
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

INTEGRATION OF GENERIC OPERATING
SYSTEMS IN PARTITIONED ARCHITECTURES

João Pedro Gonçalves Crespo Craveiro

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2009

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

INTEGRATION OF GENERIC OPERATING
SYSTEMS IN PARTITIONED ARCHITECTURES

João Pedro Gonçalves Crespo Craveiro

DISSERTAÇÃO

Trabalho orientado pelo Prof. Doutor José Manuel de Sousa de Matos Rufino

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2009

This work was partially funded by:

ESA/ITI - European Space Agency Innovation Triangular Initiative
(through ESTEC Contract 21217/07/NL/CB — Project AIR-II)

FCT - Fundação para a Ciência e Tecnologia
(through the Multiannual Funding Programme)

http://air.di.fc.ul.pt/

Acknowledgments

During the course of the work which led to the present dissertation, including
the curricular part of the Masters programme, there are many people to which I
am most thankful for all the different kinds of support they gave me. May my
gratitude towards them remain forever patent in these lines.

First, I would like to thank my supervisor, Prof. José Rufino, for his orienta-
tion, support, inspiration, dedication, and for always striving to give his students
the opportunities and conditions to work.

A word of appreciation goes also to the Department of Informatics and the
LaSIGE, which have always been superb places to study and work.

Due thanks also to Prof. Carlos Almeida from IST–UTL, Rui Covelo and Pe-
dro Venda, for the collaboration in the paper published in the proceedings of
AICCSA 2009. The collaboration and comments of the people involved in the
AIR activities were also very insightful in the various stages of this work. They
are: José Neves, Edgar Pascoal, Sérgio Santos, Tobias Schoofs, and Cássia Tati-
bana (from Skysoft Portugal), and James Windsor (from ESA/ESTEC). I would
also like to thank Dr. Joel Sherrill at OAR Corporation and Manuel Coutinho at
EDISOFT, for the helpful e-mail exchanges regarding RTEMS support.

My coleagues and friends at FCUL and/or LaSIGE, some of which I have
had the pleasure to work with, have always been a source of different degrees
of support, inspiration, and interesting discussions during meals and breaks.
In no special order, and not exhaustively, I would like to thank Diogo Albu-
querque, Romeu Carvalho, Maria João Leal, Ricardo Mascarenhas, Tiago Reis,
and Joaquim Rosa, for how pleasant it has been to connect and/or work with
them.

Last, but not least (this line never gets old, does it?), the biggest “Thank you”
of the world goes for my family. My mother Mafalda, my sister Joana, my god-
mother Fátima and my girlfriend Catarina have always been there for me and
helped me keep seeing the light at the end of the tunnel(s). It is not too much to
say that I couldn’t do this without them.

v

Ao meu pai.

Abstract

The Integrated Modular Avionics (IMA) specification defines a partitioned envi-
ronment hosting multiple avionics functions of different criticalities on a shared
computing platform. ARINC 653, one of the specifications related to the IMA
concept, defines a standard interface between the software applications and the
underlying operating system. Both these specifications come from the world of
civil aviation, but they are getting interest from space industry partners, who
have identified common requirements to those of aeronautic applications.

Within the scope of this interest, the AIR architecture was defined, under a
contract from the European Space Agency (ESA). AIR provides temporal and
spatial segregation, and foresees the use of different operating systems in each
partition. Temporal segregation is achieved through the fixed cyclic scheduling
of computing resources to partitions.

The present work extends the foreseen partition operating system (POS) het-
erogeneity to generic non-real-time operating systems. This was motivated by
documented difficulties in porting applications to RTOSs, and by the notion that
proper integration of a non-real-time POS will not compromise the timeliness of
critical real-time functions. For this purpose, Linux is used as a case study. An
embedded variant of Linux is built and evaluated regarding its adequacy as a
POS in the AIR architecture. To guarantee safe integration, a solution based on
the Linux paravirtualization interface, paravirt-ops, is proposed.

In the course of these activities, the AIR architecture definition was also sub-
ject to improvements. The most significant one, motivated by the intended in-
creased POS heterogeneity, was the introduction of a new component, the AIR
Partition OS Adaptation Layer (PAL). The AIR PAL provides greater POS-inde-
pendence to the major components of the AIR architecture, easing their inde-
pendent certification efforts. Other improvements provide enhanced timeliness
mechanisms, such as mode-based schedules and process deadline violation mon-
itoring.

Keywords: Aerospace applications, ARINC 653, IMA, Linux, operating systems,
real-time.

ix

Resumo

A especificação Integrated Modular Avionics (IMA) define um ambiente compar-
timentado com funções de aviónica de diferentes criticalidades a coexistir numa
plataforma computacional. A especificação relacionada ARINC 653 define uma
interface padrão entre as aplicações e o sistema operativo subjacente. Ambas as
especificações provêm do mundo da aviónica, mas estão a ganhar o interesse de
parceiros da indústria espacial, que identificaram requisitos em comum entre as
aplicações aeronáuticas e espaciais.

No âmbito deste interesse, foi definida a arquitectura AIR, sob contrato da
Agência Espacial Europeia (ESA). Esta arquitectura fornece segregação temporal
e espacial, e prevê o uso de diferentes sistemas operativos em cada partição. A
segregação temporal é obtida através do escalonamento fixo e cı́clico dos recursos
às partições.

Este trabalho estende a heterogeneidade prevista entre os sistemas operati-
vos das partições (POS). Tal foi motivado pelas dificuldades documentadas em
portar aplicações para sistemas operativos de tempo-real, e pela noção de que
a integração apropriada de um POS não-tempo-real não comprometerá a pon-
tualidade das funções crı́ticas de tempo-real. Para este efeito, o Linux foi uti-
lizado como caso de estudo. Uma variante embedida de Linux é construı́da
e avaliada quanto à sua adequação como POS na arquitectura AIR. Para ga-
rantir uma integração segura, é proposta uma solução baseada na interface de
paravirtualização do Linux, paravirt-ops.

No decurso destas actividades, foram também feitas melhorias à definição
da arquitectura AIR. O mais significante, motivado pelo pretendido aumento
da heterogeneidade entre POSs, foi a introdução de um novo componente, AIR
Partition OS Adaptation Layer (PAL). Este componente proporciona aos princi-
pais componentes da arquitectura AIR maior independência face ao POS, facili-
tando os esforços para a sua certificação independente. Outros melhoramentos
fornecem mecanismos avançados de pontualidade, como mode-based schedules e
monitorização de incumprimento de metas temporais de processos.

Palavras-chave: Aplicações aeroespaciais, ARINC 653, IMA, Linux, sistemas
operativos, tempo-real.

xi

Resumo alargado 1

Os sistemas para aplicações espaciais do futuro requerem arquitecturas compu-
tacionais inovadoras, que permitam a reutilização de componentes entre diferen-
tes missões espaciais. Neste contexto, a especificação Integrated Modular Avi-
onics (IMA), originalmente definida para aplicações aeronáuticas, surgiu como
um desafio às arquitecturas federadas, nas quais cada função de aviónica teria
os seus recursos de processamento dedicados (e frequentemente separados fisi-
camente). As arquitecturas IMA, com funções aviónicas com diferentes graus de
criticalidade a coexistir num ambiente compartimentado (separadas em unidades
lógicas de contenção denominadas partições), permitem optimizar a utilização e
realocação de recursos.

A especificação ARINC 653 é um bloco fundamental da filosofia IMA. Esta es-
pecificação observa os conceitos de segregação temporal e espacial, e define uma
interface genérica de serviço, denominada APEX (Application Executive), entre
o software aplicacional e o sistema operativo da plataforma computacional. A
segregação temporal concerne a garantia de que as actividades de uma partição
não comprometem a pontualidade (ou seja, o cumprimento de metas temporais)
das funções a serem executadas em outras partições. Neste contexto, a segregação
temporal é atingida através do escalonamento fixo, cı́clico das partições. Por seu
lado, a segregação espacial permite impedir que uma aplicação a executar numa
partição aceda a zonas de memória pertencentes a outras partições.

Após ter identificado bastantes pontos em comum em termos de requisitos
com a indústria aviónica, a indústria espacial — e a Agência Espacial Europeia
(ESA) em particular — manifestou o seu interesse na adopção dos conceitos das
especificações IMA e ARINC 653 para os sistemas computacionais a bordo das
suas missões.

No seguimento deste interesse, foi desenvolvida a arquitectura AIR — ARINC
653 In Space RTOS. Inicialmente uma prova de conceito da adaptação do sistema
operativo de tempo-real RTEMS para os requisitos da especificação ARINC 653, a
contribuição dos projectos AIR traduz-se numa arquitectura que fornece a reque-

1Em cumprimento do disposto no Artigo 27.o, n.o 3, da Deliberação n.o 1506/2006 (Regulamento
de Estudos Pós-Graduados da Universidade de Lisboa), de 30 de Outubro

xiii

rida segregação temporal e espacial, prevendo a utilização de diferentes sistemas
operativos entre as partições.

Na tecnologia AIR, o componente transversal a todas as partições e responsá-
vel pelo aprovisionamento das principais propriedades do sistema denomina-se
AIR PMK (Partition Management Kernel). O AIR PMK assegura a inicialização
do sistema, o escalonamento e despacho das partições, o suporte à comunicação
entre partições, a gestão de uma noção de tempo comum a todas as partições, e a
abstracção face à plataforma de hardware; este componente é, assim, central para
as garantias de segregação temporal e espacial. As interacções das aplicações das
partições com o sistema são efectuadas através da interface APEX definida na
especificação ARINC 653. Na arquitectura AIR, esta interface é concretizada na
forma de um componente que visa ser flexı́vel e portável em função dos sistemas
operativos das partições. A tecnologia AIR engloba ainda um componente de
supervisão, responsável por tomar acções de tratamento de erros aos diferentes
nı́veis da arquitectura. Tanto quanto possı́vel, as acções do Health Monitoring
tentam restringir a propagação do erro ao seu domı́nio de ocorrência, distinguido
entre erros ao nı́vel do processo, da partição e do sistema.

A motivação para o trabalho descrito na presente dissertação resulta de várias
observações. A primeira é a de que os sistemas aos quais a arquitectura AIR
se destina podem beneficiar de aplicações disponı́veis em sistemas operativos
genéricos, e que não se encontram nos sistemas operativos de tempo-real tradi-
cionais (p. ex., suporte a linguagens interpretadas). Portar estas aplicações para
um dos sistemas operativos de tempo-real que se esteja a utilizar numa partição
é um processo que pode ser moroso, e que é definitivamente propenso a erros,
conforme corrobora a literatura cientı́fica. Assim, existe benefı́cio em estender a
heterogeneidade entre os sistemas operativos das partições, já prevista pela ar-
quitectura AIR, ao domı́nio dos sistemas operativos genéricos, mesmo que estes
não observem requisitos de tempo-real. Dado que a segregação temporal (e, con-
sequentemente, a pontualidade das tarefas com requisitos estritos de tempo-real)
é assegurada pelo escalonamento fixo e cı́clico da capacidade de processamento
entre as partições, a devida integração de um sistema operativo não-tempo-real
numa partição (para execução de tarefas com nı́vel de criticalidade baixo ou nulo)
não afectará a pontualidade das tarefas de tempo-real. Dado que o objectivo das
partições com sistemas operativos genéricos será executar aplicações existentes
sem necessidade de as portar para uma nova interface, só lhes será fornecido um
subconjunto de serviços da interface APEX suficiente para suportar actividades
de gestão e comunicação entre partições. O primeiro e principal caso de estudo
da integração de sistemas operativos genéricos englobará os sistemas baseados
no núcleo de código livre/aberto Linux.

xiv

Nesta aproximação, as partições com sistemas operativos genéricos receberão,
tal como as restantes (que contêm sistemas operativos de tempo-real), uma janela
temporal fixa e garantida no escalonamento das partições. Este comportamento
distingue-se de anteriores aproximações à coexistência de processos Linux com
tarefas de tempo-real (como o RTLinux, o RTAI, ou o xLuna), em que os processos
Linux apenas são escalonados quando não exista nenhuma tarefa de tempo-real
elegı́vel para execução.

Durante o decurso do trabalho desta dissertação, foram desenvolvidos melho-
ramentos à arquitectura AIR, em parte directamente relacionados com a heteroge-
neidade entre os sistemas operativos nas partições (abreviadamente POS, de Par-
tition Operating System). Na fase preliminar deste trabalho, foi identificada a ne-
cessidade de um componente de adaptação para a partição que iria conter um sis-
tema operativo genérico; este componente iria situar-se na arquitectura abaixo do
núcleo do sistema operativo, entre este e o AIR PMK. Uma investigação mais pro-
funda revelou contudo que este componente teria uma função mais abrangente,
sendo também benéfico para as partições com sistemas operativos de tempo-real.
A consolidação destas observações resultou na integração deste componente, o
AIR PAL (POS Adaptation Layer), como uma significativa contribuição para a
tecnologia AIR. Em cada partição, uma instância apropriada do AIR PAL encap-
sula as especificidades do respectivo sistema operativo; tal permite que outros
componentes da arquitectura (com ênfase no AIR PMK) sejam mais independen-
tes do sistema operativo de cada partição e menos propensos a modificações,
beneficiando assim possı́veis processos de certificação dos componentes da ar-
quitectura. O AIR PAL possibilita, através da separação de responsabilidades,
a optimização do processo de desenvolvimento de sistemas — potenciando a
reutilização de componentes de software entre diferentes misssões, sem neces-
sidade de repetir o processo da sua certificação na totalidade.

Outras contribuições para a definição da arquitectura AIR concernem a me-
lhoria das caracterı́sticas de pontualidade. A primeira é a funcionalidade de
mode-based schedules, um serviço opcional da especificação ARINC 653 que per-
mite a definição estática de múltiplas tabelas de escalonamento das partições; as
partições devidamente autorizadas podem alternar entre estas escalas, quer para
adaptar o funcionamento do sistema a diferentes etapas da missão (p. ex., em
vôo, aproximação ao solo, ou exploração), quer para concretizar mecanismos de
tolerância a faltas. O outro mecanismo introduzido relacionado com a pontu-
alidade do sistema consiste na supervisão de violações de prazos de execução
por parte dos processos; este mecanismo foi integrado na sequência da rotina
de interrupção de relógio, de uma forma que estabelece eficientemente um com-
promisso entre a prontidão exigida no contexto de uma rotina de interrupção

xv

e o atraso máximo na detecção destas falhas temporais (na pior hipótese, uma
violação de um prazo de execução é detectado — e reportado aos serviços de He-
alth Monitoring do sistema — no inı́cio da próxima janela temporal de execução
da respectiva partição). A instância do componente AIR PAL em cada partição
fornece o mecanismo e as estruturas de dados para verificação do cumprimento
das metas temporais pelos respectivos processos.

Dada a coexistência com outros sistemas operativos na mesma plataforma,
faz total sentido, no desenvolvimento de uma partição Linux, aplicar técnicas
adequadas a sistemas com escassez de recursos — os sistemas embebidos. Esta
dissertação descreve o processo de construção de uma variante embebida de Li-
nux, atestando a sua adequação para integração na arquitectura AIR. São ainda
analisados os requisitos de segurança na operação (safety) que esta integração
deve observar, e é proposta a adaptação das interfaces de paravirtualização (dis-
ponı́veis nas mais recentes versões do núcleo Linux) para cumprimento desses
requisitos e adaptação às plataformas de processamento tipicamente empregues
em missões espaciais (baseadas em processadores SPARC LEON). A arquitectura
AIR é demonstrada através de um protótipo baseado em RTEMS, com ênfase nas
melhorias arquitecturais introduzidas no decorrer deste trabalho; a concretização
de um protótipo com o núcleo Linux numa das partições requer trabalho de en-
genharia que se estimou não ser compatı́vel com a duração do projecto desta
dissertação, sendo motivo para trabalho futuro.

