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“I rarely end up where I was intending to go, but often I end up somewhere

that I needed to be”

Douglas Adams



Abstract

The trigger logic system of an experimental apparatus is responsible for the

data acquisition of that system, i.e., this system decides when data is to be col-

lected. the LAND/ R3B collaboration trigger logic system was updated for the

2010 campaign.

In this update the several parts of the trigger system in the different modules

were included in one FPGA. This new module so-called VULOM is now responsible

for the hole trigger logic and for setting the overall dead time. The FPGA use

now implies a 10 ns jitter in the trigger logic signals.

This thesis contains the description of the trigger logic system, the old and also

the one included in the VULOM. In order to completely understand a experimental

setup and the role of the trigger logics, it is necessary to go from the detectors

through the conversion of electrical signals to the storage of data.

This insight of the electronic setup allowed to start a dead time measurement

project. This measurement project main goal is to keep under surveillance the

local dead time of the several subsystems. To perform this, it is necessary to keep

in mind how the system works and how to synchronize CPU clocks. A plan was

outlined and a simulation program was developed to check for its feasibility. Our

results suggest that the time required to perform the measurement can be reduced

by 30% if the CPU clocks are only corrected with the clocks offset, disregarding the

frequency offset. However some simulation improvements are required to further

conclusions.
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Chapter 1

Introduction

The LAND (Large Area Neutron Detector) collaboration is experimentally

studying the properties of exotic and unstable nuclei. This group carries out

experiments in inverse kinematics with both stable and unstable isotope beams.

The LAND ( group studies for example halo nuclei, multiphonon giant resonances,

collective flow of nuclear matter and multi fragmentation [1, 2].

Moving towards FAIR (Facility for Antiprotons and Ion Research) and in par-

ticular to the R3B collaboration (Reactions with Relativistic Radioactive Beams),

the LAND group at GSI (GSI Helmholtzzentrum für Schwerionenforschung GmbH)

is upgrading the electronic components of its experimental apparatus.

The Nuclear Physics Center of the University of Lisbon recently joined the

efforts of the R3B collaboration to study halo nuclei. Aiming for the determination

of the ground state spectroscopic factors of the halo nuclei 11Be and 15C in inverse

kinematics using quasi-free scattering reactions. The main goal of this study is to

get a firm ground concerning the theory of these nuclei, following the Fadaeev/AGS

formalism.

That recent collaboration started with the improvement of the trigger logic.

After getting acquainted with the previously running trigger logic (TRLO I), the

main effort was placed in the development of a new trigger logic (TRLO II).

1



Chapter 1. Introduction 2

The new trigger logic is implemented in a FPGA (Field-programmable Gate

Array) on a module denominated VULOM (VME Universal LOgic Module). The

VULOM hardware was developed by Jan Hoffmann at the GSI electronics depart-

ment. The VULOM FPGA code was first developed by Jochen Fruehauf and later

modified and generalized to the LAND setup by H̊akan Johansson.

This thesis is an introduction to the trigger logic system in the LAND setup.

Also included is a short introduction to detector generated electronic signals in

order to understand the overall process involved in a experimental setup like the

LAND detection apparatus. This first approach with the LAND setup allowed

also to start a new project to measure the dead time of the individual subsystems

of the setup which is also included in the thesis.

***

The thesis is divided in 8 main chapters. Chapter 2 contains the description

of the GSI facility and in particular the LAND/R3B collaboration experimental

apparatus for the 2010 campaign. In chapter 3 is introduced one detection system,

a scintillator detector. Follows the modules necessary to transform the detectors

electrical signals into time and energy information.

In chapter 4 introduces the triggered LAND data acquisition system, making

emphasis in the trigger logic system and the process involved from getting a master

start to the storage of data. The next chapter is a description of the previously

running trigger logic system. Here we go from the trigger logic inputs to the

readout of the systems through the MBS.

The subject of chapter 6 is the new trigger logic system which is described

in detail in its main structures. The fast path, from the trigger inputs to the

generation of one master start, and also the state machine, responsible for the

final trigger identification and dead time management. The following chapter

holds all the VULOM settings in particular the ones used in MBS.
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In chapter 8, the dead time measurement project is introduced. It is made

an introduction to the concepts necessary to this project in particular CPU clock

synchronization. After looking at the main issues of the project a plan is also

outlined. In order to check this plan simulations were proposed. Its results are

also shown in this chapter.



Chapter 2

GSI and the LAND group

2.1 GSI

GSI is a scientific research facility in Darmstadt, Germany. This heavy ion

accelerator facility strives to ”understand the structure and behavior of the world

that surrounds us”. The research fields cover nuclear and atomic physics, plasma,

materials research, biophysics and cancer therapy. A schematic view of the facility

is presented in Fig. 2.1, in blue the present GSI and in red the future FAIR complex

[1].

At the GSI accelerator, it is possible to prepare ion beams of all elements, up

to and including uranium and accelerate them to a significant fraction of the speed

of light.

A primary beam is generated by ion sources at the left most side of the complex.

The beam is injected in the linear accelerator (UNILAC), with its 120 m, the ions

are accelerated up to 20 percent of the speed of light. The beam is then accelerated

in the GSI synchrotron, the SIS18 (SchwerIonen Synchrotron). Here, the ions are

accelerated up to 90 percent of the speed of light, which means 1 AGeV for 238U.

From the SIS18 the beam can be directed to the FRS (FRagment Separa-

tor). Here, relativistic beams of exotic nuclei can be produced and separated

4



Chapter 2. GSI and the LAND group 5

Figure 2.1: GSI and FAIR accelerator complex [1]. The future FAIR facility
is in red while the present GSI complex is in blue.

into isotopically-pure components, by in-flight fragmentation. The primary beam

interacts with a target producing a broad distribution of nuclei, the resulting sec-

ondary beam is then selected according to the magnetic field settings applied in

the FRS dipoles. The secondary beam is delivered to several experimental setups

(Cave A, B and C) and also the ESR (Experimental Storage Ring) [1, 3].

The ESR stores and accumulates ions up to the highest possible currents. Here

it is possible to obtain very small angular divergences and velocity distributions

by applying special techniques like electron- or stochastic-cooling [4].

2.2 The LAND experimental setup

The LAND setup is presently housed in Cave C. For the August to October

2010 campaign, experiments s393, s306 and s389, the setup will be as follows.

Fig. 2.2 is a scheme of the experimental setup.
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Accelerated in the SIS18 a beam will be selected to enter the cave by in-flight

fragmentation in the FRS. The beam entering the cave will be characterized by

several detectors (time, position), allowing to resolve the different nuclei in the

beam. The first detector is the PSP (Position Sensitive Pin diode) detector, a

silicon detector, used to determine the energy loss of an ion passing through. This

will allow particle identification and beam tracking via the Bethe-Bloch formula.

The next detector is the ROLU (Rechts, Oben, Links, Unten). This detector

consists of four scintillator paddles displaced, leaving a rectangle in the middle

to define the accepted beam spot size. This detector acts as a veto system, i.e.

in case it ”sees” something, the event generated by this particle/ion will not be

recorded. Also at the entrance of cave C is the so-called POS detector, a quadratic

plastic scintillator. The time information of this detector together with other

time measurements from other scintillators upstream in the FRS, can be used to

determine the time of flight of the incoming ions.

LAND

ALADIN

target

Si WALL

VETOROLU

TOF PROTONS

TOF FRAGMENTS

15

TFW

PROTON 

DRIFT CHAMBERS

GFI

POS

PSP/PIXEL

PSP/PIXEL

DTF

BALL
CRYSTAL

30

Figure 2.2: The LAND setup scheme for the 2010 campaign. This setup aims
to measure energies, positions and time of flight. The beam entering from the
right will face some detectors (PSP, ROLU and POS) until it reaches the target
at the center of Crystal Ball. The fragments from the reaction will be deflected

by the magnet and its features are measured in its deflection line.

The incoming beam will then collide with the target placed inside the Crystal

Ball, a 4π 162 NaI crystals gamma detector. This detector is also prepared to

measure the energy deposit of scattered protons in its forward hemisphere. Around
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the target one can find several Silicon Strip Detectors (SSD). These are used to

track charged particles.

After the collision with the target the resulting fragments with beam direction

go through the dipole magnet ALADIN (A Large DIpole magNet) and are deflected

according to their magnetic rigidity into different branches.

Straight ahead one can find LAND (LArge Neutron Detector), a 2 x 2 x 1 m3

neutron detector composed of sandwiched iron and scintillator layers. This de-

tector performs Time of Flight (TOF) measurements of neutrons. Between the

magnet and LAND is the Veto wall. This is a scintillator detector used to detect

charged particles which were produced during the particles trajectories after the

ALADIN. At an angle of 15◦ with respect to the incoming beam axis, the heavy

fragments from the reaction pass through the GFI (Grosse FIber Detector) de-

tectors, scintillating fiber detectors used for position determination. The heavy

fragments are finally characterized by a scintillator TOF Wall, TFW.

Similarly the protons coming out of ALADIN are detected by two drift cham-

bers and a scintillator TOF wall, DTF. These detectors are located at 30◦ with

respect to the incoming beam axis [2].

The measured quantities in the detectors of the LAND setup are summarized

in Table 2.1.
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Detector Measurement
S2 and S8 Tof measurement
PSP Beam tracking/ ∆E measurement
PIXEL PSP calibration
ROLU Beam spot size accepted
POS Tof of incoming beam
Crystal ball E measurement for γ and protons
Silicon Tracking (∆E and position)
LAND Tof of neutrons
GFI Tracking
TFW Tof, charge and position measurement of fragments
NTF Tof (with TAQUILA)
Drift cambers Trajectories of protons
DTF Tof, charge and measurement of protons

Table 2.1: Detectors and measured quantities in the LAND/R3B setup.



Chapter 3

Reading out detector signals

A detector is a device that converts the passing of a particle into a measurable

quantity via interactions with the detector material. Depending on the particle

and detector the interaction involved is different. To describe this conversion

process, let us look at the example of a scintillator detector.

3.1 Detection of particles with scintillators

Scintillating detectors are amongst the most used in nuclear physics. It is

usually a crystal or a plastic scintillator coupled to a PMT (photomultiplier tube).

A scintillator is a material which exhibits luminescence, i.e., emits a flash of

light, after being struck by ionizing radiation. This material emits low-energy

photons, usually in the visible range. Helped by total internal reflection and light

guides, the photons are transported to the PMTs.

The absorption and emission of radiation can occur by two processes. If it

occurs within the first 100 µs the process is named fluorescence. If it finds a meta-

stable excited state and it takes more time, it is called phosphorescence. In this

type of material it can take hours to emit the radiation.

9
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For a single scintillation event, the time evolution of the number of emitted

photons, N , can often be described by the linear superposition of one or two

exponential decays, where two decay constants can be identified. Scintillators can

be characterized by these two time components: τf and τs, the fast and the slow

decay constants:

N = A exp

(

−

t

τf

)

+B exp

(

−

t

τs

)

The relative amplitude A and B of the two components depends on the scin-

tillating material. Usually the the fast component dominates, [5]. Both of these

components can also be a function of the energy loss dE/dx.

There are several types of scintillator materials, each one of them with their

own properties: organic crystals, organic liquids, plastics, inorganic crystals, gases

and glasses [5].

Properties

When coupled to a PMT the emitted radiation can be converted to an electrical

signal which can be used to identify the properties of the incident particle.

• Energy linearity

Scintillators reveal a good sensitivity to the ionizing radiation energy. Above

a certain energy threshold, the light output of most scintillators is propor-

tional to the energy deposited. Avoiding non-linear behavior of a PMT,

the amplitude of the electrical signal will be proportional to the deposited

energy.

• Fast Time Response

The time response of a scintillator detector is short when compared to other

detectors. This feature turns scintillators into excellent tools for timing

measurements.
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Scintillator detectors also reveal a good time in recovering from the previous

signal, this means that the intrinsic detector dead time is short.

• Particle discrimination

Certain scintillators allow particle identification by analyzing the shape of

the emitted light pulses. Different pulses result from different fluorescence

mechanisms caused by different particles.

Photomultiplier Tube

A PMT is not only a device that converts photons into electrons but also an

amplifier, [5]. At the entrance of the PMT is a photocathode which converts

photons into electrons by the photoelectric effect. After the cathode there are

several dynodes and at the end an anode. This structure exhibits a potential

ladder from the cathode to the anode, so the electrons emitted at the cathode are

accelerated from dynode to dynode, until they reach the anode. In each dynode,

the number of electrons is multiplied. For each electron that arrives several can be

emitted and accelerated to the next dynode. Finally, in the anode the electrons

are collected into an electric pulse.

Fig. 3.1 is a representation of a scintillator crystal coupled to a photomultiplier

tube.

3.2 Electronic signals

An electronic signal, logic or analog, has some features that can be visualized

with an oscilloscope, allowing its characterization. Operations performed to a

signal may depend on the signal properties. The most simple property is the

signal’s amplitude, the signal’s highest voltage value. In other words, its peak.

When this value is surpassed for a small time interval, an overshoot is present. An
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Scintilator

particle
Charged 

−HV
R2R1 R3 R4

R5 R6 R7 R8

Anode

Photocathode

Dynodes

Figure 3.1: Scintillator detector with PMT. The photons resulting from the
de-excitation of the scintillator material are guided to the PMT. The PMT con-
verts the photons into electrons and multiplies their number in the consecutive
dynodes, leading to s signal amplification. At the output of the photomultiplier

an electrical signal results from the collection of the electron charge.

overshoot is most likely to occur when filters are used to minimize the rise time of

a signal. The amplitude and the risetime of a signal is represented in Fig. 3.2.

time

T2

vo
lta

ge

Amplitude

Rise time

T1

90%

10%

Figure 3.2: Electronic signal, its amplitude and risetime.

