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This paper describes and discusses the activity of grade 8
 
students on two word 

problems, using a spreadsheet. We look at particular uses of the spreadsheet, namely 

at the students’ representations, as ways of eliciting forms of algebraic thinking 

involved in solving the problems. We aim to see how the spreadsheet allows the 

solution of formally impracticable problems at students’ level of algebra knowledge, 

by making them treatable through the computational logic that is intrinsic to the 

operating modes of the spreadsheet. The protocols of the problem solving sessions 

provided ways to describe and interpret the relationships that students established 

between the variables in the problems and their representations in the spreadsheet. 
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INTRODUCTION  

Representations have a dual role in learning and in mathematical communication. 

These resources serve the purpose of communicating with others about a problem or 

an idea but also constitute tools that help to achieve an understanding of a property, a 

concept or a problem (Dufour-Janvier, Bednarz & Belanger, 1987). This is one of the 

reasons why we consider students’ use of representations as a lens from which we 

can grasp the meaning involved in the mathematical processes of solving a problem.  

Spreadsheets have great potential for the construction of algebraic concepts, 

including the establishment of functional relationships, the representation of 

sequences or the use of recursive procedures in solving mathematical problems. The 

use of spreadsheets in problem solving has been deeply investigated by several 

authors (e.g., Ainley et al., 2004; Rojano, 2002) and revealed interesting processes in 

the development of algebraic thinking, particularly with regard to the transition from 

arithmetic to algebra. Within a spreadsheet environment, the symbolic representation 

of the relations present in a problem is initiated through the nomination of columns 

and writing of formulas. This is considered a stimulating environment that fosters an 

understanding of the relations of dependence between variables and encourages 

students to submit solutions gradually more algebraic and moving away from 

arithmetical methods (Rojano, 2002). These aspects encouraged us to carry out an 

analysis of how grade 8 students create their representations and how they conceive 

and display the problem conditions on the spreadsheet.  

PROBLEM SOLVING AND THE LEARNING OF ALGEBRA  

Problems are an important type of task that leads to algebraic activity. According to 

Kieran (2004) the work in algebra can be divided into three areas: generational, 
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transformational and global/meta-level activities. Generational activities correspond 

to the construction and interpretation of algebraic objects. Transformational activities 

include simplifying algebraic expressions, solving equations and inequalities and 

manipulating expressions. Finally, global/meta-level activities involve problem 

solving and mathematical modelling, including pattern generalization and analysis of 

variation. 

The nature of algebraic reasoning depends on the age and mathematical experience of 

the students. Students at a more advanced level may use in a natural way symbolic 

expressions and equations instead of numbers and operations. For students who have 

not yet learned the algebraic notation, the more general ways of thinking about 

numbers, operations and notations, may be effectively considered algebraic (Kieran, 

2007). Contexts that involve numbers, functional relationships, regularities, and other 

properties, are an essential foundation for the understanding of algebraic structures. 

For instance, writing symbolic numerical relations may favour the use of letters. 

However, the use of technological tools allows other representations for such 

relations, as well as new forms of exploration, which may be seen as analogous to 

generational and transformational activities in algebra. Thus, it seems appropriate that 

such new representations, and the mathematical thinking associated with them, are 

included in the field of algebra (Kieran, 1996). Moreover, Lins & Kaput (2004) claim 

that algebra can be treated from the arithmetic field, since there are many properties, 

structures and relationships that are common to these two areas. Therefore, arithmetic 

and algebra may be developed as an integrated field of knowledge. In this study we 

adopt this perspective, considering algebraic thinking as a broad way of thinking that 

is not limited to the formal procedures of algebra. This entails to separate algebraic 

thinking from algebraic symbolism (Zazkis & Liljedhal, 2002). 

SPREADSHEETS IN THE DEVELOPMENT OF ALGEBRAIC THINKING 

A spreadsheet supports the connection between different registers (numerical, 

relational, and graphical). One feature that stands out in this tool is the possibility of 

dragging the handle of a cell containing a formula along a column. This action 

generates a “variable-column”. Using this tool in problem solving emphasizes the 

need to identify the relevant variables and encourages the search for relations of 

dependence between variables. The definition of intermediate relations between 

variables, that is, the breakdown of complex dependency relations in successive 

simpler relations is a process afforded by this tool, with decisive consequences in the 

process of problem solving (Carreira, 1992; Haspekian, 2005). As noted by 

Haspekian (2005) a spreadsheet also allows an algebraic organization of apparently 

arithmetical solutions and this kind of hybridism, where arithmetic and algebra 

naturally cohabit, becomes an educational option that may help students in moving 

from arithmetic to algebra (Kieran, 1996).  