Futuros desenvolvimentos incluem ainda a extensão do conceito de integração
em arquitecturas compartimentadas a outros sistemas operativos, como o Win-
dows (na forma do Windows Research Kernel), a provisão de ferramentas para
apoio à integração de sistemas baseados na arquitectura AIR (combinando a aná-
lise do impacto mútuo entre os dois nı́veis de escalonamento com a geração au-
tomatizada de tabelas de escalonamento), e a definição de extensões à arquitec-
tura para beneficiar do paralelismo fornecido por plataformas com processadores
multicore.

xvi

Contents

Acknowledgments v

Abstract ix

Resumo xi

Resumo alargado xiii

List of Figures xxii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Institutional context . 3

1.4 Publications . 3

1.5 Document outline . 4

2 Related work 5

2.1 Real-time systems . 5

2.2 Integrated Modular Avionics (IMA) 6

2.3 ARINC 653 . 7

2.3.1 Time and space partitioning 8

2.3.2 Health Monitoring . 9

2.3.3 ARINC 653 Service Interface 9

2.3.4 ARINC 653 Extended Services 10

2.4 IMA and ARINC 653 in space . 10

2.5 Linux and real-time . 11

2.6 Linux in aerospace applications . 13

2.7 Integrating Linux in partitioned architectures 13

2.8 Summary . 14

xvii

3 AIR: ARINC 653 in Space RTOS 15
3.1 System architecture . 15

3.1.1 Partition Management Kernel (PMK) 15
3.1.2 Application Executive (APEX) Interface 19
3.1.3 AIR Health Monitoring . 19

3.2 Robust time and space partitioning 20
3.2.1 Strict temporal segregation 20
3.2.2 Spatial segregation . 21

3.3 Summary . 22

4 Improving the AIR Technology 25
4.1 The AIR POS Adaptation Layer (PAL) 25

4.1.1 Architectural properties . 27
4.1.2 Component engineering . 28
4.1.3 Separation of concerns . 29

4.2 Enhanced timeliness mechanisms . 31
4.2.1 Mode-based schedules . 31
4.2.2 Process deadline violation monitoring 34

4.3 AIR space partitioning . 38
4.4 Summary . 39

5 Integration of generic operating systems 41
5.1 Relevance of the problem . 41
5.2 Linux state of the art . 42

5.2.1 Process scheduling . 43
5.2.2 Input/output (I/O) scheduling 43
5.2.3 Real-time capabilities . 43

5.3 Embedded Linux . 44
5.3.1 Configuring the Linux kernel 44
5.3.2 Building in functional features 45
5.3.3 Small system library . 46
5.3.4 Linux utilities and tools . 47
5.3.5 Shell . 47
5.3.6 Interpreted/scripting languages 48
5.3.7 Building process . 48
5.3.8 Overall results analysis . 50

5.4 Integration in the AIR architecture 51
5.4.1 Paravirtualization in the Linux kernel 51
5.4.2 AIR Linux partition: AIR PAL design and integration 52
5.4.3 AIR application platforms . 53

xviii

5.5 Summary . 54

6 Conclusion 55
6.1 Future work directions . 56

A Pseudocode snippets 59
A.1 Mode-based schedules . 59

A.1.1 Data structures and global variables 59
A.1.2 Partition scheduler . 60
A.1.3 Partition dispatcher . 60

A.2 Process deadline violation monitoring 62

Abbreviations 66

Bibliography 67

xix

List of Figures

2.1 Basic architecture of a IMA computing module 7
2.2 Standard ARINC 653 architecture . 8
2.3 RTLinux architecture . 11
2.4 The two historical approaches to RTAI 11
2.5 Interrupt pipe in ADEOS-based RTAI 12
2.6 xLuna architecture . 12

3.1 Overview of the AIR multi-executive core system architecture . . . 16
3.2 System clock tick processing at the AIR PMK level 17
3.3 APEX (core), AIR PMK components, and their relation with inter-

partition communication . 18
3.4 Internal architecture of the APEX Interface 19
3.5 AIR-II Health Monitoring Mechanisms 20
3.6 AIR-II Spatial Segregation Scheme 22

4.1 Overview of the improved AIR architecture 26
4.2 Architecture of the re-designed APEX Interface 26
4.3 AIR Partition Adaptation Layer (PAL) 27
4.4 Use case scenario of AIR PAL in the PMK partition scheduling and

dispatch scheme . 30
4.5 Optimized development process, enabled by separation of concerns 31
4.6 AIR Partition Scheduler with support for mode-based schedules . . 33
4.7 Integration of the APEX Interface and the AIR PAL to provide pro-

cess deadline violation detection and reporting 36
4.8 Modifications on the surrogate clock tick announcement routine to

accommodate deadline verification features 37
4.9 AIR Spatial Partitioning and Operating System Integration 39

5.1 Linux kernel configuration tool . 42
5.2 Size comparison between a kernel in a generic Linux distribution

and the embedded Linux kernel . 45
5.3 Size comparison between the embedded Linux kernel modular and

built-in approaches to the inclusion of the same features 46

xxi

5.4 Size comparison between the GNU C Library (glibc) and the uClibc 47
5.5 Size comparison between a set of GNU utilities and tools provided

both as separate executables and as a single BusyBox executable . . 48
5.6 Visual configuration tools exploited in the embedded Linux build

process . 49
5.7 Overall size comparison between embedded Linux and a typical

Linux distribution . 50
5.8 Boot process of a paravirtualized Linux kernel on top of a paravirt-

ops/VMI-compliant hypervisor . 52
5.9 Concepts of paravirtualization in the AIR architecture 52

xxii

Chapter 1

Introduction

Space systems of the future demand for innovative computer architectures, en-
abling component reuse among the different space missions. In this context,
the Integrated Modular Avionics (IMA) specification [1], originally defined for
aeronautic applications, appeared as a challenge to the federated architectures,
in which each avionics function would have its dedicated (and often physically
separated) hardware resources. IMA architectures, with avionics functions of dif-
ferent criticality levels coexisting in a partitioned environment, allow for a more
optimal resource utilization and reallocation [2].

The ARINC 653 specification [3, 4] is a fundamental block of IMA, observing
the concepts of time and space partitioning, and defining a general-purpose ser-
vice interface, known as APEX (Application Executive), between the application
software and the operating system (OS) of on-board computer platforms.

The interest of the European Space Agency (ESA) in the adoption of these
concepts for aerospace applications [5, 6] has led to the definition of the AIR
(ARINC 653 in Space RTOS) architecture, which preserves the hardware and
real-time operating system (RTOS) independence defined within the scope of
ARINC 653, while foreseeing the use of different RTOSs through the partitions [7,
8].

Motivated by the documented difficulties in porting some general-purpose
applications to RTOS [9, 10], this thesis describes the study of the process of inte-
grating non-real-time generic operating systems, like (embedded) Linux, as par-
tition operating systems in the AIR architecture [11]. In AIR, these non-critical
subsystems also receive a guaranteed time window in the fixed cyclic schedule;
this differs from previous approaches to the coexistence of critical and non-critical
processes, like RTLinux [12], RTAI [13], and xLuna [14].

The study of the integration of generic operating systems in the AIR architec-
ture also spawned improvements to the latter’s definition[15]. A new component,
the AIR Partition OS Adaptation Layer (PAL), was introduced, implementing

1

2 CHAPTER 1. INTRODUCTION

a homogenous methodology for subsequent addition of support to new parti-
tion operating systems, either RTOSs or generic non-real-time operating systems.
Other enhancements made to the AIR architecture during the course of this the-
sis’s work add robustness to timeliness adaptation and supervision, with features
such as mode-based schedules and process deadline violation monitoring.

1.1 Motivation

The present work was motivated by the following observations:

• the systems for which the AIR architecture is tailored may well benefit from
applications available on generic operating systems, and not on off-the-shelf
RTOSs;

• since temporal segregation (and, consequently, the timeliness of hard real-
time tasks) is secured by the fixed, cyclic time slicing of computing resources
among partitions, proper integration of a non-real-time operating system
inside a partition (for non-critical tasks) should not affect the timeliness of
hard real-time tasks;1

• both real-time and non-real-time operating systems require architectural
support to work as partition operating systems; isolating such support in
a smaller, dedicated component allows for a more homogenous process of
adding support to new operating systems, while maintaining the verifica-
tion, validation and/or certification status of the remaining architectural
components.

1.2 Contributions

The main contributions of the work described in this thesis comprise:

(i) an improved definition of the AIR Technology, which provides an architec-
ture for time/space partitioned aerospace applications, enrichened by:

(a) flexible integration of both real-time and non-real-time partition oper-
ating systems, with minimal impact on the verification, validation and
certification processes of the architectural components;

(b) enhanced timeliness adaptation and supervision mechanisms, such as
mode-based schedules and process deadline violation monitoring;

1Partition scheduling is described in detail in Section 3.1.1.

1.3. Institutional context 3

(ii) an embedded Linux solution viable for integration as a partition operating
system in the AIR architecture;

(iii) a proposed methodology for safe integration of Linux in the AIR architec-
ture, without violating the architecture’s strong segregation properties.

1.3 Institutional context

The present work took place at the Large-Scale Informatics Systems Laboratory
(LaSIGE–FCUL), a research unit of the Informatics Department (DI) of the Uni-
versity of Lisbon, Faculty of Sciences. It was developed within the scope of the
AIR-II (ARINC 653 In Space RTOS — Industrial Initiative) project, which fits in
the Timeliness and Adaptation in Dependable Systems research line of the Navi-
gators group.

AIR-II consists of a consortium, sponsored by the European Space Agency
(ESA), comprising LaSIGE–FCUL, Skysoft Portugal, and Thales Alenia Space (a
France-based service and system provider). As a full-time junior researcher, the
author of this thesis was a member of the LaSIGE–FCUL AIR-II team, participat-
ing in the whole extent of the team’s activities: identification of problems, pro-
posal and discussion of solutions, experimental work, project meetings (both in-
ternal and involving the remaining partners), production of project deliverables,
and dissemination of results (through the publication and presentation of scien-
tific papers at international conferences).

1.4 Publications

With the goal of validating and disseminating the present ideas, the work of this
thesis generated the following refereed publications:

1. J. Craveiro, J. Rufino, C. Almeida, R. Covelo, and P. Venda, “Embedded
Linux in a partitioned architecture for aerospace applications,” in Proceed-
ings of the 7th ACS/IEEE International Conference on Computer Systems and Ap-
plications (AICCSA 2009), Rabat, Morocco, May 2009, pp. 132–138.2 [11]

2. J. Rufino, J. Craveiro, T. Schoofs, C. Tatibana, and J. Windsor, “AIR Technol-
ogy: a step towards ARINC 653 in space,” in Proceedings of the DASIA 2009
“DAta Systems In Aerospace” Conference. Istanbul, Turkey: EUROSPACE,
May 2009. [15]

2Regular paper acceptance ratio: 32%

http://lasige.di.fc.ul.pt
http://lasige.di.fc.ul.pt
http://www.skysoft.pt/
http://www.thalesgroup.com/

4 CHAPTER 1. INTRODUCTION

3. J. Craveiro, J. Rufino, T. Schoofs, and J. Windsor, “Flexible operating system
integration in partitioned aerospace systems,” in Actas do INForum 2009,
Simpósio de Informática, Lisbon, Portugal, Sep. 2009, accepted for publica-
tion. [16]

and also the following reports:

4. J. Rufino and J. Craveiro, “AIR Design Consolidation, PMK – Partition Man-
agement Kernel,” FCUL, AIR-II Deliverable WP 1.1, 2009, confidential doc-
ument. [17]

5. J. Craveiro, J. Rufino, T. Schoofs, and J. Windsor, “Robustness, flexibility
and separation of concerns in ARINC 653-based aerospace systems,” AIR-II
Technical Report RT-09-02, 2009. [18]

1.5 Document outline

The remainder of this thesis is structured as follows:

Chapter 2 Literature review of basic underlying concepts (real-time, operating
systems, IMA, ARINC 653) and related work.

Chapter 3 Description of the AIR architecture upon which the present work in-
tends to integrate generic operating systems.

Chapter 4 Developments made to the AIR architecture during the course of the
present work.

Chapter 5 Identification of the problem of integrating generic operating systems
in the AIR architecture, and respective solutions based on (embedded)
Linux as a case of study.

Chapter 6 Concluding remarks and insight for future developments.

Chapter 2

Related work

This chapter introduces fundamental concepts, like real-time systems, Integrated
Modular Avionics (IMA), and the ARINC 653 specification. Furthermore, previ-
ous related work by other researchers is reviewed, concerning other approaches
to the use of Linux in real-time systems and aerospace applications.

2.1 Real-time systems

A real-time system is that whose progression is specified in terms of timeliness re-
quirements dictated by the environment. In other words, a real-time system is
that whose computations’ correctness is defined both in terms of the logical re-
sults and the time at which they are provided [19, 20, 21].

The definition of a real-time system in itself does not specifically define a de-
pendence between the time at which the results of a computation are provided
and the correctness of the computation (i.e., it does not completely define what
“timeliness” means). There are different classes of real-time systems, differing in
how demanding their definitions of “timeliness” are: hard real-time, soft real-
time, and mission-critical.

Hard real-time systems are those where the environment dictates that no timing
failures can occur. Thus, these systems have a time/utility function where the util-
ity (and, therefore, the correctness) of a computation drops to zero immediately
at the latest desirable instant for result production — the deadline.

On the other hand, in soft real-time systems occasional timing failures are ac-
cepted as a consequence of the kind of impact they may have in the environ-
ment (e.g., a online video streaming application may be defined as having only
soft-real time requirements, since occasional timing failures result, at most, in a
poorer viewing experience). The time/utility function of such system is one that
progressively decreases towards zero after the deadline is reached.

Finally, there are the so-called mission-critical real-time systems, where timing

5

6 CHAPTER 2. RELATED WORK

failures are avoided, but accounted for. In other words, a mission-critical system
is prepared to avoid timing failures, but at the same time deal with occasional
timing failures as exceptional events (thus mitigating their propagation and con-
sequences to the environment in which the system executes).

Contrary to an easy misconception [19], the goal of real-time systems is not
achieved through the path of performance, but through that of determinism. Thus,
most importantly than augmenting computing power and resources, real-time
must deal with the rational use of those resources so as to meet temporal require-
ments. This gives extreme relevance to the problem of resource scheduling, which
spans over different facets, like CPU scheduling (also known as process schedul-
ing), and input/output (I/O) scheduling. This thesis focuses on an architecture
which relies on a two-level hierarchical cyclic scheduling of resources to achieve
timeliness (cf. Section 2.3.1 and Chapter 3).

2.2 Integrated Modular Avionics (IMA)

Federated avionics are a legacy kind of architecture which makes use of distributed
avionics functions packaged as self-contained units: Line Replaceable Units (LRU)
and Line Replaceable Modules (LRM) [2]. An avionics system can be comprised
of multiple LRUs or LRMs, potentially built by different contractors. What dis-
tinguishes LRUs from LRMs is that, while the former are potentially built accord-
ing to independent specifications, the latter consummate a philosophy in which
the use of a common specification is defended [22]. With each avionics function
having its own dedicated (and sometimes physically apart) computer resources,
which cannot be reallocated at runtime, inefficient resource utilization is a poten-
tial drawback from the inherent independence of faults [23, 24].

As a challenge to the traditional federated avionics system architecture, the
Integrated Modular Avionics (IMA) [1] concept emerged. IMA architectures employ
a high-integrity, partitioned environment that hosts multiple avionics functions
of different criticalities on a shared computing platform. IMA addresses the needs
of modern systems, such as optimizing the allocation of computing resources,
reducing size, weight and power consumption (a set of common needs in the
area of avionics, which is commonly represented by the acronym SWaP), and
consolidation development efforts (releasing the developer from focusing on the
target platform, in favor of focusing on the software and easier development and
certification processes) [2]. Figure 2.1 portrays a basic example of the layered
architecture of a IMA module.

A newer trend in the aeronautic industry, combining the advantages from
both the legacy federated avionics and the Integrated Modular Avionics is the

2.3. ARINC 653 7

Figure 2.1: Basic architecture of a IMA computing module

Distributed Integrated Modular Avionics (DIMA) concept [25].

2.3 ARINC 653

The ARINC 653 specification [3, 4], adopted by the Airlines Electronic Engineering
Committee in 1996, is a fundamental block from the Integrated Modular Avionics
(IMA) definition [1], where the partitioning concept emerges for protection and
functional separation between applications, usually for fault containment and
ease of validation, verification, and certification [3, 26]. Examples of its applica-
tion in the civil aviation industry include the operating systems shipped in the
Airbus A380 and Boeing 787 commercial aircrafts. The ARINC 653 specification
defines a standard interface between the software applications and the underly-
ing operating system, known as application executive (APEX) interface.

The architecture of a standard ARINC 653 system is sketched in Figure 2.2.
At the application software layer, each application is executed in a confined con-
text, dubbed partition in ARINC 653 terminology [3]. The application software
layer may include system partitions intended to manage interactions with spe-
cific hardware devices.

Application partitions consist in general of one or more processes and can
only use the services provided by a logical application executive (APEX) inter-
face, as defined in the ARINC 653 specification [3]. System partitions may use
also specific functions provided by the core software layer (e.g. hardware inter-
facing and device drivers), being allowed to bypass the standard APEX interface.
The main parameters caracterizing each partition are its criticality level, its pe-
riod, and its duration [23]. The notions of period and duration are related to
the employment of temporal partitioning of computing resources, which will be
detailed in Section 2.3.1.

