-

Margoliash) or stepwise clustering algorithms to construct one ―best‖ tree (ex. UPGMA and 

neighbor-joining). In character-state methods, each position in the alignment is a 

―character‖ and the nucleotide or amino acid at that position is a ―state‖. Under this 

method, each alignment column is analysed independently and an optimality search 

criterion is used to evaluate different tree topologies. One advantage of discrete character 

methods is that they retain the original character status of the taxa, making it possible to 

reconstruct the character state of the internal (ancestral) nodes [278]. 
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One of the most commonly used character-state methods is Maximum Likelihood (ML). For 

a given number of taxa, ML examines different tree topologies under an optimal search 

criterion to find the tree that maximizes the probability of observing the data (character 

states), given a tree topology and a specified model of evolution. Hence, the likelihood of 

a particular tree giving rise to the dataset is calculated for all trees, and the one with the 

highest (maximum) likelihood score is chosen [272,278]. Since the exhaustive search of all 

possible trees is usually too computational intensive, several heuristic search strategies are 

used to explore the ―tree space‖ for only a subset of trees. Examples of these strategies 

are the nearest-neighbor interchange (NNI), subtree pruning and re-grafting (SPR) and tree 

bisection and reconnection (TBR). However, there is no guarantee that the best tree for 

the data is found using the heuristic approaches [298]. Additional character-state methods 

include Maximum Parsimony (MP) and Bayesian methods, the latter being increasingly 

popular in evolutionary biology and phylogenetic analysis. 

The bootstrap method is a statistical technique frequently used to access the robustness 

(confidence) of the phylogeny inferred by ML [299]. This procedure involves repeated 

sampling of alignment columns (at random and with replacement) from the original 

alignment until a new alignment of the same length is produced (replica). The bootstrap is 

repeated multiple times, producing in general 1000 replicates (user-defined), and for each 

replicate a new tree is constructed. Ate the end, the bootstrap values can be annotated in 

the original final tree or in a majority-rule consensus tree of all the replicates; they 

indicate the level of confidence of each internal node in the tree and represent the 

percentage of replicates that show the same clade under that node in the final phylogeny. 

A minimum bootstrap value of 70% is usually considered necessary for a significant support 

of a given clade in the inferred phylogeny [272,299]. 

 

Estimating selection pressure 

As discussed above, the fixation of point mutations can be determined by the effect of 

natural selection has on the viral population. Due to the degeneracy of the genetic code, 

nucleotide substitutions in protein-coding regions can be classified as synonymous and non-

synonymous. While non-synonymous substitutions alter the encoded amino acid, 

synonymous (or silent) substitutions leave the amino acid unchanged. One of the methods 

to study natural selection is to compare the rate of non-synonymous substitutions (dN) to 

the rate of synonymous substitutions (dS) by determining the dN/dS ratio (ω). If the ratio 

is significantly inferior to one (dN/dS<1), the rate of non-synonymous substitutions is 

slower, indicating that these mutations are deleterious; hence, the coding region is under 

negative (or purifying) selection, and structural/functional motifs at the protein level are 
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more conserved. If the ratio is significantly superior to one (dN/dS>1), there is a faster 

fixation of non-synonymous substitutions, indicative of adaptive protein evolution through 

a positive (or diversifying) selection. If dN and dS are equal (dN/dS=1), mutations have no 

effect on viral fitness (there is no influence of natural selection) and evolution is neutral. 

Currently, ω is estimated within a ML framework by fitting a codon model of evolution that 

can additionally be crossed with a nucleotide substitution model [281,300]. 

By estimating the global dN/dS ratio, one is studying the selection pressure averaged over 

all codon positions (entire sequence) of the alignment. However, one could expect to 

detect site-by-site and branch-by-branch variation in these rates, meaning that positive 

selection has only occurred in certain specific codons (sites) of the gene or in different 

lineages across the phylogenetic tree [272,281,289]. There are two different approaches to 

estimate site-specific rates: (1) rates are estimated directly from each site independently, 

using for instance the single-likelihood ancestor counting (SLAC) and fixed effects 

likelihood (FEL) methods, or (2) by using a distribution of rate classes and assigning each 

site to a rate class, using the random effects likelihood (REL) models. Distributions of rate 

classes are also useful to compare selection pressure in different genes or datasets. All 

these methods have their strengths and weaknesses. While counting methods like SLAC are 

very efficient and quick, particularly in large datasets, FEL and REL methods are much 

more sensitive but far more time-consuming. Hence, the best approach would be to apply 

several methods and compare the results [301]. Site-by-site variation of dS can bias 

estimations of codon’s diversifying selection. Therefore it is also good practice to test for 

this in the dataset [302]. All the tree methods, described above, model for this variation. 

On another perspective, by using models that allow substitution rates to vary across the 

tree branches, it is possible to compare non-synonymous substitutions between terminal 

and internal branches. This could be of interest on a population study, to verify if selection 

on a virus population within a host is distinct from selection among hosts. In such a case, 

an internal fixed effects likelihood method (IFEL) can be applied to identify positively 

selected sites along the internal branches and compare the results with the ones detected 

by SLAC/FEL/REL on the tips of the tree [289,303] 

 

Ancestral state reconstruction 

Current knowledge on molecular synthesis allows the production of proteins and peptides 

designed by computational methods and directly access the properties/functions of such 

molecules in the laboratory. In the virology field, these methods have been applied in the 

rational design of new vaccine immunogens for HIV, Influenza virus and Epstein Barr Virus 

[304,305,306,307,308]. Of the several approaches taken, ancestral state reconstruction has 
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attracted some attention in variable viruses such has HIV [304,307,308] due to the 

potential to capture more conserved features of viral immunogens than any contemporary 

natural strain [309].  

Methods for ancestral state reconstruction include consensus, ancestral sequences and 

center-of-the-tree (COT) approximations [309]. Consensus is a sequence that has at each 

position the most frequent nucleotide or amino acid residue across an alignment of 

homologous sequences. Ancestral sequences are computationally derived and involve the 

reconstruction of ancestral states in the internal nodes of a phylogenetic tree; in this 

sense, they represent the MRCA [304]. Finally, the COT approach is also a computational 

method that derives a sequence from a point called center-of-the-tree (on an unrooted 

phylogeny) that minimizes the average evolutionary distance to all sequences in the 

dataset [310]. In fact, all of these approaches attempt to generate a ―centralized‖ 

sequence that minimizes the amount of sequence divergence between contemporary 

strains. The major advantage of ancestral and COT sequences is that they are 

reconstructed by tracing the most likely evolutionary path along a phylogeny, conserving 

any site co-variation that has arisen as a consequence of evolutionary history (such co-

variation might be biologically relevant) [309]. In addition, they are less likely to change as 

new sequences are added to the sample. Nonetheless, these methods are all subject to 

different biases, and in optimized conditions the derived (artificial) sequences might even 

be relatively similar to each other. In fact, the biological function of HIV centralized 

sequences is yet to be successfully demonstrated in vivo [306,308,311]. 

The first methods developed to derive ancestral sequences were based on a maximum 

parsimony (MP) criteria [309]. MP is a character-state method that assigns characters to 

internal nodes of the tree in order to minimize the number of character-state changes 

required [312]. It performs well when sequence divergence is low [313], but as it doesn’t 

use an explicit model of evolution it can’t take into account biased substitution patterns 

(ex. multiple substitutions in a single site) and cannot distinguish between equally 

parsimonious reconstructions [310]. Since then, new methods of ancestral state 

reconstruction have been developed. One possible approach is based on ML. In contrast to 

MP, ML relies on an explicit model of evolution, uses branch length information, and 

assigns a probability to each alternative character. This means that sites that have 

ambiguous ancestral state assignments under MP can be explored in the likelihood 

approach by making use of specific probabilities associated with particular ancestral 

reconstructions. Selection of a best-fit model of evolution and a well supported phylogeny 

are critical elements for ancestral state reconstruction under ML [314]. 
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To my knowledge, reconstruction of ancestral sequences has never been applied on the 

design of new antiviral agents. 

 

Homology modelling 

Knowledge of the three-dimensional structure of a protein can often provide invaluable 

information for biomedical research. Rational drug design and the study of the biological 

role of protein molecules in cellular processes illustrate the interest on such data 

[315,316,317,318]. Currently, there are millions of sequenced proteins but only a small 

fraction of structures have been experimentally solved [315,316]. Protein structure 

determination using experimental methods (X-ray crystallography or NMR spectroscopy) is 

time consuming and not successful with all proteins, especially membrane proteins [317]. 

Hence, computational modelling methods have been developed to predict protein 

structure. 

Homology modelling builds the structure of a protein by aligning its amino acid sequence 

to the homologous sequence of a protein with known structure [318]. The rational behind 

this methodology is that an amino acid sequence carries all the information needed to 

guide protein folding and that the evolutionary relationship between protein structures is 

more conserved than between sequences [316]. The most common and accurate approach 

is made through template-based modelling and this typically involves four steps: (1) 

identification of an homologous sequence with a known structure that can be used as 

template, (2) alignment of the query sequence to the template, (3) construction of a 

structural model for the query sequence based on the alignment, and (4) evaluation of the 

model [315,317,318]. Although the applicability of this method is limited to the cases 

where is possible to find an appropriate template, more than half of all known sequences 

have at least one domain that is related to at least one protein of known structure [317]. 

Moreover, only a limited number of folds are tolerable in nature [316]. For a certain level 

of similarity between the query and the template (35-40% or greater), homology modelling 

can accurately generate high-resolution structural models comparable to the ones solved 

experimentally and with a level of detail suitable for practical applications in medicine 

and biotechnology [315,316].  
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AIMS AND WORK PLAN 

The etiologic agents of AIDS, HIV-1 and HIV-2, are two distinct human lentiviruses with 

similar structural and genomic organization but sharing only 50% of genetic similarity. In 

HIV-1 infection, escape from antibody neutralization is the major driving force of the 

molecular evolution of the envelope glycoproteins, particularly around the V3 loop. V3 is a 

region well exposed on the surface of the viral envelope and a major determinant of viral 

tropism and coreceptor usage. In HIV-2, however, the structure of the envelope complex 

remains to be determined and the impact of the neutralizing antibody response in the 

evolution of the envelope is still unknown. 

Entry inhibitors are a recent class of antiretroviral drugs specifically designed to prevent 

HIV-1 viral entry. There is evidence that modified V3 loop conformations result in different 

levels of susceptibility and resistance to entry inhibitors in HIV-1, although such structural 

changes might be constrained by increased sensitivity to neutralizing antibodies. The 

activity of entry inhibitors on primary HIV-2 isolates has not been tested. Moreover, while 

the development of new fusion inhibitors and other entry inhibitors for HIV-1 is currently a 

very active field of research no similar efforts are being pursuit to develop peptides or 

other molecules that act on HIV-2. 

 

The aims of this thesis were: 1) to examine the C2, V3 and C3 envelope regions of HIV-1 

and HIV-2 at the molecular, evolutionary and structural levels; 2) to compare HIV-1 and 

HIV-2 susceptibility to entry inhibitors and assess their potential value in HIV-2 therapy; 

and 3) to produce a new fusion inhibitor peptide using evolutionary biology based 

strategies.  

In the first study (Chapter 2), HIV-1 and HIV-2 were compared at the molecular, 

evolutionary and structural levels in the C2, V3 and C3 envelope regions. Next we 

determined the in vitro baseline susceptibility of HIV-1 and HIV-2 primary isolates to fusion 

inhibitors (T-20 and T-1249) and coreceptor antagonists (AMD3100, TAK-779 and MVC) and 

related this susceptibility with the time of virus isolation as well as with the genetic and 

phenotypic characteristics of the isolates (Chapter 3). Finally, we evaluated the antiviral 

activity of a newly designed ancestral peptide on both HIV-1 and HIV-2 (Chapter 4). 

 

In Chapter 2 we amplified and sequenced the C2, V3 and C3 regions of 60 HIV-1 and 49 HIV-

2 samples collected from Portuguese HIV infected patients. As controls to this study we 

used alignments of HIV-1 and HIV-2 worldwide reference sequences. The sequence 

variability of each dataset was estimated by the following parameters: inter-patient 

genetic diversity, amino acidic diversity along the alignment and the number of potential 
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N-linked glycosylation sites. Selective pressures over the HIV-1 and HIV-2 C2, V3 and C3 

regions were examined under different approaches. We were particularly interested in (1) 

identifying specific codons under selection using site-by-site analysis, (2) understanding if 

selection pressure within a host is different from selection for transmission among hosts, 

and (3) comparing the distribution and strength of diversifying selection between the HIV-1 

and HIV-2. Structural models of HIV-1 and HIV-2 C2, V3 and C3 regions were produced by 

homology modelling, using the known structure of HIV-1 gp120 and SIV gp120, respectively, 

as templates. These models were then used for the calculation of solvent accessible 

surfaces of these regions. 

 

The baseline susceptibility of HIV-2 to entry inhibitors was evaluated on a panel of 20 HIV-

2 isolates, including 19 primary isolates, and compared to that of nine HIV-1 viruses (7 

highly divergent primary isolates) (Chapter 3). After virus isolation and genotyping by 

phylogenetic analysis, CCR5 and CXCR4 tropism was determined using a single-round viral 

infectivity assay performed with TZM-bl reporter cells (CD4+, CCR5+ and CXCR4+) in the 

presence or absence of CCR5 and CXCR4 antagonists. Representative dose-response curves 

for HIV-1 and HIV-2 were obtained using increasing concentrations of fusion inhibitors (T-20 

and T-1249) and coreceptor antagonists (AMD3100, TAK-770 and MVC) in TZM-bl reporter 

cell assays. 50% (IC50) and 90% (IC90) inhibitory concentrations and curve slopes were 

determined for each drug. We have also investigated the potential association between the 

time of virus isolation during disease progression and susceptibility to entry inhibitors. 

 

In Chapter 4 we performed the ancestral reconstruction of HIV-2 and SIV gp36 sequences, 

in order to derive the amino acid sequence of new fusion inhibitor peptides. The antiviral 

activity of one selected peptide was evaluated in vitro against HIV-1 and HIV-2 primary 

isolates, including HIV-1 variants resistant to T-20. Possible sites of action in HIV-1 and 

HIV-2 were explored through in vitro selection of resistant variants and binding to its 

predicted target, the ectodomain of the HIV transmembrane glycoprotein. Circular 

dichroism spectroscopy was used to determine the secondary structure of the peptide. The 

potential in vitro cytotoxicity of the peptide was assessed in primary cells and tissue 

culture cells. Finally, we measured the antigenic reactivity of the peptide in HIV-infected 

patients. 
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ABSTRACT 

Background: Unlike in HIV-1 infection, the majority of HIV-2 patients produce broadly 

reactive neutralizing antibodies, control viral replication and survive as elite controllers. 

The identification of the molecular, structural and evolutionary footprints underlying these 

very distinct immunological and clinical outcomes may lead to the development of new 

strategies for the prevention and treatment of HIV infection. 

Methodology/Principal Findings: We performed a side-by-side molecular, evolutionary and 

structural comparison of the C2, V3 and C3 envelope regions from HIV-1 and HIV-2. These 

regions contain major antigenic targets and are important for receptor binding. In HIV-2 

these regions also have immune modulatory properties. We found that these regions are 

significantly more variable in HIV-1 than in HIV-2. Within each virus, C3 is the most 

entropic region followed by either C2 (HIV-2) or V3 (HIV-1). The C3 region is well exposed 

in the HIV-2 envelope and is under strong diversifying selection suggesting that, like in HIV-

1, it may harbour neutralizing epitopes. Notably, however, extreme diversification of C2 

and C3 seems to be deleterious for HIV-2 and prevent its transmission. Computer modelling 

simulations showed that in HIV-2 the V3 loop is much less exposed than C2 and C3 and has 

a retractile conformation due to a physical interaction with both C2 and C3. The concealed 

and conserved nature of V3 in the HIV-2 is consistent with its lack of immunodominancy in 

vivo and with its role in preventing immune activation. In contrast, HIV-1 had an extended 

and accessible V3 loop that is consistent with its immunodominant and neutralizing nature.  

Conclusions/Significance:  We identify significant structural and functional constrains to 

the diversification and evolution of C2, V3 and C3 in the HIV-2 envelope but not in HIV-1. 

These studies highlight fundamental differences in the biology and infection of HIV-1 and 

HIV-2 and in their mode of interaction with the human immune system and may inform 

new vaccine and therapeutic interventions against these viruses. 

 

INTRODUCTION 

Human Immunodeficiency Virus type 1 (HIV-1) infection affects more than 40 million 

individuals throughout the world. It is caused mainly by isolates belonging to group M. 

Within this group there are nine different subtypes named A to H, six sub-subtypes (F1, F2, 

A1-A4) and at least thirty six recombinant forms named CRF01 up to CRF36 [1]. In contrast 

to the HIV-1 pandemic, HIV-2 is only prevalent in West Africa where it seems to have been 

present since the 1940s [2]. In Europe infection with HIV-2 remains rare (2-3% of all AIDS 

cases), being observed mainly in France and Portugal [3,4,5]. Eight different HIV-2 groups 

named A through H have been reported but only groups A and B cause human epidemics 
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[6,7,8,9]. Isolates from group A are, however, responsible for the vast majority of HIV-2 

infections worldwide [10]. 

