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Paulo José Araújo dos Santos

Doutoramento em Estat́ıstica e Investigação Operacional
(Especialidade de Probabilidades e Estat́ıstica)

2011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/12423979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS
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Abstract

The first part of this thesis is devoted to the semiparametric estimation of high quan-

tiles. The classic estimators do not enjoy a desirable property in the presence of linear

transformation of the data. To solve this problem, the Peaks Over a Random Threshold

(PORT) methodology and PORT estimators are proposed. The consistency and asymp-

totic normality of the estimators are demonstrated. The finite sample behaviour of the

proposed PORT estimators is studied and compared with some competitors.

Under the context of financial time series and forecasting Value-at-Risk (VaR), the

tendency to clustering of violations problem arises. To deal with this, a new class of in-

dependence tests for interval forecasts evaluation is proposed and the choice of one test is

addressed. The exact and the asymptotic distributions of the corresponding test statistic

are derived. In simulation studies, the proposed test revealed to be more powerful than

the other tests under study, with few exceptions.

The tendency to clustering of violations problem is related with the discrete Weibull

distribution, through the shape parameter. A new estimator for this parameter is pro-

posed. The conditional distribution function and the moments are derived.

In order to solve the tendency to clustering of violations problem, a new risk model

based on durations between excesses over a high threshold (DPOT) is proposed and com-

pared with state-of-the art models under the probability 0.01, established in the Basel

Accords.

Under the context of extremal quantiles and using one of the oldest financial time

series, the DPOT model and a risk model that uses an PORT estimator are compared

with other risk models.

In the empirical studies presented, to predict the VaR at a level 0.01 or lower, these

models revealed more accuracy than the conditional parametric models widely used by

the econometricians.

Keywords: extreme value theory; quantitative risk management; financial time se-

ries; clustering of violations; discrete Weibull distribution; backtesting.
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Resumo em português

espaço

As principais contribuições desta tese enquadram-se nas áreas da estat́ıstica de valores

extremos e gestão quantitativa do risco, com exemplos de aplicações em finanças. O de-

senvolvimento deste trabalho apoia-se num ambiente probabilista subjacente da Teoria

de Valores Extremos (EVT do inglês “Extreme Value Theory”). Na primeira parte as-

sumimos que os dados são realizações de variáveis aleatórias (va´s) independentes e iden-

ticamente distribúıdas (iid). A distribuição do máximo de n observações de uma amostra

de va´s iid, após a normalização adequada, converge para um dos três tipos possiveis de

distribuições de valores extremos (Fréchet, Weibull ou Gumbel), representadas na forma

unificada pela distribuição generalizada de valores extremos (GEV do inglês “Generalized

Extreme Value”). O parâmetro de forma da distribuição GEV é designado por ı́ndice de

cauda, sendo a sua estimação de grande importâcia na estimação de outros parâmetros de

acontecimentos raros como por exemplo quantis elevados. Estão dispońıveis na literatura,

referida no Caṕıtulo 1, muitos exemplos da importância da estimação destes parâmetros

num vasto leque de aplicações em hidrologia, engenharia śısmica, ciências do ambiente,

modelação de tráfico de redes, gestão de riscos em seguros, finanças, entre outras áreas.

A primeira parte desta tese é dedicada à estimação semiparamétrica do ı́ndice de cauda

e de quantis elevados. Os estimadores clássicos não gozam de uma propriedade desejável

na presença de transformações lineares dos dados. Esta propriedade consiste nas estima-

tivas não serem perturbadas por mudanças de localização. Para resolver este problema,

propomos uma metodologia que foi designada por metodologia PORT (do inglês ”Peaks

Over a Random Threshold”) e estimadores PORT para o ı́ndice de cauda e para quantis

elevados. A consistência e a normalidade assintótica destes estimadores é demonstrada.

É estudado o comportamento de estimadores PORT em amostras finitas e o seu desem-

penho comparado com outros estimadores usados na literatura da especialidade.

Outro tema central tratado nesta tese é a quantificação do risco. O Value-at-Risk

(VaR), que de forma simplista não é mais do que um quantil extremo, tem vindo a substi-

tuir a volatilidade e o desvio padrão, sendo actualmente a medida de risco mais utilizada

pelos profissionais na área financeira. Desde os Acordos de Basileia que grande parte das

instituições financeiras utilizam diáriamente o VaR para cálculo dos requisitos de capital.

Num contexto de séries temporais financeiras e previsão do VaR, surge o problema de

violações em grupos (clusters). Christoffersen (1998) mostrou que o problema de deter-

minar a precisão de um modelo de previsão intervalar, como o VaR, pode ser reduzido
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ao estudo das propriedades de cobertura não condicional (UC) e independência (IND)

da sucessão “hit”, indicadora de violação. Uma infracção problemática da hipótese IND

é a que surge associada a violações que ocorrem em clusters. Este tipo de violações

sinalizam um modelo que não reage atempadamente à mudança de condições e num con-

texto de mercados financeiros, corresponde à ocorrência de um grande número de perdas

elevadas num espaço curto de tempo. Nesta tese propomos uma nova classe de testes

para a hipótese IND e uma definição para tendência para violações em clusters. Estes

testes utilizam a duração até à primeira violação e as durações entre as violações. As

distribuições exacta e assintótica da correspondente estat́ıstica de teste são deduzidas e

estudamos o problema da escolha de um teste pertencente a esta classe. Este teste é

adequado para detectar modelos com tendência para produzirem violações em clusters e

apresenta várias vantagens em relação às alternativas presentes na literatura, designada-

mente, é baseado numa distribuição exacta, é baseado numa estat́ıstica cuja distribuição

não depende de um parâmetro perturbador e estudos por simulação mostram que tem um

desempenho muito superior em termos de potência relativamente aos testes em estudo,

com poucas excepções, apresentando mais do dobro da potência em muitos casos. Este

teste também é aplicado a dados reais que abrangem a recente crise financeira global

de 2008. A análise destes dados reais proporciona evidência que ignorar a propriedade

IND foi uma importante razão para o fraco desempenho, durante a crise de 2008, do pro-

cedimento de “backtesting” definido nos Acordos de Basileia. Neste caso estudado, no

qual usámos um modelo que produz violações em clusters, o teste que propomos rejeita

a hipótese IND antes de todos os outros testes.

A problemática de violações em clusters, motivou o estudo da distribuição Weibull

discreta. Sob a hipótese IND, as durações entre violações são va’s com distribuição

geométrica que é um caso particular da distribuição Weibull discreta. Com violações em

clusters, verifica-se um excessivo número de durações muito curtas e um excessivo número

de durações muito longas. A distribuição Weibull discreta com o parâmetro de forma

inferior a 1, gera este padrão de durações e por isso a estimativa deste parâmetro pode ser

usada para detectar modelos que violam a hipótese IND desta forma. Nesta tese, um novo

estimador para o parâmetro de forma da distribuição Weibull discreta é proposto, sendo

deduzidas a função distribuição condicional e os momentos deste estimador. Utilizando

as expressões teóricas deduzidas e um estudo por simulação, o estimador proposto é com-

parado com outros estimadores em termos de viés e erro quadrátic médio, verificando-se

que o novo estimador tem um desempenho muito superior quando o parâmetro de forma

é inferior a 1. Recorrendo a uma série temporal financeira, a utilização deste estimador

para identificar modelos de risco que produzem violações em clusters é ilustrada. A dis-

tribuição Weibull discreta tem muitas aplicações para além da apresentada no âmbito da
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gestão quantitativa do risco e por isso a aplicabilidade do estimador proposto também

se estende para além desta área.

No Caṕıtulo 1, é apresentada evidência que o pressuposto iid não é realista num

contexto de séries temporais financeiras. Nestas séries é usual obter forte evidência de

ocorrência de clusters de volatilidade e dependência serial não linear. Isto pode levar

a um desempenho não adequado de modelos VaR que assumem o pressuposto iid para

os retornos. Para lidar com esta dependência, surgiu na literatua uma metodologia

h́ıbrida que combina modelos de volatilidade tipo-GARCH (do inglês “Generalized Au-

toRegressive Conditional Heteroskedasticity”) com a EVT. Nesta tese propomos uma

metodologia alternativa com base apenas na EVT e que não necessita de assumir um

modelo paramétrico para toda a distribuição dos retornos mas apenas na cauda e com

base em sólida teoria assintótica. A metodologia proposta utiliza os excessos acima

de um ńıvel elevado e as durações entre estes excessos como covariáveis, tendo sido

designada por DPOT (do inglês “Duration based Peaks Over Threshold”). Na liter-

atura, métodos baseados no ajustamento de um modelo estocástico aos excessos acima

de um ńıvel elevado u foram desenvolvidos sob a designação POT (do inglês “Peaks Over

Threshold”). Um dos mais importantes Teoremas da EVT estabelece que os excessos

acima de u seguem aproximadamente uma distribuição de Pareto Generalizada, quando

a distribuição subjacente pertence ao domı́nio de atracção de uma distribuição GEV.

A metodologia DPOT recorre ao método POT e à modelação do parâmetro de forma

utilizando as durações como covariáveis. Com base neste método, três modelos DPOT,

para previsão do VaR para o dia seguinte, foram comparados com outros modelos uti-

lizando os retornos históricos de ı́ndices de acções. Os resultados emṕıricos mostram que,

para a probabilidade 0.01 estipulada nos Acordos de Basileia e com os ı́ndices estudados,

estes modelos têm um desempenho muito bom em termos de cobertura não condicional

e em termos de independência. Os modelos DPOT revelaram um melhor desempenho

“out-of-sample” que os modelos que constituem o estado-da-arte de modelos de risco.

Em comparação com o popular modelo RiskMetrics desenvolvido pela J.P. Morgan, o

desempenho é muito superior quer em termos de cobertura condicional, quer em termos

de independência. Adicionalmente, tendo em conta o cálculo dos requisitos de capital

no âmbito dos Acordos de Basileia, no peŕıodo estudado e para os ı́ndices considerados,

os modelos DPOT propostos conduziram a requisitos de capital médio inferiores aos dos

outros modelos, mas antecipando melhor os momentos de elevada volatilidade.

Finalmente, importa notar que o pressuposto iid não é necessáriamente uma limitação.

Na última parte desta tese, recorrendo a dados reais, mostramos que no caso do VaR com

ńıveis de probabilidade muito baixos, i.e., no caso de quantis elevados, um estimador de
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variância mı́nima e viés reduzido (MVRB do inglês ”Minimum Variance Reduced Bias”),

introduzido recentemente na literatura, que incorpora um dos estimadores PORT sug-

erido nesta tese e que é baseado no pressuposto iid, pode ser extraordináriamente pre-

ciso. Nesta última parte, é comparado o desempenho “out-of-sample” de modelos VaR

baseados neste estimador, de modelos DPOT e de outros modelos VaR. Neste contexto,

os ńıveis de probabilidade muito baixos utilizados foram p = 0.001 e p = 0.0005, que

correspondem a alterações adversas de preços que se espera ocorrerem em média uma

vez de quatro em quatro anos ou em média uma vez de oito em oito anos. O VaR com

estes ńıveis de probabilidade pode ter interesse no desenvolvimento dos “testes de stress”.

Nos estudos emṕıricos apresentados, para previsão do VaR com um ńıvel de probabil-

idade igual ou inferior a 0.01, os modelos DPOT e os modelos baseados num estimador

MVRB que incorpora um estimador PORT, revelaram mais precisão que os modelos

paramétricos condicionais que são muito utilizados pelos econometristas, verificando-se

em alguns casos uma enorme diferença no desempenho ”out-of-sample”.
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1
Introduction

1.1 Extreme value theory

Extreme value theory (EVT) is the theory of modeling and measuring events which occur

with very small probability. In this sense, EVT gives a probabilistic framework to model

what is often called extreme or rare events. One classic example of the need of EVT is the

problem raised in the Netherlands with the assessment of dikes height needed to protect

the land (de Haan, 1990). Starting from the first edition in 1958 of Gumbel (2004),

universally acknowledged as the classic text about statistics of extremes, many examples

of application have been provided over the last few decades and an extensive literature is

available, on applications in various areas such as traffic analysis, hydrology, earthquake

engineering, environmental science, finance, insurance, among others. Reference Books

in the field of real world applications of EVT are Kotz and Nadarajah (2000), Coles

(2001), Embrechts et al. (2001), Beirlant et al. (2004), Castillo et al. (2005), Reiss and

Thomas (2007), Falk et al. (2010). In this thesis, the main contributions are within

the fields of EVT and quantitative risk management with examples of applications to

finance. The chapters 2 and 3 were developed under the assumption that X1, X2, ..., Xn

is a sample of independent and identically distributed (iid) random variables (rv) from

some cumulative distribution function (cdf) F . Section 1.3 shows evidence that in the

field of finance and in the context of log returns the iid assumption is unrealistic and

later on, using durations, we will take into account the dependence and the non identical

distribution of the returns.

Under the iid assumption the cdf of the maximum, denoted by Xn:n, is

P [Xn:n ≤ x] = P [X1 ≤ x,X2 ≤ x, · · · , Xn ≤ x] = Fn(x).

1



CHAPTER 1. INTRODUCTION

Usually, in practical applications, the cdf F is unknown and the previous result is in-

sufficient to obtain the cdf of Xn:n. To overcome this, the convergence of (Xn:n− bn)/an

with n → ∞, was studied, where an > 0 and bn are sequences of real numbers known as

the normalizing constants. The following theorem (Fisher and Tippett, 1928; Gnedenko,

1943) states that Xn:n after the proper normalization, converges in distribution to one

of three possible distributions.

Theorem 1.1.1 (Fisher-Tippett-Gnedenko theorem). If a sequences of real numbers

an > 0 and bn exists such that

lim
n→∞

P
(Xn:n − bn

an
≤ x

)
= Fn(anx+ bn) = G(x),

then if G is a non degenerate distribution function, it belongs to one of the following

types

Φα(x) = exp(−x−α), x > 0, α > 0 Fréchet,

Ψα(x) = exp(−(−xα)), x < 0, α > 0 Weibull

Λα(x) = exp(− exp(−x)), x ∈ R Gumbel.

The three distributions of the theorem 1.1.1 are particular cases of the Generalized

Extreme Value (GEV)

Gγ(x) =

{
exp

{
− (1 + γx)

−1/γ
}
, 1 + γx > 0, γ ̸= 0

exp (−e−x) , x ∈ R, γ = 0,
(1.1.1)

where the parameter γ is known as the tail index and is related with the tail weight

of the distribution. This unified model is due to Von Mises (1936) and reduces to the

Fréchet, Weibull and Gumbel, respectively, for γ > 0, γ < 0 and γ = 0. If the result

in theorem 1.1.1 holds for a distribution F it is said that F belongs to the max-domain

of attraction of the cdf Gγ and this condition is denoted by F ∈ D(Gγ). The case

γ < 0 corresponds to a cdf F with finite endpoint, such as the uniform and the beta

distributions. The case γ = 0 corresponds to a cdf F with exponentially decaying tail

such as normal and lognormal distributions. The case γ > 0 corresponds to a cdf F

with polynomially decaying tail such as the Pareto, Burr, Student’s t, among others, and

these distributions are referred as being heavy-tailed. Recently, Neves and Fraga Alves

(2008) proposed the concept of super heavy-tailed distributions. Heavy-tailed distribu-

tions are accepted in the literature as realistic distributions for several phenomena (e.g.,

Embrechts et al., 1997; Resnick, 2007). In the next Section, with the NASDAQ index

returns, we will show empirical evidence about the need for distributions with heavier

2



1.1. EXTREME VALUE THEORY

tails than the normal distribution, to model the unconditional distribution of the returns.

For small values of p, we want to extrapolate beyond the sample, estimating a high

quantile

χp(X) := F←(1− p), p = pn → 0, as n → ∞, npn → c ≥ 0. (1.1.2)

Here F←(t) := inf{x : F (x) ≥ t} denotes the generalized inverse function of F . As

far as we know, semi-parametric high quantile-estimators in the literature prior to 2006,

do not enjoy the adequate behavior in the presence of linear transformations of the data,

related with the theoretical linearity of a quantile

χp(δX + λ) = δχp(X) + λ, for any real λ and real positive δ. (1.1.3)

In chapter 2 we suggest a class of semi-parametric high quantile-estimators for which

the empirical counterpart of the theoretical linear property (1.1.3) holds. In chapters

2 and 3, a new methodology for tail index and high quantiles estimation, based on the

excesses over a random threshold - PORT methodology - is suggested and studied, under

the iid assumption. This allow us, for example, to study the behavior of the tails of the

unconditional distribution of the returns and to estimate the unconditional Value-at-Risk

with small values of p. In chapter 3, among other results, for symmetric distributions

with infinite left endpoint, we also prove the non-consistency of the classic Hill estimator

(Hill, 1975) when a practical statistical methodology of transforming the original data

through the subtraction of the minimum is used.

Another very important result in EVT is the Pickands-Balkema-de Haan theorem,

which we review in chapter 6. This theorem specifies the form of the limit distribution

of excesses over a high threshold. A new risk model, suggested in chapter 6, uses the

excesses over a high threshold and is based on this theorem.

3



CHAPTER 1. INTRODUCTION

1.2 Returns and forecasting Value-at-Risk

Throughout this work, one of the main themes is the measurement of risk and the risk

will be measured in terms of price changes. These changes can take the form of absolute

price change, simple return, simple gross return and, log return. Using a similar notation

as Campbell, Lo, and Mackinlay (1997), we recall the definitions of these forms of price

changes. Let Pt be the price of an asset at time t, the absolute price change of the asset

between day t and t− 1 is defined as

Dt = Pt − Pt−1,

the simple return on the asset, for the same period, is

R∗t =
Pt − Pt−1

Pt−1
,

and the simple gross return on the asset is

1 +R∗t =
Pt

Pt−1
.

Note that the asset’s k-period simple gross return, written as 1+R∗t (k), is the product

of the k one period simple gross returns involved

1 +R∗t (k) =
Pt

Pt−k
=

Pt

Pt−1
× Pt−1

Pt−2
· · · × Pt−k+1

Pt−k
=

k−1∏
j=0

(1 +R∗t−j),

and the simple return over the k periods, written R∗t (k), is equal to the k-period simple

gross return minus one.

Let C0 be the initial deposit in a Bank and C1 the capital at the end of the period.

Assume that the interest rate of the bank is r × 100% per period and the bank pays

interest m times during the period. The final capital is C1 = C0(1 + r/m)m. With

continuous compounding, i.e., with m → ∞, the final capital is C1 = C0 exp(r), and the

continuously compounded interest rate is equal to r. Note that r = log(C1/C0). In a

similar way, the continuously compounded return or log return of an asset is defined to

be the natural logarithm of the simple gross return

Rt = log(1 +R∗t ) = log
Pt

Pt−1
. (1.2.1)

Returns (simple and log returns) have more attractive statistical properties than

absolute price changes and the latter do not measure change in terms of the initial price

4
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level. These are the reasons for working with the returns rather than the absolute price

changes. Furthermore, for the log returns the following property holds

Rt(k) = log(1 +R∗t (k)) = log
( k−1∏

j=0

(1 +R∗t−j)
)
= Rt +Rt−1 + · · ·+Rt−k+1.

Thus, the k-period log return is simple the sum of the one-period log returns in-

volved. This property gives the log returns some advantages over the simple returns.

For modeling the statistical behavior of returns over time, it is easier to derive the time

series properties of additive processes than of multiplicative processes. Note also that

Rt = logPt− logPt−1, is the first difference of logPt. The logarithm transformation and

the first difference are very important transformations used in time series analysis for

achieving stationarity.

To illustrate the differences between the forms of price changes, Table 1.1 presents

daily close prices for the S&P 500 index for the period October 13, 1987 through Oc-

tober 19, 1987, and the corresponding daily absolute price changes, simple returns and

log returns. The web site http://finance.yahoo.com was the source of the data. This

period includes Monday, 19 October 1987, known as the Black Monday, when the stock

markets around the world crashed. In this day the S&P 500 index lost more than 20%

of its value with a price change equal to -57.86 usd, a simple return equal to -0.2047 and

a log return equal to -0.229. As expected, the simple return and the log return series are

similar to one another for small changes in the prices, but even with the largest change

in the history of the index, the difference between the simple return and the log return

is small.

Table 1.1

Absolute price changes, simple returns and log returns for the S&P 500 index.

Date Price Absolute price Simple return Log return

S&P500, Pt change, Dt R∗
t × 100 Rt × 100

1987-10-13 314.52 5.13 1.66 1,645

1987-10-14 305.23 -9.29 -2.95 -2,998

1987-10-15 298.08 -7.15 -2.34 -2,370

1987-10-16 282.70 -15.38 -5.16 -5,298

1987-10-19 224.84 -57.86 -20.47 -22,900
espaço

5



CHAPTER 1. INTRODUCTION

One of the main subjects treated in this thesis is Value-at-Risk (VaR), which allow

us to measure the size of the risk. This measure is replacing the standard deviation or

volatility as the most widely used measure of risk. VaR give us a monetary value (or

a return) that we risk losing during a time horizon and with a confidence level. For

example, a -2% one-day-ahead VaR(0.05) for a portfolio means that during the next day

we can be 95 percent certain that the value of the portfolio will not decrease by more

than 2%. For a detailed discussion of VaR, see Jorion (2000), the reference Holton (2003)

provides details about the history of VaR and the reference McNeil et. al. (2006) is a

general text about quantitative risk management. The need for a risk measure for setting

of capital adequacy limits for financial institutions justify the emergence of VaR. Since

the Basel II Accord, forecast at day t the Value-at-Risk (VaR) for day t + 1, become a

daily task for many financial institutions. More formally, considering time-series of daily

log returns (1.2.1), the VaR for time t+ 1, VaRt+1(p), is defined by

P [Rt+1 ≤ VaRt+1(p)] = p, (1.2.2)

where p is the coverage rate or probability level. VaRt+1(p) is a quantile p of the return

Rt+1 distribution. In Fig. 1.2.1, this risk measure is illustrated assuming a standard

normal distribution. In this case, VaRt+1(0.05) = −1.645 and [VaRt+1(0.05);+∞[ is a

one sided interval forecast for Rt+1, with a confidence level equal to 0.95. We can write

P [VaRt+1(0.05) < Rt+1 < +∞] = 1− p = 0.95.
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Figure 1.2.1: Area below the density curve and between VaRt+1|t(0.05) = −1.645 and +∞, assuming
a standard normal distribution for Rt+1.
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When we forecast the VaRt+1(p) at time t, this one-day-ahead VaR forecast is denoted

by VaRt+1|t(p). The hit function is defined as

It+1(p) =

{
1 if Rt+1 < VaRt+1|t(p)

0 if Rt+1 ≥ VaRt+1|t(p).
(1.2.3)

To evaluate interval forecasts the hit function (1.2.3) is considered. This function

produces a sequence of zeros and ones. The hit function, at time t + 1, assumes the

value one when the return falls outside the interval [VaRt+1|t(p),+∞[ and zero other-

wise. When the return falls outside the interval we say that a violation occurs and usually

this corresponds to a day with a large loss. Christoffersen (1998) showed that evaluating

interval forecasts can be reduced to examining whether the hit sequence,{It}Tt=1, satisfies

the unconditional coverage (UC) and independence (IND) properties. These properties

are explained in Chapter 4, where a new class of tests for the IND property is proposed.

Let us now suppose that the true distribution of Rt+1 is heavy-tailed, i.e., F ∈ D(Gγ)

with γ > 0. For example, let us suppose that the true distribution is Student − t with

2 degrees of freedom (d.f.) (γ = 1/2). In this case, if the standard normal model is

assumed (γ = 0) to forecast the VaRt+1(0.05), providing the value −1.645, we are un-

derestimating the absolute value of VaRt+1(0.05) such that the probability of a violation

is not 0.05 (the area below the density curve and between −∞ and −1.645 in Fig. 1.2.1)

but 0.120852 (the area below the density curve and between −∞ and −1.645 in Fig.

1.2.2), which represents more than the double of the correct probability. We will show in

Chapters 6 and 7, that something similar to this risk underestimation happens when the

widely used RiskMetrics model (RiskMetrics, 1996), based on the normal distribution, is

applied to portfolios that replicate stock indexes.

Empirical properties of returns are well documented in the literature (see for example

Tsay, 2010). In Fig. 1.2.3, the histogram obtained with all the returns from the NASDAQ

index until March 25, 2011, is presented. The normal density with mean equal to 0.0327

(the empirical mean) and standard deviation equal to 1.258 (the empirical standard

deviation) is also ploted in the same Figure. The histogram has a higher peak around

the mean, but heavier tails than that of the normal distribution. We also note some

asymmetry with a heavier left tail than the right tail, which we will study in detail for

this index in Chapter 3. The empirical evidence clearly indicates that the normality

assumption is not appropriate to model the unconditional distribution of the NASDAQ

index returns. This histogram give us an approximation to the unconditional distribution

of Rt+1 but it is very important to note that it is possible to use the recent information

until time t to estimate the conditional distribution and improve the one-day-ahead
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Figure 1.2.2: Area below the density curve and between −1.645 and +∞, assuming a Student-t
distribution with 2 d.f. for rt+1.

VaR forecast, VaRt+1|t(p). The conditional distribution instead of the unconditional

distribution is used by the parametric conditional models and by the conditional EVT

model reviewed in Chapter 6. In the new model, proposed in Chapter 6, a conditional

distribution is also used, but only for the tail and not for the entire distribution of the

return. In the next section we discuss the concept of volatility, important to model

the conditional distribution. There are several statistical approaches to VaR estimation;

see, e.g., Kuester et al. (2005) and the references therein for a survey. Some of these

approaches are reviewed in Chapter 6. Several studies conclude that conditional models

based on EVT provide better out-of-sample performance to forecast one-day-ahead VaR;

see, e.g., McNeil and Frey (2000), Byström (2004), Bekiros and Georgoutsos (2005),

Kuester et al. (2006), Ghorbel and Trabelsi (2008), Ozun et al. (2010), Araújo Santos

and Fraga Alves (2011).
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DURATIONS

daily log returns
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Figure 1.2.3: Histogram of 10123 returns for NASDAQ index from February 8, 1971 through March
25, 2011, with a normal density adjusted.

1.3 Volatility clustering, clusters of violations and dura-

tions

Fully parametric models in the location-scale class assumes for the returns,

Rt = µt + εt = µt + Ztσt, (1.3.1)

where Zt are a sequence of iid rv’s with zero mean and unit variance, µt the conditional

mean and σt the conditional standard deviation. Unconditional parametric models set

µt ≡ µ and σt ≡ σ, conditionally homoskedastic parametric models set only σt ≡ σ

and conditionally heteroskedastic parametric models allow both the mean and standard

deviation to be functions of past information. In light of the following evidence, to model

realistically the returns, the chosen model must allow for a conditional standard devia-

tion σt.
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CHAPTER 1. INTRODUCTION

Volatility is usually defined as the conditional standard deviation σt of the asset re-

turn. Volatility plays an important role in the field of finance. Two main applications

are options pricing and risk management. Volatility is not directly observable but it has

some characteristics that are frequently seen in asset returns. A very important char-

acteristic is recognized in the literature at least since Mandelbroat (1963), which noted

that large changes tend to be followed by large changes and small changes tend to be fol-

lowed by small changes. This phenomenon of high volatility for certain time periods and

low for other periods is known as volatility clustering. Fig. 1.3.1 shows the time series

plot of log returns for the S&P 500 index where we observe that periods of large returns

are clustered and distinct from periods of small returns, which are also clustered. The

variabilities of returns vary over time and appear in clusters. If we measure the volatility

in terms of standard deviation, then we have clearly evidence that the standard devia-

tions change with time. Changing standard deviations (or variances) are denoted by the

term heteroscedasticity. With time-varying standard deviations, the distribution of the

returns is not constant over time, i.e., the returns are not identically distributed rv’s.

Moreover, the following evidence shows that returns are not independent.

Considering time series of returns, the autocorrelations are usually very weak, how-

ever the autocorrelations of non linear transformations as the square of returns or the

absolute values of returns are highly significative until a large umber of lags as we can

observe in Fig. 1.3.2 with the returns of S&P 500 index. The autocorrelations with lags

between 1 and 41 are all much higher than the 95% confidence bands (dashed lines) and

we have strong evidence that all the autocorrelations are higher than zero. This means

that the past and present behavior of returns can help to predict the future behavior

of returns. For log return series, usually strong evidence of non-linear serial dependence

is found. With the strong evidence against the independence of returns over time and

against the assumption of identically distributed returns, VaR models which assume iid

returns, can suffer from a severe drawback. Diebold et al. discuss this drawback and to

deal with it they suggest a hybrid method combining a volatility model with the EVT

approach. In Chapter 6, we propose other approach which address this issue only under

the EVT framework. However, the iid assumption is not necessarily a limitation. In

Chapter 7 we show with real data that if the VaR at very low levels is considered, an

high quantile estimator recently introduced in the literature, which uses one tail index

estimator proposed in Chapter 2 and based on the iid assumption, can be extraordinarily

accurate.

espaço
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Figure 1.3.1: S&P 500 index returns.
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Figure 1.3.2: Sample autocorrelation coefficients for the absolute value of S&P 500 index returns.

Models that do not account for the volatility clustering phenomenon tend to produce

clusters of violations. To illustrate this we choose the Historical Simulation (HS) method,
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CHAPTER 1. INTRODUCTION

Figure 1.3.3: S&P 500 index returns (solid line) and HS VaR(0.01) forecasts (dashed lines).

a popular unconditional method to forecast VaR which easily generates clusters of vi-

olations when applied to heteroscedastic processes, especially with large samples. The

most popular variety of this method compute VaR as an empirical quantile of a moving

window of nw observations up to day t. For a detailed discussion of the HS method see

Dowd (2002) and Christoffersen (2003). In Fig. 1.3.3 for the S&P 500 index and the same

period of Fig. 1.3.1, we plot the returns and one-day-ahead 1% VaR computed with the

HS method using nw = 1000. The cluster of high volatility marked in Fig. 1.3.1, which

corresponds to the 2008 financial crises, produced a cluster of violations with nineteen

violations in only sixty-two trading days, when the expected with an accurate risk model

is one violation each one hundred days. In Chapter 6, using an EVT method, under

unconditional setup, which also do not account for the volatility clustering phenomenon,

the same problem of clusters of violations is illustrated. One of the main objectives of

this thesis is to suggest a conditional model to deal with this problem and one, based on

EVT, is suggested in Chapter 6. Clusters of violations correspond to several large losses

occurring in short periods of time and this constitutes one problematic infraction to the

IND hypothesis of the hit sequence. In Chapter 4, a new independence test for the hit

sequence and a definition for tendency to clustering of violations are proposed. This test

can be used to backtesting VaR models and will help to identify models that suffer from

the problem illustrated in Fig. 1.3.3; moreover, this test is more general and can be used

in any context of interval forecasts evaluation.
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The clusters of violations problematic has motivated the study of the discrete Weibull

distribution. Let us define the duration between two consecutive violations as

Di := ti − ti−1, (1.3.2)

where ti denotes the day of violation number i and t0 = 0, which implies that D1 is the

time until the first violation. We denote a sequence of N durations by {Di}Ni=1. We will

show in Chapter 4 that the IND hypothesis of the hit sequence can be written as

Di
iid∼ D ∼ Geometric(π), with 0 < π < 1.

The geometric distribution is a particular case of the discrete Weibull distribution,

presented in Chapter 5, with the shape parameter θ equal to 1 and this allows us to write

the IND hypothesis of the hit sequence as

Di
iid∼ D ∼ discrete Weibull(θ = 1).

With clusters of violations, we have an excessive number of very short durations and

an excessive number of very long durations. The discrete Weibull with θ < 1 will gener-

ate this pattern and the estimate of θ can be used to identify a model that violates IND

in this way. In Chapter 5, a new shape parameter estimator for the discrete Weibull dis-

tribution is suggested and their use to identify risk models that suffers from the tendency

to clustering of violations problem is exemplified. In addition, the discrete Weibull dis-

tribution has many applications outside the field of quantitative risk management, some

of them are referred in the introduction of Chapter 5, therefore the applicability of the

proposed estimator also goes beyond this field.

In Chapter 6, the dependence and the non identical distribution of the returns is

considered trough the use of durations as covariates. Here, the durations used are between

excesses over a high threshold. We show that for the very important value of p = 0.01,

established in the Basel II accord, the new conditional model proposed can perform better

than state-of-the art VaR models, both in terms of out-of-sample accuracy and in terms

of minimization of capital requirements under the Basel II accord. Finally, in Chapter

7 the application of the model proposed in Chapter 6 is extended to high quantiles. An

high quantile estimator which uses one tail index estimator proposed in Chapter 2, is also

included in the out-of-sample study realized. VaR at very small levels, with for example

p = 0.001, may have interest in the development of stress tests (e.g., Longin, 2001;Tsay,

2010). In the appendix, R programs are provided to implement the suggested and used

tests and models.

espaço
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Volume 4, Number 3, November 2006, 227-247. 2
Peaks Over Random Threshold Methodology

for Tail Index and High Quantile Estimation

A class of semi-parametric high quantile estimators which enjoy a desirable property in

the presence of linear transformations of the data are presented. Such a feature is in

accordance with the empirical counterpart of the theoretical linearity of a quantile χp:

χp(δX+λ) = δχp(X)+λ, for any real λ and positive δ. This class of estimators is based on

the sample of excesses over a random threshold, originating what we denominate PORT

(Peaks Over Random Threshold) methodology. We prove consistency and asymptotic

normality of two high quantile estimators in this class, associated with the PORT -

estimators for the tail index. The exact performance of the new tail index and quantile

PORT -estimators is compared with the original semi-parametric estimators, through a

simulation study.

2.1 Introduction

In this Chapter we deal with semi-parametric estimators of the tail index γ and high

quantiles χp, which enjoy desirable properties in the presence of linear transformations

of the available data. We recall that a high quantile is a value exceeded with a small

probability. Formally, we denote by F the heavy-tailed distribution function (cdf) of a

random variable (rv) X, the common cdf of the i.i.d. sample X := {Xi}ni=1, for which

the high quantile (1.1.2) has to be estimated.

We consider estimators based on the k + 1 top order statistics (o.s.), Xn:n ≥ · · · ≥
Xn−k:n, where Xn−k:n is an intermediate o.s., i.e., k is an intermediate sequence of
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integers such that

k = kn → ∞, kn/n → 0, as n → ∞. (2.1.1)

We assume that we are working in a context of heavy tails, i.e., γ > 0 in the extreme

value distribution (1.1.1), the non-degenerate cdf to which the maximum Xn:n is at-

tracted, after a suitable linear normalization. When this happens we say that the cdf F

is in the Fréchet domain of attraction and we write F ∈ D(Gγ)γ>0.

The Chapter is developed under the first order regular variation condition, which

allows the extension of the empirical cdf beyond the range of the available data, assuming

a polynomial decay of the tail. This condition can be expressed by

F ∈ D(Gγ)γ>0 iff F := 1− F ∈ RV−1/γ iff U ∈ RVγ , (2.1.2)

where U is the quantile function defined as U(t) := F←(1 − 1/t), t ≥ 1; the notation

RVα stands for the class of regularly functions at infinity with index of regular variation

α, i.e., positive measurable functions h such that lim
t→∞

h(tx)/h(t) = xα, for all x > 0.

It is interesting to note that the p-quantile can be expressed as χpn
= U (1/pn).

To get asymptotic normality of estimators of parameters of extreme events, it is usual

to assume the following extra second regular variation condition, that involves a non-

positive parameter ρ:

lim
t→∞

U(tx)/U(t)− xγ

A(t)
= xγ x

ρ − 1

ρ
, (2.1.3)

for all x > 0, where A is a suitably chosen function of constant sign near infinity. Then,

|A| ∈ RVρ and ρ is called the second order parameter (Geluk and de Haan, 1987). For

the strict Pareto model, with tail function F (x) = (x/C)−1/γ and quantile function

U(t) = Ctγ , U(tx)/U(t)− xγ ≡ 0. We then consider that (2.1.3) holds with A(t) ≡ 0.

More restrictively, we might consider that F belonged to the wide class of Hall (Hall,

1982), that is, the associated quantile function U satisfies

U(t) = δtγ(1 + γβtρ/ρ+ o(tρ)), ρ < 0, γ, δ > 0, β ∈ R, as t → ∞, (2.1.4)

or equivalently, (2.1.3) holds, with A(t) = γβtρ. The strict Pareto model appears when

both β and the remainder term o(tρ) are null.
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Returning to the problem of high quantile estimation, we recall the classical semi-

parametric Weissman-type estimator of χpn (Weissman, 1978),

χ̂pn = χ̂pn(X) = Xn−kn:n

(
kn
npn

)γ̂n

, (2.1.5)

with γ̂n = γ̂n(X) some consistent estimator of the tail parameter γ.

In the classical approach one considers for γ̂n the well known Hill estimator (Hill,

1975),

γ̂H
n = γ̂H

n (X) =
1

kn

kn∑
j=1

log
Xn−j+1:n

Xn−kn:n
, (2.1.6)

or the Moment estimator (Dekkers et al., 1989),

γ̂M
n = γ̂M

n (X) = M (1)
n + 1− 1

2

{
1− (M

(1)
n )2

M
(2)
n

}−1
, (2.1.7)

with M
(r)
n , the r-Moment of the log-excesses, defined by

M (r)
n = M (r)

n (X) =
1

kn

kn∑
j=1

(
log

Xn−j+1:n

Xn−kn:n

)r

, r = 1, 2. (2.1.8)

We use the following notation:

χ̂H
pn

= Xn−kn:n

(
kn
npn

)γ̂H
n

, χ̂M
pn

= Xn−kn:n

(
kn
npn

)γ̂M
n

. (2.1.9)

Finally, we explain the question that motivated this chapter. It is well known that

scale transformations to the data do not interfere with the stochastic behaviour of the

tail index estimators (2.1.6) and (2.1.7), i.e., we can say that they enjoy scale invariance.

The incorporation of (2.1.6) or (2.1.7) in the Weissman-type estimator in (2.1.5), allows

us to obtain the following desirable exact property for quantile estimators: for any real

positive δ,

χ̂pn(δX) = δXn−kn:n

(
kn
npn

)γ̂n

= δχ̂pn(X). (2.1.10)

But we want a similar linear property in the case of location transformations to the data,

Zj := Xj + λ, j = 1, · · · , n, for any real λ. That is, our main goal is that, for the

transformed data Z := {Zj}nj=1, the quantile estimator satisfies

χ̂pn(Z) = χ̂pn(X) + λ. (2.1.11)
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Altogether, this represents the empirical counterpart of the theoretical linear property

for quantiles (1.1.3).