The execution environment provided by the OS kernel module must furnish a

8 CHAPTER 2. RELATED WORK

Application

Partition 1

Application

Partition N System

Partition 1

System

Partition K

APEX Interface

System Specific

Functions
OS Kernel

Hardware

Figure 2.2: Standard ARINC 653 architecture

relevant set of operating system services, such as process scheduling and man-
agement, time and clock management, and inter-process synchronization and
communication.

2.3.1 Time and space partitioning

Time partitioning consists of the time-sliced allocation of computing resources to
hosted applications, achieved in ARINC 653 through a fixed, cyclic scheduling
of partitions over a major time frame (MTF) [3, 23].1 This way, strong temporal
segregation is achieved, in which activities inside each partition do not affect the
timeliness of activities executing inside the remaining partitions in the system.
Processes inside a partition are scheduled according to a priority preemptive al-
gorithm [3].

For a well designed system, the duration of the MTF will correspond to the
least common multiple of the partitions’ periods (so that it is a multiple of each
individual partition’s period). The period of a partition is the interval at which
computing resources are assigned to it; the amount of time, per period, during
which each partition owns computing resources is called its duration.

Space partitioning concerns preventing applications from having write access
to memory zones outside those belonging to its partition. In ARINC 653, this is
implicitly ensured by the concept of partitions; the specification makes no con-
siderations on how the operating system achieves space partitioning, it only as-
sumes and requires it [3, 7].

1This is the basic partition scheduling behaviour, optionally extended with multiple schedules
(cf. Section 2.3.4).

2.3. ARINC 653 9

2.3.2 Health Monitoring

The Health Monitoring (HM) functions consist in a set of mechanisms to monitor
system resources and application components. The HM helps to isolate faults
and to prevent failures from propagating. Within the scope of the ARINC 653
standard specification the HM functions are defined for process, partition and
system levels [3].

2.3.3 ARINC 653 Service Interface

The ARINC 653 service requests define the application executive APEX interface
layer provided to the application software developer and the facilities the core
software layer shall supply. A set of services is mandatory for strict compliance
with the ARINC 653 standard [3], grouped into the following major categories:

Partition management

Partition management comprises services for obtaining the current partition’s sta-
tus, and for setting the partition’s operating mode (NORMAL, IDLE, COLD START,
or WARM START). NORMAL is the operational mode of a partition, when pro-
cess scheduling is active, while IDLE means that the partition is not executing
any processes. Both COLD START and WARM START indicate an initialization
phase is in progress.

Process management

Process management services include obtaining process information (identifier,
status), creating processes, modifying priorities, controlling the state of processes
(suspend/resume, stop/start) and enabling/disabling process preemption at the
partition level.

Time management

Time management services implement timed waits, periodic waits, deadline post-
poning (replenishment), and obtainment of the current value of the system clock.

Intrapartition communication

Intrapartition communication encompasses interprocess communication and pro-
cess synchronization. Interprocess communication is possible via message buffers
and blackboards, and process synchronization benefits from services to support
semaphores and events.

10 CHAPTER 2. RELATED WORK

Interpartition communication

Interpartition communication services provide the creation and read/write ac-
cess to two different abstractions: sampling ports (where each occurrence of a
message overwrites the previous one) and queuing ports (where a finite number
of messages is stored in FIFO order).

Health monitoring

Health monitoring services provide means for partitions to signal any detected
erroneous behaviors to the health monitoring functions, create error handler pro-
cesses (which have a highest, non-modifiable, priority, and are not preemptible),
and invoke the handler process defined for a given error.

2.3.4 ARINC 653 Extended Services

The Part 2 of the ARINC 653 specification [4] adds, to the aforementioned manda-
tory services, optional services or extensions to the required services. These in-
clude the Multiple Module Schedules services, which are the basis of an improve-
ment in the AIR architecture called Mode-based Schedules. This is described in
depth in Section 4.2.1.

2.4 IMA and ARINC 653 in space

Having identified similarity with the requirements of the avionics applications,
the space industry has developed an interest in IMA and its associated concepts,
like time and space partitioning, for space applications. A TSP working group,
comprising elements from the European Space Agency, the French space agency
(CNES, Centre National d’Études Spatiales), Astrium and Thales Alenia Space
(two civil and defense space systems and services providers), has been estab-
lished provide use case descriptions, establish requirements assess the impact on
hardware and software, and identify issues that require further prototyping or
feasibility assessment [6].

Applying the IMA philosophy to space provides an easier integration of soft-
ware modules, allows independent validation of critical functions, aids fault con-
tainment, and facilitates the implementation of security modules sharing onboard
resources. Space agencies, such as ESA, and industrial partners have established
user requirements of applying IMA to space, and identified no fundamental and
technological feasibility impediments [27].

http://www.cnes.fr/
http://www.astrium.eads.net/en/homepage
http://www.thalesgroup.com/Markets/Space/Home/?LangType=2057

2.5. Linux and real-time 11

2.5 Linux and real-time

The initial approach for introducing hard real-time processes in Linux-based op-
erating systems was given by [12] in the RTLinux design approach, in which
real-time behavior is secured through a low-level specific-purpose microkernel
inserted between the hardware infrastructure and the Linux operating system
kernel, as pictured in Figure 2.3. The Linux kernel and applications run as the
idle task of the real-time microkernel.

Figure 2.3: RTLinux architecture (adapted from [21])

The Real-Time Application Interface for Linux (RTAI) [13] initially employed the
RTLinux design concept, as portrayed in Figure 2.4(a), adding features absent
from the latter at the time (like floating-point support). However, patent issues
led to the later substitution of the RTLinux hardware abstraction layer (RTHAL)
for ADEOS (Adaptive Domain Environment for Operating Systems) [28, 29], a re-
source virtualization layer which poses itself as a kernel module, taking over the
innermost protection ring to intercept traps and interrupts. The ADEOS-based
architecture of RTAI is pictured in Figure 2.4(b).

(a) RTLinux-like RTAI architecture (b) ADEOS-based RTAI architecture

Figure 2.4: The two historical approaches to RTAI

12 CHAPTER 2. RELATED WORK

Interrupt handling by RTAI/ADEOS is based on an interrupt pipe, propagat-
ing interrupts through the different domains (cf. Figure 2.5). Both the concept of
domains and this interrupt pipe approach were inspired by the SPACE approach
to operating system implementation [29, 30].

Figure 2.5: Interrupt pipe in ADEOS-based RTAI

A similar approach is followed in the xLuna operating system [14], this time
around supported on the RTEMS (the Real-Time Executive for Multiprocessor
Systems) kernel [31]. xLuna was developed by Critical Software under a contract
with ESA’s European Space Research and Technology Centre (ESTEC). A xLuna
microkernel mediates the interactions between the hardware and the operating
system components (RTEMS and Linux). Linux runs as the lowest priority task.
The xLuna has been targeted to run on the SPARC LEON processor, extensively
used in aerospace systems. Figure 2.6 depicts the architecture of the xLuna kernel.

Figure 2.6: xLuna architecture

In all the aforementioned approaches, the Linux kernel and, consequently, the
applications running on top of it have no guaranteed processing time. Although
this does not compromise the requirements of real-time applications, it may hin-
der the minimum desirable performance of non-real-time Linux applications. In
AIR (cf. Chapter 3), all partitions, including those running non-critical activi-
ties such as Linux processes, have a guaranteed execution time window in the
scheduling of computing resources to partitions.

2.6. Linux in aerospace applications 13

In the architecture on which the work of this thesis focuses, the approach to
the integration of operating systems in a partitioned environment is that of al-
lowing the same operating system to run, unmodified, both on its own and as a
partition operating system.

2.6 Linux in aerospace applications

As regards the use of Linux in avionics applications, the Avionics and Simula-
tion Department of Airbus has conducted research on the viability of migrating a
soft real-time system from a POSIX off-the-shelf RTOS to a standard Linux kernel
(coupled with BusyBox). This research found no technical obstacle or incompat-
ibility which could compromise the adoption of Linux, while nevertheless iden-
tifying some points where the complexity of optimizing system resource usage
should be reduced in favor of achieving the deterministic behavior required by
critical embedded systems [32].

In the space industry, ESA is widely interested in adopting platform-indepen-
dent [33] and open source [27] operating system solutions, like RTEMS [31] and
Linux. This manifests itself in financial and technical support for projects like
xLuna [14] (cf. Section 2.5) and AIR (on which this thesis builds upon), and in the
efforts of migrating ground segment data systems from Sun Solaris to Linux [33].

2.7 Integrating Linux in partitioned architectures

AIR (ARINC 653 In Space RTOS) [7, 8] is the definition of a partitioned archi-
tecture for aerospace applications, derived from the the interest of the European
Space Agency (ESA) on the concepts of the aviation-related IMA [1] and ARINC
653 [3] specifications. Initially a proof of concept for the adaptation of RTEMS [31]
to offer the ARINC 653 application executive interface and functionality, the de-
sign of the AIR architecture evolved to foresee the employment of different real-
time operating systems along the partitions. The AIR architecture resulted from
ESA-sponsored initiatives featuring collaboration between the Faculty of Sciences
of the University of Lisbon and Skysoft Portugal.

XtratuM [34], developed by the Universidad Politécnica de Valencia in a con-
tract with CNES, is a paravirtualizing hypervisor aiming to run multiple oper-
ating systems in a robustly partitioned fashion, on the SPARC V8 architecture
(LEON processors). Linux has been ported to run as a partition operating system
on top of XtratuM, but such portings are only available for the Intel x86 archi-
tecture. Despite having had its Application Programming Interface (API) and in-
ternal operations adapted to resemble the ARINC 653 specification [3], XtratuM

14 CHAPTER 2. RELATED WORK

does not intend to comply with ARINC 653 [35].
This thesis builds upon the operating system heterogeneity inherent to the

AIR architecture, extending it to generic non-real-time operating systems, such
as Linux (which is used as a case study).

2.8 Summary

This chapter presented concepts, literature and related work on the basic concepts
fundamental to the full understanding of the work performed in the present the-
sis: real-time systems, Integrated Modular Avionics (IMA), ARINC 653, the adop-
tion of IMA/ARINC 653 concepts in space, and Linux on real-time and aerospace
systems.

In the following chapter, a partitioned architecture based on the ARINC 653
principles — the AIR architecture — is presented in detail.

Chapter 3

AIR: ARINC 653 in Space RTOS

The technological interest of ESA in the concepts of IMA and ARINC 653 [3, 5,
6, 27] led to the development of a proof of concept [7, 8] and a demonstration
of feasibility of use, within the scope of the ESA innovation triangular initiative
(project AIR). The “AIR-II: ARINC 653 Interface in Space RTOS - Industrial Initia-
tive” activities continue the work done in AIR, with the goal of becoming closer
to a real system by improving and completing the key ideas identified.

This chapter describes the AIR architecture, upon which this work proposes
to integrate generic operating systems, as it was defined when this thesis’s work
began. Improvements made since then, which constitute contributions of this
work inserted in the AIR-II activities, are described in Chapter 4.

3.1 System architecture

The design of the AIR architecture in essence preserves the hardware and RTOS
independence defined within the scope of the ARINC 653 specification [3, 8, 7].
The AIR system architecture is pictured in Figure 3.1. The different components
will now be presented in detail.

3.1.1 Partition Management Kernel (PMK)

The component, transversal to all partitions, which is responsible for provid-
ing the strong properties of the system, is the AIR Partition Management Kernel
(PMK). The AIR PMK is a simple microkernel that efficiently handles:

• Partition scheduling, selecting at given times which partition owns system re-
sources, namely the processing infrastructure. The AIR Partition Scheduler
secures temporal segregation using a single fixed cyclic scheduler.

• Partition dispatching, saving the execution context of the running partition
and restoring the execution context for the heir partition. The AIR Partition

15

16 CHAPTER 3. AIR: ARINC 653 IN SPACE RTOS

Hardware

Core Software Layer

Application Software Layer

RTOS

Kernel

RTOS

Kernel
System Specific

Functions

RTOS

Kernel
System Specific

Functions

RTOS

Kernel

APEX Interface APEX Interface APEX Interface APEX Interface

…................
System

Partition 1

Application

Partition 1

Application

Partition N
……...

ARINC 653 Partition Management Kernel (PMK)

System

Partition K

Figure 3.1: Overview of the AIR multi-executive core system architecture

Dispatcher secures the management of all provisions required to guarantee
spatial segregation.

• Interpartition communication, allowing the exchange of information between
different partitions without violating spatial segregation constraints.

Partition scheduling

System clock tick interrupts are caught by the AIR Hardware Abstraction Layer
(HAL), which in turn passes each one to the AIR PMK, namely to the PMK Time
Manager internal component. This component increments the clock tick count,
and passes the interrupt to the PMK Partition Scheduler. The latter verifies the
Partition Scheduling Table (PST) to determine if we are in the presence of a par-
tition preemption point at the current tick (and, if so, what is the heir partition).
The PST lists partition preemption points instants relatively to the beginning of
the major time frame.

Partition dispatching

The processing of the system clock tick interrupt continues at the PMK Partition
Dispatcher component, where (in the presence of a partition preemption point)
the context of the running partition is saved, and the context of the heir partition
is restored. It is also the PMK Partition Dispatcher that calculates the number
of clock ticks elapsed during the most recent preemption of the heir partition,
which will be ultimately be announced via a modified system clock tick interrupt
service routine (ISR) on the native partition operating system.

The described functioning of the AIR partition scheduling and dispatching
mechanisms is schematized in Figure 3.2. The flowchart there contained particu-

3.1. System architecture 17

larly details how clock tick accounting is kept for both the (previously) running
partition and the heir partition.

Figure 3.2: System clock tick processing at the AIR PMK level

Interpartition communication

Interpartition communication was introduced in AIR-II and its relation with spa-
tial segregation implies the use of specific executive interface services encapsu-
lating and providing the transfer of data from one partition to another without
violating spatial segregation constraints [3].

The interpartition communication abstractions required by the ARINC 653,
sampling ports and queuing ports, model each partition’s way to communicate
(send or receive messages) through a communication channel.

The core AIR interpartition communication mechanisms are integrated at the
APEX (core) level. This means that each partition’s instance of the APEX holds
the necessary mechanisms and structures to support the ports that partition may
use during system execution (which are entirely defined at system configuration
time, as per ARINC 653). For sampling ports, this consists of a buffer to store
one message; on a given partition’s source port, each message sent by an appli-
cation overwrites any previous message there might be, and remains in the port

18 CHAPTER 3. AIR: ARINC 653 IN SPACE RTOS

until the channel transmits it (or until overwritten, whichever happens first). In
the case of a destination port, messages are successively overwritten as new mes-
sages are delivered by the channel, thus allowing applications in the partition to
always read the latest message. In the case of queuing ports, there is space for a
configured number of messages, and they are never overwritten: messages in a
source queuing port will be stored in the queue until they are transmitted, and
messages in a destination port will remain queued until they are received by the
application.

The AIR PMK shall manage the memory protection mechanisms, to guaran-
tee that each partition’s ports are not accessible by any other partition, and the
memory-to-memory copy procedures needed to implement the local communi-
cation channels. Although the AIR architecture design does not currently ad-
dress interpartition communication to that degree, the ARINC 653 specification
foresees that these channels can connect two different nodes [3].

The described interpartition communication mechanisms are exemplified in
Figure 3.3, with the following partition/ports combination:

• Partition X: one source queuing port with a 4-message buffer;

• Partition Y: one destination queuing port with a 3-message buffer, and one
destination sampling port;

• Partition Z: one source sampling port.

Figure 3.3: APEX (core), AIR PMK components, and their relation with interpar-
tition communication

3.1. System architecture 19

3.1.2 Application Executive (APEX) Interface

Another fundamental component concerns the APEX interface, defining for each
partition in the system a set of services in strict conformity with the ARINC 653
specification. The AIR APEX was improved in AIR-II, and consists of two com-
ponents: the APEX Core Layer and the APEX Layer Interface. The relationship
between such two components can be seen in Figure 3.4. The APEX core Layer
implements the advanced notion of Portable APEX intended to ensure portability
between the different OS supported by AIR [36]. It exploits the POSIX application
programming interface that is currently available on most (RT)OS [37]. An opti-
mized implementation may invoke directly the native (RT)OS service primitives.
In the AIR activities, the APEX was developed by the Skysoft partner, and re-
ceived input from the activities of another project where the APEX was present —
ARINC 653 Simulator for Modular Space Based Applications (AMOBA) [25, 38].

On top of the APEX core layer, the partition and process management services,
the intra- and interpartition communication services and the health monitoring
services are built. The partition management, interpartition communication and
health monitoring services rely additionally on the PMK service interface. In
this respect, the PMK provides the partition-wise handling of memory protection
descriptors.

The APEX also coordinates when required the interactions with the AIR Health
Monitor, e.g. upon the detection of an error.