We want to see how this particular functioning of the spreadsheet is a valid route for 

solving problems where the formal algebraic approach is too heavy for the students’ 

level. More specifically, we aim to understand how far the spreadsheet, while being a 



  

means to promote algebraic thinking, can relieve the burden of formal algebraic 

procedures and as such can advance the possibility of solving certain types of 

problems. So far, research has shown the value of the spreadsheet in the transition 

from arithmetic thinking to algebraic thinking, but less is known about the utility of 

the spreadsheet to set up an alternative to formal and symbolic algebra and yet 

allowing the development of students’ algebraic thinking (Carreira, 1992; Haspekian, 

2005; Rojano, 2002) 

METHODOLOGY 

This study follows a qualitative and interpretative methodology. The participants are 

three grade 8 students (13-14 years). They had some previous opportunities to solve 

word problems with a spreadsheet in the classroom, from which they acquired some 

basics of the spreadsheet operation. Before the two tasks here presented, students had 

worked with the spreadsheet in solving other problems for six lessons. All problems 

involved relationships among variables (usually equations) and only one included a 

simple linear inequality. The detailed recording of student’s processes was achieved 

with the use of Camtasia Studio. This software allows the simultaneous collecting of 

the dialogues of the students and the sequence of the computer screens that show all 

the actions that were performed on the computer. We were able to analyze the 

students’ conversations while we observed their operations on a spreadsheet. This 

type of computer protocols is very powerful as it allows the description of the actions 

in real time on the computer (Weigand & Weller, 2001).  

The two problems 

King Edgar of Zirtuania decided to divide their treasure of a thousand gold bars by 

his four sons. The royal verdict is:  

1- The 1
st
 son gets twice the bars of the 2

nd
 son. 

2 - The 3
rd

 son gets more bars than the first two together. 

3 - The 4
th

 son will receive less than the 2
nd

 son. 

What is the highest number of gold bars that the 4
th

 son of the king may receive? 

Figure 1: The treasure of King Edgar 

From small equilateral triangles, rhombuses are formed as shown in 

the picture. We have 1000 triangles and we wish to make the biggest 

possible rhombus.  

How many triangles will be used?  

Figure 2: Rhombuses with triangles 

A possible algebraic approach to the problems is presented in table 1. Solving these 

problems by a formal algebraic approach, namely using inequalities and systems such 

as these was beyond the reach of these students. Therefore, it is important to see 

which roads are opened by using the spreadsheet. 
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Table 1: Algebraic approach to the problems 

Problem 1 contains several conditions that relate to each other and the statements 

“gets more” and “receives less” involve an element of ambiguity and make the 

problem complex, for understanding it, for translating into algebraic language and for 

solving it. Problem 2 entails a pictorial sequence that can be translated algebraically 

into a single condition. However, this condition involves a quadratic function that 

does not arise immediately after reading the statement of the problem. These two 

problems represent instances of global/meta-level activities considered by Kieran 

(2004), insofar as they involve functional reasoning and pattern finding strategies. 

They both have in common the search for a maximum value, leading to some 

difficulties when a purely algebraic approach is envisioned. However, a spreadsheet 

provides alternative approaches to both problems that may make them clearer to 

students, facilitating their solution process and efficiently providing a solution. We 

examine how students approached these problems in the classroom, the strategies 

they used, how they connected the variables involved and expressed that on a 

spreadsheet. Excerpts of Excel computer protocols are offered to further clarify the 

description of students’ activity.  

In solving problem 1, Marcelo assigned and named a column to each of the four sons 

and a fifth column for the total of gold bars (table 2). Then, he started writing values 

in the cells corresponding to the sons in the following order: 2
nd

, 1
st
, 4

th
 and 3

rd
, as 

follows: choosing a value for the 2
nd

 son, then mentally doubling it for the 1
st
 son; 

subtracting one unit to the 2
nd

 son’s number of bars to get the 4
th

 son’s; add the three 

values of the 2
nd

, 1
st
, and 4

th
 sons and calculate the difference to 1000 to find the 3

rd 

son’s number. In another column, the student entered a formula that gives the total of 

gold bars and served as control for the total number of bars (1000).  

 

 

 

 

 

 

 

xls file xls file (command “show formulas”) 

Table 2: Print screen of Marcelo’s representation  



  

Although Marcelo did not display the relations between the number of bars of the 

four brothers, using formulas or otherwise, he kept them always present in his 

thinking. The task required a greater effort for the student, since in each attempt he 

had to recall the relations, while carrying out the calculations mentally.  

Marcelo:  Teacher, I found the best! [the value 139 was obtained in cell G6]. If I 

choose 150 [for the 2
nd

 son] it won’t do. I’ve tried it. 

Teacher:  But this is not the maximum number of bars for the 4
th

 son, is it? 

Marcelo:  I went from 100 to 150, and it turns out that 150 gets worse because the 

other gets over 450 and the last one falls to 99. 