The rise time is the time required for a signal to swing from 10% to 90% of its

peak value. One can also refer to a signals fall time, for the time necessary to go

from 90 % 10% of its amplitude, from its full value.

Another signal feature is its beginning and ending, the first is referred as the

leading edge while the second the trailing edge.

A signal can be catalogued as unipolar (one polarity, positive or negative) or

bipolar (positive and negative polarity).

In electronics the major division that one can make with signals is to classify

them as analog or digital. While analog refers to a continuous signal with varying



Chapter 3. Reading out detector signals 13

amplitude, a digital signal is a discrete signal in time, where the voltage variations

are discrete and the values take jumps when increasing or decreasing. Although

a digital signal is linked to a present or not present behaviour, in fact when seen

through a scope it will show a rise time different from zero, as an analog signal.

As previously mentioned, the analog pulse coming out of the PMT carried

a charge related to the energy loss, ∆E, of the particle detected. Added to it,

the relative time of that pulse matters. The pulse must then be electronically

processed in order to obtain those two pieces of information.

3.3 Electronic modules

The signals from the detectors must be treated and transformed in order to be

useful for further analysis. They carry all the information related to the particle

detected. In a experimental setup where time and energy are the main observables,

the frontend electronics is composed by some specific modules such as Charge/Am-

plitude Digital Converters, discriminators and Time to Digital Converters [5].

3.3.1 ADCs and QDCs

An ADC (Amplitude to Digital Converter) and a QDC (Charge to Digital

Converter) generate a digital word ”proportional” to the analog input. In nuclear

physics, these devices are used in energy measurements.

While ADCs take into account the signal’s peak, the QDCs take its charge.

In the first case, the digitized value corresponds to the height of the signal. As

for the charge sensitive QDC, the output is related to the integrated input signal.

In both cases, a gate is necessary. In the ADC, it is necessary to limit the time
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window to search for a peak, as for the QDC one needs to specify the integration

time.

3.3.2 Discriminators

Discriminators are electronic modules that produce a logic pulse with a precise

timing relative to an input signal. Discriminators are also used for ignoring noise

pulses.

At the input of a discriminator one can find analog signals with different am-

plitudes, arriving randomly in time. As for the output, it is a logic pulse that

only depends on the arrival time, having a defined amplitude and width. There

are two main categories of discriminators, leading edge (LE) and constant fraction

discriminators (CFD).

The LE discriminator is the simplest of the two discriminators mentioned

above. Given an input pulse, as soon as its amplitude is above a defined sig-

nal height, a logic signal is produced.

The LE trigger reveals a handicap when the inputs are two signals coincident

in time but with different amplitudes. The pulse with lower amplitude will require

more time to reach the threshold. As a result the output pulse will be shifted in

time, this is called walk. Also some jitter may appear as the signal is not noise

free and may present fluctuations, this will introduce some fluctuations in reaching

the threshold. Fig. 3.3 illustrates these effects.

B

A
C

Threshold

shift shift
b)

a)

Figure 3.3: Leading edge discriminator: a) The walk effect revealed by higher
amplitude signal B and a smaller amplitude A; b) Signal with jitter. In both

cases the variations in the signals introduce a shift in the output time



Chapter 3. Reading out detector signals 15

The CFD makes use of a more precise method when compared with the LE.

It is, to first approximation, not amplitude dependent. The CFD uses a pre-

determined constant fraction, f, of the input signal amplitude to determine the

time relation between the input and output pulse.

The CFD also requires that the pulse goes through a threshold. Then the input

signal is splitted. One is inverted and reduced by the factor f, the other is delayed.

The delay should be chosen carefully, by taking into account the expected rise time.

If the delay is too short the output will be produced sooner than it should, i.e.,

there will be walk. The two signals are then be added, giving a bipolar signal.

The logical output is produced at zero crossing, as a result of the adding function.

This is represented in Fig. 3.4.

Figure 3.4: CFD: The input pulse (dashed curve) is delayed resulting on the
dotted line. The input is also inverted and downscaled (dot-dashed curve). The
bipolar signal (solid curve) results from adding the two previous curves. The

CFD output will come at the zero crossing of the solid curve, t.

The CFD is a good option compared to the LE discriminator when considering

signals with almost the same shape, otherwise the walk will also arise. However

a LE should also be taken into account as it is simpler and faster, i.e., does not

require delay.

3.3.3 TDCs

A TDC (Time to Digital Converter) is a device that measures a time interval

between two events, a START and a STOP, and gives it in a digital form.
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A common version of a TDC can be represented as a TAC (Time to Ampli-

tude Converter) followed by a ADC (Amplitude to Digital Converter). The TAC

produces a signal whose amplitude is proportional to the time interval between th

e START and the STOP signals. This usually works by charging a capacitor, the

capacitor starts charging when the START signal comes, until the STOP signal.

The charge collected, over a resistor, is sent to the output. This output is then

proportional to the time elapsed between signals. Via a ADC this output is then

converted to a digital format.

Another conversion consists in counting a clock between a start and stop signal.

3.3.4 Delays and stretchers

Sometimes it is necessary to delay signals. Especially early signals or signals

generated closer to a checkpoint, where they must arrive at the same time. This

would be the case when one wants to make coincidences between signals, in order

to compare their presence they must arrive at that point at the same time.

The delays are done with delay gates or just by adding cable length in their

path. The later case is the most reliable as the signal charge is kept, even though

features like height are attenuated.

Also related to coincidences, it is necessary to compare signals with the same

features, specially time length. In order to do this a stretcher is necessary. The

function of this module is to extend the input signal. This takes into consideration

the different detector’s response time and signal delay before reaching the trigger

logic system.
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DAQ

The Data AcQuisition (DAQ) system is responsible for the automatic collection

of data. It is the software coordinator of all the processes from the collection of

the converted data to its storage. Depending on the physic studied, not only the

experimental setup is constructed but it is also necessary to adjust the acquisition

system according to the kinds of events wanted.

4.1 Triggerless and triggered systems

When ions are entering the experimental cave, some of them will interact with

the target leading to the reaction(s) of interest. However most of the ions will

not interact or interact with inactive detector material, the air, gas, etc. Cosmic

particles could also be detected. All those induces a lot of information that is

not required. Furthermore, the conversion time, the data re-collection and storage

need some time.

In order to record mostly events of interest, an overall electronic and DAQ

trigger is built.

17



Chapter 4. DAQ 18

A triggered system will only gather data if certain requirements are fulfilled.

This introduces the concepts of SUM, OR and coincidence/anticoincidence be-

tween signals. For the trigger to be fired one may ask for a SUM of certain signals

or an OR. Also, one can require that certain detector signals arrive at the trigger

system in a certain time interval (coincidence) or even the absence of one signal

compared to other (anticoincidence). These signals requirements guarantee that

the signal is not just a sporadic one from one detector. On the one hand, a trig-

gered system will not need such a large memory capacity. On the other hand, it

needs for its implementation a large electronic structure, that increases with the

complexity of the experimental setup.

However with the development and for certain reactions, having a common

trigger for all the detectors induce an artificially high dead time. New setups are

then developed without a hardwire event trigger, the so-called triggerless systems.

In case of such a system, the signals at the output of the converters are just

sampled through. The data is timestamped and an event is recovered in software

by an event builder with the help of the timestamps. This method tries to overcome

part of the dead time limitation, although the conversion time will still contribute

to the dead time. Despite of all electronics that cease to be necessary to generate

the trigger, a triggerless system will require a large amount of memory and more

processing power in order to perform the software triggering.

The current LAND data acquisition system is trigger based. Electrical signals

will only be collected, processed and stored if certain conditions are fulfilled.

4.2 LAND DAQ

The LAND DAQ electronic modules are placed inside in and outside cave C.

Looking throughout one channel, Fig.4.1, helps one to get the idea of the process

involved in the LAND experimental setup.
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CFD Delays

Network

TDC

QDC

Trigger Logic

Storage

Detector Splitter

Delays

Master Trigger

DAQ

Event Builder

TL input

Logic pulse

Analog signal

Figure 4.1: LAND DAQ scheme. In the LAND setup to get the time and
energy information each signal from a detector is splitted. One line for time
measurement with a TDC and the other with a QDC for energy. The signals
gathered after the CFD (Sum) is the input of the trigger logic. When this
system verifies certain conditions, the DAQ initiates the data collection and its
storage processes, by generating some gates. The gates are delivered to the
TDCs and QDCs to get the data at its output. The data obtain there is then
delivered to the Event Builder, where the data is associated in events. These

are stored in a mass storage.

The detector signals are splitted in two branches. One for the time and the

other for the energy measurements. So in one branch one will find a TDC and in

other, for the energy, a QDC.

Once in the TDC line, the signals go through a CFD and only after head to

the TDC. The CFD is only appropriated for this branch as it is only necessary to

account for the signal’s time for the time measurements and its logical value for

the trigger decision.

In the parallel QDC line, the signals are delayed and then enter the QDCs.

The delay is such that it takes into account not only the time of the CFD in the

TDC branch but also the trigger time, time enough that all the signals from the

detectors throughout the cave arrive and to make a trigger decision.

From the CFD is obtained the trigger logic input signals that is delivered to

the trigger logic, this means that even if a detector got several hits in several places

for the trigger it will count as one hit in that detector.

During the conversion time, the trigger logic acts like a traffic light, with a

pass or no pass option for the data gathering and conversion.
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If the trigger requests are fulfilled the trigger logic ”triggers” the acquisition

by generating the so-called master start. The master start will then lead to the

generation of gates for ADCs and QDCs, after the conversion, the data from the

TDCs and QDCs is collected and sent to the Event Builder. In the Event Builder

the data is associated and labelled as an event. After that the data, now as

standard GSI lmd file, is sent through the network to a computer for data storage

[6, 7].

The processes between the trigger logic decision and the data collection con-

sume time, during which other hits can occur. However, the modules are already

performing their task. Therefore, the data corresponding to thoses hits cannot be

recorded: this is the dead time. It is mainly due to the time needed to convert the

data and it is estimated for TRLO I to be around 400 µs, 300 µs required for the

slowest converters to convert and 100 µs for their readout.
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Previous trigger logic system

5.1 LAND Trigger system

In an experimental physics setup in which the data acquisition is triggered, the

DAQ will only start upon a decision of the trigger logic. This will only produce

an output signal to be delivered to the DAQ depending on the pattern of signals

received and if the system is able to accept them, i.e., not in dead time. In the

following, the features of the trigger logic in the LAND setup are explained.

5.1.1 Trigger logic input

A large detector system, like the Crystal Ball, contains several individual de-

tectors, each of them delivering a different output. A particle interacting with the

detector system may induce a signal in some of the individual units. However, as

far as the trigger logic is concerned, the detector will produce one logic pulse.

Several operations can be applied to the analog signals from the detectors. The

most simple one is an OR of all the CFD signals from one detector system. This

means that in case that one or more of the individual detectors ”sees” something,

there will be a logic pulse sent to the trigger system.

21
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Another possible operation is to set a minimum number of fired detectors by

analog adding of the detector pulses and compare the result to a threshold value.

Just as this threshold is reached a pulse is sent to the trigger system. This can be

seen in Fig. 5.1.

Discriminator

Discriminator

Discriminator

Detector

Detector

Detector

LE Trigger SystemSUM

Figure 5.1: Trigger logic input - SUM operation. The signals delivered to the
trigger logic in certain cases correspond to the sum of several detector outputs
and only when a certain value is reached a signal representing these inputs is

delivered to the trigger logic.

Let us now consider one of the detectors present at the LAND setup. The POS

detector has in its structure one scintillator sheet and four photomultiplier tubes,

one at each side, see Fig. 5.2.

nator
Discrimi−

nator
Discrimi−

nator
Discrimi−

nator
Discrimi−

Output
Scintillator

PM tube

&

Figure 5.2: Trigger logic input for the POS detector. In case of the LAND
POS detector, its output to the trigger logic corresponds to an AND operation

of the discriminator outputs.

In this case, only if all four photomultiplier tubes provide a signal (AND con-

dition), a logic pulse will be delivered to the trigger logic.
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Another scintillator detectors at the LAND setup are the so-called TOF walls.

These are detectors with a large number of paddles with PMTs readout at each

end. In this case, the presence of any two signals is usually required.

As the previous operations are performed before entering the trigger logic,

when it happens the inputs are referenced as detector triggers. Table 5.1 shows

the detector triggers present in the LAND setup for the 2010 campaign, this is

similar to the previous years. Spill On is a signal, from the accelerator, generated

during the time when the beam can enter the cave. An event is said to be ”on spill”

if it happens in coincidence with the Spill On signal. ”Off spill” is the opposite

case (no beam entering the cave). This is used for testing and calibrating detectors

without beam (with cosmic rays).