Figure 3.4: Internal architecture of the APEX Interface

3.1.3 AIR Health Monitoring

The AIR Health Monitor introduced in AIR-II is responsible for handling hard-
ware and software errors (like deadlines missed, memory protection violations,
bounds violation or hardware failures). As much as possible, it will isolate the er-

20 CHAPTER 3. AIR: ARINC 653 IN SPACE RTOS

ror propagation within its domain of occurrence: process level errors will cause
an application error handler to be invoked, while partition level errors trigger a
response action defined by the partition Health Monitor table in the ARINC 653
configuration. The response action may be shutting down the entire partition,
reinitializing the partition again or simply ignoring the error. Partition errors
may be also raised as a consequence of process level errors that cannot be han-
dled by the application error handler. Errors detected at system level may lead
the entire system to be stopped or reinitialized.

The design of AIR allows Health Monitoring handlers to simply replace ex-
isting handlers or to be added to existing ones in pre- and/or post-processing
modes.

Figure 3.5: AIR-II Health Monitoring Mechanisms

3.2 Robust time and space partitioning

Time and space partitioning (TSP) is a fundamental concept in the software ar-
chitecture used in the shared computing platform of an IMA-based system [6].
ARINC 653, being a significant block IMA, revolves around the notion of TSP,
and the AIR architecture definition provides its implementation of this required
notion. The following sections describe the robust implementation of time and
space partitioning present in the AIR architecture.

3.2.1 Strict temporal segregation

The ARINC 653 standard specification [3] restricts the processing time assigned to
each partition, in conformity with given configuration parameters. The schedul-
ing of partitions defined by the ARINC 653 standard is strictly deterministic over

3.2. Robust time and space partitioning 21

time. Each partition has a fixed temporal window in which it has control over
the computational platform. Each partition is scheduled on a fixed, cyclic basis.
This allows the AIR architecture to cope with hard real-time requirements and, in
a given sense, opens room for the temporal composability of applications.

To ensure flexibility and modularity, instead of modifying the RTOS scheduler
to extend it to the partitioning concept, the approach followed in the AIR architec-
ture uses one instance of the native RTOS scheduler for process scheduling inside
each partition. No fundamental modification is needed to the functionality of the
RTOS process scheduler for its integration in the AIR system. Such a two-level hi-
erarchical scheduler approach secures partition and process scheduler decoupling,
thus allowing the use of different operating systems in different partitions (e.g.
RTEMS [31], eCos [39, 40], . . .).

3.2.2 Spatial segregation

Robust partitioning comprises the protection of each partition’s memory address-
ing space, to be provided by specific memory protection mechanisms usually im-
plemented in a hardware memory management unit (MMU). It requires also a
functional protection concerning the management of privilege levels and restric-
tions to the execution of privileged instructions. A basic set of such mechanisms
do exist in the Intel IA-32 architecture (widely used in everyday applications)
and, to a given extent, in the SPARC LEON processor core, crucial to the Euro-
pean space industry.

Space partitioning abstraction layer

A highly modular design approach has also been followed in the support of
AIR spatial segregation. Spatial segregation requirements, specified in ARINC
653 configuration files with the assistance of development tools support, are de-
scribed in run-time through a high-level processor independent abstraction layer.
A set of descriptors is provided per partition, primarily corresponding to the sev-
eral levels of execution of an activity (e.g. application, POS kernel and AIR PMK)
and to its different memory sections (e.g. code, data and stack), as illustrated in
the diagram of Figure 3.6.

In AIR Technology, the definition of the high-level abstract space partition-
ing takes into account the semantics expected by user-level application program-
ming. At each partition, the application environment inherits the execution model
of the corresponding POS and/or its language run-time environment. This is true
for system partitions and may be applied also to application partitions, using only
the standard APEX interface.

22 CHAPTER 3. AIR: ARINC 653 IN SPACE RTOS

Figure 3.6: AIR-II Spatial Segregation Scheme

Memory protection mechanisms

The high-level abstract space partitioning description needs to be mapped in run-
time to the specific processor memory protection mechanisms, possibly exploit-
ing the availability of a memory management unit (MMU). Possible examples of
such mapping are: the fence registers of the ATMEL AT697E SPARC V8 LEON2
processor or the Gaisler SPARC V8 LEON3 three-level page-based MMU core.

Mapping of high-level abstract partitioning also includes the management of
privilege levels: only the AIR PMK is executed in privileged mode (cf. Figure 3.6).
The lack of multiple protection rings, such as it exists in the Intel IA-32 processor
architecture, may be mitigated in the SPARC V8 architecture by granting access
to a given level only during the execution of services belonging to that level (or
lower ones). This may be achieved by activating the corresponding memory pro-
tection descriptors upon call of a service primitive, and deactivating them when
service execution ends.

3.3 Summary

This chapter has described the essential of the AIR Technology. The AIR tech-
nology aims to provide the developers and the integrators of space on-board
software with a time- and space-partitioned environment that is standard and in
conformity with the ARINC 653 specification [3]. The AIR solution is hardware-
and OS-independent. The AIR design allows in principle the versatile integra-
tion of both open-source and commercial operating system kernels. Current de-

3.3. Summary 23

velopment makes use of the Real-Time Executive for Multiprocessor Systems
(RTEMS) [31] as a significant representative of RTOS kernels [8]. RTEMS is a
real-time multitasking kernel qualified for use in space on-board software devel-
opments.

The following chapters describe the original contribute of this thesis to the
AIR Technology definition. The next chapter will present the enhancements made
to the system architecture, in part directly related to the goal of integrating generic
non-real-time operating systems in the partitions, but also including timeliness
adaptation and monitoring features.

Chapter 4

Improving the AIR Technology

This chapter describes evolutions made to the AIR architecture, which bene-
fited, to a high degree, from motivation and lessons learned from the preliminary
stages of approaching the problem of integrating generic operating system in a
partitioned architecture.

4.1 The AIR POS Adaptation Layer (PAL)

After the preliminary studies on the integration of generic operating systems in
AIR [11], it became evident that an additional layer (between the partition oper-
ating system — POS — and the remaining system architecture components) was
required for the integration of Linux, while also being apparent that partitions
hosting real-time operating systems would also benefit (albeit possibly in differ-
ent ways) from an identical layer.

On a first approach, this was dubbed the paravirtualization layer, and would
reside directly under the POS, between the latter and the AIR PMK. Further de-
velopments capitalized on the observations that:

(i) to aid the integration of different POSs, such layer should, not only provide
paravirtualization of the POS, but also bring added POS-independence char-
acteristics to the architectural components (such as the AIR PMK); this also
confirmed that this component should be present in all partitions;

(ii) the purposes of POS adaptation of this layer implied, not only interactions
with the AIR PMK, but also with the APEX, thus it should reside around the
POS (not below).

The second approach to this new layer resulted in the integration as a new
component in the AIR architecture, the AIR POS Adaptation Layer (PAL). This in-
tegration is pictured in Figure 4.1, which represents the current and improved

25

26 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

AIR system architecture, resulting from activities developed in the course of this
thesis’s work.

Figure 4.1: Overview of the improved AIR architecture

The integration of the Portable APEX (cf. Figure 3.4) was slightly modified,
in function of the introduction of the AIR PAL component. The new approach
is pictured in Figure 4.2. The APEX will now take advantage of mappings or
services provided by the AIR PAL, as detailed in Section 4.1.1.

Figure 4.2: Architecture of the re-designed APEX Interface

The improvements enabled by the introduction of the AIR PAL component
can be divided in three categories: (i) architectural properties; (ii) engineering of
AIR components, and; (iii) leaner development processes, stemming from sepa-
ration of concerns. These improvements will now be detailed.

4.1. The AIR POS Adaptation Layer (PAL) 27

Figure 4.3: AIR Partition Adaptation Layer (PAL)

4.1.1 Architectural properties

Although foreseeing the use of different operating systems on each partition, and
providing applications with a POS-independent interface (the APEX), the original
AIR PMK design [8], as presented in Chapter 3, did, by omission, lend itself to too
much of a burden on the matter of adaptation to a new POS. Whenever support to
a new POS was to be added, the AIR PMK would have to be modified. Although
changes will often be slight and focused, they would hinder previous or ongoing
validation and/or certification efforts on the AIR PMK.

By wrapping each partition’s operating system kernel inside an adaptation
layer (the AIR PAL), the AIR PMK can act upon the POS in a way that is agnostic
of the latter, when necessary. Upon the need to add support to a different POS,
the AIR PMK remains unaltered, with support being coded by developing an
adequate PAL — from scratch, or from an existing one. It is still necessary to
code the integration of a new POS, but this time around no modification to the
AIR PMK is needed (and, thus, its verification, validation and/or certification
status remains the same).

This was the key idea in introducing the AIR PAL component, where the in-
teraction with the AIR PMK does concern (cf. Figure 4.3):

1. the execution of POS initialization procedures;

2. interfacing with AIR PMK components, including: the partition scheduler
and dispatcher; the low-level hardware abstraction layer, managing the ac-
cess to raw computer platform resources; effective mechanisms to support
interrupt-driven or polled-mode input/output actions and its relation with
partition scheduling.

However, the PAL also benefits the design of other AIR components, such as
the Portable APEX and the AIR Health Monitor (HM), as follows:

28 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

3. mapping of APEX system calls onto the services provided by the POS or
onto specific services built into the AIR architecture, for example, actions for
the management of the time-budget of the processes, which may include:
timeliness control and time-related functions; monitoring of hard real-time
process deadline and its verification; notification that a process has com-
pleted its execution and entered a wait state; advanced time-budget trans-
fers from processes in hard real-time partitions to processes in non real-time
partitions;

4. support to interactions with the AIR HM component, usually triggered by
the raising of an exception [15].

For completeness sake, Figure 4.3 also specifies the interactions between the
APEX and the AIR PMK components that do not directly involve PAL calls, such
as those concerning:

5. partition management and mapping of APEX interpartition communication
service requests into memory writing/reading accesses and, if necessary,
memory-to-memory copy actions, without violating space segregation con-
straints [15, 3].

4.1.2 Component engineering

Besides consolidating the POS-independence of the AIR PMK, Portable APEX
and AIR HM components, the AIR PAL can also make up for some non-optimal
or inappropriate behavior of the native POS implementation of some function.
Also, by providing these surrogate functions — intended to be called in spite of
the native ones — instead of creating patches to be applied to the RTOS’s source
code, we extend the lifetime of the support to a given RTOS through more subse-
quent versions of the latter. The reason for this is that the patches’ mapping onto
their target relies on source code file names and line numbers, whereas the AIR
PAL relies on function prototypes and behaviors.

The improvements on architectural properties and component engineering
are closely related, and constitute the basis of a flexible integration of partition op-
erating systems. We now illustrate, through a use case scenario, the architectural
and engineering problems that the AIR PAL solves, and how.

Use case scenario: partition scheduling and dispatching

In the AIR PMK design, as described in Section 3.1.1, partition scheduling and
dispatching culminates in the announcement to the heir partition of the number
of clock ticks elapsed since it was last preempted.

4.1. The AIR POS Adaptation Layer (PAL) 29

Calling the native POS system clock tick announcement routine for this pur-
pose poses two problems. The first one concerns architectural features, namely
the AIR PMK’s POS-independence: different POSs may offer calls with differing
prototypes for this purpose, forcing the PMK to be aware of the POS to call the
right function. The other problem is that different POS may also offer calls with
differing or inappropriate behaviors; specifically, one must ensure that the joint
announcement of the clock ticks elapsed since the last preemption of the heir
partition is an atomic action. This is a fundamental condition to ensure robust
temporal partitioning.

Addressing these issues, a PAL implementation for any POS offers a surrogate
clock tick announcement routine, which prototype should follow a defined spec-
ification. Depending on how each POS natively implements the routine we are
encapsulating, the PAL implementation can range from acting as a simple alias, to
being a complete rewrite of the native code. This use case scenario is illustrated in
Figure 4.4, using the RTEMS [31] as an example; for RTEMS, the AIR PAL imple-
mentation would consist only of iterating the appropriate number of times on the
native RTEMS procedure for (single) clock tick announcement (rtems clock tick).

4.1.3 Separation of concerns

Another reason against patching the POS so as to obtain the integration and in-
tended behavior for running on the AIR architecture is that it would break the
desired separation of concerns, thus undermining an otherwise streamlined devel-
opment process.

When application developers are working on an application to run on a given
partition, they should have to be concerned only with functional implementation.
System partition developers will nevertheless typically use and need to know of
OS-specific interfaces, but even these should not be concerned on how the un-
derlying POS is adapted to the AIR architecture. Thus, the operational burden of
this adaptation should reside on the side of the core software layer components’
developers/maintainers. This is another one of the main reasons why having
the PAL provide new implementations to other components (PMK, APEX, HM)
by wrapping the POS is a more elegant approach than modifying (patching) the
latter.

In turn, on the core software layer side, centering the adaptation to every new
POS on the AIR PMK is not desired, because it would require further constant
revalidation work (with certification in mind), while at the same time diverting
the focus of the AIR maintainers from what should be the main concerns of the
PMK — ensuring robust temporal and spatial segregation.

By consolidating the separation of concerns in the AIR architecture, the devel-

30 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

Figure 4.4: Use case scenario of AIR PAL in the PMK partition scheduling and
dispatch scheme

opment workflow can rely much more on reusable components — also known
as building blocks. This methodology is widely praised by the space industry [27].
For instance, as soon as an AIR PAL for a given POS is available, it can be used by
different partition application developers. On another aspect, system integrators
are given the partition applications in the form of reusable objects, allowing them
great flexibility on how to integrate them in different modules.

This leads to leaner software development processes, with less overhead spent
on interactions between different stakeholders (partition application developers,
system integrators, etc.).

Figure 4.5 illustrates the entire development process, with emphasis on the
different roles involved. The interactions between different intervenients are es-
sentially one-way and evolve incrementally towards the full integrated system.
By building the system from independent object files, modifications to one part
of the system will not affect the remaining parts, whose object files will remain

4.2. Enhanced timeliness mechanisms 31

Figure 4.5: Optimized development process, enabled by separation of concerns

unmodified, thus not requiring new validation efforts.

4.2 Enhanced timeliness mechanisms

In the course of the present work, the design of AIR PMK was enhanced so as to
incorporate:

• simple, yet highly effective, mode-based scheduling mechanisms, to enable
switching among multiple partition schedules and execute appropriate ac-
tions the first time a partition is dispatched after a schedule change; this is
useful both to implement fault tolerance mechanisms and to optimize parti-
tion scheduling for different modes of operation or phases of a mission [4];

• a POS-independent optimized scheme, inserted at the AIR PMK level before
the partition process scheduler, aiming to verify the fulfillment of hard real-
time process deadlines; only the earliest deadline is verified at each system
clock tick, and violations of deadlines are reported to the health monitoring
mechanisms.

4.2.1 Mode-based schedules

The ARINC 653 specification [3] defines a static scheduling of partitions, cycli-
cally obeying to a Partition Scheduling Table (PST) defined offline, at system in-
tegration time. This is certainly very restricting in terms of configuration and
fault tolerance.

32 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

ARINC 653 Part 2 [4], which defines optional extended services, introduces
the notion of multiple mode-based schedules. Acknowledging how restrictive
a single schedule can be for certain scenarios, the basic mandatory scheme is
extended to allow multiple schedules to be defined in the configuration table.
At execution time, authorized partitions may request switching between these
schedules. Examples of the usefulness of such approach include the adaptation
of schedules to different modes/phases (initialization, operation, etc.) and the
accommodation of component failures (e.g., assigning a critical program running
in a failed processor to another one).

For this purpose, the configuration table is extended in two ways:

1. definition of multiple schedules, with different major time frames, parti-
tions, and respective periods and execution time windows;

2. inclusion of restart actions (ScheduleChangeAction) to be performed, on a
per-partition and per-schedule basis, when the schedule is changed.

Support for this functionality includes the provision of following new APEX
services.

SET MODULE SCHEDULE sets the schedule that will start executing at the
top of the next major time frame. It must be invoked by an authorized partition,
and have the identifier of an existing schedule as its only parameter. The immedi-
ate result is only that of setting the NEXT SCHEDULE field in the schedule status
to the indicated schedule identifier.

At the start of the next major time frame, the following steps are performed to
make the schedule switch effective:

1. CURRENT SCHEDULE is set to NEXT SCHEDULE (which is the schedule
identifier provided in the previous SET MODULE SCHEDULE call);

2. partition start is initiated for each partition that was not started during a
previous schedule.

Also, each partition in the new schedule running in NORMAL mode will
have to be restarted according to its ScheduleChangeAction.1 This action will
take place the first time each partition is scheduled/dispatched after the sched-
ule switch.