For reasons that are still not clear, HIV-1 and HIV-2 infections lead to very different 

immunological and clinical outcomes. In contrast to HIV-1 infected patients, the majority 

of HIV-2-infected individuals have reduced general immune activation, normal CD4+ T cell 

counts, low or absent viremia and absence of clinical disease [11,12,13,14]. This may be 

related with a more effective immune response produced against HIV-2. In fact, most HIV-

2 infected individuals have strong cytotoxic responses to Env and Gag proteins and raise 

autologous and heterologous neutralizing antibodies [3,15,16,17,18]. The attenuated 

course of HIV-2 infection compared to HIV-1 has also been associated to a lower state of 

immune activation, which may be related to the immunosuppressive activity of the C2, V3 

and C3 envelope regions [19,20,21]. Similar immunosuppressive activity has not been found 

in the homologous C2, V3 and C3 regions in the HIV-1 envelope [19]. Finally, the 

transmission rate of HIV-2 is also significantly lower than that of HIV-1 and this has been 

associated with the low or absent viremia found in most HIV-2 patients [22,23]. 

The HIV-1 Env glycoprotein is a trimer on the virion surface with extensive N-linked 

glycosylation that effectively shields many conserved epitopes from antibody recognition 

[24]. It is composed of trimers of a surface (SU) glycoprotein with a molecular weight of 

120-125 kDa (gp120-125) that is bound to a transmembrane (TM) glycoprotein with 36-41 

kDa (gp36-41). SU can be divided into five hipervariable regions, named V1 to V5, bordered 

by five conserved regions, named C1 to C5. The C2 and C3 regions associate to form the 

CD4 binding site such that mutations in amino acid at positions 267Q in C2 and 368R in C3 

abrogate gp120 binding to CD4 [25,26]. In HIV-1, V3 is one of the most important 

determinants of viral tropism and co-receptor usage [27,28]. This region also contains 

major antigenic and neutralizing epitopes in HIV-1, which are well exposed upon CD4-

binding [29,30,31,32,33,34,35]. Although still debatable, the V3 region in HIV-2 may also 

contain broadly neutralizing epitopes [36,37,38,39,40,41,42]. However, in contrast to HIV-

1, the V3 and flanking C2 and C3 regions are not immunodominant in HIV-2 infected 

patients [43,44,45,46]. Moreover, it remains to be determined whether these regions are 

exposed or concealed in the envelope complex of primary isolates of HIV-2.  

In HIV-1 infection escape from antibody neutralization occurs frequently and is the major 

driving force of the molecular evolution of the envelope glycoproteins [47,48]. Not 

surprisingly, codons under diversifying selection (positive selection) seem to be clustered 

mostly in the hypervariable V1/V2 and V3 regions that contain important and accessible 

neutralizing targets [49,50]. The impact of the neutralizing antibody response in the in 

vivo evolution of the HIV-2 Env is currently unknown.  
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The present study was designed to identify molecular and evolutionary features of the C2, 

V3 and C3 regions in HIV-1 and HIV-2 infected patients that could be related with their 

different immunological and clinical outcomes. We describe some potentially important 

differences in the genetic constitution, molecular evolution and conformation of the C2, 

V3 and C3 regions in HIV-1 and HIV-2 that provide new insights into their function and may 

inform the design of HIV vaccines. 

 

MATERIALS AND METHODS 

Amplification, cloning and sequencing of HIV-1 and HIV-2 viruses from Portugal 

Portuguese (PT) samples were collected from HIV infected patients, followed in hospitals 

in the North and South of Portugal and presenting different clinical stages of infection and 

CD4+ T-cell counts. HIV-2 samples were collected between 1997 and 2005 from 49 

patients, some of whom were infected in late-1970s [51,52]. HIV-1 samples were collected 

from 60 patients between 1993 and 1998.  

Proviral DNA was extracted from uncultured PBMCs, or viral genomic RNA was extracted 

from plasma and reverse transcribed. A nested PCR technique was used to amplify a 373 bp 

HIV-2 C2-V3-C3 env gene region and a 409 pb HIV-1 C2-V3-C3 env region as described 

elsewhere [53,54]. PCR products were sequenced using the BigDye Terminator Cycle 

sequencing kit (Applied Biosystems) and an automated capillary sequencer (ABI PRISM 310, 

Applied Biosystems). Newly derived HIV-1 sequences from Portugal have been assigned 

GenBank accession numbers: EU335962 - EU335903. Newly derived HIV-2 sequences from 

Portugal have been assigned GenBank accession numbers: AY913773-AY913794, AY649545-

AY649554 and GU591163.  

Additionally, 16 HIV-2 consensus sequences from a previous publication [52] were also 

included in this study. The samples used to obtain these consensus sequences were: 

03PTHCC1, 03PTHCC2, 03PTHCC4, 03PTHCC5, 03PTHCC7, 03PTHCC8, 03PTHCC12, 

05PTHCC13, 03PTHCC14, 03PTHCC17, 03PTHCC19, 03PTHSM2, 05PTHSM3, 03PTHSM7, 

03PTHSM9 and 03PTHSM10. 

 

Control datasets 

As Control datasets to this study, HIV-1 group M (all subtypes) reference sequence 

alignment (94 sequences) was obtained from the Los Alamos HIV database 

(http://www.hiv.lanl.gov/). HIV-2 group A reference sequence alignment was also 

obtained from the Los Alamos HIV database. Additional C2-V3-C3 sequences derived from 

group A primary isolates were retrieved from the Los Alamos Database adding to a total of 

http://www.hiv.lanl.gov/
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59 HIV-2 Control sequences. Both control alignments are available as Supplementary 

Material (Alignment S1 and S2). 

 

Molecular and phylogenetic analysis 

Nucleotide sequences were aligned using ClustalX 1.8 [55]. Maximum likelihood analyses 

were performed using the best-fit models of molecular evolution estimated by Modeltest 

[56]. These were GTR+G+I [57] for the PT HIV-2 dataset and TVM+G+I for PT HIV-1 and for 

HIV-1 and HIV-2 Control datasets [58]. 

Evolutionary distances were estimated under these models using PAUP version 4.0 [59]. 

Tree searches were also conducted in PAUP version 4.0 using either nearest-neighbor 

interchange (NNI) or subtree pruning and re-grafting (SPR) heuristic strategies, with 

bootstrap resampling. All positions containing gaps and missing data were eliminated from 

the dataset. In the final datasets there were a total of 369 nucleotide positions in PT HIV-2 

and 372 positions in PT HIV-1 alignments, and 369 positions in HIV-2 and HIV-1 Control 

alignments. Both alignments were tested for recombination with the Single Breakpoint 

Recombination (SBP) tool [60] in the DATAMONKEY web-server [61]; evidence for 

recombination, inferred by the small sample AIC score, was only found for HIV-1 Control 

dataset. Thus, when appropriate, a multiple partition dataset was used for HIV-1 Control 

analysis. Detection of N-linked glycosylation sites was performed with Glycosite [62]. The 

entropy at each position in protein alignment was measured with Shannon’s entropy [63].  

 

Tests for codon selection 

Selection pressures over the HIV-1 and HIV-2 C2, V3 and C3 regions were examined with 

the HYPHY software package [64] and the DATAMONKEY web-server [61]. All estimations 

were performed using the MG94 codon substitution model [65] crossed with the nucleotide 

substitution model previously selected with Modeltest, GTR for PT HIV-2 and TVM for PT 

HIV-1 and Control alignments. To understand if selection pressure within a host is different 

from selection for transmission among hosts, non-synonymous substitutions were compared 

between terminal and internal branches of the phylogenetic tree, with the 

TestBranchDNDS.bf batch file in HyPHy, as described elsewhere [66].  

Four different approaches were used to identify codons under selection: single-likelihood 

ancestor counting (SLAC), fixed-effects likelihood (FEL), internal fixed effects likelihood 

(IFEL) and relaxed-effects likelihood (REL) methods [67,68]. While SLAC, FEL and REL 

detect sites under selection at the external branches of the phylogenetic three, IFEL 

identifies such sites only along the internal branches. To classify a site as positively or 
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negatively selected the cut-off P-value was 10% for SLAC, FEL and IFEL. For REL, codons 

under selection were detected with a cut-off value for the Bayes factor of 50. Since SLAC, 

FEL and IFEL can estimate site-specific ratios of non-synonymous and synonymous 

substitutions rates (dN/dS ratios) as undefined or infinite due to dS = 0, we reported dN-dS 

values instead, which were scaled by the total codon tree length to allow a better 

comparison between the two datasets. A multiple partition dataset was used for the 

identification of codons under selection in HIV-1 Control analysis. Site-by-site variation of 

synonymous substitution rates can bias estimations of codon’s diversifying selection [69]. 

Although all four methods described above model for this variation, variation of 

synonymous rates from codon to codon in each dataset was tested with the 

dNdSRateAnalysis.bf batch file in HyPHy, as described elsewhere [66]. Finally, comparison 

of the dN/dS distribution rates and the strength of selection between the HIV-1 and HIV-2 

alignments, was performed with dNdSDistributionComparison.bf batch file also in HyPHy, 

as described elsewhere [66]. 

 

Molecular modelling and calculation of solvent accessible surfaces 

Consensus amino acid sequences were derived for the different HIV-1 and HIV-2 datasets. 

Structural models of HIV-1 and HIV-2 C2, V3 and C3 were produced with SWISS-MODEL 

homology modelling server in project mode resorting to Swiss-Pdb Viewer (DeepView) 

version 4.0, using PDB file 2B4C (from HIV-1 JR-FL gp120) for HIV-1, and PDB file 2BF1 

(from SIV gp120) for HIV-2 as templates [70,71,72,73]. Accelrys Discovery Studio Visualizer 

2.5 [74] was used to produce three dimensional images of the models obtained. Solvent 

accessible surface area in Å2 was calculated by Gerstein’s calc-surface software on UCSF 

Chimera [75,76] with a probe size of 1.4 Å. All atoms in the input PDB file were included in 

the calculation. The solvent accessible surface data was normalized dividing each amino 

acid residue solvent accessible surface value added by the solvent accessible surface value 

of the corresponding amino acid residue (X) in the tripeptide Gly-X-Gly. The inter-chain H-

Bonds formed by HIV-2 V3 with C2 and C3 were calculated with H-Bond Finder software on 

UCSF Chimera [75,76] with a probe size of 1.4 Å. All atoms in the input PDB file were 

included in the calculation. 

 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism version 4.0c for Macintosh 

(GraphPad Software, 2005, San Diego, California, USA, www.graphpad.com) with a level of 
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significance of 5%. Non-parametric Mann-Whitney U test was used to compare Shannon’s 

entropy values and nucleotide distances.  

 

RESULTS 

HIV-1 is significantly more variable in the envelope C2, V3 and C3 regions than 

HIV-2 

We compared the inter-patient genetic diversity of HIV-1 and HIV-2 in two different 

datasets: HIV-1 group M (all subtypes) and HIV-2 group A sequences from all over the world 

(Control dataset composed of reference sequences) and newly derived HIV-1 and HIV-2 

sequences obtained from Portuguese (PT) patients. Phylogenetic analysis showed that HIV-

1 sequences circulating in Portugal belong to different subtypes and recombinant forms 

(Figure S1A). Forty five sequences were subtype B and six belonged to the recombinant 

form CRF14_BG. Subtypes G (4 sequences) and C (2), sub-subtype F1 (2), and CRF02_AG (1) 

were also found. Regarding HIV-2, all sequences from Portugal clustered together within 

group A (Figure S1B). Collectively, these results are consistent with previous studies 

showing a highly complex HIV epidemics in Portugal caused exclusively by HIV-2 group A 

and different subtypes of HIV-1 group M [52,77,78,79]. Nucleotide diversity between HIV-1 

viruses found in Portugal was significantly higher compared to HIV-2 (mean number of 

substitutions per site, 0.336, 95%CI [0.329; 0.342] vs 0.239, [0.236; 0.243], P<0.0001). 

Similar results were found for the HIV-1 and HIV-2 Control datasets (Table S1). Hence, we 

conclude that HIV-1 is genetically more diverse than HIV-2 in the envelope region 

comprising C2, V3 and C3. 

Amino acid diversity in the C2, V3 and C3 regions of HIV-1 and HIV-2 were compared by 

calculating Shannon’s entropy [63]. Mean entropy values for the three regions were 

significantly higher in HIV-1 than in HIV-2 both in PT (0.794 vs 0.409, P<0.0001) and Control 

datasets (0.702 vs 0.353, P<0.0001) confirming that these regions are more variable in HIV-

1 than in HIV-2. Entropy was also significantly higher in HIV-1 than in HIV-2 in each 

separate region (C2, P<0.05; V3, P<0.005; C3, P<0.0005) of PT sequences. The region with 

higher mean entropy was C3 in both viruses (1.031, 95%CI [0.845, 1.217] for HIV-1 vs 0.534, 

95%CI [0.378, 0.689] for HIV-2, P<0.0005) followed by V3 (0.674, [0.506, 0.841]) and C2 

(0.574, [0.427, 0.721]) in HIV-1 and C2 (0.326, [0.175, 0.477]) and V3 (0.304, [0.176, 

0.433]) in HIV-2 (Figure 1). Comparable results were obtained for the Control datasets but 

in this case V3 was the least entropic region both in HIV-1 and HIV-2 (Table S1 and Figure 

S2). Not surprisingly, amino acids with higher entropy (values above 1) were primarily 

located in the C3 region of both viruses and there were more highly entropic amino acids 
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in C3 in HIV-1 than in HIV-2 both in the PT and Control datasets (PT dataset: 51.9% in HIV-1 

vs 24.5% in HIV-2; Control dataset: 35.3% in HIV-1 vs 20.8% in HIV-2). Notably, the amino 

acids in V3 that are related with co-receptor usage, positions 11/25 in HIV-1 (codons 

306/320) [80,81] and possibly positions 18/19/27 in HIV-2 (codons 319/320/328) [17,82], 

had a high entropy score in both viruses.  

 

 

 

Figure 1. Shannon’s entropy of individual amino acids in the C2, V3 and C3 envelope regions in HIV-1 and 

HIV-2. (A) HIV-1 alignment (PT dataset), sites were numbered according to codon env position of HIV-1 HXB2 

reference strain; (B) HIV-2 alignment (PT dataset), sites were numbered according to codon env position of 

HIV-2 ALI reference strain. 

 

The mean number of potential N-linked glycosylation sites both in HIV-1 and HIV-2 

sequences from Portugal was 7 (range: 4-9 in HIV-1; 5-9 in HIV-2). The most conserved 

glycosylation sites were located in C2 in both viruses (Figure 2). Nonetheless, in this 

region, there were four highly conserved glycosylation sites in HIV-2 (present in ≥ 80% of 

strains) and only two such sites in HIV-1. With the exception of the highly conserved site 
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located in the beginning of C3 in HIV-1, glycosylation sites found in C3 varied from strain to 

strain in number and location, this being more evident in HIV-1 than in HIV-2. In V3 there 

were two highly conserved glycosylation sites in both viruses. Similar observations were 

made for HIV-1 and HIV-2 sequences in the Control datasets (Table S1 and Figure S3). 

 

 

 

Figure 2. Frequency of N-glycosylation sites in the C2, V3 and C3 envelope regions in HIV-1 and HIV-2. (A) 

HIV-1 alignment (PT dataset), sites were numbered according to codon env position of HIV-1 HXB2 reference 

strain; (B) HIV-2 alignment (PT dataset), sites were numbered according to codon env position of HIV-2 ALI 

reference strain. 

 

 

Selective pressures act differently in HIV-1 and HIV-2 

We have recently found that HIV-2 displays a faster evolutionary rate in the envelope 

gp125 and C2, V3 and C3 regions than HIV-1 in patients with chronic and advanced disease 

[52,83]. The faster evolutionary rate in HIV-2 was more pronounced in synonymous sites 

than in non-synonymous sites suggesting a weaker positive selection in HIV-2 than in HIV-1. 
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To investigate this possibility, we analysed diversifying selection in the C2, V3 and C3 

regions of both viruses using codon-based models of molecular evolution. Firstly, we 

estimated the ratio of non-synonymous and synonymous substitution rates (dN/dS ratio) 

averaged over all sites. For HIV-1 sequences from Portugal dN/dS ratio was 0.703, 95%CI 

[0.668, 0.740]; for HIV-2 it was 0.451, [0.419, 0.484]. Similar values were obtained for the 

Control alignments (Table S1). These results are consistent with the higher degree of 

genetic conservation of the C2, V3 and C3 regions in HIV-2.  

Site-by-site analysis revealed that diversifying selection is unevenly distributed along the 

studied region between the two viruses (PT, P<0.001; Controls, P<0.001) (Figures 3 and 

S4). For HIV-2 sequences from the PT dataset, there were between 7 and 9 positively 

selected (PS) sites depending on the method that was used (SLAC/FEL/REL) while for HIV-1 

the number of sites ranged from 7 to 17 (Table 1). Taking into account only sites that were 

selected by at least two methods, HIV-2 had a total of 7 PS sites whereas in HIV-1 there 

were 9 sites. The sites were distributed as follows: in C2 there were 3 sites in HIV-2 and 2 

in HIV-1; in V3 there were 2 sites in HIV-1, and no sites in HIV-2; in C3 there were 4 sites in 

HIV-2 and 5 in HIV-1, including one codon within the CD4 binding site (codon 378 in HIV-1) 

and two in the α2-helix (codons 343 and 346) [84]. In Control data sets the number of PS 

sites was slightly lower but they were similarly distributed, with the exception of the V3: 1 

PS site in HIV-2, but no sites in HIV-1 (Tables S1 and S2). Importantly, we found that when 

compared to HIV-1, positive selection was stronger in HIV-2 in most sites (Tables 1 and S2). 