Here we present a class of high quantile-estimators for which (2.1.10) and (2.1.11) hold

exactly, pursuing the empirical counterpart of the theoretical linear property (1.1.3). For

a simple modification of (2.1.5) that enjoys (2.1.11) approximately, see Fraga Alves and

Araújo Santos (2004). For the use of reduced bias tail index estimation in high quantile

estimation for heavy tails, see Gomes and Figueiredo (2003), Matthys and Beirlant (2003)

and Gomes and Pestana (2005), where the second order reduced bias tail index estimator

in Caeiro et al. (2005) is used for the estimation of the Value at Risk.

2.1.1 The class of high quantile estimators under study

The class of estimators suggested here is function of a sample of excesses over a random

threshold Xnq :n,

X(q) :=
(
Xn:n −Xnq :n, Xn−1:n −Xnq :n, · · · , Xnq+1:n −Xnq :n

)
, (2.1.12)

where nq := [nq] + 1, with:

• 0 < q < 1, for cdf’s with finite or infinite left endpoint xF := inf{x : F (x) > 0}
(the random threshold is an empirical quantile);

• q = 0, for cdf’s with finite left endpoint xF (the random threshold is the minimum).

A statistical inference method based on the sample of excessesX(q) defined in (2.1.12) will

be called a PORT -methodology, with PORT standing forPeaks Over Random Threshold.

We propose the following PORT-Weissman estimators:

χ̂(q)
pn

= (Xn−kn:n −Xnq :n)

(
kn
npn

)γ̂(q)
n

+Xnq :n, (2.1.13)

where γ̂
(q)
n is any consistent estimator of the tail parameter γ, made location/scale invari-

ant by using the transformed sample X(q). Indeed, the incorporation in the Adapted-

Weissman estimator in (2.1.13), of tail index estimators, as function of the sample of

excesses, allows us to obtain exactly the linear property (2.1.11).

2.1.2 Shifts in a Pareto model

To illustrate the behaviour of the new quantile estimators in (2.1.13), we shall first

consider a parent X from a Pareto(γ, λ, δ),

Fγ,λ,δ(z) = 1−
(z − λ

δ

)−1/γ
, z > λ+ δ, δ > 0, (2.1.14)
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with λ = 0 and γ = δ = 1. Let us assume that we want to estimate an upper

p = pn = 1
n -quantile in a sample of size n = 500. Then, we want to estimate the

parameter χp(X) = 500. If we induce a shift λ = 100 to our data, we would obviously

like our estimates to approach χp(X + 100) = 600.

In Figure 2.1.1 we plot, for the Pareto(λ, 1, 1) parents, with λ = 0 and λ = 100 and

for q = 0 in (2.1.12), the simulated mean values of the Weissman and PORT-Weissman

quantile estimators based on the Hill, denoted χ̂H
p and χ̂

H(q)
p , respectively. These mean

values are based on N = 500 replications, for each value k, 5 ≤ k ≤ 500, from the above

mentioned models.

Figure 2.1.1: Mean values of χ̂H
pn

and χ̂
H(0)
pn , pn = 0.002 for samples of size n = 500 from a

Pareto(1, 0, 1) parent (target quantile χpn = 500) and from the Pareto(1, 100, 1) (target quantile
χpn = 600).

Similarly to the Hill horror plots (Resnick, 2004), associated to slowly varying func-

tions L
U
(t) = t−γU(t), we also obtain here Weissman-Hill horror plots whenever we

induce a shift in the simple standard Pareto model. Indeed, for a standard Pareto model

(λ = 0 in (2.1.14)), Weissman type estimators in (2.1.5) perform reasonably well, with

γ̂n = γ̂H
n . However, a small shift in the data may lead to disastrous results, even in this

simple and specific case. For the PORT-Weissman estimates, the shift in the quantile

estimates is equal to the shift induced in the data, a sensible property of quantile esti-

mates. Figure 2.1.1 also illustrates how serious can be the consequences to the sample

paths of the classical high quantile estimators, when we induce a shift in the data, as

suggested in Drees (2003). We may indeed be led to dangerous misleading conclusions,

like a systematic underestimation, for instance, mainly due to “stable zones” far away of

the target quantile to be estimated.
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2.1.3 Scope of the chapter

As far as we know, no systematic study has been done concerning asymptotic and exact

properties of semi-parametric methodologies for tail index and high quantile estimation,

using the transformed sample in (2.1.12). Somehow related with this subject, Gomes and

Oliveira (2003), in a context of regularly varying tails, suggested a simple generalization

of the classical Hill estimator associated to artificially shifted data. The shift imposed

to the data is deterministic, with the aim of reducing the main component of the bias of

Hill’s estimator, getting thus estimates with stable sample paths around the target value.

A preliminary study has also been carried out, by the same authors, replacing the artifi-

cial deterministic shift by a random shift, which in practice represents a transformation

of the original data through the subtraction of the smallest observation, added by one,

whenever we are aware that the underlying heavy-tailed model has a finite left endpoint.

With the purpose of tail index and high quantile estimation there is, in our opinion, a gap

in the literature regarding classical semi-parametric estimation methodologies adapted

for shifted data, the main topic of this paper.

In Section 2.2, we derive asymptotic properties for the adapted Hill and Moment es-

timators, as functions of the sample of excesses (2.1.12). In Section 2.3, we propose two

estimators for χp that belong to the class (2.1.13) and prove their asymptotic normality.

In Section 2.4, and through simulation experiments, we compare the performance of the

new estimators with the classical ones. Finally, in Section 2.5, we draw some concluding

remarks.

2.2 Asymptotic Behavior of Tail Index PORT-Estimators

For the classical Hill and Moment estimators, we know that for any intermediate sequence

k as in (2.1.1) and under the validity of the second order condition in (2.1.3),

γ̂H
n

d
= γ +

γ√
k
PH
k +

A(n/k)

1− ρ

(
1 + op(1)

)
(2.2.1)

and

γ̂M
n

d
= γ +

√
γ2 + 1√

k
PM
k +

(γ(1− ρ) + ρ)A(n/k)

γ(1− ρ)2
(
1 + op(1)

)
, (2.2.2)

where PH
k and PM

k are asymptotically standard normal rv’s.

In this Section we present asymptotic results for the classical Hill estimator in (2.1.6) and
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the Moment estimator in (2.1.7), both based on the sample of excesses X(q) in (2.1.12),

which will be denoted respectively, by

γ̂H(q)
n := γ̂H

n (X(q)) and γ̂M(q)
n := γ̂M

n (X(q)), 0 ≤ q < 1. (2.2.3)

In the following, χ∗q denotes the q-quantile of F : F (χ∗q) = q (by convention χ∗0 := xF ),

so that

Xnq :n
p−→ χ∗q , as n → ∞, for 0 ≤ q < 1.

For the estimators in (2.2.3) we have the asymptotic distributional representations ex-

pressed in Theorem 2.2.1.

Theorem 2.2.1 (PORT-Hill and PORT-Moment). For any intermediate sequence

k as in (2.1.1), under the validity of the second order condition in (2.1.3), for any real q,

0 ≤ q < 1, and with T generally denoting either H or M , the asymptotic distributional

representation

γ̂T (q)
n

d
= γ +

σT√
k
PT
k +

(
cTA(n/k) + dT

χ∗q
U(n/k)

)(
1 + op(1)

)
(2.2.4)

holds, where PT
k is an asymptotically standard normal rv,

σ2
H
:= γ2, c

H
:=

1

1− ρ
, d

H
:=

γ

γ + 1
, (2.2.5)

σ2

M
:= γ2 + 1, cM :=

γ(1− ρ) + ρ

γ(1− ρ)2
and dM :=

(
γ

γ + 1

)2

. (2.2.6)

Remark 2.2.1. Notice that σ2
M

= σ2
H
+ 1, c

M
= c

H
+ ρ

γ(1−ρ)2 and d
M

= (d
H
)2. Conse-

quently, σ
M

> σ
H
, c

M
≤ c

H
and d

M
< d

H
.

The proof of Theorem 2.2.1 relies on the the following Lemmas 2.2.1 and 2.2.2.

Lemma 2.2.1. Let F be the cdf of X, and assume that the associated U -quantile function

satisfies the second order condition (2.1.3). Consider a deterministic shift transformation

to X, defining the r.v. Xq := X − χ∗q with cdf Fq(x) = F (x + χ∗q) and associated Uq-

quantile function given by Uq(t) := F←q (1− 1/t) = U(t)− χ∗q .

Then Uq satisfies a second order condition similar to (2.1.3), that is

lim
t→∞

Uq(tx)/Uq(t)− xγ

Aq(t)
= xγ

(
xρq − 1

ρq

)
, for x > 0, ρq ≤ 0, (2.2.7)
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with

(
Aq(t), ρq

)
:=



(A(t) , ρ) if ρ > −γ;

(
A(t) +

γχ∗q
U(t)

, −γ

)
if ρ = −γ;

(
γχ∗q
U(t)

, −γ

)
if ρ < −γ.

(2.2.8)

Proof: Under (2.1.3), for x > 0,

Uq(tx)

Uq(t)
=

U(tx)− χ∗q
U(t)− χ∗q

=
U(tx)

U(t)

{
1− χ∗q/U(tx)

1− χ∗q/U(t)

}
=

U(tx)

U(t)

{
1 + χ∗q

1/U(t)− 1/U(tx)

1− χ∗q/U(t)

}
=

U(tx)

U(t)

{
1 +

χ∗q
U(t)

[
1− U(t)

U(tx)

]
(1 + o(1))

}
= xγ

{
1 +

xρ − 1

ρ
A(t)(1 + o(1))

}{
1 +

γχ∗q
U(t)

x−γ − 1

−γ
(1 + o(1))

}
= xγ

{
1 +

xρ − 1

ρ
A(t) +

γχ∗q
U(t)

x−γ − 1

−γ
+ o(A(t)) + o(1/U(t))

}
.

Then Uq satisfies (2.2.7), for Aq and ρq defined in (2.2.8) and the result follows. 2

Lemma 2.2.2. Denote by M
(r,q)
n the M

(r)
n statistics in (5.3.10), as functions of the

transformed sample X(q), 0 ≤ q < 1 in (2.1.12); that is,

M (r,q)
n := M (r)

n (X(q)) =
1

k

k∑
j=1

(
log

Xn−j+1:n −Xnq:n

Xn−k:n −Xnq :n

)r

, r = 1, 2.

Then, for any intermediate sequence k as in (2.1.1), under the validity of the second

order condition in (2.1.3) and for any real q, 0 ≤ q < 1,

M (r,q)
n − 1

k

k∑
j=1

(
log

Xn−j+1:n − χ∗q
Xn−k:n − χ∗q

)r

= op

(
1

U(n/k)

)
, r = 1, 2.
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Proof: We will consider r = 1. Using the first order approximation ln(1 + x) ∼ x, as

x → 0, together with the fact that Xnq :n = χ∗q(1 + op(1)), we will have successively

M (1,q)
n − 1

k

k∑
j=1

log
Xn−j+1:n − χ∗q
Xn−k:n − χ∗q

=

=
1

k

k∑
j=1

log
Xn−j+1:n −Xnq :n

Xn−k:n −Xnq :n
− log

Xn−j+1:n − χ∗q
Xn−k:n − χ∗q

=
1

k

k∑
j=1

log
1−Xnq :n/Xn−j+1:n

1−Xnq :n/Xn−k:n
− log

1− χ∗q/Xn−j+1:n

1− χ∗q/Xn−k:n

=
1

k

k∑
j=1

(
Xnq :n

Xn−k:n
−

Xnq :n

Xn−j+1:n
+

χ∗q
Xn−j+1:n

−
χ∗q

Xn−k:n

)
(1 + op(1))

=
Xnq :n − χ∗q
Xn−k:n

1

k

k∑
j=1

(
1− Xn−k:n

Xn−j+1:n

)
(1 + op(1)) (2.2.9)

=
op(1)

Xn−k:n

1

k

k∑
j=1

(
1− Xn−k:n

Xn−j+1:n

)
(1 + op(1)) .

Denote by {Yj}kj=1 iid Y standard Pareto rv’s, with cdf FY (y) = 1 − y−1, for y > 1

and {Yj:k}kj=1 the associated o.s.’s.

Since Xn−k:n
d
= U(Yn−k:n), with Yn−k:n the (n − k)-th o.s. associated to an iid stan-

dard Pareto sample of size n and
(
k
n

)
Yn−k:n

p−→1, for any intermediate sequence k, then

Xn−k:n

U(n/k)

p−→1; this together with the fact that
{

Yn−j+1:n

Yn−k:n

}k

j=1

d
= {Yk−j+1:k}kj=1 , allow us

to write
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M (1,q)
n − 1

k

k∑
j=1

log
Xn−j+1:n − χ∗q
Xn−k:n − χ∗q

=

=
op(1)

U(Yn−k:n)

1

k

k∑
j=1

(
1− U(Yn−k:n)

U(
Yn−j+1:n

Yn−k:n
Yn−k:n)

)
(1 + op(1))

=
1

k

k∑
j=1

(
1− Y −γk−j+1:k

)
op

(
1

U(n/k)

)
(1 + op(1))

=
1

k

k∑
j=1

(
1− Y −γj

)
op

(
1

U(n/k)

)
(1 + op(1)).

Now E
[
Y −γ

]
= 1

γ+1 and by the weak law of large numbers we obtain

M (1,q)
n − 1

k

k∑
j=1

log
Xn−j+1:n − χ∗q
Xn−k:n − χ∗q

=

=
γ

γ + 1

(
1 + op(1/

√
k
)
op

(
1

U(n/k)

)
= op

(
1

U(n/k)

)
.

For r = 2 steps similar to the previous ones lead us to the result. 2

Remark 2.2.2. Note that if q ∈ (0, 1), Xnq :n − χ∗q = Op(1/
√
n) and from (2.2.9), for

r = 1, 2,
√
k
[
M

(r,q)
n − 1

k

∑k
j=1

{
log

Xn−j+1:n−χ∗
q

Xn−k:n−χ∗
q

}r]
= Op

(√
k/n 1

U(n/k)

)
= op(1) holds.

Proof: (Theorem 2.2.1 ) Taking into account Lemma 2.2.2

γ̂H(q)
n =

1

k

k∑
j=1

log
Xn−j+1:n − χ∗q
Xn−k:n − χ∗q

+ op

(
1

U(n/k)

)
.

Now, considering the result in Lemma 2.2.1 and representation (2.2.1) adapted for the

deterministic shift data from Xq := X−χ∗q model, we obtain the following representation

for PORT-Hill estimator

γ̂H(q)
n

d
= γ +

γ√
k
PH
k +

Aq(n/k)

1− ρq

(
1 + op(1)

)
+ op

(
1

U(n/k)

)
,

with Aq(t) provided in (2.2.8), and the result (2.2.4) follows with T = H.
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Similarly, considering Lemmas 2.2.1 and 2.2.2 and the representation (2.2.2) adapted

for the deterministic shift data from Xq := X − χ∗q model, we obtain for the PORT-

Moment estimator the representation

γ̂M(q)
n

d
= γ +

√
γ2 + 1√

k
PM
k +

(γ(1− ρq ) + ρq )Aq(n/k)

γ(1− ρq )
2

(
1 + op(1)

)
+op

(
1

U(n/k)

)
,

and result (2.2.4) follows with T = M . 2

Remark 2.2.3. Note that if we induce a deterministic shift λ to data X from a model

F =: F0, i.e., if we work with the new model Fλ(x) := F0(x−λ), the associated U -quantile

function changes to Uλ(t) = λ + δU0(t). Then, as expected, (2.2.4) holds whenever we

replace γ̂
H(q)
n by γ̂H

n |λ (the Hill estimator associated with the shifted population with shift

λ) provided that we replace χ∗q by −λ. This topic has been handled in Gomes and Oliveira

(2003), where the shift λ is regarded as a tuning parameter of the statistical procedure

that leads to the tail index estimates. The same comments apply to the classical Moment

estimator.

Corollary 2.2.1. For the strict Pareto model, i.e., the model in (2.1.14) with λ = 0 and

γ = δ = 1, the distributional representations (2.2.4) holds with A(t) replaced by 0.

Under the conditions of Theorems 2.2.1 and with the notations defined in (2.2.5) and

(2.2.6), the following results hold:

Corollary 2.2.2. Let µ1 and µ2 be finite constants and let T generically denote either

H or M .

i) For γ > −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k
PT
k + c

T
A(n/k)

(
1 + op(1)

)
.

If
√
k A (n/k) → µ1, then

√
k
(
γ̂T (q)
n − γ

)
d−→

n→∞
Normal

(
µ1cT , σ

2
T

)
.

ii) For γ < −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k
PT
k + d

T

χ∗q
U(n/k)

(
1 + op(1)

)
.
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If
√
k/U (n/k) → µ2, then

√
k
(
γ̂T (q)
n − γ

)
d−→

n→∞
Normal

(
µ2dT

χ∗q , σ
2
T

)
.

iii) For γ = −ρ,

γ̂T (q)
n

d
= γ +

σ
T√
k
PT
k +

[
c
T
A(n/k) + d

T

χ∗q
U(n/k)

](
1 + op(1)

)
.

If
√
kA (n/k) → µ1 and

√
k/U (n/k) → µ2, then

√
k
(
γ̂T (q)
n − γ

)
d−→

n→∞
Normal

(
µ1cT + µ2dT

χ∗q , σ
2
T

)
.

2.3 High Quantile PORT-Estimators

On the basis of (2.1.13), we shall now consider the following estimators of χpn , functions

of the sample of excesses over Xnq :n, i.e., of the sample X(q) in (2.1.12):

χ̂H(q)
pn

:= (Xn−kn:n −Xnq :n)

(
kn
npn

)γ̂H(q)
n

+Xnq :n, 0 ≤ q < 1, (2.3.1)

χ̂M(q)
pn

:= (Xn−kn:n −Xnq :n)

(
kn
npn

)γ̂M(q)
n

+Xnq :n, 0 ≤ q < 1. (2.3.2)

For these estimators we have the asymptotic distributional representations presented in

Theorem 2.3.1.

Theorem 2.3.1. In Hall’s class (2.1.4), for intermediate sequences kn that satisfy

log (npn)/
√
kn → 0, as n → ∞, (2.3.3)

with pn such that (1.1.2) holds, then, with T denoting either H or M , (c
H
, d

H
, σ

H
) and

(cM , dM , σM ) defined in (2.2.5) and (2.2.6), respectively, and for any real q, 0 ≤ q < 1,

√
kn

σT log(kn/(npn))

(
χ̂
T (q)
pn

χpn

− 1

)
= PT

k +
√
kn

(
c
T
A(n/k) + d

T

χ∗q
U(n/k)

)(
1 + op(1)

)
,

where PT
k is an asymptotically standard normal rv

Proof: From now on, we denote an := kn

npn
. With the underlying conditions in (1.1.2),

an tends to infinity, as n → ∞, and the quantile to be estimated can be expressed as

χpn = U

(
1

pn

)
= U

(
nan
kn

)
.
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We will present the proof for T = H, since for T = M the proof follows the same steps.

First notice that

χ̂H(q)
pn

= (Xn−kn:n −Xnq :n) a
γ̂H(q)
n

n +Xnq :n

= Xn−kn:n

[(
1−

Xnq :n

Xn−kn:n

)
a
γ̂H(q)
n

n +
Xnq :n

Xn−kn:n

]
.

Now, since Xnq :n
p−→χ∗q , we have

Xnq :n

Xn−kn:n
= op(1). Then

χ̂H(q)
pn

= Xn−kn:n

[
a
γ̂H(q)
n

n (1 + op(1))
]
,

which means that the proposed estimator χ̂
H(q)
pn is asymptotically equivalent to the Weiss-

man type estimator (2.1.5), whenever we use the consistent estimator γ̂n ≡ γ̂
H(q)
n .

Consider now a convenient representation for the difference,

χ̂H(q)
pn

− χpn = Xn−kn:n

{
a
γ̂H(q)
n

n − a
γ̂H(q)
n

n

(
Xnq:n

Xn−kn:n

)
+

Xnq :n

Xn−kn:n
− χpn

Xn−kn:n

}
,

and recall that we may write

χpn

Xn−kn:n
=

U( n
kn

an)

U( n
kn

)

U( n
kn

)

U(Yn−kn:n)
.

According to (2.1.3), for ρ < 0, U( n
kn

an)/U( n
kn

) = aγn (1−A(n/kn)/ρ) (1 + op(1)).

Considering that for the estimator γ̂
H(q)
n , the representation (2.2.4) holds, we get succes-

sively, for sequences kn that verify (2.3.3),

a
γ̂H(q)
n

n = aγn

(
1 + log an

(
γ̂H(q)
n − γ

))
(1 + op(1))

and

χ̂H(q)
pn

− χpn = aγnXn−kn:n

{
1 + log an

(
γ̂H(q)
n − γ

)
(1 + op(1))

− (1−A(n/kn)/ρ) (1 + op(1))}

= aγnXn−kn:n

{
log an

(
γ̂H(q)
n − γ

)
+A(n/kn)/ρ

}
(1 + op(1)).

Now, we consider the following representation for intermediate statistics, proved in Fer-

reira et al. (2003),

Xn−kn:n
d
= U

(
n

kn

)(
1 +

γBk√
kn

+ op

(
1√
kn

)
+ op(A(n/kn))

)
, (2.3.4)

with Bk an asymptotically standard normal rv
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Using (2.2.4) and (2.3.4) , we may write

χ̂H(q)
pn

− χpn = U

(
n

kn

)
aγn

(
1 +Op(1/

√
kn

){
Wn +A

(
n

kn

)
/ρ

}
(1 + op(1)),

where

Wn = log an

(
γ̂H(q)
n − γ

)
= log an

(
σH√
kn

PH
k +

(
c
H
A(n/k) + d

H

χ∗q
U(n/k)

)(
1 + op(1)

))
,

with PH
k an asymptotically standard normal rv.

χ̂
H(q)
pn − χpn

aγnU( n
kn

)
= {Wn +A(n/k)/ρ} (1 + op(1))

and

√
kn

σH log an

(
χ̂
H(q)
pn

χpn

− 1

)
= PH

k +
√

kn

(
cHA(n/k) + dH

χ∗q
U(n/k)

)(
1 + op(1)

)
.

2

The following result is a direct consequence of Corollary 2.2.2 and Theorem 2.3.1.

Corollary 2.3.1. Under the same conditions of Theorem 2.3.1, then, with T replaced by

H or M , and (c
H
, d

H
, σ

H
) and (c

M
, d

M
, σ

M
) defined in (2.2.5) and (2.2.6), respectively,

the following results hold.

i) For γ > −ρ,

√
kn

σ
T
log(kn/(npn))

(
χ̂
T (q)
pn

χpn

− 1

)
= PT

k +
√

kn

(
c
T
A(n/k)

)(
1 + op(1)

)
,

If
√
knA(n/kn)→µ1, finite, as n → ∞, then the mean value is µ1cT .

ii) For γ < −ρ,

√
kn

σ
T
log(kn/(npn))

(
χ̂
T (q)
pn

χpn

− 1

)
= PT

k +
√

kn

(
dT

χ∗q
U(n/kn)

)(
1 + op(1)

)
,

If
√
kn/U(n/kn)→µ2,finite, as n → ∞, then the mean values is µ2dTχ

∗
q .

28



2.4. SIMULATIONS

iii) For ρ = −γ,

√
kn

σ
T
log(kn/(npn))

(
χ̂
T (q)
pn

χpn

− 1

)
= PT

k

+
√

kn

(
c
T
A(n/k) + d

T

χ∗q
U(n/kn)

)(
1 + op(1)

)
,

If
√
knA(n/kn)→µ1, finite, and

√
kn/U(n/kn)→µ2, finite, as n → ∞, then the mean

value is µ1cT + µ2dT
χ∗q .

2.4 Simulations

Here, we compare the finite sample behavior of the proposed high quantile estimators

χ̂
H(q)
pn in (2.3.1) and χ̂

M(q)
pn in (2.3.2) with the classical semi-parametric estimators χ̂H

pn

and χ̂M
pn

in (2.1.9). We have generated N = 200 independent replicates of sample size

n = 1000 from the following models:

• Burr Model: X ⌢ Burr(γ, ρ), γ = 1, ρ = −2,−0.5, with cdf

F (x) = 1− (1 + x−ρ/γ)1/ρ, x ≥ 0.

• Cauchy Model: X ⌢ Cauchy, γ = 1, ρ = −2, with cdf

F (x) =
1

2
+

1

π
arctang x, x ∈ R.

At a first stage, we generate samples from the standard models F0 := F . At a second

stage, we introduce a positive shift λ = χ0.01, i.e., a new location chosen in a comparable

basis as the percentile 99% of the starting point distribution F0. This defines a new model

Fλ(x) := F0(x− λ) from the same family. We estimate the high quantile χ0.001, for each

model F0 or Fλ from the referred Burr and Cauchy families, and we present patterns of

Mean Values and Root of Mean Squared Errors, plotted against k = 6, · · · , 800. The

simulations illustrate the dramatic disturbance on the behavior of the classical quantile

estimators in (2.1.9), when a shift is introduced. We, again, enhance that the flat stable

zones achieved with these estimators, in the presence of shifts, could lead us to danger-

ous misleading conclusions, unless we are aware of the suitable threshold k or of specific

properties of the underlying model.

29



CHAPTER 2. PEAKS OVER RANDOM THRESHOLD METHODOLOGY

0 200 400 600 800

0
10

00
20

00
30

00
40

00

k

χ̂p

H(0)

χ̂p

M(0)

χ̂p

M

χ̂p

H

0 200 400 600 800

0
20

00
40

00
60

00
80

00
10

00
0

k

χ̂p

H(0)

χ̂p

M(0)
χ̂p

M

χ̂p

H

Figure 2.4.1: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn , χ̂

M(0)
pn , χ̂H

pn
and

χ̂M
pn

, for a sample size n = 1000, from a Burr model with γ = 1, ρ = −2 and λ = 0 (target quantile
χ0.001 = 1000).
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Figure 2.4.2: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn , χ̂

M(0)
pn , χ̂H

pn and χ̂M
pn ,

for a sample size n = 1000, from a Burr model with γ = 1, ρ = −2 and λ = 99.99 (target quantile
χ0.001 = 1099.99).
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Figure 2.4.3: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn , χ̂

M(0)
pn , χ̂H

pn
and

χ̂M
pn

, for a sample size n = 1000, from a Burr model with γ = 1, ρ = −0.5 and λ = 0 (target quantile
χ0.001 = 937.731).
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Figure 2.4.4: Mean values (left) and root mean squared errors (right), of χ̂
H(0)
pn , χ̂

M(0)
pn , χ̂H

pn and χ̂M
pn ,

for a sample size n = 1000, from a Burr model with γ = 1, ρ = −0.5 and λ = 81.023 (target quantile
χ0.001 = 1018.754).
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Figure 2.4.5: Mean values (left) and root mean squared errors (right), of χ̂
H(0.5)
pn , χ̂

M(0.5)
pn , χ̂H

pn
and

χ̂M
pn

, for a sample size n = 1000, from a Cauchy model with γ = 1, ρ = −2 and λ = 0 (target quantile
χ0.001 = 319.309).
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Figure 2.4.6: Mean values (left) and root mean squared errors (right), of χ̂
H(0.5)
pn , χ̂

M(0.5)
pn , χ̂H

pn and

χ̂M
pn

, for a sample size n = 1000, from a Cauchy model with γ = 1, ρ = −2 and λ = 31.821 (target
quantile χ0.001 = 351.13).

From the figures, in this section, we observe that the classical quantile estimators diverge

a lot from the important linear property (2.1.11). On the other hand, the estimators we

propose, (2.3.1) and (2.3.2), enjoy exactly this property.
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2.5 Concluding Remarks

• The PORT tail index and quantile estimators, based on the sample of excesses,

X(q), in (2.1.12), provide us with interesting classes of estimators, invariant for

changes in location, as well as scale, a property also common to the classical esti-

mators.

• In practice, whenever we use a tuning parameter q in (0, 1), we are always safe.

Indeed, in such a case, the new estimators may or may not behave better than the

classical ones, but they are consistent and asymptotically normal for the same type

of k-values.

• A tuning parameter q = 0 is appealing but should be used carefully. Indeed, if

the underlying parent has not a finite left endpoint, we are led to non-consistent

estimators, with sample paths that may be erroneously flat around a value quite

far away from the real target. This topic will be object of further study in the next

Chapter.
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Volume 37, Number 7, 2008, 1281-1306. 3
PORT Hill and Moment Estimators for

Heavy-Tailed Models

In this Chapter, we use the peaks over random threshold (PORT)-methodology, and con-

sider Hill and moment PORT-classes of extreme value index estimators. These classes of

estimators are invariant not only to changes in scale, like the classical Hill and moment

estimators, but also to changes in location. They are based on the sample of excesses over

a random threshold, the order statistic X[nq]+1:n, 0 ≤ q < 1, being q a tuning parameter,

which makes them highly flexible. Under convenient restrictions on the underlying model,

these classes of estimators are consistent and asymptotically normal for adequate values

of k, the number of top order statistics used in the semi-parametric estimation of the

extreme value index γ. In practice, there may however appear a stability around a value

distant from the target γ when the minimum is chosen for the random threshold, and at-

tention is drawn for the danger of transforming the original data through the subtraction

of the minimum. A new bias-corrected moment estimator is also introduced. The exact

performance of the new extreme value index PORT-estimators is compared, through a

large-scale Monte-Carlo simulation study, with the original Hill and moment estimators,

the bias-corrected moment estimator, and one of the minimum-variance reduced-bias

(MVRB) extreme value index estimators recently introduced in the literature. As an

empirical example we estimate the tail index associated to a set of real data from the

field of finance.

3.1 Introduction

The extreme value index (or tail index ) γ is the shape parameter in GEV (1.1.1). This

cdf appears as the limiting cdf, as n → ∞, of the linearly normalised maximum Xn:n of
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an independent, identically distributed (iid), or even weakly dependent stationary sample

of size n, (X1, ..., Xn). We shall work in a context of heavy-tailed models, i.e., we shall

consider that γ > 0 in (1.1.1). Let us denote F←(t) := inf{x : F (x) ≥ t}, the generalized
inverse function of F, U(t) := F←(1 − 1/t), and RVα the class of regularly functions at

infinity with an index of regular variation γ, i.e., positive measurable functions h such

that lim
t→∞

h(tx)/h(t) = xα, for all x > 0. We shall work with models F that are in the

domain of attraction for maxima of EV with γ > 0, denoted DM(EVγ>0), i.e., with

models F such that:

1− F ∈ RV−1/γ or equivalently U ∈ RVγ . (3.1.1)

For the estimation of the right tail we consider two classical estimators of the extreme

value index γ based on the k+1 top order statistics (o.s.), denoted Xk := (Xn:n ≥ · · · ≥
Xn−k:n), where Xn−k:n is an intermediate o.s. (2.1.1). Those estimators are the Hill

estimator (Hill, 1975), with the functional expression

γ̂H
n,k = γ̂H

n (Xk) :=
1

k

k∑
j=1

Vjk, Vjk := lnXn−j+1:n − lnXn−k:n, (3.1.2)

and the moment estimator (Dekkers et al., 1989),

γ̂M
n,k = γ̂M

n (Xk) := M
(1)
n,k + 1− 1

2
{1− (M

(1)
n,k)

2/M
(2)
n,k}

−1 (3.1.3)

with

M
(r)
n,k = M (r)

n (Xk) =
1

k

k∑
j=1

{Vjk}r, r = 1, 2. (3.1.4)

It is a well-known result in the field of statistics of extremes that the estimator

in (3.1.2) is valid only for γ ≥ 0, whereas the estimator in (3.1.3) is valid for all γ ∈
R. They are both scale invariant, but not location invariant. Indeed, the associated

estimates, particularly the Hill estimates, may suffer drastic changes when we induce

an arbitrary shift in the data. Apart from the classical Hill and moment estimators,

often simply denoted H and M , respectively, we shall also consider one of the three

classes of second-order reduced-bias extreme value index estimators recently introduced

in Caeiro et al. (2005) and Gomes et al. (2007b, 2008b). These classes are based on

the adequate estimation of a “scale” and a “shape” second order parameters, β and

ρ, respectively, are valid for a large class of heavy-tailed models and are appealing in

the sense that we are able to reduce the asymptotic bias of the Hill estimator in (3.1.2)

without increasing the asymptotic variance, which is kept at the value γ2, the asymptotic

variance of Hill’s estimator. We shall call these estimators “minimum-variance reduced-

bias” (MVRB) estimators. These MVRB-estimators are also non invariant for changes in
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location. However, they are much less sensitive to changes in location than the classical

Hill estimator in (3.1.2). The simplest one, and the one we use, is the class provided in

Caeiro et al. (2005) and further studied in Caeiro and Gomes (2008) here denoted H for

the sake of simplicity. Such a class has the functional form:

γ̂H
n,k,β̂,ρ̂

= γ̂H
n,k,β̂,ρ̂

(X) := γ̂H
n

(
1− β̂

1− ρ̂

(n
k

)ρ̂)
, (3.1.5)

where β̂ and ρ̂ are adequate consistent estimators of the second-order parameters β and ρ,

respectively, to be specified later on in Section 3.2. We shall also consider a bias-corrected

moment estimator, given by:

γ̂M
n,k,β̂,ρ̂

= γ̂M
n,k,β̂,ρ̂

(X) := γ̂M
n

(
1− β̂

1− ρ̂

(n
k

)ρ̂)
− β̂ρ̂

(1− ρ̂)2

(n
k

)ρ̂
. (3.1.6)

However, the main classes of estimators considered in this thesis are, just as the

quantile estimators in Araújo Santos et al. (2006), functionals of a sample of excesses

over a random threshold X[nq]+1:n, i.e., functionals of (2.1.12). These new classes of

extreme value index estimators are the so-called PORT-Hill estimators, also denoted

H(q), and the PORT-moment estimators, also denoted M(q), theoretically studied, for

heavy tails, in Araújo Santos et al. (2006). They are denoted here by

γ̂
T (q)
n,k := γ̂T

n (X
(q)
k ) 0 ≤ p < 1, with T = H orM, (3.1.7)

where γ̂H
n,k, γ̂

M
n,k, and X

(q)
k are provided in (3.1.2), (3.1.3), and (2.1.12), respectively. The

estimators in (3.1.7) are now invariant for both changes of scale and location in the data,

and depend on the tuning parameter q, that provides a highly flexible class of extreme

value index estimators, which may even compare favorably with the MVRB extreme

value index estimators, provided that we adequately choose the tuning parameter q. The

choice q = 0 is appealing in practice, but should be used with care, as it can induce a

problem of sub-estimation.

In Section 2.1.2 with the study of the behaviour of the classical high quantile esti-

mators when we induce a shift in the data, we gave a motivation to the need of new

estimation procedures like the above mentioned PORT methodology. This is also valid

for the tail index estimators, since with the classical tail index estimators we achieve a

similar behaviour. In Section 3.2, we provide the asymptotic properties of the estimators

under study, we show the non-consistency of the PORT-Hill estimator H(0), for symmet-

ric models with infinite left endpoint and, through simulation experiments, we compare

the exact performance of the new estimators in (3.1.7) with the classical Hill and moment

estimators in (3.1.2) and (3.1.3), respectively, as well as with the reduced-bias extreme

value index estimators in (3.1.5) and in (3.1.6). Finally, in Section 3.3 we provide an

illustration of the behaviour of the estimators for a set of real data in the field of finance.
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3.2 Distributional Behaviour of the Estimators Under Com-

parison

3.2.1 A Brief Reference to Their Asymptotic Behaviour

In order to obtain a non degenerate behavior for any extreme value index estimator,

under a semi-parametric framework, it is convenient to assume the second-order condition

(2.1.3). Here, and mainly because of the reduced-bias estimators in (3.1.5) and (3.1.6), we

shall more restrictively assume that F belongs to the wide class of Hall (1982) presented

in (2.1.4). For the classical H and M estimators, generally denoted T , we know that

for any intermediate sequence k as in (2.1.1) and under the validity of the second-order

condition in (2.1.3):

γ̂T
n,k

d
= γ +

σTP
T
k√
k

+ cTA(n/k)(1 + oP (1)), (3.2.1)

where

σH = γ, cH =
1

1− ρ
, (3.2.2)

σM =
√
σ2 + 1, cM =

1

1− ρ
+

ρ

γ(1− ρ)2
, (3.2.3)

being PT
k (T = H or M) asymptotically standard normal rv’s (de Haan and Peng, 1998).

We may now generalize Theorem 3.1 in Caeiro et al. (2005), where it is possible to find

a proof of the following theorem for the estimator γ̂H
n,k,β̂,ρ̂

in (3.1.5). Let T generically

denote either H or M .

Theorem 3.2.1. For any intermediate sequence k as in (2.1.1), for models in (2.1.4),

for any (β̂, ρ̂), consistent for the estimation of (β, ρ) and such that (ρ̂−ρ) ln(n/k) = op(1),

the asymptotic distributional representation

γ̂T
n,k,β̂,ρ̂

d
= γ +

σTP
T
k√
k

+ op(A(n/k)),

holds both for γ̂H
n in (3.1.5) as well as for γ̂M

n in (3.1.6), where (PT
k , σT ) with T = H or

T = M are given in (3.2.2) and (3.2.3).

Proof: If we estimate consistently β and ρ through the estimators β̂ and ρ̂ in the

conditions of the theorem, we may use Cramer’s delta-method, and write:
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γ̂M
n,k,β̂,ρ̂

(k)

= γ̂M
n,k(k)×

(
1− β

1− ρ

(n
k

)ρ
− (β̂ − β)

1

1− ρ

(n
k

)ρ
(1 + op(1))

− β

1− ρ
(ρ̂− ρ)

(n
k

)ρ( 1

1− ρ
+ ln(n/k)

)
(1 + op(1))

)
− βρ

(1− ρ)2

(n
k

)ρ
−
{
(β̂ − β)

ρ

(1− ρ)2

(n
k

)ρ
+

β(ρ̂− ρ)

1− ρ

(n
k

)ρ(ρ ln(n/k)
1− ρ

+ 3− ρ
)}

(1 + op(1))

d
= γ̂M

n,k,β̂,ρ̂
(k)− A(n/k)

1− ρ

(
γ̂M
n,k(k)−

ρ

1− ρ

)( β̂ − β

β
+ (ρ̂− ρ) ln(n/k)

)
(1 + op(1)).

