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Mestrado em Tecnologias de Informação aplicadas às
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Resumo

A capacidade de processar e relacionar vastas quantidades e vários tipos de dados

é uma das vantagens que as tecnologias de informação e comunicação (TIC) trazem

à biologia. Esta capacidade torna-se ainda mais importante quando está em causa

o estudo da evolução de sistemas intra-celulares complexos, já que este só se torna

posśıvel ao contextualizar correctamente informação de diversos tipos (molecular,

morfológica e taxonómica, por exemplo). Neste projecto aplicaram-se TIC na con-

strução de recursos que possibilitam o estudo da evolução de duas caracteŕısticas de

Eucariotas: o sistema de transporte vesicular e centŕıolos.

No ambiente compartimentalizado que é uma célula eucariota, o sistema de trans-

porte vesicular permite a movimentação de diferentes cargas de um compartimento

para outro, incluindo do interior para o exterior da célula e vice-versa. Este sistema

está presente, de forma mais ou menos complexa, em todos os eucariotas, pelo que

se assume que também esteve presente no último ancestral que estes têm em comum.

Desde então adaptou-se aos diferentes estilos de vida e necessidades do eucariotas

actuais.

Para o estudo da evolução do sistema de transporte vesicular é necessário con-

hecer os perfis filogenéticos dos seus componentes, isto é, é necessário saber em que

organismos estes componentes estão presentes ou ausentes. As protéınas do tipo rab

são reguladores centrais deste sistema. O objectivo deste trabalho é a identificação e

classificação desta famı́lia de protéınas num vasto número de organismos que cubram,

na medida do posśıvel, a diversidade existente em Eucariotas e a disponibilização

destes resultados para a comunidade.

Para cumprir este objectivo, foram utilizadas técnicas de aprendizagem au-

tomática e de manipulação de sequências para construir uma ferramenta de anotação

automática de rabs. Esta ferramenta, apelidada de Rabifier, actua da seguinte

forma:

• selecção de sequências candidatas através da sua semelhança com um conjunto

discriminante de protéınas rab e não-rab. A semelhança é medida recorrendo

á ferramenta de alinhamento local BLAST;

• confirmação das sequências candidatas através da utilização da ferramenta

de detecção de motivos lineares MEME/MAST para identificar motivos es-

pećıficos das rabs;
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• utilização de clustering para determinar se novas subfamı́lias devem ser cri-

adas;

• classificação de sequências candidatas numa subfamı́lia através de modelos rep-

resentativos de conjuntos de sequências utilizando as ferramentas Psi-BLAST

e RPS-BLAST;

• marcação automática dos resultados obtidos como sendo de confiança ou não.

Seguiu-se uma verificação manual das sequências marcadas como não sendo de

confiança. No final, de um total de 3058867 sequências de 182 organismos, foram

identificadas mais de cinco mil sequências em 182 organismos. O conjunto destes

dados permitiu uma análise preliminar de caracteŕısticas particulares de protéınas

rabs e a predição do conjunto de rabs do ancestral comum dos eucariotas.

Os resultados obtidos foram disponibilizados no website TrafficDB

(http://www.igc.pt/trafficdb). Este foi desenvolvido utilizando um back-end escrito

em Python com base na web framework Django.

A presença de citoesqueleto é outra caracteŕıstica que distingue eucariotas de

procariotas. O citoesqueleto é composto por filamentos de actina, filamentos in-

termédios e microtúbulos. Estes últimos podem criar estruturas do tipo centriolar

que são responsáveis por processos essenciais ao bom funcionamento da célula. Por

exemplo, o centrosoma actua na segregação de cromossomas durante a divisão celu-

lar e tem no seu âmago um par de centŕıolos. Outras estruturas deste tipo incluem

flagelos e ćılios, que nucleiam protusões da membrana celular e permitem à célula

mover-se ou sentir o ambiente envolvente.

Estruturas centriolares aparecem em todos os principais grupos de eucariotas.

Assim, como o sistema de transporte vesicular, postula-se que tenham origem num

ancestral comum a todos os eucariotas. Mais uma vez, o estudo da evolução de

uma estrutura ancestral poderá conduzir a uma melhor compreensão dos sistemas

biológicos actuais. Há descrições de variações do esquema de organização destas

estruturas, mas esta variabilidade, essencial para um estudo aprofundado da sua

evolução, não se encontra catalogado nem centralizado.

O objectivo deste trabalho é a criação de uma interface web, chamada Centri-

oleDB, para a anotação de imagens de microscopia electrónica de estruturas cen-

triolares. Esta anotação é feita manualmente utilizando um dicionário controlado

desenvolvido por especialistas no estudo destas estruturas.

Para além de possibilitar a anotação de imagens, a CentrioleDB também permite

a visualização de imagens já anotadas num contexto taxonómico e molecular. Um

utilizador pode rapidamente descobrir em que organismos é que uma determinada

estrutura aparece, que protéınas foram experimentalmente mapeadas nessa estrutura

e quais os seus ortólogos. Esta é a primeira fase de um projecto de colaboração
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com grupos ligados à comunidade centriolar. À medida que os dados de anotação

ficam mais completos, poderemos comparar perfis de estruturas e moléculas e fazer

previsões sobre que moléculas têm funções relacionadas com estas estruturas.

A implementação da CentrioleDB foi feita utilizando uma base de dados rela-

cional e a web framework Django. Foi necessário desenvolver:

• uma estrutura de base de dados que aceite facilmente mudanças e acrescen-

tos ao dicionário controlado de anotação, uma vez que este encontra-se em

permanente desenvolvimento e actualização por peritos na área.

• um backend que lida com o upload de ficheiros de imagens e mantém a ligação

entre estas e as respectivas anotações.

• uma interface que permita a anotação e a visualização de informação de uma

forma intuitiva para o utilizador.

Neste momento a CentrioleDB encontra-se em funcionamento em

http://www.igc.pt/centrioledb e dispońıvel a um grupo restrito de utilizadores por

razões de copyright.

As duas ferramentas aqui descritas têm em comum o facto de propiciarem às

respectivas comunidades um local dedicado ao estudo da evolução dos respectivos

sistemas. A integração de informação relevante com taxonomia contextualiaza-a de

uma forma que facilita uma visão global e abrangente da evolução destes sistemas

essenciais a todos os eucariotas.