The comparison of diversifying selection between terminal and internal branches of the 

phylogenetic trees revealed two distinct profiles for HIV-1 and HIV-2. Firstly, non-

synonymous substitution rates were significantly different between the internal nodes and 

the tips of the tree in all datasets: PT, P=0.002 for HIV-2 and P=0.011 for HIV-1; Controls, 

P<0.001 and P=0.004 (data not shown). Stronger selection was in general found at codons 

selected simultaneously at the tips and the external branches of the HIV-1 and HIV-2 trees. 

Importantly, however, only 2 of the 7 sites (29%) detected in terminal branches of PT HIV-2 

tree were also under positive selection along the internal branches (codons 267 and 270 in 

C2). In contrast, for HIV-1 most positively selected sites (6/9, 67%) were present both in 

the internal and the terminal branches. In Control datasets these percentages were 43% for 

HIV-2 and 71% for HIV-1 (Table S2). These results suggest that natural selection affects less 

the transmission fitness of HIV-1 than HIV-2. 
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Figure 3. Positive selection in the C2, V3 and C3 envelope regions in HIV-1 and HIV-2. dN-dS values were 

estimated by FEL and scaled by the total codon tree length. (A) HIV-1 alignment (PT dataset), sites were 

numbered according to codon env position of HIV-1 HXB2 reference strain; (B) HIV-2 alignment (PT dataset), 

sites were numbered according to codon env position of HIV-2 ALI reference strain. 

 



 

 

 

Table 1. Positively selected sites detected by SLAC, FEL, REL and/or IFEL in HIV-1 and HIV-2 env C2, V3 and C3 regions1. 

HIV-1  HIV-2 

Region Codon SLAC  FEL  REL  IFEL  Region Codon SLAC  FEL  REL  IFEL  

C2 283 0.249 (0.083) 0.017 (0.027) 0.282 (0.950) -0.007 (0.237) C2 267 1.805 (<0.001) 0.151 (<0.001) 1.007 (1.000) 0.147 (0.004) 

 291 0.252 (0.096) 0.011 (0.334) 0.005 (0.277) 0.008 (0.648)  270 1.561 (0.003) 0.171 (<0.001) 0.892 (1.000) 0.179 (0.010) 

 292 0.269 (0.063) 0.017 (0.167) 0.547 (<0.001) 0.014 (0.419)  295 1.049 (0.051) 0.134 (0.095) 0.070 (0.910) 0.109 (0.316) 

 293 0.401 (0.066) 0.024 (0.230) 0.924 (0.972) 0.063 (0.050)  300 0.787 (0.210) 0.130 (0.077) 0.714 (<0.001) 0.131 (0.109) 

V3 300 0.335 (0.079) 0.022 (0.022) 0.219 (0.846) 0.016 (0.093) V3 331 -0.312 (0.859) 0.020 (0.591) 0.193 (0.987) 0.069 (0.390) 

 306 0.312 (0.106) 0.014 (0.541) 0.947 (0.984) -0.004 (0.867)           

 308 0.619 (0.008) 0.046 (0.065) 0.869 (0.973) 0.094 (0.012)           

 314 0.314 (0.052) 0.014 (0.291) 0.163 (0.178) -0.001 (0.971)           

 317 0.301 (0.057) 0.011 (0.401) 0.192 (0.140) 0.005 (0.749)           

C3 332 0.124 (0.267) 0.009 (0.341) -0.432 (<0.001) 0.031 (0.093) C3 346 0.478 (0.236) 0.051 (0.173) 1.008 (1.000) 0.050 (0.397) 

 334 0.543 (0.004) 0.041 (0.027) 1.142 (0.997) 0.065 (0.024)  351 0.207 (0.298) 0.018 (0.087) 0.114 (<0.001) 0.000 (1.000) 

 335 0.458 (0.010) 0.025 (0.109) 0.893 (0.936) 0.035 (0.147)  354 0.689 (0.047) 0.067 (0.016) 0.988 (1.000) 0.000 (1.000) 

 336 0.452 (0.058) 0.019 (0.583) 0.817 (0.907) 0.011 (0.743)  361 0.887 (0.035) 0.093 (0.011) 0.988 (1.000) 0.016 (0.693) 

 343 0.405 (0.060) 0.022 (0.109) 0.885 (0.989) 0.017 (0.370)  364 -0.085 (0.704) 0.014 (0.690) 0.130 (0.983) -0.069 (0.072) 

 345 0.392 (0.024) 0.016 (0.330) 0.492 (0.657) 0.070 (0.018)  365 1.074 (0.089) 0.175 (0.070) 0.463 (0.561) -0.056 (0.626) 

 346 1.080 (<0.001) 0.128 (<0.001) 0.945 (0.982) 0.281 (<0.001)  378 0.415 (0.088) 0.030 (0.043) 0.116 (<0.001) 0.029 (0.119) 

 348 0.270 (0.096) 0.011 (0.664) 1.183 (<0.001) -0.005 (0.899)           

 353 0.319 (0.143) 0.018 (0.476) -0.118 (0.347) 0.120 (0.035)           

 359 0.558 (0.022) 0.117 (<0.001) 0.882 (1.000) 0.214 (0.001)           

 363 0.169 (0.295) 0.017 (0.279) 0.860 (0.995) 0.003 (0.900)           

 378 0.244 (0.021) 0.014 (0.020) 0.217 (<0.001) 0.000 (1.000)           

                    

1PT dataset 

Codon – codons selected under 10% level of significance (SLAC, FEL and IFEL) or above a Bayes Factor of 50 (REL) and numbered according to codon env position of HIV-1 HXB2 for HIV-1 dataset or of HIV-2 

ALI for HIV-2 dataset. Codons selected simultaneously by SLAC, FEL and REL methods are bold and underlined.  

SLAC, FEL and IFEL – the first numbers are the dN-dS difference for each site scaled by the total codon tree length, the numbers in parenthesis show P-values for corresponding test of non-synonymous 

rate being superior to synonymous rate. 

REL - the first numbers are the expected posterior dN-dS difference for each site scaled to the total codon tree length, the number in parenthesis show the posterior probability of non-synonymous rate 

being superior to synonymous rate. 

Bold dN-dS differences correspond to significant P-values or posterior probabilities. 
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Structure and solvent accessibility of V3 differ in HIV-1 and HIV-2 

A model of the structure of the C2, V3 and C3 regions was built for HIV-1 and HIV-2 based 

on the atomic coordinates of the HIV-1 gp120 and SIV gp120 using consensus sequences 

from both the PT and Control HIV-1 and HIV-2 alignments. For HIV-1, the structures of PT 

and Control sequences were almost identical having only a slight difference in V3, which 

presents less regular secondary structure in the PT sequence (Figure S5). For HIV-2, the 

structures of PT and Control sequences were identical. The structure of the C2, V3 and C3 

regions was however markedly different between HIV-1 and HIV-2, the most striking 

differences being the significant retraction of the V3 loop in HIV-2 and its potential 

interaction both with C2 and C3 (Figure 4A). Identical results were obtained when 

comparing the HIV-1 and HIV-2 control sequences (Figure S6). The predicted non-covalent 

interaction between V3, C3 and C3 in HIV-2 involves residues Tyr296 and His301 in C2 

binding, respectively, to Arg331 and Trp334 in V3, and Phe337 in C3 binding to Phe321 in 

V3 (Figure 4B).  

 

Figure 4. Conformational structure of C2, V3 and C3 envelope regions in HIV-1 and HIV-2. The 

conformational structure of consensus amino acid sequences derived from the PT datasets was obtained by 

homology modeling as indicated in Material and Methods. In the schematics, C2 is shown in red, V3 in yellow 

and C3 in blue. (A) Balls represent the amino acids under positive selection. The red balls represent codons 

selected simultaneously by SLAC, FEL and REL methods, while green balls stand for codons selected by at least 

two of these methods; (B) Model structure showing the predicted interactions between V3, C2 and C3 in HIV-2 

gp125. The non-covalent interaction involves residues Tyr296 and His301 in C2 binding, respectively, to Arg331 

and Trp334 in V3, and Phe337 in C3 binding to Phe321 in V3. 

 

The solvent accessibilities of amino acid residues were also calculated for both models 

(Figure 5). As expected, both in HIV-1 and HIV-2 most PS sites and N-glycans had at least 
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50% surface exposure. In HIV-2, 8 out of 37 (22%) amino acids in C2, 8/34 (24%) in V3 and 

19/53 (36%) in C3 were highly exposed (≥ 70% solvent accessibility) whereas in HIV-1 these 

were 9/37 (24%), 15/35 (43%) and 10/52 (19%), respectively. Consistent with the high 

exposure of the V3 region in HIV-1, the two amino acids at positions 306 and 320 involved 

in binding to co-receptors were well exposed (≥ 50% solvent accessibility). In contrast, in 

HIV-2, among amino acids 319/320 and 328 in V3 loop potentially involved in co-receptor 

binding, only 319 was relatively well exposed. Despite the potential interaction between 

V3 and C3 (Figure 4B), the overall exposition of C3 was higher in HIV-2 than in HIV-1. Thus, 

for instance, 42% (5/12) of the residues in C3 that may contribute for the formation of the 

CD4-binding site (positions 377-388) in HIV-2 showed high solvent accessibility. In HIV-1 

only 3 out of 16 (19%) amino acids with similar function (positions 367-382) were highly 

exposed. Similar results were obtained when comparing the HIV-1 and HIV-2 control 

sequences (Figure S7). 

 

Figure 5. Solvent accessible surface area, positive selection and potential N-glycosylation sites in C2, V3 

and C3 regions. (A) HIV-1 alignment (PT dataset), sites were numbered according to codon env position of HIV-

1 HXB2 reference strain; (B) HIV-2 alignment (PT dataset), sites were numbered according to codon env 

position of HIV-2 ALI reference strain. Colored bars represent the amino acids under positive selection and have 

the same colors (red and green) as the corresponding positions (balls) highlighted in Figure 4A. The dark blue 

stars over the bars correspond to potential N-glycosylation sites conserved along the alignment (present in 

50% of strains), whereas the light blue stars represent sites only present in less than 50% of sequences. 
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DISCUSSION 

To investigate the molecular and structural features underlying the differences in HIV-1 

and HIV-2 biology and human infection, we have analysed the C2, V3 and C3 envelope 

regions from a significant number of HIV-1 and HIV-2 infected patients living in Portugal 

and worldwide. HIV-2 sequences from Portugal belonged to group A and the majority of 

HIV-1 sequences belonged to subtype B (75%) followed by subtypes G, C and F, CRF02_AG 

and CRF14_BG. Collectively, these results are consistent with previous studies showing a 

highly complex HIV epidemic in Portugal caused by HIV-2 group A and different subtypes of 

HIV-1 group M [44,52,53,77,78,79,85].  

Genetic distances and amino acid diversity between HIV-1 viruses were significantly higher 

compared to HIV-2. This was surprising since at the individual level HIV-2 displays a similar 

[52] or even faster evolutionary rate than HIV-1 in the C2, V3 and C3 regions [83]. The 

more pronounced evolutionary rate in synonymous sites than in non-synonymous sites in 

HIV-2 [83] together with the rare escape of this virus from autologous neutralizing 

antibodies [17], suggested that the lower amino acid diversity in HIV-2 could be related 

with a weaker positive selection or even with negative selection [53]. This was not the 

case however since most sites in C2 and C3 were under stronger positive selection in HIV-2 

than in HIV-1. The C3 region of HIV-1 is antibody accessible [86] and is subject to 

diversifying selection because it is a major neutralizing target [87,88,89,90]. Therefore, 

the high level of positive selection detected in C3 together with its high solvent exposure 

strongly suggests that this region is also antibody accessible in HIV-2 and might be a major 

neutralizing domain.  

Strength of selection was significantly different between internal and external branches of 

the HIV-1 and HIV-2 phylogenetic trees. This is expected in populations of highly variable 

RNA viruses and implies that non-synonymous substitutions can be highly deleterious 

[68,91]. In HIV-1, most of the codons selected in the tips of the tree were also under 

selection along the internal branches, indicating that adaptation in these sites is occurring 

at the host and population levels [68]. In contrast, most adaptive mutations in HIV-2 were 

only found in the tips of the tree indicating that they are recent maladaptive substitutions 

that are transitory at the population level [68,92]. Thus, in contrast to HIV-1, 

diversification of C2 and C3 in HIV-2 seems to have a dominant negative effect on viral 

fitness and transmission. This data suggests that one possible consequence of the 

unexpectedly high evolutionary rate of HIV-2 at the patient level can be the frequent 

accumulation of deleterious mutations and production of defective viruses [52,83,93]. A 

high frequency of defective viruses in HIV-2 infected individuals could explain the poor 

replication of this virus in vivo as well as its very low transmissibility.   
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Unlike in HIV-1, the V3 loop in HIV-2 always presented the lower amino acid diversity. This 

result might be a consequence of significant structural and conformational constraints due 

to its role in preventing chronic and disruptive immune activation [20] and in co-receptor 

binding [82]. On the other hand, these results imply that the V3 loop is not well exposed in 

the HIV-2 envelope complex in vivo. Indeed, by computer modelling simulations we show 

that in HIV-2 the V3 loop is much less exposed than C2 and C3 and likely has a retractile 

conformation due to non-covalent interaction both with C2 and C3. In contrast, HIV-1 had, 

as previously found, an extended and highly accessible V3 loop [89,90,94]. Such 

conformation is entirely consistent with its immunodominant and neutralizing nature and 

with its crucial role in HIV-1 co-receptor binding and tropism [33,34,35,95,96,97]. 

Conversely, the concealed nature of V3 in the HIV-2 envelope complex implies that this 

region may not be immunodominant in HIV-2 infection. Indeed, a significant number of 

HIV-2 patients do not raise antibodies against the V3 loop [43] or against a polypeptide 

comprising the C2, V3 and C3 regions [45]. Thus, the occlusion of V3 in the HIV-2 envelope 

complex may prevent it from over immune recognition and associated sequence changes 

thereby preserving its crucial functions in viral entry. It has been shown that removal or 

antigenic dampening of the HIV-1 V3 loop redirects the neutralizing immune response to 

other epitopes of the Env protein that otherwise would be non-neutralizing or non-

antibody responsive [33,98,99,100]. In this context, the occluded nature of the V3 region 

in the HIV-2 envelope complex might favour a more effective production of broadly 

neutralizing antibodies targeting other regions in gp125 such as the C2, V1, V2, V4 and C5 

regions [37,38,39,101].  

 

In conclusion, the C2 and C3 regions are well exposed in the HIV-2 envelope complex and 

are under strong diversifying selection suggesting that, like in HIV-1, they may harbour 

neutralizing epitopes. However, extreme diversification of C2 and C3 in HIV-2 seems to be 

deleterious for the virus and prevent its transmission. On the other hand, V3 is highly 

conserved in HIV-2 and is concealed within the envelope complex, possibly due to a 

physical interaction with C2 and C3. In contrast, V3 is highly exposed and variable in HIV-1 

which is consistent with its immunodominant and neutralizing properties. Collectively, we 

identify significant structural and functional constrains to the diversification and evolution 

of C2, V3 and C3 in the HIV-2 envelope but not in HIV-1. These studies highlight 

fundamental differences in the biology and infection of HIV-1 and HIV-2 and in their mode 

of interaction with the human immune system and may inform new vaccine and 

therapeutic interventions against these viruses. 
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SUPPLEMENTARY MATERIAL 

 

 

Alignment S1. Alignment of HIV-1 reference sequences used as a Control for the Portuguese 

HIV-1 dataset. Each sequence is identified by the corresponding GenBank accession number. 

Found at: doi:10.1371/journal.pone.0014548.s010 (0.04 MB TXT) 

 

Alignment S2. Alignment of HIV-2 reference sequences used as a Control for the Portuguese 

HIV-2 dataset. Each sequence is identified by the corresponding GenBank accession number. 

Found at: doi:10.1371/journal.pone.0014548.s011 (0.02 MB TXT) 
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Figure S1. Genotyping HIV-1 (A) and HIV-2 (B) by maximum likelihood phylogenetic analysis. The 

phylogenetic trees were constructed using the SPR heuristic search strategy and 1000 bootstrap replications, 

with reference sequences from HIV-1, under the TVM+G+I evolutionary model (A) and with reference sequences 

from HIV-2, under the GTR+G+I evolutionary model (B). The bootstrap values (above 50%) supporting the 

internal branches are shown. The scale bar represents evolutionary distances in substitutions per site. 
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Figure S1. Genotyping HIV-1 (A) and HIV-2 (B) by maximum likelihood phylogenetic analysis. The 

phylogenetic trees were constructed using the SPR heuristic search strategy and 1000 bootstrap replications, 

with reference sequences from HIV-1, under the TVM+G+I evolutionary model (A) and with reference sequences 

from HIV-2, under the GTR+G+I evolutionary model (B). The bootstrap values (above 50%) supporting the 

internal branches are shown. The scale bar represents evolutionary distances in substitutions per site. 



 

 

Table S1. Summary of results for phylogenetic, codon selection and solvent accessibility analysis for C2, V3 and C3 regions of HIV-1 

and HIV-2 Control datasets. 