The reasoning is then quite similar to the one used in Caeiro et al. (2005) for the

H-estimator. Since β̂ and ρ̂ are consistent for the estimation of β and ρ, respectively, and

(ρ̂− ρ) ln(n/k) = op(1), the last summand is op(A(n/k)), and the result in the theorem,

related to the M -estimator, follows immediately. 2

Finally, for the PORT-Hill and PORT-moment estimators in (3.1.7), we have the

asymptotic distributional representation given by Theorem 2.2.1.

Remark 3.2.1. Note that as both dH and dM in (2.2.5) and (2.2.6), as well as U(t),

are positive, the dominant component of the bias of γ̂
T (q)
n,k , given in (2.2.4), is increasing

as a function of q.

Remark 3.2.2. Note also that if we induce a deterministic shift λ to data X, considering

X + λ, i.e., if instead of working with data from a model F := F0, we work with the

new model Fλ(x) := F0(x − λ), the associated U -quantile function changes to Uλ(t) =

λ+U0(t) ≡ λ+U(t). Then, if the second-order condition (2.1.3) holds for F ≡ F0, with

an auxiliary function A(t) ≡ A0(t), we straightforwardly get

Uλ(tx)

Uλ(t)
=

U(tx)

U(t)

{
1− λγ

U(t)

(x−γ − 1

−γ

)
+ o
( 1

U(t)

)}
.

Consequently,

Uλ(tx)

Uλ(t)
− xγ = xγ

(
A(t)

(xρ − 1

ρ

)
− λγ

U(t)

(x−γ − 1

−γ

)
+ o(A(t)) + o(1/U(t))

)
,

and we get, for instance, for the Hill estimator associated to this shift λ, denoted γ̂
H|λ
n,k

or H|λ for the sake of simplicity, the distributional representation

γ̂
H|λ
n,k

d
= γ +

σH√
k
PH
k +

(
cHA(n/k)− dH

λ

U(n/k)

)
(1 + op(1)), (3.2.4)
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i.e., as expected, (2.2.4) holds whenever we replace γ̂
H(q)
n by γ̂

H|λ
n , provided that we replace

χq by −λ. For details, see Gomes and Oliveira (2003), where the shift λ is regarded as

a tuning parameter of the statistical procedure that leads to the tail index estimates. On

the basis of the bias term associated with the Hill functional applied to shifted data, these

authors have found easily a justification for some kind of “magic numbers”, like λ = 0.5,

appearing for a Fréchet model, with tail function 1 − F (x) = 1 − exp(−x−1/γ), x > 0,

and λ = 1/γ, appearing for a generalized Pareto (GPD) distribution, with tail function

1− F (x) = (1 + γx)−1/γ , x > 0 (γ > 0). Indeed, from a theoretical point of view, let us

assume we are working in Hall’s class of distributions, where

1− F (x) = Cx−1/γ(1 +Dxρ/γ(1 + o(1))), asx → ∞.

Then, regular variation theory (Bingham et al., 1987) enables us to obtain the asymptotic

inverse of F ,

U(t) := F←(1− 1/t) = (Ct)γ(1 + γD(Ct)ρ(1 + o(1))), as t → ∞,

and we may choose any A function, such that A(t) ∼ γρD(Ct)ρ, as t → ∞.

Whenever ρ = −γ, we may thus choose A(t) such that:

A(t)U(t) = −γ2D, i.e., 1/U(t) = −A(t)/(γ2D).

If we look at (3.2.4) we see that the dominant component of asymptotic bias is then given

by (A(n/k)− λγ/U(n/k))/(1 + γ) = A(n/k)(1 + λ/(γD))/(1 + γ). Such a component is

thus null whenever λ = −γD.

The Fréchet model belongs to Hall’s class, with C = 1, D = −1/2, and ρ = −1. Then, for

γ = 1, λ = 0.5 enables us to remove the main component of asymptotic bias. If we think

on a GPD model, we are again in Hall’s class of models with C = γ−1/γ , D = −1/γ2,

and ρ = −γ. Then, for every γ if we induce in the data a shift λ = −γD = 1/γ = −1/ρ

we are able to remove the dominant component of asymptotic bias.

Remark 3.2.3. The comments in Remark 3.2.2 are also true for the classical moment

estimator, i.e., if we induce a shift λ to the data, (2.2.4) holds whenever we replace γ̂
M(q)
n

by γ̂
M |λ
n , provided that we replace χq by −λ. Moreover, also for the moment estimator

the dominant component of asymptotic bias is null whenever in Hall’s class of models,

we have ρ = −γ and we induce a shift λ = ρD = −γD.

We still add the following.
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Remark 3.2.4. Let us now consider the general EVγ model in (1.1.1). Then, we may

write

1− F (x) = (γx)−1/γ .


(
1− 1

γ2x + o(x−1)
)

if 0 < γ < 1(
1− 3

2x + o(x−1)
)

if γ = 1(
1− (γx)−1/γ

2 + o(x−1/γ)
)

if γ > 1,

i.e.,

C = γ−1/γ , ρ =

{
−γ if 0 < γ ≤ 1

−1 if γ > 1
, D =


−1/γ2 if 0 < γ < 1

−3/2 if γ = 1

−γ−1/γ/2 if γ > 1.

For the EVγ model, with γ ≤ 1, we may thus get a second-order reduced-bias extreme

value index estimator, on the basis of both the Hill and the moment functionals, in (3.1.2)

and (3.1.3), respectively, provided that we induce the deterministic shift

λ = −γD =

{
1/γ if 0 < γ < 1

3/2 if γ = 1.

Note, however, that with a deterministic shift, as suggested in Gomes and Oliveira

(2003), the estimators lose even the scale invariance property.

3.2.2 The non-consistency of H(0) for symmetric models with

infinite left endpoint

In this subsection we show that for heavy-tailed models symmetric around any real value

and with xF = −∞, the Hill estimator, adapted to the sample of excesses over the

minimum, can be non consistent for γ.

Theorem 3.2.2 (Non-consistency of PORT-Hill). For any intermediate sequence

k as in (2.1.1), under the validity of the first order condition in (2.1.2) for a symmetric

cdf F :

1. if γ ≥ log 2, γ̂
H(0)
n

p9
n→∞

γ;

2. if γ < 1, γ̂
H(0)
n

p−→
n→∞

0.

Proof: (1) The proof relies on the representation of H(0) as a function of the ex-

tremal quotient defined by Qn := −X1:n/Xn:n, which converges to 1 in probability,

for symmetric cdf’s. Details on the asymptotic properties of this extremal quotient

can be found in Gumbel and Keeney (1950). Consider the representation of the o.s.’s
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{Xi:n = U(Yi:n)}ni=1, with Yi:n the i-th increasing o.s. associated with a random sample

from a standard Pareto cdf, FY (y) = 1− 1/y, y > 1. In DM(EVγ>0) the scaled interme-

diate o.s. k
nYn−k:n

p−→
n→∞

1 and the scaled maximum 1
nYn:n

p−→
n→∞

1. Consequently, by (2.1.2),

the ratio Qn,k := Xn−k:n

Xn:n
= Op(k

−γ). Since for the extremal quotient Qn = 1+ op(1), we

have successively

0 < γ̂H(0)
n =

1

k

k∑
i=1

ln
Xn−i+1:n −X1:n

Xn−k:n −X1:n
=

1

k

k∑
i=1

ln
Qn,i−1 +Qn

Qn,k +Qn

=
1

k

k∑
i=1

ln {Qn,i−1 +Qn} − ln {Qn,k +Qn}

=
1

k

k∑
i=1

ln

{
Qn

(
1 +

Qn,i−1

Qn

)}
− ln {Qn,k +Qn}

< lnQn + ln
(
1 +Q−1n

)
− ln {Qn,k +Qn}

= ln(1 + op(1)) + ln (2 + op(1))− ln {1 + op(1)}
p−→

n→∞
ln 2

which assures that, for γ ≥ ln 2, γ̂
H(0)
n

p9
n→∞

γ.

(2) Consider now 0 < γ < 1, in first order condition (2.1.2), and write

γ̂H(0)
n =

1

k

k∑
i=1

ln {Qn,i−1 +Qn} − ln {Qn,k +Qn} =: An +Bn (3.2.5)

Since the extremal quotient Qn = 1 + op(1) and Qn,k = Op(k
−γ) the second term in

(3.2.5) Bn = ln {1 + op(1)} = op(1). For the first term in (3.2.5) we have

An = lnQn +
1

k

k∑
i=1

ln

(
1 +

Qn,i−1

Qn

)

= lnQn +
1

k

k∑
i=1

ln
(
1 +Q−1n Qn,k

Xn−i+1:n

Xn−k:n

)
d
= lnQn +

1

k

k∑
i=1

ln
(
1 +Q−1n Qn,k

U(Yn−i+1:n

Yn−k:n
Yn−k:n)

U(Yn−k:n)

)
d
= lnQn +

1

k

k∑
i=1

ln
(
1 +Q−1n Qn,k

U(Y ′k−i+1:kYn−k:n)

U(Yn−k:n)

)
d
= lnQn +

1

k

k∑
i=1

ln
(
1 +Q−1n Qn,k

U(Y ′i Yn−k:n)

U(Yn−k:n)

)
, (3.2.6)
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since Rényi’s representation (Rényi, 1953) enables us to write

{
Yn−i+1:n

Yn−k:n

}k

i=1

d
=
{
Y ′k−i+1:k

}k
i=1

and

k∑
i=1

g
(
Y ′k−i+1:k

)
=

k∑
i=1

g(Y ′i ),

for any measurable function g, with Y ′i:k, i = 1, · · · , k denoting the o.s.’s associated with

a unit Pareto random sample {Y ′i }
k
i=1.

We will show now that 1
k

∑k
i=1 ln

(
1 +Q−1n Qn,k

U(Y ′
i Yn−k:n)

U(Yn−k:n)

)
p−→

n→∞
0, for γ < 1. We do

this by using Potter’s inequalities (Bingham, Goldie and Teugels, 1987): since U ∈ RVγ ,

γ > 0, for any ϵ > 0 there exists t0 = t0(ϵ) such that for t ≥ t0 and x ≥ 1

(1− ϵ)xγ−ϵ ≤ U(tx)

U(t)
≤ (1 + ϵ)xγ+ϵ. (3.2.7)

The use of (3.2.7) enables us to get an upper bound for the second summand in (3.2.6)

1

k

k∑
i=1

ln
(
1 + (1 + ϵ)Q−1n Qn,kY

′
i
γ+ϵ
)

which is asymptotic equivalent to

1 + ϵ

k
Q−1n Qn,k

k∑
i=1

Y ′i
γ+ϵ

= (1 + ϵ)(1 + op(1))Op(k
−γ)

1

k

k∑
i=1

Y ′i
γ+ϵ

.

Since 1
k

∑k
i=1 Y

′
i
γ
converges to E[Y γ ] = 1/(1 − γ) in probability, for γ < 1, assured by

the law of large numbers. A similar reasoning leads us to a lower bound for the second

summand in (3.2.6). We get 1
k

∑k
i=1 ln

(
1 +Q−1n Qn,k

U(Y ′
i Yn−k:n)

U(Yn−k:n)

)
p−→

n→∞
0, for γ < 1;

consequently,

1

k

k∑
i=1

ln

{
Xn−i+1:n

Xn:n
− X1:n

Xn:n

}
= op(1)

and the result in 2. follows. 2

Remark 3.2.5. This result constitutes an alert to the practical statistical methodology of

transforming the original data through the subtraction of the minimum of the sample. In

the view of tail index estimation, this is not assured as a consistent inference procedure

taking the example of Hill estimator, with consequently practical misleading conclusions.
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3.2.3 The Estimation of Second-Order Parameters

For the estimation of the second-order parameters, needed for the estimators in (3.1.5)

and in (3.1.6), we suggest here an algorithm similar to the ones in Gomes and Pestana

(2007a,c) and Gomes et al. (2008b,c):

1. Given a sample (X1, X2, ..., Xn), with the notation abτ = b ln a whenever τ = 0,

and M
(r)
n,k given in (3.1.4), plot, for τ = 0, 1, the estimates

ρ̂τ (k) := −
∣∣∣3(T (τ)

n,k − 1)

(T
(τ)
n,k − 3)

∣∣∣, withT
(τ)
n,k :=

(M
(1)
n,k)

τ − (M
(2)
n,k/2)

τ/2

(M
(2)
n,k/2)

τ/2 − (M
(3)
n,k/6)

τ/3
. (3.2.8)

2. Consider {ρ̂τ (k)}k∈K, for integer values k ∈ K = ([n0.995], [n0.999]), and compute

their median, denoted χτ , τ = 0, 1. Choose

τ∗ :=

{
0 if

∑
k∈K(ρ̂0(k)− χ0)

2 ≤
∑

k∈K(ρ̂1(k)− χ1)
2

1 otherwise.

3. Compute, for k1 = [n0.995], ρ̂∗ = ρ̂(k1; τ
∗) and β̂∗ := β̂(k1; ρ̂

∗),

β̂(k; r) :=
(k
n

)r dk(−r)×Dk(0)−Dk(−r)

dk(r)×Dk(−r)−Dk(−2r)
(3.2.9)

where for any α ≤ 0, and with Wi := i{lnXn−i+1,n − lnXn−i,n}, 1 ≤ i ≤ k,

Dk(α) :=
1

k

k∑
i=1

(i/k)αWi, dk(α) :=
1

k

k∑
i=1

(i/k)αWi. (3.2.10)

Remark 3.2.6. The implementation of this algorithm in practice leads often to τ∗ = 0

whenever ρ ≤ 1 and τ∗ = 1 whenever ρ > 1 (see Gomes and Pestana, 2007c). This is

the reason why we are going to use such a rule in the simulations. The choices of K in

Step 2 and k1 in Step 3 are not crucial, provided that we restrict ourselves to reasonably

large values of k, the number of o.s. used.

Regarding the reduced-bias extreme value index estimators in (3.1.5) and (3.1.6), the

estimators (β̂τ , ρ̂τ ) of (β, ρ), τ = 0, 1, have been used, leading to:

Hτ ≡ Hτ (k) ≡ γ̂H
n,k,β̂τ ,ρ̂τ

, Mτ ≡ Mτ (k) ≡ γ̂M
n,k,β̂τ ,ρ̂τ

, τ = 0, 1.

The simulations in Caeiro et al. (2005) and Gomes and Pestana (2007c) show that

the tail index estimators Hτ , with τ equal to either 0 or 1, according as |ρ| ≤ 1 or |ρ| > 1,

work quite well. The use of τ = 1 always enables us to achieve a better performance
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than the one we get with the Hill estimator H. In a “blind way”, we might thus advise

such a choice, and we shall do it for the reduced-bias moment estimator Mτ . But for

Hτ , τ = 0 provides much better results than τ = 1 whenever |ρ|, unknown, is smaller

than or equal to 1.

3.2.4 Simulated Behaviour of the Tail Index Estimators

We have implemented multi-sample Monte Carlo simulation experiments of size 5, 000×10

for the extreme value index estimators under study.

3.3.1. Mean Values and Mean Squared Error Patterns of the Tail Index Estimators.

In Fig 3.2.1 , for samples of size n = 1, 000 from a Fréchet(γ), with γ = 1, we show

the simulated patterns of the mean values, E[•], and mean squared errors, MSE[•], of
the Hill estimator H in (3.1.2) and its location invariant versions H(p), p = 0, 0.25, and

0.5, in (3.1.7), together with the ones of the MVRB estimators H0 in (3.1.5). Figure

3.2.2 is similar to Fig. 3.2.1, but for the moment estimator M in (3.1.3), its location

invariant versions M(p), p = 0, 0.25, and 0.5, in (3.1.7) and the MRVB estimator M1 in

(3.1.6). The mean values and mean squared errors of the estimators are based on the

first replicate, with a run of size 5, 000. Figures 3.2.3 and 3.2.4 are equivalent to Figs.

3.2.1 and 3.2.2, respectively, but for the EVγ model in (1.1.1), with γ = 0.25. Similar

comment applies to Figs. 3.2.5 and 3.2.6, where we consider the underlying parent EVγ ,

with γ = 1. Finally, the pairs of Figs. 3.2.7, 3.2.8 and Figs. 3.2.9, 3.2.10 are equivalent

to the pair of Figs. 3.2.1, 3.2.2, but for Student tv, with v = 4 and v = 2, respectively.

The Student tv probability density function (df) is:

fv(x) = Γ((v + 1)/2)[1 + x2/(v − 2)]−(v+1)/2/(
√
π(v − 2)Γ(v/2)), x ∈ R.

For the Student-tv model, we get γ = 1/v and ρ = −2/v.

We may draw the following specific comments:

• As expected, on the basis of Remark 3.2.1, H(q) and M(q) are increasing in q.

However, and with T generally denoting eitherH orM , we expect to have T < T (0)

if the left endpoint xF of the underlying model F is zero, but things work the other

way round, i.e., T (0) < T if xF ̸= 0.

• For a Fréchet model, and perhaps as expected more generally, if we induce a shift

(random shift) through a central o.s. (or even the minimum, equal to 0), applying

the Hill or the moment functionals to Xi − X[nq]+1:n, 1 ≤ i ≤ n, 0 ≤ q < 1, we

get worse results than when we work with either the Hill or the moment estima-

tors, respectively. This result is not astonishing in the sense that we are replacing
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estimators that are only scale invariant by scale and location invariant estimators.

Indeed, from the results in Gomes and Oliveira (2003), we know that, concerning

the Hill estimator, we should shift our data from X towards X + 0.5 in order to

remove the dominant component of bias of the Hill estimator, and −0.5 < xF = 0.

But then, we are working with estimators that are neither invariant for changes in

scale nor location.

• As mentioned before, for the EVγ model, with 0 < γ < 1, we have ρ = −γ, and

with a shift λ = 1/γ = −1/ρ we would remove the dominant component of bias of

Hill’s as well as moment’s estimators. This means that we should apply the Hill or

the moment functionals to X − xF = X + 1/γ. Given that X1:n → xF = −1/γ,

we expect to be reasonably close to a reduced-bias extreme value index estimator

whenever we apply Hill’s or moment’s functionals toXi−X1:n, 1 ≤ i ≤ n. If we look

at Figs. 3.2.3 and 3.2.4, we see that H(0) and M(0) behave even better than the

corresponding MVRB-estimators. For the EV1 model, the shift that would reduce

the dominant component of bias would be induced by λ = 3/2. We should thus

go below the minimum, given that xF = −1, and our estimator would no longer

be location invariant (nor scale invariant). The statistics H(0) and M(0) are the

best ones among the non reduced-bias estimators, but the corresponding MVRB

estimators behave better than either H(0) and M(0). For the EVγ model with

γ > 1, although we have ρ ̸= −γ, the relative behaviour of the PORT-estimators is

quite similar to the one appearing when γ = 1. The location invariant estimators

H(q), q ≤ 0.25, behave better than the Hill, although not better than the MVRB-

estimator H0.

• We have decided to consider also Student tv parents with v degrees of freedom.

Then, we have ρ ̸= −γ. These parents have infinite left and right endpoints, and

consequently, it is no longer sensible to consider q = 0 in the PORT-estimators,

because of the possible non-consistency of the associated PORT-statistics. We did

it merely to draw the attention for the erroneous conclusions we may take from a

quite common behavior in data analysis practice. Indeed, a usual solution to take

care of the Pareto approximation U(t) ∼ δtγ is to make statistical inference only

after a suitable shift of the data. In the literature, it has been sometimes sug-

gested to subtract a random quantity, usually the minimum of the sample. This

shifted data set has the advantage of working out with usually more non negative

values, a desirable property for classical semi-parametric estimators of a positive

tail index. An extensive discussion about this type of shifted procedures can be

found for instance in Drees (2003). Therein, it is studied the effect of subtracting

the minimum of the sample, previously to the subsequent analysis of the Nasdaq
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Figure 3.2.1: Simulated Mean values (left) and root mean squared errors (right) of the Hill estimator
H in (3.1.2) and H(q), q = 0, 0.25 and 0.5 in (3.1.7), together with H0 in (3.1.5), for samples of size
n = 1, 000 from a Fréchet parent with γ = 1 ρ = −1.

Composite index log-returns data set, in the context of VaR estimation. In fact,

for that particular data, it is therein observed that this procedure constitutes a

considerable improvement, arising for the Hill γ-estimates a larger flat zone in the

associated sample path, after transforming the original data through the subtrac-

tion of the smallest observation. However, if we look at Figs. 3.2.7 and 3.2.9, we

easily see that “flat” zones in the sample path of the shifted-Hill (by the minimum)

estimator can lead to serious underestimation of the extreme value index.
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Figure 3.2.2: Simulated Mean values (left) and root mean squared errors (right) of M and M(q),
q = 0, 0.25 and 0.5 in (3.1.7), together with M1 in (3.1.6), for samples of size n = 1, 000 from a Fréchet
parent with γ = 1 ρ = −1.

Figure 3.2.3: Simulated Mean values (left) and root mean squared errors (right) of H and H(q),
q = 0, 0.25 and 0.5, together with H0, for samples of size n = 1, 000 from a EVγ parent with γ = 0.25
ρ = −0.25.
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Figure 3.2.4: Simulated Mean values (left) and root mean squared errors (right) of M and M(q),
q = 0, 0.25 and 0.5, together with M1, for samples of size n = 1, 000 from a EVγ parent with γ = 0.25
ρ = −0.25.

Figure 3.2.5: Simulated Mean values (left) and root mean squared errors (right) of H and H(q),
q = 0, 0.25 and 0.5, together with H0, for samples of size n = 1, 000 from a EVγ parent with γ = 1
ρ = −1.
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Figure 3.2.6: Simulated Mean values (left) and root mean squared errors (right) of M and M(q),
q = 0, 0.25 and 0.5, together with M1, for samples of size n = 1, 000 from a EVγ parent with γ = 1
ρ = −1.

Figure 3.2.7: Simulated Mean values (left) and root mean squared errors (right) of H and H(q),
q = 0, 0.25 and 0.5, together with H0, for samples of size n = 1, 000 from a t4 parent with γ = 0.25
ρ = −0.5.
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Figure 3.2.8: Simulated Mean values (left) and root mean squared errors (right) of M and M(q),
q = 0, 0.25 and 0.5, together with M1 and the rv Mβ,ρ, for samples of size n = 1, 000 from a t4 parent
with γ = 0.25 ρ = −0.5.

Figure 3.2.9: Simulated Mean values (left) and root mean squared errors (right) of H and H(q),
q = 0, 0.25 and 0.5, together with H0, for samples of size n = 1, 000 from a t2 parent with γ = 0.5
ρ = −1.
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Figure 3.2.10: Simulated Mean values (left) and root mean squared errors (right) of M and M(q),
q = 0, 0.25 and 0.5, together with M1 and the rv Mβ,ρ, for samples of size n = 1, 000 from a t2 parent
with γ = 0.5 ρ = −1.

3.3.2. Mean Values of the Tail Index Estimators at Optimal Levels. Tables 3.1, 3.2 and

3.3 are related to underlying models with |ρ| < 1, ρ < −1 and |ρ| > 1, respectively. We

shall there present, for n = 200, 500, 1, 000, 2, 000 and 5, 000, the simulated mean values

at optimal levels (levels where mean squared errors are minima as functions of k) of the

Hill estimator H in (3.1.2), the moment estimator M in (3.1.3), the MVRB-estimators,

H0, M1, in (3.1.5), (3.1.6), respectively, and the PORT-Hill and moment estimators in

(3.1.7) associated with q = 0, 0.1, 0.25, and 0.5. Information on 95% confidence intervals,

computed on the basis of the 10 replicates with 5,000 runs each, is also provided. Among

the estimators considered, the one providing the smallest squared bias is underlined and

in bold.

3.3.3. Mean Squared Errors and Relative Efficiency Indicators at Optimal Levels. We

shall compute Hill’s estimator at the simulated value of kHo := arg mink MSE[γ̂H
n,k], the

simulated optimal k in the sense of minimum mean squared error, not relevant in practice,

but providing an indication of the best possible performance of Hill’ s estimator. Such

an estimator will be denoted H0. Let us generically denote T any of the extreme value

index estimators under study. We shall now compute T0, the estimator T computed at

its simulated optimal level, again in the sense of minimum mean squared error. The

simulated indicators are:

REFFT |H :=

√
MSE[H0]

MSE[T0]
(3.2.11)
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Remark 3.2.7. An indicator higher than one means a better performance than the Hill

estimator. Consequently, the higher these indicators are, the better the T0-estimators

perform, comparatively to H0.

In Tables 3.4 - 3.12, we present in the first row, the mean squared error of H0, so that

we can easily recover the mean squared errors of all other estimators T0. The follow-

ing rows provide the REFF indicators, REFFT |H in (3.2.11), for the different extreme

value index estimators under study. Again, the estimator providing the highest REFF

indicator (minimum mean squared error at optimal level) is underlined and in bold.

Some Comments Regarding the REFF Indicators:

• For Fréchet parents and regardingREFF indicators, the reduced-bias estimatorH0

is the one exhibiting the better behaviour (higher REFF ). The moment estimator,

at the optimal level, slightly overpasses the Hill estimator, also at its optimal level,

for all n. Whenever we consider the PORT-estimators, the REFF indicators are

always smaller than 1, and they decrease as q increases. For the same q, M(q), and

H(q) have REFF indicators close together, with a slightly better performance of

the M(q) estimator.

• For the EVγ , γ = 0.25, and regarding REFF indicators, only H(0.5) exhibits a

REFF measure smaller than one for all n. The reduced-bias estimator H0 behaves

better than the Hill and quite close to H(0.25), but not so high as for Fréchet

parents. Both for H(q), and M(q) the REFF indicators increase as q decreases,

with the moment estimator behaving better than the Hill estimator, for the same

q. The estimator with the highest REFF indicator, among the ones considered is

M(0). However, H(0) provides a REFF indicator quite close to 1.5 for all n. For

the EVγ with γ = 1 the main difference lies in the fact that now the reduced-bias

indicator H0 provides the highest REFF indicators for all n ≥ 500. The relative

behavior of the REFF indicators forH(q) andM(q) follows a pattern similar to the

one associated to an EV0.25, but both H(0.5) and M(0.5) have REFF indicators

smaller than one for all n.

• For all Student models, and as expected due to the symmetry of the model around

0, H(0.5) is almost coincident with H, as well as M(0.5) almost equals M . For

the Student model with v = 4 degrees of freedom, the reduced-bias estimator H0

behaves quite well, even for small values of n, but H(0.25) overpasses it, being

H(0.1) the best estimator among the ones considered. All M(q) estimators behave

worse than the Hill estimator at optimal levels when ρ approaches 0, but for v = 2

the moment estimator M behaves slightly better than the Hill for large n. As
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mentioned before, H(0), possibly not even consistent for the estimation of γ, as

well as M(0), behave really very badly, with sample paths quite stable, but around

a value a long way from the target.
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Table 3.1

Simulated mean values, at optimal levels, of H, M , H0, M1, H(q), and M(q), q = 0.1, 0.25, and 0.5, for

parents with |ρ| = −1
n 200 500 1000 2000 5000

Student t4 (γ = 0.25)(ρ = −0.5)
H 0.3402±0.0792 0.3409±0.0636 0.3205±0.0357 0.3062±0.0486 0.2856±0.0253
M 0.0845±0.1027 0.1538±0.0855 0.1630±0.0495 0.1821±0.0496 0.1916±0.0301
H0 0.3231±0.0521 0.3010±0.0453 0.2876±0.0276 0.2919±0.0350 0.2862±0.0205
M1 0.0799±0.0722 0.1313±0.0774 0.1595±0.0592 0.1704±0.0533 0.2019±0.0223
H(0) 0.2735±0.0504 0.1892±0.0569 0.1889±0.0298 0.1534±0.0227 0.1040±0.0145
H(0.1) 0.2639±0.0216 0.2645±0.0145 0.2561±0.0136 0.2608±0.0060 0.2576±0.0070
H(0.25) 0.2937±0.0328 0.2766±0.0345 0.2645±0.0195 0.2721±0.0241 0.2633±0.0146
H(0.5) 0.3450±0.0814 0.3410±0.0664 0.3186±0.0370 0.3059±0.0477 0.2853±0.0253
M(0) 0.0389±0.0899 0.0978±0.0720 0.1154±0.0558 0.1385±0.0603 0.1643±0.0315
M(0.1) 0.0474±0.0908 0.1208±0.0714 0.1311±0.0586 0.1589±0.0606 0.1816±0.0302
M(0.25) 0.0635±0.0949 0.1210±0.0794 0.1497±0.0652 0.1593±0.0666 0.1943±0.0249
M(0.5) 0.0888±0.1075 0.1549±0.0872 0.1623±0.0496 0.1816±0.0498 0.1914±0.0299

EVγ (γ = 0.25)(ρ = −0.25)
H 0.3754±0.0806 0.3910±0.0951 0.3370±0.0585 0.3909±0.0801 0.3237±0.0333
M 0.3473±0.0957 0.2489±0.0956 0.2923±0.0718 0.3077±0.0499 0.2957±0.0350
H0 0.4026±0.0903 0.3396±0.0522 0.3648±0.0597 0.3884±0.0768 0.3230±0.0394
M1 0.2449±0.0722 0.2012±0.0955 0.2618±0.0411 0.2834±0.0338 0.2617±0.0182
H(0) 0.3710±0.0692 0.3120±0.0553 0.3242±0.0479 0.3434±0.0431 0.2990±0.0290
H(0.1) 0.3808±0.0750 0.3335±0.0716 0.3606±0.0576 0.3772±0.0760 0.3218±0.0326
H(0.25) 0.3842±0.0806 0.3739±0.0870 0.3562±0.0617 0.3904±0.0849 0.3206±0.0337
H(0.5) 0.3847±0.0765 0.4274±0.1251 0.3722±0.0745 0.3848±0.0691 0.3255±0.0496
M(0) 0.2088±0.0581 0.2223±0.0595 0.2471±0.0423 0.2650±0.0342 0.2514±0.0107
M(0.1) 0.2406±0.0649 0.2700±0.0628 0.2946±0.0453 0.2875±0.0429 0.2652±0.0191
M(0.25) 0.3136±0.0742 0.2469±0.1100 0.3042±0.0633 0.3064±0.0545 0.2732±0.0273
M(0.5) 0.3820±0.0993 0.2822±0.0750 0.3066±0.0729 0.3226±0.0597 0.3067±0.0405

GPDγ (γ = 0.5)(ρ = −0.5)
H 0.5938±0.1056 0.6289±0.0777 0.5993±0.0553 0.5690±0.0392 0.5366±0.0463
M 0.5559±0.1575 0.5814±0.0916 0.5805±0.0551 0.5693±0.0371 0.5245±0.0384
H0 0.5889±0.0805 0.6004±0.0648 0.5897±0.0458 0.5864±0.0227 0.5339±0.0251
M1 0.5769±0.1488 0.5908±0.0877 0.5891±0.0491 0.5794±0.0319 0.5270±0.0367
H(0) 0.5941±0.1057 0.6290±0.0777 0.5993±0.0553 0.5690±0.0391 0.5366±0.0463
H(0.1) 0.5928±0.1163 0.6344±0.0846 0.5991±0.0533 0.5745±0.0421 0.5420±0.0467
H(0.25) 0.6266±0.1150 0.6270±0.0919 0.6148±0.0547 0.5643±0.0329 0.5452±0.0679
H(0.5) 0.6474±0.1651 0.6280±0.0854 0.6003±0.0663 0.5910±0.0529 0.5466±0.0798
M(0) 0.5564±0.1577 0.5814±0.0916 0.5805±0.0551 0.5681±0.0381 0.5245±0.0384
M(0.1) 0.5518±0.1502 0.5861±0.0889 0.5836±0.0552 0.5722±0.0385 0.5220±0.0409
M(0.25) 0.5266±0.1700 0.5924±0.8900 0.5828±0.0593 0.5773±0.0379 0.5213±0.0466
M(0.5) 0.5302±0.1998 0.6043±0.0946 0.5829±0.0523 0.5803±0.0502 0.5152±0.0612
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Table 3.2

Simulated mean values, at optimal levels, of H, M , H0, M1, H(q), and M(q), q = 0.1, 0.25, and 0.5, for

parents with |ρ| = −1
n 200 500 1000 2000 5000

Frechet (γ = 1)(ρ = −1)
H 1.0498±0.1085 1.0750±0.0624 1.0657±0.0463 1.0775±0.0487 1.0356±0.0268
M 1.0612±0.1197 1.0709±0.0809 1.0656±0.0489 1.0697±0.0650 1.0385±0.0257
H0 1.0296±0.1034 1.0353±0.0813 1.0226±0.0398 1.0286±0.0506 1.0033±0.0209
M1 0.9607±0.1274 1.0091±0.0824 1.0136±0.0447 1.0300±0.0558 1.0099±0.0211
H(0) 1.0540±0.1302 1.1040±0.0740 1.0626±0.0486 1.0697±0.0480 1.0373±0.0282
H(0.1) 1.0714±0.1430 1.0832±0.0683 1.0743±0.0499 1.0770±0.0604 1.0504±0.0155
H(0.25) 1.0471±0.1752 1.0863±0.0867 1.1003±0.0662 1.0793±0.0656 1.0495±0.0234
H(0.5) 1.0763±0.1877 1.1428±0.1132 1.1070±0.0824 1.0693±0.0606 1.0445±0.0302
M(0) 1.0719±0.1262 1.0761±0.0869 1.0687±0.0530 1.0736±0.0677 1.0414±0.0275
M(0.1) 1.0574±0.1572 1.0836±0.1007 1.0768±0.0573 1.0845±0.0747 1.0467±0.0310
M(0.25) 1.0811±0.1663 1.0904±0.1134 1.0847±0.0637 1.0889±0.0835 1.0497±0.0335
M(0.5) 1.1069±0.1832 1.1002±0.1386 1.0978±0.0729 1.0976±0.0957 1.0571±0.0418

Student t2 (γ = 0.5)(ρ = −1)
H 0.5599±0.1079 0.6104±0.0698 0.5548±0.0325 0.5271±0.0328 0.5246±0.0270
M 0.4063±0.1195 0.5123±0.1031 0.4924±0.0285 0.4754±0.0472 0.4969±0.0299
H0 0.4714±0.0607 0.5233±0.0454 0.5023±0.0213 0.5019±0.0215 0.4988±0.0155
M1 0.3427±0.0009 0.4655±0.0005 0.4703±0.0002 0.4483±0.0001 0.4781±0.0001
H(0) 0.1270±0.0488 0.2613±0.1874 0.2535±0.1125 0.2457±0.1554 0.1645±0.0793
H(0.1) 0.4761±0.0423 0.4849±0.0349 0.4940±0.0225 0.4941±0.0137 0.4962±0.0087
H(0.25) 0.5111±0.0680 0.4891±0.0224 0.5000±0.0179 0.4968±0.0150 0.4964±0.0093
H(0.5) 0.5595±0.1090 0.6074±0.0675 0.5561±0.0316 0.5241±0.0326 0.5245±0.0269
M(0) 0.2290±0.0781 0.3323±0.0780 0.3571±0.0454 0.3436±0.0459 0.3681±0.0322
M(0.1) 0.2979±0.0950 0.4028±0.0797 0.4248±0.0371 0.4121±0.0444 0.4360±0.0388
M(0.25) 0.3521±0.1068 0.4406±0.0768 0.4497±0.0358 0.4285±0.0394 0.4539±0.0356
M(0.5) 0.4153±0.1188 0.5107±0.1015 0.4990±0.0315 0.4760±0.0468 0.4950±0.0289

EVγ (γ = 1)(ρ = −1)
H 1.0430±0.1501 1.0668±0.1310 1.1578±0.0625 1.0805±0.0600 1.0478±0.0287
M 0.9902±0.1870 1.0006±0.1000 1.1287±0.0812 1.0931±0.0883 1.0527±0.0373
H0 0.8708±0.0823 0.9667±0.0638 1.0495±0.0579 1.0377±0.0507 1.0146±0.0214
M1 0.8123±0.1108 0.9220±0.0651 1.0759±0.0703 1.0874±0.0645 1.0518±0.0315
H(0) 1.0918±0.1355 1.0037±0.0717 1.0909±0.0765 1.0697±0.0480 1.0373±0.0282
H(0.1) 1.0938±0.1606 1.0267±0.0930 1.0973±0.0646 1.0770±0.0604 1.0504±0.0155
H(0.25) 1.0911±0.1505 1.0475±0.1138 1.1369±0.0740 1.0793±0.0656 1.0495±0.0234
H(0.5) 1.0854±0.1723 1.0581±0.1348 1.1379±0.0838 1.0693±0.0606 1.0445±0.0302
M(0) 1.0082±0.1261 0.9948±0.0659 1.1000±0.0684 1.0736±0.0677 1.0414±0.0275
M(0.1) 1.0022±0.1561 0.9904±0.0806 1.1133±0.0763 1.0845±0.0747 1.0467±0.0310
M(0.25) 1.0162±0.1653 0.9932±0.0916 1.1224±0.0803 1.0889±0.0835 1.0497±0.0335
M(0.5) 0.9944±0.1805 1.0133±0.1102 1.1399±0.0817 1.0976±0.0957 1.0571±0.0418
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Table 3.3