Support for the SET MODULE SCHEDULE service makes up for virtually the
whole of the changes made to support mode-based schedules. These changes

1One possibility, IGNORE, is for the partition not to be restarted. Partitions not running in
NORMAL mode will not be restarted, regardless of the ScheduleChangeAction defined for them
for the newly installed schedule.

4.2. Enhanced timeliness mechanisms 33

concentrate mostly on the AIR Partition Scheduler, and are illustrated in Fig-
ure 4.6. The AIR Partition Dispatcher only needs to be modified to execute the
pending change action after dispatching each partition for the first time after the
schedule switch; the reasoning for when schedule change actions ought to be exe-
cuted is also implemented on the AIR Partition Scheduler.

Figure 4.6: AIR Partition Scheduler with support for mode-based schedules

GET MODULE SCHEDULE STATUS allows obtaining the current schedule
status information, which is defined in ARINC 653 Part 2 [4] as comprising:

• the time of the last schedule switch (0 if none ever occurred);

• the identifier of the current schedule (CURRENT SCHEDULE);

• the identifier of the next schedule (NEXT SCHEDULE), which will be the
same as the current schedule if no schedule change is pending for the end
of the present major time frame).

GET MODULE SCHEDULE ID returns the identifier of the schedule with a
given name (if there is one).

Design and engineering issues

Since the AIR Partition Scheduler and Dispatcher code is invoked at every system
clock tick, its code needs to be as efficient as possible. In the AIR implementation,
in the best case, only two computations are performed: incrementing the number

34 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

of clock ticks by one, and verifying if we are in the presence of a partition pre-
emption point (which, in this best case, will turn out false; this will typically be
the most frequent situation throughout the system functioning).

To incorporate the mode-based schedules functionality, the Partition Sched-
uler computations had to become slightly more complex; verifications of the pres-
ence of a partition preemption point or the end of a MTF need to rely on the num-
ber of clock ticks elapsed since the last schedule switch, and not solely the number
of clock ticks since system initialization. The pseudocode for the implementation
of the AIR Partition Scheduler, with support for mode-based schedules, is pro-
vided in Appendix A (Listing A.2).

The Partition Dispatcher’s (cf. Listing A.3) only modification regarding mode-
based schedules is the invocation of pending schedule change actions. Part 2 of
the ARINC 653 specification [4] does not clearly state whether schedule change
actions should be performed immediately after effectively changing schedule
(i.e., at the beginning of the first MTF under the new schedule, for all partitions)
or performed for each partition as it is dispatched for the first time after the sched-
ule switch. It is nevertheless our understanding that the latter approach is more
compliant with the fulfillment of temporal segregation requirements, since each
partition’s schedule change actions (which may include restarting the partition)
will only affect its own execution time window.

4.2.2 Process deadline violation monitoring

Upon the dispatching of a partition, after having announced the passage of clock
ticks to the heir partition, it might be the case that one or more deadlines of pro-
cesses in that partition have been missed while it has been inactive. This can
happen in the presence of operational faults, or when uncertainty regarding a
process’s worst case execution time (WCET) leads to the partition execution time
windows being under-dimensioned. Other factors related to faulty system plan-
ning (like a periodic process exceeding its deadline because the partition win-
dows have a larger period than the said process and/or the partition period is
not a multiple of the process’s period) could, in principle, also cause deadline
violations; however, such issues can easily be predicted beforehand and avoided
using simulation and/or schedulability analysis tools.

In the context of Health Monitoring (HM), ARINC 653 classifies process dead-
line violation as a process level error (an error that impacts one or more processes
in the partition, or the entire partition) [3]. Possible recovery actions in the event
of such an error are:

• ignoring the error (logging it, but taking no action);

4.2. Enhanced timeliness mechanisms 35

• logging the error a certain number of times before acting upon it;

• stopping the faulty process and reinitializing it from the entry address;

• stopping the faulty process and starting another process;

• stopping the faulty process, assuming that the partition will detect this and
recover;

• restarting the partition (COLD START or WARM START);

• stopping the partition (IDLE).

The detection of deadline violations should be performed right after the clock
tick update, and before invoking the process scheduler. To optimize this process,
only the earliest deadline (in principle) is checked; following deadlines may sub-
sequently verified until one has not been missed. This can be computationally
optimized with the help of an appropriate data structure with the deadlines in
ascending order, allowing for O(1) retrieval of the earliest deadline. This is ex-
tremely relevant given deadline verification is performed inside the system clock
interrupt service routine. Furthermore, this methodology is optimal with respect
to deadline violation detection latency.

Regardless of the data structure, this information about processes statuses and
deadlines is maintained in such a way that it is conveniently kept updated by the
relevant APEX primitives. The APEX services:

• START, which makes a process become able to be executed, by initializing
all its attributes, resetting the runtime stack, and placing it in the ready state;

• DELAYED START, which makes the same initializations as START, but places
the process in the waiting state (the process will become ready when the re-
quested delay is expired);

• PERIODIC WAIT, which suspends the execution of the requesting (peri-
odic) process until the next release point2;

• REPLENISH, through which a process requests its deadline time to be post-
poned, and;

• SET PARTITION MODE, which corresponds to requesting a partition shut-
down or restart;

2A release point of a process is defined in general as the instant the process becomes ready for
execution. For a periodic process the consecutive release points will be separated by the respective
period.

36 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

will need to insert or update the due processes’ deadlines, while:

• STOP, which renders a given process ineligible for process resources (it is
placed in the dormant state) and;

• STOP SELF, through which a process places itself in the dormant state;

need to remove the due processes’ deadline information from the control data
structures.

The AIR PAL component provides private interfaces for these APEX services
to register/update and unregister deadlines [17]. The appropriate data structures
containing this information will be kept at each partition’s AIR PAL; this is the
most logical implementation, from the engineering, integrity and spatial segrega-
tion points of view. An example of how the APEX and the AIR PAL for one given
partition integrate to provide this functionality is provided in Figure 4.7.

Figure 4.7: Integration of the APEX Interface and the AIR PAL to provide process
deadline violation detection and reporting

When a process is started, via the START APEX service, its deadline time is
set to instant t3 (obtained by adding the process’s time capacity to the current
instant), and this value is registered via the AIR PAL-provided interface. Upon
a replenishment request (REPLENISH service), a new deadline time, t4, is calcu-
lated (by adding the requested budget time to the current instant). The interface
provided by AIR PAL to register a process deadline is again called, to update the
information for this process; if necessary, the node containing this information

4.2. Enhanced timeliness mechanisms 37

will have to be moved to keep the structure sorted by ascending deadline time
order.

When instant t4 is reached without the process having finished its execution,
a deadline miss has occurred, which is detected and should be reported to the
health monitoring mechanisms through appropriate private interfaces [17].

Figure 4.8 illustrates the further modification to the surrogate clock tick an-
nouncement routine provided by the AIR PAL, so as to verify the earliest dead-
line(s) and report any violations to the health monitoring.

Figure 4.8: Modifications on the surrogate clock tick announcement routine to
accommodate deadline verification features

Design and engineering issues

As described, to keep the computational complexity of the process deadline vio-
lation monitoring to a minimum, the information concerning process deadlines is
kept, at each partition’s AIR PAL component, ordered by deadline, and only the
earliest deadline is verified by default; this deadline is retrieved in constant time
(O(1)). Only in the presence of deadline violation will more deadline be checked,
in ascending order until reaching one that has not been violated.

Current AIR prototype engineering makes use of a linked list.
In the deadline verification process (which happens at every system clock tick

during the partition’s execution time window), a violation is detected, and after
reporting the occurrence to HM the deadline is removed from the control struc-

38 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

ture. Since we already have a pointer to the node to be removed, the complexity
of the deadline removal from the linked list will effectively beO(1) (as opposed to
the generic O(n) complexity yielded by linked lists), requiring the manipulation
of merely one pointer.

A point where the use of a self-balancing binary search tree [41] would theo-
retically outperform a linked list concern the act of inserting, removing or updat-
ing nodes, materialized in the register/unregister deadline interfaces provided to
the APEX (cf. Listing A.4) — O(log n) vs. O(n). Nevertheless, since these oper-
ations do not happen inside the system clock tick interrupt service routine (ISR),
but rather on a partition’s execution time window), and also the number of pro-
cesses accounted for deadline verification will be typically small, such asymptotic
advantage will not correlate to effective and/or significant profit, and certainly
not compensate for the more critical downside to operations running during an
ISR.

4.3 AIR space partitioning

Also in the course of this thesis, albeit not directly related to the main focus of
the present work, the spatial segregation mechanisms (cf. Section 3.2.2) support-
ing the AIR architecture’s space partitioning capabilities were consolidated. A
brief overview of such mechanisms [16] will now be given; these are described in
further detail in [17].

As mentioned in Section 3.2.2, the approach adopted in AIR to support spa-
tial partitioning was highly modular by design, featuring a high-level processor
independent abstraction layer [15]. The diagram in Figure 4.9 schematizes this
design, by bringing Figure 3.6 up to date with the newest definition of the AIR
architecture.

The necessary mapping into MMU-specific mechanisms depends on the re-
sources available on each processing platform foreseen for AIR applications. The
most versatile mapping assumes the use of a memory segmentation model, such
as it exists in the Intel IA-32 architecture, where a one-to-one mapping between
the high-level abstract spatial partitioning description and low-level memory
management descriptors is possible.

A one-to-one mapping is not possible if a paging translation model is being
used in the MMU since a memory descriptor is required by page frame. This
also implies some restrictions with respect to the number and size of partitions,
as illustrated by the data inscribed in Figure 4.9.3 An optimal design approach is

3It is worth mentioning that this thesis follows a notation in conformity with the IEC 60027-2
standard in respect to the usage of prefixes for binary multiples [42].

4.4. Summary 39

Memory Management Unit (MMU) Mapping Results
Processing
Platform

MMU Address
Translation

Model

Primary MMU
Descriptors per

Partition

Number of
Partitions

Partition Size

IA-32 segmentation 1 variable variable
paging 1 1024 4 MiB

SPARC V8 paging 1 256 16 MiB

Figure 4.9: AIR Spatial Partitioning and Operating System Integration

assumed, where the action of changing the status of a partition (active/inactive)
requires no more than the update of a single primary MMU descriptor per parti-
tion. The data inscribed in Figure 4.9, for IA-32 and SPARC V8 RISC processing
architectures, is in conformity with the requirements found in typical avionics
and aerospace applications in respect to number and size of partitions.

The provision of these mapping functions is under the scope of overall parti-
tion management as provided by the APEX layer and by some specific AIR PMK
components. For example, the mapping into processor specific descriptors needs
to be updated in run-time when a partition switch occurs. This has to be coordi-
nated by AIR PMK specific components, in this case by the AIR PMK Partition
Dispatcher.

4.4 Summary

This chapter described evolutions made to the AIR architecture in the course of
this thesis’ work.

The contribution with most impact on the definition of the AIR architecture is
a new component, the AIR POS Adaptation Layer (PAL), which stemmed from
the initial motivation and lessons learned from the preliminary studies of this the-
sis’ approach to the integration of generic operating systems in AIR. An appro-

40 CHAPTER 4. IMPROVING THE AIR TECHNOLOGY

priate instance of the AIR PAL wraps each partition’s operating system, encapsu-
lating its specifics; this allows other architectural components (with emphasis on
the AIR PMK) to be more POS-independent and less prone to modifications, thus
benefiting possible certification initiatives on this component. The AIR PAL also
enables a more streamlined development process through separation of concerns.

Further contributions made to the AIR architecture concerned the improve-
ment of timeliness enhancement mechanisms. The first one was mode-based
schedules, an optional service of the ARINC 653 specification which allows the
static definition of multiple partition scheduling tables; authorized partitions are
able to switch between these different schedules, either to adapt the functioning
of the system to different stages of the mission (e.g., airborne, landing, or explo-
ration) or to implement fault tolerance mechanisms.

The other timeliness-related mechanism introduced was the monitoring and
reporting of deadline violations by ARINC 653 hard real-time processes4; this
mechanism was hooked in the sequence of the clock tick interrupt service routine
(ISR), in way that efficiently compromises between responsiveness (required in
the context of an ISR) and the promptness of deadline miss detection (violations
are detected, in the worst case, at the beginning of the respective partition’s next
execution time window). Each partition’s AIR PAL provides the mechanism and
data structures for the violation of deadlines by the respective processes.

Further enhancements were also achieved, related to spatial segregation mech-
anisms. These mechanisms were consolidated, by establishing a mapping be-
tween the identification of partitions in the system and the first level of the three-
level page-based memory management present on the SPARC LEON processor
core [17].

4 An ARINC 653 process is that which follows the ARINC 653 definition of a process, utilizing
the service interface specified in [3]. Although that is not the primary goal of these deadline
violation monitoring mechanisms, partitions with generic POSs can also utilize them to measure
how their non-real-time or soft real-time tasks are performing. This requires applications to be
modified to accommodate this, or the addition of a monitoring process.

Chapter 5

Integration of generic operating
systems

This chapter approaches the problem of integrating generic operating systems
as partition operating systems (POS) in the AIR architecture, using (embedded)
Linux as a case study. The development of an embedded variant of a Linux-based
operating system is documented, along with the analysis of its viability as an AIR
POS. Then, a solution for guaranteeing that this integration does not compromise
the already established strong properties of the AIR architecture is proposed; this
solution is based on the paravirtualization interface present in the Linux kernel,
paravirt-ops.

5.1 Relevance of the problem

Porting applications to one of the RTOS one might be using (RTEMS [31], eCos [39,
40], VxWorks [43], etc.) can be a complicated task, and definitely not an error-free
one [9, 10]. Furthermore, certain hardware interfaces may be necessary that are
not supported by the given RTOS. This also applies to the aerospace applications
that the AIR architecture targets. An example is a space probe for planetary ob-
servation, within which a hardware interface with a camera is needed, and whose
pictures need to go through some post-processing by a widely available applica-
tion that has not been ported to the RTOS.

To address this portability issue, we are evaluating the approach of having
one partition of such a system run a general-purpose operating system based on
the Linux kernel, for which community efforts continuously develop applications
and device drivers. In the AIR architecture, such soft real-time and/or non-real-
time applications using the standard Linux interface always receive a guaranteed
(albeit shared) execution time window. Such guarantee is not provided by ear-
lier approaches combining real-time and Linux operation in the same execution

41

42 CHAPTER 5. INTEGRATION OF GENERIC OPERATING SYSTEMS

platform [12, 13, 14].

In this scenario, existent applications for GNU/Linux can be used or created
without the further effort of having to port them to a particular RTOS and/or
programming interface, like the APEX [3]. Another significant advantage is that
the benefits of scripting languages widely used in the Linux world can be brought
into scene, something which would otherwise depend on a port of the interpreter
to a particular RTOS.

5.2 Linux state of the art

Linux is an open source operating system kernel available free of charge and
maintained by developers from all the world. The source code is accessible for ev-
eryone and people are encouraged to contribute with their own code. For this rea-
son, the Linux kernel is extremely portable between computer architectures and
supports a massive variety of hardware devices and device drivers. And there’s
always space for more. An increased modularity along with a visual kernel con-
figuration tool (illustrated in Figure 5.1) allow one to easily select the smallest
set of features required for each system, avoiding unnecessary code. For sys-
tems with limited resources, or for very specific applications such as those found
in aerospace, this may be very important. Additionally, the added support for
a wider variety of hardware devices, computer architectures and the improved
build tools help enhance the pace of development of the kernel itself. This flexi-
bility makes Linux, and specially Linux 2.6, a good choice for embedded systems
design, and for the provision of (soft) real-time guarantees.

Figure 5.1: Linux kernel configuration tool

5.2. Linux state of the art 43

5.2.1 Process scheduling

Linux kernel 2.6 allows the preemption of kernel tasks, i.e. user applications are
no longer locked until the end of all pending system calls before they can con-
tinue executing. This significantly reduces the latency of user applications and
increases the overall system responsiveness.

The original Linux 2.6O(1) scheduler [44] was further improved into the Com-
pletely Fair Scheduler (CFS), which wieldsO(1) complexity for choosing a task and
O(log n) for rescheduling a task after it has executed and becomes ready again.
This is accomplished by the substitution of runqueues for a red–black tree with
an auxiliary pointer to the leftmost element. The CFS also uses nanosecond gran-
ularity accounting (provided by the introduction of high-resolution timers), aban-
doning the notion of time slices and the need for specific process interactivity
heuristics, while still allowing to tune the scheduler to cope with different work-
load patterns [45].