 HIV-1 HIV-2 P value 

Nucleotide diversity, (mean, [95%CI]) 0.361 [0.359; 0.364] 0.221 [0.218; 0.224] <0.0001 

Entropy, (mean, [95%CI])    

C2-V3-C3 0.702 [0.590; 0.813] 0.353 [0.269; 0.436] <0.0001 

 C2 0.584 [0.394; 0.775] 0.244 [0.126; 0.363] 0.005 

V3 0.537 [0.382; 0.692] 0.244 [0.115; 0.373] 0.002 

C3 0.900 [0.700; 1.100] 0.496 [0.344; 0.648] 0.004 

Entropy values above 1, (n. sites, (%))    

C2-V3-C3 34 (27.6%) 16 (13%) na 

C2 12 (32.4%) 3 (8.3%) na 

V3 4 (11.4%) 2 (5.9%) na 

C3 18 (35.3%) 11 (20.8%) na 

Potential glycosylation sites, (n. sites, (range)    

C2-V3-C3 7 (5 - 9) 7 (4 - 10) na 

C2 3 (1 - 4) 4 (3 - 5) na 

V3 1 (0 - 1) 1 (0 - 1) na 

C3 3 (2 - 5) 2 (0 - 5) na 

dN/dS ratio, (mean, [95%CI]) 0.649 [0.621, 0.677] 0.461 [0.427, 0.497] na 

Positively selected sites, consensus from SLAC/FEL/REL (n. sites)    

C2-V3-C3 3 3 na 

C2 1 1 na 

V3 0 1 na 

C3 2 1 na 

Solvent accessibility above 70% (n. residues)    

C2-V3-C3 27 37 na 

C2 9 8 na 

V3 8 8 na 

C3 10 21 na 

    

[95%CI] – 95% confidence interval. 

P value – P values for the non-parametric Mann-Whitney U test. 

na – not applied.  
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Figure S2. Shannon’s entropy of individual amino acids in the C2, V3 and C3 envelope regions in HIV-1 and 

HIV-2. (A) HIV-1 alignment (Control dataset), sites were numbered according to codon env position of HIV-1 

HXB2 reference strain; (B) HIV-2 alignment (Control dataset), sites were numbered according to codon env 

position of HIV-2 ALI reference strain. 
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Figure S3. Frequency of N-glycosylation sites in the C2, V3 and C3 envelope regions in HIV-1 and HIV-2. (A) 

HIV-1 alignment (Control dataset). Sites were numbered according to codon env position of HIV-1 HXB2 

reference strain. (B) HIV-2 alignment (Control dataset). Sites were numbered according to codon env position 

of HIV-2 ALI reference strain. 
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Figure S4. Positive selection in the C2, V3 and C3 envelope regions in HIV-1 and HIV-2. dN-dS values were 

estimated by FEL and scaled by the total codon tree length. (A) HIV-1 alignment (Control dataset). Sites 

were numbered according to codon env position of HIV-1 HXB2 reference strain. (B) HIV-2 alignment (Control 

dataset). Sites were numbered according to codon env position of HIV-2 ALI reference strain. 

 

 



 

 

Table S2. Positively selected sites detected by SLAC, FEL, REL and/or IFEL in Control HIV-1 and HIV-2 env C2, V3 and C3 regions. 

Control HIV-1 Control HIV-2 

Region Codon SLAC  FEL  REL  IFEL  Region Codon SLAC  FEL  REL  IFEL  

C2 268 1.308 (0.030) 0.003 (0.893) 0.337 (0.533) -0.024 (0.271) C2 295 1.031 (0.039) 0.169 (0.021) 1.469 (1.000) 0.114 (0.183) 

 269 0.145 (0.489) 0.007 (0.513) 0.776 (0.949) 0.015 (0.356)  301 0.658 (0.092) 0.077 (0.097) -0.362 (<0.001) 0.06 (0.248) 

 281 0.787 (0.109) 0.012 (0.193) 0.821 (0.992) 0.012 (0.399)           

 283 0.775 (0.118) 0.020 (0.023) 0.837 (0.999) 0.018 (0.158)           

 290 1.645 (0.024) 0.013 (0.574) -0.033 (0.185) -0.015 (0.535)           

 291 1.103 (0.012) 0.013 (0.201) 0.824 (0.959) 0.022 (0.137)           

 293 2.672 (<0.001) 0.060 (0.003) 0.817 (0.948) 0.054 (0.021)           

V3 305 1.034 (0.062) 0.007 (0.712) 0.593 (0.768) -0.008 (0.661) V3 320 0.498 (0.229) 0.099 (0.099) 1.197 (0.990) 0.28 (0.007) 

 306 0.972 (0.035) 0.011 (0.366) -0.046 (0.262) -0.010 (0.399)  328 1.357 (0.024) 0.273 (0.007) 1.011 (0.999) 0.145 (0.191) 

 314 0.943 (0.055) 0.005 (0.651) 0.758 (0.931) -0.009 (0.496)           

 317 0.706 (0.027) 0.008 (0.209) -0.026 (0.486) 0.018 (0.075)           

 322 0.576 (0.146) 0.014 (0.041) -0.041 (0.463) 0.005 (0.263)           

C3 332 0.184 (0.420) 0.003 (0.723) -0.239 (0.057) 0.031 (0.047) C3 340 0.77 (0.177) 0.132 (0.299) 0.756 (0.968) 0.191 (0.451) 

 334 2.069 (0.001) 0.030 (0.106) 0.591 (0.773) 0.038 (0.123)  342 0.302 (0.378) 0.068 (0.334) 0.851 (0.997) 0.095 (0.397) 

 335 3.582 (<0.001) 0.102 (<0.001) 0.584 (0.761) 0.075 (0.006)  346 0.544 (0.129) 0.059 (0.067) -0.245 (<0.001) 0.02 (0.553) 

 336 1.927 (0.002) 0.029 (0.185) 0.580 (0.761) 0.023 (0.350)  353 0.605 (0.187) 0.049 (0.470) 0.842 (0.999) 0.018 (0.840) 

 342 0.465 (0.026) 0.011 (0.614) 0.307 (0.506) -0.020 (0.250)  361 0.602 (0.091) 0.084 (0.021 0.404 (1.000) 0.042 (0.358) 

 343 0.360 (0.045) 0.030 (0.004) 0.837 (1.000) 0.041 (0.012)  363 -0.22 (0.706) -0.022 (0.821) 0.759 (0.969) 0.004 (0.976) 

 346 0.767 (<0.001) 0.052 (0.001) 0.961 (0.994) 0.053 (0.004)  365 1.499 (0.043) 0.244 (0.200) -0.338 (0.557) 0.218 (0.355) 

 349 0.273 (0.095) 0.004 (0.781) 0.400 (0.594) 0.005 (0.791)  368 -0.17 (0.702) 0.043 (0.581) 0.837 (0.998) 0.005 (0.962) 

 351 0.037 (0.510) 0.005 (0.657) 0.770 (0.943) -0.005 (0.696)  370 0.639 (0.172) 0.085 (0.287) 0.85 (0.999) 0.045 (0.667) 

 356 0.183 (0.097) 0.005 (0.531) -0.196 (0.143) -0.002 (0.887)  374 0.831 (0.102) 0.145 (0.095) 0.926 (0.999) 0.245 (0.065) 

 358 0.164 (0.254) 0.044 (0.003) 0.708 (0.885) 0.083 (0.002)  381 0.882 (0.023) 0.111 (0.009) -0.339 (<0.001) 0.126 (0.013) 

 360 0.263 (0.122) 0.010 (0.507) 0.544 (0.730) 0.043 (0.087)           

 361 0.477 (0.005) 0.015 (0.247) 0.796 (0.960) 0.041 (0.032)           

 363 0.262 (0.012) 0.010 (0.101) 0.061 (0.661) 0.000 (0.980)           

 370 0.169 (0.077) 0.004 (0.587) -0.103 (0.329) 0.007 (0.432)           

 377 0.243 (0.025) 0.007 (0.289) -0.072 (0.392) 0.000 (0.961)           

Codon – codons selected under 10% level of significance (SLAC, FEL and IFEL), or above a Bayes Factor of 50 (REL) and numbered according to codon env position of HIV-1 HXB2 for HIV-1 dataset or of HIV-2 ALI for HIV-2 

dataset. Codons selected simultaneously by SLAC, FEL and REL methods are bold and underlined.  

SLAC, FEL and IFEL – the first numbers are the dN-dS difference for each site scaled by the total codon tree length, the numbers in parenthesis show P-values for corresponding test of non-synonymous rate being superior to 

synonymous rate. 

REL - the first numbers are the expected posterior dN-dS difference for each site scaled to the total codon tree length, the number in parenthesis show the posterior probability of non-synonymous rate being superior to 

synonymous rate. 

Bold dN-dS differences correspond to significant P-values or posterior probabilities.  
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Figure S5. Superimposition of the conformational structures generated by homology modelling of 

Portuguese and Control C2, V3 and C3 regions of HIV-1 and HIV-2. In the schematics, Portuguese structures 

are represented in red, and Control structures are in blue. 
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Figure S6. Conformational structure of C2, V3 and C3 envelope regions in HIV-1 and HIV-2. The 

conformational structure of consensus amino acid sequences derived from the Control datasets was obtained 

by homology modeling as indicated in Materials and Methods. In the schematics, C2 is shown in red, V3 in 

yellow, and C3 in blue. Balls represent the amino acids under positive selection. (A) The red balls represent 

codons selected simultaneously by SLAC, FEL and REL methods, while green balls stand for codons selected by 

at least two of these methods. (B) Model structure showing the predicted interactions between V3, C2 and C3 

in HIV-2 gp125. The non-covalent interaction involves residues Tyr296 and His301 in C2 binding, respectively, 

to Arg331 and Trp334 in V3, and Phe337 in C3 binding to Phe321 in V3. 
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Figure S7. Solvent accessible surface area, positive selection and potential N-glycosylation sites in C2, V3 

and C3 regions. (A) HIV-1 alignment (Control dataset). Sites were numbered according to codon env position of 

HIV-1 HXB2 reference strain. (B) HIV-2 alignment (Control dataset). Sites were numbered according to codon 

env position of HIV-2 ALI reference strain. Colored bars represent the amino acids under positive selection and 

have the same colors (red and green) as the corresponding positions (balls) highlighted in Figure S6. The dark 

blue stars over the bars correspond to potential N-glycosylation sites conserved along the alignment (present in 

50% of strains), whereas the light blue stars represent sites only present in less than 50% of sequences. 
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ABSTRACT  

Background: The baseline susceptibility of primary Human Immunodeficiency Virus Type 2 

(HIV-2) to maraviroc (MVC) and other entry inhibitors is currently unknown.  

Methods: The susceptibility of nineteen HIV-2 isolates obtained from asymptomatic and 

AIDS patients and seven HIV-1 clinical isolates to the fusion inhibitors enfuvirtide (T-20) 

and T-1249, and to the coreceptor antagonists AMD3100, TAK-779 and MVC was measured 

using a TZM-bl cell-based assay. 50% (IC50) and 90% (IC90) inhibitory concentrations and 

dose-response curve slopes were determined for each drug. 

Results: T-20 and T-1249 were significantly less active on HIV-2 than on HIV-1 (211- and 2-

fold, respectively). AMD3100 and TAK-779 inhibited HIV-2 and HIV-1 X4 and R5 variants 

with similar IC50s and IC90s. MVC, however, inhibited the replication of R5 HIV-2 variants 

with significantly higher IC90s (42.7 vs 9.7 nM, P < 0.0001) and lower slope values than HIV-

1 (0.7 vs 1.3, P < 0.0001). HIV-2 R5 variants derived from AIDS patients were significantly 

less sensitive to MVC than variants from asymptomatic patients, this being inversely 

correlated with the absolute number of CD4+ T cells. 

Conclusions: T-1249 is a potent inhibitor of HIV-2 replication indicating that new fusion 

inhibitors might be useful to treat HIV-2 infection. Coreceptor antagonists TAK-779 and 

AMD3100 are also potent inhibitors of HIV-2 replication. The reduced sensitivity of R5 

variants to MVC, especially in severely immunodeficient patients, indicates that the 

treatment of HIV-2 infected patients with MVC might require higher dosages than those 

used in HIV-1 patients which should be adjusted to the disease stage. 

 

Keywords: HIV-2 primary isolates; fusion inhibitors; enfuvirtide; coreceptor antagonists; 

maraviroc. 

 

INTRODUCTION 

HIV-2 affects an estimated 1-2 million individuals worldwide and leads to AIDS and death 

albeit at a slower pace when compared to HIV-1. All currently available antiretroviral 

drugs were specifically designed to inhibit HIV-1 entry and replication. Consequently, some 

drugs classes are not active on HIV-2 (non-nucleoside reverse transcriptase and fusion 

inhibitors) and virological and immunological responses to treatment regimens 

incorporating active drugs are usually poorer in HIV-2 patients [1]. 

The envelope glycoproteins of HIV-1 and HIV-2 are markedly different at the genetic, 

structural and functional levels. In contrast to HIV-1, HIV-2 may enter cells without binding 

to CD4 and using multiple alternative co-receptors besides CCR5 and CXCR4 [2,3]. This 

suggests that maraviroc (MVC), a CCR5 antagonist, might also have limited activity against 
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HIV-2. Currently, there is no information concerning the in vitro susceptibility of HIV-2 

primary isolates to MVC, enfuvirtide (T-20) or any other entry inhibitor. In the absence of 

formal clinical trials, in vitro evaluation of the baseline susceptibility of HIV-2 primary 

isolates to MVC is crucial to assess the potential clinical value of this drug in HIV-2 therapy 

[4]. Here we have analysed the susceptibility of HIV-2 primary isolates obtained from 

asymptomatic and AIDS patients to the fusion inhibitors T-20 and T-1249 and to the 

coreceptor antagonists AMD3100, TAK-779 and MVC.  

 

METHODS 

Primary isolates were obtained from HIV-2-infected Portuguese patients and, for 

comparison, from HIV-1-infected Angolan patients, all naïve to therapy with entry 

inhibitors, by cocultivation with PBMCs from seronegative subjects (Table 1) [5]. Virus 

genotyping was performed by phylogenetic analysis using C2-V3-C3 (HIV-2) or gp41 (HIV-1) 

env sequences (HIV-1 primers described in Supplementary Table S1). GenBank accession 

number for newly derived HIV-2 and HIV-1 sequences are: HIV-2, HQ738345 – HQ738350; 

HIV-1, HQ738338 - HQ738344. 

CCR5 and CXCR4 tropism was determined using a single-round viral infectivity assay 

performed with TZM-bl reporter cells (CD4+, CCR5+, CXCR4+) in the presence of excessive 

amounts of the CCR5 antagonist TAK-779 (10 M) and/or of the CXCR4 antagonist AMD3100 

(1.2 M), as previously described [6]. The 50% and 90% inhibitory concentrations (IC50s and 

IC90s) and dose-response curve slopes (Hill slopes) of T-20 and T-1249 (fusion inhibitors) and 

AMD3100, TAK-779 and MVC (coreceptor antagonists) were determined on the newly 

derived panel of isolates (200 TCID50 for each virus) using also the TZM-bl reporter cell 

assay. IC50s, IC90s and Hill slopes were estimated by the sigmoidal dose-response (variable 

slope) equation in Prism version 4.0c for Macintosh (GrahPad Software, San Diego, 

California USA, www.graphpad.com). Prism was also used for statistical analyses (level of 

significance of 5%).  

 

RESULTS 

Genotypic and phenotypic characterization of virus isolates 

Nineteen new HIV-2 primary isolates were used in this study, all belonging to group A 

(Table 1 and Figure S1). Ten were CCR5 tropic (R5 isolates), eight CXCR4 tropic (X4 

isolates) and one used both coreceptors [dual/mixed population (D/M)]. The seven new 

HIV-1 primary isolates were all R5 and their genotypes were distributed as follows: subtype 

http://www.graphpad.com/


HIV-2 susceptibility to entry inhibitors 

 101 

G (1 isolate), J (2) and CRF02_AG (1); 3 isolates were untypable (U) (Table 1 and Figure 

S2).  

 

Antiviral activity of coreceptor antagonists 

AMD3100 and TAK-779 inhibited the replication of HIV-1 and HIV-2 with similar IC50s and 

IC90s and similar slope values (Tables 1 and 2). MVC also inhibited the replication of HIV-2 

and HIV-1 R5 variants with similar IC50s (Table 1); for HIV-1, the IC50s were similar to 

previously reported values (range, 0.1 – 4.5 nM) (Table 1) [7]. However, MVC inhibited the 

replication of R5 HIV-2 variants with significantly higher IC90s (42.7 vs 9.7 nM, P < 0.0001) 

and lower slope values (0.7 vs 1.3, P < 0.0001) than HIV-1 (Figure 1A; Table 2). R5 variants 

isolated from HIV-1 patients after AIDS diagnosis have reduced sensitivity to TAK-779 as 

compared to R5 variants isolated at the asymptomatic stage [8,9]. Strikingly, we also 

found a strong and significant negative correlation between HIV-2 sensitivity to MVC (as 

determined by the IC50s) and CD4+ T cell counts at the time of virus isolation (Spearman r = 

-0.831; P = 0.008) (Figure 1B). Consistent with this, isolates from AIDS patients were 

significantly less sensitive to MVC (required significantly higher IC50s to inhibit replication) 

than isolates from asymptomatic patients (Figure 1C). A similar tendency was observed for 

TAK-779 (Figure S3). In all, these results demonstrate that HIV-2 R5 variants have lower 

sensitivity to MVC than HIV-1 and suggest that resistance of these variants to MVC 

increases as disease progresses [8,9]. 