Simulated mean values, at optimal levels, of H, M , H0, M1, H(q), and M(q), q = 0.1, 0.25, and 0.5, for

parents with |ρ| > 1

n 200 500 1000 2000 5000

Student t1 (γ = 1)(ρ = −2)
H 1.1198±0.1513 1.1329±0.0991 1.0744±0.0868 1.0401±0.0452 1.0258±0.0490
M 1.0550±0.1661 1.0937±0.1257 1.0349±0.0829 1.0392±0.0509 1.0164±0.0470
H0 1.0228±0.1191 1.1255±0.1113 1.0356±0.0766 1.0344±0.0267 1.0071±0.0466
M1 1.0767±0.1144 1.0719±0.0661 1.0647±0.0471 1.0739±0.0451 1.0371±0.0269
H(0) 0.3105±0.1960 0.3997±0.2939 0.2189±0.1124 0.4788±0.3238 0.4629±0.2564
H(0.1) 0.7925±0.1710 0.8584±0.1290 0.8289±0.1213 0.9069±0.0813 0.9355±0.0764
H(0.25) 1.0161±0.0839 0.9735±0.0395 1.0138±0.0306 1.0167±0.0133 1.0000±0.0134
H(0.5) 1.1086±0.1493 1.1348±0.1006 1.0799±0.0842 1.0367±0.0473 1.0256±0.0484
M(0) 0.4514±0.0753 0.4716±0.0317 0.4753±0.0197 0.4948±0.0097 0.4967±0.0064
M(0.1) 0.7012±0.1303 0.8056±0.1272 0.8139±0.0903 0.9015±0.0732 0.9004±0.0702
M(0.25) 0.8428±0.1220 0.9015±0.0979 0.8959±0.0755 0.9343±0.0545 0.9350±0.0495
M(0.5) 1.0523±0.1721 1.0964±0.1270 1.0391±0.0818 1.0374±0.0506 1.0165±0.0463

GPDγ (γ = 2)(ρ = −2)
H 2.1099±0.1881 2.0214±0.0990 2.0849±0.0893 2.0389±0.0551 2.0606±0.0674
M 2.0832±0.2040 1.9605±0.0895 2.0861±0.1023 2.0562±0.0661 2.0444±0.0558
H0 2.1310±0.1325 2.0030±0.0954 2.0574±0.1051 2.0307±0.0610 2.0464±0.0540
M1 1.9728±0.1796 1.9280±0.0875 2.0259±0.0916 2.0078±0.0629 2.0042±0.0473
H(0) 2.1092±0.1876 2.0216±0.0989 2.0850±0.0893 2.0389±0.0551 2.0606±0.0674
H(0.1) 2.1367±0.1969 2.0115±0.1013 2.0861±0.0953 2.0317±0.0722 2.0503±0.0641
H(0.25) 2.1531±0.2338 2.0343±0.1223 2.0844±0.1148 2.0433±0.0862 2.0383±0.0594
H(0.5) 2.0667±0.2715 2.0213±0.0973 2.1414±0.1075 2.0757±0.0814 2.0623±0.0662
M(0) 2.0828±0.2022 1.9605±0.0905 2.0863±0.1023 2.0563±0.0661 2.0444±0.0559
M(0.1) 2.0689±0.2206 1.9666±0.0975 2.0844±0.1023 2.0537±0.0661 2.0440±0.0559
M(0.25) 2.0524±0.2302 1.9592±0.1096 2.0949±0.1027 2.0573±0.0684 2.0453±0.0646
M(0.5) 2.0348±0.2767 1.9249±0.1253 2.1156±0.1204 2.0813±0.0794 2.0322±0.0657

Table 3.4

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for Fréchet parents with γ = 1 (ρ = −1)
n 200 500 1000 2000 5000

Frechet (γ = 1)(ρ = −1)
MSEH 0.0259±0.0004 0.0135±0.0002 0.0083±0.0001 0.0051±0.0000 0.0027±0.0000
REFFM|H 1.0229±0.0036 1.0176±0.0054 1.0131±0.0028 1.0077±0.0039 1.0080±0.0052
REFFH0|H 1.3290±0.0096 1.3763±0.0141 1.4731±0.0071 1.5752±0.0129 1.7902±0.0196
REFFM1|H 1.0447±0.0068 1.1372±0.0095 1.2383±0.0088 1.3428±0.0100 1.5352±0.0154
REFFH(0)|H 0.9065±0.0037 0.9172±0.0022 0.9238±0.0020 0.9279±0.0023 0.9370±0.0017
REFFH(0.1)|H 0.8144±0.0033 0.8131±0.0037 0.8132±0.0035 0.8101±0.0048 0.8120±0.0037
REFFH(0.25)|H 0.7416±0.0042 0.7421±0.0042 0.7405±0.0034 0.7382±0.0044 0.7413±0.0048
REFFH(0.5)|H 0.6251±0.0055 0.6284±0.0046 0.6307±0.0040 0.6295±0.0043 0.6316±0.0049
REFFM(0)|H 0.9345±0.0033 0.9381±0.0048 0.9395±0.0027 0.9391±0.0042 0.9449±0.0049
REFFM(0.1)|H 0.8413±0.0038 0.8358±0.0051 0.8302±0.0027 0.8239±0.0043 0.8229±0.0044
REFFM(0.25)|H 0.7658±0.0045 0.7636±0.0049 0.7588±0.0026 0.7530±0.0042 0.7526±0.0042
REFFM(0.5)|H 0.6416±0.0048 0.6488±0.0050 0.6467±0.0029 0.6420±0.0039 0.6433±0.0039
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Table 3.5

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for EVγ parents with γ = 0.25

n 200 500 1000 2000 5000

EVγ (γ = 0.25)(ρ = −0.25)
MSEH 0.0402±0.0006 0.0246±0.0004 0.0176±0.0003 0.0127±0.0002 0.0085±0.0001
REFFM|H 1.0929±0.0122 1.2719±0.0109 1.3587±0.0137 1.4152±0.0071 1.5529±0.0143
REFFH0|H 1.2339±0.0043 1.1713±0.0066 1.1332±0.0048 1.1023±0.0029 1.0711±0.0033
REFFM1|H 1.4665±0.0170 1.8416±0.0172 2.1562±0.0226 2.5308±0.0232 3.1365±0.0345
REFFH(0)|H 1.4959±0.0068 1.5169±0.0093 1.5336±0.0095 1.5407±0.0057 1.5597±0.0134
REFFH(0.1)|H 1.2293±0.0057 1.2136±0.0056 1.2072±0.0041 1.1994±0.0032 1.1902±0.0047
REFFH(0.25)|H 1.0880±0.0026 1.0810±0.0034 1.0779±0.0023 1.0751±0.0008 1.0721±0.0021
REFFH(0.5)|H 0.9095±0.0037 0.9147±0.0024 0.9183±0.0025 0.9202±0.0020 0.9256±0.0017
REFFM(0)|H 1.5073±0.0171 1.9175±0.0227 2.3055±0.0208 2.7677±0.0130 3.5114±0.0467
REFFM(0.1)|H 1.3995±0.0134 1.7507±0.0143 2.0598±0.0143 2.4442±0.0126 3.1323±0.0279
REFFM(0.25)|H 1.2298±0.0124 1.4341±0.0119 1.5345±0.0153 1.7109±0.0125 2.1631±0.0177
REFFM(0.5)|H 0.9544±0.0209 1.1164±0.0087 1.1985±0.0114 1.2547±0.0058 1.3204±0.0128

Table 3.6

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for EVγ parents with γ = 1

n 200 500 1000 2000 5000

EVγ (γ = 1)(ρ = −1)
MSEH 0.0558±0.0010 0.0286±0.0003 0.0175±0.0002 0.0107±0.0001 0.0057±0.0001
REFFM|H 1.0262±0.0052 1.0307±0.0040 1.0242±0.0045 1.0194±0.0055 1.0165±0.0026
REFFH0|H 1.2253±0.0286 1.4324±0.0316 1.6822±0.0327 1.9978±0.0249 2.5151±0.0221
REFFM1|H 1.0830±0.0222 1.2712±0.0188 1.3845±0.0107 1.3456±0.0112 1.1382±0.0052
REFFH(0)|H 1.3168±0.0054 1.3331±0.0072 1.3390±0.0090 1.3476±0.0096 1.3565±0.0075
REFFH(0.1)|H 1.1832±0.0053 1.1813±0.0081 1.1786±0.0058 1.1764±0.0077 1.1755±0.0048
REFFH(0.25)|H 1.0773±0.0047 1.0781±0.0032 1.0731±0.0036 1.0719±0.0045 1.0731±0.0027
REFFH(0.5)|H 0.9096±0.0036 0.9131±0.0033 0.9141±0.0027 0.9141±0.0040 0.9143±0.0026
REFFM(0)|H 1.3544±0.0090 1.3613±0.0064 1.3604±0.0076 1.3637±0.0085 1.3678±0.0054
REFFM(0.1)|H 1.2187±0.0076 1.2128±0.0052 1.2021±0.0059 1.1964±0.0070 1.1913±0.0039
REFFM(0.25)|H 1.1100±0.0065 1.1081±0.0050 1.0988±0.0050 1.0935±0.0062 1.0895±0.0031
REFFM(0.5)|H 0.9320±0.0052 0.9414±0.0035 0.9364±0.0037 0.9323±0.0052 0.9312±0.0025
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3.2. DISTRIBUTIONAL BEHAVIOUR OF THE ESTIMATORS UNDER
COMPARISON

Table 3.7

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for EVγ parents with γ = 2

n 200 500 1000 2000 5000

EVγ (γ = 2)(ρ = −1)
MSEH 0.0129±0.0029 0.0612±0.0013 0.0372±0.0003 0.0226±0.0002 0.0118±0.0002
REFFM|H 1.0637±0.0050 1.0689±0.0042 1.0576±0.0039 1.0411±0.0048 1.0344±0.0028
REFFH0|H 0.5819±0.1552 0.9426±0.0094 1.0074±0.0059 1.1089±0.0044 1.3571±0.0028
REFFM1|H 0.7405±0.1205 1.0356±0.0182 1.1190±0.0060 1.1616±0.0091 1.1334±0.0051
REFFH(0)|H 1.0953±0.0047 1.0722±0.0023 1.0640±0.0027 1.0561±0.0030 1.0412±0.0019
REFFH(0.1)|H 1.0747±0.0037 1.0566±0.0017 1.0505±0.0022 1.0451±0.0026 1.0322±0.0021
REFFH(0.25)|H 1.0388±0.0029 1.0302±0.0014 1.0278±0.0019 1.0252±0.0016 1.0181±0.0016
REFFH(0.5)|H 0.9426±0.0033 0.9509±0.0034 0.9556±0.0026 0.9588±0.0025 0.9664±0.0017
REFFM(0)|H 1.1839±0.0096 1.1554±0.0045 1.1328±0.0040 1.1052±0.0039 1.0836±0.0044
REFFM(0.1)|H 1.1563±0.0082 1.1365±0.0044 1.1162±0.0039 1.0918±0.0039 1.0733±0.0044
REFFM(0.25)|H 1.1131±0.0060 1.1056±0.0040 1.0896±0.0038 1.0683±0.0040 1.0561±0.0036
REFFM(0.5)|H 0.9958±0.0040 1.0134±0.0057 1.0060±0.0036 0.9959±0.0043 0.9947±0.0030

Table 3.8

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for student parents tv , with v = 4 degrees of freedom

n 200 500 1000 2000 5000

Student t4 (γ = 0.25)(ρ = −0.5)
MSEH 0.0204±0.0004 0.0112±0.0002 0.0073±0.0001 0.0048±0.0001 0.0029±0.0000
REFFM|H 0.5277±0.0069 0.6198±0.0068 0.6696±0.0052 0.7078±0.0040 0.7481±0.0082
REFFH0|H 1.3992±0.0171 1.3600±0.0097 1.3249±0.0108 1.2811±0.0105 1.2360±0.0100
REFFM1|H 0.5837±0.0079 0.6227±0.0066 0.6547±0.0042 0.6855±0.0053 0.7280±0.0083
REFFH(0)|H 1.9181±0.0233 1.2850±0.0113 0.8359±0.0047 0.5610±0.0042 0.3620±0.0022
REFFH(0.1)|H 3.0107±0.0310 3.4637±0.0290 3.9376±0.0358 4.4930±0.0502 5.4485±0.0625
REFFH(0.25)|H 1.7002±0.0156 1.7846±0.0127 1.8815±0.0126 1.9872±0.0144 2.1792±0.0143
REFFH(0.5)|H 1.0035±0.0011 1.0013±0.0009 1.0007±0.0004 1.0004±0.0000 1.0001±0.0004
REFFM(0)|H 0.5062±0.0059 0.5192±0.0052 0.5198±0.0025 0.5135±0.0040 0.5044±0.0046
REFFM(0.1)|H 0.5250±0.0065 0.5603±0.0058 0.5760±0.0024 0.5844±0.0046 0.5942±0.0057
REFFM(0.25)|H 0.5336±0.0070 0.5841±0.0062 0.6086±0.0027 0.6252±0.0046 0.6442±0.0065
REFFM(0.5)|H 0.5289±0.0069 0.6197±0.0067 0.6692±0.0051 0.7075±0.0040 0.7479±0.0082
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Table 3.9

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for student parents tv , with v = 2 degrees of freedom

n 200 500 1000 2000 5000

Student t2 (γ = 0.5)(ρ = −1)
MSEH 0.0230±0.0004 0.0116±0.0001 0.0070±0.0001 0.0043±0.0001 0.0022±0.0000
REFFM|H 0.6813±0.0041 0.8123±0.0062 0.9086±0.0048 1.0057±0.0065 1.1488±0.0112
REFFH0|H 1.4179±0.0195 1.6942±0.0247 1.9507±0.0214 2.2143±0.0255 2.6311±0.0317
REFFM1|H 0.6258±0.0058 0.7016±0.0084 0.7619±0.0066 0.8207±0.0107 0.8988±0.0076
REFFH(0)|H 0.4506±0.0041 0.3190±0.0022 0.2483±0.0016 0.1947±0.0017 0.1403±0.0010
REFFH(0.1)|H 2.3302±0.0277 2.5868±0.0176 2.8415±0.0233 3.1373±0.0223 3.5726±0.0243
REFFH(0.25)|H 1.9862±0.0166 2.2168±0.0163 2.4293±0.0166 2.6650±0.0189 3.0537±0.0364
REFFH(0.5)|H 1.0060±0.0018 1.0017±0.0008 1.0003±0.0007 1.0000±0.0004 0.9998±0.0003
REFFM(0)|H 0.5173±0.0047 0.4765±0.0032 0.4345±0.0033 0.3886±0.0038 0.3243±0.0025
REFFM(0.1)|H 0.6043±0.0053 0.6121±0.0047 0.5993±0.0048 0.5756±0.0067 0.5294±0.0049
REFFM(0.25)|H 0.6572±0.0056 0.7039±0.0053 0.7161±0.0055 0.7163±0.0077 0.6898±0.0055
REFFM(0.5)|H 0.6830±0.0047 0.8109±0.0060 0.9059±0.0045 1.0023±0.0060 1.1458±0.0114

Table 3.10

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for student parents tv , with v = 1 degrees of freedom

n 200 500 1000 2000 5000

Student t1 (γ = 1)(ρ = −2)
MSEH 0.0370±0.0005 0.0166±0.0003 0.0095±0.0001 0.0053±0.0001 0.0025±0.0000
REFFM|H 0.8668±0.0074 0.9151±0.0068 0.9234±0.0052 0.9232±0.0044 0.9272±0.0044
REFFH1|H 0.7966±0.1693 1.1591±0.0109 1.1584±0.0078 1.1610±0.0075 1.1636±0.0055
REFFM1|H 0.5245±0.0749 0.7026±0.0120 0.7528±0.0119 0.8086±0.0127 0.8816±0.0087
REFFH(0)|H 0.2529±0.0023 0.1712±0.0017 0.1303±0.0011 0.0976±0.0009 0.0671±0.0007
REFFH(0.1)|H 0.5569±0.0061 0.4928±0.0047 0.4602±0.0048 0.4290±0.0052 0.3909±0.0044
REFFH(0.25)|H 1.5400±0.0146 1.6404±0.0098 1.7504±0.0151 1.8564±0.0185 2.0077±0.0242
REFFH(0.5)|H 1.0060±0.0023 1.0022±0.0010 0.9998±0.0017 0.9992±0.0011 0.9988±0.0008
REFFM(0)|H 0.3431±0.0029 0.2423±0.0021 0.1879±0.0013 0.1435±0.0012 0.1004±0.0009
REFFM(0.1)|H 0.5361±0.0055 0.4734±0.0047 0.4455±0.0045 0.4177±0.0051 0.3826±0.0042
REFFM(0.25)|H 0.7588±0.0082 0.6971±0.0074 0.6559±0.0065 0.6139±0.0064 0.5614±0.0067
REFFM(0.5)|H 0.8698±0.0078 0.9179±0.0069 0.9234±0.0047 0.9225±0.0050 0.9264±0.0043
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Table 3.11

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for GDP parents, with γ = 0.5

n 200 500 1000 2000 5000

GPDγ (γ = 0.5)(ρ = −0.5)
MSEH 0.0362±0.0006 0.0208±0.0003 0.0139±0.0003 0.0094±0.0001 0.0057±0.0000
REFFM|H 1.0687±0.0071 1.1037±0.0063 1.1145±0.0060 1.1192±0.0041 1.1317±0.0063
REFFH0|H 1.3803±0.0082 1.3390±0.0069 1.3019±0.0105 1.2648±0.0063 1.2336±0.0061
REFFM1|H 1.1892±0.0095 1.1682±0.0059 1.1557±0.0059 1.1486±0.0046 1.1493±0.0062
REFFH(0)|H 0.9984±0.0000 0.9994±0.0004 0.9997±0.0003 0.9999±0.0028 0.9999±0.0004
REFFH(0.1)|H 0.9667±0.0013 0.9693±0.0019 0.9703±0.0009 0.9692±0.0015 0.9711±0.0014
REFFH(0.25)|H 0.9119±0.0031 0.9189±0.0040 0.9206±0.0022 0.9193±0.0024 0.9242±0.0020
REFFH(0.5)|H 0.7982±0.0048 0.8131±0.0063 0.8168±0.0045 0.8192±0.0023 0.8270±0.0018
REFFM(0)|H 1.0668±0.0071 1.1029±0.0063 1.1142±0.0060 1.1190±0.0041 1.1317±0.0063
REFFM(0.1)|H 1.0280±0.0062 1.0664±0.0061 1.0796±0.0060 1.0849±0.0038 1.0989±0.0059
REFFM(0.25)|H 0.9599±0.0058 1.0070±0.0053 1.0205±0.0067 1.0290±0.0036 1.0431±0.0046
REFFM(0.5)|H 0.8179±0.0040 0.8790±0.0036 0.8996±0.0062 0.9130±0.0029 0.9297±0.0042

Table 3.12

Simulated mean square errors of H (first row) and REFF -indicators of M , H0, M1, H(q), and M(q),

q = 0.1, 0.25, and 0.5, for GDP parents, with γ = 2

n 200 500 1000 2000 5000

GPDγ (γ = 2)(ρ = −2)
MSEH 0.0658±0.0012 0.0309±0.0006 0.0176±0.0003 0.0100±0.0001 0.0047±0.0001
REFFM|H 1.0162±0.0040 1.0075±0.0034 1.0040±0.0059 0.9998±0.0043 0.9957±0.0037
REFFH1|H 1.1632±0.0072 1.1542±0.0062 1.1490±0.0060 1.1431±0.0044 1.1307±0.0048
REFFM1|H 1.1601±0.0067 1.2215±0.0086 1.2874±0.0109 1.3343±0.0067 1.4110±0.0070
REFFH(0)|H 0.9979±0.0000 0.9991±0.0031 0.9996±0.0043 0.9998±0.0000 0.9999±0.0003
REFFH(0.1)|H 0.9563±0.0014 0.9553±0.0029 0.9563±0.0027 0.9583±0.0030 0.9579±0.0028
REFFH(0.25)|H 0.8860±0.0035 0.8856±0.0039 0.8887±0.0035 0.8900±0.0043 0.8903±0.0040
REFFH(0.5)|H 0.7469±0.0070 0.7472±0.0029 0.7511±0.0034 0.7533±0.0055 0.7549±0.0044
REFFM(0)|H 1.0142±0.0039 1.0067±0.0033 1.0036±0.0059 0.9996±0.0043 0.9957±0.0037
REFFM(0.1)|H 0.9730±0.0031 0.9654±0.0027 0.9614±0.0054 0.9583±0.0040 0.9543±0.0014
REFFM(0.25)|H 0.9033±0.0040 0.8961±0.0026 0.8931±0.0056 0.8907±0.0039 0.8873±0.0039
REFFM(0.5)|H 0.7599±0.0062 0.7585±0.0019 0.7572±0.0067 0.7574±0.0047 0.7537±0.0042

3.3 An Application to the Nasdaq Composite Index

As an empirical example, we place ourselves in a context from finance, analyzing the risk

for investors holding short positions in the Nasdaq Composite index, i.e., for investors

betting on a fall in the index. Since we are interested in the analysis of the risk of holding

short positions, we begin with the positive log-returns defined in (1.2.1), assumed to be

stationary and weakly dependent. With the purpose of comparison with a case study

from Drees (2003), we have used the daily log-returns from 1997-2000, which corresponds

to a sample size n = 1037. Although there is some increasing trend in the volatility,

stationarity is assumed, under the same considerations as in Drees (2003). In Fig. 3.3.1

we display the estimates for the tail index associated to γ̂H
n,k, γ̂

M
n,k, γ̂

H(q)
n,k , and γ̂

M(q)
n,k for

some values of p. It is clear from the analysis of the γ-scatterplots that all estimates are
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positive for k from about 50 up to 450, i.e., there is a strong evidence for a heavy-tailed

underlying distribution. However, the patterns exhibited by the different estimators

γ̂
H(q)
n,k are significantly different for different values of the tuning parameter q. We have

been, at a first sight, particularly puzzled with the sample paths of γ̂
H(0)
n,k , and such

sample paths immediately suggest a possible non consistency of γ̂
H(0)
n,k due to an infinite

left endpoint of the underlying model. We have thus decided to analyze more deeply

both tails of the model underlying the sample ri, 1 ≤ i ≤ 1036. For that we have used

not only the Hill estimator, but also the MVRB-estimator H0 in (3.1.5), which is, for

heavy tails, an alternative to the Hill estimator not only at the optimal levels or for large

k, as happens with the “classical” second-order reduced bias tail index estimators, but

for all k. It was indeed this estimator that led us to the estimate γ = 0.34 pictured in

Fig. 3.3.1 and consequently to the choice q = 0.25 for the class of estimators H(q) in

(3.1.7).

Right Tail Analysis of Nasdaq Data. In Fig. 3.3.2, and working with the n0 = 570

positive values of the log-returns on NASDAQ data, we picture the sample paths of ρ̂0(k)

and ρ̂1(k). The algorithm in Sec. 3.2.2 leads us to choose, on the basis of any stability

criterion for large values of k, the estimate associated to τ = 0. We have considered

ρ̂ = ρ̂0(k1), with k1 = n0.995
0 . We have got ρ̂0 = ρ̂0(552) = −0.71. The use of the β-

estimate suggested in the above mentioned algorithm, led us to the estimate β̂0 = 1.04.

For the estimation of γ through the reduced bias tail index estimators, we have used the

heuristic estimate of the level provided in Gomes and Pestana (2007a), i.e., the value

k01 ≡ k01(n;β, ρ) = (1.96(1− ρ)n−ρ0 /|β|)2/(1−2ρ). Levels of this type are still levels such

that
√
k(n/k)ρ → λ, finite, and are not yet optimal for the tail index estimation through

second-order reduced-bias tail index estimators. However, do not forget that with a tail

index estimator like H, in (3.1.5), we are always safe and able to provide a more reliable

estimation than through the Hill estimates. We came to k̂01 = 109 and to the estimate

γ̂ = H0(109) = 0.34. Note that the estimation of the optimal threshold (Hall and Welsh,

1985) for the estimation through the Hill estimator in (3.1.2), leads us to:

k̂0 =
( (1− ρ̂)n−ρ̂0

β̂
√
−2ρ̂

)2/(1−2ρ̂)
= 55 ⇒ γ̂H

n,k(k̂0) = 0.41.

Left Tail Analysis of Nasdaq Data. Figure 3.3.3 is related to a similar data

analysis, carried on the n0 = 466 positive values of the symmetric log returns. We

have now obtained ρ̂ = −071, β̂ = 1.05, k̂0 = 48, γ̂H
n,k(k̂0) = 0.35, k̂01 = 97, and

γ̂ = H0(97) = 0.3.

This data analysis leads us to the conclusion that the underlying model detains a location

median not far from 0. Indeed, when we induce a shift associated to the tuning parameter

q = 0.5, we get a sample path not a long way from that of the Hill estimator (see Fig.
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Figure 3.3.1: Tail index estimates based on γ̂H
n,k and γ̂

H(q)
n,k (left) and on γ̂M

n,k and γ̂
M(q)
n,k (right), for

q = 0.05, 0.25, 0.5, on NASDAQ data.

3.3.1, left). Moreover, relying on the observed results for the γ estimates, it is not sensible

to discard the possibility that both tails are heavy (with the right tail underlying the Ri

slightly heavier than the left tail (γ̂ = 0.34 for the right tail vs. γ̂ = 0.30 for the left tail).

This obviously implies an underlying model with support (−∞,+∞). It is then not at

all sensible to induce a shift R1:n, like it is suggested in Drees (2003). Such a shift is

appealing, because it induces for the Hill estimator an almost flat sample path (see again

Fig. 3.3.1, left), but as mentioned before, the “flat zone” leads, in this case, to a severe

underestimation of the tail index γ. To support this statement, look again at Figs. 3.2.7

and 3.2.8, with the pattern of mean values (E) and mean squared errors (MSE) of the

PORT-Hill and -moment estimators, respectively, for models from a Student-tv parent

with v = 4 degrees of freedom (γ = 0.25). Although a parametric data analysis of this

data is outside the scope of the present article, the similarities between the behaviour of

the mean value patterns in Figs. 3.2.7 and 3.2.8 and the sample paths of the Hill and

moment PORT-estimators in Fig. 3.3.2, suggest that the cdf underlying these returns is

not a long way from a Student-t cdf or its skewed extensions, which are very common

models in the area of extremes and finance. For recent references see Jones and Faddy

(2003) and McNeil et al. (2005). In this application, and taking into account the previous

analysis, it seems sensible to consider as a compromise choice in the PORT-Hill estimator,

the shift induced by the first empirical quartile, i.e., to pick the value q = 0.25, as we

have already seen in Fig. 3.3.1, but the possibility of working simultaneously with other

estimators, like the MVRB estimator here considered, should not at all be discarded,

because this can help us to better estimate the extreme value index, a parameter of

primordial importance in all subsequent extreme value analysis needed.
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Figure 3.3.2: Estimates of the second-order parameters ρ, through ρ̂0(k) and ρ̂1(k) (left), and the tail
index γ (right), for the positive log-returns X, on NASDAQ data.

Figure 3.3.3: Estimates of the second-order parameters ρ, through ρ̂0(k) and ρ̂1(k) (left), and the tail
index γ (right), for the negative log-returns L, on NASDAQ data.
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4
A New Class of Independence Tests for

Interval Forecasts Evaluation

Interval forecasts evaluation can be reduced to examining the unconditional coverage

and independence properties of the hit sequence. A new class of exact independence

tests for the hit sequence and a definition for tendency to clustering of violations are

proposed. The tests are suitable for detecting models with a tendency to generate clusters

of violations and are based on an exact distribution that does not depend on an unknown

parameter. The asymptotic distribution is also derived. The choice of one test within

the class is studied. Moreover, a simulation study provides evidence that, in order to

test the independence hypothesis, the suggested tests perform better than other tests

presented in the literature. An empirical application is given for a period that includes

the 2008 financial crisis.

4.1 Introduction

One of the core topics of quantitative financial risk management is the accurate cal-

culation of the Value at Risk (VaR), which amounts to a tail quantile of the forecast

profit and loss distribution over a specified time horizon. Owing to the non-iid and non-

Gaussian nature of financial asset returns data, the calculation of VaR is not trivial; see,

e.g., Kuester et al. (2005) and the references therein for a survey of competing methods.

The primary tool for assessing its accuracy is to monitor the binary sequence generated

by observing if the return on day t+1 is in the tail region specified by the VaR at time-t,

or not. This is referred to as the hit sequence. In mathematical terms we consider a

time series of daily log returns defined in (1.2.1). The corresponding one-day-ahead VaR

forecasts made at time-t for time t+ 1, VaRt+1|t(p), are defined in (1.2.2). Considering
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that a violation occurs when the daily return on the portfolio is lower than the reported

VaR, we define the hit function in (1.2.3). Christoffersen (1998) showed that evaluating

interval forecasts can be reduced to examining whether the hit sequence,{It}Tt=1, satisfies

the unconditional coverage (UC) and independence (IND) properties. UC hypothesis

means P [It+1(p) = 1] = p, ∀t. IND hypothesis means that past information does not

hold information about future violations. Clustering of violations is one problematic

infraction to the IND hypothesis, which corresponds to several large losses occurring in

a short period of time. As noted by Campbell (2007), the IND property represents a

more subtle yet equally important property. However, some authors argue that a certain

amount of moderate clustering may not be harmful, so that correct UC is somewhat

more important than independence (e.g. Jorion, 2002). When both properties are valid

we say that forecasts have a correct conditional coverage (CC) and we write

P [It+1(p) = 1|Ωt] = p, ∀t. (4.1.1)

In Lemma 1 of Christoffersen (1998) it is shown that condition CC (4.1.1) is equivalent

to It+1(p)
iid∼ Bernoulli(p). In a recent paper, Berkowitz et al. (2009) extended and

unified the existing tests by noting that the de-meaned hits {It+1−p} form a martingale

difference sequence. Equations (1) and (4.1.1) imply that E[(It+1 − p)|Ωt] = 0 and then

for any variable Zt in the time-t information set, we must have

E[(It+1 − p)Zt] = 0. (4.1.2)

This is the motivation for tests based on the martingale property. The rest of the Chapter

is organized as follows. In Section 4.2 we review existent tests for evaluating interval

forecasts. In Section 4.3 we present the new class of independence tests and exact and

asymptotic distributions are derived for a random variable (rv) related with the test

statistic. The choice of one test within the class is also studied. In Section 4.4, and

through simulation experiments, we compare the performance with other tests under

study. Section 4.5 presents an empirical application. Section 4.6 concludes.

4.2 Tests for interval forecasts evaluation

There are several backtesting procedures for evaluating interval forecasts; for a detailed

review see Campbell (2007) and Berkowitz et al. (2009). The first procedures were mainly

concerned with the UC property and the proportion of failures (POF) test proposed by

Kupiec (1995) is a well known example. A simple autocorrelation based independence test

was proposed by Granger, White and Kamstra (1989). In the last ten years, several tests

have been suggested to examine both the IND and the CC properties. The Christoffersen

(1998) Markov tests are perhaps the most widely used in the literature. Therein πij is
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defined as P [It = j|It−1 = i], for i, j ∈ {0, 1}. In this context, the null hypothesis of

the IND test is H0,IND : π01 = π11 and the null hypothesis of the CC test is H0,CC :

π01 = π11 = p. Denoting by π1 the common value of π01 and π11 under H0,IND, by T0

the number of zeros in the hit sequence I
∼
, T1 the number of ones, T = T0 + T1 and Tij

the number of observations with a j following an i, the maximum likelihood estimators

are π̂01 = T01/T0, π̂11 = T11/T1 and π̂1 = T1/T , the log-likelihood under the alternative

hypothesis is

logL( I
∼
, π01, π11) = (1− π01)

T0−T01πT01
01 (1− π11)

T1−T11πT11
11 ,

the IND test statistic is

LRIND = −2(lnL( I
∼
, π̂1)− lnL( I

∼
, π̂01, π̂11)), (4.2.1)

and the CC test statistic is

LRCC = −2(lnL( I
∼
, p)− lnL( I

∼
, π̂01, π̂11)). (4.2.2)

The test statistics (4.2.1) and (4.2.2) are asymptotically distributed as chi-square with

one degree of freedom. We use the notation MIND for the Markov independence test. If

in equation (4.1.2) we set Zt to be the most recent de-meaned hit we have E[(It+1 −
p)(It−p)] = 0, the only condition explored by the Markov tests. If we set Zt = (It−k−p)

for any k ≥ 0, we have E[(It+1 − p)(It−k − p)] = 0. Based on this broader condition

Berkowitz et al. (2009) suggested the Ljung-Box statistic, for a joint test of whether the

first m autocorrelations of {It} are zero. The testing procedure is based on an asymptotic

chi-square distribution with m degrees of freedom.

Considering other data in the information set such as past returns, under CC we

have E[(It+1 − p)g(It, It−1, ..., Rt, Rt−1, ...)] = 0 for any non-anticipating function g(.).

In the same line as Engle and Manganelli (2004), Berkowitz et al. (2009) consider the

autoregression

It = α+
n∑

k=1

β1kIt−k +
n∑

k=1

β2kg(It−k, It−k−1, ..., Rt−k, Rt−k−1) + εt, (4.2.3)

with n = 1 and g(It−k, It−k−1, ..., Rt−k, Rt−k−1) = VaRt−k+1|t−k(p). These authors pro-

pose the logit model and test the CC hypothesis with a likelihood ratio test considering

for the null P (It = 1) = 1/(1 + e−α) = p and the coefficients β11 and β21 equal to zero.

For the the IND hypothesis the null is β11 = β21 = 0 and in this case the asymptotic dis-

tribution is chi-square with 2 degrees of freedom. We refer to these tests as the CAViaR

tests of Engle and Manganelli (CAViaR).
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A duration-based approach emerged in the literature. There are related works on

testing duration dependence (e.g., Kiefer, 1988). As far as we know, the first authors that

proposed this approach for interval forecast evaluation were Danielsson and Morimoto

(2000), using the chi-square goodness of fit test. In this set-up, let us define the duration

between two consecutive violations as

Di := ti − ti−1, (4.2.4)

where ti denotes the day of violation number i and t0 = 0, which implies that D1 is the

time until the first violation. We denote a sequence of N durations by {Di}Ni=1 . If the

CC (4.1.1) hypothesis is valid then It+1(p)
iid∼ Bernoulli(p) and consequently the process

{Di}Ni=1 has a geometric distribution with probability mass function (pmf)

fD(d;π) = (1− π)(d−1)π, d ∈ N, (4.2.5)

with π = p. We will write the IND hypothesis as

Di
iid∼ D ∼ Geometric(π), with 0 < π < 1. (4.2.6)

The exponential distribution with probability density function (pdf)

fD(d;β) = β exp(−βd), d > 0 and β > 0, (4.2.7)

is the continuous analogue of the geometric distribution. Based on the exponential,

Christoffersen and Pelletier (2004) suggested tests using the duration based approach,

specifying the Weibull, the Gamma and the Exponential Autoregressive Conditional

Duration models for the alternative. Haas (2005) showed that tests based on discrete

distributions for durations, have higher power.

The Generalised Method of Moments (GMM) test framework suggested by Bontemps

and Meddahi (2008) to test for distributional assumptions was extended by Candelon et

al. (2008) to the case of VaR forecasts accuracy. In the group of duration-based tests

it is shown that the proposed GMM tests are the best performers. The orthonormal

polynomials associated with the geometric distribution with probability p are defined by

the following recursive relationship, ∀d ∈ N,

Mj+1(d; p) =
(1− p)(2j + 1) + p(j − d+ 1)

(j + 1)
√
1− p

Mj(d; p)−
( j

j + 1

)
Mj−1(d; p),

for any order j ∈ N, with M−1(d; p) = 0 and M0(d; p) = 1. If (4.1.1) is true, then it

follows that E[Mj(D; p)] = 0, ∀j ∈ N. The CC property can be expressed as H0,CC :

E[Mj(D; p)] = 0 and the IND property can be expressed as H0,IND : E[Mj(D;β)] = 0

with j = {1, ..., k} and k > 1 denoting the number of moment conditions. The parameter
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β, not necessarily equal to p, can be either fixed a priori or estimated. The GMM test

statistic for CC is

JCC(k) =
( 1√

N

N∑
i=1

M(Di; p)
)p( 1√

N

N∑
i=1

M(Di; p)
)
, (4.2.8)

and for IND is

JIND(k) =
( 1√

N

N∑
i=1

M(Di; β̂)
)p( 1√

N

N∑
i=1

M(Di; β̂)
)
, (4.2.9)

where M(Di; p) denotes a (k, 1) vector whose components are the orthonormal polyno-

mials Mj(Di; p) in the CC test and Mj(Di; β̂) in the IND test, for j = 1, ..., k. β̂ is a

consistent estimator of β. The test statistics (4.2.8) and (4.2.9) follow an asymptotic

chi-square distribution with k and k−1 degrees of freedom, respectively. For the CC and

IND hypothesis, the Markov tests (4.2.1) and (4.2.2) are perhaps the most widely used

in the literature and this is why we have chosen the Markov independence test (4.2.1) for

the comparative study in Section 4.4. From the available duration-based tests we chose

the GMM tests since these have been shown to exhibit the best performance in this group

(Berkowitz et al., 2009). We also selected the CAViaR test, the best performer in the

simulation study of Berkowitz et al. (2009).

4.3 A new class of independence tests

4.3.1 Motivation

Let D1:N ≤ · · · ≤ DN :N be the order statistics (o.s.’s) of durations D1, ..., DN defined in

(4.2.4). The first motivation behind the class proposed is the following: when violations

generated by the hit function occur in clusters, the majority of durations are short (the

short durations between violations in the clusters) and some durations are very long (the

durations between the last violation of one cluster and the first violation of the following

cluster). If the majority of durations are short then the median, D[N/2]:N , is short (nota-

tion: [x] denotes the integer part of x). If some durations are very long, the maximum,

DN :N , is very long. Finally, with a short median and a very long maximum, the ratio

DN :N/D[N/2]:N is large.

We illustrate this motivation with an example: we chose the returns from the German

stock market index (DAX) from January 2, 1997 up until December 30, 2008, and we

calculated durations between violations using the popular Historical Simulation (HS)

method for VaR(0.05) with a moving window of size 250. The sample size for the hit

sequence (T) is 2790 and the sample size for durations (N) is 170. We can calculate the
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expected values of the o.s.’s, D1:N ≤ · · · ≤ DN :N , under the independence hypothesis

(4.2.6), using the following expression obtained by Margolin and Winokur (1967),

E(Dr:N ) =
N∑

j=N−r−1

(−1)j−N+r−1
(
j − 1

N − r

)(
N

j

)
1

(1− (1− π)j)
.
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Figure 4.3.1: Geometric(π = 0.05) pmf (left) and frequency of durations (right) between
violations for DAX index from January,2 1997 until December 30, 20 2008, based on
VaR(0.05), the Historical Simulation technique and on the previous 250 trading days.

Figure 4.3.1 shows the geometric pmf, with π = 0.05, and the frequency of durations.