The teacher asked Marcelo to do more experiments to which he replied that he had 

already made some, for example 160 and 170. So she made another suggestion: 

Teacher:  Here you already got an excellent value and it increased significantly from 

130 to 140 [referring to column E]. So, try around these values. 

The student continued to experiment, always doing the calculations mentally. He 

found 141, confirming that it was the best. As an answer the student wrote: “I solved 

this problem taking into account the conditions of the problem, making four columns, 

one for each child, and trying to find a higher number”.  

In our view, Marcelo has developed algebraic thinking by focusing on dependence 

relationships between different variables to finding the optimal solution. As he stated, 

he took into account the five conditions of the problem and expressed them in the 

spreadsheet columns. From the standpoint of an algebraic approach, the student 

began by choosing an independent variable (the 2
nd

 son’s number of bars) and 

established relationships to express the number of bars for each remaining son.  

 

 

 

 

The diagram above summarizes the translation of the student’s algebraic thinking in 

solving the problem and shows how the Excel allowed dealing with simultaneous 

manipulation of several conditions, by means of numbers, rather then with letters and 

symbolic algebra. It is important to note that the condition set for the 4
rd

 son 

demonstrates an understanding of looking for the highest possible value, given that 

the difference down to the 2
nd

 was only one bar.  

Maria and Jessica (table 3) started to solve the problem like Marcelo, with the 

allocation of columns to the number of gold bars for each son and another column for 

the total of bars. Then, they created a column of integers for the number of bars of the 

2
nd

 son; the number of bars of the 1
st
 son was obtained by doubling the 2

nd
 son’s; the 

number of bars of the 3
rd

 son was found by adding a unit to the sum of the 1
st
 and 2

nd
 

sons’ bars; the number of bars of the 4
th
 son was obtained by subtracting one unit to 

2
nd

 son’s; finally, the last column computed the sum of bars of the four sons. 

2s21 2ss = 124 −= ss( )4213 1000 ssss ++−= 10004321 =+++ ssss               ⁄       ⁄                                           ⁄                   ⁄ 



  

Table 3: Print screen of Maria e Jessica’s representation  

At one point the students got a value higher than 1000 in the last column and 

concluded that it was necessary to remove a bar from one of the sons. Yet, it was 

necessary to realize that one bar could only be taken from the 4
th

 in accordance with 

the terms of the problem. 

Maria:  It shows 1001, it is wrong! 

Teacher:  And now? 

Maria:  Take one out! Take one out from the 4
th

!... The largest number of bars that 

the 4
th

 can receive is 141. 

The diagram below shows the relations as they would be expressed symbolically in 

algebraic language: 

  

 

 

These students formulated two conditions intended to obtain the optimal solution, 

first, the difference between the number of bars of the 4
th
 and the 2

nd
 son must be a 

unit and, second, the difference between the number of bars of the 3
rd

 and the sum of 

the 1
st
 and 2

nd
 must also be a unit. 

In both solutions, data show that students use relationships between variables but they 

do it with numbers through the use of the spreadsheet. The fact that they are working 

with numbers does not deviate them from the mathematical structure of the problem. 

On the contrary, it helps them to better understand the problem and to deal with a set 

of simultaneous conditions of different nature: equations, inequalities and a free 

variable. We believe that the thinking involved in either approach is consistent with 

the perspective of Kieran (2007) and Lins & Kaput (2004) on genuine algebraic 

thinking development.  

For the second problem, Marcelo (table 4) started to introduce the inputs 2, 8, 18. 

Then, he selected these three cells as a cluster and tried to drag them (figure 3), 

noticing that the numbers generated were not all integers.  
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Table 4: Print screen of Marcelo’s representation   

Marcelo enters 2, 8, 18, 32. He selects these three cells, and then tries to drag, 

without success. He abandoned the dragging and called the teacher: 

Marcelo:  I don’t know if this works... How do I do this? Is there an easier way? 

    Teacher:        To move from the 1
st
 to the 2

nd
 how much did you add? 

The student writes in cell E4 the number 6.  

Teacher:  And from the 2
nd

 to the 3
rd

 how much do you add?  

The student wrote in cell E5 the number 10, followed by 14 and 18. 

Teacher:  What are you going to do now?  

Marcelo:  If you pull it down [referring to column E] and then adding this column 

plus this one [referring to column C and column E]...  

The student inserted the formula “=C4+E4” (below the first term of the sequence) 

and generated a variable-column: 

Marcelo:  968! It’s what we will use from 1000. We have 1000, so it can’t be more 

than 1000 and 1058 already exceeds. 

The student tried to find a pattern in the numbers of triangles. The construction of 

additional figures did not help the student to find a pattern based on the figure. One 

useful approach is to look at the differences between the consecutive terms.  