 

Antiviral activity of fusion inhibitors 

In this study, T-20 was 211-fold less active against primary isolates of HIV-2 than against 

HIV-1 (mean IC50, 281.5 vs 1.2 nM, P<0.0001) (Figure 1D; Table 2), confirming and 

extending previous results based on lab-adapted isolates [10]. Interestingly, with one 

exception, all HIV-1 primary isolates exhibited high sensitivity to T-20 (Table 1). 

Sequencing analysis showed that these isolates carried the N42S polymorphism in the gp41 

glycoprotein whilst the less sensitive strain did not (data not shown). These polymorphism, 

which is more prevalent in several non-B subtypes and recombinant forms than in subtype 

B, has previously been associated with higher sensitivity to T-20 both in B and non-B HIV-1 

subtypes [11].  

In contrast to T-20, T-1249 was active on HIV-2 although at higher concentrations than on 

HIV-1 (IC50, 4.3 vs 2.0 nM; P<0.0001). Moreover, T-1249 was more active on X4 than on R5 

isolates both in HIV-1 (IC50, 0.6 vs 2.9 nM; P<0.0001) and HIV-2 (IC50, 3.2 vs 6.1 nM; 

P=0.0005). 



 

 

Table 1. Clinical characterization of HIV patients and primary isolates including their susceptibility to different entry inhibitors. 

Isolatesa 

Clinical characterization 
Genetic 
formsc 

Coreceptor 
used 

Antiviral activitye 

AMD3100 (nM) TAK-775 (nM) Maraviroc (nM) T-20 (nM) T-1249 (nM) 

CD4+ T cells/ml 
at study entry 

HIV RNA 
copies/ml 

Antiretroviral 
therapyb 

IC50 IC90 IC50 IC90 IC50 IC90 IC50 IC90 IC50 IC90 

HIV-1                

93AOHDC249 na na na U c R5 - - 6.1 173.0 1.0 6.1 78.8 1285.3 8.0 13.2 

93AOHDC250 na na na J R5 - - 8.1 7516.2 2.4 9.7 0.4 15.7 1.9 8.7 

93AOHDC251 na na na U R5 - - 5.7 23388.4 1.5 9.2 1.3 170.2 1.8 43.6 

93AOHDC252 na na na U R5 - - 153.5 24434.3 4.7 48.5 3.7 23.5 2.6 8.0 

93AOHDC253 na na na J R5 - - 15.7 423.6 1.4 4.5 0.1 2.0 1.4 8.6 

01PTHDECJN 1003 < 400 na CRF02_AG R5 - - 178.4 5942.9 2.7 11.9 0.7 132.1 1.6 6.7 

00PTHDEEBB 409 2742788 na G R5 - - 2.6 2844.5 0.8 3.8 1.5 33.6 5.5 78.5 

NL4-3 - - - B X4 0.9 6.0 - - - - 5.0 178.6 0.6 1.0 

SG3.1 - - - B X4 5.2 29.2 - - - - 0.1 0.5 0.4 6.9 

HIV-2                

03PTHCC1 308 < 200 + A R5 - - 0.6 1219.0 0.9 4.8 35.6 877.0 5.1 49.3 

03PTHCC6 615 < 200 + A R5 - - 10.1 2301.4 0.9 32.3 661.1 2192.8 8.4 74.1 

03PTHCC7 144 < 200 + A R5 - - 16.2 3581.0 2.9 28.9 549.1 2138.0 7.3 12.6 

03PTHCC12 66 < 200 - A R5 - - 45.1 7030.7 3.8 78.7 2857.0 32062.7 6.3 36.6 

03PTHCC17 367 < 200 + A R5 - - 3.0 55080.8 0.9 27.9 138.4 2162.7 2.5 40.3 

03PTHCC19 175 na - A R5 - - 128.3 167880.4 4.3 81.5 250.0 1729.8 7.2 24.6 

00PTHDECT 2919 1355 - A R5 - - 24.8 3741.1 1.6 61.1 109.3 881.0 2.3 24.4 

10PTHSJIG 164 4257 + A R5 - - 121.8 8128.3 5.5 108.6 586.3 14092.9 21.9 412.1 

03PTHSM2 275 < 200 + A R5 - - 8.8 15922.1 2.4 53.1 114.0 4375.2 3.4 61.9 

10PTHSMNC 231 < 200 + A R5 - - 57.4 3396.3 2.2 40.1 265.4 3507.5 8.9 71.3 

10PTHSMAK 40 1793 + A D/M 3.2 17.9 0.7 29922.6 116.0 30903.0 125.2 1458.8 1.5 45.6 

ROD - - - A X4 1.0 16.1 - - - - 76.1 3380.6 9.1 174.6 

03PTHCC10 48 < 200 + A X4 3.6 78.3 - - - - 293.6 3047.9 2.4 12.4 

00PTHCC20 1033 < 200 - A X4 1.9 17.5 - - - - 151.3 1422.3 0.9 8.4 

03PTHCC20 78 < 200 + A X4 2.0 18.6 - - - - 362.7 3548.1 1.9 10.9 

03PTHDECT 209 20968 na A X4 1.6 20.7 - - - - 373.4 5520.8 2.1 32.1 

01PTHDESC 44 1250 + A X4 4.0 32.7 - - - - 241.5 3672.8 4.9 49.1 

03PTHSM9 15 < 200 + A X4 4.2 27.7 - - - - 1281.0 6729.8 7.0 12.6 

04PTHSM10 265 4792 + A X4 3.6 47.1 - - - - 293.6 3047.9 6.7 24.3 

10PTHSMAUC 177 < 200 - A X4 3.0 20.9 - - - - 167.3 952.8 1.7 12.0 

                

(please find the annotations on the next page) 



 

 

 

 

 

 

 

 

 a Lab-adapted reference strains NL4-3 (HIV-1), SG3.1 (HIV-1) and ROD (HIV-2) were obtained by transfection of 293T cells with pNL4-3 (HIV-1), pSG3.1 

(HIV-1) or pROD10 (HIV-2) plasmids. 

b +, yes; -, no. 

c U, untypable HIV-1: 93AOHDC249 and 93AOHDC252, sequences are basal to subtypes 19_cpx and 37_cpx; 93AOHDC251 sequence is basal to subtype H 

(Figure S2). 

d R5, CCR5 coreceptor usage; X4, CXCR4 coreceptor usage; D/M, Dual/Mixed viral population using CCR5 and CXCR4 coreceptors. 

e IC50 and IC90 best-fit values were inferred from sigmoidal dose-response (variable slope) curves and represent geometric mean values of two independent 

experiments performed in duplicate wells; AMD3100 was only tested against X4 isolates, while TAK-779 and maraviroc were tested against R5 isolates. 

na, not available. 

 



 

 

 

 

 

Table 2. Comparison of antiviral activities of the different entry inhibitors on HIV-1 and HIV-2 primary isolates 

Antiviral Parametera 
HIV-1  
Mean (95% confidence interval) 

HIV-2b 
Mean (95% confidence interval) 

P valuec 

AMD3100 (nM)    

(HIV-1 n=2; HIV-2 n=9) IC50  2.1 (1.1 - 3.8) 2.6 (2.2 - 3.0) 0.288 

 IC90  16.7 (4.4 - 62.8) 29.0 (20.8 - 40.5) 0.213 

 Hill slope  1.0 (0.5 – 1.6) 0.9 (0.8 - 1.0) 0.391 

TAK-779 (nM)    

(HIV-1 n=7; HIV-2 n=10) IC50  23.3 (12.0 - 45.4) 18.9 (11.8 - 30.3) 0.595 

 IC90  5200.0 (1161.4 - 23334.6) 11587.8 (3899.4 - 34514.4) 0.379 

 Hill slope  0.4 (0.3 – 0.5) 0.3 (0.3 – 0.4) 0.237 

Maraviroc (nM)    

(HIV-1 n=7; HIV-2 n=10) IC50  1.7 (1.4 - 2.2) 2.1 (1.7 - 2.6) 0.201 

 IC90  9.7 (6.6 - 14.4) 42.7 (26.6 - 68.4) < 0.0001 

 Hill slope  1.3 (1 – 1.6) 0.7 (0.6 – 0.8) < 0.0001 

T-20 (nM)    

(HIV-1 n=9; HIV-2 n=20) IC50  1.2 (0.7 - 2.2) 281.5 (223.2 - 354.9) < 0.0001 

 IC90  95.9 (26.3 - 350.8) 3881.5 (2393.3 - 6280.6) < 0.0001 

 Hill slope  0.5 (0.4 – 0.6) 0.8 (0.7 – 1) 0.001 

T-1249 (nM)     

(HIV-1 n=9; HIV-2 n=20) IC50  2.0 (1.4 - 2.8) 4.3 (3.6 - 5.2) < 0.0001 

 IC90  14.3 (6.9 - 29.5) 40.6 (28.1 - 58.5) 0.006 

  Hill slope  1.1 (0.8 – 1.4) 1 (0.8 – 1.1) 0.426 

a IC50, IC90 and Slope best-fit values were inferred from sigmoidal dose-response (variable slope) curves adjusted to combined results of HIV-1 and HIV-2 isolates. 

b Estimates for AMD3100, TAK-779 and maraviroc didn’t include the HIV-2 10PTHSMAK isolate, a virus with Dual/Mixed tropism. 

c P value for comparison of best-fit values between HIV-1 and HIV-2, using the F test. 
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DISCUSSION 

We have demonstrated that MVC inhibits the replication of R5 HIV-2 variants with 

significantly higher IC90 and lower slope values than HIV-1 indicating that higher dosages of 

MVC might be required for the treatment of HIV-2 infected patients [12,13]. So far, MVC 

use in HIV-2 infection was reported on only two occasions with uncertain results [14,15].  

Clinical trials are therefore needed to determine if the MVC dosages recommended in HIV-

1 infection are also effective for HIV-2 infection. This may prevent the administration of 

sub-therapeutic dosages that favour the selection of X4 variants which, in HIV-2, have 

been associated not only with CD4 depletion and disease progression [2] but also with 

resistance to neutralization [16]. 

Similarly to previous results obtained with RANTES for HIV-2 [17] and with TAK-779 and C-C 

chemokines for HIV-1 [8,9], MVC inhibits the replication of R5 HIV-2 variants isolated from 

AIDS patients with significantly higher IC50s than R5 variants isolated from asymptomatic 

patients this being inversely associated with the number of CD4+ T cells. In HIV-2 infected 

patients, CD4 depletion and higher immune activation are also closely associated with a 

increased frequency of memory CD4+ T cells expressing CCR5, the preferential target cells 

of this virus [18]. Hence, these results suggest that in HIV-2 infected patients MVC dosage 

may need to be adjusted according to the number of CD4+ T cells (higher dosage in 

severely immunodeficient patients and lower dosage in asymptomatic patients). Increased 

MVC resistance of late stage disease R5 variants might be explained by increased affinity 

for CCR5 [19] and/or an enhanced viral infectivity and replicative capacity [8,19]. 

Alternatively, these R5 variants may be evolutionary intermediates toward X4 use [8,17].  

The reduced activity of T-20 on primary HIV-2 isolates provides definitive evidence that T-

20 is not useful for HIV-2 therapy. The low activity of T-20 in HIV-2 is likely related with 

the high genetic variability between HIV-1 and HIV-2 in the HR1 and HR2 domains in the 

gp41 glycoprotein [10,20]. On the other hand, T-1249 a second-generation fusion inhibitor 

available only for research use was highly active on both HIV-1 and HIV-2 indicating that 

new fusion inhibitors (peptides or small-molecules) might be useful to treat HIV-2 

infection.  

In summary, primary isolates of HIV-1 and HIV-2 with X4 or R5 tropism have similar 

sensitivities to AMD3100 and TAK-779, respectively. However, significantly higher 90% 

inhibitory concentrations of MVC are required to inhibit replication of HIV-2 R5 variants 

than HIV-1 variants. Additionally, the sensitivity of HIV-2 R5 variants to this drug is 

inversely related with CD4+ T cell counts at time of virus isolation. If MVC is to be used in 

HIV-2 patients, clinical trials should be performed to fully evaluate the clinical efficacy of 

this drug in HIV-2 infection and determine the best therapeutic dosage in early and late 
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stage disease. Because X4 HIV-2 variants and dual/mixed HIV-2 populations are totally or 

partially resistant to MVC, coreceptor tropism should be determined before initiation of 

MVC therapy in HIV-2 infected patients. To this end, genotypic tropism assays, possibly 

based on the sequence of the V3 loop [2], should be developed to facilitate tropism 

assignment.  Once used regularly in HIV-2 patients, the impact of MVC in the phenotypic 

evolution of this virus in vivo should be fully investigated as MVC has the potential to 

select for HIV-2 X4 variants that are associated with bad disease prognosis.  
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SUPPLEMENTARY MATERIAL 

 

 

 

 

 

 

 

Figure S1. Genotyping HIV-2 by maximum-likelihood phylogenetic analysis. The phylogenetic tree was 

constructed in PAUP* using the NNI heuristic search strategy and 1000 bootstrap replications, with reference 

sequences from HIV-2, under the TVM+I+G evolutionary model. The bootstrap values (above 50%) supporting 

the internal branches are shown. The scale bar represents evolutionary distances in substitutions per site.  
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Figure S2. Genotyping HIV-1 by maximum-likelihood phylogenetic analysis. The phylogenetic tree was 

constructed in PAUP* using the NNI heuristic search strategy and 1000 bootstrap replications, with reference 

sequences from HIV-1, under the GTR+I+G evolutionary model. The bootstrap values (above 50%) supporting 

the internal branches are shown. The scale bar represents evolutionary distances in substitutions per site.  
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Figure S3. Association between the HIV-2 susceptibility to TAK-779 and the immuno-deficiency degree of 

HIV-2 infected patients. (A) Scatter plot of IC50 concentrations with CD4+ T cell counts at the time of virus 

isolation in each HIV-2 patient infected with an R5 variant. Parameters from non-parametric correlation and 

linear regression analysis are shown. Isolate 00PTHDECT was excluded from this analysis since it was isolated 

from a child and therefore only CD4+ T cell percentage, and not absolute CD4+ T cell counts, should be 

considered. (B) Distribution of IC50 and IC90 values according to two arbitrary levels of CD4+ T cells: below 200 

cells/l (< 200), AIDS defining condition; above 200 cells/l (≥ 200). Isolate 00PTHDECT was also excluded from 

this analysis. P value for comparison of medians, using the non-parametric Mann-Whitney U test.  
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ABSTRACT 

Background: Enfuvirtide (T-20) is the only inhibitor of HIV-1 fusion in clinical use. It has no 

activity against HIV-2 and its genetic barrier to resistance is low. The aim of this work was 

to use evolutionary biology methods to produce new peptides with broad and potent HIV-1 

and HIV-2 fusion inhibitor activity. 

Methods: We reconstructed ancestral transmembrane protein sequences at several nodes 

of the envelope gene phylogenies that represent ancestors to diverse HIV and SIV virus 

clades. Several peptides were derived from the helical region 2 (HR2) of these ancestral 

protein sequences. The antiviral activity [50% (IC50) and 90% (IC90) inhibitory 

concentrations] of one selected peptide (named P3) was examined on 20 HIV-2 isolates and 

nine highly divergent HIV-1 isolates from untreated patients and on four T-20- resistant 

strains using a TZM-bl cell-based assay. Circular dichroism was used to determine the 

secondary structure of P3. ELISA assays were developed to measure binding of P3 to a 

recombinant transmembrane envelope protein and to determine the antigenic reactivity of 

P3 with plasma from HIV-1 and HIV-2-infected patients. Selection of P3 resistance 

mutations was attempted using increasing concentrations of the peptide in HIV infected 

PBMCs. 

Results: P3 has 34 residues and overlaps the N-terminal pocket-binding region and heptad 

repeat (HR) core of the HR2 region. It differs by 21 aa from the consensus HIV-1 sequence, 

14 aa from T-20 and 6 aa from consensus HIV-2. In contrast to T-20, P3 forms a typical -

helix structure in solution and potently inhibits both HIV-1 and HIV-2 replication (mean IC50 

HIV-1, 11 nM vs IC50 HIV-2, 63.8 nM; P < 0.0001). P3 also potently inhibits the replication of 

T-20 resistant HIV-1 isolates harbouring the V38A, V38A/N42D and V38A/N42T mutations 

(IC50 range, 0.15 – 11.8 nM). In a primary isolate of HIV-1, the N43K resistance mutation 

(HR1 region) was selected in the presence of P3 and led to a moderate (120-fold) decrease 

in susceptibility to this peptide, when compared to HIV-1 NL4-3. Under the same 

conditions we were not able to select HIV-2 resistant strains. Finally, P3 bound strongly to 

a recombinant HIV transmembrane envelope protein and was significantly less antigenic 

than T-20 in drug naive HIV-1 infected patients. 

Conclusions: P3 is the first ancestral peptide to exhibit a broad and potent activity against 

both HIV-1 (including variants resistant to T-20) and HIV-2. The results indicate that the 

HR1 region in the TM glycoprotein is the target of P3 and suggest that the pathway of HIV-1 

resistance to P3 differs from that of T-20 and that the genetic barrier to P3 resistance is 

significantly higher in HIV-2 than in HIV-1. Our findings provide proof of principle that 

viable antiviral peptides can be constructed using evolutionary biology strategies. Such 

strategies should be explored to enhance the production of peptide drugs and vaccines.  
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Keywords: Ancestral P3 peptide: inhibition of HIV-1 and HIV-2 cell fusion and entry; P3 

resistance; P3 mechanism of action; P3 antigenicity. 