PALAVRAS-CHAVE:

Evolução em eucariotas; anotação automática de protéınas; protéınas rab;

manipulação de sequências; anotação manual de imagens; centŕıolos;

desenvolvimento de interfaces web de bases de dados.
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Abstract

The ability to associate and process a vast amount and various types of data

is an advantage that information and communication technologies bring to biology.

However, most bioinformatics either focus solely on evolution, and we call it phylo-

genetics, or ignores the evolutionary history of its object of study. In this project

these technologies were used to build resources to facilitate the study of the evolu-

tion of two Eukaryote defining characteristics, the vesicular trafficking system and

centrioles, by integrating familiar or hitherto unexplored types of data (sequences

and electron microscopy images, respectively) with taxonomic information so as to

give the data a context from which evolutionary studies of complex systems can be

achieved.

To study the evolution of the vesicular trafficking system it’s necessary to know

the phylogenetic profiles of it’s components, which is to say the organisms in which

the components are present or absent. Rab proteins are central regulators of this

system. One of the objectives of this work is the identification and classification of

this protein family in a vast number of organisms that cover, as far as possible, the

diversity in Eukaryotes and to make these results available to community. To this

end, machine learning and sequence manipulation techniques were used, leading to

the identification of more than five thousand sequences in 182 species. The identified

sequences are available on the TrafficDB website (http://www.igc.pt/trafficdb).

The work developed to facilitate the study of centrioles consisted mainly on the

development of an online interface for the annotation and storage of electron mi-

croscopy images and of a controlled vocabulary to facilitate this annotation. This

interface, CentrioleDB, has the final objective of cataloguing the different morpholo-

gies that centriolar structures can have. It was implemented using a relational

database and the Django web framework. At this moment it is functioning at

http://www.igc.pt/centrioledb and available to a restricted set of users due to copy-

right reasons.

The two works developed here use different techniques to obtain their data. The

one dealing with rab proteins is based on automatic sequence annotation while the

one dealing with centrioles is based on tools for the manual annotation on images.

Where they cross is in their final purpose, the study of evolution of complex systems,

and in the way the data is presented to the public, always with an eye on evolution,

using taxonomy as its proxy.
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Chapter 1

Introduction

1.1 Bioinformatics in cell biology

Biology has greatly benefited from informatics, especially in today’s age of whole

genome sequencing. The trove of data that modern sequencing and high-throughput

techniques generate could not be analysed or stored without the input from the

bioinformatics community. Furthermore, bioinformatics has provided valuable con-

text through ontologies and integrated databases like UniProt or Ensembl. Apart

from molecular biology, computer science has contributed to microscopy through

image analysis and to evolutionary biology through computational and statistical

methods to determine phylogenies.

However, to study evolutionary cell biology, that is, how complex systems evolved

in a cellular context, what is needed is the integration of some or all of the above-

mentioned types of data, molecules, images and evolution, specific to the system

under study.

In this work, I develop two tools to allow the study of the evolution of two dif-

ferent systems in Eukaryotes: protein trafficking and microtubule-based organelles.

Each tool has different requirements and so different informatics techniques were

used in their construction.

1.2 Protein trafficking pathways

One of the distinguishing features between Eukaryotes and Prokaryotes is the pres-

ence of membrane bound organelles in the former. With them cells are able to com-

partmentalise, specialise and optimise the functions of the different compartments.

However, they had to evolve components to coordinate the transport between them.

This transport takes the form of membrane vesicles that bud from the origin mem-

brane and are transported to the target membrane, where they fuse with it, releasing

their cargo.
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1.2.1 Biological details

The last Eukaryotic common ancestor (LECA) is thought to have already had a com-

plex trafficking system, the main components of which form those of the trafficking

system of today’s Eukaryotes [14]. These components include, among other, vesicle

coat proteins, SNAREs and, playing an important regulatory role, rab proteins [35].

In 1987 the first rab, the ras-like protein SEC4, was identified in yeast and shown

to play a role in the late stages of the secretory pathway [33]. In 1989, the ras-like

protein 3 was identified in the rat brain [7]. We know it by its more common name,

rab3. Since then, the total number of rab proteins has risen to 11 in yeast and to

over 60 in humans. This variation is observed just in Opisthokonta; if we include

other Eukaryote major taxa, we can reach hundreds of rabs in the same organism,

as is the case of the unicellular excavate Trichomonas vaginalis [8].

The role played by the rab proteins in vesicular trafficking is that of regulators

and coordinators [35]. Their molecular function, however, is analogous to a switch:

when activated (bound to GTP) rab proteins interact with and recruit effectors who

will in turn perform the functions necessary for vesicle budding, transport and fusion.

The switch aspect of rabs is intimately related to their tridimensional structure. The

Switch regions of these proteins change conformation depending on whether they

are bound to GTP or GDP. In the GTP-bound state, the surfaces exposed have

the capability of interacting with the effectors [29]. Another characteristic of rabs is

an unstructured and variable C-terminus domain, at the end of which are normally

prenylated cisteines. These post-translational modifications anchor the proteins to

membranes.

Rabs are themselves regulated by various proteins. Guanoside exchange factors

(GEFs) exchange GDP bound to rabs by GTP, thereby allowing them to recruit

effectors. GTPase-activating proteins (GAPs), on the other hand, stimulate the

hydrolysis of the GTP molecule, thus inactivating the rab [35]. Some rab effectors

are able to recruit GEFs to their vicinity, preventing the untimely deactivation of

the rab to which they were bound [16]. Rab escort proteins (REP) are responsible

for presenting newly-synthethised rabs to the enzimes that add the prenyl groups.

After the post-translational modification, GDP-bound rabs are recognized by GDP

dissociation inhibitors (GDIs). GDIs have the capability of removing rabs from the

membranes. Thus, by forming complexes with rabs in their inactivated forms at the

target membranes, GDIs bring them into the cytosol and near the origin membranes,

where GDI displacement factors (GDFs), break the complex and reattach the prenyl

groups to the membrane [28].

Rab effectors do not bind all rab proteins. Instead each rab subfamily has its

set of effectors. This, combined with specific cellular localisation, allows each rab

subfamily to regulate specific steps in the trafficking pathways. For example, rab3,
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the first rab to be identified in mammals, regulates the secretory pathway in neurons.

Other rabs are present in all cells, but still have a specific localisation and function,

like rab5, which localises to the plasma membrane and regulates the formation

of early endosomes, or rab1, which localises to the endoplasmatic reticulum and

regulates the transport from it to the Golgi apparatus. This specificity in function

and localisation make the rab proteins good candidates for organelle markers. After

all, if a specific organelle is missing in a species, it is likely that the rab that controls

the traffic to or from that organelle will be missing as well.