From an algebraic point of view, this student is using a recursive method to generate 

the sequence of triangles with the help of the arithmetic progression which gives the 

difference between consecutive terms. Excel easily allows handling a recursive 

approach. Somehow it removed the requirement to find n
th
 element to solve the 

inequality, although not hiding the mathematical structure of the problem. 

 

 

 

Maria and Jessica (table 5) addressed the problem with a similar strategy, noticing 

that dragging the values 2, 8 and 18 did not produce the sequence of rhombuses 

presented in the problem. At one point they called the teacher:  
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xls file xls file (command “show formulas”) 

Table 5: Print screen of Maria and Jessica’s representation  

Jessica:  From this one to this one it goes 6 and from this one to this one it goes 10. 

[Referring to the differences between the terms]. 

Maria:  From 2 to 8 it goes 6… From 8 to 18 it goes 10. 

Jessica:  Oh teacher, we don’t know how to continue. 

Teacher:  Have you already drawn the next figure to see if there is any relation? 

They drew it on paper, but only half of the picture. 

Maria:  14, 15 e 16. 16 plus 16 is… 32 

Teacher:  And now?... How many will the next one have?  

Maria:  50. 

The students were still looking for a relation between the numbers. 

Maria:  I know what that is... Look... the link is… 

Jessica:  The number plus 4. 

This was the decisive moment to build the column with the differences between 

consecutive rhombuses, and then a formula for the number of triangles.  

CONCLUDING REMARKS 

Our main aim was to understand the role of the spreadsheet in solving two word 

problems and examine how the solutions reflect students' algebraic thinking, 

regardless of the use of algebraic symbolism. It was not our intention to consider 

what students have done without the use of technology, since any of the problems 

demanded an algebraic knowledge that was beyond the level of students. In any case 

pencil and paper solutions could certainly come up with methods based on trial and 

error. We interpreted the students’ processes based on the spreadsheet in light of what 

would be a possible use of symbolic algebra. Thus we intended to make clear 

students’ algebraic thinking in establishing the relationships involved in the 

problems.  



  

In the first problem, four columns corresponded to the four sons and the column for 

the 2
nd

 son was reserved for the introduction of initial values (the input), serving as a 

column for the independent variable. The remaining columns were constructed 

through relations of dependence. For the second problem, the students were not able 

to express the general term of the sequence, but by counting the number of triangles 

in the sequence of rhombuses they used the differences between consecutive terms to 

generate the former sequence recursively. As reported in the research students when 

confronted with more demanding sequences tend to use the difference method. 

We found that the spreadsheet helped the students to establish relations between 

variables, expressed through numerical sequences generated by the computer, and 

also with the use of formulas to produce variable-columns. We claim that algebraic 

thinking was fostered by the affordances of the Excel in generating the rules of the 

problems. This result resonates with other investigations such as Ainley et al. (2004) 

but it also highlights the structure of students’ algebraic thinking expressed in a 

particular representation system. It provided a clear indicator of how students 

interpreted the problems in light of their mathematical knowledge and their 

knowledge of the tool. The analysis allows us to make inferences about what is 

gained in using Excel to solve algebraic problems, and helps to understand the 

relationship between the symbolic language of Excel and the algebraic language. The 

use of Excel can be seen as means to fill the gap between the algebraic thinking and 

the ability to use algebraic notation to express such thinking. The lack of algebraic 

notation and formal algebra methods does not prove the absence of algebraic 

thinking. The kind of algebraic thinking that emerges from the use of the spreadsheet 

is the kind that belongs to global algebraic activities (Kieran, 2004). 

We highlight the following features of the spreadsheet in algebraic problem solving: 

- It was a way to anticipate complex algebraic problems; our study shows how the 

spreadsheet was a tool that allowed 8
th
 grade students to solve two problems that 

were impracticable from the point view of formal algebra. On the other hand it 

anticipated forms of algebraic reasoning involved in the problems that were elicited 

by the representation systems embedded in the spreadsheet. 

- It helped to understand the conditions in the problems; students clearly understood 

the relations between the several variables involved and were able to express such 

conditions and restrictions appropriately. They were not given in algebraic notation 

but instead with the language of Excel. 

- It led to a numerical approach of an algebraic problem; students found ways to 

represent the problem through numerical variable-columns without loosing the 

structure of the problems. 

Our perspective of algebraic thinking stresses the distinction between algebraic 

notation and algebraic structures, separated by a gap that is often underestimated. We 

suggest that this gap can be gainfully filled with suitable spreadsheet activities.  

“Rather than insisting on any particular symbolic notation, this gap should be accepted 

and used as a venue for students to practice their algebraic thinking. They should have 



  

the opportunity to engage in situations that promote such thinking without the constraints 

of formal symbolism” (Zazkis & Liljedhal, 2002, p. 400). 
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