5.2.2 Input/output (I/O) scheduling

Another novelty introduced in the 2.6 line of the Linux kernel was the Completely
Fair Queueing (CFQ) I/O scheduler, which applies concepts from network schedul-
ing to disk scheduling: it maintains I/O queues per process, and attempts to
distribute the available I/O bandwidth equally among all I/O requests. CFQ
presents similar bandwidth results than the previously used Anticipatory Sched-
uler (AS), but lower latency, and has replaced AS as the default in the Linux
kernel from version 2.6.18 onwards (although Red Hat, two years earlier, had in-
cluded in RHEL 4 a 2.6.9 kernel configured with CFQ as default). While this is
suitable for suitable for soft responsiveness requirements, real-time systems may
further benefit from another I/O scheduler available in the Linux kernel: the
Deadline I/O scheduler, which aims to guarantee that an I/O request begins to be
served at a specified time. The Deadline I/O scheduler performs inferiorly than
CFQ in balancing transactions across multiple drives or file systems, which is, by
principle, a less common to encounter in embedded systems [46].

5.2.3 Real-time capabilities

Versions starting with 2.6.16 also saw components of the PREEMPT RT patchset
being merged into the kernel mainline. This includes userspace priority inheri-
tance and high-resolution timers [47]. Remaining features, towards the goal of
full kernel preemptibility and real-time capabilities in the Linux kernel, are still
available as patches, there being a wide agreement among the Linux community
that these will soon be merged into the kernel mainline [48].

44 CHAPTER 5. INTEGRATION OF GENERIC OPERATING SYSTEMS

Although the AIR architecture targets hard real-time systems, the study of in-
tegrating Linux in AIR did not take direct advantage or measure the profits from
the increasingly near real-time capabilities of Linux. The reason for this lies in
that the Linux partition will run non-critical tasks, and the hard real-time guar-
antees of the respective remaining partitions in the system will be guaranteed by
the architecture’s strong temporal segregation properties (independently of the
internal real-time capabilities of the Linux partition).

5.3 Embedded Linux

There are a few Linux distributions available for embedded systems. However,
some are commercial or targeted at a specific type of device, and others simply
have too much unnecessary features or already have their own kernel modifi-
cations. Having a Linux kernel built from a standard, unpatched source tree,
exactly as distributed by the developers, is extremely important. The absence
of customized patches ensures easier upgradability and less compatibility issues
between different versions.

Therefore, we analyze how to build a specific version of a Linux-based operat-
ing system targeted for embedded and aerospace systems and applications. The
main vectors for achieving an effective balance between functionality and avail-
able resources are: 1) configuration of the Linux kernel; 2) inclusion of functional
features; 3) use of a smaller system library; and 4) provision of the standard Unix
command interface in a more resource-efficient way. However, instead of design-
ing a solution totally from scratch, we follow a design-by-reuse approach, and
use as much open source and widely available tools as possible; this philosophy
is highly encouraged by ESA for its projects [27].

The foundations of such process have been addressed in the literature [49, 50].
Next, we describe its application, assess its effectiveness, and discuss its relevance
to embedded and aerospace systems and applications.

5.3.1 Configuring the Linux kernel

The first step to produce a small kernel image exploits the configurability of the
Linux kernel. The configuration of the Linux kernel is performed via a menu-
driven graphical interface. In a first approach, superfluous features and device
drivers were removed.

The diagram in Figure 5.2 illustrates the overall size difference between the
Linux kernel image included in a generic distribution, and the image produced
for this embedded Linux solution.

5.3. Embedded Linux 45

Generic Embedded
2150 KiB 830 KiB

Figure 5.2: Size comparison between a kernel in a generic Linux distribution and
the embedded Linux kernel

Two specific issues are worth mentioning. One is that, besides the kernel im-
age, a standard Linux distribution ships a set of loadable kernel modules that can
amount to 50 MiB, which were not accounted for in Figure 5.2, to make the com-
parison fairer. The other one is that the size gain illustrated in Figure 5.2 is both
a combination of feature selection and using only built-in features; this gain will
now be analyzed in a more fine-grained fashion.

5.3.2 Building in functional features

The reason why no items were included as modules is that in an embedded solu-
tion they must be always present in memory. Therefore, the design choice was to
build in such functionalities into the kernel.

Figure 5.3 highlights the exact gain obtainable by removing the loadable mod-
ule support and building features in into the kernel, instead of providing them
through modules (with no condition differences otherwise). The data presented
were obtained by adding, to the optimized Linux kernel, some extra functional-
ities (USB, Ethernet, WLAN, TCP/IP networking, PCMCIA, and Ext3 filesystem
support) and the device drivers thereto associated. Some of these functions may
not be present in the real systems for which this solution is targeted. They were
here included for comparative measurement purposes only.

While adding features and device drivers through a built-in approach only
results on an enlarged kernel image, the modular approach aggravates the to-
tal size in two fronts. On the one hand, the kernel image is enlarged to include
the built-in support for loadable kernel modules. On the other hand, the kernel
image must be accompanied by a set of several modules, which bear a notice-
able overhead over the alternative of building those modules’ features in into the
kernel image.

46 CHAPTER 5. INTEGRATION OF GENERIC OPERATING SYSTEMS

Image Modules TotalEmbedded
kernel

Module
support

Built-in
features

Modular 830 KiB 225 KiB — 1568 KiB 2623 KiB
Built-in 830 KiB — 644 KiB — 1474 KiB

Figure 5.3: Size comparison between the embedded Linux kernel modular and
built-in approaches to the inclusion of the same features

5.3.3 Small system library

One of the most important components of a Unix-like system is the system library.
The system library provides application programmers a comprehensive set of
services.

The most used system library is the GNU C library (glibc).1 This library is
targeted for generic systems, exhibiting excessive functionality (for embedded
systems), a non-optimized implementation, and a large object size.

An alternative design option is uClibc,2 a C library specially developed for em-
bedded systems. It features almost all GNU libc functionality, while exhibiting a
small object size appropriate for systems with low memory resources. The uClibc
developers have accomplished this by reimplementing it with size optimizations
in mind, and by modularizing some functionalities, allowing the configuration of
the uClibc library and its adaptation to the requirements of the target system.

There are alternative small footprint C libraries available, such as newlib,3 and
diet libc.4 uClibc was chosen for its maturity and for how well other tools used
(BusyBox, Buildroot) integrate with it. Nevertheless, future experiments might
compare this with newlib, which has become an increasingly interesting alterna-
tive — it is, for instance, the C library included in RTEMS [31].

The use of uClibc allowed the present embedded Linux solution to keep a
small size, when comparing against the use of a standard GNU libc. Figure 5.4
illustrates the immediate advantages brought by uClibc, showing the sizes taken
up by both the GNU C library and uClibc.

1http://www.gnu.org/software/libc/
2http://www.uclibc.org/
3http://sourceware.org/newlib/
4http://www.fefe.de/dietlibc/

http://www.gnu.org/software/libc/
http://www.uclibc.org/
http://sourceware.org/newlib/
http://www.fefe.de/dietlibc/

5.3. Embedded Linux 47

glibc uClibc
2474 KiB 368 KiB

Figure 5.4: Size comparison between the GNU C Library (glibc) and the uClibc

5.3.4 Linux utilities and tools

A complete Linux-based operating system needs some well-known command-
line utilities and tools. Even using shared libraries, standard GNU tools can use
a lot of space, which is a real problem when dealing with resources shortage. To
efficiently provide this functionality, we use BusyBox,5 which is a set of those util-
ities and tools bundled together with a shell in a single executable. This approach
alone reduces memory size requirements. Furthermore, the developers of Busy-
Box have rewritten these tools to be smaller than their original counterparts. This
was accomplished by code optimizations and by the absence of some of the fea-
tures, although maintaining the most important functions. Discarding unneeded
sections from intermediate object files before generating the BusyBox executable
allows a slight additional size gain.

BusyBox was chosen also because it is highly modular and configurable. It
provides a wide array of commands (e.g. core utilities like dd, network utilities
like ifconfig, or editors like sed) that can be included at this stage, some of which
can be fine tuned as to only include a part of the available features.

Figure 5.5 shows the difference in size between a set of tools chosen for this
embedded Linux (consisting, mainly, of core utilities), provided as both stan-
dalone executables and as only one BusyBox executable. The technical difference
between the BusyBox (unstripped) and BusyBox executables is that the latter was
produced by discarding unneeded sections from the former; this process is auto-
matically performed when compiling BusyBox.

5.3.5 Shell

BusyBox provides a few shell options, the most traditional of which is the Almquist
Shell (ash). Although compatible with the Bourne shell and suitable for low mem-
ory systems, ash lacks some extras provided by other shells like the ubiquitous
Bourne Again Shell (bash).

5http://www.busybox.net/

http://www.busybox.net/

48 CHAPTER 5. INTEGRATION OF GENERIC OPERATING SYSTEMS

Standard BusyBox (unstripped) BusyBox
1932 KiB 440 KiB 363 KiB

Figure 5.5: Size comparison between a set of GNU utilities and tools provided
both as separate executables and as a single BusyBox executable (both stripped
and unstripped of unnecessary symbols)

When the use of scripting is needing, one has to evaluate if the functionality
provided by ash is appropriate. Otherwise, a more appropriate shell can be in-
cluded, as a standalone executable. This can be automated during the building
process (cf. Section 5.3.7, ahead).

5.3.6 Interpreted/scripting languages

The previous design steps of an embedded Linux solution leave out the support
for interpreted/scripting languages. The support for interpreted/scripting lan-
guages is extremely interesting for a wide set of applications, including some of
those in the aerospace domain.

BusyBox does not support any of these interpreters (save for the aforemen-
tioned shells), so support must be added as standalone executables. Once again,
this can be automated during the building process (Section 5.3.7). Currently,
the available packages are: lua, microperl (Perl without OS-specific functions),
python, ruby, tcl, and php.

5.3.7 Building process

Buildroot6 is a tool suite that makes it easy to generate a cross-compilation toolchain
and other resources for the target Linux system using the uClibc C library. Buil-
droot is specially appropriate for embedded systems engineering, being used to
facilitate the configuration and build process of the uClibc system library and the
BusyBox toolset. It configures builds, and prepares the cross-compiler environ-
ment for the later build of the system library and toolset. This cross-compiling
environment is necessary because the target architecture may be different from
the architecture of the build system.

6http://buildroot.uclibc.org/

http://buildroot.uclibc.org/

5.3. Embedded Linux 49

In this specific case, the kernel was compiled from unpatched sources with
a specific configuration for the existing devices and interfaces of the prototype
systems (Intel IA-32-based, Ethernet network, and usually no hard-disk drive).
The system library and toolset were also configured to be as small as possible,
while maintaining all the important functionalities.

The presented embedded Linux solution was built with Linux kernel 2.6.26,
uClibc 0.9.29 and BusyBox 1.11.13. It is extremely customizable, inheriting its
main components’ flexibility and modularity. Linux kernel, uClibc and BusyBox
configuration files are generated using the respective visual configuration tools
(illustrated in Figures 5.1, 5.6(a), and 5.6(b)), and integrated into the Buildroot
source tree. Buildroot is further fine tuned through the use of a similar configu-
ration tool (Figure 5.6(c)).

(a) uClibc (b) BusyBox

(c) Buildroot

Figure 5.6: Visual configuration tools exploited in the embedded Linux build pro-
cess

By putting together a specially configured Linux kernel 2.6 for embedded sys-
tem prototyping, a restricted uClibc system library (e.g. excluding large file sup-
port), and a selected set of system tools (including the Almquist Shell, several
core utilities, a few archival utilities, and no network utilities or Ext2 filesystem-
related programs), it became possible to build an entire Linux operating system
that can fit in as little as 1.5 MiB. This does not include any additional shell or
language interpreter options as standalone executables.

50 CHAPTER 5. INTEGRATION OF GENERIC OPERATING SYSTEMS

5.3.8 Overall results analysis

The size gain of embedded Linux can be analyzed by comparing each of its com-
ponents individually with the equivalent in a desktop distribution. Typically, a
desktop distribution is built with a standard or lightly patched kernel compiled
with a modular approach; a modular Linux Kernel is composed of an image plus
a set of files that correspond to different modules. Modules are loaded into mem-
ory only if considered necessary by the system or the user. A typical modular
kernel has an image size slightly above 2 MiB and a set of modules with about
50 MiB. The system library is a fully featured GNU libc 2.X (libc 6) along with
many other smaller less generic libraries. The system tools in a typical desktop
distribution are compiled against the GNU C library and occupy a big slice of
storage space. Globally, Figure 5.7 summarises the analysis of size in two dis-
tinct situations: a generic Linux distribution and the analyzed embedded Linux
solution. For comparison sake, we only present the size occupied, in a standard
Linux distribution, by the same system utilities/tools and libraries included in
the embedded variant.

Kernel System library System library Total
Generic Embedded glibc uClibc Generic BusyBox Generic Embedded
2150 KiB 830 KiB 2474 KiB 368 KiB 1932 KiB 363 KiB 6556 KiBa 1561 KiB

aPlus a set of modules amounting to 50 MiB

Figure 5.7: Overall size comparison between embedded Linux and a typical
Linux distribution

The results obtained with this embedded Linux approach open room for its
integration in the AIR architecture. The embedded solution provided allows for
an implementation of Linux-based systems and applications which will always
be entirely present in physical memory. No virtual memory mechanisms are re-

5.4. Integration in the AIR architecture 51

quired, meaning no particular memory protection scheme is needed for compli-
ance to the ARINC 653 specification and integration in the AIR architecture.

5.4 Integration in the AIR architecture

The integration of Linux in the AIR architecture poses issues regarding the in-
tegration of Linux as partition OS focus on guaranteeing that it does not con-
taminate the robust temporal and spatial partitioning of the AIR architecture.
Temporal partitioning is ensured, as standard, by the cyclic fixed scheduling of
partitions, provided that the Linux partition can not disable or divert interrupts
at the hardware (processor) level. We will want the Linux kernel to be notified
of clock ticks, like other partition operating systems, only when its partition is
active. Thus, interrupts will be totally controlled and handled by the AIR PMK,
bypassing the Linux interrupt infrastructure [51].

To guarantee this, and since most processor architectures are not fully virtual-
izable (i.e., not all sensitive instructions are also privileged instructions), we can
not merely run Linux in an unprivileged mode (usermode) and rely on having
sensitive instructions generate a trap [52, 53]. A good candidate to solve this is-
sue is the employment of paravirtualization [54].

5.4.1 Paravirtualization in the Linux kernel

The paravirt-ops paravirtualization interface, which enables multiple hypervi-
sors to hook directly into the Linux kernel, has been merged into the main Linux
kernel starting with version 2.6.21, along with the support for VMWare’s Vir-
tual Machine Interface (VMI). VMI is the open specification of an interface for
the paravirtualized guest OS kernel to communicate with the hypervisor [55],
which takes advantage of hooks onto the paravirt-ops interface. Many popular
Linux distributions shipping with Linux 2.6.21 have the paravirt-ops and VMI
configuration options enabled; this means that the same kernel will run both
on native hardware and on top of a VMI-enabled hypervisor without requiring
recompilation (with negligible performance overhead when running on native
hardware [56]).

Figure 5.8 illustrates the process in which a VMI-enabled Linux kernel is booted,
and either runs natively or on top of a hypervisor. Early during the boot process,
the VMI initialization code probes for a ROM module through which the hyper-
visor’s VMI layer is to be published to the paravirtualized operating system. If
such a module is found, the VMI initialization code dynamically patches the ker-
nel, so as to inject the necessary calls to the hypervisor’s VMI layer; if not, the
kernel continues to run as normal, natively on top of the hardware [55].

52 CHAPTER 5. INTEGRATION OF GENERIC OPERATING SYSTEMS

Figure 5.8: Boot process of a paravirtualized Linux kernel on top of a paravirt-
ops/VMI-compliant hypervisor

5.4.2 AIR Linux partition: AIR PAL design and integration

When transposing this to the reality of the AIR architecture, the AIR PAL will
provide the relevant functions of the VMI layer to the partition operating system,
interacting with AIR PMK when required, as illustrated in Figure 5.9. Examples
of the VMI functions to be provided by the AIR PAL include virtualization of:
(i) interrupt management; (ii) input/output (I/O) calls; (iii) memory and I/O
space protection mechanisms; (iv) privilege level management.

Figure 5.9: Concepts of paravirtualization in the AIR architecture

Further integration issues have already been identified. One of them concerns
the implementation, at the AIR PAL level, of a surrogate clock tick announcement
routine (cf. Section 4.1.2) that maps onto the complex timekeeping architecture of
Linux [51].

5.4. Integration in the AIR architecture 53

Providing the access to interpartition communication mechanisms to the Linux
partition is also a feature that needs to be addressed. On a first and direct ap-
proach, applications in the Linux partition can be adapted to use the APEX in-
terface primitives to send and receive messages to/from queuing ports, and/or
write and read messages to/from sampling ports. This does, nevertheless, obli-
gate Linux application developers to divert from the usual programming model,
thus slightly undermining the seminal motivation for integrating generic oper-
ating systems onto the AIR architecture. A more interesting approach would
consist of providing pseudodevices (e.g. /dev/apexqp1 for a queuing port,
or /dev/apexsp2 for a sampling port), through which Linux processes could
access interpartition communication facilities using more traditional primitives
(open, read, write, send, recv).