The evolution of protein trafficking components, including rabs, is thought to

have happened through duplication of ancestral sequences, leading to paralogues

that diverged and specialised in new functions [14].

Given their presence in LECA, their important role in a defining Eukaryotic

process and their ability to mark the presence or absence of organelles or transport-

related processes, knowledge on the evolution of rabs may shed light into the rela-

tionships between the various Eukaryotic groups. However, we first need to identify

the phylogenetic profile of different rabs in a broad selection of organisms. Un-

til now, most of the organisms with well-characterized rabs are either Metazoa or

Fungi. There are some others in further away branches of the evolutionary tree, but

they are few and far between. A systematic identification and classification of rab

proteins in as many species as possible would create an invaluable resource to the

protein trafficking community.

1.2.2 Objectives and techniques used

In this work, I attempt to systematically identify and classify the rab proteins of near

two-hundred species. To this end I developed a workflow, nicknamed the Rabifier,

to automatically identify and predict rab proteins when given the protein sequences

present in a genome. I also used a combination of automatic and manual verifications

to validate the predictions of the Rabifier and built a web-based interface to share

my results with the community.

When possible, the Rabifier uses already developed tools. Specifically:

1. BLAST was used to measure sequence similarity [2];

2. BLAST variants Psi-BLAST and RPS-BLAST [3] were used to, respectively,

build and search position-specific score matrixes (PSSM) describing a set of

sequences;

3. the expectation-maximisation algorithm MEME/MAST was used to detect

sequence motifs [4];
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4. ClustalW [9] was used to do multiple sequence alignments and Neighbour-

Joining phylogenetic trees.

The workflow implementation was done using Python and its BioPython pack-

ages [11]. The results were stored in a relational MySQL database. The different

steps of the Rabifier workflow were validated by leave-one-out and cross-validation

approaches.

TrafficDB, the website that houses the final Rabifier results and which will serve

as the basis for a community resource housing information about every component of

the protein trafficking pathways, was implemented using the Python-based Django

web framework for the back-end and a MySQL relational database for data storage.

1.3 Microtubule-derived organelles

In addition to the membrane-bound organelles, the Eukaryotes are also distinguished

from the Prokaryotes by their complex cytoskeleton. It is composed by actin fila-

ments, intermediate filaments and microtubules.

Microtubules are cylindrical arrangements of tubulin. They can serve as rails for

vesicle trafficking or organise themselves into bigger structures that have essential

and varied functions inside the cell. These microtubule-derived organelles are pos-

tulated to have a common origin, but the study of its evolution is dependent of a

prior assessment of the various morphologies underlying its functions.

1.3.1 Biological details

Ever since Antonie van Leeuwenhoek and Robert Hooke observed the first cells

with a microscope in the seventeenth century, images and the information contained

therein has been a part of cell biology. The advent of new microscopy techniques

only highlighted the great morphological diversity among living organisms. However,

the focus of molecular biology on model organisms, although providing in-depth

information about a few tips of the evolutionary tree, did not help us understand

how conserved are our findings when moving across species.

Centriolar-like structures are microtubule-based Eukaryotic organelles that act

in cell division, chromosome separation, cell motility, cell sensing and transport

inside the cell (acting as microtubule organising centers) in their various guises as

centrosomes, axonemes and flagella. In some form or other, these structures are

found in all crown Eukaryotic groups. While not all branches have them, like higher

plants and yeasts, this fact is better explained by secondary loss than by the same

structure arising independently several times in evolution.

The overall structure if these organelles is conserved, consisting of a cylindri-

cal arrangement of microtubules, but there is plenty of variation inside this main
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organisation. The fold-symmetry can change from species to species, for example.

The axoneme of a paramecium has nine symmetric microtubules, while some wasps

have hundreds. Some cells have only one cillium, others have many. Structures as-

sociated with the cylindrical organelle can vary between species or within different

centriolar-structures in the same species.

The molecular biogenesis of this organelle is still under study, but several pro-

teins are know to be involved, including SP2/CEP192, SAK/PLK4 and SAS6 [13].

However, to fully understand the evolution of centrioles, we need to look past in-

dividual molecules and into the morphological variation that is the result of the

molecular activity. The data to assess this variation exists in the form of decades of

exquisite and detailed electron microscopy (EM) images of centriolar-like structures.

However, this data is not annotated, centralised or placed in comparison with the

recent molecular-based discoveries on centriolar biogenesis.

1.3.2 Objectives and techniques used

In this work, I build CentrioleDB, a community resource to address the lack of

integration of decades of electron-microscopy data with today’s molecular biology

knowledge. CentrioleDB is a web-based EM picture annotation and retrieval inter-

face that also supplies molecular information of interest to centriolar structures, all

put in their proper taxonomic (and, by proxy, evolutionary) context.

To serve its purpose, CentrioleDB has the following requirements:

1. an evolving controlled vocabulary to properly describe microtubule-derived

organelles;

2. a database schema that allows image annotation using the controlled vocabu-

lary;

3. a web interface that allows users to annotate and upload electron-microscopy

images from the literature;

4. said web interface must also allow users to retrieve previously uploaded images

and stored molecular information.

The database was implemented with the database management system MySQL,

while the website uses the Django web framework as its back-end.

1.4 Thesis structure

The work here presented can be organised along two different lines: the biological

backgrounds or the informatics techniques used. Should the latter line of organisa-

tion be chosen, the work is separated between a machine learning part, regarding



Chapter 1. Introduction 6

the automatic annotation of proteins, and a database and interface building part,

regarding the manual image annotation and the presenting of results to the cell biol-

ogy community. If structured along the biological backgrounds, the work is instead

separated into a part regarding rab proteins, which includes machine learning for the

automatic annotations and database and interface development for presenting these

annotations, and a part regarding centrioles, which consists mainly of database and

interface development for manual image annotation and retrieval.

I decided to use the biological background line of organisation to present my

work, separating it in two chapters:

1. one describing the work done on rab proteins, which was the development of

the Rabifier and of TrafficDB;

2. another describing the work done on centrioles, which was the development of

the CentrioleDB image annotation interface.

A third chapter in the end provides the general conclusions of the work here

presented and its future directions.