 

INTRODUCTION 

Over the last decade, the inhibition of viral entry has become one of the most attractive 

fields in the research for new anti-HIV molecules. Entry inhibitors are a recent class of 

antiretroviral drugs, which can be classified in four groups according to the step of viral 

entry targeted: inhibitors of the SU-CD4 interaction, CCR5 antagonists, CXCR4 antagonists 

and fusion inhibitors [1,2]. Despite numerous efforts, currently there are only two entry 

inhibitors approved for HIV type 1 (HIV-1) antiretroviral therapy, the fusion inhibitor 

peptide enfuvirtide (or T-20; FUZEON, Roche) [3] and the CCR5 coreceptor antagonist 

maraviroc (SELZENTRY, Pfizer) [4]. 

Like all other available antiretroviral drugs, entry inhibitors were specifically designed to 

inhibit HIV-1 replication. HIV type 2 (HIV-2), the second causative agent of AIDS, is 

responsible for localized epidemics manly in West Africa and a in few other countries (e.g. 

Portugal and France), affecting an estimated 1-2 million patients worldwide [5]. HIV-1 and 

HIV-2 have different evolutionary histories [6], share only 50% of genetic similarity [7] and 

their envelope glycoproteins are markedly different at the structural and functional levels 

[8]. Consequently, some drugs have limited or no activity on HIV-2, namely non-nucleoside 

reverse transcriptase inhibitors, some protease inhibitors and T-20 [9,10,11].  

T-20 is a linear peptide composed of 36 amino acids that mimics the gp41 HR2 sequence of 

the HIV-1 LAI isolate [9,12]. T-20 inhibits HIV-1 entry by competitive binding to the 

complementary HR1 region, thereby blocking the formation of the six-helix bundle 

structure and preventing viral fusion [13,14,15]. Despite strong anti-HIV-1 activity, there is 

considerable variability (up to 500-fold) in the T-20 sensitivity of HIV-1 primary isolates 

within subtypes B and non-B [16,17,18]. In addition, the genetic barrier for T-20- 

resistance is low [15,19]. Resistance mutations are usually found within the 36-45 positions 

of HR1 region, especially in the GIV motif (codons 36-38) [15,20]. T-20 has poor 

bioavailability and has to be injected subcutaneously twice daily, complicating patient 

adherence to treatment. Currently, T-20 is only used as a salvage therapy in HIV-1 

infection [21,22,23]. T-20 has no activity on HIV-2 possibly because its sequence 

divergence prevents it from binding to the HR1 target in gp36 envelope glycoprotein 

[10,24,25]. 

Second and third generations fusion inhibitor peptides have been developed in an attempt 

to improve antiviral potency, increase in vivo stability, and overcome T-20 resistance 
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[15,26]. T-1249 is a representative second generation 39-mer peptide derived from HR2 

consensus sequences of HIV-1, HIV-2 and SIV strains [27,28]. It is a potent inhibitor of HIV-1 

replication, including isolates resistant to T-20, and it also inhibits HIV-2 [27,28,29]. 

However, the elevated production costs and drug formulation difficulties associated with 

its long size, have hampered its’ clinical development beyond phase I/II trials [30]. 

Sifuvirtide is a third generation fusion inhibitor peptide, with increased -helical content 

(93%), which have showed promising results in phase II clinical studies being active against 

a broad range of HIV-1 isolates, including T-20- resistant strains [15,26,31]. Despite better 

pharmacokinetic profile than T-20, it is still administered as a subcutaneous injection. In 

addition, since its sequence is solely based on HIV-1, one can expect that it also won’t be 

active against HIV-2 [24]. 

The initial aim of this work was to produce new HR2-based peptides that inhibit HIV-2 

fusion and entry. HIV-2 is a highly variable virus composed of 8 groups termed A to H of 

which only groups A and B have generated human epidemics [32,33,34]. To enhance the 

likelihood of inhibiting replication of all HIV-2 strains, the candidate peptides were derived 

from ancestral HIV-2 and SIV gp36 sequences. We found that one selected peptide, named 

P3, potently inhibited the replication of highly divergent HIV-2 and HIV-1 primary isolates. 

 

MATERIALS AND METHODS 

Cells, plasmids, virus and fusion inhibitors 

293T cells were purchased from American Type Culture Collection (Rockville, MD). The 

following reagents were provided by the AIDS Research and Reference Reagent Program, 

National Institutes of Health: TZM-bl [35,36,37,38] and CEM-SS cells [39,40,41]: pNL4-3 

[42], pSG3.1 [43], pHEF-VSVG [44] and pSG3env [36,45] plasmids; T-20-resistant pNL4-3 

gp41 (36G) variants bearing the V38A, V38A/N42D, V38A/N42T, or N42T/N43K mutations 

[42,46]; T-20 (Enfuvirtide) fusion inhibitor. pROD10 plasmid was a gift from Keith Peden 

[47]. Trimeris Inc (USA) provided T-1249. 293T and TZM-bl cells were cultured in complete 

growth medium (GM) that consists of Dulbecco’s minimal essential medium (DMEM) 

supplemented with 10% FBS and 100 U/ml of penicillin-streptomycin (Gibco/Invitrogen, 

USA). CEM-SS cells were propagated in RPMI-1640 medium with 10% FBS and 100U/ml of 

penicillin-streptomycin (Gibco/Invitrogen, USA). Healthy peripheral blood mononuclear 

cells (PBMCs) were separated by Ficoll-Paque PLUS (GE Healthcare, Waukesha, WI, USA) 

density gradient centrifugation and stimulated for 3 days with 5 g/ml of 

phytohemagglutinin (PHA; Sigma-Aldrich, St. Louis, MO, USA). PBMCs cultures were 

maintained in RPMI-1640 medium supplemented with 10% FBS, 100 U/ml of Penicillin-
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Strepotmycin, 0.3 mg/ml of Gentamicin (Gibco/Invitrogen, Carlsbad, CA, USA), 5 g/ml of 

Polybrene (Sigma-Aldrich, St. Louis, MO, USA) and 20 U/ml units of recombinant 

interleukin-2 (Roche, Basel, Switzerland). All cell cultures were maintained at 37ºC in 5% 

CO2. 

 

Virus stocks and titration 

A total of 26 primary isolates were included in this study (seven HIV-1 and 19 HIV-2 

viruses), which were previously isolated, titrated and characterized for coreceptor usage 

[25]. HIV laboratory-adapted reference strains were obtained by transfection of 5106 

HEK293T cells with 6 g of pNL4-3 (HIV-1), pSG3.1 (HIV-1) or pROD10 (HIV-2) plasmids 

using Fugene 6 reagent (Roche, Switzerland) according to manufacturer’s instructions. A 

pseudovirus carrying the vesicular stomatitis virus (VSV) envelope was produced by co-

transfection of 5106 HEK293T cells with 2 g of pHEF-VSVG plasmid and 4 g of pSG3env 

plasmid, using also Fugene 6 reagent. Transfections and co-transfection were performed in 

100 mm culture dish plates in a total volume of 10 ml of GM, and the supernatants were 

collected after 48h and cleared by filtration. Variants resistant to T-20 were propagated in 

CEM-SS cells according to protocol available at www.aidsreagent.org. The 50% tissue 

culture infectious dose (TCID50) of all viruses was determined in a single-round viral 

infectivity assay using a luciferase reporter gene assay in TZM-bl cells [25,48] and 

calculated using the statistical method of Reed and Muench [49]. 

 

Peptide design 

Custom peptides were derived from ancestral gp36 HR2 sequences reconstructed from a 

phylogenetic tree of HIV-2 and SIV reference sequences (see Supplementary Table S1 for a 

list of reference sequences used). Reconstruction of ancestral character states was 

performed by maximum likelihood in PAUP version 4 software [50]. MODELTEST [51] 

estimated best-fit models of molecular evolution for maximum likelihood analyses. The 

chosen model was GTR+G+I [52]. Tree searches were also performed in PAUP version 4.0 

using the nearest-neighbor interchange (NNI) and tree bisection and reconnection (TBR) 

heuristic search strategies, and bootstrap resampling. 

Peptides were produced commercially by Genemed Synthesis (San Antonio, Texas, USA). 

They were modified with the N-terminus acetylated and the C-terminus as a carboxamide, 

the salt form being acetate. Reverse-phase high-pressure liquid chromatography (HPLC) 

was used for purification (>95%) and mass spectrometry for confirmation analysis.  

 

http://www.aidsreagent.org/
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Circular dichroism spectroscopy 

Circular dichroism (CD) spectra were recorded for P3 and T-20 at a concentration of 100 

and 50 M, respectively, in 10 mM phosphate buffer + 100 mM NaF (pH 7.4) using a Jasco® 

810 spectropolarimeter. Spectra were recorded in the far UV region (185-240 nm), using a 

0.1 cm pathlength cell, with a 50 nm/s scan speed, an 8 s response time, 2 nm bandwidth 

and accumulation of 4 scans.     

 

Binding assay 

An enzyme-linked immunosorbent assay (ELISA) was developed to study the binding 

specificity of peptide P3 to its predicted target, HIV-2 env gp36. Polystyrene immune 

module microwells (Maxisorp; Nunc, Denmark) were independently coated (100 l/well) 

with each peptide at a concentration of 50 g/ml in phosphate buffered saline (PBS) 

solution and incubated overnight at 4°C. After two washes with PBS, microwells were 

blocked with 5% of bovine serum albumin (BSA; Sigma-Aldrich, USA) in PBS for 2h at 37ºC 

and washed twice with PBS. A recombinant gp36 protein with a polyhistidine tag (rgp36) 

previously produced in our lab [53] was diluted in PBS containing 0.05% of Tween-20 (Bio-

Rad, USA) (PBS-T) and added (100 l) at a concentration of 2.5 g/ml and incubated for 1 

h at 37ºC. After five washes with PBS-T, a 1:2000 dilution of mouse monoclonal anti-

polyhistidine antibody conjugated to alkaline phosphatase (Sigma-Aldrich) in PBS-T was 

added (100 l) and incubated for 1 h at 37ºC. After another five washes with PBS-T, p-

Nitrophenyl Phosphate tablets (Sigma-Aldrich, USA) were added as a chromogenic 

substrate, and the optical density (OD) was measured in a Tecan MP-500 plate reader 

(Tecan, Switzerland) at 405 nm against a reference wavelength of 620 nm. The cut-off 

value of the assay, calculated as the mean OD value of negative controls + 2 times the 

standard deviation [SD], was determined for each peptide using wells in which the peptide 

was incubated with PBS instead of rgp36. The results of the assay are expressed 

quantitatively as ODpeptide / ODcut-off ratios (OD/cut-off ratio). 

 

Phenotypic sensitivity assays 

The antiviral activity of entry inhibitors was determined in a single-round viral infectivity 

assay using the TZM-bl reporter cells as previously described [25]. Briefly, cells were 

infected with 200 TCID50 of each virus. Infections were performed in the presence of serial-

fold dilutions of fusion inhibitors in GM, supplemented with DEAE-dextran (19.7 g/ml). 

After 48h of infection, luciferase expression was quantified with the One-Glow luciferase 

assay substrate reagent (Promega, USA) according to manufacturer’s instructions. 
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Background luminescence was measured by using control wells that contained only target 

cells and GM. At least two independent experiments were performed for each analysis and 

each assay was set up in duplicate wells. The cytotoxicity of the compounds was evaluated 

using control wells in the absence of the virus. 

The 50% (IC50) and 90% (IC90) inhibitory concentrations, as well as the dose-response curve 

slopes (Hill slope), were estimated by plotting the percent inhibition of infection (y axis) 

against the log10 concentration of each fusion inhibitor (x axis) and using the sigmoidal 

dose-response (variable slope) equation in Prism version 4.0c for Macintosh (GrahPad 

Software, San Diego, California USA, www.graphpad.com).  

 

Cellular viability assay 

The potential in vitro cytotoxicity of all peptides was also evaluated in PBMCs. PBMCs 

(25,000 cells/well in 96-well plates) were incubated in absence or presence of serial-fold 

dilutions of peptides, with starting concentrations of 20 M. After 48h, cell viability was 

examined with alamarBlue reagent (Invitrogen, USA) according to manufacturer’s 

instructions. 

 

Antigenic reactivity assay 

A new ELISA assay was developed to measure antigenic reactivity of peptides in HIV-

infected patients using an ELISA protocol similar to the one described for the binding 

assay. Briefly, microwells were independently coated with each peptide at a concentration 

of 10 l/ml in PBS solution and incubated overnight at 4°C. After blocking with BSA, 100 l 

of a 1:300 dilution of plasma samples collected from 30 HIV-1 and 29 HIV-2 infected 

patients (all naive to T-20) in PBS-T was added and incubated for 1h at 37ºC. Wells were 

then washed six times with PBS containing 0.1% of Tween 20 and a 1:2000 dilution of goat 

anti-human immunoglobulin G (Fc specific) conjugated to alkaline phosphatase (Sigma-

Aldrich) in PBS-T was added. Following incubation, the colour was developed and ODs were 

measured as described above. The clinical cut-off value of the assay, calculated as the 

mean OD value of HIV-seronegative samples + 2 times the SD, was determined using 

samples from healthy HIV-seronegative subjects (n = 10). The results of the assay are 

expressed quantitatively as ODclinical sample  / ODcut-off ratios (OD/cut-off ratio). 

 

In vitro selection of resistance mutations to P3  

Primary HIV-1 (subtype G) and HIV-2 (group A) strains were used for selection of resistance 

mutations to P3 in PBMCs, using a standardized procedure as previously described [54]. 

http://www.graphpad.com/


Design and evaluation of an ancestral HIV fusion inhibitor peptide 

 123 

Briefly, PBMCs were infected at a multiplicity of infection of 0.01 for two hours at 37ºC, 

washed, and then seeded in 24-well plates at a density of 250,000 cells/well. Selections 

were performed by a standard procedure, starting with concentrations below the IC50 

level. Control wells were maintained with infected cells and without peptide. Viral 

replication was monitored weekly by p24 antigen assay (Innotest from Innogenetics, 

Belgium). At each passage, one aliquot of culture supernatant was used to infect fresh 

PBMCs and peptide concentrations were maintained or increased by two-fold based on p24 

values. The remaining culture fluids were harvested and kept at -80°C for a subsequent 

genotypic analysis by sequencing. To this end, RNA was extracted using QIAmp viral RNA 

Mini Kit (Qiagen, Germany), according to manufacturer’s instructions, and reverse 

transcribed using Titan One Tube RT-PCR System (Roche, Switzerland). The env gene, 

(positions 6203 – 8817 in HIV-1 HXB2 and positions 6673 - 9268 in HIV-2 BEN) was amplified 

by nested PCR, using the Expand Long Template PCR System kit (Roche, Switzerland), and 

sequenced. Primers used for amplification and sequencing are described in Supplementary 

Tables S2 and S3. 

 

Statistical analysis 

Statistical analyses were performed using Prism version 4.0c for Macintosh (GrahPad 

Software, San Diego, California USA, www.graphpad.com), with a level of significance of 

5%. 

 

RESULTS 

Design of ancestral peptides 

Maximum likelihood methods were used to reconstruct ancestral transmembrane protein 

sequences at several nodes of the envelope gene phylogenies that represent ancestors to 

diverse HIV and SIV virus clades (Figure 1A). These sequences were aligned and several 

peptides were derived from the helical region 2 (HR2) (Figures 1B and 1C). Three peptides 

were produced: P1 (36 amino acids) and P2 (42 amino acids) included the C-terminal lipid-

binding domain whereas P3 (34 amino acids) covered the N-terminal pocket-binding 

sequence (Figure 1C). In contrast to P1 and P2, P3 doesn’t comprise the epitopes of the 

2F5 and 4E12 HIV-1 neutralizing antibodies [55,56]. Due to high hydrophobicity peptides P1 

and P2 were very hard to synthesise and reconstitute in an appropriate buffer suitable for 

cell culture assays. Therefore, only peptide P3 was further analysed for structure and 

antiviral activity. P3 has 34 residues and overlapps the N-terminal pocket-binding region 

and heptad repeat (HR) core of the HR2 region (positions 628 – 661 of HIV-1 HXB2 Env). It 
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differs by 21 aa from the consensus HIV-1 sequence, 14 aa from T-20 and 6 aa from 

consensus HIV-2. However, the positions a and d of the heptad repeat, critical for HIV-1 

HR1/HR2 binding [57], were quite conserved. There were only four changes at these 

positions: I635V, involving aliphatic amino acids from the same chemical group; Y638L, 

L645R, S649A, from different chemical groups. Notably, the S649A substitution (or S138A in 

gp41) is a common secondary mutation selected during therapy with T-20 [58,59] and, 

when introduced in the context of a fusion inhibitor like the modified T-20S138A, it increases 

its binding affinity to the HR1-target region and enhances the antiviral activity [60]. 

The sequences of T-20 and P3 overlap in 24-amino acids of the HR core and between them 

there are 14 residue changes, while the differences between the 27 overlapping positions 

of T-1249 and P3 (over the pocket-binding region and HR core), are of only 5 residues 

(19%). The percentage of hydrophilic residues is of 62% in P3 which compares with 56% in 

T-20 and 54% in T-1249 [61]. 