Table 5.1 shows all the 16 possible trigger logic inputs. Note that the ”delayed”

inputs are actually the same signal, just with a different delay. The applied delay

will make them to arrive or not in coincidence with the Spill On signal, which

classifies triggers accordingly .
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Detector signal combination Particle detection
1 - POS AND NOT ROLU Minimum bias, good beam
2 - POS Signal from the POS detector
3 - LAND Signal from LAND (on spill)
4 - LAND Cosmic Off spill particle detection in LAND
5 - TFW Signal from charged particle in TFW
6 - TFW Cosmic Off spill signal in the TFW
7 - DTF Signal from proton in DFW
8 - DTF Cosmic Off spill detection on the DTF
9 - CB OR OR of the Crystal Ball crystals (source run)
10 - CB delayed OR Delayed signal from the CB OR (off spill)
11 - CB SUM SUM of the CB crystals (detection of protons)
12 - CB delayed SUM Delayed signal from the CB SUM (off spill)
13 - FRS S8 Beam detection from FRS (scintillator S8)
14 - PIX Pixel detector
15 - NTF TOF wall behind the TFW
16 - CB L+R AND of the left and right hemispheres of the CB
Aux1 - Spill on Incoming beam in the cave, only with TRLO II
Aux2 - Early pile-up Only with TRLO II
Aux3 - POS Only with TRLO II
Aux4 - Tracer Trigger alignment with tracer, only with TRLO II

Table 5.1: LMU trigger inputs - All 16 trigger logic inputs with the detector
signals combinations. (Aux triggers are generated internally in the TRLO II)

TRLO I

In the trigger logic three major blocks can be found with different functions:

the Logic Matrix Unit (LMU), the Trigger Box (TB) and the Priority Encoder

(PE). This is schematically shown in Fig. 5.3.

Logic Matrix

Trigger Box

Priority Encoder

Detector trigger

Hardware trigger

Figure 5.3: Trigger Logic structure. The detector triggers arrive at the trigger
logic and enter the logic matrix unit, where logic operations are made between
channels, i.e., detectors. The output of the LMU is delivered to the trigger
box. The trigger box introduces the dead time veto and the reduction. Finally,
as several triggers may appear at this stage, these are ranked in the priority

encoder.



Chapter 5. Previous trigger logic system 25

5.1.2 Logic matrix unit

The channels of the LMU can be programmed by the user in order to perform

boolean logic operations between channels1, such as AND or AND NOT. The LMU

is responsible for generating signal coincidences and anticoincidences. It operates

in the following way:

A file with a matrix shape specifies the desired combinations of the LMU input

channels. An example used in 2010 campaign with TRLO II, containing the on-

spill and off-spill triggers, is shown in Table 5.4 and Table 5.5, the TRLO I file was

very similar. In the matrix one can set an anticoincidence as 1

0
, a coincidence as 0

1

and in case a pattern is not relevant one sets it as 0

0
. The different combinations

build up the different LMU outputs, from 1 to 15.

Each input channel is compared to the conditions and if they are fulfilled an

output signal is set. Table 5.4 and table 5.5 show the logic matrix file for the s393

experiment, with the anticoincidences (in the first row) and coincidence (in the

second row) requirements. The inputs can be decoded from Table 5.1.

Let us consider as an example the output number 5 (Proton). In this case, in

order to produce this type of trigger, it is required the coincidence of the input

channels 1, 7 and Aux1. This is seen with the presence of ’1’ in the second row.

In Table 5.1, the first channel, ’1’, corresponds to a signal detection in the POS

detector and the absence of one in the ROLU detector. The second requirement,

channel ’7’, marks the presence of a signal in the fragment wall, TFW. Finally

the last input channel demand, ’Aux1’, requires that the spill is on, i.e., beam

is entering the experimental cave. Only matching all this conditions the Proton

trigger is produced at the output of the LMU.

The matrix outputs are divided into eight beam triggers (1-8) and eight addi-

tional triggers for calibration and control purposes (9-15) [9].

1In the LAND DAQ system, 2 Lecroy 2365 OCTAL LOGIC MATRIX performs this operation
[8]
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The 16 outputs of the LMU are the inputs of the Trigger Box. The output

signals are now called physics triggers, as they represent physical ”events”, i.e.,

reactions.

5.1.3 Trigger box

The TB receives directly the Clock, Time calibrator (TCAL), Beginning of

Spill (BoS) and End of Spill (EoS) triggers, as well as the output of the LMU. The

Clock is a clock signal that when accepted sent as a gate to QDCs, for pedestal

measurements. TCAL is a signal used for the time calibration of the TDCs.

In the TB, in 2 TB8000 modules, three operations are carried out.

First, the dead time blocking, it checks if the system is on ”dead-time”, i.e. the

system is processing another signal. In case the system is in dead-time no pulse

will survive this phase. Only when the dead time is off a trigger can be generated.

In case the signal comes through, the TB verifies if that channel is a enabled or

disabled by the user. Some channels can be turned off if they are of no interest2.

Finally, it performs a reduction. This reduction can suppress channels firing

a trigger too often, as they are more common. This prevents the system to be

on dead time when a less frequent (more interesting) event comes. The reduction

is done in each channel by setting a factor of a 2 based exponential, 2n, where n

ranges from 0 to 15.

From the TB, a trigger bit pattern is stored. This pattern records which event

trigger combination after reduction caused the trigger decision.

The accepted triggers go through a logic-OR gate to produce only one master

trigger, the so-called master start. In TRLO I it would take 45 ns to reach this

stage from the LMU inputs to the output of the Trigger Box,3.

2This is the case of the PIXEL detector, only used for calibration
3How is it with the new TRLO II??... almost the same.
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Physics trigger Hardware trigger
1 to 8 #1 Physics (On Spill)
9 to 12 #2 Off Spill

13 #3 Clock
14 #4 TCAL

#10 and 11 Keep alive
15 #12 BoS
16 #13 EoS

14 Start acquisition
15 Stop acquisition

Table 5.2: Correspondence between the detector triggers and hardware trig-
gers

The output of the TB is then the input of the Priority Encoder [9].

5.1.4 Priority encoder

The PE, formerly performed in VULOM1 and originally in a NIM module,

receives the hardware trigger from the TB and as the name suggests, it ranks the

signals. In case two or more signals get to the PE at the same time, the one defined

with higher priority will go through [9].

The PE is also responsible for decimal to binary encoding. The binary code,

encoded trigger, contains four digits that in binary form correspond to all 15 trigger

types. This is sent to the TRIVA module and specifies the hardware trigger type

associated to the master start generated.

Table 5.2 shows which detector trigger is associated to an hardware trigger.

The keep alive trigger is generated when no Clock, TCAL, On spill or Off spill

trigger is present for more then 10 s. On this particular trigger, the converter

values are not read, as there was no master start gate generated. However the

scalers values are read and displayed.
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5.2 The MBS and the TRIVA module

As others experimental setups at GSI (and in some other institutes), the LAND

DAQ runs under the MBS (Multi Branch System) environment [10]. This provides

a communication between the TRIVA and the processors, the different sub-systems

or branches, with the event building and finally for writing the data. In all the

branches, the MBS environment will call user defined functions for each event.

Those user functions contain the information on the modules that need to be read

out and how to do it for each branch.

The TRIVA, also named Trigger module, is responsible for starting the readout

program [11]. There is one Master trigger module for the whole system and several

slaves, this is shown in Fig. 5.4. It accepts different external triggers, starts and

stops the acquisition, is responsible for accepting and sending a Fast Clear signal

and a dead time veto signal. These signals are sent to the slaves by the master

module, via the trigger bus, without making any distinction between systems.

TRIVA + RIO
master

TRIVA + RIO
slave

TRIVA + RIO
slave

TRIVA + RIO
slave

Figure 5.4: Readout system scheme - The readout system includes several
trigger modules: a master and several slaves. On the left one can see that next
to every trigger module there is a RIO processor which deals with the readout
of the modules. They are connected in series in order to deal with the dead
time. A picture of part of the master crate with the blue TRIVA and grey RIO

is shown on the right.
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Depending on the accepted trigger (hardware trigger) the data is treated differ-

ently. The master trigger module delivers the hardware trigger to the slave trigger

modules and these initiate the the readout program in the different controllers,

i.e., readout processors4. Once the signals is in the processors, a local dead time

is set and new signals arriving within this dead time are rejected.

The slave trigger modules are responsible for generating a Local Dead Time

(LDT) blocking. The master gets an OR of all the local dead times and generates

an overall dead time logic signal. This one is then sent to the TB for vetoing new

events candidates. Fig. 5.5 shows a scheme of the readout communication process

through the MBS.

TRLO I

Encoded trigger

Master start

TRIVA RIOs

Keeps TDT

Start de TDT

Event Builder

program
Starts readout

Sets LDT

Storage

MBS

network

trig bus VME

trig bus

Figure 5.5: Readout communication process through the MBS - The master
TRIVA module receives the master start and the encoded trigger from the
TRLO and distributes it to the other slave triggers. These modules then give
the RIOs processors the word to start the readout program and start the total
DT. The processors while reading out set a local DT that is sent back to the
TRIVA to keep the total DT. The readout data is then sent to the Event Builder

and to the data storage.

Table 5.3 contains all the RIO processors used for the 2010 campaign and to

which systems are they connected/responsible.

4In this case one of the CES (Creative Electronic Systems), the so-called RIO processors.
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RIO processor System
R3-14 master
R3-15 PDC
R3-52 Siderem
R2F-6 Fastbus 1
R2-17 Fastbus 2
R4-11 CB left
R4-12 CB right

Table 5.3: List of RIO processors used in the 2010 campaign
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Beam triggers

Outputs
Inputs

Aux4 Aux3 Aux2 Aux1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 Good Beam
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 Fragment
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

3 CB OR
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

4 CB SUM
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

5 Proton
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

6 GB - pile up
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 PIX
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

8 Neutron
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

Table 5.4: Logic matrix file - The different anticoincidences and coincidences combinations of inputs give origin to different on spill
LMU outputs. The anticoincidences are set in the first row and the coincidences in the second. The inputs can be decoded from

Table 5.1. This table was used in the 2010 campaign with TRLO II. LMU matrices files are similar between TRLOs.
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Off spill and calibration triggers

Outputs
Inputs

Aux4 Aux3 Aux2 Aux1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

9 CB muon
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 Land Cosmic
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

11 TFW Cosmic
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

12 CB Gamma
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

13 DTF Cosmic
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

14 NTF Cosmic
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 CB L+R-muon
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.5: Logic matrix file - Anticoincidences and coincidences combinations of the LMU inputs that generate the off spill and
calibration triggers. The inputs can be decoded from Table 5.1. This table was used in the 2010 campaign. The tables between TRLO

I and TRLO II did not change in a significant manner.



Chapter 6

TRLO II - VULOM

The VULOM (VME Universal LOgic Module) is a programmable module de-

veloped by J. Hoffmann, from the Electronics Department at GSI. The VULOM

is a FPGA-based (Field-programmable Gate Array) electronic logic module. Its

aim is to provide a versatile module to various logic applications.

As previously described,the trigger logic of the LAND setup is composed of

several modules and include the Logic Matrix, the Trigger Box and the Priority

Encoder. All these occupy a large amount of space: 3 NIM crates, part of a

CAMAC crate and also part of a NIM crate.

The functionalities of the module have provided a reliable, efficient and con-

densed process of trigger decision. Furthermore, the VULOM could just work as a

Delay, Stretcher, Logic Gate, Pulse generator or a Scaler module (among others).

FPGA

The main feature of the VULOM module is its FPGA, a Xilinx Virtex-4 model

xc4vl25 [12].

A FPGA is a semiconductor device featuring an user programmable integrated

circuit. Comparing it with the ASICs (Application Specific Integrated Circuits),

33
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the FPGA is not limited to a determined, unchangeable hardware function. A

FPGA can be reprogrammable.

In such a device one can find a large number of individual configurable logic

blocks (CLBs), large programmable interconnection structures with in and out

blocks that allow the connection of the FPGA to the outside. Each CLB provides

several logic function generators or look up tables (LUTs), arithmetic gates and

memory elements1 like simple flip-flops or even blocks of memory.

Using a Hardware Descriptive Language (HDL), such as VHDL2 or Verilog, one

can program and reprogram a FPGA, correcting mistakes or improving it. After

writing the program, using a proper compiler to synthesize the HDL program,

one obtains a file which contains the overall mapping of the FPGA. It is the

compiler that optimizes the layout, connection and routing of the necessary CLB

constituents.

The TRLO VULOM FPGA VHDL code was first developed by Jochen Frue-

hauf and later improved and customized to the LAND setup by H̊akan Johansson.

6.1 Code structure

The VHDL code for the VULOM FPGA has one main structural block that

embraces together all the main organs of the VULOM, named vlogic. In the

vlogic one can find four blocks. Two with definitions and specifications for the

necessary clocks and VME connections, one for the display on the front panel and

finally one with all TRLO functions. The latter is the most significant, once it

contains the VULOM’s tasks code, called ulogic.

The ulogic contains the path taken by the input signals to the generation

of a master start (fast path), a state machine that controls the trigger process

and communicates with the TRIVA module, the tracer responsible for the trigger

1a LUT can also work as one
2very high speed integrated circuit HDL
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alignment, the front panel LED control and other functions such as delays, pulsers,

scalers, downscales and stretchers. Fig. 6.1 is a scheme of the code structure.

VME

vlogic

Clocks

Display

Fast_path

State machine

Logic Matrix

Dead time

Reduction

Priority Encoder

Master start generation

Operation functions (ulogic)

Tracer

LEDs control

Figure 6.1: Code main structure. The VULOM code is divided in four main
sections. One responsible for controlling the clocks, another for the VME infor-
mation transfer/communication, one for the display and finally one containing

the trigger logic and all other operation functions.