I feel that this structure will produce greater clarity when introducing the prob-

lems that need to be solved and the results obtained. In addition, the machine

learning techniques are used exclusively on the rab protein theme and, while there

is some overlap with website and database development on both biological themes,

most of that kind of work regards centriole image annotation. The separation on

biologial contexts thus also provides, to some extent, separation on the informatics

techniques used.
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Rab proteins

2.1 The problem: how to classify?

Each Rab subfamily has a specific location and function in the cell. Sometimes two

rabs will regulate different movements between the same organelles. For example,

the rab1 subfamily coordinates movements from the endoplasmatic reticulum to the

Golgi, while the rab2 subfamily regulates vesicle trafficing in the opposite direction.

Taking into account that a rab only acts through its effectors, its function specificity

is a result of its effector binding specificity.

It should be stressed here that a subfamily is more than a arbitrary group of rab

proteins. Members of a subfamily are linked by sequence similarity and function. If

we annotate a protein as a rab, we are stating that it acts as a molecular switch in

trafficking pathways. If we further specify that it is a rab5, we are assigning it a very

specific location (at the cellular membrane) and function (regulate the movement

of early endosomes) and that it interacts with the same effectors as others rab5

proteins. Function follows effector binding and effector binding is driven by the

sequence. Or, conversely, we can use the sequence as a proxy for predicting to

which subfamily a rab belongs and from the presence of a subfamily infer that a

specific function is present in an organism.

Two main problems arise when trying to identify and classify rab proteins based

on their sequence. One is that its overall similarity with other Ras superfamily

proteins may result in Ras, Rho and Arf proteins being incorrectly classified as

Rabs. On the other hand, if the objective is to classify proteins to the subfamily

level, differences in the sequence of different subfamilies must be found that will

help distinguish them.

7
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2.2 The rab protein sequence and subfamilies

2.2.1 As a whole

As described in the introduction, the rab protein is globular in its N-terminus and

unstructured in its C-terminus. The organisation of different Ras superfamily pro-

teins shows that the overall sequence organisation is conserved across families, with

a six-stranded beta sheet and five alpha helixes.

A comparison done in 2000 by Pereira-Leal and Seabra [26] revealed linear se-

quence motifs shared across all Ras superfamily proteins and responsible for their

GTPase activity. Of greater importance to rab classification, the same study de-

tected five linear motifs (dubbed RabF1-5) that are conserved across the rab family

and aren’t discernible in Ras, Rho or Arf proteins and identified their consensus

sequences. The RabF motifs allow us to better discriminate between the rabs and

the other ras superfamily members.

Figure 2.1: Representation of the rab3 tridimensional structure from Pereira-Leal
and Seabra, 2000 [26]. RabF motifs are depicted in red, RabSF regions in yellow, and
the conserved nucleotide binding motifs in green. The alpha-helixes and beta-sheets
were the conserved regions and motifs are inserted are also identified.

2.2.2 Characteristic motifs

In adition to the RabF motifs, Pereira-Leal and Seabra also found four rab subfamily

specific regions (RabSF1-4). These regions, while not lying in the Switch regions,
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have been shown to act as part of the interaction surfaces, helping establish rab-

effector specificity. With their subfamily specificity, the RabSF regions could help

distinguish proteins from different subfamilies based on their sequences.

2.2.3 What we don’t know

Despite us knowing the constituent parts of a rab sequence, some caveats should

apply when attempting to design an automatic classification workflow. One should

keep in mind that the previously identified motifs relied on a set of sequences that

consisted mainly of Metazoa. While previous studies have show the conservation of

RabF motifs in several branches of the tree of life,[27] [1] [20] one should allow for

some variation in the consensus sequences.

As regards the RabSF regions, a recent study of two rab subfamilies (rab7 and

rab9) across the eukaryotic three of life showed that they are recognisable but not as

conserved as one might expect [21]. A further problem in using the RabSF regions

in a automated manner is the uncertainty about their precise location and the lack

of known consensus sequences for each subfamily.

2.2.4 Goal

Given that identifying a subfamily in a species amounts to stating that a particular

step in the trafficking pathway exists in that species, a survey of the rab subfamily

profiles on the different organisms that make up the Eukaryotic tree will act as a

proxy to describe the trafficking system in those organisms, and, by comparing it

across organisms, to describe its evolution. To achieve this end, my goal is twofold:

1. given a genome, identify which of its proteins are rab proteins;

2. assign a rab protein a subfamily and a function based on its sequence.

2.3 The Rabifier

Armed with the knowledge of the rab sequence, I designed a workflow, named Rabi-

fier, to automatically identify and classify to the subfamily level the rabs in complete

Eukaryotic genomes.

My objective is to fill in the blanks in rab annotation in the Eukaryotic tree. We

currently know a great deal about the rabs from Metazoa and Fungi and we have

some knowledge about specific organism scattered around the tree, but for most of

the sequenced species there have been no studies. A dataset that covers most of the

sequenced Eukaryotic organisms should prove invaluable for future studies on the

evolution of this ubiquitous protein family and of the endomembrane system.
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To illustrate the scope of this endeavour, most bioinformatics projects on rab

classification focus on a single organism [30] [1] [31] [20] [40]. Recently, one project

tried to classify rabs in 28 fungi [25] while another covered the full Eukaryotic tree,

but only for two rab subfamilies [21]. My project encompasses 182 different genomes

and starts with most of the known rab subfamilies, with the possibility of identifying

new ones.

Given the vast number of organisms to be classified and the small number of

organisms for which we have information, it is not advisable to blindly trust the

results of the workflow, even if the validation done yielded good results. Our vali-

dation can only be based on the information we have available, which does not span

the necessary evolutionary distance. The Rabifier was developed keeping in mind

that a good proportion of its predictions would have to be manually validated.

2.3.1 Building a reference set

I do not start classifying the rabs from a blank slate. Previously annotated sequences

served as the starting point from which new rabs will be annotated. This makes the

Rabifier workflow an instance of supervised learning.

The reference set is comprised of previously [27] and manually compiled se-

quences from human, Saccharomyces cerevisiae and Caenorhaditis elegans which

are annotated as rab/ypt in Ensembl [18], SGD [10] and Wormbase [6]. In addition,

sequences for Plasmodium falciparum [30], Trypanosoma brucei [1] and Arabidopsis

thaliana [31] were taken from published organism-specific studies.

This reference set was assembled manually and stored in a MySQL database.

The following steps were implemented in Python, using several of the BioPython

packages [11], and were applied for each of the 182 genomes in a sequential manner.