The combination of Linux’s process-based memory protection mechanisms
with the AIR partition-based spatial segregation design must also be addressed
carefully in future work. More specifically, we must ensure that, when a Linux
process tries to access a memory zone that, not only is outside its address space,
but is also outside its partition’s addressing space, the AIR Health Monitoring
mechanisms are adequately notified of this error.

Finally, there is further investigation and engineering work to do related to
the generation and build process of the Linux partition system image. Current
prototyping activities using RTEMS [31] comprise having each POS in the form
of an object file; at integration time, the POS object files are linked together with
the core software layer components object files to produce the final system image
(cf. Figure 4.5). Upon the engineering of an AIR prototype with a Linux parti-
tion, either the Linux system image production process or the AIR build process
will have to be conveniently adjusted to allow the production of a final single
executable file.

These design considerations apply both to Intel IA-32 and SPARC V8 proces-
sor architectures.

5.4.3 AIR application platforms

The space applications to which the AIR technology is to be applied typically
employ SPARC V8 RISC processors, like LEON 2 and LEON 3, so the concepts of
paravirt-ops and VMI, which are Intel IA-32 and Intel 64-centric by design, have
to be transposed to the reality of this architecture. The current state of the art is
nevertheless interesting for proof of concept prototyping purposes, and to apply
to ground-segment applications, where the Intel architectures are present. As of
Linux kernel 2.6.30, paravirt-ops and VMI support is implemented for both Intel
IA-32 and Intel 64 architectures.

54 CHAPTER 5. INTEGRATION OF GENERIC OPERATING SYSTEMS

5.5 Summary

This chapter describes the problem of integrating generic operating systems on
the AIR architecture, and the developments achieved on its solution using Linux
as a case study. An embedded flavor of Linux is analyzed in terms of its via-
bility for this purpose, with its genesis described step by step and in detail; the
main pillars of the development of such a solution are the configuration of the
Linux kernel, the utilization of a reduced C library, and the efficient provision of
common utilities and tools as an optimized single executable file.

The paravirtualization interface provided by the Linux kernel (paravirt-ops) is
explained and proposed as a solution for the safety issues inherent to the integra-
tion of Linux as a POS; namely, one must guarantee that interrupts are completely
are maintained. Further design and engineering issues — regarding timekeep-
ing, interpartition communication, memory protection and system integration —
have been identified for future developments.

Chapter 6

Conclusion

This thesis addressed the problem of integrating generic operating systems onto
AIR, an ARINC 653-based partitioned architecture for aerospace applications fea-
turing strong temporal and spatial segregation, and allowing the use of different
partition operating systems (POS). The architecture is composed of multiple com-
ponents, of which this thesis focuses most on the AIR Partition Management Ker-
nel (PMK), which is responsible, for instance, for partition scheduling and dis-
patching, and concentrates most mechanisms to guarantee temporal and spatial
segregation.

The contributions of this work encompass improvements made to the AIR
architecture, which were described throughout this document, and comprise:

(i) a new component, the AIR POS Adaptation Layer (PAL), which allows for
a stable POS-independent AIR PMK, a homogenous process of integrating
new POSs (both real-time and non-real-time operating systems) and enables
better a better process development workflow through separation of con-
cerns;

(ii) advanced timeliness adaptation and monitoring mechanisms, like mode-
based schedules (allowing to change, in execution time, between multiple
predefined partition scheduling tables, so as to adapt system functioning to
different phases of operation) and process deadline violation monitoring;

(iii) the study of Linux as a candidate for a generic non-real-time POS in AIR; this
included the genesis and evaluation of an embedded flavor of Linux for this
purpose, and the proposal of paravirtualization mechanisms to guarantee
that the integration of Linux does not pose safety issues, by compromising
temporal and/or spatial segregation.

The described embedded Linux yielded encouraging results as a POS candi-
date: a fully-operational embedded Linux version, complete with a system li-
brary and common utilities, could fit in as little as 1.5 MiB; this is very important

55

56 CHAPTER 6. CONCLUSION

in the context of a POS for AIR, since there will be multiple OS kernels coexisting
in the same platform, and the typical absence of persistent storage (such as a hard
disk drive) means that they will all reside permanently in memory.

6.1 Future work directions

The implementation of a complete AIR prototype demonstrator with the Linux
kernel running in one of the partitions requires engineering work that was deemed
incompatible with the duration of this thesis’s project, and is subject to follow-up
work. The next and ambitious step may include the approach to other generic
non-real-time operating systems, such as Windows (in the form of the Windows
Research Kernel [57]).

Other interesting issues pertaining to the AIR architecture still to be addressed
include consolidating and extending temporal and spatial segregation support
features, by including a structured approach integrating these concepts with the
need to operate a computing platform with interfaces to the real world, in the
form of sensors and actuators (e.g. satellite attitude control). From the per-
spective of spatial segregation, this implies extending memory protection mech-
anisms to the domain of each partition’s use of input/output, possibly resorting
to dedicated communication channels between partitions, or to the advanced no-
tion of pseudopartition extensions. At the temporal segregation level, this might
implicate consolidating the time execution windows assigned to each partition
with a global event scheduling perspective.

Further developments already planned as expansions of this line of work re-
volve around problems related with scheduling, and schedulability analysis.

Multicore processors are paving their way into the realm of embedded sys-
tems [58]. The utilization of multicore architectures in IMA-related platforms has,
though, not been addressed in detail. Real-time scheduling in multicore plat-
forms has been approached in literature in some of its facets [59, 60, 61]; there
are still though open questions [62]. Also, to the best of our knowledge, real-time
scheduling in multicore platforms has not been associated with the IMA-inherent
two- level scheduling scheme.

In this perspective, it is interesting to apply the existing concepts and any
advances meanwhile obtained on schedulability analysis to platforms with mul-
ticore CPUs. This includes the profound analysis of the impact of parallelism —
both intrapartition parallelism (i. e., between processes) and between partitions.
The approach to intrapartition parallelism aims to understand why ARINC 653
may mandate that processes in a partition shall not be distributed among proces-
sors, and if the reasons also apply to distribution among cores in one processor.

6.1. Future work directions 57

Concerning parallelism between partitions, two approaches to the scheduling of
the latter will be studied: (i) static (extending the system configuration mecha-
nisms, to allow explicit definition of where parallelism between partitions will
occur), and; (ii) semi-dynamic (extending the configuration mechanisms, to al-
low the expression of restrictions and dependencies that will guide the activity of
a dynamic partition scheduler with support for parallelism between partitions).
This evolution implies not only schedulability considerations, but also a great
concern with overall robustness, safety and security.

Appendix A

Pseudocode snippets

A.1 Mode-based schedules

A.1.1 Data structures and global variables

1 /∗ Data s t r u c t u r e s ∗ /

typedef s t r u c t
{

i n t number ;
6 i n t l a s t t i c k ;

void ∗ t ick announce ;
Context contex t ;

} P a r t i t i o n ;

11 typedef s t r u c t
{

i n t t i c k ;
P a r t i t i o n ∗ p a r t i t i o n ;

} PreemptionPoint ;
16

typedef s t r u c t
{

i n t mtf ;
i n t i n i t i a l S c h e d u l e ; /∗ b o o l e a n , t r u e f o r one and on ly one s c h e d u l e ∗ /

21 PreemptionPoint∗ t a b l e ;
i n t numberPart i t ionPreemptionPoints ;
ScheduleChangeAction changeAction [NUMBER PARTITIONS] ;

} ModuleSchedule ;

26 typedef s t r u c t
{

i n t las tSchedSwitch ;
i n t currentSched ;
i n t nextSched ;

31 } ScheduleStatus ; /∗ as p e r ARINC 653 Par t 2 ∗ /

/∗ G l o b a l v a r i a b l e s ∗ /
P a r t i t i o n ∗ r u n n i n g P a r t i t i o n ;
P a r t i t i o n ∗ h e i r P a r t i t i o n ;

36

ModuleSchedule schedules [NUMBER MODULE SCHEDULES] ;
ScheduleStatus schedStatus ;

P a r t i t i o n p a r t i t i o n s [NUMBER PARTITIONS] ;
41 i n t t a b l e i t e r a t o r ;

i n t t i c k s ;

59

60 APPENDIX A. PSEUDOCODE SNIPPETS

i n t e lapsedTicks ;

Listing A.1: Data structures and global variables common to the partition
scheduler and dispatcher

A.1.2 Partition scheduler

t i c k s ++;

/∗ c h e c k i f we a r e in t h e p r e s e n c e o f a p r e e m p t i o n p o i n t ∗ /
i f (schedules [schedStatus . currentSched] . t a b l e [t a b l e i t e r a t o r] . t i c k ==

5 ((t i c k s − schedStatus . las tSchedSwitch)
% schedules [schedStatus . currentSched] . mtf)) {

/∗ c h e c k i f t h i s i s t h e end o f MTF and a new s c h e d u l e i s pending ∗ /
i f (((t i c k s − schedStatus . las tSchedSwitch) %

10 schedules [schedStatus . currentSched] . mtf == 0) &&
(schedStatus . currentSched != schedStatus . nextSched)) {

/∗ change t o new s c h e d u l e ∗ /
schedStatus . currentSched = schedStatus . nextSched ;

15

/∗ up da t e l a s t s c h e d u l e s w i t c h t ime ∗ /
schedStatus . las tSchedSwitch = t i c k s ;

/∗ change t h e h e i r p a r t i t i o n ∗ /
20 h e i r P a r t i t i o n = schedules [schedStatus . currentSched] . t a b l e [0] . p a r t i t i o n ;

/∗ i n c r e a s e t a b l e i t e r a t o r c y c l i c a l l y ∗ /
t a b l e i t e r a t o r = (t a b l e i t e r a t o r + 1) % schedules [schedStatus . currentSched] .

numberPart i t ionPreemptionPoints ;

25 } e lse {

/∗ change t h e h e i r p a r t i t i o n ∗ /
h e i r P a r t i t i o n = schedules [schedStatus . currentSched] . t a b l e [t a b l e i t e r a t o r] .

p a r t i t i o n ;

30 /∗ i n c r e a s e t a b l e i t e r a t o r c y c l i c a l l y ∗ /
t a b l e i t e r a t o r = (t a b l e i t e r a t o r + 1) % schedules [schedStatus . currentSched] .

numberPart i t ionPreemptionPoints ;
}

}

Listing A.2: Partition scheduler featuring mode-based schedules

A.1.3 Partition dispatcher

i f (h e i r P a r t i t i o n == r u n n i n g P a r t i t i o n) {
2

e lapsedTicks = 1 ;

} e lse {

7 /∗ Save Running P a r t i t i o n Contex t ∗ /
SaveContext (r u n n i n g P a r t i t i o n . contex t) ;

r un n i ng P ar t i t i on−>l a s t t i c k = t i c k s − 1 ;

12 /∗ Update t h e h e i r p a r t i t i o n number o f e l a p s e d c l o c k t i c k s ∗ /
e lapsedTicks = t i c k s − h e i r P a r t i t i o n−>l a s t t i c k ;

/∗ S e l e c t running p a r t i t i o n ∗ /

A.1. Mode-based schedules 61

r u n n i n g P a r t i t i o n = h e i r P a r t i t i o n ;
17

/∗ R e s t o r e Heir P a r t i t i o n Contex t ∗ /
RestoreContext (h e i r P a r t i t i o n . contex t) ;

/∗ T r i g g e r pending change a c t i o n s ∗ /
22

/∗ Announce e l a p s e d c l o c k t i c k s t o t h e POS ∗ /
void (∗ t i c k) (i n t) = h e i r P a r t i t i o n−>t ick announce ;
(∗ t i c k) (e lapsedTicks) ;

}

Listing A.3: Partition dispatcher featuring mode-based schedules

62 APPENDIX A. PSEUDOCODE SNIPPETS

A.2 Process deadline violation monitoring

typedef
s t r u c t {

PROCESS ID TYPE p r o c e s s i d ;
4 SYSTEM TIME TYPE deadl ine t ime ;

void∗ next ;
} PAL DEADLINE TYPE ;

i n t p a l r e g i s t e r p r o c e s s d e a d l i n e (/∗ in ∗ / PROCESS ID TYPE process id ,
9 /∗ in ∗ / SYSTEM TIME TYPE deadl ine t ime) {

PAL DEADLINE TYPE∗ dp = NULL;
PAL DEADLINE TYPE∗ modp = NULL;
PAL DEADLINE TYPE∗ modprevp = NULL;

14 /∗ s e a r c h f o r a d e a d l i n e a l r e a d y s e t f o r p r o c e s s p r o c e s s i d ∗ /
for (dp = p a l d e a d l i n e s ; dp != NULL; dp = (PAL DEADLINE TYPE∗) (dp−>next)) {

i f (dp−>p r o c e s s i d == p r o c e s s i d) {
modp = dp ;
break ;

19 }
modprevp = dp ;

}

i f (modp == NULL) {
24

/∗ no d e a d l i n e a l r e a d y s e t : i n s e r t ∗ /
PAL DEADLINE TYPE∗ newd = /∗ o b t a i n p o i n t e r t o s t r u c t u r e ∗ / ;
newd−>p r o c e s s i d = PROCESS ID ;
newd−>deadl ine t ime = DEADLINE TIME ;

29 newd−>next = NULL;

/∗ empty l i s t ∗ /
i f (p a l d e a d l i n e s == NULL) {

p a l d e a d l i n e s = newd ;
34 return NO ERROR;

}

PAL DEADLINE TYPE∗ insp = NULL;
PAL DEADLINE TYPE∗ insprevp = NULL;

39

/∗ s e a r c h f o r c o r r e c t p l a c e t o i n s e r t new d e a d l i n e ∗ /
for (insp = pal deadl ines , insprevp = NULL;

insprevp != NULL;
insp = (PAL DEADLINE TYPE∗) (insp−>next)) {

44

i f (insp == NULL) {
/∗ t a i l ∗ /
insprevp−>next = newd ;
return NO ERROR;

49 }

i f (insp−>deadl ine t ime >= DEADLINE TIME) {
newd−>next = insp ;
insprevp−>next = newd ;

54 }

insprevp = insp ;
}

59 } e lse {
/∗ d e a d l i n e a l r e a d y s e t : upd a t e and r e p o s i t i o n ∗ /
modp−>deadl ine t ime = DEADLINE TIME ;

/∗ advance t h e node u n t i l i t i s b e f o r e a node with a d e a d l i n e g r e a t e r o r e q u a l ∗ /
64 while (modp−>next != NULL &&

((PAL DEADLINE TYPE∗) (modp−>next))−>deadl ine t ime < modp−>deadl ine t ime) {
modprevp−>next = modp−>next ;
modp−>next = ((PAL DEADLINE TYPE∗)modprevp−>next)−>next ;

A.2. Process deadline violation monitoring 63

((PAL DEADLINE TYPE∗)modprevp−>next)−>next = modp ;
69 }

return NO ERROR;
}

}

74 i n t p a l u n r e g i s t e r p r o c e s s d e a d l i n e (/∗ in ∗ / PROCESS ID TYPE PROCESS ID) {
PAL DEADLINE TYPE∗ delp = NULL;
PAL DEADLINE TYPE∗ delprevp = NULL;

/∗ s e a r c h f o r node ∗ /
79 for (delp = p a l d e a d l i n e s ; delp != NULL; delp = (PAL DEADLINE TYPE∗) (delp−>next)) {

i f (delp−>p r o c e s s i d == PROCESS ID) {
/∗ f ound : d e l e t e ∗ /
i f (delprevp == NULL) {

/∗ d e l e t i n g head (c o v e r s d e l e t i n g on ly r ema in ing node) ∗ /
84 p a l d e a d l i n e s = delp−>next ;

} e lse {
/∗ d e l e t i n g mi dd l e / t a i l e l e m e n t ∗ /
delprevp−>next = delp−>next ;

}
89 f r e e (delp) ;

return NO ERROR;
}
delprevp = delp ;

}
94

/∗ i f we r e a c h t h i s p o i n t , th en p r o c e s s i d d i d not have a d e a d l i n e
t o u n r e g i s t e r ∗ /

return INVALID PARAM;
}

99

i n t p a l v e r i f y d e a d l i n e s () {
PAL DEADLINE TYPE∗ deadp = p a l d e a d l i n e s ;
i n t reported = 0 ;

104 while (deadp != NULL) {
i f (deadp−>deadl ine t ime < p a l g e t c u r r e n t t i m e ()) {

/∗ r e p o r t d e a d l i n e v i o l a t i o n by deadp−>p r o c e s s i d t o HM ∗ /

reported ++;
109 deadp = deadp−>next ;

}
break ;

}

114 return reported ;
}

Listing A.4: Deadline register, unregister and verification at the AIR PAL level

Abbreviations

AIR ARINC 653 in Space RTOS
APEX Application Executive
ARINC Aeronautical Radio, INCorporated

CNES Centre National d’Études Spatiales
CPU Central Processor Unit

ESA European Space Agency

GCC GNU Compiler Collection
GDB The GNU Debugger
GNU GNU’s Not Unix

HAL Hardware Abstraction Layer
HM Health Monitoring

IMA Integrated Modular Avionics
ISR Interrupt Service Routine

LRM Line Replaceable Modules
LRU Line Replaceable Unit

MMU Memory Management Unit
MTF Major Time Frame

OS Operating System

PAL POS Adaptation Layer
PMK Partition Management Kernel
POS Partition Operating System
PST Partition Scheduling Table

RTAI Real-Time Application Interface for Linux
RTEMS Real-Time Executive for Multiprocessor Sys-

tems
RTOS Real-Time Operating System

65

66 Abbreviations

SIS SPARC Instruction Simulator
SPARC Scalable Processor ARChitecture

TSP Time and Space Partitioning

VMI Virtual Machine Interface

WCET Worst Case Execution Time
WP Work Package

Bibliography

[1] Design Guidance for Integrated Modular Avionics, Airlines Electronic Engineer-
ing Committee (AEEC), ARINC Specification 651, 1991.