Comparing to the previous description of the trigger logic, the fast path in-

cludes the Logic Matrix unit, the Trigger Box and the generation of the master

start, as its main tasks. The state machine includes the Priority Encoder, the

inclusion of pending and pulse triggers and the communication with the TRIVA

module.

In addition, the VULOM FPGA is clock based, i.e. the timing is in respect to

its internal clock, with a 100 MHz frequency. All TRLO operations are conditioned
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by this 10 ns-period MHz clock. This leads to a 10 ns jitter in the sampling of all

input signals.

6.2 Trigger Logic II -

Fast path and state machine

The fast path and the state machine are the core of the new trigger logic. Each

one with its own tasks, but interdependent.

6.2.1 Fast path

The fast path is responsible to receive the signal inputs from the trigger logic

and to perform the necessary operations to generate a master start signal and a

trigger pattern (tpat). This section explains the operations performed to accom-

plish it.

The path taken by the input signals and the operations performed in the fast

path, is shown in Fig. 6.2.

The input trigger logic signals go directly to the fast path. They continue, sim-

ilar to all VULOM’s input signals, through a so-called Anti-metastable, Fig. 6.3.

In general the output of a flip-flop may oscillate if sampled when the input signal is

switched. In order to reduce this effect, the anti-metastable stabilizes the signals

before entering the trigger system. In the anti-metastable, signals are splitted,

being delivered to a flip flop and an AND gate. The flip flop keeps the signal

and releases it at the falling edge of the FPGA clock. The signal is then also

introduced in the AND gate. If by any chance both AND inputs are not present

simultaneously, the AND gate will not have an output. With this, we can also

make sure that no noise is entering the system.
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SCALER

ECL 
INPUTS

ANTI
METASTABLE

DELAY

STRETCHER

LMU

DEAD TIME
VETO

LEADING EDGE

LEADING EDGESCALER

LEADING EDGE

SCALER

register input

ON/OFF
CHANNEL

REDUCTION

OR

SUM OUT

STRETCHER

SCALER

Tracer

arm

master start

inhibit

trigger pattern after reduction

after lmu or
lmu out

Figure 6.2: Fast path scheme. The fast path receives the ECL inputs of the
trigger logic and performs the necessary operations to produce a master start
and a trigger bit pattern. The fast path includes the logic matrix unit, the dead

time veto, channel ON/OFF as well as the reduction operations.

AND

clk clk
falling edge rising edge

OutputInput
flop
Flip

Figure 6.3: Anti-metastable. All VULOM’s inputs go through this device.
This device prevents signal oscillation at the output of a flip flop, when the

inputs signals are switched.

After the anti-metastable, the signal may be delayed. One can actually set a

delay mode which includes several options (see Appendix C.2):
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• no delay - Signals go straight from the Anti-metastable to the stretcher

• one delay - Signals are delayed by one clock cycle

• delay register - The delay of the signals is user defined

The delay can be made by writing the correct value in an appropriate register

for each input channel. This delay register is set in clock cycle units, i.e, in 10 ns

steps. The delay is made setting an array, whose length is the register value input.

At every clock signal the channel pulse will be shifted one value closer to the

stipulated delay length value, until it is set as output. This procedure is sketched

in Fig. 6.4.

−1 0 1input

clock rising edge

 N output

Figure 6.4: Delay implementation. The delay line is implemented as an array
with an adjustable length in clock cycles steps (10 ns).

The possibility of having delays performed inside the FPGA can save several

meters of cable, make them easy to control and more dynamically adjustable.

Signals may not have a reasonable width to be compared with each other. In

this case a stretcher is used just after the delay to make them longer (or shorter).

A register sets the length of the output pulse in clock cycles steps. For technical

reasons, the minimum length of a signal going through a stretcher is set to two

clock cycles. If we set the stretcher setup register to n, then the length of the

output signal will be n+2 clock cycles.

After the stretcher the pulse enter the Logic Matrix Unit.

6.2.1.1 Logic Matrix Unit

The LMU compares the inputs, in Table 5.1, with a register where the user-

requested coincidences and anticoincidences are defined. As previously mentioned,
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Inputs Anti Coinc Inputs AND Anti AND Coinc OR Register XOR

0
0

0 1 0 0 0 1 1

1 1 0 1 1 1 0

1 0 1 0 0 0 1 1

1
0

0 0 0 0 0 1 1

1 0 0 0 0 1 1

1 0 0 1 0 1 1 0

Table 6.1: Logic matrix table of truth

in the register matrix, 01 is defined as a coincidence, 10 as an anticoincidence and

00 as do not care. The inputs are compared through two different coincidence

gates: the first column for the anticoincidences and, after passing through an

inverter with the second column for the coincidences. The AND gate outputs enter

into an OR gate and is followed by a XOR gate together with another register.

This last register is set to 1, allowing the possibly to disable certain channels. The

electronic scheme for this operation is shown in Fig. 6.5 and the correspondent

table of truth in Table 6.1.

REGISTER

OUTPUT

COINCIDENCE
COLUMN

ANTICOINCIDENCE

AND

OR
XOR

INVERTER
AND

REGISTER

REGISTERCOLUMN

INPUT

Figure 6.5: Logic matrix electronic scheme for one channel

The output of the LMU is a trigger pattern that contains the outputs shown

in Tables 5.4 and 5.5.

After the LMU, the Dead Time blocking is applied with a simple NAND gate.

The signals from the LMU will not pass if the inhibit generated at the state

machine is present, this inhibit is ’1’ as soon as deadtime is set.
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If a signal comes through this point, it will generate a master start, as there is

nothing else to prevent it.

Next, a reduction can be performed. The Reduction is implemented via a

register array that contains the reduction factors (2 based exponential).

There can be several pulses at the output of the LMU, but only one signal

is supposed to be generated per accepted trigger (master start). In order to en-

sure this, the output trigger pattern after the reduction is sent to an OR gate.

Additionally, it is also sent to the trigger state machine.

The arm signal confirms that the state machine is ready to accept a trigger

pattern and allows the signals to arrive to the final stretcher that generates the

master start.

Scalers

To keep control on what is happening in the fast path and the influence of the

several blocks, we need to count the signals. To do so, we require a digital leading

edge and a scaler.

A digital leading edge is simply a circuit in which an output is produce as soon

a change in the input is registered, from a digital 0 to 1. This will produce equal

outputs relative to each other and will avoid that the scaler counts the lengths of

the signals.

In the scaler, the counter is increased as soon as a pulse from the leading edge

arrives. It is also possible to reset it using a reset signal.

In the fast path there are several scalers:

• Input scaler

• After LMU scaler

• After dead time scaler
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• After reduction scaler

6.2.1.2 Fast path timing

The VULOM FPGA is clock based, this means that any input-to-output time

measurement will be affected by a 10 ns jitter, depending at what time of the

internal clock the signal arrives.

PULSER MUX OUTPUT SCOPE

LMU MASTER START MUX

OUTPUT SCOPE

Figure 6.6: Fast path time measurement setup scheme

We could observe using an oscilloscope that it takes 45 to 55 ns to generate

a master start. The fast path consumes 2 clock cycles, one from the fast path

inputs to the LMU’s output and another until the master start generation. The

minimum time required for the signals to propagate from the FPGA pins (in and

out pins) to the front panel of the VULOM is 17 to 18 ns, and the anti-metastable

requires 5 ns.

The time obtained for the fast path in TRLO II is then very similar to the one

obtained in TRLO I as it was measured to be 45 ns

6.2.2 State machine

A state machine is a ”behavioral” model of a system in which the system’s

evolution is based on a transition of states. The VULOM’s state machine receives

the trigger pattern after reduction and leads the signals to the priority encoder,

generates the inhibit introduced in the fast path, and handles the readout dead
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time from the TRIVA. It also generates the arm signal that validates the master

start.

PENDING/PULSE TRIGGER
TS=15

END WINDOW
TS=4

TRIGGER SELECTION
TS=7

PRIORITY ENCODER
TS=8

START SEND TRIGGER
TS=9

SEND TRIGGER
TS=10

BUSY START
TS=11

BUSY
TS=12

WAIT TRIVA
TS=13

TRIVA DONE
TS=14

PULSE SELECTION
TS=18

START WINDOW
TS=2

WINDOW
TS=3

IDLE
TS=1

trigger pattern after reduction   R=1

trig pat after red
R=8

pending trigger    R=2
or

pulse trigger    R=3

check register

R=4
dead time from TRIVA

dead time from TRIVA

R=5Busy
and LMU

pending trigger
R=7

dead time from TRIVA

busy

set internal dead time

TS − Trigger State

R − Reason

R=6

LMU clear and set arm

check register

check register

check registerreset  latches
set arm    R=0

Figure 6.7: State machine scheme - Each state corresponds to the state ma-
chine at one clock cycle. The Reason (R) is the path taken to be in a certain
stage and the Trigger State (TS) the state number. Both appear in the display.

Looking at the trigger state scheme, Fig. 6.7, one can start at state IDLE. The

trigger state can receive several inputs:

• Trigger pattern after reduction

This input comes from the fast path and it is a result of detector triggers.

• Pending and pulse triggers

The pending trigger is a request to generate a certain trigger. Is stays pen-

dent until it is accepted by the Priority Encoder. This input is used for time

calibrator and clock signals.

The pulse trigger is a pulse that will only be accepted if the state machine

is on IDLE, it will not wait until is accepted.

• Busy
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This input is active in case some modules send a signal reporting that they

are occupied with something.

• Dead time

The Dead time received by the state machine is received from the TRIVA

module.

Depending on the input the next state is different, see in more detail in Fig. 6.8.

IDLE

? busy

?
dead 
time

trigger
pattern? START

WINDOW
WAIT
TRIVA

TRIVA
DONE

PENDING/PULSE
TRIGGER

pending
trigger?

trigger? pulse

pending

trigger
pulse?

SELECTION
PULSE

TRIGGER
SELECTION

YES YES

YES YES

NONO

NO NO

Figure 6.8: State machine input scheme - The state machine can receive
several inputs when in IDLE state and depending from them the next state is

different.

For now, looking at Fig. 6.7, let us follow the trigger received from the fast

path, the detector triggers path.

In case these are present, the next state will be START WINDOW, followed

by WINDOW. At this stage one can adjust for how long the WINDOW will be

open to receive the trigger pattern from the fast path. This is done with a counter

started from a register and until the number of clock cycles set in the register is

past, the state will not come to the END WINDOW. At this state the internal

dead time is, for the first time set, and will be on until the IDLE state is reached

again (red boxes in Fig. 6.7).
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In the next clock cycle, state TRIGGER SELECTION, the trigger that came

through, is stored (latched) to be sent to the PRIORITY ENCODER. It is also

determined which read-out trigger is associated with the accepted (tpat) trigger,

i.e. if the trigger we are taking is a pending or a trigger pattern after reduction.

The PRIORITY ENCODER will finally decide which read-out trigger is ac-

cepted, the ”winning” one. At the end it will not only give the exact accepted

trigger but will also give an encoded trigger, the binary number of the winning

trigger, that lead to a 4 bit signal output. This is delivered to the TRIVA module.

While on START SENDING TRIGGER and SEND TRIGGER, the VULOM

generates pulses on its trigger outputs. The accepted trigger and encoded are sent

to the TRIVA module .

At this moment, a trigger was accepted and the internal dead time was set

for quite some time. However the TRIVA module may require some time to set

its own dead time, so a BUSY state is introduced to take that into account. The

state permits a register to control (in steps of clock cycles) how long should it wait

until the next state.

The next state, TRIVA WAIT, as the name suggests, waits for the TRIVA to

turn off the dead time. The state machine will also be on TRIVA WAIT whenever

the dead time from TRIVA is set and no trigger has come through.

Only when the TRIVA releases the dead time, the state machine can go to

the TRIVA DONE. Here in case the LMU OR signal from the fast path is off, we

will advance to the IDLE state. This is to guarantee that there will be no trigger

patterns cut in half, the system will always receive a complete pattern. Incomplete

trigger patterns produce invalid data for the analysis. The transition to the IDLE

state from the TRIVA DONE will also provide an arm signal, necessary in the

fast path to generate the master start. This is to prevent the generation of several

master starts for the same trigger. In this transition, all latched triggers (trigger

from fast path, encoded, accepted...) are reset, in order to store the next trigger

to come.
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Looking the the other input possibilities at the IDLE mode, the pending and

pulse triggers. In case they are present, the next state is PENDING/PULSE

TRIGGER. Then, if no detector trigger has been received, PULSE SELECTION,

similar to TRIGGER SELECTION is reached. In this stage, it will be stored the

pending or pulse trigger that lead to PULSE SELECTION. This trigger is stored

to be used used in the PRIORITY ENCODER. From the PE the state machine

continues as described above.

Also from the IDLE mode one can go to the TRIVA DONE state in case a

busy signal has appeared and this state will be kept until it is off. Even if some

modules are busy, the possibility to treat pending triggers is given.

Both fast path and the state machine interact with each other, Fig. 6.9 shows

the signals traded between these two structures.

INPUTS

INHIBIT

ARM 

VULOM
FRONT
PANNEL

ecl

LMU OR

Trigger pattern 
after reduction

MASTER START

SCALERS

STATE MACHINE

lemo

PENDING/PULSE TRIG

Trigger pattern 
after reduction

LMU OR ACCEPT TRIGGER

ENCODED TRIGGER

ARM

DEAD TIME

Dead time
from TRIVA

BUSY

ecl

FAST PATH

TRIGGER LOGICS

Figure 6.9: Fast path and state machine interdependencies. Some signals
from the fast path are delivered to the state machine as the trigger pattern
after reduction. The opposite also occurs, for example with the arm signal.
One can also see that the master start is delivered to the LEMO output of the

module.