After a first run, the 182 genomes were run again. This is because, in addition to the

manual reference set, the workflow also uses the proteins it annotates as the basis of

future annotations. If I had run the genomes through the workflow only once, the

first genomes would only have the manual annotations as references, compared to

the last one which would have, in addition to the manual annotations, the automatic

annotations of 182 genomes. It is also because of this incremental approach that

several genomes were not run in parallel. The list of genomes analysed is available

in the TrafficDB website.

2.3.2 Finding putative sequences

Description

The sequence database used was Superfamily [38] (as it stood on the 28th of Septem-

ber, 2008). This database was chosen because it includes SCOP [12] protein domain
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Figure 2.2: Flowchart describing identification of putative rab sequence.

assignments. Being GTPases, all rabs incorporate the SCOP domain ’P-loop con-

taining nucleoside triphosphate hydrolases’. By selecting only the proteins that con-

tain this domain, the number of sequences that must be tested is greatly reduced at

no loss of coverage.

For the genome being evaluated I retrieved the sequences that contained the P-

loop hydrolase domain domain and ran a BLAST process of each sequence against a

discriminating set of sequences containing rabs (yeast and human) and other proteins

that, while similar to rabs, belong to other families.

Validation

The discriminating set was refined by repeatedly subjecting Candida albicans and

Dictyostelium discoideum genomes to the SCOP domain selection and subsequent

blasting steps. The results were manually analysed by looking at the sequences and

their annotations. In each iteration, clearly non-rab sequences that were retrieved

were added to the the discriminating set of proteins.

The criterion reached this way to find a putative rab was that the sequence had

to find as its best hit a rab with an e-value lower than 10−5. Should the best hit be

a rab with a e-value above 10−5 or a protein that is not a rab, the sequence being

tested is discarded. Different criteria using the top 5 or 10 hits did not yield better

results than this simple approach. Through this approach, it is ensured that we

select proteins that are more similar to rabs than to any other protein family.
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2.3.3 Confirming these putative sequences

Description

After finding a shortlist of putative rabs, the next step was to try and confirm if

they were actual rabs. As described previously, rab proteins contain F motifs that

distinguish them from other Ras superfamily members. Using the MEME/MAST

[4] package I am able to create a probabilistic model for each F motif using the

consensus sequence and the rab manual curated reference sequences and use that

model to determine if the motifs appear in the putative rab sequences.

Figure 2.3: A) Flowchart of the F motif-based sequence confirmation; B) ROC
curve for the validation of this approach. Each dot represents the average of a cross-
validation. The different colours indicate the threshold level used. As can be seen,
a perfect true positive rate is achieved with two motifs detected as the threshold.

Validation

This approach was tested using cross-validation by building the model with all the

reference species minus one, and then finding the motifs in the species that was left

out. In the end, sequences that got through both the first selection and the F motif

filter would be compared with the manually curated sequence to determine true and

false positive rates. This validation was run for five different threshold levels (for the

number of motifs found in the putative sequences). After analysing the results of

the cross-validation (Fig. 2.3 B), I chose to use 2 as the number of motifs a putative

sequence should have in order to be considered a rab. At this threshold level, the

average true positive rate is 1 and the average true negative rate is below 0,3. While

it is possible to decrease the latter value at the expense of the former, one must

keep in mind that we have a limited reference set. I do not chose a more stringent
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threshold to allow for possible variation in some of the motifs when dealing with

organisms placed in distant branches compared to our reference species.

2.3.4 Creating new subfamilies

2.3.5 Description

At this point in the workflow we have a list of rabs, but they aren’t assigned to any

subfamily. Given the number of organisms evaluated and the number of reference

organisms, it is likely that some of the rabs to be assigned belong to a subfamily

for which we don’t have any references. I devised a approach based on clustering

techniques to try to automate this process (Fig. 2.4).

We defined the distance da,b between two sequences a and b as 1 − Nsim

(La+Lb)×0.5

where Nsim is the number of similar residues that align when two sequences are

blasted against each other and La and Lb are the lengths of each of the sequences.

For a sequence being evaluated s and a rab subfamily A containing n sequences

[a1, a2, . . . an] the distance Ds,A between s and A is defined as
∑n

i=1
ds,ai

n
, which is

the average distance between the sequence and the members of a subfamily. Each

subfamily A has an average internal distance IA which is the mean of dij, where i, j

make all the possible pairs between the set of sequences in A. Should A have only

one sequence, we assume IA to be the average of I for all subfamilies with more than

one sequence.

For each sequence being evaluated s and each existing subfamily A, we check

if Ds,A < IA. If that is false for all subfamilies, the sequence under evaluation is

assigned to a new subfamily. Note that in this step we are no longer comparing our

sequence solely to the manually curated reference set, we are also incorporating the

sequences previously annotated by Rabifier in the subfamilies when comparing the

distances.

Figure 2.4: Flowchart of the method used to create new subfamilies.
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Table 2.1: Validation for new family assignment
Distance Method

Average Minimum Maximum
True new families (out of 22) 15 (68%) 8 (36%) 19 (86%)
False new families (out of 175) 49 (28%) 14 (8%) 117 (67%)

Validation

This (admittedly convoluted) method does not guarantee good results. The different

taxon-specificity of rab subfamilies means that there are different degrees of diver-

gence between the members of a same subfamily. For example, members of the rab5

subfamily, present in all Eukaryotes, are not as similar to each other as members

of the rab3 subfamily, which is present only in organisms with nervous systems. I

tested different variations of the described method by taking each of my reference

sequences in turn and comparing them with the rest of the dataset. Variation in-

cluded minimum and maximum distance between a sequence and a subfamily and

different thresholds. All gave unsatisfactory results.

Keeping in mind that the workflow results would be reviewed manually (espe-

cially the new families), I decided to use the average distance between a sequence

and a subfamily and the mean distance inside a subfamily as the threshold, since

these parameters balanced the number of true and false new families (Table 2.1).

2.3.6 Assigning sequence to a family

Description

If a sequence does not qualify to start a new subfamily, it must be assigned to an

existing family. I used the same technique used by the NCBI Conserved Domain

Database [22]. Psi-blast [3] is an iterative version of Blast that returns a collection

of related sequences. It also generates a position-specific scoring matrix (PSSM)

that describes this collection. A group of PSSMs can be used to create a database

that can be queried by sequences with the Reverse Psi-Blast (RPS-Blast) program,

much like a Blast database, only it returns a ranked list of PSSMs from the database

instead of sequences.