For short durations, the frequencies in the frequency plot are much higher than the prob-

ability masses in the geometric pmf. The majority of durations are short, either equal

to or lower than 6 days and the empirical median is 6, contrasting with the expected

value of D85:170, under IND, which is close to 14. Moreover, for durations above 60 days

we note higher frequencies in the frequency plot than the probability masses in the ge-

ometric pmf. The maximum duration, d170:170, is 208 days, almost double the expected

value under IND, which is close to 112. The ratio is 34.66, much higher than the median

of D170:170/D85:170 under IND, which is 8.03 (see the cdf of Proposition 3.1). In this

example, where violations occur in clusters, the majority of durations are short, some

durations are very long and a high ratio DN :N/D[N/2]:N gives strong evidence against

the IND hypothesis.

A second motivation for the class presented is based on the two-parameter Weibull

distribution. The cumulative distribution function (cdf) of the continuous Weibull is

FW (w;β, θ) = 1− exp(−(βw)θ) w > 0, β > 0, θ > 0. (4.3.1)

The Weibull with θ < 1, will generate an excessive number of very short durations and

an excessive number of very long durations. The Weibull with θ > 1 will generate the
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opposite pattern. If we consider Dw := [W ]+1, we obtain the Nakagawa & Osaki (1975)

discrete Weibull, with pmf

fDw(d) = FW (d)− FW (d− 1)

= exp(−βθ)(d−1)
θ

− exp(−βθ)d
θ

= q(d−1)
θ

− qd
θ

, q = 1− p = exp(−βθ), d = 1, 2, ...

The method of maximum likelihood (ML) considers the log-likelihood function

logL(q, θ; d1, ..., dn) =
n∑

i=1

log
{
q(di−1)θ − qd

θ
i

}
.

The ML-equations ∂L/∂q = 0 and ∂L/∂θ = 0, must be solved numerically.

We estimated the parameters q and θ using the 170 durations from the previous DAX

example and with the ML method. The fitted discrete Weibull model with q̂ = 0.82 and

θ̂ = 0.66 is presented in Figure 4.3.2. Evidently, the frequency plot pattern is closer to

the probability masses of the discrete Weibull with θ < 1 than to the geometric proba-

bility masses presented in Figure 4.3.1.
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Figure 4.3.2: discrete Weibull(θ = 0.66, q = 0.82) pmf (left) and frequency of durations
(right) between violations for DAX index from January 2, 1997, up until December 30,
2008, based on the Historical Simulation VaR(0.05) and on the previous 250 trading days.
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4.3.2 Theoretical results

From now on, we denote

av =

(
N − k − 1

v

)
, bs =

(
k − 1

s

)
,

cv,s = N − k − v + s , γN =
N !

(k − 1)!(N − k − 1)!
and

RN,k :=
DN :N

Dk:N
, k = 1, ..., N − 1. (4.3.2)

We will denote FW
RN,k

(r) = PW [RN,k ≤ r] the cdf of (4.3.2) under the Weibull model

with cdf (4.3.1) and we will denote FE
RN,k

(r) = PE [RN,k ≤ r] the cdf of (4.3.2) under the

exponential model with pdf (4.2.7).

In Proposition 4.3.1, we present the cdf of RN,k when the underlying model is Weibull,

and in Proposition 4.3.2 we prove that the condition θ < 1 is equivalent to state that the

median of RN,k is greater than the median under independence.

Proposition 4.3.1. Let D1, ..., DN , be iid Weibull rv’s with common cdf (4.3.1). The

cdf of (4.3.2) is

FW
RN,k

(r) = 1− θγN
∑N−k−1

v=0

∑k−1
s=0 (−1)v+savbs(

[θcv,s(v + 1)]−1 − [θcv,s(v + 1 + cv,s(1/r)
θ)]−1

) (4.3.3)

with 1 ≤ r ≤ ∞.

Proof: For the Weibull distribution with cdf (4.3.1), Malik and Trudel (1982) proved

that the density of the ratio of the k-th and j-th o.s.’s with k < j ≤ N , is

fW
Zj,k

(z; θ) =
θCj

(k−1)!(j−k−1)!
∑j−k−1

v=0

∑k−1
s=0 (−1)v+s

(
j−k−1

v

)(
k−1
s

)
zθ−1[N − j + v + 1 + (j − k − v + s)zθ]−2,

with 0 ≤ z ≤ 1 and where Cj =
∏j

u=1(N − u + 1). We replace j by N to get ZN,k =

Dk:N/DN :N and the cdf for this ratio is

FW
ZN,k

(z) =

∫ z

0

fZN,k
(u)du

= θγN

N−k−1∑
v=0

k−1∑
s=0

(−1)v+savbs(
[θcv,s(v + 1)]−1 − [θcv,s(v + 1 + cv,sz

θ)]−1
)
,

with 0 ≤ z ≤ 1. For RN,k = DN :N/Dk:N = 1/ZN,k the cdf is

FW
RN,k

(r) = PW (Dk:N/DN :N > 1/r) = 1− FW
ZN,k

(1/r),
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and the result follows. 2

Proposition 4.3.2. Let r1/2,N,k be the value of r such that FE
RN,k

(r) = 1/2. If D1, ..., DN ,

are iid Weibull rv’s with common cdf (4.3.1), then

FW�
RN,k

(1/2) > r1/2,N,k is equivalent to θ < 1,

where FW�
RN,k

(t) := inf{x : FW
RN,k

(x) ≥ t} denotes the generalized inverse function of

FW
RN,k

.

Proof: FW�
RN,k

(1/2) > r1/2,N,k is equivalent to

1/2 > PW
[
RN,k ≤ r1/2,N,k

]
= PW

[(DN :N

Dk:N

)θ
≤ rθ1/2,N,k

]
.

Since under the Weibull model (βD)θ is exponential(1), then

1/2 > PE
[DN :N

Dk:N
≤ rθ1/2,N,k

]
is equivalent to θ < 1.

2

Remark 4.3.1. When the underlying model is Weibull, the median of DN :N/Dk:N higher

than the median under independence is equivalent to θ < 1. However, F
W�(1/2)
RN,k

>

r1/2,N,k allows for a more general definition of a tendency to clustering, coherent with

our first motivation presented in Subsection 4.3.1.

Now, we can write

PE
[
RN,k ≤ r1/2,N,k

]
=

1

2
= PW

[(DN :N

Dk:N

)θ
≤ r1/2,N,k

]
= PW

[
θ ≤ log r1/2,N,k

(
log

DN :N

Dk:N

)−1]
,

and it follows that

θ̂(k) = log r1/2,N,k

(
log

DN :N

Dk:N

)−1
, (4.3.4)

is a median unbiased estimator of θ. With k = 1 we get the Vogt median unbiased

estimator of θ (Vogt, 1968). Notice that the estimator (4.3.4) is a function of the statistic

DN :N/Dk:N and for observed values dN :N/dk:N > r1/2,N,k the estimates of θ are lower

than 1. Based on the first motivation presented at the beginning of Subsection 4.3.1 and

on Proposition 4.3.2, we propose the following class of statistics

SN,k :=
DN :N − 1

Dk:N
, k = 1, ..., N − 1. (4.3.5)
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The correction −1 made to DN :N , allows us to obtain a pivotal test. The Proposition

4.3.3 allows us to do that as well as to present in Proposition 4.3.5 a level α test. In

Proposition 4.3.4 we normalize RN,k (4.3.2) to get the asymptotic distribution under the

exponential model.

Proposition 4.3.3. Let D1, ..., DN , be iid rv’s whose common pmf is (4.2.5) with π =

p ∈ (0, 1). If we consider SN,k (4.3.5) and RN,k (4.3.2) under the exponential model with

pdf (4.2.7), then

F�
SN,k

(1− α) < FE�
RN,k

(1− α), for all 0 < p < 1, and 0 < α < 1.

Proof: Let Y be an exponential rv with pdf (4.2.7) and denote [Y ] the integer part of

Y and < Y > the fractional part of Y . If we define X = [Y ] + 1, then

P [X = x] = FY (x)− FY (x− 1)

=
(
exp(−β)

)(x−1)(
1− exp(−β)

)
,

with x ∈ N. Note that X is distributed as geometric with probability of success (1 −
exp(−β)). Now, for p = (1− exp(−β)),

Di:N
d
= Xi:N = [Y ]i:N + 1

d
= [Yi:N ] + 1,

and we have

SG
N,k =

DN :N − 1

Dk:N

d
=

[YN :N ]

[Yk:N ] + 1
<

[YN :N ]+ < YN :N >

[Yk:N ]+ < Yk:N >

=
YN :N

Yk:N
,

which is an rv with cdf FE
RN,k

. 2

Proposition 4.3.4. If we consider k = [ξN ], with 0 < ξ < 1, and D1, ..., DN iid rv’s

with pdf (4.2.7), then

TR
N,k = −log(1− ξ)RN,k − log N

d−→
N→∞

G, (4.3.6)

where G stands for a Gumbel rv with cdf

ΛG(g) = exp(−exp(−g)), −∞ < g < +∞. (4.3.7)

Proof: It is well known that

√
N
[
Dk:N − FE�(ξ)

]
d−→

N→∞
Normal(0, ξ/(1− ξ)),
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and we can write

TR
N,k =

−log(1− ξ)DN :N

−log(1− ξ) +Op(1/
√
N)

− log N

=
DN :N − log N−Op(log N/

√
N)

1 +Op(1/
√
N)

=
DN :N − log N

1 + op(1)
+ op(1).

Since

PE [DN :N − log N ≤ x] =
(
1− e−x

N

)N
−→
N→∞

ΛG(x),

by the Slutsky theorem the result follows. 2

Proposition 4.3.5. Let us consider D
∼

:= {Di}Ni=1, the sample of N durations (4.2.4)

associated with the hit sequence (1). Define the class

Tk :=
{
TN,k = − log(1− ξ)SN,k − logN, 0 < ξ < 1

}
,

where

k =

{
[ξN ] if [ξN ] ≥ 1

1 if [ξN ] < 1.

Denote by Med(SN,k) the median of SN,k and r∗1/2,N,k the particular value under geo-

metric distribution (8). At level α, for testing the IND hypothesis

H0,IND : Di
iid∼ D ∼ Geometric(π), with 0 < π < 1 and i = 1, ..., N

against alternatives expressing tendency to clustering patterns

H1 : Med(SN,k) > r∗1/2,N,k,

the rejection region is defined by TN,k > tα,N,k, where tα,N,k denotes a quantile 1− α of

TR
n,k (4.3.6) under the exponential model with pdf (4.2.7). For the asymptotic analog of

the test use the Gumbel quantiles.

Proof: The proof follows straightforwardly by Proposition 4.3.3, since under the null

hypothesis

P
[
SN,k >

tα,N,k + log N

−log(1− ξ)

]
< PE

[
RN,k >

tα,N,k + log N

−log(1− ξ)

]
= α.

Then use Propositions 4.3.1 and 4.3.4. 2
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Remark 4.3.2. Propositions 4.3.3 and 4.3.5 show that the critical point tα,N,k implies

a conservative approach with P [type I error] ≤ α, i.e., we have tests of level α and not of

size α. Since the distribution of ratios of o.s.’s does not depend on the scale parameter,

the tests are pivotal in the sense that they are based on a distribution that does not depend

on an unknown parameter. The limitation of the tests is that they can only test IND and

not CC.

Remark 4.3.3. The tests suggested in Proposition 3.5 are based on an exact distribu-

tion. The other independence tests, presented in Section 4.2, are based on asymptotic

distributions and suffer from small sample bias. To aggravate the problem, the presence

of the nuisance parameter p makes it impossible to control the size of the tests using the

Monte Carlo testing approach of Dufour (2006) as other authors do for the case of joint

testing UC and IND (e.g. Christoffersen and Pelletier (2004), Candelon et al. (2008)

and Berkowitz et al. (2009)); see the paper of Dufour (2006) for details.

4.3.3 The choice of k

The class of tests suggested in Proposition 4.3.5 raises one important problem: the choice

of k. If we assume the continuous analogue of the geometric for the null, the Weibull

distribution with θ = θ1 < 1 for the alternative, and if we choose the statistics (4.3.2),

applying the Proposition 4.3.1, we get the power function

1− βN,k,θ1 = PW [−log(1− ξ)RN,k − log N > tα,N,k|θ = θ1]

= θ1γN

N−k−1∑
v=0

k−1∑
s=0

(−1)v+savbs[θ1cv,s(v + 1)]−1

−
[
θ1cv,s

(
v + 1 + cv,s

( −log(1− ξ)

tα,N,k + log N

)θ1)]−1
.

The k that allows us to obtain the most powerful test is found as the solution of the

following discrete maximization problem

k∗ = arg maxk (1− βN,k,θ1), (4.3.8)

The optimal choice of k will depend on N , θ1 and on the significance level (α).

However we are dealing with discrete rv’s and we will consider the true process for the

null, i.e., the geometric, and the discrete Weibull for the alternative. Taking this into

consideration, we replace the power function in (4.3.8) by

1− βd
N,k,θ1,q1 = P [−log(1− ξ)SN,k − log N > tα,N,k|θ = θ1, q = q1].

Now we do not have an equation to compute the power, but we solve the problem by

simulation. We have studied extensively the power curves 1 − βd
N,k,θ1,q1

with α = 0.1,
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0 < θ1 < 1 and q = 1 − p = 0.95, 0.99, for fixed values of N and k. First, there is no

choice of k that leads to a most powerful test against all the alternatives. The test with

k = [0.5N ] is the most powerful in some cases and in other cases has little less power

than the most powerful test. We illustrate this for some cases in Figure 4.3.3.

The discrete Weibull is only one possible process that can lead to clustering of

violations. In the following Section we simulate realistic returns processes that gen-

erate clustering of violations. We will conclude that for choices of k = [ξN ] with

ξ = 0.3, 0.4, 0.5, 0.6, 0.7, in a large number of cases we achieve more power with ξ = 0.5,

and that in other cases, this test is only slightly less powerful. Based on these studies

and on Proposition 4.3.2, we suggest the following definition.

Definition 4.3.1 (Tendency to clustering of violations). A hit function (1) has a ten-

dency to clustering of violations if the median of DN :N/D[N/2]:N is higher than the median

under the independence hypothesis (4.2.6).

For explicitly testing the IND hypothesis (4.2.6) versus the tendency to clustering of

violations, we propose the following test statistic from class Tk, with ξ = 0.5

TN,[N/2] = log 2
DN :N − 1

D[N/2]:N
− log N. (4.3.9)

In the Section 4.7 we provide a table with 2 ≤ N ≤ 100 and critical values tα,N,[N/2] for

α = 0.1, 0.05, 0.01. The test is easily implemented for any N , computing the upper bound

for the p-value by solving 1 − FW
RN

((tN,[N/2] + log N)/log 2) with θ = 1 or for large N

using the asymptotic distribution (4.3.7). The low speed of convergence, O(log N/
√
N),

increases the importance of the exact distribution.

4.4 Comparative Simulation Study

In the context of a Monte Carlo study, we compare the power of the tests we suggest in

Proposition 4.3.5 for ξ = 0.3, 0.4, 0.5, 0.6, 0.7, with the Markov independence (4.2.1), the

CAViaR independence (6.4.1) and the GMM independence (4.2.9) tests. We denote these

tests by TN,[ξN ], MIND, CAViaR and JIND(k), respectively. We employ the R language

and the fGarch package of Chalabi et al. (2008) in order to develop the programs. The

R code for implementation of our test and comparisons is available in Araújo Santos

(2010). Following other authors (e.g. Christofferson (1998), Christofferson and Pelletier

(2004), Haas (2005), Candelon et al. (2008) and Berkowitz et al. (2009)) we consider a

GARCH specification for the returns process. Additionally, we use a APARCH model

which nests some of the GARCH models with leverage effect.
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Figure 4.3.3: Power curves with α = 0.1, N = 5, 10, 20, p = 0.01, 0.05 and different k
choices. Dashed curves are power curves for k = [N/2].
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• Gaussian GARCH(1,1) model (Bollerslev, 1986),

Rt+1 = σt+1Zt+1 with σ2
t+1 = w + αR2

t + βσ2
t , (4.4.1)

where the innovations Zt+1´s are drawn independently from a standard normal

distribution. As in Christofferson (1998), we chose the parameterisation w = 0.05,

α = 0.1 and β = 0.85.

• APARCH(1,1) model (Ding et al., 1993),

Rt+1 = σt+1Zt+1 with σδ
t+1 = w + α(|Rt| − γRt)

δ + βσδ
t , (4.4.2)

where the innovations Zt are drawn independently from a skewed Student´s t(ν)

distribution with asymmetry coefficient φ, proposed by Fernandez and Steel (1998).

We assume a portfolio that replicates the DAX index and we use daily data from

the beginning of 1997 until the end of 2008, for estimation. The parametrization

achieved was w = 0.03, α = 0.086, γ = 0.64, β = 0.91, δ = 1.15, φ = 0.88 and

ν = 10.

As in other power studies with the same purpose, we have chosen the Historical Sim-

ulation method (HS) which easily generates clusters of violations when applied to het-

eroskedastic processes. We conducted our power experiment with sample sizes (T ) equal

to 250, 500, 750 and 1000 days. We set the size of the rolling window (ws) equal to 250

and 500 days, and the VaR coverage rate p equal to 0.01 and 0.05. For each T , ws and p,

we simulated returns using the models (4.4.1) and (4.4.2) and calculated HS VaR´s and

the test statistics over 5,000 replications. The empirical power of the tests is obtained

by rejection frequencies with 0.1 significance level, excluding the samples with less than

2 violations. We report frequency of excluded samples (FES).

4.4.1 Simulation study under the IND hypothesis

For explicitly testing the IND hypothesis, the probability P [It+1 = 1] is unknown, we

have a nuisance parameter and it is impossible to simulate finite sample critical values by

simulating hit sequences from a binomial distribution with a known p, as other authors

do for the case of joint testing UC and IND. Therefore, and for all test statistics except

(4.3.9), we apply the asymptotic distributions in order to find critical values, conscious

of the limitations in the small sample cases. Our tests are based on an exact distribution.

Tables 4.1, 4.2, 4.3 and 4.4, present results for the empirical power.

Within our class, the test with ξ = 0.5 is most powerful in a large number of cases

and in the other cases is only a little less powerful than the best member of our class.
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With the exception of very small sample sizes (p = 0.01 and T = 250) and with the

exception of the model (4.4.1) with ws = 250 where our test is a little less powerful than

CAViaR, for all other cases, our test is more powerful. The differences in power are,

in many cases, quite considerable. Compared with the Markov independence test, the

rejection frequency of our test is, for most cases, more than double, and in some cases

almost three times the rejection frequency of the Markov test. In comparison with the

GMM tests, our test performs better for all cases, with a power that is sometimes twice

as large as that of the GMM tests. The GMM tests perform quite well at larger sample

sizes (p = 0.05 and T = 1000) but poorly at small sample sizes. These results contrast

with the good results achieved when jointly testing the UC and IND hypotheses. The

CAViaR test has more power with very small sample sizes (p = 0.01 and T = 250) and

performs a little better in the case of the model (4.4.1) with ws = 250, but in all other

cases our test performs better.

In order to study the empirical type I error rates, we simulate iid Bernoulli samples

with p = 0.01, p = 0.05 and T = 250, 500, 750, 1000. Rejection frequencies under the

null are calculated over 5,000 replications. In the CAViaR test we generate the VaR

regressors with a GARCH model that are independent of the Bernoulli samples, using

ws = 250 (CAViaR250) and ws = 500 (CAViaR500). Table 4.5 presents the results. The

Markov and CAViaR tests are undersized for small sample sizes and oversized for large

sample sizes. The GMM tests are extremely undersized for small samples. These results

confirms that the asymptotic critical values are misleading. For our test, the results

confirm the level property, with all empirical type I error rates lower than 0.1.
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Table 4.1

Empirical power under IND hypothesis. α = 0.1, ws = 250 and Gaussian GARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.181 0.41 0.571 0.673 0.288 0.526 0.667 0.733

TN,[0.4N ] 0.24 0.479 0.596 0.673 0.354 0.576 0.693 0.758

TN,[0.5N ] 0.28 0.497 0.564 0.621 0.377 0.579 0.694 0.75

TN,[0.6N ] 0.278 0.466 0.516 0.547 0.377 0.561 0.661 0.713

TN,[0.7N ] 0.287 0.427 0.442 0.445 0.362 0.521 0.608 0.648

MIND 0.108 0.152 0.179 0.199 0.151 0.261 0.32 0.364

CAViaR 0.385 0.506 0.591 0.678 0.43 0.608 0.707 0.778

JIND(3) 0.083 0.202 0.284 0.365 0.213 0.465 0.641 0.749

JIND(5) 0.066 0.177 0.253 0.348 0.163 0.39 0.563 0.676

FES 0.161 0.003 0.000 0.000 0.001 0.000 0.000 0.000

Table 4.2

Empirical power under IND hypothesis. α = 0.1, ws = 250 and Skewed t APARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.245 0.533 0.738 0.857 0.403 0.775 0.909 0.962

TN,[0.4N ] 0.317 0.613 0.781 0.871 0.487 0.815 0.926 0.972

TN,[0.5N ] 0.365 0.646 0.772 0.852 0.529 0.829 0.929 0.974

TN,[0.6N ] 0.371 0.635 0.748 0.817 0.346 0.819 0.922 0.962

TN,[0.7N ] 0.386 0.604 0.702 0.745 0.519 0.792 0.896 0.945

MIND 0.134 0.204 0.254 0.307 0.214 0.395 0.512 0.597

CAViaR 0.462 0.562 0.636 0.712 0.526 0.715 0.809 0.876

JIND(3) 0.196 0.403 0.561 0.697 0.412 0.771 0.918 0.972

JIND(5) 0.152 0.36 0.531 0.666 0.342 0.722 0.882 0.954

FES 0.223 0.011 0.000 0.000 0.012 0.000 0.000 0.000
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Table 4.3

Empirical power under IND hypothesis. α = 0.1, ws = 500 and Gaussian GARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.203 0.379 0.551 0.686 0.273 0.512 0.656 0.743

TN,[0.4N ] 0.263 0.442 0.59 0.679 0.342 0.575 0.69 0.767

TN,[0.5N ] 0.286 0.448 0.56 0.626 0.374 0.574 0.685 0.757

TN,[0.6N ] 0.286 0.431 0.515 0.567 0.373 0.54 0.655 0.716

TN,[0.7N ] 0.291 0.389 0.442 0.462 0.353 0.491 0.593 0.644

MIND 0.111 0.175 0.202 0.213 0.151 0.254 0.315 0.367

CAViaR 0.291 0.411 0.502 0.577 0.341 0.485 0.591 0.665

JIND(3) 0.094 0.185 0.281 0.366 0.204 0.447 0.629 0.754

JIND(5) 0.079 0.166 0.266 0.36 0.157 0.377 0.552 0.684

FES 0.291 0.047 0.003 0.000 0.002 0.000 0.000 0.000

Table 4.4

Empirical power under IND hypothesis. α = 0.1, ws = 500 and Skewed t APARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.277 0.493 0.698 0.831 0.374 0.76 0.907 0.959

TN,[0.4N ] 0.348 0.566 0.752 0.854 0.451 0.804 0.925 0.968

TN,[0.5N ] 0.385 0.602 0.755 0.842 0.495 0.813 0.927 0.969

TN,[0.6N ] 0.389 0.602 0.738 0.816 0.506 0.803 0.92 0.959

TN,[0.7N ] 0.399 0.575 0.696 0.759 0.496 0.781 0.894 0.945

MIND 0.152 0.214 0.289 0.342 0.208 0.383 0.526 0.63

CAViaR 0.406 0.516 0.596 0.677 0.425 0.624 0.743 0.822

JIND(3) 0.217 0.393 0.556 0.68 0.367 0.747 0.912 0.968

JIND(5) 0.176 0.357 0.524 0.666 0.31 0.688 0.872 0.954

FES 0.375 0.091 0.012 0.001 0.045 0.001 0.000 0.000

Notes to Tables 4.1,4.2,4.3,4.4: The results are based on 5000 replications. For each sample size

(T ), rolling window size (ws) and coverage rate (p) we provide percentage of rejection at a 10%

significance level. TN,[ξN ] denotes the test from the class τk with k = [ξN ]. MIND denotes the

Markov independence test (4.2.1). CAViaR denotes the independence test (6.4.1) and JIND(k)

denotes the GMM independence test (4.2.9) with k moment conditions. FES denotes frequency

of excluded samples.
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Table 4.5

Empirical type I error rates with α = 0.1.

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.073 0.079 0.081 0.088 0.059 0.065 0.067 0.064

TN,[0.4N ] 0.080 0.088 0.093 0.095 0.070 0.066 0.076 0.073

TN,[0.5N ] 0.088 0.092 0.095 0.093 0.077 0.078 0.084 0.081

TN,[0.6N ] 0.088 0.092 0.095 0.092 0.078 0.083 0.09 0.083

TN,[0.7N ] 0.095 0.089 0.098 0.090 0.082 0.088 0.093 0.087

MIND 0.023 0.029 0.039 0.037 0.054 0.111 0.158 0.134

CAViaR250 0.071 0.061 0.058 0.064 0.081 0.101 0.120 0.126

CAViaR500 0.080 0.056 0.066 0.057 0.083 0.099 0.130 0.124

JIND(3) 0.003 0.006 0.011 0.015 0.018 0.032 0.045 0.045

JIND(5) 0.001 0.004 0.007 0.012 0.012 0.021 0.028 0.033

FES 0.292 0.038 0.004 0.000 0.000 0.000 0.000 0.000

Notes: We simulate iid Bernoulli samples to study the empirical type I error rates. The results

are based on 5000 replications. For each sample size (T ) and coverage rate (p) we provide

percentage of rejection at a 10% significance level. TN,[ξN ] denotes the test from the class τk

with k = [ξN ]. MIND denotes the Markov independence test (4.2.1). CAViaR denotes the inde-

pendence test (6.4.1) and JIND(k) denotes the GMM independence test (4.2.9) with k moment

conditions. FES denotes frequency of excluded samples.

4.4.2 Simulation study under the CC hypothesis

Considering the statistical problem of testing independence of the hit sequence, the

main theme of this work, the relevant comparison is the one we presented in Subsection

4.4.1, assuming only IND for the null hypothesis. However, when we apply the tests for

backtesting 1% and 5% VaR, we know what p should be, allowing us to use finite sample

critical values obtained under the CC hypothesis. Although the independence tests are

not designed for testing CC but only IND, it is possible to study their behavior under

CC and we did that in this Subsection. The difference between this Subsection and 4.4.1

is that here we apply finite sample critical values assuming p = 0.01 and p = 0.05. Under

this context, our test shows a better performance in many cases but now the differences

in the empirical power between our test and the other tests is much smaller (Tables

4.6,4.7,4.8 and 4.9).
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Table 4.6

Empirical power under CC hypothesis. α = 0.1, ws = 250 and Gaussian GARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.282 0.567 0.758 0.867 0.509 0.829 0.935 0.975

TN,[0.4N ] 0.337 0.63 0.79 0.875 0.556 0.849 0.943 0.979

TN,[0.5N ] 0.379 0.653 0.779 0.856 0.572 0.849 0.942 0.976

TN,[0.6N ] 0.384 0.642 0.753 0.82 0.566 0.836 0.93 0.968

TN,[0.7N ] 0.396 0.609 0.705 0.749 0.541 0.807 0.905 0.951

MIND 0.461 0.532 0.627 0.644 0.263 0.375 0.447 0.541

CAViaR 0.524 0.636 0.709 0.785 0.542 0.711 0.788 0.856

JIND(3) 0.442 0.626 0.743 0.826 0.567 0.848 0.951 0.986

JIND(5) 0.43 0.635 0.765 0.859 0.557 0.842 0.943 0.985

FES 0.223 0.011 0.000 0.000 0.012 0.000 0.000 0.000

Table 4.7

Empirical power under CC hypothesis. α = 0.1, ws = 250 and Skewed t APARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.212 0.443 0.591 0.69 0.383 0.613 0.739 0.796

TN,[0.4N ] 0.259 0.496 0.608 0.687 0.414 0.636 0.748 0.802

TN,[0.5N ] 0.293 0.504 0.572 0.63 0.42 0.623 0.734 0.783

TN,[0.6N ] 0.288 0.471 0.522 0.552 0.41 0.593 0.693 0.742

TN,[0.7N ] 0.293 0.43 0.445 0.451 0.389 0.542 0.632 0.672

MIND 0.329 0.409 0.499 0.53 0.194 0.24 0.256 0.298

CAViaR 0.461 0.592 0.681 0.762 0.448 0.601 0.672 0.751

JIND(3) 0.294 0.415 0.488 0.564 0.366 0.598 0.742 0.823

JIND(5) 0.295 0.441 0.536 0.618 0.375 0.594 0.734 0.815

FES 0.161 0.003 0.000 0.000 0.001 0.000 0.000 0.000
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Table 4.8

Empirical power under CC hypothesis. α = 0.1, ws = 500 and Gaussian GARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.238 0.412 0.576 0.703 0.295 0.529 0.678 0.756

TN,[0.4N ] 0.282 0.459 0.603 0.687 0.355 0.586 0.703 0.774

TN,[0.5N ] 0.302 0.456 0.569 0.632 0.382 0.584 0.694 0.763

TN,[0.6N ] 0.301 0.437 0.523 0.573 0.378 0.545 0.661 0.723

TN,[0.7N ] 0.299 0.395 0.447 0.47 0.358 0.496 0.596 0.648

MIND 0.322 0.353 0.408 0.474 0.189 0.232 0.25 0.312

CAViaR 0.361 0.477 0.576 0.662 0.362 0.479 0.558 0.625

JIND(3) 0.293 0.391 0.479 0.554 0.352 0.588 0.734 0.832

JIND(5) 0.295 0.42 0.519 0.612 0.355 0.593 0.726 0.827

FES 0.291 0.047 0.003 0.000 0.002 0.000 0.000 0.000

Table 4.9

Empirical power under CC hypothesis. α = 0.1, ws = 500 and Skewed t APARCH(1,1).

p = 0.01 p = 0.05

T=250 T=500 T=750 T=1000 T=250 T=500 T=750 T=1000

TN,[0.3N ] 0.311 0.524 0.726 0.847 0.393 0.771 0.913 0.962

TN,[0.4N ] 0.371 0.584 0.766 0.86 0.466 0.812 0.928 0.971

TN,[0.5N ] 0.398 0.612 0.762 0.846 0.504 0.818 0.931 0.97

TN,[0.6N ] 0.4 0.611 0.743 0.818 0.512 0.808 0.922 0.961

TN,[0.7N ] 0.406 0.582 0.699 0.762 0.502 0.785 0.897 0.946

MIND 0.459 0.465 0.535 0.586 0.254 0.364 0.457 0.571

CAViaR 0.468 0.571 0.657 0.744 0.442 0.621 0.723 0.799

JIND(3) 0.45 0.604 0.715 0.802 0.519 0.824 0.943 0.982

JIND(5) 0.437 0.618 0.742 0.834 0.512 0.823 0.937 0.978

FES 0.375 0.091 0.012 0.001 0.045 0.001 0.000 0.000

Notes to Tables 4.6,4.7,4.8,4.9: The results are based on 5000 replications. For each sample

size (T ), rolling window size (ws) and coverage rate (p) we provide percentage of rejection at

a 10% significance level with finite sample critical values obtained under the CC hypothesis.

TN,[ξN ] denotes the test from the class τk with k = [ξN ]. MIND denotes the Markov inde-

pendence test (4.2.1). CAViaR denotes the independence test (6.4.1) and JIND(k) denotes the

GMM independence test (4.2.9) with k moment conditions. FES denotes frequency of excluded

samples.
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4.5 An Application to the DAX Index

The recent 2008 financial crisis illustrates quite well the importance of explicitly testing

the IND property. We apply the popular Historical Simulation (HS) VaR based on the

previous 250 trading days to the DAX index. In Figure 4.5.1 we plot the returns and

one-day-ahead 1% VaR. In Figure 4.5.2 we plot the hit sequence. We observe a first

cluster of 3 violations within 13 days (between January 21 and February 6) and then

an impressive cluster of five violations occurring with very short durations in only 13

consecutive trading days (between September 29 and October 15). During this short

period of 13 trading days, the index lost almost 20%. With this flagrant pattern of

clustering, the backtesting result from the recent regulatory framework, based on a traffic

light approach which ignores the IND property, only classify the model as inaccurate with

the last violation of the year (see for example Campbell (2007) for details on the traffic

light approach).

−5
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Jan Mar Mai Jul Set Nov Jan

Figure 4.5.1: DAX index returns (solid line) and HS VaR(0.01) forecasts (dotted line)

On the date of the second violation of the five violations cluster, our exact inde-

pendence test rejects the IND hypothesis with 0.05 significance level. At this date we

have a sample of durations of size 6, with d1:6 = 2, d2:6 = 5, d3:6 = 9, d4:6 = 13,

d5:6 = 28 and d6:6 = 137 days. The observed value of our test statistic (4.3.9) is

t6,3 = log 2(137 − 1)/9 − log 6 = 8.76. Consulting the Table for TE
N,[N/2] quantiles in

the Section 4.7, with N = 6 and 0.05 significance level, we get a critical region equal to

[8.00;+∞[. The observed value belongs to this region and we reject the IND hypothesis.

On this date, the p value obtained with the exact binomial test is 0.108 and the UC hy-

pothesis is not rejected with the usual significance levels. The results show that ignoring
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Figure 4.5.2: Hit sequence for the DAX example

the independence property was an important reason for the failure of the traffic light

approach during the crisis period. On the date of the third violation, the UC is rejected

with the binomial test. With a 0.05 significance level, the IND hypothesis is rejected on

the date of the fourth violation, using JIND(3), and on the last day of the five violations

cluster, using both JIND(3) and CAViaAR. During the crisis period, our test rejected the

independence hypothesis before the other independence tests under study.

4.6 Conclusion

In this work we propose a class of independence tests based on an exact distribution

that does not depend on an unknown parameter. These tests can be used to test the

independence of any hit sequence. In order to test the independence in the context of

interval forecasts evaluation, we show that the suggested independence tests perform

better than the other tests under study. Although we are usually interested both in

correct coverage and independence, specific tests for UC and IND are also important,

since they may help to learn about the reasons for the failure of and potential ways to

improve actual models used in risk management applications.
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4.7. TABLE FOR THE TE
N,[N/2] QUANTILES

4.7 Table for the TE
N,[N/2] Quantiles

P (T
E ≥ tϵ(N)) = γN

N−[N/2]−1∑
v=0

[N/2]−1∑
s=0

(−1)
v+s

avbs[cv,s(v + 1)]
−1

−
[
cv,s

(
v + 1 + cv,s

( −log(1/2)

tϵ(N) + log N

)]−1
= ϵ

ϵ 0.10 0.05 0.01 ϵ 0.10 0.05 0.01
N t0.1(N) t0.05(N) t0.01(N) N t0.1(N) t0.05(N) t0.01(N)

2 12.46 26.23 137.17 53 3.08 4.06 6.34
3 28.23 59.26 308.43 54 2.87 3.81 6.01
4 6.72 10.90 28.50 55 3.06 4.02 6.27
5 10.54 16.81 43.20 56 2.85 3.79 5.98
6 5.33 8.00 17.13 57 3.04 3.99 6.25
7 7.40 10.90 22.82 58 2.84 3.77 5.92
8 4.70 6.81 13.29 59 3.01 3.97 6.19
9 6.10 8.65 16.52 60 2.82 3.75 5.89
10 4.30 6.11 11.30 61 3.00 3.94 6.15
11 5.37 7.47 13.59 62 2.81 3.73 5.85
12 4.04 5.65 10.12 63 2.98 3.92 6.10
13 4.90 6.74 11.81 64 2.80 3.72 5.82
14 3.84 5.33 9.33 65 2.96 3.89 6.06
15 4.58 6.23 10.70 66 2.79 3.69 5.79
16 3.70 5.09 8.74 67 2.95 3.87 6.03
17 4.34 5.87 9.88 68 2.77 3.68 5.77
18 3.59 4.90 8.30 69 2.93 3.85 6.00
19 4.14 5.58 9.30 70 2.77 3.66 5.74
20 3.50 4.76 7.96 71 2.92 3.84 5.96
21 3.98 5.35 8.79 72 2.76 3.65 5.72
22 3.41 4.62 7.66 73 2.90 3.81 5.91
23 3.86 5.17 8.42 74 2.75 3.64 5.70
24 3.34 4.52 7.45 75 2.88 3.79 5.88
25 3.75 5.00 8.11 76 2.74 3.62 5.66
26 3.28 4.42 7.24 77 2.88 3.78 5.87
27 3.66 4.88 7.86 78 2.73 3.61 5.66
28 3.23 4.35 7.06 79 2.87 3.76 5.83
29 3.58 4.76 7.63 80 2.72 3.59 5.62
30 3.18 4.29 6.93 81 2.85 3.74 5.79
31 3.51 4.66 7.45 82 2.71 3.59 5.60
32 3.14 4.21 6.79 83 2.84 3.73 5.77
33 3.46 4.58 7.31 84 2.71 3.58 5.59
34 3.11 4.16 6.70 85 2.84 3.72 5.75
35 3.40 4.50 7.14 86 2.70 3.57 5.56
36 3.07 4.11 6.57 87 2.82 3.70 5.73
37 3.35 4.43 7.02 88 2.69 3.56 5.54
38 3.04 4.06 6.49 89 2.80 3.68 5.71
39 3.31 4.37 6.90 90 2.68 3.55 5.52
40 3.02 4.03 6.43 91 2.80 3.68 5.69
41 3.27 4.31 6.80 92 2.68 3.54 5.51
42 2.99 3.98 6.33 93 2.79 3.66 5.67
43 3.23 4.25 6.71 94 2.67 3.52 5.49
44 2.96 3.95 6.27 95 2.78 3.65 5.65
45 3.20 4.22 6.64 96 2.67 3.51 5.47
46 2.94 3.91 6.22 97 2.78 3.64 5.63
47 3.16 4.16 6.53 98 2.66 3.50 5.45
48 2.93 3.89 6.17 99 2.77 3.63 5.61
49 3.14 4.13 6.46 100 2.65 3.50 5.45
50 2.91 3.87 6.10 200 2.49 3.28 5.08
51 3.11 4.09 6.40 1000 2.32 3.05 4.74
52 2.88 3.84 6.06 ∞ 2.25 2.97 4.60
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5
Improved Estimation in the Discrete Weibull

Distribution

A new shape parameter estimator for the discrete Weibull distribution, under complete

data or under type I censored data, is proposed. This estimator is based on an extension

of the Khan, Khalique and Abouammoh (1989) method of proportions. The cumula-

tive distribution function and the moments for the proportions estimator and for a more

general class, are derived. Simulations are also carried out to illustrate the substantial

improvement achieved in terms of bias and mean square error compared with other esti-

mators. The proposed estimator is applied on a financial dataset dealing with durations

between violations in a quantitative risk management environment.