[2] C. Watkins and R. Walter, “Transitioning from federated avionics architec-
tures to Integrated Modular Avionics,” in Proceedings of the 26th IEEE/AIAA
Digital Avionics Systems Conference (DASC 2007), Dallas, TX, USA, Oct. 2007.

[3] Avionics Application Software Standard Interface, Airlines Electronic Engineer-
ing Committee (AEEC), ARINC Specification 653-2 Part 1 (Required Ser-
vices), Mar. 2006.

[4] Avionics Application Software Standard Interface, Airlines Electronic Engineer-
ing Committee (AEEC), ARINC Specification 653 Part 2 (Extended Services),
Draft 5, Aug. 2006.

[5] J.-L. Terraillon and K. Hjortnaes, “Technical note on on-board software,”
ESA, European Space Technology Harmonisation, Technical Dossier on
Mapping, TOSE-2-DOS-1, Feb. 2003.

[6] TSP Working Group, “Time and space partitioning for space application,”
presented at the ESA Workshop on Avionics Data, Control and Software Sys-
tems (ADCSS), Noordwijk, The Netherlands, Oct. 2008.

[7] N. Diniz and J. Rufino, “ARINC 653 in space,” in Proceedings of the DASIA
2005 “DAta Systems In Aerospace” Conference. Edinburgh, Scotland: EU-
ROSPACE, Jun. 2005.

[8] J. Rufino, S. Filipe, M. Coutinho, S. Santos, and J. Windsor, “ARINC 653
interface in RTEMS,” in Proceedings of the DASIA 2007 “DAta Systems In
Aerospace” Conference. Naples, Italy: EUROSPACE, Jun. 2007.

[9] L. Kinnan, J. Wlad, and P. Rogers, “Porting applications to an ARINC 653
compliant IMA platform using VxWorks as an example,” in Proceedings of
the 23rd IEEE/AIAA Digital Avionics Systems Conference (DASC 2004), vol. 2,
Salt Lake City, UT, USA, Oct. 2004, pp. 10.B.1–10.1–8.

67

68 BIBLIOGRAPHY

[10] L. Kinnan, “Application migration from Linux prototype to deployable IMA
platform using ARINC 653 and Open GL,” in Proceedings of the 26th IEEE/A-
IAA Digital Avionics Systems Conference (DASC 2007), Dallas, TX, USA, Oct.
2007, pp. 6.C.2–1–6.C.2–5.

[11] J. Craveiro, J. Rufino, C. Almeida, R. Covelo, and P. Venda, “Embedded
Linux in a partitioned architecture for aerospace applications,” in Proceed-
ings of the 7th ACS/IEEE International Conference on Computer Systems and Ap-
plications (AICCSA 2009), Rabat, Morocco, May 2009, pp. 132–138.

[12] V. Yodaiken and M. Barabanov, “A real-time Linux,” in Proceedings of the
Linux Applications Development and Deployment Conference (USELINUX), Ana-
heim, CA, USA, Jan. 1997.

[13] G. Racciu and P. Mantegazza, RTAI 3.4 User Manual, rev. 0.3, Oct. 2006.

[14] P. Braga, L. Henriques, B. Carvalho, P. Chevalley, and M. Zulianello, “xLuna
- demonstrator on ESA Mars Rover,” in Proceedings of the DASIA 2008 “DAta
Systems In Aerospace” Conference, Palma de Majorca, Spain, May 2008.

[15] J. Rufino, J. Craveiro, T. Schoofs, C. Tatibana, and J. Windsor, “AIR Technol-
ogy: a step towards ARINC 653 in space,” in Proceedings of the DASIA 2009
“DAta Systems In Aerospace” Conference. Istanbul, Turkey: EUROSPACE,
May 2009.

[16] J. Craveiro, J. Rufino, T. Schoofs, and J. Windsor, “Flexible operating sys-
tem integration in partitioned aerospace systems,” in Actas do INForum 2009,
Simpósio de Informática, Lisbon, Portugal, Sep. 2009, accepted for publication.

[17] J. Rufino and J. Craveiro, “AIR Design Consolidation, PMK – Partition Man-
agement Kernel,” FCUL, AIR-II Deliverable WP 1.1, 2009, confidential doc-
ument.

[18] J. Craveiro, J. Rufino, T. Schoofs, and J. Windsor, “Robustness, flexibility
and separation of concerns in ARINC 653-based aerospace systems,” AIR-
II Technical Report RT-09-02, 2009.

[19] J. A. Stankovic, “Misconceptions about real-time computing: a serious prob-
lem for next-generation systems,” IEEE Computer, vol. 21, no. 10, pp. 10–19,
Oct. 1988.

[20] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Norwell, MA, USA: Kluwer Academic Publishers, 1997.

BIBLIOGRAPHY 69

[21] P. Verı́ssimo and L. Rodrigues, Distributed Systems for System Architects,
1st ed. Boston, MA, USA: Springer, Jan. 2001.

[22] R. Little, “Advanced avionics for military needs,” Computing and Control En-
gineering Journal, vol. 2, no. 1, pp. 29–34, Jan. 1991.

[23] N. Audsley and A. Wellings, “Analysing APEX applications,” in Proceedings
of the 17th IEEE Real-Time Systems Symposium (RTSS 1996), Washington, DC,
USA, Dec. 1996, pp. 39–44.

[24] M. A. Sánchez-Puebla and J. Carretero, “A new approach for distributed
computing in avionics systems,” in Proceedings of the 1st International Sym-
posium on Information and Communication Technologies (ISICT 2003). Dublin,
Ireland: Trinity College Dublin, 2003, pp. 579–584.

[25] E. Pascoal, “AMOBA — ARINC 653 simulator for modular space based ap-
plications,” Department of Informatics, University of Lisbon, 2008, M.Sc.
Thesis.

[26] J. Rushby, “Partitioning in avionics architectures: Requirements, mecha-
nisms and assurance,” SRI International, California, USA, NASA Contractor
Report CR-1999-209347, Jun. 1999.

[27] J. Miró, “Onboard software technology,” presented at the 3rd Portuguese
Space Forum, Lisbon, Portugal, Jun. 2009.

[28] K. Yaghmour, “Adaptive Domain Environment for Operating Systems,”
2001, unpublished whitepaper.

[29] G. Zhang, L. Chen, and A. Yao, “Study and comparison of the RTHAL-
based and ADEOS-based RTAI real-time solutions for Linux,” in Proceedings
of the 1st International Multi-Symposiums on Computer and Computational Sci-
ences (IMSCCS 2006), vol. 2. Hangzhou, Zhejiang, China: IEEE Computer
Society, 2006, pp. 771–775.

[30] D. Probert, J. Bruno, and M. Karaorman, “SPACE: a new approach to oper-
ating system abstraction,” in Proceedings of the 1st International Workshop on
Object Orientation in Operating Systems (IWOOOS 1991), Palo Alto, CA, USA,
Oct. 1991, pp. 133–137.

[31] RTEMS C Users Guide, Edition 4.8, for RTEMS 4.8 ed., OAR - On-Line Appli-
cations Research Corporation, Feb. 2008.

70 BIBLIOGRAPHY

[32] S. Goiffon and P. Gaufillet, “Linux: A multi-purpose executive support for
civil avionics applications?” in IFIP Congress Topical Sessions, R. Jacquart, Ed.
Toulouse, France: Kluwer, 2004, pp. 719–724.

[33] N. Peccia, “Software technology,” presented at the 3rd Portuguese Space Fo-
rum, Lisbon, Portugal, Jun. 2009.

[34] M. Masmano, I. Ripoll, and A. Crespo, “XtratuM Hypervisor for LEON2:
design and implementation overview,” I. U. de Automática e Informática
Industrial, Universidad Politécnica de Valencia, Tech. Rep., Jan. 2009.

[35] A. Crespo, I. Ripoll, M. Masmano, P. Arberet, and J. J. Metge, “XtratuM: an
Open Source Hypervisor for TSP Embedded Systems in Aerospace,” in Pro-
ceedings of the DASIA 2009 “DAta Systems In Aerospace” Conference. Istanbul,
Turkey: EUROSPACE, May 2009.

[36] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor, “A portable
ARINC 653 standard interface,” in Proceedings of the 27th IEEE/AIAA Digi-
tal Avionics Systems Conference (DASC 2008), St. Paul, MN, USA, Oct. 2008.

[37] IEEE, 1996 (ISO/IEC) [IEEE/ANSI Std 1003.1, 1996 Edition] Information Tech-
nology — Portable Operating System Interface (POSIX R©) — Part 1: System Ap-
plication: Program Interface (API) [C Language]. New York, NY, USA: IEEE,
1996.

[38] E. Pascoal, J. Rufino, T. Schoofs, and J. Windsor, “AMOBA — ARINC 653
simulator for modular space based applications,” in Proceedings of the DASIA
2008 “DAta Systems In Aerospace” Conference, Palma de Majorca, Spain, May
2008.

[39] A. Massa, Embedded Software Development with eCos. Prentice-Hall, 2002,
iSBN 0130354732.

[40] M. Barr and A. Massa, Programming Embedded Systems (with C and GNU De-
velopment Tools), 2nd ed. O’Reilly Media, Inc., Oct. 2006.

[41] E. B. Koffman and P. A. T. Wolfgang, Objects, Abstraction, Data Structures and
Design Using Java Version 5.0. John Wiley and Sons, Inc., 2005.

[42] IEC 60027-2: Letter symbols to be used in electrical technology – Part 2: telecom-
munications and electronics, IEC Std., Aug. 2005.

[43] VxWorks Kernel Programmer’s Guide, 6.2, Wind River Systems, Inc., 2005.

[44] J. Aas, “Understanding the Linux 2.6.8.1 CPU scheduler,” Feb. 2005.

BIBLIOGRAPHY 71

[45] D. Hart, J. Stultz, and T. Ts’o, “Real-time Linux in real time,” IBM SYSTEMS
JOURNAL, vol. 47, no. 2, p. 208, 2008.

[46] D. J. Shakshober, “Choosing an I/O scheduler for Red Hat Enterprise Linux
4 and the 2.6 kernel,” Red Hat Magazine, no. 8, Jun. 2005. [Online]. Available:
http://www.redhat.com/magazine/008jun05/features/schedulers/

[47] T. Gleixner, “The realtime preemption patch (PREEMPT RT): concepts and
mainline integration,” presented at the 8th Real-Time Linux Workshop
(RTLWS 2006), Lanzhou, Gansu, China, Oct. 2006.

[48] T. Schoofs, S. Santos, C. Tatibana, J. Anjos, J. Rufino, and J. Windsor, “An
IMA development environment,” in Proceedings of the DASIA 2009 “DAta
Systems In Aerospace” Conference. Istanbul, Turkey: EUROSPACE, May 2009.

[49] D. Abbott, Linux for Embedded and Real-time Applications, 2nd ed., ser. Embed-
ded Technology. Newnes, 2006.

[50] C. Hallinan, Embedded Linux Primer: A Practical Real-World Approach. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2006.

[51] D. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd ed. O’Reilly
Media, Inc., Aug. 2008.

[52] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third
generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–421, 1974.

[53] J. E. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann Publishers, 2005.

[54] A. Whitaker, M. Shaw, and S. D. Gribble, “Denali: Lightweight virtual ma-
chines for distributed and networked applications,” in Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2002), Boston, MA, USA, Jun. 2002, pp. 195–209.

[55] Z. Amsden, D. Arai, D. Hecht, A. Holler, and P. Subrahmanyam, “VMI: An
interface for paravirtualization,” in Proceedings of the Linux Symposium, Ot-
tawa, ON, Canada, Jul. 2006, pp. 363–378.

[56] (2009, May) Native performance: paravirt vs non-paravirt kernel.
VMware, Inc. [Online]. Available: http://www.vmware.com/interfaces/
paravirtualization/performance.html

http://www.redhat.com/magazine/008jun05/features/schedulers/
http://www.vmware.com/interfaces/paravirtualization/performance.html
http://www.vmware.com/interfaces/paravirtualization/performance.html

72 BIBLIOGRAPHY

[57] M. Schöbel and A. Polze, “Kernel-mode scheduling server for CPU parti-
tioning: a case study using the Windows Research Kernel,” in Proceedings
of the 2008 ACM Symposium on Applied Computing (SAC 2008). Fortaleza,
Ceará, Brazil: ACM, 2008, pp. 1700–1704.

[58] J.-Y. Mignolet and R. Wuyts, “Embedded multiprocessor systems-on-chip
programming,” IEEE Software, vol. 26, no. 3, pp. 34–41, May/Jun. 2009.

[59] J. Anderson, J. Calandrino, and U. Devi, “Real-time scheduling on multicore
platforms,” in Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2006), San Jose, CA, USA, Apr. 2006, pp.
179–190.

[60] K. Lakshmanan, R. Rajkumar, and J. P. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processors,” in Proceedings
of the 21st Euromicro Conference on Real-Time Systems (ECRTS 2009),
Dublin, Ireland, Jul. 2009, accepted for publication. [Online]. Available:
http://www.contrib.andrew.cmu.edu/∼klakshma/partfpps.pdf

[61] J. Carpenter, S. Funk, P. Holman, J. Anderson, and S. Baruah, A categorization
of real-time multiprocessor scheduling problems and algorithms. Chapman &
Hall/CRC, 2004.

[62] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. Anderson, “Soft real-time
scheduling on performance asymmetric multicore platforms,” in Proceedings
of the 13th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS 2007), Bellevue, WA, United States, Apr. 2007, pp. 101–112.

http://www.contrib.andrew.cmu.edu/~klakshma/partfpps.pdf

	Acknowledgments
	Abstract
	Resumo
	Resumo alargado
	List of Figures
	Introduction
	Motivation
	Contributions
	Institutional context
	Publications
	Document outline

	Related work
	Real-time systems
	Integrated Modular Avionics (IMA)
	ARINC 653
	Time and space partitioning
	Health Monitoring
	ARINC 653 Service Interface
	ARINC 653 Extended Services

	IMA and ARINC 653 in space
	Linux and real-time
	Linux in aerospace applications
	Integrating Linux in partitioned architectures
	Summary

	AIR: ARINC 653 in Space RTOS
	System architecture
	Partition Management Kernel (PMK)
	Application Executive (APEX) Interface
	AIR Health Monitoring

	Robust time and space partitioning
	Strict temporal segregation
	Spatial segregation

	Summary

	Improving the AIR Technology
	The AIR POS Adaptation Layer (PAL)
	Architectural properties
	Component engineering
	Separation of concerns

	Enhanced timeliness mechanisms
	Mode-based schedules
	Process deadline violation monitoring

	AIR space partitioning
	Summary

	Integration of generic operating systems
	Relevance of the problem
	Linux state of the art
	Process scheduling
	Input/output (I/O) scheduling
	Real-time capabilities

	Embedded Linux
	Configuring the Linux kernel
	Building in functional features
	Small system library
	Linux utilities and tools
	Shell
	Interpreted/scripting languages
	Building process
	Overall results analysis

	Integration in the AIR architecture
	Paravirtualization in the Linux kernel
	AIR Linux partition: AIR PAL design and integration
	AIR application platforms

	Summary

	Conclusion
	Future work directions

	Pseudocode snippets
	Mode-based schedules
	Data structures and global variables
	Partition scheduler
	Partition dispatcher

	Process deadline violation monitoring

	Abbreviations
	Bibliography