With Psi-blast I created PSSMs for the various subfamilies. As in the previous

step, these subfamilies have not only the initial reference set, but also the sequences

that the Rabifier has annotated until this point. I then use RPS-Blast to query the

PSSMs with the as yet unassigned sequence.
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Validation

This was validated using a leave-one-out approach where each sequence in the ref-

erence set that didn’t belong to a single-sequence subfamily was queried against a

PSSM database made with the other sequences. During validation, 160 out of 175

sequences were placed in the correct family.

2.4 Confirming the results of the Rabifier

Due to the number of genomes that we chose to run and the decision not to run

several genomes in parallel, the Rabifier took three weeks to pass through every

genome twice. The results were stored in a MySQL database between each genome

pass to prevent data loss due to unforeseen circumstances.

In total, the genomes searched had 3.058.867 sequences, of which 660.193 were

annotated with the SCOP domain ’P-loop containing nucleoside triphosphate hy-

drolases’. After passing through the discriminating set of rabs and non-rab proteins

described in section 2.3.2 and through the RabF motif-based confirmation described

in section 2.3.3 the set of P-loop hydrolases dwindled to 6252 sequences identified

as rabs.

Most of the sequences identified as rabs were assigned to existing subfamilies,

but 653 were assigned to 45 newly created rabHyp (for hypothetical) families. These

hypothetical families ranged from unique sequences to a family with 132 sequences.

These results, however, were not yet in a state where they could be trusted. As

explained previously, we expected the workflow to produce mistakes, which would be

propagated by the inclusion of automatically annotated sequences as new references.

2.4.1 Subfamily alignments

To reduce the number of sequences that would have to be manually analysed, I

attempted to automatically flag those that could be wrongly classified. To this end

I took advantage of the subfamily-specific SF regions. While I didn’t know the con-

sensus sequence or the precise location of these regions in the different subfamilies,

they were flanked by the conserved F and GTP-binding motifs. After aligning the

sequences of each subfamily (restricting for sequences which were too big and would

create long stretches of gaps in the alignment), MEME/MAST was again used to

find the F and GTP-binding motifs. Once found, their positions could serve as

anchors to automatically extract the rough regions of the SF regions. For each sub-

family, the consensus in these regions and its identity to each sequence’s SF regions

was calculated. Sequences that had a SF region identity with the consensus for the

subfamily under a certain threshold were flagged for manual analysis.



Chapter 2. Rab proteins 16

To determine the threshold, I once again resorted to my reference set of rab

proteins. I randomly added sequences to subfamilies where they didn’t belong and

tried to flag them using the described method. This was done for identity threshold

levels between 0 and 1 at 0.01 intervals, with 1000 random tests per interval. For

each threshold, the false positives, defined as sequences that were flagged that were

in fact correct, and the false negatives, defined as sequences that were in the wrong

family and should have been flagged, but weren’t, were counted. The resulting false

positive and negative rates are shown in figure 2.5. After analysing these results,

I chose 0.65 as the threshold for sequence flagging, as this was a value with a very

low false negative rate but still had a manageable false positive rate.

Figure 2.5: False positive and negative rates for correct sequence flagging plotted as
a function of the threshold used. Note that 0.65, the value chosen as the definitive
threshold, has a very low false negative rate.

After running the scripts, 2471 sequences were flagged. Using the previously

calculated subfamily alignments, I manually reviewed which seemed to be in the

correct subfamily and which were correctly flagged. Of the flagged sequences, 1019

were removed from their Rabifier assigned subfamilies and marked as unclassified.

2.4.2 Automatic Hyp family assignment

To try to determine automatically which of the rabHyp families were real, two

methods were used. The first relied on a 0.7 percent identity between two sequences

criterion presented in [27] to determine if two rabs were isoforms. I calculated

the percent identity between rabHyps and rabs in other subfamilies. If a rabHyp

subfamily had isoforms in a normal subfamily, I would pool the two subfamilies.
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For the remaining subfamilies, I tried to detect orthologues between the rabHyp

subfamilies and the organisms that constitute my reference set using the bidirec-

tional best hit method [24]. If orthologues were detected, the rabHyp family would

be pooled with the corresponding subfamily. In some cases the orthologues were

sequences that were not in my reference set as rabs, but were rabs nonetheless, like

the human rab45/RASEF and rabL2. This means that the workflow could detect

real subfamilies which were not in the original reference set.

2.4.3 Unclassified sequence assignment

The unclassified sequences were manually assigned to subfamilies using a combi-

nation of phylogenetic trees for the rabifier results of major taxa and the refer-

ences, orthology mapping using Blast bidirectional best hits and simple best hits

between the unclassified sequences and the reference organisms. The trees were

generated automatically by a script which used the ClustalW sequence alignment

and Neighbour-Joining program. The Blast queries for the best hits, bidirectional

or otherwise, were done using a Python script. On-line databases like Ensembl [18],

SGD [10] and Wormbase [6] were used to view the annotations for hits that were

not in the original reference set.

A note on nomenclature. The previously established standard is to use let-

ters when defining organism-specific subfamilies, followed by numbers to distinguish

among related subfamilies. Arabidopsis, for example, has, among others, several

rabA subfamilies (named rabA1, rabA2 and so forth). However, the subfamilies

defined in different taxa with the same letter may not belong to the same subfam-

ily. In an attempt to use existing names without generating ambiguities, I named

letter-defined families after the taxon where they were identified by preceding the

letter by the species organism’s name initials. This way, the Arabidopsis rabAtA

subfamilies can be distinguished from the Trichomonas rabTvA subfamilies. If the

taxa where a new subfamily has been discovered is of a higher level than species,

more than two letters may be used (as in rabFungiA or rabAlvA, for Alveolata). If

a sequence could not be grouped with at least another one to create a subfamily, it

is assigned the letter X, as in rabDmX.

Five organisms displayed a great number of unclassified rabs and were analysed

more closely: Trichomonas vaginalis, Tetrahymena termophila, Paramecium tetrau-

relia, Dictyostelium discoideum and Entamoeba hystolitica. For T. vaginalis [20] and

E. hystolitica [32] previous studies had found and classified their rab proteins, while

dictyBase [15] had classification for some of the D. discoideum rabs. In these three

cases, the sequences recovered by the Rabifier were aligned with human and yeast

references and the appropriate organism-specific references. When appropriate, new

sequences were assigned to existing families, otherwise they were assigned to new
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families. T. thermophila and P. tetraurelia, on the other hand, were not the object

of previous studies. Since both are Alveolata, they were studied together. New

families from these two organisms were named rabAlv, rabTt or rabPt depending

on whether they contained sequences from both or only one organism.