5.1 Introduction

In many applications for a wide spectrum of fields, statistical inference models the ob-

served data as a sample from a continuous probability model, implying that the observed

data are precisely measured. For example, the time between trades is recorded to the

nearest second. As common practice, the actual data available for inference are discrete,

either because they are rounded, conditional to the precision of the measuring device, or

because the data are themselves discrete; a good example, concerning discrete economic

data, is the time periods until the event of interest regarded as countable instead of

continuous. In Grimshawa et al. (2005) a study is motivated by the common practice

of testing for duration dependence in economic and financial data using the continuous

Weibull distribution when the data are really discrete. In many reliability studies, data

is measured as discrete random variables such as the number of copies made by a copying

machine, number of cycles of a washing machine and so on. Materials, equipment, devices
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and structures are also frequently monitored only once per period rather than contin-

uously, due to practical restrictions. In these types of reliability studies, the discrete

Weibull model plays an important role. For a survey on discrete lifetime distributions

see Bracquemond and Gaudoin (2003). Moreover, the discrete Weibull can be applied

to other problems, from political renewal analysis (Lin and Guillén 1998) to economic

problems involving duration dependence. The “damaged goods” theory implies that the

longer the period of unemployment, the more likely the job seeker has some attribute that

makes her unemployable, thus less likely to find a job. A discrete Weibull model with

a shape parameter lower than one supports the ”damaged goods” theory; see Lancaster

(1979) for econometric methods for the duration of unemployment. Other examples of

duration dependence application are the study of speculative bubbles in stock markets

(Harman and Zuehlke 2004) and backtesting Value-at-Risk (Haas 2005). In this work, we

propose an improved estimator for the shape parameter of the discrete Weibull version of

Nakagawa and Osaki (1975), also known as type I discrete Weibull, with the followings

cumulative distribution function (cdf) and probability mass function (pmf):

FD(d) =

{
1− qd

θ

, d = 1, 2, 3, ...(jump points)

0, x < 1
(5.1.1)

fD(d) = q(d−1)
θ

− qd
θ

, d = 1, 2, 3, ... (5.1.2)

for 1 < q < 0 and θ > 0. Here θ is the shape parameter and q is the probability that

the duration D is greater than one, i.e., q = P [D > 1]. Returning to the unemployment

example, if unemployment spells have θ > 1, the duration dependence supports the

“reservation wage” theory. However, if unemployment spells have θ < 1, the duration

dependence supports the “damaged goods” theory; applying lifetime studies terminology,

the distribution has increasing failure rate for θ > 1, decreasing failure rate for 0 < θ < 1

and reduces to the geometric distribution when θ = 1. If W is a continuous Weibull rv,

then a type I discrete Weibull rv can be derived by time discretization D = [W ] + 1,

where [W ] denotes the integer part of W . Stein and Dattero (1984) introduced a type II

discrete Weibull and a type III was proposed by Padgett and Spurrier (1985). Type II

has a serious limitation because the support is bounded. The estimation of parameters is

difficult in type III. In a detailed study, Bracquemond and Gaudoin (2003), recommended

the use of type I discrete Weibull. The rest of the paper is organized as follows. Section

5.2 provides a brief review of estimation methods. In Section 5.3, the cdf and the moments

for the proportions estimator and for a more general class, are derived. Based on the

study of this class, a new shape parameter estimator is proposed. In Section 5.4, and

through simulation experiments, we compare the performance of the new estimator with

the method of moments and with the method of proportions. Finally, Section 5.5 presents

an empirical application from a quantitative risk management context.
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5.2 Estimation methods

From the cdf (5.1.1), we have

log[− log(1− FD(d))] = θ log d+ log(− log q).

Let d∗1:v < ... < d∗v:v, v ≤ n, be the observed order statistics (o.s.’s) without ties of a sam-

ple d1, ..., dn from the type I discrete Weibull distribution and Fn(d) = n−1
∑n

i=1 I{di≤d}

the empirical cumulative distribution function (ecdf), associated to a random sample

D1, · · · , Dn. If the points{
log d∗i:v, log(− log(1− Fn(d

∗
i:v))

}
1≤i≤v

are approximately scattered around a straight line, it can be assumed that the underlying

model is (5.1.1) and the parameters estimated by the Probability Plotting method, using

these points.

Taking into account (5.1.2), we obtain the first two moments

µ1 = E[D] =
∞∑
d=0

(d+ 1)qd
θ

−
∞∑
d=1

dqd
θ

= 1 +
∞∑
d=1

qd
θ

µ2 = E[D2] = 2
∞∑
d=1

dqd
θ

+ E[D].

However, closed forms for these moments are not available, as pointed out in Khan,

Khalique and Abouammoh (1989). Consequently, for an observed sample d1, d2, · · · , dn,
the Moments estimator, θ̂Mn , is obtained by a numerical algorithm, which minimizes

M(q, θ) =
((

n−1
n∑

i=1

di

)
− µ1

)2
+
((

n−1
n∑

i=1

d2i

)
− µ2

)2
. (5.2.1)

The method of proportions was proposed by Khan, Khalique and Abouammoh (1989).

Since q = 1 − FD(1), the idea is to use the empirical frequency of observations greater

than one

q̂ = 1− Fn(1). (5.2.2)

In the same way, since fD(2) = q − q2
θ

and using additionally, the empirical frequency

of observations greater than two

θ̂Pn :=
1

log 2
log

log(1− Fn(2))

log(1− Fn(1))
. (5.2.3)
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Denoting pd = fD(d), d = 1, 2, ..., these authors noted that one may think of using other

relation

log q = k−θ log(1− p1 − ...− pk), k = 1, 2, ...

In a simulation study it was concluded that the optimum choice of k is 2 and this lead

us to (5.2.3).

The method of maximum likelihood considers the log-likelihood function

logL(q, θ; d1, ..., dn) =
∑n

i=1 log
{
q(di−1)θ − qd

θ
i

}
; however, the ML-equations ∂L/∂q = 0

and ∂L/∂θ = 0, must be solved numerically; in this case, computational problems can

occur, despite the good quality of estimates for high values of q (Bracquemond and

Gaudoin, 2003). Based on the method of proportions, approximate maximum likelihood

estimators were proposed by Kulasekera (1994), both for complete and type I censored

data.

5.3 Improved shape parameter estimation

The main drawback of Khan, Khalique and Abouammoh (1989) proportions estimator

(5.2.3) is that it does not use all the observations but only a few of them, loosing a

significant part of the available information. Here, we overcome this limitation.

Using (5.1.1) we have qd
θ

= 1− FD(d) and

θ =
1

log d
log

log(1− FD(d))

log q
=

1

log d
log

log(1− FD(d))

log q
. (5.3.1)

Considering equations (5.3.1) for d = 2, ..., k, multiplied by constants cd, it is possible to

write the following system of equations
c2θ = c2

log 2 log
log(1−FD(2))

log q

... = ...

ckθ = ck
log k log log(1−FD(k))

log q

(5.3.2)

espaço

Now, adding all the equations and solving in order to θ

θ =
k∑

d=2

cd
log d

log
log(1− FD(d))

log q
/

k∑
d=2

cd. (5.3.3)

A class of estimators for θ is motivated by (5.3.3) through its empirical counterpart.

We suggest cd = 1, ∀d, and the estimation of 1 − FD(d) and q by the ecdf, in the same
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line as Khan, Khalique and Abouammoh, but considering one or more equations (5.3.1)

to obtain the following class of estimators defined if d1:n = 1 and dn:n > k,

θ̂k :=
k∑

d=2

1

log d

log(1− Fn(d))

log(1− Fn(1))
/(k − 1), (5.3.4)

where k ∈ {2, 3, ...}. The proportions estimator in (5.2.3), θ̂Pn , is a particular case of

estimator θ̂k in (5.3.4), for k = 2.

5.3.1 Theoretical results

In Proposition 5.3.1, for the class (5.3.4), we provide the probability of observing a sam-

ple such that the estimator is defined. In Theorem 5.3.1 we provide the cdf and the

moments for the class (5.3.4) with k = 2. Theorem 5.3.2 generalizes these results for

k ≥ 3. Then, Remark 5.3.1 lead us to propose a new improved estimator for the shape

parameter θ. Finally we derive Theorems 5.3.3 and 5.3.4 which alow us to present, in the

Corollary 5.3.1, theoretical expressions for the expected value and the variance of this

new estimator.

Proposition 5.3.1. Let D1, D2, ..., Dn be i.i.d. discrete Weibull rv´s with common cdf

(5.1.1). Then, for the class (5.3.4), the probability of observing a sample such that θ̂k

(5.3.4) is defined, is given by

1− qn −
(
1− qk

θ)n
+
(
q − qk

θ)n
(5.3.5)

Proof: The conditions for the estimator to be defined are Fn(1) > 0 and Fn(k) < 1.

These conditions are equivalent to

D1:n = 1 and Dn:n > k. (5.3.6)

Now we compute the probability of observing a sample that satisfies these conditions,

P [D1:n = 1 ∧Dn:n > k]

= 1− P [D1:n > 1 ∨Dn:n ≤ k]

= 1− P [D1:n > 1]− P [Dn:n ≤ k] + P [D1:n > 1 ∧Dn:n ≤ k]

= 1− P [D1 > 1 ∧ · · · ∧Dn > 1]− P [D1 ≤ 1 ∧ · · · ∧Dn ≤ k]

+P [1 < D1 ≤ k ∧ · · · ∧ 1 < Dn ≤ k]

= 1−
(
1− FD(1)

)n −
(
FD(k)

)n
+
(
FD(k)− FD(1)

)n
.

Using the cdf (5.1.1), the result follows.

2
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Theorem 5.3.1 (Cdf and Moments of the Proportions Estimator). Let D1, D2, ..., Dn

be i.i.d. discrete Weibull rv´s with common cdf (5.1.1) and ij ∈ {1, ..., n} with j = 1, 2.

Then, conditionally to D1:n = 1 and Dn:n > 2, for the class (5.3.4) with k = 2, we have

i) The cdf of θ̂k (5.3.4) given by

Fθ̂k(w) =
∑

∀i1,i2: 1
log 2 log

log(1−i1/n−i2/n)

log(1−i1/n)
≤w

fX1,X2(i1, i2)

1− qn − (1− q2θ )n + (q − q2θ )n

with

fX1,X2(i1, i2) =

(
n

i1

)(
n− i1
i2

)
pi11 (1− p1)

n−i1
( p2
1− p1

)i2(
1− p2

1− p1

)n−i1−i2
,

p1 = 1− q and p2 = q − q2
θ

.

ii) The moments E
[
(θ̂k)l

]
, with l ∈ N, given by∑

∀i1,i2:1<i1+i2<n∧i1>0

( 1

log 2
log

log(1− i1/n− i2/n)

log(1− i1/n)

)l fX1,X2(i1, i2)

1− qn − (1− q2θ )n + (q − q2θ )n
.

espaço

Proof: We can write the estimator θ̂k, with k = 2, as

1

log 2
log

log(1−X1/n−X2/n)

log(1−X1/n)

where X1 is Binomial(n, p1 = 1−q) and X2 is Binomial(n, p2 = q−q2
θ

). The conditional

pmf of X2 given that X1 = x1 is

fX2|X1=i1
(i2) =

(
n− i1
i2

)( p2
1− p1

)i2(
1− p2

1− p1

)n−i1−i2
,

and now we can write the joint pmf of X1 and X2 as

fX1,X2(i1, i2)

= P [X1 = i1]P [X2 = i2|X1 = i1]

=

(
n

i1

)
pi11 (1− p1)

n−i1

(
n− i1
i2

)( p2
1− p1

)i2(
1− p2

1− p1

)n−i1−i2
. (5.3.7)

Considering the Proposition 5.3.1, the joint pmf (5.3.7) and the conditional proba-

bility definition we get the cdf presented in i). Additionally, taking into account the

expected value definition of a function of discrete rv´s we get the moments presented in

ii). 2
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Theorem 5.3.2. Let D1, D2, ..., Dn be i.i.d. discrete Weibull rv´s with common cdf

(5.1.1) and ij ∈∈ {1, ..., n} with j ∈ {1, ..., k}. Then, conditionally to D1:n = 1 and

Dn:n > k, for the class (5.3.4) with k ≥ 3, we have

i) The cdf of θ̂k (5.3.4)

Fθ̂k (w) =
∑

∀i1,··· ,ik:
∑k

d=2
1

log d
log

log(1−i1/n−···−ik/n)

log(1−i1/n)
/(n−k)≤w

fX1,··· ,Xk (i1, · · · , ik)
1− qn − (1− qkθ )n + (q − qkθ )n

with

fX1,··· ,Xk(i1, · · · , ik)

=

(
n

i1

)
pi11 (1− p1)

n−i1

k∏
v=2

(
n− i1 − · · · − iv−1

iv

)( pv
1− p1 − · · · − pv−1

)iv(
1− pv

1− p1 − · · · − pv−1

)n−i1−···−iv
,

and pd = q(d−1)
θ − qd

θ

, for d = 1, 2, · · · , k.

ii) The moments E
[
(θ̂k)l

]
, with l ∈ N,

∑
∀i1,··· ,ik:1<i1+···+ik<n∧i1>0

( k∑
d=2

1

log d
log

log(1− i1/n− · · · − ik/n)

log(1− i1/n)
/(n− k)

)l

× fX1,··· ,Xk(i1, · · · , ik)
1− qn − (1− qkθ )n + (q − qkθ )n

.

Proof: We can write the estimator θ̂k as

k∑
d=2

1

log d
log

log(1−X1/n...−Xk/n)

log(1−X1/n)
/(n− k)

where X1, X2, ..., Xk are binomial r.v.´s with parameters n and pd = q(d−1)
θ − qd

θ

. The

conditional pmf of Xd given that X1 = i1 ∧X2 = i2... ∧Xd−1 = id−1 is

fXd|X1=i1∧X2=i2...∧Xd−1=id−1
(id)

=

(
n− i1...− id−1

id

)( pd
1− p1...− pd−1

)id(
1− pd

1− p1...− pd−1

)n−i1...−id
,

and now we can write the joint pmf of X1, X2, ..., Xk

fX1,...,Xk(i1, ..., ik)

= P [X1 = i1]P [X2 = i2|X1 = i1]...P [Xk = ik|X1 = i1 ∧X2 = i2...Xk−1 = ik−1]

97



CHAPTER 5. ESTIMATION IN THE DISCRETE WEIBULL

=

(
n

i1

)
pi11 (1− p1)

n−i1

(
n− i1
i2

)( p2
1− p1

)i2(
1− p2

1− p1

)n−i1−i2

...×

(
n− i1...− ik−1

ik

)( pk
1− p1...− pk−1

)ik(
1− pk

1− p1...− pk−1

)n−i1...−ik
. (5.3.8)

Considering the Proposition 5.3.1, the joint pmf (5.3.8) and the conditional probabil-

ity definition we get the cdf presented in i). Additionally we get the moments presented

in ii). 2

Remark 5.3.1. For a given observed sample d1, d2, ..., dn, satisfying the conditions

(5.3.6), in order to use the maximum information available, we will choose k = dn:n− 1.

The previous Remark lead us to propose the following estimator defined if d1:n = 1

and dn:n > 2,

θ̂IPn :=
K∑

d=2

1

log d

log(1− Fn(d))

log(1− Fn(1))
/(K − 1). (5.3.9)

with K := Dn:n − 1. Now we use the maximum possible information, choosing k =

dn:n − 1. Since Fn(d) are consistent estimators of FD(d), for d = 2, · · · , k, θ̂IPn is a

consistent estimator of θ. We also notice that Fn(k) is an estimator of P [D < dn:n] with

complete data and with type I censored data, allowing us to use (5.3.9) in both cases.

The estimator (5.3.9) involves the rv´s Fn(1), Fn(d) and K = Dn:n − 1. In order to

achieve the expected value, variance and mean square error of this estimator, we first

derive in Theorem 5.3.3 the moments conditional to K = k ≥ 2.

Theorem 5.3.3. Let D1, D2, ..., Dn be i.i.d. discrete Weibull rv´s with common cdf

(5.1.1) and ij ∈ 1, ..., n with j ∈ {1, ..., k}. Then, conditionally to D1:n = 1, for the

Improved Proportions estimator (5.3.9), we have

i) The cdf of θ̂IP (5.3.9) conditional to K = k ≥ 2, given by

Fθ̂IP |K=k
(w) =

∑
∀i1,i2,...,ik:

∑k
d=2

1
log d

log
log(1−i1/n...−ik/n)

log(1−i1/n)
≤w

fX1,X2,...,Xk(i1, i2, ..., ik)

p∗∗

with

fX1,X2,...,Xk(i1, i2, ..., ik)

=

(
n

i1

)(
n− i1
i2

)
...

(
n− i1 − ...− ik−1

ik

)( p1
p1 + ...+ pk+1

)i1(p2 + ...+ pk+1

p1 + ...+ pk+1

)n−i1
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×
( p2
p2 + ...+ pk+1

)i2(p3 + ...+ pk+1

p2 + ...+ pk+1

)n−i1−i2

×...×
( pk
pk + pk+1

)ik( pk+1

pk + pk+1

)n−i1−...−ik
,

p1 = 1− q, pd = q − qd
θ

, for d = 1, ..., k + 1 , and

p∗∗ =
∑

∀i1,i2,...,ik:1<i1+...+ik<n∧i1>0

fX1,X2,...,Xk(i1, i2, ..., ik).

ii) The conditional moment E
[
(θ̂IP )l|K=k

]
, with l ∈ N, given by

∑
∀i1,i2,...,ik:1<i1+...+ik<n∧i1>0

( k∑
d=2

1

log d
log

log(1− i1/n...− id/n)

log(1− i1/n)

)l

×fX1,X2,...,Xk (i1, i2, ..., ik)

p∗∗
. (5.3.10)

Proof: We can write the estimator θ̂IP conditional to K = k, as

k∑
d=2

1

log d
log

log(1−X1/n...−Xd/n),

log(1−X1/n)

such that

fX1|D=k
(i1) =

(
n

i1

)( p1
p1 + ...+ pk+1

)i2(p2 + ...+ pk+1

p1 + ...+ pk+1

)n−i1
,

and for d = 2, ..., k,

fXd|X1=i1...∧Xd−1=id−1∧D=k
(id)

=

(
n− i1...− id−1

id

)( pd
pd + ...+ pk+1

)id(pd+1 + ...+ pk+1

pd + ...+ pk+1

)n−i1...−id
.

Now we get the joint pmf of X1, X2, ..., Xk, conditional to D = k,

fX1,X2,...,Xk (i1, i2, ..., ik)|D=k

= P [X1 = i1|D = k]P [X2 = i2|X1 = i1 ∧D = k]

...× P [Xk = ik|X1 = i1 ∧Xk−1 = ik−1 ∧D = k]

=

(
n

i1

)( p1
p1 + ...+ pk+1

)i1(p2 + ...+ pk+1

p1 + ...+ pk+1

)n−i1
.

(
n− i1
i2

)( p2
p2 + ...+ pk+1

)i2(p3 + ...+ pk+1

p2 ++pk+1

)n−i1−i2
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...×

(
n− i1 − ...− ik−1

ik

)( pk
pk + pk+1

)ik( pk+1

pk + pk+1

)n−i1−...−ik
(5.3.11)

With the joint pmf (5.3.11) and the conditional probability definition we get the cdf pre-

sented in i). Additionally we get the conditional moments presented in ii). 2

Theorem 5.3.4 (Moments of the Improved Proportions estimator). Let D1, D2, ..., Dn

be i.i.d. discrete Weibull rv´s with common cdf (5.1.1). Denote by E
[
(θ̂IP )l|K=k

]
the conditional

moment (5.3.10), then, conditionally to D1:n = 1 and Dn:n > 2, the moments of de Improved

Proportions estimator (5.3.9), with l ∈ N, are given by

E
[
(θ̂IP )l

]
=

∞∑
k=2

(
1− qn−1

)(
(1− q(k+1)θ )n − (1− qk

θ

)n
)

1− qn −
(
1− qkθ

)n
+
(
q − qkθ

)n E
[
(θ̂IP )l|K=k

]
(5.3.12)

Proof: For k ≥ 2,

fK|D1:n=1∧Dn:n>2
(k)

=
P [D1:n = 1 ∧K = k]

P [D1:n = 1 ∧Dn:n > 2]

=
P [D1:n = 1|K = k]P [K = k]

P [D1:n = 1 ∧Dn:n > 2]
.

From Proposition 3.1 we get

=
P [D1:n = 1|K = k]P [K = k]

1− qn −
(
1− qkθ

)n
+
(
q − qkθ

)n
=

(
1− (1− FD(1))n−1

)(
FK(k)− FK(k − 1)

)
1− qn −

(
1− qkθ

)n
+
(
q − qkθ

)n ,

and finally

fK|D1:n=1∧Dn:n>2
(k) =

(
1− qn−1

)(
(1− q(k+1)θ )n − (1− qk

θ

)n
)

1− qn −
(
1− qkθ

)n
+
(
q − qkθ

)n . (5.3.13)

If we consider the pmf fK|D1:n=1∧Dn:n>2
(k) (5.3.13), for a given l ∈ N, the conditional

moment E
[
(θ̂IP )l|K

]
can be written as

E
[
(θ̂IP )l|K

]

=


E
[
(θ̂IP )l|K=2

]
E
[
(θ̂IP )l|K=3

]
...(

1−qn−1

)(
(1−q3

θ
)n−(1−q2

θ
)n
)

1−qn−
(
1−q2

θ
)n

+
(
q−q2

θ
)n

(
1−qn−1

)(
(1−q4

θ
)n−(1−q3

θ
)n
)

1−qn−
(
1−q2

θ
)n

+
(
q−q2

θ
)n ...

(5.3.14)
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Computing the mean value of the conditional expectation of (θ̂IP )l given K,

E[(θ̂IP )l] = E
[
E[(θ̂IP )l|K]

]
,

the theorem follows easily.

2

Corollary 5.3.1 (Expected Value and Variance of the Improved Proportions esti-

mator). Let D1, D2, ..., Dn be i.i.d. discrete Weibull rv´s with common cdf (5.1.1). Denote by

E
[
(θ̂IP )l|K=k

]
the conditional moment (5.3.10), then, conditionally to D1:n = 1 and Dn:n > 2,

the expected value and variance of the Improved Proportions estimator (5.3.9), with l ∈ N, are
given by

E
[
θ̂IP
]

=
∞∑

k=2

(
1− qn−1

)(
(1− q(k+1)θ )n − (1− qk

θ

)n
)

1− qn −
(
1− qkθ

)n
+
(
q − qkθ

)n E
[
θ̂IP |K=k

]
(5.3.15)

V AR
[
θ̂IP
]

=
∞∑

k=2

(
1− qn−1

)(
(1− q(k+1)θ )n − (1− qk

θ

)n
)

1− qn −
(
1− qkθ

)n
+
(
q − qkθ

)n E
[
(θ̂IP )2|K=k

]
−
(
E
[
θ̂IP
])2

(5.3.16)

Proof: The proof follows straightforwardly by Theorem 3.4 and the definitions of expected

value and variance. 2

Remark 5.3.2. The expressions for the expected value and variance of (5.3.9) in the Corollary

5.3.1 involves non closed forms, however we can compute approximations by taking the sum of

2 to m ∈ {3, 4, ...}, choosing m such that FK(m) w 1 and then dividing this sum by FK(m).

Example 5.3.1. Consider the Improved Proportions estimator θ̂IP (5.3.9) and the random

sample D1, D2, ..., Dn, from the discrete Weibull distribution with common cdf (5.1.1) and pa-

rameters θ = 1.5 and q = 0.5. To illustrate the calculation of approximate values for the expected

value, variance and root of mean square error (RMSE), we present in Table 5.1 the conditional

moments E
[
θ̂IP |K=k

]
, E
[
(θ̂IP |K=k)

2
]
, the conditional probabilities fK|D1:n=1∧Dn:n>2

(k) and

the conditional cdf FK|D1:n=1∧Dn:n>2
(k). From the last column we observe that FK(6) w 1.

Using the Theorem 5.3.4 and according to what is refered in Remark 5.3.2 we compute the

approximations. In Table 5.1, for each n ∈ {10, 20, 30}, adding the products of the values of the

third column by the respective values of the fifth column and dividing by FK(6) w 1, we get

an approximation for the expected values E
[
θ̂IP
]
presented in Table 5.2. Similarly, using the

fourth column instead of the third column, we get an approximation for the second moments

E
[
(θ̂IP )2

]
. In the Table 5.2 we also present the approximations for the variance and RMSE.
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The expected value, variance and RMSE, for each n ∈ {10, 20, 30}, were calculated for the Pro-

portions estimator (5.2.3) using the Theorem 5.3.1 and the results are presented in the Table

5.2. We observe some improvement in terms of bias and RMSE when the Improved Proportions

estimator (5.3.9) is used instead of the Proportions estimator (5.2.3) but we will show in the

simulation study of Section 5.4 that much more substantial improvements are obtained in the

cases θ ≤ 1. In these cases we only achieve FK(k) w 1 with a high value of k and therefore the

application of Theorem 5.3.4 involves a heavy computational effort.

Table 5.1

Conditional moments of θ̂IP given that K = k with θ = 1.5, q = 0.5 and l = 1, 2.

n k E
[
θ̂IP |K=k

]
E
[
(θ̂IP |K=k)

2
]

fK|D1:n=1∧Dn:n>2
FK|D1:n=1∧Dn:n>2

10 2 1.5307 2.8199 0.69000 0.69000

3 1.3246 2.0600 0.26012 0.95012

4 1.2046 1.6845 0.04362 0.99375

5 1.1183 1.4423 0.00502 0.99877

6 1.0503 1.2672 0.00045 0.99922

20 2 1.6107 2.8375 0.55369 0.55369

3 1.4134 2.1378 0.36722 0.92090

4 1.2940 1.7795 0.07008 0.99098

5 1.2088 1.5467 0.00823 0.99921

6 1.1405 1.3735 0.00073 0.99994

30 2 1.6230 2.8042 0.43018 0.43018

3 1.4561 2.2123 0.45786 0.88803

4 1.3398 1.8632 0.09898 0.98702

5 1.2568 1.6345 0.01184 0.99886

6 1.1893 1.4610 0.00106 0.99992
espaço

Table 5.2

Expected value, variance and RMSE of θ̂IP and θ̂P for n = 10, 20, 30.

Estimator n E
[
θ̂IP
]

E
[
(θ̂IP )2

]
VAR[θ̂IP

]
RMSE[θ̂IP

]
θ̂IP 10 1.4605 2.5649 0.4318 0.6583

20 1.5124 2.4947 0.2074 0.4555

30 1.5137 2.4247 0.1333 0.3654

θ̂P 10 1.5001 2.7319 0.4815 0.6939

20 1.5528 2.6545 0.2434 0.4962

30 1.5512 2.5724 0.1661 0.4107
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5.3.2 Probability of observing a sample such that θ̂P and θ̂IP are

defined

As we show in the previous example and as we will observe in Section 5.4 using sim-

ulations, with the Improved Proportions estimator (5.3.9) we can achieve a substantial

improvement compared with the Proportions estimator (5.2.3), but this estimator suffers

from the same limitation in terms of conditions to be defined. For both estimators we

have the conditions (5.3.6) with k = 2. Here, we study in which cases this limitation

can be relevant. In Figure 5.3.1 we represent the probability (5.3.5), from Proposition

5.3.1, for different values of θ, q and n. This probability decreases when q approaches

0 or when q approaches 1. As far as we know, the second case can be relevant in some

applications. When the estimators (5.2.3) and (5.3.9) are not defined because d1:n > 1,

we suggest the following generalization of the Improved Proportions estimator, defined

for dn:n > 2,

θ̂IP∗n :=

K∑
d=2

1

log d

log(1− Fn(d))

log(q̂)
/(K − 1),

with K := Dn:n − 1 and q̂ an estimator of q. If d1:n = 1, we can choose q̂ = 1−Fn(1), if

d1:n > 1 we need to choose other estimator such that the estimate of q is lower than 1.
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5.4 Simulation Study

Here, we compare the moments estimator θ̂Mn (5.2.1), the proportions estimator θ̂Pn (5.2.3)

and the proposed estimator θ̂IPn (5.3.9). For the simulation study we have used the R

language. In Figs 5.4.1-5.4.6 we present the simulated mean values and RMSE for θ =

0.5, 1, 1.5 and q = 05, 0.8, using 5000 simulations in each sample size (n = 10, · · · , 100).
It is possible to calculate estimates both with (5.2.3) and (5.3.9), only if d1:n = 1 and

dn:n > 2. Based on these conditions, some samples were excluded (see Table 5.3). In

terms of bias, for all cases, the estimator θ̂IPn , performs much better than the others

estimators under study. In terms of RMSE, for θ < 1 (decreasing failure rate), the

estimator θ̂IPn performs much better. For θ ≥ 1 (increasing failure rate or geometric

distribution), the performance in terms of RMSE of the moments estimator (5.2.1) and

θ̂IPn is almost the same or in some cases (q = 0.8), (5.2.1) performs slightly better.

Table 5.3

Frequency of excluded samples

Sample θ = 0.5 θ = 1 θ = 1.5

size n q = 0.5 q = 0.8 q = 0.5 q = 0.8 q = 0.5 q = 0.8

10 0.0088 0.1020 0.0538 0.1094 0.2284 0.1072

20 0.0000 0.0116 0.0028 0.0114 0.0482 0.0116

30 0.0000 0.0022 0.0000 0.0018 0.0114 0.0002

40 0.0000 0.0000 0.0000 0.0004 0.0022 0.0000
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5.5 An Application to the Volkswagen stock returns

In the previous Section we show that for the case θ < 1, the proposed Improved Pro-

portions estimator (5.3.9) performs much better than the other estimators under study.

Here, as an empirical example where the case θ < 1 is relevant, we place ourselves in

a context from quantitative risk management. We consider the Volkswagen share price

from January 3, 2003 to January 29, 2010, and the daily log returns defined in (1.2.1).

The data come from Web site http://chart.yahoo.com/ with ticker symbol vow.de. The

corresponding one-day-ahead VaR forecasts made at time t for time t+ 1, V aRt+1|t(p),

are defined in (1.2.2). Considering a violation the event that a return is lower than the

reported VaR, we define the hit function in (1.2.3) and the duration between two con-

secutive violations as Di := ti − ti−1, where ti denotes the day of violation number i.

Christoffersen (1998) showed that evaluating interval forecasts can be reduced to examin-

ing whether the hit sequence satisfies the unconditional coverage (UC) and independence

(IND) properties. It is possible to write the IND property as

Di
iid∼ D ∼ discrete Weibull(θ = 1).

A problematic non verification of IND is the one that leads to clustering of violations,

which corresponds to several large losses occurring in a short period. With clustering, we

have an excessive number of very short durations and an excessive number of very long

durations. The discrete Weibull with θ < 1 will generate this pattern, for this reason,

the estimate of the shape parameter can be used to identify a model that violates IND

in this way. Using the popular Historical Simulation (HS) method for VaR(0.05), we

calculate 95 durations with a moving window of size 250. The obtained estimates were

q̂M = 0.847, q̂P = 0.832, θ̂M = 0.712, θ̂P = 0.794 and θ̂IP∗ = 0.67. All estimators gives

evidence that the HS VaR method used, leads to clustering of violations, with estimates

of θ lower than one. We consider three models, FM , FP and FIP fitted with the methods

(5.2.1), (5.2.3) and (5.3.9). To asses how well these distributions fits the Volkswagen

durations data set, Figure 5.5.1 contains the plot of the ecdf along with FM , FP and FIP

cdf’s. We also plot the ecdf along with the cdf of the geometric (0.05) which corresponds

to the UC and IND hypothesis. To measure the discrepancy between the ecdf and the

cdf’s, the Kolmogorov-Smirnov and Chi-Square statistics are given in Table 5.4. Clearly,

the moments and the improved proportions methods provide much better fit than the

proportions method. These two methods performs well with the real data set under

study, but the improved proportions is based on a simple equation while the method of

moments involves equations that cannot be solved easily by ordinary techniques.
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Table 5.4

Goodness-of-fit statistics for fits of the Geometric(0.05), FM , FP and FIP distributions to the

Volkswagen durations data set

Statistic Geometric(0.05) FM FP FIP

Kolmogorov-Smirnov 0.221 0.052 0.095 0.0514

Chi-Square 46.7 6.16 35.8 5.84
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Figure 5.3.1: Probability of observing a sample such that θ̂P and θ̂IP are defined with
θ ∈ {0.5, 1, 1.5}, q ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9} and sample sizes from 2 to 30.
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Figure 5.4.1: Simulated Mean values (left) and root mean squared errors (right), of θ̂M , θ̂P and θ̂IP ,
from a discrete Weibull model with q = 0.5 and θ = 0.5 (decreasing failure rate).
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Figure 5.4.2: Simulated Mean values (left) and root mean squared errors (right), of θ̂M , θ̂P and θ̂IP ,
from a discrete Weibull model with q = 0.8 and θ = 0.5 (decreasing failure rate).
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Figure 5.4.3: Simulated Mean values (left) and root mean squared errors (right), of θ̂M , θ̂P and θ̂IP ,
from a discrete Weibull model with q = 0.5 and θ = 1 (geometric distribution).
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Figure 5.4.4: Simulated Mean values (left) and root mean squared errors (right), of θ̂M , θ̂P and θ̂IP ,
from a discrete Weibull model with q = 0.8 and θ = 1 (geometric distribution).
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Figure 5.4.5: Simulated Mean values (left) and root mean squared errors (right), of θ̂M , θ̂P and θ̂IP ,
from a discrete Weibull model with q = 0.5 and θ = 1.5 (increasing failure rate).

0 20 40 60 80 100

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

n

θ̂
IP

θ̂
P

θ̂
M

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

n

θ̂
IP

θ̂
P

θ̂
M

Figure 5.4.6: Simulated Mean values (left) and root mean squared errors (right), of θ̂M , θ̂P and θ̂IP ,
from a discrete Weibull model with q = 0.8 and θ = 1.5 (increasing failure rate).

110



5.5. AN APPLICATION TO THE VOLKSWAGEN STOCK RETURNS

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Geometric(0.05) cdf (grey) and ecdf (black)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) cdf FM (grey) and ecdf (black)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) cdf FP (grey) and ecdf (black)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) cdf FIP (grey) and ecdf (black)

Figure 5.5.1: Comparison of Geometric(0.05), FM , FP and FIP cdf’s and ecdf for Volk-
swagen durations data set.
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6
Forecasting Value-at-Risk with a Duration

based POT method

Threshold methods, based on fitting a stochastic model to the excesses over a threshold,

were developed under the acronym POT (peaks over threshold). In order to eliminate the

tendency to clustering of violations, a model based approach within the POT framework,

that uses the durations between excesses as covariates, is proposed. Based on this ap-

proach, models for forecasting one-day-ahead Value-at-Risk were suggested and applied

to real data. Comparative studies provide evidence that they can perform better than

state-of-the art risk models and much better than the widely used RiskMetrics model,

both in terms of out-of-sample accuracy and under the Basel II Accord.

6.1 Introduction

Investors and traders must pay attention not only to the expected return from their

activities but also to the risks that they incur. It is widely accepted that risk-adjusted

performance measures can guide institutions toward a better risk/return profile and

can play a relevant role to achieve a more secure financial system. This justify the

interest of developing more accurate risk models. Value-at-Risk (VaR) aggregates several

components of risk into a single number and has emerged as the standard measure in

quantitative risk management. In terms of regulation, the Basel II Accord requires that

banks and other Authorized Deposit-taking Institutions (ADIs) to report their daily VaR

forecasts to the monetary authorities (typically, a central bank) at the beginning of each

trading day and defines daily capital requirements based on these forecasts (for a detailed

discussion of VaR, see Jorion, 2000). We will deal with the excesses over a high threshold

and for this reason, in this Chapter, instead of the daily log returns we will consider the
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symmetric of daily log returns, Rt+1 = −log(Pt+1/Pt) × 100, where Pt is the value of

the portfolio at time t. Consequently, in this Chapter instead of (1.2.2), we define the

one-day-ahead VaR forecast made at time t for time t+ 1, V aRt+1|t(p), as

P [Rt+1 > V aRt+1|t(p)|Ωt] = p,

where Ωt is the information set up to time-t and p is the coverage rate. A violation

occurs when the symmetric daily return exceeds the reported VaR, i.e., when Rt+1 >

V aRt+1|t(p). The rest of the Chapter is organized as follows. In Section 6.2, we review

the peaks over threshold (POT) method with an example that illustrates the problem

of tendency to clustering of violations. In Section 6.3, in order to solve this problem, we

propose risk models based on durations and within the POT framework. Comparisons

between the proposed risk models and other models are made in Section 6.4. Finally,

conclusions and directions for future research are given in Section 6.5.

6.2 The POT method and the tendency to clustering of

violations problem

The Generalized Pareto Distribution (GPD) has the form

GPDγ,σ(y) =

{
1− (1 + γy/σ)−1/γ , γ ̸= 0

1− exp (−y/σ) , γ = 0,
(6.2.1)

where σ > 0, and the support is y ≥ 0 when γ ≥ 0 and 0 ≤ y ≤ −σ/γ when γ < 0. The

expected value and variance are given by

E[Y ] =
σ

1− γ
(γ < 1), V AR[Y ] =

σ2

(1− γ)2(1− 2γ)
(γ < 1/2).

Generally, with γ > 0, E[Y c] does not exist for γ ≥ 1/c. The probability that the

random variable (r.v.) X assumes a value that exceeds a threshold u by at most y, given

that it does exceed the threshold, is given by the excess distribution

Fu(y) = P [X − u ≤ y|X > u] =
F (y + u)− F (u)

1− F (u)
, (6.2.2)

for 0 ≤ y < xF − u, where xF is the (finite or infinite) right endpoint of F, defined

by xF := sup{x : F (x) < 1}. The EVT, with the following theorem (Balkema and de

Haan (1974) and Pickands (1975)), suggests the GPD (6.2.1) as an approximation for

the excess distribution (6.2.2), for a sufficiently high threshold u.
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Theorem 6.2.1 (Pickands-Balkema-de Haan Theorem). It is possible to find a function

β(u) such that

lim
u→xF

sup
0≤y<xF−u

|Fu(y)−Gγ,β(u)(y)| = 0,

if and only if F is in the maximum domain of attraction of an extreme value distribution.