The fast path and the state machine trade some signals between each other, as

e.g., of the LMU OR. The LMU OR signal is used in the state machine to avoid

partial trigger patterns. This signal allows the state machine to go to IDLE state

where it can receive another trigger pattern or pulse. In IDLE, another signal is

traded between the two structures, the trigger pattern after reduction.
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From the state machine to the fast path one can find the arm signal. This as

this signal is generated when the state machine is ready (on IDLE) and will allow

the fast path to produce a master start. Also in this direction is the dead time

signal that introduces the inhibit in the fast path.

Finally, some output signals from the trigger logic are available at the module

front panel, such is the case of the master start at one LEMO output or the

accepted trigger at an ECL output.

Fig. 6.10, shows the time dependencies between signals in the fast path and

state machine.

Considering that the system starts with some inputs, the output of the LMU

is active, as well as the LMU OR. These outputs are two clock cycles long as the

anti-metastable that acts over all inputs imposes such. While the inputs are active

the inhibit is also active as the the state machine is in TRIVA DONE (14), waiting

for the LMU output to be clear and the absence of dead time. As soon as these

requirements are overcome, the state machine goes into IDLE (1) and the signals

in the fast path are no longer blocked by the inhibit veto. Also when the state

machine goes to IDLE the arm signal is delivered to the fast path, allowing in the

next clock cycle the generation of a master start. In this next clock cycle, the

signals pass the dead time veto, go through the reduction and finally generate a

master start. All these signals are a clock cycle long, due to the effect of a leading

edge after the LMU.

After the generation of the trigger pattern after reduction and as the state

machine is on IDLE state, this allows it to receive the pattern and advance to the

START WINDOW (2) state, followed by the WINDOW (3), END WINDOW (4)

and TRIGGER SELECTION (5) states and the others stated in Fig. 6.7.

A new trigger will only be accepted when again the state machine is on TRIVA

DONE and the LMU output is not active.
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Figure 6.10: Time diagram revealing signals at the different stages of fast
path and state machine in consecutive clock cycles, due to a LMU input.

6.3 Tracer

The tracer is a tool that can be used for trigger alignment. It will provide the

timing of the trigger inputs relative to each other, i.e, it is a softscope. The tracer

will trace the values that get through the fast path stretcher and LE, shown in

Fig. 6.2. It is used to correctly set the delay line present in the fast path. The

tracer is started by a VME pulse, and can also be stopped or cleared by another.

The tracer stores data continuously into a circular buffer. The information

stored in this ring buffer consists of time information (time stamps) and the trigger

pattern.

When a tracing request is detected that information is fetched and stored into

another memory buffer which can then be transfered via VME bus. The tracer was

built such that the number of VME transfers is reduced, as it is time consuming.
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The memory buffer will not only contain the time stamp and the bit pattern but

also a counter and a checksum.

Fig. 6.11 is a scheme of the state machine of the tracer.
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Figure 6.11: Tracer state machine. It is the softscope of the VULOM, its
permits to find the relative trigger inputs arrival times to then align them cor-

rectly.

Before the request, the tracer is on IDLE mode and advances to the START

state upon receiving it. In this state in case there is not enough space to write

in the buffer for this request, it returns to IDLE, otherwise it goes to INITIATE

FILL. Also in the START mode a control counter is reset. This counter is used

to keep track of the available space. The effect of this reset is checked in the

INITIATE FILL, only if it took effect the machine will progress to another state,

ACTIVE. In this state one checks which inputs came through the LE at the fast

path, if there was any input change. The signal produced from this check results

in an enable signal for this state to go to the next, COINCIDENCE.
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In the COINCIDENCE state, it starts writing on the compact buffer with

the assignment of the timestamp. After a clock cycle, the state machine is on

COMPACTING FIRST where the counter and the bit pattern are introduced in

the buffer. The same happens in the following state. The COMPACTING state

also counts for the possibility of a pattern change in the meanwhile. In this case

the checksum will be updated. The checksum is used to distinguish the different

pieces of data. This is done using the fact that the time stamp is only zero for the

first pattern. The COMPACTING state will only be left if the control counter is

now full.

The COMPACTED state is responsible for writing the checksum in the memory

buffer. This state is up for a clock cycle and is followed by the START state.

Until a clear request signal is seen the writing and reading addresses are con-

tinuously updated. The clear will happen every n user defined cycles (up to 255).

When the user controlled clear arrives, the tracer goes to IDLE state and the

addresses are reseted. It will only be restarted by another VME start request.



Chapter 6. TRLO II - VULOM 50

6.4 The module front panel
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Figure 6.12: Module
front panel, as configured
for the LAND setup, [12].

The VULOM receives the signals from
the constant fraction discriminators and
the deadtime from the TRIVA module
or other external module. It delivers a
master start and a trigger bit pattern.
These are the four main inputs and out-
puts from the VULOM. These signals are
transmitted via the front panel of the
VULOM [12].

In the front panel of the module, Fig.6.12,
there are 16 ECL and 2 LEMO inputs
and as many outputs. 16 ECL in/out-
puts are also available, these are split,
half used as inputs and the other half as
outputs. So in total there are 24 ECL
inputs and 24 outputs [12].

The module is also able to communicate
with the user by its display and several
LEDs (light emitting diodes). Both pro-
grammable in the FPGA.

6.4.1 Display

The VULOM display in the top part of
the front panel allows one to keep an eye
on what is going on on the VULOM.

Notice that the display will show what is happening for a given moment, i.e, in

order to be able to visualize some of the characters in the display, these must be

kept for a while, while others may be present for a long time themselves. In fact,

it is impossible to fully describe what is happening. Apart from this, the display

is a valuable source to reveal where and how the system stopped, as it will show

the last information.

Fig. 6.13 presents the different components of the VULOM display.
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With the display one can see which signals are arriving at the Logic Matrix

input and output, the first on the left and the other on the right side of the display.
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Figure 6.13: VULOM module display

These are visible as 2 dot long signals blinking. Also on the right side of the

display, in vertical, one can find the trigger pattern obtain after reduction.

In case the system is on deadtime a ’D’ will appear on the top of the display.

If it is deadtime from TRIVA it will be a capital letter. In case of a VULOM

generated deadtime one will see a ’d’, else there will be a dot. The following place

is for the busy, if there is a busy signal on, the options are the same: ’B’, ’b’ and

a dot. Next on the same line, there is the least significant bit out of the logic

matrix output. This is a ”must have” in the display, because if the LMU output

is constantly on, the trigger state will not be able to leave TRIVA DONE. Next

there is an ’I’ if the inhibit is present, this will always happen if the deadtime is

on. In both cases of none is present there will be a dot in place.

On the second line of the display, to the right bellow the inhibit, is shown

the state of the trigger state machine. Left to it one will see which path lead to

that state (REASON). For more information about the TRIGGER STATE and

REASON see Fig. 6.7.

The display offers also the possibility to check for the encoded and accepted

trigger, i.e after the priority encoder. The latter divided in two columns and in

the form of dots. The encoded trigger is the one sent to the TRIVA module.

Finally, the address of the module, set with a rotary-switch on its board, is

seen in the lowest part of the right side of the display.
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NUMBER STATE

1 IDLE
2 START WINDOW
3 WINDOW
4 END WINDOW
7 TRIGGER SELECTION
8 PRIORITY ENCODER
9 START SEND TRIGGER
A SEND TRIGGER
B BUSY START
C BUSY
D WAIT TRIVA
E TRIVA DONE
F PENDING/PULSE TRIGGER
I PULSE SELECTION

Table 6.2: State machine states (Trigger states)

NUMBER REASON State transition
1 Trigger pattern from FP (IDLE→START WINDOW)
2 Pending trigger (IDLE→PENDING/PULSE TRIG)
3 Pulse trigger (IDLE→PENDING/PULSE TRIG)
4 Dead time from TRIVA (IDLE→WAIT TRIVA)
5 Busy (IDLE→TRIVA DONE)
6 Dead time from TRIVA (TRIVA DONE→TRIVA WAIT)
7 Pending trigger (TRIVA DONE→PULSE SELECTION)
8 Trigger pattern from FP (PEND/PULSE TRIG→START WINDOW)

Table 6.3: Inputs/options that lead to the different states of the state machine
(Reason). (FP - fast path)

6.4.2 LEDs

From top to bottom on Fig. 6.12 one can find six LEDs. For the LAND setup,

their output corresponds to several signals:
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LED Signal

1 Logic matrix output
2 Spill On
3 Dead time
4 Trigger 2
5 Trigger 4
6 Master start

Table 6.4: Signals in the VULOM’s front panel LEDs
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VULOM control and settings

The VULOM code offers the possibility of setting some parameters such as

delays and stretchers, to address the inputs and outputs, among others options,

making the VULOM a more powerful and resourceful tool. All the possible settings

are in C.2.

Here is a brief description of the VULOM’s setup and output registers.

7.1 Multiplexers

In order to make signals available to other blocks, they need to be assigned to

a ”place” where they can be fetched. All VULOM’s inputs and outputs can be

found in multiplexers. this allows one to assign a source, for example a pulser, to

a destination. This is done via multiplexing.

The sources are the pulsers, logic functions and the VULOM’s inputs. The

destinations are the VULOM’s outputs, scalers, latches, among others.

For example, a pulser signal with a period of 10 clock cycles is assigned to a

delay gate.

54
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trlo->setup.period[0] = 10;

trlo->setup.mux[TRLO_MUX_DEST_GATE_DELAY(0)] = TRLO_MUX_SRC_PULSER(0);

The complete list of the source and destination multiplexers indices is in Ap-

pendix C.2.1.

Direct mode

Signals can be connected directly from one input to one output or can be

set to go though a logic gate, a multiplexer. To perform this one has to set the

appropriate mode, DIRECT or LOGIC. For example:

hw->setup.direct_mode[TRLO_MUX_DEST_LEMO_OUT(0)] = TRLO_DIRECT_MODE_DIRECT;

trlo->setup.direct_mode[TRLO_MUX_DEST_LEMO_OUT(1)] = TRLO_DIRECT_MODE_LOGIC;

This would mean that whatever is assigned to the lemo output 0 does not go

through a multiplexer, opposite to the output 1.

A question now arises, how much longer does it take to go through a multiplexer

relative to going directly? This timing issues were determined with the aid of a

scope.

OUTPUT SCOPE

INPUT (MUX) OUTPUT

SCOPE

MUXPULSER

Figure 7.1: Direct vs Logic mode, time measurements scheme

Using the above scheme setup, with the multiplexer (MUX) for the Logic mode

and without for the Direct. It was measured that direct from input to output it

takes to the FPGA 23 ns. From the 23 ns, 15 ns are claimed by the compiler just

for signals to go through, in the worst case. This leaves 8 ns left, which is not
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much time for signals propagation from the front panel to the FPGA and also to

take into account the anti-metastable, imposed to every input.

Now via logics (multiplexing) it takes 44 to 54 ns which are also reasonably

explained by the required multiplexer which takes 2 clock cycles to be done and

the extra routing necessary inside the FPGA to reach the multiplexer, in addition

to the previous counts.

7.2 Setups of logic functions

The logic functions include the pulsers, edge-to-gate, the LMU, reduction and

delay and stretch. These functions use certain signals to generate new signals.

The produced signals can be delivered in the destination multiplexer.

In the case of the pulsers, one can be produced with one clock length and a

period in steps of clock cycles. In the next example, the period is set to 5 clock

cycles.

trlo->setup.period[0] = 5;

The VULOM’s pulsers can be used to trigger certain operations, like a scaler

reset or a scaler latch.

trlo->pulse.pulse = TRLO_PULSE_SCALER_RESET;

trlo->pulse.pulse = TRLO_PULSE_SCALER_LATCH;

A pulser, as other signal, can also set a edge-to-gate function, one can use a

pulse to start the gate and another to stop it. There will be an output between

the start and the stop. To use this function, 2 signals must be delivered to the

next destination multiplexers:

TRLO_MUX_DEST_EDGE_GATE_START(i)

TRLO_MUX_DEST_EDGE_GATE_STOP(i)
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The output will be delivered in TRLO MUX SRC EDGE GATE(i).

The LMU registers include the registers for the coincidence and anticoinci-

dences and also the lmu not[] register.

The reduction setups consist in the factor of reduction to be performed, downscale[].

The delay and stretch can be set in steps of clock cycles in delay[i] and

stretch[i] registers. This setup can be done like, for example, trlo->setup.delay[0]

= 0;. One can also set the restart mode of the stretcher:

TRLO_RESTART_MODE_WHEN_PRESENT

TRLO_RESTART_MODE_LEADING_EDGE

TRLO_RESTART_MODE_TRAILING_EDGE

TRLO_RESTART_MODE_LEAD_IF_INACT

This determines when should the stretcher start, whenever it is present, at the

leading or trailing edge of a pulse or at the leading edge if the stretcher output is

not set.

7.3 Scalers

The scalers output can be found in scaler[i], and this is a 32-bit value. The

scalers can count in different modes, i.e. number of leading edges seen, the total

length of pulses in clock cycles, and a scaler value can be latch when it sees a

leading edge or a trailing edge. All the options are in Appendix C.2.3.