2.5 Result analysis from rab protein classification

After automatic and manual annotation, 5258 sequences were classified as belonging

to one of 147 rab subfamilies, including the non-discriminative rabX subfamily with

42 sequences. The number of sequences in a subfamily varied from two to more than

four hundred (Fig. 2.6(a)). Subfamilies ranged from ubiquitous (present in all 182

analysed genomes) to species-specific (Fig. 2.6(b)).

Not all newly discovered subfamilies were exclusive to less studied taxa. Four

metazoan rab subfamilies which were not included in the reference dataset were

recovered. These are DNAJC27, a protein containg a rab and a DNAJ domain [23],

rab45, a protein containing a rab and a EF-hand domain also known as RASEF

[34], rabL2 (for rab-Like protein 2) [39] and Partner of ARF (Parf) [36]. As with

rab45 and rabL2 in the rabHyp subfamilies, these findings point to the capability

of the workflow to discover new bona-fide subfamilies.

2.5.1 Ancestral rab subfamilies

With the rab profiles for organisms that, with the exception of Cercozoa, span all

the major Eukaryot taxa as defined by Baldauf in 2003 [5] I can try to see which

subfamilies are ancestral. To account for false positive results, I only assume that a

subfamily is present in a major taxon if it is present in more than one third of the

taxon’s species. This is an arbitrary value, chosen to try to avoid situations where

a taxa has a very small number of species and, consequently, a small number of

wrongly annotated sequences would have great impact. Two groups presented great

heterogeneity in the rab profiles of their species and were exploded into more specific

taxa. In Opisthokonta, Metazoa shows a great variety of different subfamilies while

Fungi has a very reduced set. In a similar manner, the Ciliophora showed a much

greater variety of rab subfamilies when compared to the other members of Alveolata,

the Apicomplexa.

As seen in figure 2.7, rab 1, 2, 5, 6, 7 and 11 are universal. Rab 4, 8, 18, 21, 23

and 28, while not universal, were present in the ancestral Eukaryote and lost in some

of the major groups and this data is supported by both the Rabifier results and the

reference dataset. The remaining subfamilies (14, 24, 32, rabL2 and DNAJC27) are

shown by the Rabifier results, without support from the reference dataset. If it is

confirmed that these subfamilies were indeed present in the last Eukaryotic common
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Figure 2.6: a) Number of sequences in each annotated rab subfamily. b) Number of
species in which each subfamily appears.
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Figure 2.7: Presence of subfamilies in major Eukaryotic groups as obtained by the
Rabifier. Only subfamilies that appear in more than one group are shown. The
greyscale indicates the number of species available each taxa.
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ancestor (LECA), this represents an increase in the variety of its rab repertoire [25]

and, by extension, of its trafficking system’s complexity.

Figure 2.8: Rab1 subfamily sequence conservation mapped on the surface of a human
rab1 protein tri-dimensional structure. White denotes lack of conservation, red
denotes high conservation. Note the poorly conserved C-terminal hypervariable
domain.

2.5.2 Consensus sequences and motif conservation

To evaluate the sequence conservation in a subfamily, I aligned all the sequences

belonging to the same subfamily and derived a subfamily consensus sequence. The

alignments were also used to map the sequence conservation onto the tri-dimensional

structure of the protein. When no structure for a specific subfamily was available,

the alignment was mapped to the structure of rab1. In the example provided in

figure 2.8 we can clearly see the high degree of conservation (shown in red) of the

effector interface and the poor conservation in the C-terminal hypervariable domain.

The various conservation-structure mappings are available in TrafficDB, described

in section 2.6.

The consensus sequences for the previously described ancestral rab families are

aligned in figure 2.9. The nucleotide-binding and RabF motifs are well conserved in

and between subfamilies, as expected. As for RabSF regions, while on a general level

they were conserved inside a subfamily (with the exception of RabSF4), they are

less conserved positions than in RabF motifs. The C-terminus hypervariable domain

is very poorly conserved in all subfamilies, including, unexpectedly, the presumable
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RabSF4 region. This seems to be in agreement with previous findings for the rab7

and rab9 functional group [21].

Figure 2.9: Consensus sequence alignemnt. Residues appearing in more than 50% of
the sequences are in uppercase. Sequence features are coloured: nucleotide-binding
regions are green, RabF motifs are red and RabSF regions are blue.

To further exemplify the conservation of the RabSF regions, figure 2.10 shows

an alignment of rab1 sequences from each of the major taxa. Again sequence con-

servation, albeit not absolute, is observed in the RabSF regions, with the exception

of the C-terminal RabSF4.

2.5.3 Rab functional group expansions

Some rab subfamilies are clustered by function and phylogeny into eight functional

groups [27]. Using a z-score, I compared the mean number of rabs that each ma-

jor taxa had from a specific functional group with the average of those means over

all the major taxa to determine in which, if any, taxa the functional groups had

expanded (Fig. 2.11). Functional groups III (associated with secretory granules)

and IV showed a great deviation from the mean in metazoa, and with good reason:

they only appear in that taxon. Plants evidenced an increase in functional groups

II, VII and VIII, corroborating the findings of Rutherford and Moore in 2002 [31]

who presented evidence for the expansion in Arabidopsis thaliana of subfamilies as-

sociated with rab11, 7 and 8 (corresponding respectively to the functional groups

mentioned). Other prominent expansions are those of functional groups I and VII

in Amoebozoa and of functional groups I, II, V, VI and VIII in Ciliophora. These

taxa include four of the species which had a great number of new subfamilies: P.

tetraurelia and T. termophila in the Ciliophora and E. histolytica and D. discoideum

in Amoebozoa. However, the new families were not taken into account when calcu-
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Figure 2.10: Alignment of rab1 sequences from each of the major taxa. The RabSF
regions are highlighted.

lating the functional groups expansions; these are due to an increase in these species

of the number of sequences of previously identified subfamilies. Three major taxa

in particular presented reductions in the number of sequences across the various

functional groups: Apicomplexa, Fungi and Choanoflagellida.

A more detailed study of the reasons behind the reduction in the number of

sequences in these taxa may shed light on cell biology issues. For example, the

reduction in Apicomplexa may be due to the fact that many of its members are

intracellular parasites. Choanoflagellida is composed by unicellular organisms and

is the closest taxon to Metazoa, to which Homo sapiens belongs and which doesn’t

seem to have suffered any reduction in the numbers of rabs, quite the opposite. By

comparing the functional groups that are reduced we can pose questions about the

role of the protein trafficking system in multicellular organisms.