For a wide class of distributions, the excess distribution (6.2.2) over a high threshold u

can be approximated by the GPD (6.2.1) and this result holds for essentially all common

continuous distributions; more precisely, Theorem 6.2.1 holds for all distributions in some

max-domain of attraction of an extreme value distribution, i.e., distributions for which

the sequence of maxima linearly normalized converges to one non degenerate limit law

of theorem 1.1.1. To estimate the parameters γ and σ we fit the GPD to the excesses

over the conveniently chosen threshold u. For γ > −1/2, the standard properties of the

maximum likelihood (ML) estimators have been proved by Smith (1987) and extended

for γ > −1 by Zhou (2010). Furthermore, it is possible to show, using simulations, that

inference is often robust to choice of the threshold u, when u is big enough. Smith (1987)

proposed a tail estimator based on a GPD approximation to the excess distribution.

We denote n the number of excesses above u in a sample X1, ..., Xnx
. Using n/nx as

estimator of F̄ (u) the relation F̄u(x − u) = F̄ (x)/F̄ (u) and F̄u(x − u) estimated by a

GPD approximation, we obtain the tail estimator

ˆ̄F (x) =
n

nx

(
1 + γ̂

x− u

σ̂

)−1/γ̂
, valid for x > u. (6.2.3)

For p < F̄ (u) and inverting the tail estimator formula (6.2.3), we get the VaR POT

estimator

ˆVaR
POT

t+1|t(p) = u+
σ̂

γ̂

(( n

nxp

)γ̂
− 1
)
. (6.2.4)

Now, turning theory into practice, one example is presented to illustrate the prob-

lem of tendency to clustering of violations which occurs when we apply the VaR POT

estimator (6.2.4) to financial time series. The data consist of 15190 daily returns of

Standard & Poor’s Index (S&P 500), from January 4, 1950 through May 18, 2010. We

choose the threshold, u = x13671:15190 = 0.9897, such that 10% of the values are larger

than the threshold; see McNeil and Frey (2000) for a simulation study that support a

similar choice. In Figure 6.2.1 we present the returns with the threshold (grey line) and

a histogram where we can observe how the GPD, with the parameters estimated by ML

estimation, adjust very well to the excesses. In this example, we obtain a VaR(0.05)

equal to 1.42 and a VaR(0.01) equal to 2.67. In Figure 6.2.2(a), instead of considering

15190 daily returns to obtain one VaR(0.01) estimate, we present one-day-ahead VaR

forecasts with a rolling window of size 1000 (nw = 1000). The percentage of days where
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the symmetric returns exceeds the correspondent VaR forecast, i.e., the percentage of

violations, equals 1.367% of the 14190 days used for the out-of-sample forecasts, when

the expected is 1%.
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Figure 6.2.1: Symmetric returns (left) and Histogram of 1519 excesses above the threshold
u = x13671:15190 = 0.9897 (right) for the S&P 500 Index from January 4, 1950 through
May 18, 2010.

However, the serious problem of POT method and other unconditional models, is

tendency to clustering of violations associated with the volatility clustering phenomenon.

Figure 6.2.2(b) illustrates this problem during the 2008 financial crisis period. Between

January 2, 2008 and February 12, 2009, we have a large number of violations in a short

period of time. Over this period, the number of violations was 29, representing 10.28%

of the 282 trading days, when the expected value for the percentage of violations is 1%.
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Figure 6.2.2: Symmetric returns of S&P 500 Index (grey line) and one-day-ahead
VaR(0.01) forecasts with POT method (black line) and a rolling window of size 1000.
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6.3 A duration based POT method (DPOT)

Our main goal is to eliminate the tendency to clustering of violations that occurs with

the POT method. To achieve this goal, within the POT framework we propose the

presence of durations between excesses as covariates. Smith (1990), developed ML and

Least Squares estimation procedures under the POT framework with the shape and scale

parameters dependent on covariates. For a general overview of EVT and its application

to VaR, including the use of explanatory variables, see, for instance, Tsay (2010). For

details about the mathematical theory of EVT and its applications to risk management,

see Embrechts et al. (2001).

Let y1, ..., yn be the excesses above a high threshold u, d1 the duration until the first

excess and d2, ..., dn, defined by

di = ti − ti−1, (6.3.1)

where ti denotes the day of excess i. We propose to use from the information set up to

time t (Ωt), the last v durations between excesses, dn, dn−1, ..., dn−v+1 and the duration

since the excess n which we define by dt. With the durations di, ..., di−v+1, it is possible

to consider at the time of excess number i, the duration since the preceding v excesses,

defined by

di,v = di + ...+ di−v+1 = ti − ti−v. (6.3.2)

At day t, after the excess n, we define dt,1 = dt, dt,2 = dt + dn and for v = 3, 4, · · · ,

dt,v = dt + dn,v−1 = dt + dn + · · ·+ dn−v+2,

which represents the duration until t since the preceding v excesses.

6.3.1 Empirical Motivation

The motivation for the presence of durations between excesses as covariates has mainly

been based on the relation between the amount of the excess and durations which we

observe in various financial time series. Figure 6.3.1 (left) presents for the S&P 500 Index

example of Section 6.2, the scatterplot of excesses (yi) and durations since the preceding

excess (di). Clearly, large excesses tend to be associated with short durations and small

excesses tend to be associated with long durations. In Figure 6.3.1 (right) we observe a

similar pattern for excesses and durations between the 2 preceding excesses (di−1). Table

6.1 gives Pearson correlations between excesses, durations and the inverse of durations.

The linear association between excesses and durations is weak, but increases when we
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take the inverse of durations, as expected. Adding durations we get the duration since

the preceding v excesses defined in (6.3.2) and the correlation increases a little more

when we compute the correlation between excesses and the inverse of these durations.

In short, the empirical results show some nonlinear association between excesses and

durations. We also observe that the excesses have higher mean and higher variance with

short durations, and lower mean and lower variance with long durations. Based on these

empirical results, we propose to define the expected value and variance of the excesses

dependent on the durations.
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Figure 6.3.1: S&P 500 Index from January 4, 1950 through May 18,2010. Scatter plot of excesses
above a high threshold (u = 0.9897) and durations since the preceding excess (left) and scatter plot of
excesses and durations between the 2 preceding excesses (right).

Table 6.1

S&P 500 Index. Pearson correlation between yi, di−j ,
1

di−j
and 1

di,v
.

j Corr(yi, di−j) Corr(yi,
1

di−j
) v Corr(yi,

1
di,v

)

0 -0.123 0.193 2 0.284

1 -0.127 0.174 3 0.325

2 -0.096 0.149 4 0.335

3 -0.126 0.148 5 0.346
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6.3.2 DPOT Model

With the durations (6.3.1) and the duration since the excess n, dt, we assume the GPD

for the excesses Yi above u, such that

Yt ∼ GPD
(
γ, σt = g(α1, ..., αk, ..., d

t, dn, dn−1, ..., dn−v+2)
)
,

where γ, α1, ..., αk, are parameters to be estimated. And we propose the following class

of estimators

V̂aR
DPOT

t+1|t (p) = u+
σ̂t

γ̂

(( n

nxp

)γ̂
− 1
)
, (6.3.3)

with σ̂t = g(α̂1, ..., α̂k, ..., d
t, dn, dn−1, ..., dn−v+2).

The proposed DPOT method implies, for γ < 1, a conditional expected value for

excesses, and for γ < 1/2, a conditional variance, both dependent on dt and the last v

durations between excesses,

E[Yt|Ωt] =
σt

1− γ
(γ < 1), V AR[Yt|Ωt] =

(σt)
2

(1− 2γ)
(γ < 1/2).

The empirical results of Section 6.3.1 suggest a inverse relation between excesses and

the durations since the preceding v excesses, with 1/(di,v)
c, c > 0, which leads to the

specification σt = α 1
(dt,v)c

and the VaR estimator

V̂aR
DPOT (v,c)

t+1|t (p) = u+
α̂

γ̂(dt,v)c

(( n

nxp

)γ̂
− 1
)
, (6.3.4)

where γ̂ and α̂ are estimators of the parameters γ and α. Applying the maximum

likelihood theory to estimate the parameters, the log likelihood obtained is

log L(γ, α) = log

n∏
i=v

fYi(yi)

= log
n∏

i=v

( α

(di,v)c

)−1(
1 +

γ

α
yi(di,v)

c
)−(1/γ+1)

= −
n∑

i=v

log
( α

(di,v)c

)
−
( 1
γ
+ 1
) n∑

i=v

log
(
1 +

γ

α
yi(di,v)

c
)
. (6.3.5)

We present results for v = 3, c ∈ {0.8, 0.75, 0.7} and apply an implementation of

Nelder and Mead algorithm, using the stats package of R (R Development Core Team,

2008), to maximize (6.3.5).

Using the proposed models with the S&P 500 Index returns presented in the Sec-

tion 6.2 example, we obtain for 14190 one-day-ahead VaR forecasts, 138 (0.9725%), 134
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and 134 (0.9443%) violations, respectively with c = 0.8, c = 0.75 and c = 0.7. These

percentages are much closer to the expected 1% than the 1.367% obtained with the uncon-

ditional POT model. In Figure 6.3.2, the grey line corresponds to the S&P 500 returns,

the dotted, the longslash, the solid and the longslash grey lines, correspond to one-day-

ahead VaR forecasts calculated respectively with the DPOT(c = 0.8), DPOT(c = 0.75),

DPOT(c = 0.7) and the POT models. For the 2008 global financial crises period, Fig-

ure 6.3.2, shows how the DPOT models solve the problem of tendency to clustering of

violations, producing much better risk forecasts that adjust quickly to the high volatil-

ity in the returns during September and October. Within this period of 282 days, the

number of violations with DPOT(c = 0.8) was 8, with DPOT(c = 0.75) was 8 and with

DPOT(c = 0.7) was 11, much less than the 29 violations obtained with the unconditional

POT method. Moreover, notice that with some exceptions, in the majority of the days

the difference between DPOT(c = 0.8), DPOT(c = 0.75) and DPOT(c = 0.7) forecasts,

is very small, suggesting that the method is robust for different values of c in the inter-

val between 0.7 and 0.8. Empirical findings in Section 6.4 will suggest that a choice of

c = 0.75 is preferable. We also study the model with c estimated, but we achieve poor

results.

6.4 Comparative studies

Using the returns from S&P 500 Index, German stock market Index (DAX) and Financial

Times London Stock Exchange Index (FTSE), we compare the proposed DPOT method

with a two-stage hybrid method which combines a time-varying volatility model with

the EVT approach, known as Conditional EVT, and with two conditional parametric

models. We employ the R language in order to develop the programs. The web site

http://finance.yahoo.com was the source of the data. In Section 6.4.1 we briefly review

the Conditional EVT method, the Asymmetric Power Autoregressive Conditional Het-

eroscedasticity (APARCH) model and the widely used RiskMetrics model. In Section

6.4.2 we evaluate the accuracy of out-of-sample interval forecasts produced with the risk

models and in Section 6.4.3 we compare the performance under the Basel II Accord.

6.4.1 Conditional EVT, APARCH and RiskMetrics

The EVT procedure described in Section 6.2 is unconditional, however, to solve or reduce

the problem of clustering, we can apply EVT to returns adjusted by some dynamic

structure. It is usual to assume for the returns, Rt = µt+εt, where εt is the unpredictable

component and µt the conditional mean expressed as a sth order autoregressive process,
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Figure 6.3.2: Symmetric returns of S&P 500 Index from January 2, 2008 through February 12,2009
(solid grey), and one-day-ahead VaR(0.01) forecasts with DPOT(c = 0.8) (dotted), DPOT(c = 0.75)
(longdash), DPOT(c = 0.7) (solid), POT method (longdash grey) and a rolling window of size 1000.

AR(s),

µt = ϕ0 +
s∑

i=1

ϕiRt−i.

The unpredictable component can be expressed by εt = Ztσt, where the innovations,

Zt, are a sequence of independently and identically distributed random variables with

zero mean and unit variance, and the conditional variance is

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j ,

where αi > 0 and βj > 0, for i = 0, 1, ..., p and j = 1, 2, ..., q. This time-varying volatility

model for the unpredictable component, is a Generalised Autoregressive Conditional Het-

eroscedasticity (GARCH) process, proposed by Bollerslev (1986). The GARCH model

with p = 1 and q = 1, usually captures with success several stylized facts of financial time

series. Diebold et al. (1998) proposed in a first step the standardization of the returns

through the conditional means and variances estimated with a time-varying volatility
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model, and in a second step, estimation of a p quantile using EVT and the standard-

ized returns. McNeil and Frey (2000) combine a AR(1)-GARCH(1,1) process assuming

normal innovations with the POT method from EVT. We will denote this model as

CEVT-n. The filter with normal innovations, while capable of removing the majority

of clustering, will frequently be a misspecified model for returns. For accommodate this

misspecification, Kuester et al. (2006) suggested a filter with the skewed-t distribution.

We will denote this model as CEVT-sst. Applying Conditional EVT, the VaR estimator

is

V aRCEV T
t+1|t (p) = µ̂t+1|t + σ̂t+1|tẑp,

where µ̂t+1|t and σ̂t+1|t are the estimated conditional mean and conditional standard

deviation for t + 1, obtained with a AR(1)-GARCH(1,1) process. Moreover, ẑp is a

quantile p estimate, obtained with the POT method and the standardized residuals

calculated as

(zt−n+1, ..., zt) =

(
rt−n+1 − µ̂t−n+1

σ̂t−n+1
, ...,

rt − µ̂t

σ̂t

)
.

Several studies conclude that conditional EVT is the method with better out-of-

sample performance to forecast one-day-ahead VaR (e.g. McNeil and Frey (2000), Byström

(2004), Bekiros and Georgoutsos (2005), Kuester et al. (2006), Ghorbel and Trabelsi

(2008), Ozun et al. (2010)), and this is the reason wy we choose CEVT-n and CEVT-sst

models for the comparative studies.

Empirical evidence shows that the increase in volatility is larger when the returns

are negative than when they are positive. This asymmetric evolution of the conditional

variance is known as leverage effect (Black, 1976). We also choose for the comparative

study one asymmetric GARCH-type model, the APARCH model introduced by Ding,

Granger and Engle (1993). The conditional variance of the APARCH(p, q) model can be

written as

σδ
t = w +

p∑
i=1

αi(|εt−i| − γiεt−i)
δ +

q∑
j=1

βjσ
δ
t−j ,

where δ > 0 and −1 < γ < 1. The asymmetric coefficient γ, takes the leverage effect into

account. We consider this model as it is a very general GARCH-type model, including as

special cases several GARCH-type models and asymmetric GARCH-type models: ARCH

Model of Engle (δ = 2, γi = 0 and βj = 0), GARCH Model of Bollerslev (δ = 2,

γi = 0), TS-GARCH Model of Taylor and Schwert (δ = 2, γi = 0), GJR-GARCH

Model of Glosten, Jagannathan and Runkle (δ = 2), T-ARCH Model of Zakoian (δ = 1),
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N-ARCH Model of Higgens and Bera (γi = 0 and βj = 0) and log-ARCH Model of

Geweke and Pentula (δ → 0). The model chosen for the comparative studies was the

AR-APARCH(1,1) with skewed-t innovations, which we denote by APARCH-sst.

V̂aR
APARCH

t+1|t (p) = ϕ̂0 + ϕ̂1rt + sp × σ̂t+1|t,

with sp a quantile p of the skewed-t distribution with parameters estimated using the

data. In a comparative study for the Asian markets, Tu, Wong and Chang (2008) found

that the APARCH model with the skewed-t distribution performs better than with the

normal or with the student distribution. GARCH-type models with skewed-t innovations

have been frequently found to provide excellent forecast results; see, for example, Mittnik

and Paolella (2000), Giot and Laurent (2004).

Finally, for the comparative study, we also choose the widely used RiskMetrics model

developed by J.P. Morgan (J.P. Morgan´s Riskmetrics Technical Document, 1996). This

model assumes that the return follows a conditional normal distribution N(0, σ2
t ), with

the dynamic of volatility modeled using a exponential weighted moving average (EWMA)

method

σ2
t = λσ2

t−1 + (1− λ)ε2t−1.

RiskMetrics (1996) suggests λ = 0.94 for daily data. The recursion can be initialized

by the sample variance (σ2
1 = σ̂2) or the square of the first return (σ2

1 = r21).

V̂aR
RM

t+1|t(p) = zp × σ̂t+1|t,

with zp a quantile p of the standard normal distribution. The empirical results of the

following Section will clearly suggest that with the normality assumption we obtain

underestimated VaR forecasts and more violations than the expected.

6.4.2 Out-of-Sample studies with SP 500, DAX and FTSE in-

dexes

In this Section we compare the CEVT-sst, CEVT-n, APARCH-sst, RiskMetrics and

DPOT models with v = 3, c ∈ {0.8, 0.75, 0.7}, denoted respectively by DPOT(0.8),

DPOT(0.75) and DPOT(0.7). We examine the one-day-ahead VaR(0.01) forecasts per-

formance with the S&P 500 Index, DAX Index and FTSE Index, considering returns

produced by all the historical data until May 18, 2010. Using a rolling window of size

1000 we obtain 14190, 3917 and 5599 one-day-ahead VaR(0.01) forecasts for each model,

respectively with the S&P 500, DAX and FTSE. As usual, the threshold u was chosen

such that 10% of the values are larger than the threshold. The primary tool for assessing
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the accuracy of the interval forecasts is to monitor the binary sequence generated by

observing if the return on day t + 1 is in the tail region specified by the VaR at time-t,

or not. This is referred to as the hit sequence (1.2.3). To test the UC hypothesis we

apply the Kupiec test (Kupiec, 1995). To test the IND hypothesis we apply two tests.

In the same line as Engle and Manganelli (2004), Berkowitz et al. (2009) consider the

autoregression

It = α+ β1It−1 + β2VaRt|t−1(p) + εt, (6.4.1)

and propose the logit model. We can test the IND hypothesis with a likelihood ratio

test considering for the null β1 = β2 = 0 and in this case the asymptotic distribution

is chi-square with 2 degrees of freedom. We refer to this test as the CAViaR indepen-

dence test of Engle and Manganelli (CAViaR). The other independence test applied was

recently introduced in the literature (Araújo Santos and Fraga Alves, 2010) and is based

on the ratio (DN :N − 1)/D[N/2]:N , where DN :N and D[N/2]:N , are the maximum and the

median of durations between consecutive violations and until the first violation. This

new test is suitable for detect models with a tendency to generate clusters of violations,

is based on an exact distribution, is pivotal in the sense that is based on a distribution

that does not depend on an unknown parameter and outperforms, in terms of power,

existing procedures in realistic settings. We refer to this test as MM ratio test.

The empirical findings, with the p values of the tests, are presented in Tables 6.2, 6.3

and 6.4. Table 6.5, summarize the results in terms of number of times that the hypotheses

are rejected. As the unconditional POT model do not account for volatility clustering, is

unable to produce iid violations and both independence tests reject the IND hypothesis

with very small p values. With a violation frequency equal to 0.01367, the UC hypothesis

is also clearly reject in the case of the POT model. We only considered the POT method

in the Table 6.2. The performance of RiskMetrics is very poor. The violation frequency

is even much worse than with the unconditional POT model. With RiskMetrics the

violation frequencies equals 0.018675, 0.016845 and 0.018222, respectively for the S&P

500, DAX and FTSE indexes, much higher than the expected 0.01. For this model and

with all indexes the UC hypothesis is rejected with very small p-values. Both DPOT,

CEVT and APARCH-sst models performs very well in terms of the UC hypothesis, tak-

ing into account that in no case the hypothesis is rejected since all p-values are very

high. It is interesting to note the impressive performance of CEVT models in terms of

UC in Table 6.2, with 142 violations in 14190 out-of-sample forecasts it was impossible

to obtain a better result (the violation frequency is equal to 0.01000705). The same

impressive performance occurs with the DPOT(0.7) in Table 6.4, with 56 violations in

5599 out-of-sample forecasts was impossible to obtain a better result (the violation fre-
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quency is equal to 0.01000179). In terms of IND hypothesis, the DPOT models performs

clearly better than the CEVT models and than APARCH-sst. Considering the eighteen

cases with three DPOT models, three indexes and two independence tests, with DPOT

models the IND hypothesis is rejected only in one case. For the CEVT-n, CEVT-sst

and APARCH-sst models, the IND hypothesis is rejected, respectively, 3, 3 and 4 times.

Table 6.5, summarize these results. This empirical evidence shows that the DPOT mod-

els can be successful in removing the tendency to clustering of violations, which was our

main objective, can perform better than state of the art risk models and much better

than the widely used RiskMetrics model.

Table 6.2

Out-of-sample accuracy for VaR(0.01) applied to S&P 500 Index returns from January 4, 1950

until May 18, 2010, with a rolling window of size 1000. Unconditional coverage and indepen-

dence tests.
Model Violation Kupiec CAViaR MM Ratio

frequencies p-value p-value p-value

POT 0.013672 0.0000 0.0000 0.0000

DPOT(0.8) 0.009725 0.7410 0.0189 0.7902

DPOT(0.75) 0.009443 0.5011 0.1018 0.1048

DPOT(0.7) 0.009443 0.5011 0.8659 0.0566

CEVT-n 0.010007 0.9933 0.0145 0.0166

CEVT-sst 0.010007 0.9933 0.0236 0.0314

APARCH-sst 0.009015 0.2305 0.0064 0.0717

RiskMetrics 0.018393 0.0000 0.0000 0.3401

Table 6.3

Out-of-sample accuracy for VaR(0.01) applied to DAX Index returns from November 27, 1990

until May 18, 2010, with a rolling window of size 1000. Unconditional coverage and indepen-

dence tests.
Model Violation Kupiec CAViaR MM Ratio

frequencies p-value p-value p-value

DPOT(0.8) 0.008425 0.3085 0.6918 0.8821

DPOT(0.75) 0.008935 0.4953 0.7175 0.8597

DPOT(0.7) 0.010722 0.6533 0.2786 0.1886

CEVT-n 0.010467 0.7706 0.0156 0.6180

CEVT-sst 0.009446 0.7250 0.0030 0.7227

APARCH-sst 0.009191 0.6058 0.0079 0.0358

RiskMetrics 0.016083 0.0004 0.0936 0.5245
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Table 6.4

Out-of-sample accuracy for VaR(0.01) applied to FTSE Index returns from April 3, 1984 until

May 18, 2010, with a rolling window of size 1000. Unconditional coverage and independence

tests.
Model Violation Kupiec CAViaR MM Ratio

frequencies p-value p-value p-value

DPOT(0.8) 0.009109 0.4962 0.1033 0.6359

DPOT(0.75) 0.009109 0.4962 0.3405 0.6373

DPOT(0.7) 0.010002 0.9989 0.8646 0.5687

CEVT-n 0.011073 0.4275 0.4037 0.7410

CEVT-sst 0.011073 0.4275 0.4143 0.7423

APARCH-sst 0.008573 0.2143 0.0047 0.2338

RiskMetrics 0.018575 0.0000 0.2704 0.5607

Table 6.5

Number of rejections of the UC and IND hypotheses with significance level equal to 0.05.

Number of rejections

UC hypothesis IND hypothesis

DPOT(0.8) 0 1

DPOT(0.75) 0 0

DPOT(0.7) 0 0

CEVT-n 0 3

CEVT-sst 0 3

APARCH-sst 0 4

RiskMetrics 3 1
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6.4.3 Minimization of capital requirements under the Basel II

Accord

Under the Basel II Accord, ADIs have to communicate their daily risk forecasts to the

monetary authority (typically a central bank) at the beginning of the trading day, using

a VaR model. Too high forecasts will lead to large capital requirements. On the other

hand, too low forecasts will lead to excessive violations and consequently to a penalty

that increases capital requirements. The penalty can be an increase in a multiplicative

factor to calculate capital requirements or the imposition of a standard model when the

number of violations exceeds 10. Let us consider an ADI that invest at day t + 1 an

amount At+1 in a portfolio of risky assets. The portfolio is financed by deposits (Dt+1)

and equity (Et+1). At day t + 1 the ADI must satisfy capital requirements for market

risk (CRt+1) such that Et+1 ≥ CRt+1At+1. Note that for a given CRt+1, to satisfy this

inequality the ADI can increase the equity or reduce the amount invested. Of course,

even without this rule, risk averse investors will reduce this amount during periods of

high risk. The Basel II Accord stipulates CRt+1 as

CRt+1 = sup
{
(3 + k)VaR60,VaRt

}
, (6.4.2)

where VaR60 is the average VaR over the previous 60 trading day´s and k is a multiplica-

tive factor that depends on the number of violations in the previous 250 trading days

(Nv), according to the following function,

k =



0 if Nv ≤ 4

0.3 + 0.1(Nv − 4) if 5 ≤ Nv ≤ 6

0.65 if Nv = 7

0.65 + 0.1(Nv − 7) if 8 ≤ Nv ≤ 9

1 if Nv = 10.

In the same way as McAleer et al. (2009), we can write the ADI profit for day

t + 1 as Πt+1 = rAt+1At+1 − rDt+1Dt+1 − rEt+1Et+1, where rAt+1 denotes the return

on the ADI portfolio on day t + 1, rDt+1 the rate for deposits on day t + 1 and rEt+1

the cost of holding equity. An increase in Et+1 will reduce expected profits and for that

reason an ADI is interested in the minimization of CRt+1. In a recent work, McAleer et

al. (2009c) compare, in terms of minimization of capital requirements, well known and

widely used time-varying volatility models applied in one-day-ahead VaR forecast. These

authors advanced the idea and conclude that optimal risk management within the Basel

II Accord requires to use combinations of models. In this Section we choose the S&P 500

index, DAX index and FTSE index returns for the period, January 2, 2008, to February

12, 2009, which includes the global financial crisis, taking into account the comparability
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with this previous study. Using equation (6.4.2) and the DPOT, CEVT, APARCH-sst

and RiskMetrics models, we calculated CRt for each model over this period and for each

index. In Figure 6.4.1, the dotted, longdash, solid, dotted grey, longdash grey, solid

grey and bold grey lines, correspond to daily capital requirements obtained respectively

with the DPOT(0.8), DPOT(0.75), DPOT(0.7), CEVT-n, CEVT-sst, APARCH-sst and

RiskMetrics models. From Figure 6.4.1, it is evident that, for these indexes and this

period, the DPOT models perform much better than the other models under study.

Only in few days and with very small differences, the DPOT models produced higher

capital requirements and this is mainly before the high volatile period, suggesting that

DPOT models anticipate better these periods than the other models. Tables 6.6, 6.7 and

6.8 gives the maximum number of violations in the previous 250 trading days and the

average capital requirements. In terms of number of violations, the DPOT models with

c = 0.8 and c = 0.75 perform better than with c = 0.7 with which we had 11 violations in

the previous 250 trading days. Although this occurs during a very severe crisis, exceeds

10 violations and falls in the red zone defined by the Basel II Accord. In terms of capital

requirements, Tables 6.6, 6.7 and 6.8 show that, in the period under study, the DPOT

models lead to substantially lower average capital requirements than the other models

under study. The differences are in the majority of cases higher than 200 basis points

and in some cases higher than 300 basis points.
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Figure 6.4.1: Daily capital requirements (CRt)between 2 January 2008 and 12 February 2009, under
the Basel II Accord, applying the DPOT(0.8) (dotted), DPOT(0.75) (longdash), DPOT(0.7) (solid),
CEVT-n (dotted grey), CEVT-sst (longdash grey), APARCH-sst (solid grey) and RiskMetrics (bold
grey) models.
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Table 6.6

Maximum Nv and average CRt for S&P 500 index from January 2, 2008 until February 12,

2009.
Model Maximum Nv Average capital requirements (CRt)

DPOT(0.8) 8 0.1583

DPOT(0.75) 8 0.1495

DPOT(0.7) 9 0.1505

CEVT-n 10 0.1825

CEVT-sst 8 0.1781

APARCH-sst 7 0.1739

RiskMetrics 11 0.1715

Table 6.7

Maximum Nv and average CRt for DAX index from January 2, 2008 through February 12, 2009.

Model Maximum Nv Average capital requirements (CRt)

DPOT(0.8) 5 0.1385

DPOT(0.75) 5 0.1373

DPOT(0.7) 11 0.1351

CEVT-n 4 0.1457

CEVT-sst 4 0.1484

APARCH-sst 5 0.1474

RiskMetrics 11 0.1601

Table 6.8

Maximum Nv and average CRt for FTSE index from January 2, 2008 until February 12, 2009.

Model Maximum Nv Average capital requirements (CRt)

DPOT(0.8) 9 0.1522

DPOT(0.75) 10 0.1500

DPOT(0.7) 11 0.1446

CEVT-n 9 0.1850

CEVT-sst 9 0.1821

APARCH-sst 7 0.1688

RiskMetrics 11 0.1705
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6.5 Conclusions

In this work we propose a POT method that uses the durations between excesses as

covariates. Based on this method, three DPOT models for forecasting one-day-ahead

VaR were compared with other models. Empirical findings presented in Section 6.4.2

show that they perform very well in terms of unconditional coverage and better than

state-of-the art models in terms of removing the tendency to clustering of violations. In

terms of out-of-sample accuracy, DPOT models perform much better than the widely

used RiskMetrics model. Moreover, the empirical findings presented in Section 6.4.3,

suggest that the DPOT models can have an important role in the minimization of capital

requirements under the Basel II Accord. In the period under study, the DPOT models

lead to substantially lower average capital requirements. It is possible that we can achieve

lower average capital requirements by integrating DPOT in a combination of models

strategy or, for example, in a dynamic learning strategy such as the one proposed by

McAleer et al. (2009). The study of these issues remains for future research. Finally, we

notice that in order to deal with the volatility clustering, the proposed models do not

assume a parametric distribution for the entire distribution of the returns, as the CEVT

or GARCH-type models, but assumes a parametric model only on the tail and based on

solid asymptotic theory.
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7
Extremal Quantiles Estimation with

quasi-PORT and DPOT Methodologies - an

application to Value-at-Risk

Under the context of high quantiles, Value-at-Risk (VaR) models based on the PORT

Hill estimator, VaR models based on the DPOT method and other unconditional and

conditional models are compared through a out-of-sample accuracy study. To obtain

a reasonable number of violatios for backtesting, the log returns from the Down Jones

Industrial Average index, which constitute a financial time series with a very large data

size, were used.

7.1 Introduction

In this Chapter we are concerned with extraordinary events in financial markets - the

so known as “Black Swans” events - such as the Black Thursday (stock market crash

on 24 October, 1929), the Black Monday (stock market crash on 19 October, 1987), the

turmoil in the bond market in February 1994 and the recent 2008 financial crisis. These

crisis are characterized by extreme price changes and a major concern for regulators and

owners of financial institutions is the adequacy of capital to ensure that they can still

be in business after such extreme price changes. VaR defined in (1.2.2), emerged as the

primary tool for financial risk assessment. Here, we are dealing with rare events and thus

with much lower probabilities than the usual p = 0.01 used for daily capital requirements

calculations under the Basel II Accord. In this Chapter it will be considered the prob-

ability of an adverse extreme price movement that is expected to occur approximately

once every four years (p=0.001) or once every eight years (p=0.0005); therefore, we fall
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in the context of high quantiles defined in (1.1.2). This context may have interest in the

development of stress tests (e.g., Longin, 2001; Tsay, 2010), which are directly related

to the occurrence of extremes in financial markets. Some authors (e.g., Danielsson and

Vries, 1997) argued that when small probabilities come into play, an unconditional ap-

proach is better suited for VaR estimation, because extreme price changes do not appear

to be related to a particular level of volatility, nor exhibit time dependence. In fact, it

is demonstrated by de Haan, Resnick, Rootzén and de Vries (1989), that for certain de-

pendent processes, such as ARCH, volatility clustering vanishes at the level of extremes.

Moreover, Resnick and Starica (1996) have shown the consistency of the Hill estimator

under certain types of dependence, such as GARCH.

In this Chapter, both unconditional and conditional VaR models are compared. We

have chosen two unconditional VaR models based on the PORT Hill estimator (2.2.3)

proposed in Chapter 2 and two conditional VaR models based on the DPOT method-

ology proposed in Chapter 6. Additionally, other unconditional and conditional models

are also used in the comparisons. In Section 7.2, a recent approach in EVT, involving

the reduction of bias, is briefly reviewed and the VaR methods used in the comparative

study are summarized. In Section 7.3, the results of the comparative out-of-sample study

are presented and conclusions.

7.2 VaR models

For the out-of-sample study, the following models were considered.

7.2.1 Quasi-PORT

The Hill estimator for the tail index (Hill, 1975), presented in (2.1.6) and denoted by

γ̂H
n,k, may exhibit a high asymptotic bias, i.e., as n → ∞,

√
k(γ̂H

n,k − γ) is asymptotically

normal with variance γ2 and a non-null mean value, equal to λA/(1 − ρ), whenever√
kA(n/k) → λA ̸= 0, finite, with A(.) the function in (2.1.3). This non-null asymptotic

bias, together with a rate of convergence of the order of 1/
√
k, leads to sample paths

with a high bias for large k and high variance for small k. Recent developments in

EVT, involve the reduction of bias (see Peng (1998), Beirlant, Dierckx, Goegebeur and

Matthys (1999), Feuerverger and Hall (1999), Gomes, Martins and Neves (2000, 2002b),

Gomes and Martins (2001), Caeiro and Gomes (2002), Gomes, Figueiredo and Mendonça

(2004), among others). They achieved γ estimators with asymptotic variance equal or

higher than (γ(1 − ρ)/ρ)2 > γ2. More recently, Caeiro, Gomes and Pestana (2005),
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Gomes and Pestana (2007a), Gomes, Martins e Neves (2007b) and Gomes, de Haan and

Henriques-Rodrigues (2008b), have proposed minimum variance reduced bias (MVRB)

estimators for γ. They reduce bias without increasing the asymptotic variance, which is

kept at the value γ2. A simple class of MVRB-estimators is the one introduced in Caeiro,

Gomes and Pestana (2005), studied in Chapter 3 and already presented in (3.1.5), with

the functional form that we recall here,

γ̂H
n,k,β̂,ρ̂

:= γ̂H
n

(
1− β̂

1− ρ̂

(n
k

)ρ̂)
,

where H(k) is the Hill estimator and ρ̂ and β̂ are consistent estimators of the second

order parameters ρ and β. See Fraga Alves, Gomes and de Hann (2003) for ρ estimation

and Gomes, de Haan and Henriques-Rodrigues (2008b) for β estimation.

The MVRB tail index estimators in (3.1.5) are not location invariant, but they are

much less sensitive to changes in location than the classical Hill estimator, thus, they

are “approximately” location invariant. Gomes, Figueiredo, Henriques-Rodrigues and

Miranda (2010) have proposed to use the PORT Hill estimator (2.2.3) instead of the

Hill estimator (2.1.6) in the MVRB estimator (3.1.5). This estimator was named “quasi-

PORT” tail index estimator and its functional form is

γ̂
H(q)

n,k,β̂,ρ̂
:= γ̂

H(q)
n,k

{
1− β̂

1− ρ̂

(n
k

)ρ̂}
, 0 ≤ q < 1, (7.2.1)

whereH(q)(k) is the PORT-Hill estimator (2.2.3), and ρ̂ and β̂ are consistent estimators of

the second order parameters ρ and β. For the case of high quantiles, Gomes, Figueiredo,

Henriques-Rodrigues and Miranda (2010) proposed to use the “quasi-PORT” tail index

estimator (7.2.1) instead of the PORT Hill estimator (3.1.5) in the PORT-Weissman-

Hill high quantile estimator (2.3.1). This estimator was named “quasi-PORT” VaRp

estimator and its functional form is

χ̂H(q)
pn

:= (Xn−kn:n −Xnq :n)

(
kn
npn

)γ̂
H(q)

n,k,β̂,ρ̂

+Xnq :n, 0 ≤ q < 1. (7.2.2)

With q = 0.25 and q = 0.5, two unconditional VaR models based on the estima-

tor (7.2.2) were chosen. The estimates of ρ and β were obtained using the algorithm

suggested in Gomes and Pestana (2007).

7.2.2 DPOT

In Section 6.3, a duration based POT model was proposed and the out-of-sample per-

formance was compared with other models, for forecasting one-day-ahead VaR(0.01)
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denoted by VaRt+1|t(0.01). This is the VaR used by financial institutions to compute

daily capital requirements under the Basel II Accord. Here, for very small values of p,

the DPOT model was used in the comparative study of Section 7.3 with the most simple

specification (v = 1, c = 1) and with the specification with better out-of-sample results

in the comparative studies of Chapter 6 (v = 3, c = 0.75).

7.2.3 Other models

We have chosen more three models from EVT, the unconditional POT model presented

in (6.2.4), the conditional EVT models presented in (6.4.1) and denoted respectively by

CEVT-n and CEVT-sst. Finally, three parametric conditional models were used in the

study, the RiskMetrics model (6.4.1), the AR-APARCH model (6.4.1) with normal in-

novations (APARCH-n) and the AR-APARCH model (6.4.1) with skewed t innovations

(APARCH-sst).

7.3 Out-of-Sample study with the DJIA index

Under the context of high quantiles, we set p = 0.001 and p = 0.0005. To achieve a

reasonable number of violations for backtesting, it is important to have a very large

data size and this lead us to use the log returns of the Down Jones Industrial Average

index, one of the oldest stock indexes. From October 2, 1928, until March 25, 2011, we

compute 20713 returns and with a moving windows of size nw = 1000 days, we obtain

19713 one-day-ahead VaR forecasts for each model. As in previous studies, for the EVT

methods, we choose the number of top order statistics k = 100; see McNeil and Frey

(2000) for a simulation study that supports a similar choice. To test the UC hypothesis

we apply the Kupiec test (Kupiec, 1995) and to test the IND hypothesis we apply the

maximum to median ratio test (Araújo Santos and Fraga Alves, 2010) denoted by MM

independence test. The programs were written in the R language and with the fGarch

(Chalabi,Wuertz e Miklovic, 2008) and POT (Ribatet, 2009) packages.