A latch is used to ’save’ a determined signal or value. It is necessary to do it if

one wants to read the values or use them in other clock cycle. The values can be

kept whenever there is a variation in the clock signal. This means at the leading

edge or falling/trailing edge.

trlo->setup.latch_mode[0] = TRLO_LATCH_MODE_LEADING_EDGE;

trlo->setup.latch_mode[1] = TRLO_LATCH_MODE_TRAILING_EDGE;
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Registers
trig stretch[i] Stretched signal length, in steps of clock cycles
restart mode[i] Stretcher restart mode
trig delay[i] Delay value, in steps of clock cycles
trig delay mode[i] Delay mode, can be ZERO, ONE or DELAY LINE
trig lmu[j] LMU coincidence and anticoincidence 2-bit register
trig lmu aux[j] Similar to trig lmu[j] but for auxiliary inputs
trig lmu not LMU negation register
trig red[j] Reduction factors register
sum out stretch Master start length

Outputs
sca before lmu[i] Pulses before the LMU
sca before deadtime[j] Pulses after the LMU / before deadtime veto
sca after deadtime[j] Pulses after deadtime veto
sca after reduction[j] Pulses after reduction

Table 7.1: Fast path registers and outputs.

7.4 Fast path settings and outputs

In the fast path one can find some setup registers and options that are re-

quested. Table 7.1 presents the fast path registers and outputs(scalers).

7.5 State machine settings

Table 7.2 presents the state machine signals, registers and outputs.
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Input signals
trig pending(i) Connected to a pulser sets pending trigger(i)
trig pulse(i) Connected to a pulser generates a trigger
deadtime in(i) Dead-time input
busy in Busy-in input

Output signals
accept trig(i) Accepted trigger
encode trig(i) Signal with the encoded accepted trigger
deadtime Total dead time

Registers
tpat trig[i] Relate trigger and tpat
max multi trig Maximum number of events not producing a trigger
multi trigger Produced trigger when max multi triggers is reached
accept window len Length of the coincidence acceptance window
fast busy len Length of the internal dead-time

Output registers
trig tpat cnt Trigger pattern sent to the state machine
trig count Event counter
trig status state Trigger state
lmu out Active LMU outputs
pending Triggers still pending (bit-mask)

Table 7.2: State machine signals, registers and outputs options.

7.6 MBS settings

The VULOMs implementation in the LAND DAQ has to take into account the

current data acquisition software used at GSI, the Multi Branch System (MBS).

It requires access to a user setup file, that contains details of the hardware crates,

startup and shutdown procedures and an f user.c file. The f user.c file must be

edited to select the hardware addresses where the data is to be read out, the

settings and what is to be read out. The inclusion of the VULOM4 (TRLO II) in

the DAQ system also means the inclusion in the user defined functions of MBS.

This involved the configuration of all the inputs and outputs, such as dead

time from TRIVA, master start, encoded trigger, BOS and EOS and also setting

the logic matrix configurations among other things.

The next lines include the major parts of the f user related to VULOM.
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To start, all VULOMs setups were wired to zero to avoid noise complications.

for (i = 0; i < sizeof(trlo->setup.mux)/sizeof(uint32_t); i++)

*(p++) = TRLO_MUX_SRC_WIRED_ZERO;

for ( ; i < sizeof(trlo->setup)/sizeof(uint32_t); i++)

*(p++) = 0;

It is necessary to address correctly all output signals, such as dead time from

TRIVA, encoded and accepted triggers. The master start was assigned to the

LEMO output 0 and the dead time to the ECL outputs.

trlo->setup.mux[TRLO_MUX_DEST_DEADTIME_IN(0)] =

TRLO_MUX_SRC_ECL_IO_IN(3);

for (i = 0; i < 4; i++)

trlo->setup.mux[TRLO_MUX_DEST_ECL_IO_OUT(i)] =

TRLO_MUX_SRC_ENCODED_TRIG(i);

trlo->setup.sum_out_mask = 1 << TRLO_MUX_DEST_LEMO_OUT(0);

trlo->setup.mux[TRLO_MUX_DEST_ECL_OUT(15)] = TRLO_MUX_SRC_DEADTIME;

The End of Spill and Beginning of Spill is delivered in the LEMO inputs 0 and

1 of the front panel.

trlo->setup.mux[TRLO_MUX_DEST_EDGE_GATE_START(0)] =

TRLO_MUX_SRC_LEMO_IN(0);

trlo->setup.mux[TRLO_MUX_DEST_EDGE_GATE_STOP(0)] =

TRLO_MUX_SRC_LEMO_IN(1);

The TCAL and Clock, now code generated, have different prime periods1 to

mismatch the clocks. Note the difference in the TCAL for offspill and inspill, this

1in 10 ns steps
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is to cause less dead time during a physics run where good physics events are most

likely to come.

trlo->setup.period[0] = 2097593; // TCAL offspill f = 47.67Hz

trlo->setup.period[1] = 10619863; // TCAL inspill f = 9.41Hz

trlo->setup.period[2] = 39916801; // CLOCK f = 2.50Hz
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Dead time measurement

As the number of systems increases it becomes more important to keep the

local dead time (LDT) of each system under control. This guarantees a good

performance of the global system, i.e., no system is holding the DT more than it

should.

The overall goal of the task described in this chapter is to measure the local

dead time of the individual systems and identify the process that is causing it.

In order to check which system is responsible for the total DT, one could

just use a oscilloscope and walk around the experimental cave. However this

is quite troublesome. Another option is to do it on a software basis, i.e., the

processors could time stamp certain operations during the readout process,allowing

the measurement of all nodes at once.

The internal clocks of the processors used can achieve a µs resolution, which

is the resolution intended for this measurement. The time can be obtained from

the UNIX function gettimeofday()1 . This function consumes 2 µs machine time

which is a reasonable value. This would also be protected with an if statement,

in order to only make a measurement when requested and affect the processor

1The gettimeofday() function obtains the current time, expressed as seconds and microsec-
onds since the Epoch. The Unix Epoch is the time 00:00:00 UTC (Coordinated Universal Time)
on January, 1st 1970

62
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operation as little as possible when there is no measurement (less then 1 µ s). One

must not forget that this measurement will interfere with taking data.

However, making measurements on different processors demands that the clocks

are synchronized, otherwise the times measured are meaningless.

8.1 Clock synchronization

Clock synchronization is used, for example, to time events produced by con-

current processes and to synchronize messages between senders and receivers.

A CPU usually uses an oscillator crystal (quartz) and its frequency determines

the clock of the CPU. From this main clock one can identify two types of timers:

logical and physical. While the first relates and orders events, the second is used

to keep the time of day. For our measurement the later is the one of interest, as

we will compare the actual time measured in the processor [13].

But we still face a problem: physical clocks drift, i.e., quartz oscillators oscillate

at slightly different frequencies which makes almost impossible two systems to

agree in time. The frequency of the CPU oscillator may drift a 100 ppm2 and this

corresponds to a 8.6 s drift/day, or 358 ms/h. The frequency may also drift, but

is only relevant for precision oscillators.

The drift can be positive or negative and classifies the clocks as fast or slow,

see Fig. 8.1.

The drift will translate in a time offset. This time offset at time t, T (t), is

given by

T (t) = T (t+ t0) +R(t0)(t + t0) +
1

2
D(t0)(t + t0)

2 + error

2It is sometimes convenient to express frequency offsets in parts-per-million (PPM), where 1
PPM is equal to 1e−6 s/s.
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Figure 8.1: Slow and fast clocks. The classification is determined depending
on the behaviour when compared to the UTC time.

where T (t0) is the offset at t = t0, R(t0) the frequency offset and D(T0) the ageing

rate, i.e., the frequency drift [14].

To correct the offset the slope of the system’s time can be adjusted directly

or using a linear compensating function [13, 15]. This correction is then updated

periodically, a schematic example for a fast clock is shown in Fig. 8.2.
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Figure 8.2: Fast clock linear compensation scheme.

To perform this operation the CPU can synchronize with a more accurate clock,

a time server. The time server provides the time such that the client can perform
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the direct correction or the compensation. This server access is done periodically

in order to update the clocks.

The first approach of this method contains only 2 steps: the client asks the

server the time, the server provides the answer and then the client updates the

clock. This method has 2 problems: it does not account for the process latency

and the network time required.

The Cristian algorithm [13, 16] offers another approach for time synchroniza-

tion. It time stamps the request to the server and the reply received in the client,

as it shown Fig. 8.3.

The estimated correct time assumes that the network delays are symmetric

and has the form: Tcorr = Tserver +
T1−T0

2
.

Server

Client
T0

T1

Tserver

Figure 8.3: Clock synchronization - Cristian’s algorithm.

The later assumption leads to a big error margin because the delay may be

asymmetric.

Another option is the Berkeley algorithm [16]. This algorithm differs from

the previous by considering a certain number of clients related to a master. The

master estimates the correct time by fetching and performing the average of all

CPU times that are taken into account. It can exclude any information that is

too far from the average. Based on the average value, the master sends to every

client the offset. This offset is then introduced in the compensation function that

is applied to the system.

Finally, the NTP (Network Time Protocol) [14, 16] offers a good solution to

clock synchronization. In this protocol, the CPU clock is corrected such that

minimizes the time difference and the frequency difference to the UTC time base.
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This protocol operates with a hierarchy of levels, named stratums, like is shown in

Fig. 8.4. The lowest stratum, stratum 0, includes devices such as atomic clocks.

Stratum 1 is directly synchronized to the accurate sources of stratum 0. The next

level, 2, is synchronized to stratum 1 and the next levels follow the same concept:

stratum n is synchronized to level n− 1.

Stratum 0

Stratum 1

Stratum 2

Stratum 3

accurate 
clock

accurate 
clock

accurate 
clock

CPU CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU

Figure 8.4: Clock synchronization with Network Time Protocol

The clock synchronization is done in pairs, i.e., the NTP determines the offset

between 2 clocks. In order to do so, each remote server includes a pool process that

sends NTP packets. These packets are received by a peer process that collects 4

time stamps: T1 (time when the client request is sent), T2 (time when the server

received request), T3 (time when the server sent reply) and T4 (time when the

client received reply). These time stamps are used to calculate the clock offset,

offset = (T2 − T1 + T3 − T4)/2 and the network delay, delay = (T4 − T1)− (T3 −

T2). These go through certain algorithms that deliver to the client the necessary

information to align the offsets and correct the frequency offset.

This is the best solution that one may have for the dead time measurement

synchronization problem and besides that a NTP version is already included in the

LynxOS RIO processors at GSI. However, this NTP process in the RIOs takes in

average 100 µs which interferes with the resolution intended. This must be taken

into account in the measurement.
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The synchronization within the LAND DAQ should be made relative to one

processor. For our case the one present in the master module holding the trigger

logics is the most reasonable choice.

8.2 Measurements

The DT measurement will involve the time stamp of certain tasks present in

the MBS f user readout program, in every RIO processor.

When a master start is generated, its signal is delivered to the TRIVA module

and the TRLO II sets the deadtime, internally in the VULOM. The master start

and the encoded are sent to the TRIVA via the trigger bus to every slave trigger

module. This operation depends on the CVT (Conversion Time). The CVT is the

necessary time still needed for the conversion and digitalization in the hardware

modules (TDCs and QDCs), contributes to the DT and increases in steps of 100 ns

[10]. The CVT starts just after the trigger signal is detected by a trigger module.

After the CVT, the readout process can start within the next 5 to 50 µs. At

this point the LDT is set. The readout process can take up to 100 µs and no less

than 10 µs. When the readout is finished the DT is released. Now depending when

all the systems (master and slaves) release their DT, the global DT is released.

Although the DT has already been released, the processor may be still per-

forming tasks, such as data transfer via VME. This task is usually performed by

the processor during its ”free time”, i.e., while it does not have to readout the

modules. This way it does not affect the DT.

These previous steps are time referenced in Fig. 8.5, the red dots mark the

points of interest for the DT measurement.

All together one needs at least 5 measures: master start generation, enter

readout, release LDT, leave readout and release TDT. For certain systems other

points might also be interesting. The master start and the global DT release can
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Figure 8.5: Dead time limiting steps at the readout process. The points of
interest that have to be measure are shown in red.

be measured with the VULOM, since the VULOM generates the master start and

the DT and it is the last to be under the DT effect. The other measures must be

measured in every system including the master processor.
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8.3 Working plan

With the previous concepts in mind, an overall plan should be outlined to

accomplish the DT measurement project.

The NTP procedure can be used to measure the offset and the frequency offset

of each system, but in an unusual way. The NTP can only provide a 100 µs

resolution and this is far from the 1 µs resolution pretended. However it can be

used to distinguish systems during the offset and frequency offset determination.

One can use the total DT release signal delivered at every system through the

trigger bus to identify the system that holds it the longest, i.e., we deliberately

set a big increment to the DT of a specific system when a specific trigger type is

seen. Using the NTP consecutively we would check the different systems releasing

their LDT and be sure that the incremented system is the only one left, making

it possible to identify it. In this situation when the DT is released, both VULOM

and incremented system store the time measured with gettimeofday() in a text

file. In Fig. 8.6 the incremented system is system number 2.

check
NTP

check
NTP

check
NTP

Syst #1

Syst #2

Syst #3

Syst #4

start
master

100 us

only system causing DT

incremented system

Dead Time

Figure 8.6: NTP application in the DT measurement for 4 systems. System
two has its dead time incremented.