 

 

 

 

 

 

 

 

 

 

 

(on the following page) 

Figure 1. Design of ancestral peptides. (A) Ancestral reconstruction of HIV-2 gp36 sequences; the interior 

nodes highlighted by numbered circles correspond to the ancestral used for peptide design. The scale bar 

represents evolutionary distances in substitutions per site. (B) Alignment of the gp41/gp36 HR1-HR2 segment, 

containing HIV-2, SIV and HIV-1 consensus sequences, as well as the ancestral sequences derived in each of the 

interior nodes highlighted above in the phylogenetic tree. Points represent similarity relative to HIV-2 

consensus and dashes represent gaps in the alignment. Sequences are numbered according to HIV-1 HXB2, Env 

position / gp41 position. (C) Comparison of the HR2 amino acidic sequences between HIV-2, SIV and HIV-1 

consensus sequences and the HR2-based peptides (T-20, T-1249, P1, P2 and P3). Sequences are numbered 

according to HIV-1 HXB2, Env position / gp41 position. Positions a and d of HR2 represent the residues involved 

in HIV-1 HR1/HR2 interaction. The HR2 region contains tree functional domains: 1, pocket-binding domain 

(PBD, in blue); 2, HR core in the center (3HR, black); 3, lipid-binding domain (LBD, in pink). Asterisks indicate 

complete (2F5) or partial (4E10) neutralizing epitopes in HIV-1. 
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P3 forms a typical –helical structure in solution 

The secondary structure of P3 was determined by CD spectroscopy and compared to that of 

T-20 (Figure 2). The predominant conformation of P3 in solution is an -helix (42%), 

whereas the T-20 spectrum is indicative of a less defined secondary structure in solution 

with only 19% of helical content, as previously reported [62].  

 

 

 

Figure 2. Circular dichroism spectra for P3 and T-20 peptides. -structures include sheets and turns; NRSMD, 

Normalised Root Mean Square Deviation. 

 

P3 is a potent inhibitor of HIV-1 and HIV-2 infection 

The antiviral activity of peptide P3 was evaluated against a set of 20 group A HIV-2 

isolates, of which 19 were primary isolates, and a group of nine HIV-1 viruses, including 

seven highly diverse primary isolates (Table S4). Overall, P3 proved to be a potent 

inhibitor of both HIV-2 and HIV-1 infection (Table 1 and Figure 3). P3 inhibited HIV-2 

infection at an IC50 of 63.8 nM and an IC90 of 709.6 nM. Interestingly, however, an even 

stronger activity was displayed against HIV-1, with an IC50 of 11 nM (P<0.0001) and an IC90 

of 366.4 nM (P=0.239). In addition, coreceptor tropism of virus isolates determined 

susceptibility to P3, as it was more effective on X4 than on R5 isolates both in HIV-1 (IC50, 

0.9 vs 20.4 nM; P<0.0001) and HIV-2 (IC50, 50.4 vs 80.5 nM; P<0.035). The sensitivity of R5 

HIV-2 variants to P3 was not correlated with the level of CD4+ T cells at the time of virus 

isolation (P=0.493). No cytotoxicity was observed either in TZM-bl culture cells or primary 

PBMCs at all concentrations tested (up to 20 M) (data not shown). 

Compared with T-20, P3 was significantly more active against HIV-2 and significantly less 

active against HIV-1 (P<0.0001 for both cases) (Table 1 and Figure 2). Nonetheless, the P3 
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and T-20 had similar IC90 ranges (P3, 6.2 – 1785.5 nM; T-20, 0.5 – 1285.3 nM) and similar 

dose-response curve slopes when tested against HIV-1 of predicting similar antiviral 

activity in vivo [25,63]. Interestingly, T-1249 had better HIV-1 and HIV-2 inhibitory profiles 

than T-20 or P3. 

 

 

Figure 3. Representative dose-response curves for (A) HIV-1 and (B) HIV-2 with peptide fusion inhibitors: 

comparison of P3 with T-20 and T-1249 [25]. Data points represent the average of results obtained from HIV-

1 and HIV-2 isolates; bars represent standard error of the mean. Sigmoidal dose-response (variable slope) 

curves were adjusted to these data points; dashed lines represent the 95% confidence band of the best-fit 

curve. 

 



 

 

 

 

 

Table 1. Antiviral activity of P3, T-20 and T-1249 against HIV-1 and HIV-2 isolates. 

Parametera P3 (nM) T-20 (nM)b P valuec T-1249 (nM)b P valuec 

HIV-1 (n=9)      

IC50 (95% CI) 11 (6.5; 18.4) 1.2 (0.7; 2.2) < 0.0001 2.0 (1.4; 2.8) <0.0001 

IC90 (95% CI) 366.4 (117.5; 1145.5) 95.9 (26.3; 350.8) 0.107 14.3 (6.9; 29.5) <0.0001 

Hill slope (95% CI) 0.6 (0.4; 0.82) 0.5 (0.4; 0.6) 0.263 1.1 (0.8; 1.4) 0.010 

HIV-2 (n=20)      

IC50 (95% CI) 63.8 (51.9; 78.5) 281.5 (223.2; 354.9) < 0.0001 4.3 (3.6; 5.2) <0.0001 

IC90 (95% CI) 709.6 (435.5; 1158.8) 3881.5 (2393.3; 6280.6) < 0.0001 40.6 (28.1; 58.5) <0.0001 

Hill slope (95% CI) 0.9 (0.7; 1.1) 0.8 (0.7; 1) 0.492 1 (0.8; 1.1) 0.540 

a IC50, IC90 and Hill slope best-fit values were inferred from sigmoidal dose-response (variable slope) curves adjusted to combined results of HIV-1 and HIV-2 

isolates, and represent geometric mean values; 95% CI – 95% confidence interval. 

b T-20 and T-1249 susceptibilities were obtained for the same HIV-1 and HIV-2 viral panel and previously published elsewhere [25]. 

c P value for comparison of best-fit values between P3 and T-20 or P3 and T-1249, using the F test. 
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P3 mechanism of action is envelope specific 

P3 and T-20 bound strongly to a recombinant transmembrane protein (rgp36, [53]) in an 

ELISA assay (30-fold above cut-off for P3) (Figure 4A). Moreover, P3 did not inhibit the 

entry of a pseudovirus carrying the vesicular stomatitis virus envelope glycoprotein (VSV-G) 

(Figure 4B). These results indicate that the antiviral activity of P3 is HIV-envelope specific. 

 

 

Figure 4. HIV-envelope specificity of P3. (A) Binding activity of peptides P3 and T-20 to HIV-2 gp36 in an 

ELISA assay. (B) Representative dose-response curves for VSV-G pseudovirus with peptide fusion inhibitors. Data 

points represent the average of results and bars represent standard error of the mean. Sigmoidal dose-response 

(variable slope) curves were adjusted to these data points.  

 

P3 inhibits the replication of T-20- resistant HIV-1 variants 

To determine if P3 is able to inhibit the infection of HIV-1 strains resistant to T-20, we 

measured the susceptibility of HIV-1 variants carrying well-defined T-20 resistance 

mutations to P3 [42,46]. Notably, P3 exhibited potent activity against T-20 resistant 

variants harbouring the V38A, V38A/N42D and V38A/N42T mutations (IC50 range, 0.15 – 

11.8 nM) (Table 2). In fact, the V38A/N42D mutations seem to confer increased 

susceptibility to P3 (7-fold lower IC50). However, P3 did not inhibit the replication of a 

resistant strain harbouring the N43K mutation. These results indicate that P3 potently 

inhibits the replication of most T-20 resistant strains and suggest that P3 could be useful as 

an alternative fusion inhibitor for treatment of patients infected with HIV-1 strains 

resistant to T-20. 
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Selection of P3 resistant variants 

To investigate the mechanism of action and the pathways of resistance to P3, in vitro 

selection of resistance mutations to P3 was performed by repeated passage of HIV-1 and 

HIV-2 primary isolates in PBMCs in the presence of either constant or increasing 

concentrations of P3, according to the viral replication capability [54]. An HIV-1 subtype G 

variant containing the N43K mutation in the HR1 region of gp41 was selected after 59 days 

in culture (8 passages) in the presence of 212 nM of P3. Inhibition of replication of this 

mutant virus with P3 occurred at an IC50 of 1.9 µM and IC90 of 13.1µM, which represent a 

120-fold and 56.4-fold decrease in susceptibility, respectively. Of note, a T-20 resistant 

HIV-1 subtype B isolate that also harboured the N43K mutation was 2140-fold more 

resistant to P3 than the wild-type virus (Table 2). On the other hand, under the same 

experimental conditions and despite repeated attempts, we were not able to select an 

HIV-2 strain resistant to P3. Collectively, these results indicate that the HR1 region in the 

TM glycoprotein is the target of P3 and suggest that the pathway of HIV-1 resistance to P3 

differs from that of T-20 and that the genetic barrier to P3 resistance is significantly higher 

in HIV-2 than in HIV-1.  

 



 

 

 

 

 

 

Table 2. Comparison of antiviral activity of P3 and T-20 on T-20- resistant HIV-1 variants. 

  P3 T-20  

HIV-1 variant  Phenotypea IC50 nM (95% CI) Fold-increaseb IC50 nM (95% CI) Fold-increaseb P valuec 

NL4-3 D36G (parental) S 0.4 (0.2; 1.2) 1 0.03 (0.01; 0.06) 1 0.0002 

NL4-3 (D36G) V38A R 1.5 (0.5; 5.1) 3.8 43.8 (21.8; 87.8) 1460 <0.0001 

NL4-3 (D36G) V38A/N42D R 0.06 (0.01; 0.3) 0.15 118.2 (63.0; 221.7) 3940 <0.0001 

NL4-3 (D36G) V38A/N42T R 4.7 (1.9; 11.5) 11.8 482.0 (324.1; 716.8) 16066.7 <0.0001 

NL4-3 (D36G) N42T/N43K R 855.9 (628.0; 1167.0) 2139.8 80.3 (61.1; 105.6) 2676.7 <0.0001 

       

a Sensitive (S) or Resistant (R) to T-20. 

b Fold-increase of IC50 concentration relative to NL4-3 D36G (parental). 

c P value for comparison of best-fit values between P3 and T-20, using the F test. 
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P3 is significantly less antigenic than T-20 in HIV-1 infected patients 

Virtually any foreign protein introduced into the body has the potential to trigger the 

production of antibodies [64,65]. Therapeutic proteins are no different, and one of the 

major concerns regarding the development of anti-drug antibodies is the possible 

reduction of therapeutic efficacy of such drugs [64]. The HR1 region is under strong 

immunological pressure [66,67] implying that fusion inhibitor peptides derived from this 

region may be highly antigenic. The antigenicity of P3 was examined with plasmas from 

HIV-1 and HIV-2 infected patients, all naïve to T-20. A significantly higher number of HIV-2 

patients had antibodies reacting with P3 then with T-20 (93% and 45%, respectively) and 

the mean binding affinity of the P3-specific antibodies was significantly higher in HIV-2 

patients then in HIV-1 patients (P<0.0001) (Figure 5). In contrast, a significantly higher 

number of HIV-1 patients had antibodies reacting with T-20 (used as a control in this 

experiment) then with P3 (90% and 67%, respectively) and the mean binding affinity of the 

T-20- specific antibodies was significantly higher in HIV-1 patients then in HIV-2 patients 

(P<0.0001). In all, these results demonstrate that, in contrast to T-20, P3 is weakly 

antigenic in HIV-1 patients and is highly antigenic in HIV-2 patients. 

 

Figure 5. Antigenic reactivity of P3 and T-20 in HIV-infected patients. Results from P3 are in red and from T-

20 are in blue. Closed circles represent the antigenic reactivities of HIV-1 plasmas, while open circles represent 

the ones from HIV-2 plasmas. Statistical significance is shown for comparisons using non-parametric tests: 

Mann-Whitney U test (independent samples) and Wilcoxon Signed Rank test (paired samples). 
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DISCUSSION 

We show here that an ancestral peptide (named P3) derived from the helical region 2 

(HR2) of HIV-2 and SIV potently inhibits HIV-1 and HIV-2 entry and replication. The rational 

for using ancestral sequences of the transmembrane envelope glycoprotein as a source for 

the new antiviral peptide was to minimize HIV sequence divergence by tracing the most 

likely evolutionary path along the phylogeny and capture more conserved structural 

features of the HR2 sequences [68,69].  

In contrast to T-20, P3 displayed a potent activity against highly divergent HIV-1 and HIV-2 

primary isolates demonstrating that our strategy was highly successful. The activity on HIV-

1 might be partly explained by the conservation in P3 of the residues located in critical 

positions involved in the HR1/HR2 interaction (a and d residues) [57]. In addition, in 

contrast to T-20, P3 has an Alanine at position 22 that corresponds to residue 138 of HIV-1 

transmembrane gp41 glycoprotein. S138A is a secondary mutation that arises in HR2 to 

compensate for the reduction of viral fitness of HIV-1 variants carrying T-20- primary 

resistant mutations in HR1 [58,59]. It increases the binding affinity of this region to HR1 

and can therefore contribute to the potent inhibitory activity of P3 against HIV-1 [60]. P3 

potently inhibited the replication of most T-20 resistant HIV-1NL4-3 clones, which suggest 

that it could be useful as an alternative for treatment of patients infected with HIV-1 

strains resistant to T-20. However, a clone containing the N43K mutation (together with 

N42T) was highly resistant to P3 (2140-fold resistance). Moreover, the same N43K mutation 

was selected in presence of P3 and led to 120-fold resistance to this peptide. This is a 

common mutation selected in T-20 and T-1249 treated patients [19,59,70,71] but, by 

itself, it is responsible for only a modest resistance to T-20 [19] and T-1249 [72]. 

Collectively, these results suggest that (1) the HR1 region in the TM glycoprotein is the 

target of P3 and (2) the pathway of HIV-1 resistance to P3 differs from that of T-20 and T-

1249.  

We were not able to generate HIV-2 isolates resistant to P3, even after 60 days in culture, 

which prevented identification of the drug target in this virus. However, P3 bond strongly 

to a recombinant HIV-2 gp36 suggesting that its mechanism of action in HIV-2 might also 

involve binding to the HR-1 region. The strong binding of P3 to its target protein may also 

have prevented the emergence of resistance mutations in our experimental conditions 

[19,59]. 

As previously observed for other fusion inhibitors (T-20, T-1249 and T-649) [16,25,37], P3 

was more active on X4 variants than on R5 variants both in HIV-1 and HIV-2. As there were 

no significant differences in the target HR-1 region in R5 and X4 viruses, these results can 

be explained by the more rapid fusion kinetics in R5 viruses due to a higher affinity of 
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gp120/gp125 for CCR5. This accelerated fusion kinetics can reduce significantly the 

window of opportunity for peptide-gp41 interactions in R5 variants (reviewed in [73]). 

It has been demonstrated that the helical content of peptide fusion inhibitors correlates 

with higher anti-HIV-1 potency by increasing their binding affinity for HR1 [74,75]. 

Moreover, unstructured peptides like T-20 are less stable and more susceptible to 

proteolytic degradation in the blood [15,26]. In this sense, the strong –helix structure of 

P3 might increase its stability in physiological conditions and decrease the likelihood of 

adopting non-helical conformations thereby favouring the binding of the peptide to its 

target site [72].  

We showed that when compared to T-20, P3 has a significantly lower antigenicity in HIV-1 

infected patients. Drug-specific antibodies can compromise their clinical efficacy of either 

by preventing their exposure to the active site or by decreasing their half-life [64]. Hence, 

the weaker antigenicity of P3 might translate into a better bioavailability profile and 

durable clinical efficacy in HIV-1 infected patients.  

In summary, we successfully derived an ancestral peptide (P3) with broad antiviral activity 

against HIV-1 and HIV-2 strains, including HIV-1 variants resistant to T-20. P3 is a peptide 

with predominant -helix conformation that binds strongly to the transmembrane 

glycoprotein and is weakly antigenic in HIV-1 patients. The N43K mutation in the HR-1 

region leads to moderate HIV-1 resistance to P3 in primary isolates, when compared to 

HIV-1 NL4-3. No HIV-2 resistant strains could be selected in the presence of P3. 

Collectively, the results indicate that the HR1 region in the TM glycoprotein is the target 

of P3 and suggest that the pathway of HIV-1 resistance to P3 differs from that of T-20 and 

that the genetic barrier to P3 resistance is significantly higher in HIV-2 than in HIV-1. Our 

findings provide proof of principle that viable antiviral peptides can be constructed using 

evolutionary biology strategies. Such strategies should be explored to enhance the 

production of peptide drugs and vaccines.  
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SUPPLEMENTARY MATERIAL 

 

 

 

Table S1. GenBank accession numbers of HIV-2 and SIV reference sequences used for the 

reconstruction of ancestral character states. 

HIV-2 SIV 

AB100245 AF077017 

AF082339 AF334679 

AF208027 AY033146 

AY530889 AY033233 

D00835 L03295 

J03654 L09212 

J04498 M31325 

J04542 M33262 

L07625 M83293 

L36874 U72748 

M15390 X14307 

M30502  

M30895  

M31113  

U05352  

U05353  

U05355  

U05356  

U05357  

U05358  

U05359  

U22047  

U27200  

U38293  

X61240  

Z48731  
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Table S2. Primers used for PCR amplification and sequencing of HIV-1 env gene segments. 