Tables 7.1 and 7.2, summarize the results respectively for p = 0.001 and p = 0.0005.

The APARCH-sst based on Skwed-t errors perform well in terms of UC under p = 0.001.

Empirical findings show that the Skewed-t is clearly preferable than the normal for the

distribution of the errors. The performance of conditional parametric models based on

the normal distribution (RiskMetrics and APARCH-n) is disastrous with the number of

violations exceeding more than five times the expected under UC.
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Table 7.1

Out-of-sample accuracy for VaR(0.001) applied to Down Jones Industrial Average index returns from October

2, 1928 until March 25, 2011, with a rolling window of size 1000.

Model Number Violation Kupiec MM Ratio

of violations frequencies p-value p-value

Unconditional EVT models:

POT 36 0.001826 0.0000 0.1254

Quasi-PORT(q = 0.25) 31 0.001573 0.0190 0.1048

Quasi-PORT(q = 0.5) 20 0.001015 0.9486 0.1849

Conditional EVT models:

DPOT(v = 1) 22 0.001116 0.6130 0.1966

DPOT(v = 3) 32 0.001623 0.0112 0.5849

CEVT-n 31 0.001573 0.0190 0.8919

CEVT-sst 31 0.001573 0.0190 0.9631

Conditional parametric models:

RiskMetrics 128 0.006493 0.0000 0.0015

APARCH- n 101 0.005124 0.0000 0.0141

APARCH- sst 22 0.001116 0.6130 0.0564

Note to Table 7.1: For each model, the number of one-day-ahead VaR(0.001) forecasts is 19713 and the

expected number of violations under the UC hypothesis is 19.713.

Table 7.2

Out-of-sample accuracy for VaR(0.0005) applied to Down Jones Industrial Average index returns from October

2, 1928 until March 25, 2011, with a rolling window of size 1000.

Model Number Violation Kupiec MM Ratio

of violations frequencies p-value p-value

Unconditional EVT models:

POT 27 0.001370 0.0000 0.2102

Quasi-PORT(q = 0.25) 14 0.000710 0.2146 0.0981

Quasi-PORT(q = 0.5) 11 0.000558 0.7206 0.1562

Conditional EVT models:

DPOT(v = 1) 10 0.000507 0.9636 0.2035

DPOT(v = 3) 24 0.001217 0.0001 0.1048

CEVT-n 24 0.001217 0.0001 0.7834

CEVT-sst 25 0.001268 0.0001 0.9922

Conditional parametric models:

RiskMetrics 101 0.005124 0.0000 0.0288

APARCH- n 74 0.003754 0.0000 0.0105

APARCH- sst 16 0.000812 0.0729 0.0799

Note to Table 7.2: For each model, the number of one-day-ahead VaR(0.0005) forecasts is 19713 and the

expected number of violations under the UC hypothesis is 9.8565.
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Further to the tail, more disastrous are the results. With the smaller probability level

p = 0.0005, RiskMetrics produced 101 violations which represents more than ten times

the expected value equal to 9.8565, under UC. The APARCH-n model produced 74 vio-

lations, more than seven times the expected. These results confirm what is well known

in the literature (see for instance Danielsson and Vries, 1997). On the other hand, the

accuracy of the best performers Quasi-PORT(q = 0.5) and DPOT(v = 1) is very good,

with the number of violations very close to the expected under UC. These two models

have also good results in terms of independence. In the group of EVT models they

perform clearly better than the classic POT model and than the CEVT hybrid model.

Finally, it is interesting to note that one of the best performers, Quasi-PORT(q = 0.5),

is based on the iid assumption and this provides evidence that the iid assumption can

work well when we are dealing with very small probability levels.

As future research, we plan to extend the out-of-sample study presented in this Chap-

ter, to other indexes and other types of large financial time series, such as individual

stocks and foreign currencies.
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A.1 Interval forecasts evaluation: R programs for the new
independence test proposed in Chapter 4 and com-
parisons

Subsection A.1.1, presents a R program for the implementation of the independence test
proposed in Chapter 4, with any hit sequence. Subsection A.1.2, presents a R program
for a comparative simulation study with Markov, CAViaR and GMM independence tests.
In Subsection A.1.3, the table needed for the program of the Subsection 2.2, is given.

A.1.1 R program for the new independence test

## Example of a hit sequence:
hit<-c(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0)
## Or use the following code to read the hit sequence from a text
file: ## hit <- read.table("hit.txt")[,1]

tt <- length(hit) #### Durations
no_hit_duration <- 0
j<-1
zeros <- 0
for(i in 1:tt) {
if (hit[i]<1){
zeros <- zeros+1
}
else {
no_hit_duration[j]<- zeros+1
zeros <- 0
j <- j+1
}

}
no <- no_hit_duration
n <- length(no)

#### T[0.5] Independence Test
no <- sort(no)
observed_T <-(no[n]-1)/no[floor(0.5*n)]
observed_T

#### Simulation of the p value upper bound
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v <- 0
replicas <- 250000
v <- rep(0, times=replicas)
print(’wait for p value upper bound simulation’)
for(i in 1:replicas) {
if((i/10000-floor(i/10000))==0){print(replicas-i)}
u <- runif(n)
y <- -log(1-u)
no_simul <- sort(y)
v[i] <- log(2)*(no_simul[n]/no_simul[floor(n/2)])-log(n)
}

simulated_p_value_upper_bound <- length(v[v>=observed_T])/replicas
observed_T
simulated_p_value_upper_bound

A.1.2 R program for the comparative simulation study

library(fGarch)
table <- read.table("table_T50.txt")[,2]

replicas <- 5000
tt <- 500 ## size of the hit sequence
ws <- 500 ##window size
coverage <- 0.01
v1 <- 0
v2 <- 0
v3 <- 0
v4 <- 0
var <- 0
reject_freq <- 0
failures <-0

for(t in 1:replicas) {
print (t)
############################## MODEL1: Gaussian GARCH(1,1) ########################
## model = garchSpec(model = list(omega = 0.05, alpha = 0.1, beta = 0.85))
## a <- garchSim(model, n = tt+ws)
####################################################################################

############################# MODEL2: Skewed t APARCH(1,1) ########################
model = garchSpec(model = list(mu = 0, omega = 0.03,
alpha = c(0.086), gamma = c(0.64), beta = 0.91, delta = 1.15,
shape = 10, skew=0.88), cond.dist = "sstd")
a <- garchSim(model, n = tt+ws)

####################################################################################

#### Hit function
hit <-runif(tt)
for(i in 1:tt) {
iws <- i+ws
m_iws <- iws-1
b <- a[i:m_iws]
th <- quantile(b, probs=coverage)
var[i] <- th
if(a[i+ws]<th){hit[i]=1}
else {hit[i]=0}
}

#### Durations
no_hit_duration <- 0
j<-1
zeros <- 0
for(i in 1:tt) {
if (hit[i]<1){ zeros <- zeros+1 }
else {
no_hit_duration[j]<- zeros+1
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zeros <- 0
j <- j+1
}

}
no <- no_hit_duration
n <-length(no)

#### Exclude samples with size less than 2
if (n<2){
v1[t] <- -1
v2[t] <- -1
v3[t] <- -1
v4[t] <- -1
failures <- failures+1 }
else{

#### T[0.5] Independence Test
no <- sort(no)
p50 <- no[floor(0.5*n)]
max <- no[n]
observed_T <- (max-1)/p50
if (observed_T > table[n]){reject_freq <- reject_freq+1}

#### Markov Independence Test
zz <- 0
umz <- 0
zum <- 0
umum <- 0
m_tt <- tt-1

for(k in 1:m_tt) {
i<-k+1
if (hit[k]==0 & hit[i]==0){
zz <- zz +1
}
else if (hit[k]==0 & hit[i]==1){
zum <- zum +1
}
else if (hit[k]==1 & hit[i]==1){
umum <- umum +1
}
else{
umz <- umz +1
}

}

p00 <- zz/(zz+zum)
p01 <- zum/(zz+zum)
p10 <- umz/(umz+umum)
p11 <- umum/(umz+umum)
llp <- (zum+umum)/(zz+umz+zum+umum)
ll2 <- ((1-llp)^(zz+umz))*(llp^(zum+umum))
ll1 <- (p00^zz)*(p01^zum)*(p10^umz)*(p11^umum)
v1[t] <- -2*log(ll2/ll1)

#### Caviar Independence Test
hit1 <- hit[1:m_tt]
hit2 <- hit[2:tt]
var2 <- var[2:tt]

mylogit <- glm(hit2~hit1+var2,
family=binomial(link="logit"),na.action=na.pass) logLik(mylogit)

alpha <- -log(length(hit)/sum(hit)-1)
loglik1 <- -sum(1-hit2)*alpha-(tt-1)*log(1+exp(-alpha))

emv <- mylogit$coefficients
emv1 <- emv[1]
emv2 <- emv[2]
emv3 <- emv[3]
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loglik2 <- -sum((1-hit2)*(emv1+emv2*hit1+emv3*var2))-sum(log(1+exp(-emv1-emv2*hit1-emv3*var2)))
v2[t]<- -2*(loglik1-loglik2)

##### GMM Independence Tests
p <- n/tt
m1 <- (1-pp*no)/sqrt(1-pp)
m2 <- (3-pp-pp*no)*(1-pp*no)/(2-2*pp)-0.5
m3 <-(5-2*pp-pp*no)/(3*sqrt(1-pp))*m2-(2/3)*m1
m4 <-(7-3*pp-pp*no)/(4*sqrt(1-pp))*m3-(3/4)*m2
m5 <-(9-4*pp-pp*no)/(5*sqrt(1-pp))*m4-(4/5)*m3
mm1 <- sum(m1)/sqrt(n)
mm2 <- sum(m2)/sqrt(n)
mm3 <- sum(m3)/sqrt(n)
mm4 <- sum(m4)/sqrt(n)
mm5 <- sum(m5)/sqrt(n)
v3[t] <- (mm1^2)+(mm2^2)+(mm3^2)
v4[t] <-(mm1^2)+(mm2^2)+(mm3^2)+(mm4^2)+(mm5^2)
}
}

#### Empirical Power of Tests and Frequency of Excluded Samples
T_test <- (reject_freq)/(replicas-failures)

M_ind <- length(v1[v1>2.706])/(replicas-failures) ### Asymptotic critical values
CAViaR <- length(v2[v2>4.605])/(replicas-failures)
J_ind3 <- length(v3[v3>4.605])/(replicas-failures)
J_ind5 <- length(v4[v4>7.779]) /(replicas-failures)
FSE <- failures/replicas

T_test
M_ind
CAViaR
J_ind3
J_ind5
FSE

A.1.3 Table for the table 50.txt file

1 -1

2 18.97

3 42.31

4 11.69

5 17.55

6 10.26

7 13.51

8 9.76

9 11.96

10 9.52

11 11.19

12 9.43

13 10.77

14 9.36

15 10.50

16 9.35

17 10.35

18 9.34

19 10.22

20 9.36

21 10.13

22 9.40

23 10.0

24 9.41

25 10.06

26 9.44

27 10.04

28 9.47

29 10.03

30 9.51

31 10.01

32 9.54

33 10.02

34 9.57

35 10.02

36 9.60

37 10.04

38 9.64
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39 10.05

40 9.68

41 10.06

42 9.70

43 10.09

44 9.74

45 10.09

46 9.78

47 10.12

48 9.81

49 10.13

50 9.85

51 10.15

52 9.86

53 10.17

54 9.89

55 10.20

56 9.92

57 10.22

58 9.96

59 10.23

60 9.98

61 10.25

62 10.02

63 10.27

64 10.05

65 10.30

66 10.07

67 10.30

68 10.10

69 10.34

70 10.12

71 10.37

72 10.14

73 10.37

74 10.18

75 10.39

76 10.20

77 10.42

78 10.22

79 10.43

80 10.25

81 10.45

82 10.27

83 10.48

84 10.29

85 10.50

86 10.33

87 10.51

88 10.34

89 10.53

90 10.36

91 10.55

92 10.37

93 10.57

94 10.41

95 10.59

96 10.44

97 10.60

98 10.46

99 10.62

100 10.47

101 10.64

102 10.49

103 10.65

104 10.52

105 10.67

106 10.52

107 10.69

108 10.56

109 10.71

110 10.56

111 10.72

112 10.59

113 10.74

114 10.61

115 10.76

116 10.64

117 10.77

118 10.65

119 10.79

120 10.66

121 10.80

122 10.68

123 10.82

124 10.70

125 10.83

126 10.71

127 10.85

128 10.74

129 10.87

130 10.74

131 10.88
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132 10.77

133 10.89

134 10.79

135 10.92

136 10.80

137 10.92

138 10.81

139 10.95

140 10.83

141 10.96

142 10.84

143 10.98

144 10.86

145 10.98

146 10.88

147 10.99

148 10.89

149 11.01

150 10.91

151 11.02

152 10.92

153 11.04

154 10.94

155 11.05

156 10.96

157 11.07

158 10.97

159 11.08

160 10.98

161 11.09

162 10.99

163 11.11

164 11.01

165 11.12

166 11.02

167 11.13

168 11.02

169 11.14

170 11.04

171 11.16

172 11.07

173 11.17

174 11.08

175 11.17

176 11.08

177 11.19

178 11.10

179 11.21

180 11.10

181 11.21

182 11.12

183 11.23

184 11.15

185 11.24

186 11.16

187 11.24

188 11.16

189 11.27

190 11.18

191 11.28

192 11.18

193 11.28

194 11.20

195 11.30

196 11.22

197 11.30

198 11.23

199 11.32

200 11.24

A.2 R programs for the improved shape parameter esti-
mator of Chapter 5

Subsection A.2.1, presents a program to simulate the moments of the improved shape pa-
rameter estimator, conditional to K = k. The results of the simulation can be compared
with the results of the R program presented in Subsection A.2.2 that calculates these
moments based on the Theorem 5.3.3. The second program constitute part of the R code
used to implement the example 5.3.1. The other calculations needed to implement the
example are easily carried out by adapting the program given in Subsection A.2.2.
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A.2.1 R program to simulate the moments of the improved shape
parameter estimator, conditional to K = k

shape <- 1.5
q <- 0.5
scale <- 1/((-log(q))^(1/shape))

sum=0
sum_est=0
sum_est_quad=0
replicas=1000000

for (i in 1:replicas){

a <- rweibull(10, shape, scale)
a <- floor(a)+1
if(min(a)==1 & max(a)==5){
Fn1=length(a[a<=1])/n
Fn2=length(a[a<=2])/n
Fn3=length(a[a<=3])/n
Fn4=length(a[a<=4])/n

sum_est=sum_est+((1/log(2))*log(log(1-Fn2)/log(1-Fn1))
+(1/log(3))*log(log(1-Fn3)/log(1-Fn1))+(1/log(4))*log(log(1-Fn4)/log(1-Fn1)))/3

sum_est_quad=sum_est_quad+(((1/log(2))*log(log(1-Fn2)/log(1-Fn1))
+(1/log(3))*log(log(1-Fn3)/log(1-Fn1))+(1/log(4))*log(log(1-Fn4)/log(1-Fn1)))/3)^2

sum=sum+1
}
}

sum
sum/replicas
mom1=sum_est/sum
mom2=sum_est_quad/sum
mom1
mom2

A.2.2 R program to calculate, based on the Theorem 5.3.3, the
moments of the improved shape parameter estimator, con-
ditional to K = k

comb <- function(a,b){
co <- factorial(a)/(factorial(a-b)*factorial(b))
return(co) }

n=10
theta=1.5
q=0.5

sum=0
p_ast=0
mom1=0
mom2=0
gx1=0
gx2=0
nn=n-1

p1=1-q
p2=q-q^(2^theta)
p3=q^(2^theta)-q^(3^theta)
p4=q^(3^theta)-q^(4^theta)
p5=q^(4^theta)-q^(5^theta)
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for(i1 in 1:nn){
for(i2 in 0:nn){
for(i3 in 0:nn){
for(i4 in 0:nn){

if(i1+i2+i3+i4<n){
fmp_a=comb(n,i1)*((p1/(p1+p2+p3+p4+p5))^i1)*(((p2+p3+p4+p5)/(p1+p2+p3+p4+p5))^(n-i1))
fmp_b=comb(n-i1,i2)*((p2/(p2+p3+p4+p5))^i2)*(((p3+p4+p5)/(p2+p3+p4+p5))^(n-i1-i2))
fmp_c=comb(n-i1-i2,i3)*((p3/(p3+p4+p5))^i3)*(((p4+p5)/(p3+p4+p5))^(n-i1-i2-i3))
fmp=fmp_a*fmp_b*fmp_c*comb(n-i1-i2-i3,i4)*((p4/(p4+p5))^i4)*((p5/(p4+p5))^(n-i1-i2-i3-i4))
p_ast=p_ast+fmp
}}}}

for(i1 in 1:nn){
for(i2 in 0:nn){
for(i3 in 0:nn){
for(i4 in 0:nn){

if(i1+i2+i3+i4<n){
fmp_a=comb(n,i1)*((p1/(p1+p2+p3+p4+p5))^i1)*(((p2+p3+p4+p5)/(p1+p2+p3+p4+p5))^(n-i1))
fmp_b=comb(n-i1,i2)*((p2/(p2+p3+p4+p5))^i2)*(((p3+p4+p5)/(p2+p3+p4+p5))^(n-i1-i2))
fmp_c=comb(n-i1-i2,i3)*((p3/(p3+p4+p5))^i3)*(((p4+p5)/(p3+p4+p5))^(n-i1-i2-i3))
fmp=fmp_a*fmp_b*fmp_c*comb(n-i1-i2-i3,i4)*((p4/(p4+p5))^i4)*((p5/(p4+p5))^(n-i1-i2-i3-i4))

gx1=((1/log(2))*log(log(1-i1/n-i2/n)/log(1-i1/n))
+(1/log(3))*log(log(1-i1/n-i2/n-i3/n)/log(1-i1/n))
+(1/log(4))*log(log(1-i1/n-i2/n-i3/n-i4/n)/log(1-i1/n)))/3

gx2=(((1/log(2))*log(log(1-i1/n-i2/n)/log(1-i1/n))
+(1/log(3))*log(log(1-i1/n-i2/n-i3/n)/log(1-i1/n))
+(1/log(4))*log(log(1-i1/n-i2/n-i3/n-i4/n)/log(1-i1/n)))/3)^2
mom1=mom1+gx1*fmp/p_ast mom2=mom2+gx2*fmp/p_ast sum=sum+fmp/p_ast }
}}}}

mse=mom2-(mom1)^2+(mom1-theta)^2
rmse=sqrt(mse)

1-p_ast
rmse
mom1
mom2

A.3 R program to implement the DPOT model proposed
in Chapter 6

#### For running this example it is necessary to download the daily
#### prices of SP 500 index until May 28, 2010, or at least the
#### first 2002 days, compute the returns and save them in the file
#### with the name SP_1950_Maio2010.txt
#### Choose c <- 0.75 to implement the DPOT(c=0.75)
c <- 0.75

#### log-likelihood function which takes tree arguments: theta is the vector of
#### parameters, y the excesses and x the durations
gpdlik <- function(theta,y,x){
alpha1 <- theta[1]
gamma <- theta[2]
n<-length(y)

logl<- -sum(log(alpha1*(1/x)^c))-(1/gamma+1)*sum(log(1+gamma*y/(alpha1*(1/x)^c)))
return(-logl)
}

#### Here we read the log returns from the text file SP_1950_Maio2010.txt.
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#### Then we compute the symmetric of log returns
#### and choose the returns from day 1001 until day 2000, to illustrate the
#### calculation of one forecast for day 2001
xx <- read.table("SP_1950_Maio2010.txt")
a <- xx*-1
a <- a[,1]
b <- a[1001:2000]

#### Calculation of excesses and durations since the preceding 3 excesses
b_sort<-sort(b)
u<-b_sort[900]
bb <- b[b>u]
bb <- bb-u
duration <- 1
j <- 1
xexc <- rep(0,times=length(bb))

for(ii in 1:1000){
if (b[ii]>u){
xexc[j] <- duration
duration <- 1
j <- j+1
}
else {
duration <-duration+1
}
}

lag1_xexc <-rep(0,times=length(bb))
d2 <-rep(0,times=length(xexc))
limite <- length(xexc)-1
xxxx <- xexc[1:limite]
lag1_xexc <- c(0, xxxx)
limite2 <- length(xexc)-2
xxxx <- xexc[1:limite2]
lag2_xexc <- c(0, 0, xxxx)
limite3 <- length(bb)
bb <- bb[3:limite3]
xexc <- xexc[3:limite3]
lag1_xexc <- lag1_xexc[3:limite3]
lag2_xexc <- lag2_xexc[3:limite3]
d3 <- xexc+lag1_xexc+lag2_xexc
#### v=3, durations since the preceding 3 excesses

#### Here we use the optim with Nelder and Mead algorithm to
#### maximize the log likelihood
modelo <- optim(c(0.5,0.5), gpdlik, y=bb, x=d3)
mle1 <- modelo$par[1] mle2 <- modelo$par[2]

## Finally with the VaR DPOT estimator we compute the forecast
delta <- mle1*(1/(duration+xexc[length(xexc)]+xexc[length(xexc)-1]))^c
var_forecast <- u + ((0.1/coverage)^mle2-1)*(delta/mle2)

## One-day-ahead VaR forecast:
var_forecast

################# Now we explain the following message
## Warning message:
## In log(1 + gamma * y/(alpha1 * (1/x)^c)) :NaNs produced
##########################################################

#### If we write
modelo
#### we obtain the following message indicating successful convergence
# $convergence
# [1] 0
#

#### The Nelder and Mead Algorithm to implement DPOT always converges
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#### with all the data we use until now.
#### The optimizer chooses values based on a deterministic search
#### algorithm and the warnings messages occur when the values do not obey to:
#### 0 <= y_i <= -sigma_t/gamma when gamma < 0
#### (support when gamma is negative)
#### When this occur, we have log of a negative number and then the
#### message NaN, but this do not create a problem because the
#### optimizer continue to other interactions choosing other values
#### until reach convergence.
#### For example: If we stop the interaction at interaction 32,
#### we don´t have any message because until interaction 32 the
#### values always obey to the support condition

modelo <- optim(c(0.5,0.5), hgplik, y=bb, x=d3, control=list(maxit=32))

#### If we try more one interaction we have a Warning message

modelo <- optim(c(0.5,0.5), hgplik, y=bb, x=d3, control=list(maxit=33))

#### With the following code we can observe what happened:
as.list(body(hgplik))
trace("hgplik", quote(if(any(is.nan(logl))) {browser() }), at=6, print=F)
modelo <- optim(c(0.5,0.5), hgplik, y=bb, x=d3)
where
# log(1 +-0.0590332031249936 * bb/(5.128759765625 * (1/d3)^c))

#### With a estimate of gamma = -0.05903320312499 < 0,
#### considering the estimate of alpha, the execess and the
#### durations, we have one NaN. However, the algorithm continues until
#### convergence without problems

A.4 R programs for the out-of-sample studies of Chapters
6 and 7

A.4.1 POT model

library(POT)
##############
x <- read.table("DJI_1928_Março2011.txt")
a <- x*-1
a <- a[,1]
tt <- 19713
##############

#### coverage rate or probability level:
coverage <- 0.001

#### rolling window size:
ws <- 1000

hit <-runif(tt)
varforecast <- runif(tt)

for(i in 1:tt) {
print(i)
iws <- i+ws
iws_m <- iws-1
b <- a[i:iws_m]

#### VaR POT
b <- sort(b)
u <- b[900]
y <- b[b>u]
mle <- fitgpd(y, u, "mle")$param
qpot <- u + mle[1]/mle[2]*((0.1/coverage)^(mle[2])-1)
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varforecast[i] <- qpot

if (a[iws]<varforecast[i]){hit[i]=0} else {hit[i]=1}
}

#### Save the forecasts in a excel file:
write.table(varforecast, file="VaR_pot_dji.xls")

A.4.2 Quasi-PORT model

##############
x <- read.table("DJI_1928_Março2011.txt")
a <- x*-1
a <- a[,1] tt <- 19713
##############

#### coverage rate or probability level:
coverage <- 0.001

#### rolling window size:
ws <- 1000

hit <-runif(tt)
varhill <- runif(tt)

for(i in 1:tt) {
print(i)
iws <- i+ws
iws_m <- iws-1
b <- a[i:iws_m]

#### VaR Quasi-PORT
b <- sort(b)
b_posi <- b[b>0]
n_0 <- length(b_posi)
k_0 <- floor(n_0^0.995)
k_2 <- floor(n_0^0.999)
ciclo <- k_2-k_0+1

rho_1 <- rep(0, times=ciclo)
rho_0 <- rep(0, times=ciclo)
yy <- rep(0, times=k_0)
ind <- k_0:1

##### Algorithm for estimate rho and beta
for(ii in 1:ciclo) {
k <- k_0+ii-1
pos <- 1000-k
u <- b[pos]
y <- b[b>u]
y <- sort(y)

M_1 <- (sum(log(y/u)))/k
M_2 <- (sum(log(y/u)^2))/k
M_3 <- (sum(log(y/u)^3))/k

T_1 <- (M_1 - (M_2/2)^0.5)/((M_2/2)^0.5-(M_3/6)^(1/3))
T_0 <- (log(M_1)-0.5*log(M_2/2))/(0.5*log(M_2/2)-(1/3)*log(M_3/6))

rho_1[ii] <- -abs(3*(T_1-1)/(T_1-3))
rho_0[ii] <- -abs(3*(T_0-1)/(T_0-3))
}

u <- b[1000-k_0]
pos_y <- 1000-k_0+1
y <- b[pos_y:1000]
y <- sort(y)
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s_1 <- sum((rho_1-median(rho_1))^2)
s_0 <- sum((rho_0-median(rho_0))^2)
if (s_0 <= s_1) tau <- 0 else tau <- 1
if (s_0 <= s_1) rho <- rho_0[1] else rho <- rho_1[1]

#### beta estimation
yy[1] <- u
for (iii in 2:k_0){
yy[iii] <- y[iii-1]
}

d_n <- sum((ind/k_0)^(-rho))/k_0
d_p <- sum((ind/k_0)^(rho))/k_0

D_0 <- sum(ind*log(y/yy))/k_0
D_n1 <- sum((ind/k_0)^(-rho)*ind*log(y/yy))/k_0
D_n2 <- sum((ind/k_0)^(-2*rho)*ind*log(y/yy))/k_0
beta <- ((k_0/1000)^(rho))*(d_n*D_0-D_n1)/(d_n*D_n1-D_n2)

k <- 100
pos <- 1000-k

#### Sample of Excesses
# b[500] for q=0.5 and b[250] for q=0.25
q_emp <- b[500]
b <- b - q_emp
u <- b[pos]
y <- b[b>u]

#### Hill MVRB
hill <- (sum(log(y/u)))/k
hill_mvrb <- hill*(1-beta/(1-rho)*(ws/k)^rho)
c_n <- k/(ws*coverage)

#### Quasi-PORT VaR
quantil_quasiPORT <- (u*(c_n^hill_mvrb))+q_emp
varhill[i] <- quantil_quasiPORT

if (a[iws]<varhill[i]){hit[i]=0} else {hit[i]=1}
}

#### Save the forecasts in a excel file:
write.table(varhill, file="VaR_pot_dji.xls")

A.4.3 DPOT(v=1) model

c <- 0.75
hgplik <- function(theta,y,x){
alpha1 <- theta[1]
gamma <- theta[2]
n <- length(y)
logl <- -sum(log(alpha1*(1/x)^(c)))-(1/gamma+1)*sum(log(1+gamma*y/(alpha1*(1/x)^(c))))
return(-logl)
}

##############
x <- read.table("DJI_1928_Março2011.txt")
a <- x*-1
a <- a[,1]
tt <- 19713
##############

#### coverage rate or probability level:
coverage <- 0.001

#### rolling window size:
ws <- 1000
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hit <-runif(tt)
varforecast <- runif(tt)

for(i in 1:tt) {
print(i)
iws <- i+ws
iws_m <- iws-1
b <- a[i:iws_m]

###### VaR DPOT(v=1)
b_sort <- sort(b)
u <- b_sort[900]
bb <- b[b>u]

bb <- bb-u
duration <- 1
j<-1
xexc <-rep(0,times=length(bb))

for(ii in 1:1000){
if (b[ii]>u){
xexc[j] <- duration
duration <- 1
j <- j+1
}
else {
duration <-duration+1

}
}

d <- xexc

##
modelo <- optim(c(0.5,0.5), hgplik, y=bb, x=d)
mle1 <- modelo$par[1]
mle2 <- modelo$par[2]

delta <- mle1*(1/duration)^(c)
varforecast[i] <- u + ((0.1/coverage)^mle2-1)*(delta/mle2)

if (a[iws]<varforecast[i]){hit[i]=0} else {hit[i]=1}
}

#### Save the forecasts in a excel file:
write.table(varforecast, file="VaR_dpot_v1_dji.xls")

A.4.4 DPOT(v=3) model

c <- 0.75
hgplik <- function(theta,y,x){
alpha1 <- theta[1]
gamma <- theta[2]
n <- length(y)
logl <- -sum(log(alpha1*(1/x)^(c)))-(1/gamma+1)*sum(log(1+gamma*y/(alpha1*(1/x)^(c))))
return(-logl)
}

##############
x <- read.table("DJI_1928_Março2011.txt")
a <- x*-1
a <- a[,1]
tt <- 19713
##############

#### coverage rate or probability level:
coverage <- 0.001
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#### rolling window size:
ws <- 1000

hit <-runif(tt)
varforecast <- runif(tt)

for(i in 1:tt) {
print(i)
iws <- i+ws
iws_m <- iws-1
b <- a[i:iws_m]

###### VaR DPOT(v=3)
b_sort<-sort(b)
u<-b_sort[900]

bb <- b[b>u]
bb <- bb-u
duration<-1
j<-1
xexc <-rep(0,times=length(bb))

for(ii in 1:1000){
if (b[ii]>u){
xexc[j] <- duration
duration <- 1
j <- j+1
}

else {
duration <-duration+1
}
}

lag1_xexc <-rep(0,times=length(bb))
d2 <-rep(0,times=length(xexc))
limite <- length(xexc)-1
xxxx <- xexc[1:limite]
lag1_xexc <- c(0, xxxx)
limite2 <- length(xexc)-2
xxxx <- xexc[1:limite2]
lag2_xexc <- c(0, 0, xxxx)
limite3 <- length(bb)
bb <- bb[3:limite3]
xexc <- xexc[3:limite3]
lag1_xexc <- lag1_xexc[3:limite3]
lag2_xexc <- lag2_xexc[3:limite3]
d3 <- xexc+lag1_xexc+lag2_xexc
#### v=3, durations since the preceding 3 excesses

##
modelo <- optim(c(0.5,0.5), hgplik, y=bb, x=d3)
mle1 <- modelo$par[1]
mle2 <- modelo$par[2]

delta <- mle1*(1/(duration+xexc[length(xexc)]+xexc[length(xexc)-1]))^(c)
varforecast[i] <- u + ((0.1/coverage)^mle2-1)*(delta/mle2)

if (a[iws]<varforecast[i]){hit[i]=0} else {hit[i]=1}
}

#### Save the forecasts in a excel file:
write.table(varforecast, file="VaR_dpot_v3_dji.xls")

A.4.5 Conditional EVT model

library(fGarch)
library(POT)
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##############
x <- read.table("DJI_1928_Março2011.txt")
a <- x*-1
a <- a[,1]
tt <- 19713
##############

#### coverage rate or probability level:
coverage <- 0.001

#### rolling window size:
ws <- 1000

hit <- runif(tt)
varforecast <- runif(tt)

for(i in 1:tt) {
print(i)
iws <- i+ws
iws_m <- iws-1
b <- a[i:iws_m]

#### VaR Conditional EVT

#### For normal innovations:
#argarch <- garchFit(~arma(1,0)+garch(1,1), data = b, cond.dist =
#"norm", include.mean=TRUE, trace = FALSE)

#### For skewed-t innovations:
argarch <- garchFit(~arma(1,0)+garch(1,1), data = b, cond.dist =
"sstd", include.mean=TRUE, trace = FALSE)

coef <- argarch@fit$params$params
sigma <- argarch@sigma.t
fitted <- argarch@fitted
resid <- (b-fitted)/sigma

b <- resid
b <- sort(b)
u <- b[900]
y <- b[b>u]
mle <- fitgpd(y, u, "mle")$param

qpot <- u + mle[1]/mle[2]*((0.1/coverage)^(mle[2])-1)
sig_sq <- coef[3]+coef[4]*(a[iws_m]-fitted[1000])^2+ coef[6]*(sigma[1000])^2
varforecast[i] <- qpot*sqrt(sig_sq)+coef[1]+coef[2]*a[iws_m]

if (a[iws]<varforecast[i]){hit[i]=0} else {hit[i]=1}
}

#### Save the forecasts in a excel file:
write.table(varforecast, file="VaR_cevt_dji.xls")

A.4.6 RiskMetrics model

##############
x <- read.table("DJI_1928_Março2011.txt")
a <- x*-1
a <- a[,1]
tt <- 19713
##############

#### coverage rate or probability level:
coverage <- 0.001

#### rolling window size:
ws <- 1000
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hit <- runif(tt)
varforecast <- runif(tt)

for(i in 1:tt) {
print(i)
iws <- i+ws
iws_m <- iws-1
b <- a[i:iws_m]

#### VaR RiskMetrics
sig_sq <- runif(1000)
##sig_sq[1] <- (b[1])^2
## Or we can start the recursion by:
sig_sq[1] <- (sd(b))^2

for(vv in 2:1001) {
sig_sq[vv] <- 0.94*sig_sq[vv-1]+0.06*(b[vv-1])^2
}

#### p=0.01
# varforecast[i] <- 2.326348*sqrt(sig_sq[1001])

#### p=0.001
varforecast[i] <- 3.090232*sqrt(sig_sq[1001])

#### p=0.0005 #### qnorm(0.9995)=3.290527
# varforecast[i] <- 3.290527*sqrt(sig_sq[1001])

if (a[iws]<varforecast[i]){hit[i]=0} else {hit[i]=1}
}

#### Save the forecasts in a excel file:
write.table(varforecast,file="VaR_rm_dji.xls")

A.4.7 APARCH model

library(fGarch)
##############
x <- read.table("DJI_1928_Março2011.txt")
a <- x*-1
a <- a[,1] tt <- 19713
##############

#### coverage rate or probability level:
coverage <- 0.001

#### rolling window size:
ws <- 1000

hit <- runif(tt)
varforecast <- runif(tt)

for(i in 1:tt) {
print(i)
iws <- i+ws
iws_m <- iws-1
b <- a[i:iws_m]

#### VaR APARCH
p_quantile <- 1 - coverage

#### For normal innovations:
# aparch <- garchFit(~arma(1,0)+aparch(1,1), data = b,
# cond.dist="norm", include.mean=TRUE, trace = FALSE)

#### For skwed-t innovations:
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aparch <- garchFit(~arma(1,0)+aparch(1,1), data = b,
cond.dist="sstd", include.mean=TRUE, trace = FALSE)

coef <- aparch@fit$params$params
sigma <- aparch@sigma.t
res <- residuals(aparch) media <- coef[1]+coef[2]*a[iws_m]

#### For normal innovations:
#sig_sq <- coef[3]+coef[4]*res[1000]^2+coef[6]*sig[1000]^2+indicator*coef[5]*res[1000]^2
#varforecast[i] <- qnorm(p_quantile, mean = media, sd = sqrt(sig_sq))

#### For skwed-t innovations:
sig<-(coef[3]+coef[4]*(abs(res[1000]-coef[5]*res[1000]))^coef[7]
+coef[6]*sigma[1000]^coef[7])^(1/coef[7])
varforecast[i] <- qsstd(p_quantile, mean = media, sd = sig,
nu = coef[9], xi = coef[8])

if (a[iws]<varforecast[i]){hit[i]=0} else {hit[i]=1}
}

A.4.8 UC and IND tests

##### Durations for the MM independence test
no_hit_duration <- 0
j <- 1
zeros <- 0

for(i in 1:tt) {
if (hit[i]<1){
zeros <- zeros+1
}

else {
no_hit_duration[j]<- zeros+1
zeros <- 0
j <- j+1

}
}

no <- no_hit_duration
n <- length(no)

#### MM test
no <- sort(no)
PMR <- (no[n]-1)/no[floor(0.5*n)]
PMR
observed_T <- log(2)*(no[n]-1)/no[floor(0.5*n)]-log(n)

#### Simulation of the upper bound for the p value
v <- 0
replicas <- 100000
v <- runif(replicas)

print(’wait for p value upper bound simulation’)
for(i in 1:replicas) {
if((i/10000-floor(i/10000))==0){print(replicas-i)}
u <- runif(n)
y <- -log(1-u)
no_simul <- sort(y)
v[i] <- log(2)*(no_simul[n]/no_simul[floor(n/2)])-log(n)

}
simulated_p_value_upper_bound <- length(v[v>=observed_T])/replicas

#####Caviar Test
lim_s <- tt-1
hit1 <- hit[1:lim_s]
hit2 <- hit[2:tt]
var2 <- varforecast[2:tt]
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mylogit<- glm(hit2~hit1+var2, family=binomial(link="logit"),
na.action=na.pass) logLik(mylogit)

alpha <- -log(length(hit)/sum(hit)-1)
loglik1 <- -sum(1-hit2)*alpha-(tt-1)*log(1+exp(-alpha))

emv <- mylogit$coefficients
emv1 <- emv[1]
emv2 <- emv[2]
emv3 <- emv[3]

loglik2 <- -sum((1-hit2)*(emv1+emv2*hit1+emv3*var2))
-sum(log(1+exp(-emv1-emv2*hit1-emv3*var2)))
caviar <- -2*(loglik1-loglik2)

#### percentage of violations
viol <- sum(hit)
pv <- viol/tt
viol
pv

#### Kupiec test p value #To change the coverage, change the following line:
#coverage <- 0.01
num <- (1-pv)^(tt-viol)*pv^viol
denom <- (1-coverage)^(tt-viol)*coverage^viol
log_R <- 2*log(num/denom)
1-pchisq(log_R,df=1)

#### MM independence test p value
simulated_p_value_upper_bound

#### Caviar independence test p value
1-pchisq(caviar,df=2) ####
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