This procedure has to be done 2 times for each system in order to determine

the frequency offset,

freqoffset =
offset2 − offset1

T2 − T1

. Where T2 and T1 is the time elapsed in the reference frame.
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When all the systems are measured twice, the measurement will start, i.e.,

during the regular acquisition the systems will time stamp the points of interest.

This will continue until a stop command is inserted. The time stamps and the

trigger patterns associated to the accepted triggers are saved in a text file. Using

the text files, we finally correct the times measured.

The project

In order to perform the DT measurement certain steps were outlined:

• Implementation of a C code, included in the DAQ to measure times

• Implementation of a C code to request the measurement

This should be a command line tool, used to store the recorded data in a

text file

• Implementation of a C code to determine processor clock parameters

• Visualization program (python matplotlib)

• Simulation of the process

8.4 Simulations

For the DT measurement project simulations were proposed in order to check

for the feasibility of the project plan.

All the simulations are based in random generation of values, for example,

the determination of the readout process duration for a certain system is done

through: ldt release = 150 + 200× random().



Chapter 8. Dead time measurement 71

Figure 8.7: Display of the measured Dead Time. The display was coded using
python matplotlib libraries.

Number of systems 6
Master start max period 1500 µs
TRIVA delay 50 µs
System dead time 300 µs

Table 8.1: Simulations settings.

The random is implemented such that it follows a sequence of ”random” num-

bers. This sequence is determined by a seed. This allows us to keep track of the

improvements and also to compare results between different approaches.

The simulations performed include 4 stages. The simulation of the clocks drifts,

simulation of a real systems were one could get the offsets and the interesting

points measurement and a final part where the time correction is performed for

the several systems.

Table 8.1 shows the overall settings of the simulations: the number of sys-

tems, the maximum interval between master starts, the TRIVA delay and also the

maximum dead time for each system.
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Clocks

The processors clocks are simulated with a periodic triangular behaviour. This

is achieved by generating one random value, y, which can go from y from 0 up to

358 ms and setting ∆x = 1h . This is used to built 2 lines defined by y = mix+bi.

The 2 lines form the clock triangular shape, shown in Fig. 8.8. Considering a total

of 6 processors, 5 clocks are simulated as we intend to make every measurement

relative to the master processor, i.e., the master processor holds the ”real” time.

b1
1m m2b 2

358 ms

y 
ra

nd
om

1h 1h

Figure 8.8: Processor clock simulation concept. Using two lines obtained by
a common randomly generated point (x, y), defined by m1, b1, m2 and b2 one

has a periodic triangular clock shape.

From this point on, every time a clock is requested another random value is

generated to decode in which part of the simulated clock we are, 1 or 2. Until this

point, measurements are only taken on one side which is settled for each system.

Offset measure

At this point of the simulations, a running system is simulated and is used to

determine the offsets and also which system is being measured.

This offset measure is only overcome when every system is measured twice.

Since the number of systems is considered to be 6, the minimum number of triggers

used is 12.

For each trigger a trigger type is generated, making a random from 1 to 16.

Follows the system dead time which for any trigger is determined as
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systemDT = 350× random and for the system which has the same number as the

trigger type systemDT = 500. This procedure is as sketched in Fig. 8.6. Then

simulating a ntp measurement when the delayed system is the only one still causing

the DT, the time is stored as well as the trigger type which will enable the system

identification.

The time measured for each system is obtained by randomly obtaining a start

offset which is settled for each system. This is then used to add to the time

measured in the master processor multiplied by the slope of the clock, equation

(8.1). This can be seen in Fig. 8.9.

start
offset

T2T1 master processor
time

cl
oc

k
sy

st
em

Figure 8.9: Offset measure simulation concept. To a random offset measured
is added the contribution of the time measured affected by the slope of that

system’s clock.

The time measured of the last TDT release is introduced in the stage that

follows.

Running DAQ

At this stage, using a simulated system for a certain number of triggers, the

system’s previous times are recovered and the measurement starts by adding the

delays to those values. Similar to Fig. 8.5, we time stamp the master start, the

enter readout and the DT release points. The times obtained are affected in the

following way:

Tslave = Tmaster × (1 + freqoffset) + Toffset (8.1)
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The times are then saved in a text file.

Time correction

It is necessary to correct the times measured in all the processors in order to

make it meaningful. To perform this correction one can follow 2 approaches:

• correct only by subtracting the offset measured for that system:

Tmaster = Tslave − Toffset

• correct not only by subtracting the offset but also the offset incremented in

the meanwhile since the offset determination. In this case, it is necessary

the frequency offset.

Tmaster =
Tslave − Toffset

1 + freqoffset

Finally the corrected times are saved in a text file. This text file is the input

of the display program seen in Fig. 8.7.

8.5 Results and discussion

The simulations main goal was to look at the viability of the plan. In particular,

we wanted to determine the effect of the frequency offset correction. The frequency

offset correction implies to measure twice the offset of each system which means

to consume more time with the overall measurement process, it also means that if

there is a change of it the offset measurement has to be repeated.

Let us first look at the time required to perform the offset measurement. Ta-

ble 8.2 contains the average and median values obtained for 100 offset measure-

ments procedures, requiring 1 and 2 offsets for each systems.
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1 measure 2 measures
Average (µs) 167959 270397
Median (µs) 153200 250850

Interquartile range 125475 117375

Table 8.2: Offset determination times, for 1 and 2 offsets requirement. The
later to used in the frequency offset calculation.

Performing only one measurement for each system reduces the time consumed

by this procedure in nearly 40%. This would lead to less time while the DAQ is

affected, i.e., delayed. However one must investigate deeper.

Fig. 8.10 shows the time values obtained for the 5th, 10th, 50th and 100th

triggers with and without performing the frequency correction for each system.

As expected, the values deviate from each other as the number of triggers is

increased, i.e., the time passes.
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Figure 8.10: Time difference between the frequency offset correction and the
absence of it for the last trigger of a set (5,10,50 and 100).

One could say that for the the DT overall measurement we would not need

more than a few triggers. However one should be able to look at several triggers
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to get the chance to check the behaviour of the different systems with the different

trigger types. It would allow one to check for the possible most demanding triggers

request of that system. In order to attend to every demand, a compromise must

be taken if one intends not use the frequency offset correction.

Looking at the worst case scenario, freqoffset 10
−4, i.e., after 1 hour we have

a drift of 360000 µs and considering that each trigger takes 1000 µs, one can find

the resulting offset.

100× 1000× 10−4 = 10 µs

50× 1000× 10−4 = 5 µs

If we take only 50 trigger after the offset measurement, we will have an offset

of 5 µs. If one considers the local dead time to be 300 µs, we have a resolution of

5

300
∼ 1.7% which seems acceptable.

Fig. 8.11 shows the the time difference between the 2 different approaches for

obtaining the time in the master frame considering 100 triggers. We can see that

for the simulated systems we never reach the worst case scenario, giving an offset

difference under 5 µs for 50 triggers.

If now we check the total time saved without the frequency offset correction

for 50 triggers, one can see that we save almost 30% of the time consumed by

the other approach. This is done by adding to the time need to perform the offset

measurement the time obtained for the DT release of the last system shown in

Fig.8.10.
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Chapter 9

Conclusions and future work

In this thesis is presented the LAND/R3B collaboration data acquisition sys-

tem, in particular the trigger logic system.

The new trigger logic module for nuclear physics purposes, VULOM, was im-

plemented in the system and replaced the previous system for the 2010 campaign,

from August to October . During this project we were able to get acquainted with

the experimental apparatus, i.e., to know the process involved since the generation

of electrical signals in the detectors to the storage of data.

The new trigger logic system makes now use of a FPGA technology which

allows to gather in one module the complex trigger system of the LAND/R3B

setup. The new trigger system provides new functions as delays, stretchers, a

logic matrix and pulsers among other and these can be assign to any output.

However the use of a FPGA introduced a 10 ns jitter in the output signals of the

trigger system. Also from the update of this system resulted that the dead time is

now first generated within the trigger system and only released when none of the

subsystems is on dead time. Opposed to a dead time set by the TRIVA module

in TRLO I. The new trigger alignment function implemented in the VULOM is

now also a very useful tool in the LAND/R3B setup.
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The work developed with the trigger system allowed also to start a new project:

to measure the dead time of each individual system. This project started with

simulations in order to evaluate the outlined plan. From the simulations one could

study the effects of the frequency offset correction in the CPU time corrections.

If the frequency offset correction was not to be performed, it would save almost

30% of the overall dead time measurement process. However from our results this

can only be applied with the sacrifice of some microseconds in the correct time

determination. In a worst case scenario for 50 triggers this would mean 5 µs, which

seems reasonable.

Further simulation improvements like the inclusion of a shift in the NTP ac-

cess (which would translate in more time to measure the offset of the individual

systems) or the consideration of cases in which one offset is measured before and

a second one after applying the clock compensating function, are foreseen. These

considerations will most probably not affect the result obtained within the present

work.

The work developed so far in the dead time measurement project will continue

with the simulation improvements and implementation of the necessary code in

the MBS f user function of each subsystem.

The knowledge on the data acquisition system used at the LAND/R3B setup

has made possible a specific and accurate knowledge on the way the data is taken

during a real experiment. During the execution of the present Thesis work, I

participated in the preparations and execution of the last GSI experiment of the

R3B collaboration (experiment s393). The start of a PhD program based on the

analysis of the data obtained during that experiment, studying the ground state

properties of halo nuclei along the C and Be chains by means of knockout reactions

around the Quasi-free scattering limit is foreseen beginning of 2011.
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LAND setup

A.1 Experimental apparatus

Figure A.1: Beam entry in cave C

80
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Figure A.2: Crystal ball and target

Figure A.3: Target wheel
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Figure A.4: ALADIN, GFIs and PDCs - The ALADIN magnet is behind the
GFIs (red) and PDCs (green).

Figure A.5: TFW and DTF detectors



Appendix B

TRLO I

B.1 Logic Matrix

The Lecroy 2365 Octal Logic Matrix electronic scheme is shown in Fig. B.1. This

CAMAC module’s operation is similar to the one described with the table of truth

in Table 6.1.

Figure B.1: Logic Matrix electronic scheme, Lecroy 2365
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TRLO II

C.1 Fast path and State machine inputs and out-

puts

FAST

PATH

auxiliary inouts

inhibit

ecl inputs

arm sum out

scaler reset

registers

trigger pattern after reduction

master start

after lmu or

lmu out long

scalers

clock

OutputsInputs

Figure C.1: Fast path inputs and outputs

C.2 VULOM settings

List of the changeable settings in the VULOM.
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accepted pulse

arm sum out

inhibit

encoded trigger

accepted trigger pattern

accepted trigger

REGISTERS

after LMU

trigger pattern after reduction

pending trigger

pulse trigger

dead time from TRIVA

busy in

Inputs Outputs

MACHINE

STATE

Figure C.2: State machine inputs and outputs

C.2.1 Multiplexer indices

The next list presents the source multiplexer indices possibilities.

TRLO_MUX_SRC_ECL_IN(i) 16

TRLO_MUX_SRC_ECL_IO_IN(i) 8

TRLO_MUX_SRC_LEMO_IN(i) 2

TRLO_MUX_SRC_WIRED_ZERO

TRLO_MUX_SRC_WIRED_ONE

TRLO_MUX_SRC_PRNG_LFSR(i) 2

TRLO_MUX_SRC_PULSER(i) 5

TRLO_MUX_SRC_LMU_OUT(i) 8

TRLO_MUX_SRC_GATE_DELAY(i) 8

TRLO_MUX_SRC_EDGE_GATE(i) 2

TRLO_MUX_SRC_DOWNSCALE(i) 2

TRLO_MUX_SRC_ALL_OR(i) 4

TRLO_MUX_SRC_COINCIDENCE(i) 2

TRLO_MUX_SRC_ACCEPT_TRIG(i) 16

TRLO_MUX_SRC_ENCODED_TRIG(i) 4

TRLO_MUX_SRC_MASTER_START

TRLO_MUX_SRC_DEADTIME

TRLO_MUX_SRC_ACCEPT_PULSE

TRLO_MUX_SRC_LMU_OUT_OR
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The next list presents the destination multiplexer indices possibilities.