Name Position a Sequence (5’ – 3’) 

PBENV1 (fwd) b 5968 – 5986 CTATGGCAGGAAGAAGCGG 

PBENV2 (fwd) c 6203 – 6223 GAAAGAGCAGAAGAYAGTGGC 

PBENV3 (rev) b 9016 – 9036 AGTCATTGGTCTTARAGGTAC 

PBENV4 (rev) c 8797 – 8817 TTTTGACCACTTGCCHCCCAT 

PBSEQ1 (fwd) d 6567 - 6583 AGCYTAAAGCCATGTGT 

PBSEQ2 (rev) d 6567 – 6583 ACACATGGCTTTARGCT 

PBSEQ3 (fwd) d 6955 – 6970 CAGTACAATGTACACA 

PBSEQ4 (rev) d 6955 – 6970 TGTGTACATTGTACTG 

PBSEQ5 (fwd) d 7344 - 7363 CATAGTTTTAATTGTRGAGG 

PBSEQ6 (rev) d 7344 – 7363 CCTCYACAATTAAAACTATG 

PBSEQ7 (fwd) d 7745 – 7762 GAGAGAAAAAAGAGCAGT 

PBSEQ8 (rev) d 7745 – 7762 ACTGCTCTTTTTTCTCTC 

PBSEQ9 (fwd) d 8031 – 8047 ATCTGCACCACTAATGT 

PBSEQ10 (rev) d 8031 – 8047 ACATTAGTGGTGCAGAT 

PBSEQ11 (fwd) d 8510 – 8529 CCTGTGCCTCTTCAGCTACC 

PBSEQ12 (rev) d 8510 – 8529 GGTAGCTGAAGAGGCACAGG 

a HIV-1 HXB2. 

b Outer primer for PCR. 

c Inner primer for PCR. 

d Sequencing primer. 
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Table S3. Primers used for PCR amplification and sequencing of HIV-2 env gene segments. 

Name Position a Sequence (5’ – 3’) 

CR1 (fwd) b 5927 – 5946 AGGAAACAGYGGMGAAGAGA 

CR2 (rev) b 9391 – 9369 TCTACATCATCCATATTTTGYTG 

CR3 (fwd) c 6673 – 6692 CTCATYCGTCTTCTGCATCA 

CR4 (rev) c 9286 – 9268 TCACAGGAGGGCGATTTCT 

HB5 (fwd) d 7321 – 7344 CACATCAGTCATCACAGAGTCA 

CRSEQ2 (rev) d 7363 – 7345 ATCCCAATAGTGCTTRTCA 

CRSEQ3 (fwd) d 7313 – 7334 CATTGCAACACATCAGTCATCA 

HIV2SEQ2 (rev) d 7873 – 7859 GCAGTTAGTCCACAT 

CRSEQ4 (rev) d 7918 - 7898 CCAATTGAGGAACCAAGTCAT 

CRSEQ5 (fwd) d 7859 – 7879 ATGTGGACTAACTGCAGAGGA 

CRSEQ6 (rev) d 8360 – 8344 GCTGTTGCTGTTGCTGC 

CRSEQ7 (fwd) d 8344 – 8360 GCAGCAACAGCAACAGC 

CRSEQ8 (rev) d 8835 – 8817 GAGAAAACAGGCCTATAGC 

CRSEQ9 (fwd) d 8817 – 8835 GCTATAGGCCTGTTTTCTC 

CRSEQ10 (fwd) d 7159 – 7173 AGACAATTGCACAGG 

CRSEQ11 (rev) d 7424 - 7410 TGGTATCATTGCATC 

a HIV-2 BEN. 

b Outer primer for PCR. 

c Inner primer for PCR. 

d Sequencing primer. 

 



 

 

 

 

Table S4. Characterization of HIV-1 and HIV-2 isolates included in this study, and the antiviral activities of peptide P3 against these isolates in 

TZM-bl cells. 

HIV-1   P3 (nM) c HIV-2   P3 (nM) c 

Isolates Genetic forms Tropismb IC50 IC90 Isolates Genetic forms Tropismb IC50 IC90 

NL4-3 B X4 0.3 6.2 ROD A X4 95.2 438.5 

SG3.1 B X4 2.5 64.4 03PTHCC1 A R5 18.7 296.5 

93AOHDC249 Ua R5 62.2 312.6 03PTHCC6 A R5 114.3 1020.9 

93AOHDC250 J R5 38.6 191.0 03PTHCC7 A R5 78.4 450.8 

93AOHDC251 U R5 53.8 1786.5 03PTHCC10 A X4 108.8 822.2 

93AOHDC252 U R5 22.9 140.3 03PTHCC12 A R5 70.8 411.1 

93AOHDC253 J R5 12.5 194.1 03PTHCC17 A R5 142.4 1336.6 

01PTHDECJN CRF02_AG R5 0.5 130.9 03PTHCC19 A R5 120.6 659.2 

00PTHDEEBB G R5 15.9 231.7 00PTHCC20 A X4 13.3 145.9 

     03PTHCC20 A X4 16.3 212.8 

     00PTHDECT A R5 48.9 792.5 

     03PTHDECT A X4 51.7 584.8 

     01PTHDESC A X4 14.89 116.7 

     10PTHSJIG A R5 184.1 5445.0 

     03PTHSM2 A R5 44.2 1013.9 

     03PTHSM9 A X4 62.1 246.6 

     04PTHSM10 A X4 369.4 2074.9 

     10PTHSMAK A D/M 51.65 1124.6 

     10PTHSMAUC A X4 17.4 242.1 

     10PTHSMNC A R5 88.51 1142.9 

a U, untypable HIV-1 subtype: 93AOHDC249 and 93AOHDC252, sequences are basal to subtypes 19_cpx and 37_cpx; 93AOHDC251 sequence is basal to subtype H.  

b R5, CCR5 coreceptor usage; X4, CXCR4 coreceptor usage; D/M, Dual/Mixed viral population using CCR5 and CXCR4 coreceptors. 

c IC50 and IC90 best-fit values were inferred from sigmoidal dose-response (variable slope) curves and represent geometric mean values.  

 



 143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Discussion and Conclusions 

 

 

V 



 

 



General Discussion and Conclusions 

 145 

GENERAL DISCUSSION AND CONCLUSIONS 

In a context of limited tools and studies specifically addressing HIV-2 infection, the clinical 

management of patients infected with HIV-2 is often dependent on the growing knowledge 

and evidence produced for its counterpart, HIV-1. However, HIV-1 and HIV-2 have different 

genetic characteristics and evolutionary histories. Hence, it is not surprising that the 

therapeutic armamentarium for HIV-2 infection is more restricted than that for HIV-1 and 

that response to treatment with available options is usually poorer in HIV-2 patients 

[1,2,3,4]. In this context, MVC and other entry inhibitors could be useful to treat HIV-2 

patients. However, up to now, despite the recent use of MVC in salvage therapy of two 

HIV-2 infected patients [5,6], there was no information on the in vitro activity of MVC on 

HIV-2 primary isolates. Hence, the main objectives of the work presented here were to 

determine HIV-2 susceptibility to MVC and other available entry inhibitors and produce a 

new fusion inhibitor for HIV-2.  

 

It is now well known that the sensitivity of HIV to entry inhibitors is modulated by the 

interactions of the surface envelope glycoprotein with the coreceptors. The envelope 

structure and function of HIV-1 and HIV-2 are subtly different as judged by the different 

tropism profiles of these viruses [7,8,9] and susceptibility to neutralizing antibodies 

[10,11]. Changing the sequence and structure of the HIV-1 or HIV-2 V3 loop often results in 

different levels of susceptibility to selected coreceptor antagonists [12,13,14] and fusion 

inhibitors [15,16,17]. Interestingly, such modifications can modulate in opposite ways the 

susceptibility of HIV-1 and HIV-2 to neutralizing antibodies. Indeed, whereas in HIV-2 

viruses with charged V3 loops and X4 tropism are resistant to neutralization [18] in HIV-1 

this type of viruses are usually more sensitive to neutralization [19]. These data suggests 

that co-receptor antagonist might act differently in HIV-1 and HIV-2 and that resistance to 

these drugs might also develop in different ways [12,20,21]. To better understand and 

explain the perceived differences in HIV-1 and HIV-2 susceptibility to co-receptor 

antagonists we first performed a detailed side-by-side molecular, evolutionary and 

structural comparison of the target of all co-receptor antagonists, the V3 loop and 

surrounding C2 and C3 envelope regions (Chapter 2). Overall, the C2, V3 and C3 regions 

were more conserved and occluded in HIV-2 than in HIV-1. This was particularly evident in 

the V3 loop that was highly conserved in HIV-2 and concealed within the envelope 

complex, possibly due to a physical interaction with C2 and C3. The strong conservation of 

these envelope regions in HIV-2 can be related with its multiple functional roles (e.g. 

immunosuppressive activity, interaction with multiple co-receptors and Vpu-like function 

[22,23,24]). On the other hand, the extended and highly accessible HIV-1 V3 loop is 
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consistent with its immunodominant and neutralizing nature [25,26,27,28,29,30] and with 

its major role in CXCR4 and CCR5 binding [31,32]. Remarkably, we found that 

diversification of C2, V3 and C3 in HIV-2, but not in HIV-1, has a dominant negative effect 

on viral fitness and transmission. Hence, selection against change in the C2, V3 and C3 

envelope regions seems to be a distinctive evolutionary feature of HIV-2 [33,34]. Whether 

the different molecular, functional and structural features of HIV-1 and HIV-2 in these 

envelope regions had any impact on the susceptibility to entry inhibitors was evaluated on 

Chapter 3. 

In Chapter 3 we determined the in vitro baseline susceptibility of HIV-1 and HIV-2 primary 

isolates to fusion inhibitors (T-20 and T-1249) and coreceptor antagonists (AMD3100, TAK-

779 and MVC) and related this susceptibility with the time of virus isolation as well as with 

the genetic and phenotypic characteristics of the isolates. We found that primary isolates 

of HIV-1 and HIV-2 have similar sensitivities to AMD3100 and TAK-779. However, different 

dose-response profiles were obtained for MVC. Indeed, MVC inhibits the replication of R5 

HIV-2 variants with significantly higher IC90s and lower slope values than HIV-1. This 

suggests that higher dosages of MVC may be required for the treatment of HIV-2 infected 

patients [35,36]; otherwise, the administration of sub-therapeutic dosages might favour 

the selection of X4 variants, which in HIV-2 have been associated in with CD4 depletion, 

disease progression [37] and resistance to neutralization [38]. Additionally, we found an 

inverse correlation between HIV-2 sensitivity to MVC (IC50) and CD4+ T cell counts at time 

of virus isolation. Indeed, R5 HIV-2 variants isolated from AIDS patients were significantly 

less susceptible to MVC than R5 variants isolated from asymptomatic patients. In HIV-1, R5 

variants with lower susceptibility to MVC and other entry inhibitors had V3 loops with 

higher charges as compared with variants with higher sensitivity to MVC. We could not find 

such a relationship in our study possibly due to the reduced number of HIV-2 isolates that 

were studied. In addition, there were no obvious relationship between MVC susceptibility 

of R5 variants and conformational structure of the C2, V3 and C3 envelope regions (data 

not shown). Increased MVC resistance of late stage disease R5 variants might be explained 

by increased affinity for CCR5 [39] and/or an enhanced viral infectivity and replicative 

capacity [39,40]. Alternatively, these R5 variants may be evolutionary intermediates 

toward X4 use [40,41]. Future studies of a longitudinal nature should address these issues. 

Collectively, our results argue in favour of further clinical studies to fully evaluate the 

clinical efficacy of MVC in HIV-2 infection and determine the best therapeutic dosage in 

early and late stage disease. Equally important will be the development of tropism assays 

for HIV-2 (currently unavailable) to determine coreceptor tropism before initiation of MVC 
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therapy [42,43]. Failure to do so might favour the selection for HIV-2 X4 variants that are 

associated with bad disease prognosis. 

In what concerns to fusion inhibitors, our results confirm the reduced activity of ENF on 

HIV-2. Conversely, the high susceptibility of this virus to T-1249 indicates that fusion 

inhibitors are potentially useful against HIV-2; hence, it could be of interest to develop 

new drugs of this class (peptides or small-molecules) that are active against both HIV-1 and 

HIV-2.  

Finally, we evaluated the activity of a newly designed peptide (P3) on both HIV-1 and HIV-

2 isolates (Chapter 4). The sequence of this peptide was selected from an alignment of 

HIV-2 and SIV gp36 ancestral sequences. The rational for this approach was to minimize the 

amount of sequence divergence between contemporary strains and capture the more 

conserved features of the HR1/HR2 sequences [44,45]. Additionally, we expected to 

improve the tolerance of these molecules for natural polymorphisms on their target region 

or genotypic substitutions selected under drug pressure, without significant loss of 

sensitivity to their antiviral activity.  

P3 has 34 residues and overlapps the N-terminal pocket-binding region and heptad repeat 

(HR) core of the HR2 region. It differs by 21 aa from the consensus HIV-1 sequence, 14 aa 

from T-20 and 6 aa from consensus HIV-2. In contrast to the unstructured nature of T-20, 

P3 has a typical -helix conformation, which might increase its stability in physiological 

conditions and enhance its binding affinity to the target site [46,47,48,49,50]. In contrast 

to T-20, P3 potently inhibited both HIV-1 and HIV-2 replication (mean IC50 HIV-1, 11 nM vs 

IC50 HIV-2, 63.8 nM; P < 0.0001). P3 also potently inhibited the replication of T-20 resistant 

HIV-1 isolates (IC50 range, 0.15 – 11.8 nM). The N43K resistance mutation in HR1 region was 

selected in the presence of P3 and led to a 120-fold decrease in HIV-1 susceptibility to this 

peptide. Under the same conditions were were not able to select HIV-2 resistant strains. 

P3 did not inhibit the replication of a HIV pseudovirus containing the VSV-G envelope and 

bound strongly to a recombinant HIV transmembrane envelope protein (30-fold above cut-

off). Finally, P3 was significantly less antigenic than T-20 in drug naive HIV-1 infected 

patients. Overall, these results indicate that P3 is a strong antiviral molecule that inhibits 

HIV fusion by binding to the HR1 region in the TM glycoprotein (like other HR2-based 

peptides), and suggest that the pathway of HIV-1 resistance to P3 differs from that of T-20. 

Moreover it seems that the genetic barrier to P3 resistance is significantly higher in HIV-2 

than in HIV-1. Our findings provide proof of principle that viable antiviral peptides can be 

constructed using evolutionary biology strategies. Such strategies should be explored to 

enhance the production of peptide drugs and vaccines.  
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FUTURE PERSPECTIVES 

The work described in this thesis suggests several lines of future investigation. Firstly, 

clinical trials are required to accurately determine the therapeutic dosages of MVC in HIV-2 

infection (with different support regimens). Secondly, longitudinal studies with HIV-2 

infected patients treated with MVC will be required to: (1) study the mode and tempo of 

resistance development to this drug in vivo, and (2) better characterize and understand 

the relationship between disease progression and susceptibility of R5 variants to MVC. The 

results obtained with these studies will be crucial to manage HIV-2 therapy with MVC and 

to determine whether MVC should be preferentially offered in the beginning of the HIV-2 

infection (in a first-line regimen) as our results would suggest. Our studies demonstrated 

that dual tropic HIV-1 isolates are not responsive to MVC. Therefore, development of a 

genotypic and/or a phenotypic tropism assay for HIV-2 is urgently required so that MVC is 

not used in patients harbouring dual tropic viruses or mixed infections with X4 and R5 

strains.  

We have found that R5 variants isolated from AIDS patients are more resistant to MVC than 

R5 variants from asymptomatic patients (Chapter 3). Could this R5 isolates be transition 

isolates toward X4 usage? Are the envelope glycoproteins of this late R5 isolates 

conformational different from early R5 isolates? It will be important to characterize the 

molecular, structural and functional determinants of this different susceptibility to MVC. 

Interestingly, we found recently that while most R5 variants are sensitive to neutralizing 

antibodies, some HIV-2 R5 variants are resistant to neutralizing antibodies [18]. Is there 

any association between evolution of MVC resistance in R5 isolates and neutralization? 

Could this evolution be driven by the neutralizing antibody response in HIV-2 patients? 

Responses to these questions will lead to a more informed use of MVC in HIV-2 patients and 

to a better knowledge of the HIV-2 evolution in a highly selective environment.  

 

Concerning the new fusion inhibitor peptide (P3), biophysical studies on the specific 

interaction between P3 and the HR1-target are underway and will help to clarify the 

mechanism of action of P3. Resistance to P3 should be further investigated in HIV-2; in 

HIV-1, site directed mutagenesis should be used to insert the N43K mutation alone into the 

backbone of an infectious molecular clone of HIV-1 in order to see if this mutation confers 

high-level resistance to P3. We think that P3 may be useful as a microbicide. These are 

substances designed to reduce or prevent the sexual transmission of HIV and other sexually 

transmitted infections when applied topically inside of the vagina or rectum. Thus, we 

plan to formulate P3 with an appropriate carrier [e.g. HydroxyEthyl Cellulose (HEC) gel] 

[51], test its stability under different circumstances (e.g. in the presence of seminal 
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plasma and in the presence of the microflora of the vagina, especially Lactobacillus 

acidophilus) and test its activity on the vagina microflora [52]. The preclinical trial of this 

peptide as a microbicide or as a drug will be tested in the RAG-Hu mice [53]. Finally, if all 

this trials succeed we plan to push P3 into clinical trials with monkeys, which will require, 

in first instance, the confirmation that P3 is active in SIV isolates.  
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