TRLO_MUX_DEST_ECL_OUT(i) 16

TRLO_MUX_DEST_ECL_IO_OUT(i) 8

TRLO_MUX_DEST_LEMO_OUT(i) 2

TRLO_MUX_DEST_FRONT_LED(i) 6

TRLO_MUX_DEST_LMU_IN(i) 8

TRLO_MUX_DEST_GATE_DELAY(i) 8

TRLO_MUX_DEST_EDGE_GATE_START(i) 2

TRLO_MUX_DEST_EDGE_GATE_STOP(i) 2

TRLO_MUX_DEST_DOWNSCALE(i) 2

TRLO_MUX_DEST_SCALER(i) 8

TRLO_MUX_DEST_SC_LATCH(i) 2

TRLO_MUX_DEST_TIMER_LATCH(i) 4

TRLO_MUX_DEST_PTN_LATCH(i) 2

TRLO_MUX_DEST_TRACER(i) 2

TRLO_MUX_DEST_TRIG_LMU_AUX(i) 4

TRLO_MUX_DEST_TRIG_LMU_TEST

TRLO_MUX_DEST_TRIG_PEND(i) 16

TRLO_MUX_DEST_TRIG_PULSE(i) 16

TRLO_MUX_DEST_DEADTIME_IN(i) 2

TRLO_MUX_DEST_BUSY_IN(i) 1

’Direct mode’ constants

TRLO_DIRECT_MODE_LOGIC

TRLO_DIRECT_MODE_DIRECT

TRLO_DIRECT_MODE_LOGIC_OR_DIRECT

TRLO_DIRECT_MODE_LOGIC_AND_DIRECT

TRLO_DIRECT_MODE_MASK
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C.2.2 Logic functions settings

’Pulse’ constants:

TRLO_PULSE_TRIG_SCALER_RESET

TRLO_PULSE_TRIG_SCALER_LATCH

TRLO_PULSE_SCALER_RESET

TRLO_PULSE_SCALER_LATCH

TRLO_PULSE_TIMER_RESET

TRLO_PULSE_TIMER_LATCH

TRLO_PULSE_PTN_LATCH(i)

TRLO_PULSE_EDGE_GATE_START(i)

TRLO_PULSE_EDGE_GATE_STOP(i)

TRLO_PULSE_MUX_SOURCES

TRLO_PULSE_MUX_DESTS

TRLO_PULSE_SET_INT_DT

TRLO_PULSE_CLEAR_INT_DT

TRLO_PULSE_SET_INT_BUSY

TRLO_PULSE_CLEAR_INT_BUSY

’Stretcher restart mode’ constants:

TRLO_RESTART_MODE_LEADING_EDGE

TRLO_RESTART_MODE_TRAILING_EDGE

TRLO_RESTART_MODE_LEAD_IF_INACT

TRLO_RESTART_MODE_WHEN_PRESENT

TRLO_RESTART_MODE_MASK

C.2.3 Scaler modes

The scalers can count and latch with certain options. Constants for ’Scaler mode’:
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TRLO_SCALER_MODE_LEADING_EDGE

TRLO_SCALER_MODE_TRAILING_EDGE

TRLO_SCALER_MODE_DURATION_CLK

TRLO_SCALER_MODE_DURATION_TICK

TRLO_SCALER_MODE_CARRY_ODD

TRLO_SCALER_MODE_MASK

TRLO_SCALER_LATCH_LEADING_EDGE

TRLO_SCALER_LATCH_TRAILING_EDGE

TRLO_SCALER_LATCH_MASK

’Latch mode’ constants:

TRLO_LATCH_MODE_LEADING_EDGE

TRLO_LATCH_MODE_TRAILING_EDGE

TRLO_LATCH_MODE_MASK

C.2.4 Trigger settings

’Trigger delay mode’ constants:

TRLO_TRIG_DELAY_MODE_DELAY_ZERO

TRLO_TRIG_DELAY_MODE_DELAY_ONE

TRLO_TRIG_DELAY_MODE_DELAY_LINE

TRLO_TRIG_DELAY_MODE_TEST_INPUT

TRLO_TRIG_DELAY_MODE_MASK

Map of ’Trigger Pulses’:

uint32_t pulse;

uint32_t trig_pending;

uint32_t trig_clear_pending;
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’Trigger status’ constants:

TRLO_TRIG_STATUS_DT_FROM_TRIVA

TRLO_TRIG_STATUS_BUSY_IN

TRLO_TRIG_STATUS_INTERNAL_DT

TRLO_TRIG_STATUS_INTERNAL_BUSY

TRLO_TRIG_STATUS_DT

TRLO_TRIG_STATUS_BUSY

TRLO_TRIG_STATUS_AFTER_LMU_OR

TRLO_TRIG_STATUS_INHIBIT

TRLO_TRIG_STATUS_STATE_OFFSET

TRLO_TRIG_STATUS_STATE_MASK

TRLO_TRIG_STATUS_REASON_OFFSET

TRLO_TRIG_STATUS_REASON_MASK

TRLO_TRIG_STATUS_PARITY_TRIG_TPAT_CNT

TRLO_TRIG_STATUS_PARITY_TRIG_COUNT

TRLO_TRIG_STATUS_PARITY_TRIG_TIME

C.3 Map of ’Setups’

In the VULOM’s code for the trigger logics there are certain options, like for how

long is the state machine in the WINDOW or BUSY state?, how long is a delay?.

This is user programmable and this values can be set in steps of clock cycles. For

example for the cases above:

trlo->setup.delay[0] = 0;

trlo->setup.accept_window_len = 0;

uint32_t mux[118];

uint32_t direct_mux[26];

uint32_t direct_mode[26];
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uint32_t scaler_mode[8];

uint32_t latch_mode[4];

uint32_t all_or_mask[4][3];

uint32_t period[5];

uint32_t prng_period[2];

uint32_t lmu[8];

uint32_t lmu_not;

uint32_t coinc_mask[2];

uint32_t coinc_level[2];

uint32_t downscale[2];

uint32_t delay[8];

uint32_t stretch[8];

uint32_t restart_mode[8];

uint32_t trig_delay[16];

uint32_t trig_delay_mode[16];

uint32_t trig_stretch[16];

uint32_t trig_lmu[16];

uint32_t trig_lmu_aux[16];

uint32_t trig_lmu_not;

uint32_t trig_red[16];

uint32_t tpat_enable;

uint32_t tpat_trig[16];

uint32_t accept_window_len;

uint32_t fast_busy_len;

uint32_t max_multi_trig;

uint32_t multi_trigger;

uint32_t sum_out_stretch;

uint32_t sum_out_mask;

uint32_t timer_period;

uint32_t control;

uint32_t pulse_mux_src_mask[3];
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uint32_t pulse_mux_dest_mask[4];

C.4 Map of ’Outputs’

After all can we get something out of the code? In fact we can, it is just necessary

to assign what you want to get to a correct output. For example one can get the

code version, the count of one scaler (that can count for example a pulser output),

the output of an edge gate or even a specific scaler such as the scaler after the

logic matrix unit.

trlo->out.version_md5sum;

trlo->out.edge_gate;

trlo->out.scaler[0];

trlo->out.sca_before_deadtime[16];

uint32_t version_md5sum;

uint32_t compile_time;

uint32_t timing_tick;

uint32_t deadtime_tick;

uint32_t trig_tpat_cnt;

uint32_t trig_count;

uint32_t trig_time;

uint32_t trig_status_state;

uint32_t pending;

uint32_t lmu_out;

uint32_t edge_gate;

uint32_t csr_parity[12];

uint32_t scaler[8];

uint32_t timer_latch[4];

uint32_t pattern_latch[2][3];

uint32_t sca_before_lmu[16];
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uint32_t sca_before_deadtime[16];

uint32_t sca_after_deadtime[16];

uint32_t sca_after_reduction[16];

uint32_t debug_counter[12];

uint32_t debug_register[12];
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Crystal Ball cabling

D.1 New Crystal Ball electronics

For the 2010 campaign the electronics for the Crystal Ball was replaced. New

modules were introduced like the Mesytec MSCF-16 (16-fold Spectroscopy Ampli-

fier with CFDs and Multiplicity trigger), Mesytec MADC-32 (32-channels ADC)

and the GSI VUPROM (VME Universal PROcessing Module). This demanded

also a new task, re-cabling.

The Crystal Ball is detects gamma rays and protons in its forward direction

in respect to the beam direction. The detector system includes the 162 NaI crys-

tals connected to PMTs. At the PMTs two signals can be retrieved one for the

protons and other for the gammas. Protons do not require the same amount of

amplification as gamma rays and therefore their signal is obtained in an earlier

stage of the PM amplification. This signal is delivered to a QDC.

In the previous electronic setup, the gamma’s signals were connected to a

joiner which attached 8 individual cables to each other. This cable aggregation

was delivered to a splitter and then delivered to a QDC and Amplifier. CFDs

received the signals from the amplifier and its output was delivered to a Scaler

and TDC.
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Spliter
Amplifier CFD

Scaler

TDCJoiner

MSCF−16

MADC−32

VUPROM
QDC

PMT
NaI

crystal

protons

gammas

Figure D.1: Previous and current crystal Ball electronic scheme - the colored
regions represent the new modules that replaced the old electronics (in black).

With the new electronic configuration the joiner, splitter, amplifier and CFD

was replaced by Mesytec MSCF-16 modules. A MADC 32 replaced the QDCs

and a VUPROM the TDCs. With the new configuration the protons were also

delivered to the MSCFs and only then to the MADCs.

This modification in the setup requested for new cabling regarding the distri-

bution of the different PMT outputs in the MSCF 16 modules. This procedure

followed some criteria:

• Do not mix the left side of the Crystal Ball with right side

The crystal ball opens in half and the crystals from one side must be con-

nected to modules placed also on the same side.

• Neighbouring crystals must be placed in the same module

This was taken into account by making clusters surrounded by the least

amount of crystal neighbours.

• Neighbouring crystals should not be adjacent in the module to avoid cross

talk between channels

• Even distribution of crystal per module, around 14 crystals per MSCF 16

module

Next follows the final configuration obtained, divided in left, right, top, bottom

for the gamma and proton branches. Each table represents a module with its input
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channels and correspondent crystal number. Its is also associated to a region

named after the central crystal of the cluster. The next picture demarks region 32

of the gamma branch in a Crystal Ball scale model.

Figure D.2: Crystal Ball scale model - Region 32 of the proton branch

Region 1 - Gamma Right side

Module Channel Crystal
1 1 1
1 2 11
1 3 8
1 4 4
1 5 18
1 6 9
1 7 5
1 8 10
1 9 7
1 10 12
1 11 2
1 12 6
1 13 3

Region 32 - Gamma Right side

Module Channel Crystal
2 1 32
2 2 71
2 3 68
2 4 31
2 5 70
2 6 47
2 7 33
2 8 69
2 9 16
2 10 49
2 11 48
2 12 17
2 13 30
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Region 38 - Gamma Right side

Module Channel Crystal
3 1 38
3 2 79
3 3 76
3 4 37
3 5 39
3 6 78
3 7 22
3 8 77
3 9 57
3 10 55
3 11 23
3 12 56
3 13 21

Region 42 - Gamma Right side

Module Channel Crystal
4 1 42
4 2 40
4 3 62
4 4 25
4 5 58
4 6 26
4 7 60
4 8 24
4 9 43
4 10 59
4 11 61
4 12 80
4 13 41

Region 45 - Gamma Right side

Module Channel Crystal
5 1 45
5 2 13
5 3 64
5 4 67
5 5 27
5 6 15
5 7 65
5 8 46
5 9 14
5 10 44
5 11 29
5 12 66
5 13 28
5 14 63

Region 52 - Gamma Right side

Module Channel Crystal
6 1 52
6 2 72
6 3 19
6 4 74
6 5 36
6 6 34
6 7 73
6 8 75
6 9 35
6 10 50
6 11 20
6 12 53
6 13 51
6 14 54
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Region 162 - Gamma Left side

Module Channel Crystal
7 1 162
7 2 152
7 3 155
7 4 159
7 5 145
7 6 154
7 7 158
7 8 153
7 9 156
7 10 151
7 11 161
7 12 157
7 13 160

Region 131 - Gamma Left side

Module Channel Crystal
8 1 131
8 2 92
8 3 95
8 4 132
8 5 93
8 6 116
8 7 130
8 8 94
8 9 147
8 10 114
8 11 115
8 12 146
8 13 133

Region 125 - Gamma Left side

Module Channel Crystal
9 1 125
9 2 84
9 3 87
9 4 126
9 5 124
9 6 85
9 7 141
9 8 86
9 9 106
9 10 108
9 11 140
9 12 107
9 13 142

Region 121 - Gamma Left side

Module Channel Crystal
10 1 121
10 2 123
10 3 101
10 4 138
10 5 105
10 6 100
10 7 137
10 8 103
10 9 139
10 10 120
10 11 104
10 12 102
10 13 83
10 14 122
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Region 118 - Gamma Left side

Module Channel Crystal
11 1 118
11 2 150
11 3 99
11 4 96
11 5 136
11 6 148
11 7 98
11 8 117
11 9 149
11 10 119
11 11 134
11 12 97
11 13 135

Region 111 - Gamma Left side

Module Channel Crystal
12 1 111
12 2 91
12 3 144
12 4 89
12 5 127
12 6 129
12 7 90
12 8 88
12 9 128
12 10 113
12 11 143
12 12 110
12 13 112
12 14 109

Region 131 - Proton Left bottom

Module Channel Cristal
13 1 131
13 2 95
13 3 145
13 4 113
13 5 92
13 6 147
13 7 130
13 8 116
13 9 157
13 10 93
13 11 146
13 12 91
13 13 115
13 14 114
13 15 94
13 16 132

Region 127 - Proton Left top

Module Channel Cristal
14 1 127
14 2 129
14 3 90
14 4 110
14 5 112
14 6 126
14 7 87
14 8 89
14 9 144
14 10 109
14 11 128
14 12 155
14 13 111
14 14 88
14 15 156
14 16 143
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Region 24 - Proton Right bottom

Module Channel Cristal
15 1 24
15 2 80
15 3 78
15 4 60
15 5 10
15 6 57
15 7 41
15 8 40
15 9 79
15 10 59
15 11 25
15 12 39
15 13 3
15 14 23
15 15 58
15 16 11

Region 27 - Proton Right bottom

Module Channel Cristal
16 1 27
16 2 61
16 3 64
16 4 28
16 5 62
16 6 26
16 7 44
16 8 43
16 9 12
16 10 14
16 11 45
16 12 42
16 13 4
16 14 63
16 15 65
16 16 13
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