2.5.4 Origin of taxon-specific rabs

As mentioned when discussing the assignment of unclassified sequences, five species

presented a big number of rabs that did not fit existing subfamilies. Even though

these rabs were assigned to new subfamilies, they may have originated from the same

ancestral one. If this is the case, it might be that certain ancestral rab subfamilies

can adapt more easily to new functions. To evaluate if this is the case, I tried to

determine if the taxon-specific rabs evolved from the same subfamily.

By aligning the subfamily consensus sequences and building a Neigbhour-Joining
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Figure 2.11: Heat-map depicting the number of sequences in each functional group
and major taxa as a z-score. Green indicates values above the mean, red values
below it.
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tree from the alignment, I tried to use the consensus as a proxy for each subfamily

and establish the origin of these taxon-specific subfamilies. The resulting tree can

be seen in figure 2.12. While, with one exception, the tree of consensus sequences

depicts correctly the functional groups, it fails to give any clear indication of which

of these groups the new families belong to.

Figure 2.12: Neighbour-Joining tree of the subfamily consensus sequences. The
coloured branches represent functional groups. The subfamilies from the five species
with a large number of new subfamilies (those starting with rabTv, rabDd, rabEh
and rabAlv) did not appear to arise from any of the functional groups.

I then BLASTed the consensus sequences of the new subfamilies against the con-

sensus sequences of the subfamilies which are thought to be present in the LECA.

Again, no clear pattern emerged. For none of the organisms did the new subfami-



Chapter 2. Rab proteins 26

lies point clearly to one of the ancestors as the more similar. Apparently, in each

organism, the duplications that gave rise to the new subfamilies did not arise pre-

dominantly from a single ancestral rab.

2.6 TrafficDB

The sequences classified by the Rabifier are of potential interest to the protein traf-

ficking, cell and evolutionary biology communities. Therefore, I designed a website

where they are made available. Here users can view them in their proper taxonomical

context. In addition, users have access to the subfamily consensus sequences, se-

quence conservation plots and tri-dimensional rab structures with sequence conserva-

tion mapped onto them. The website can be accessed at http://www.igc.pt/trafficdb .

While it serves its current purpose of making available the classified rab proteins,

the interface is still a work in progress that will evolve as other components of the

trafficking pathways are added.

2.6.1 Database schema

The requirements for the database schema of TrafficDB are the ability to store a

variety of annotations for a selection of proteins and the ability to connect the

proteins to taxonomic information. These two requirements are already fulfilled by

the database schema underlying CentrioleDB presented in section 3.2. Therefore, I

used the same database architecture on TrafficDB, omitting the picture annotation

module of CentrioleDB which isn’t needed here.

2.6.2 Website implementation

Like CentrioleDB, the website was implemented using the Python-based web frame-

work Django. Two main views are available for the user, the subfamily and the

taxon views.

Taxon view

In the taxon view, users are prompted for a NCBI taxon ID or a taxon name. This

does not have to be a species; it can be taxa closer to the root of the Eukaryotic

taxonomic tree. Upon selection, users are presented with a list of the rab subfamilies

that were detected in that taxon, the identifiers to the sequences in each of the

subfamilies and the option to download the sequences in FASTA format.
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Subfamily view

The subfamily view provides more detailed information than the taxon view (Fig. 2.13).

After selecting which subfamily one wishes to analyse, the user is taken to a page

where he can navigate the Eukaryotic taxonomic tree and is provided with simple

statistics regarding the number of members of that subfamily present in the adjacent

nodes to the one he is in. This way the user can track taxon-specific expansions. In

addition to the taxonomic information, the user is also presented with the consensus

sequence for the subfamily and with two visualisations of the degree of sequence con-

servation. One is a plot of the conservation of the most common aminoacid-residue

in each position, while the other is a picture of the tridimensional structure of a rab

with each residue coloured according to its degree of conservation, as in figure 2.8.

Figure 2.13: Detail of the subfamily view in TrafficDb.

2.7 Future of Rabifier

As mentioned when describing the workings of the Rabifier, this implementation

took a long time to run. Therefore, it is not appropriate to use it to classify a single

newly discovered sequence or genome. Nor is it needed. The main issue that led to

the necessity of this tool was the fact that the previously analysed organisms did
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not cover the full taxonomic diversity of Eukaryotes. Now that more species and

subfamilies have representative sequences, simpler and more automated methods

based on RPS-Blast or Hidden Markov Models can be used, in a similar manner

to the NCBI CDD database [22]. In time, TrafficDB will implement this new tool

making it a website not only for retrieval of identified rabs but also for identification

of new rabs.

Regarding the biological implications of the results presented here, they were

subjected only to a superficial analysis. Much more biological knowledge awaits

to be mined from it. By studying the expansion of specific subfamilies instead of

functional groups or taxon-specific instead of universal subfamilies, one will gain

insights into where in evolution did specific cellular processes appear.
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CentrioleDB

3.1 Purpose

The goal of CentrioleDB is to provide the cell biology community interested in

centriolar function and biogenesis with a resource that places this structure in its

evolutionary context and bridges the gap between morphological and molecular in-

formation. Most databases provided to the biology community focus on molecular

information: sequences, mutants, markers and so on. By adding morphological in-

formation we include an hitherto unexplored type of data in the study of centriolar

function and biogenesis.

This resource is not only built for the community but also, in part, by the com-

munity, as it provides an image submission and annotation interface using a con-

trolled vocabulary designed to properly describe electronic microscopy (EM) images

of centriolar structures taken from the literature. On the molecular sector of the

website, users have access to information about the orthology of proteins of interest

in centriolar structures, as well as the mapping of proteins to these structures.

CentrioleDB is the basis of a collaborative project encompassing, besides the

Computational Genomics Laboratory, experts in the domain of centriolar structures

who contributed their knowledge to the development of the controlled vocabulary

and have provided and will continue to provide annotations for morphology and

sequences. These experts include the Cell Cycle Regulation Laboratory at the Gul-

benkian Institute for Science, Professor Keith Gull at the University of Oxford,

Michel Bornens at the Institute Curie in Paris and Juliette Azimzadeh at the Uni-

versity of California, San Francisco. Their contribution, feedback and enthusiasm

has been invaluable to the project.

29
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3.2 Database schema

The underlying database schema for CentrioleDB is presented in figure 3.1. It needs

to fulfil the following requirements:

1. Must support protein and image annotation;

2. New types of annotations must be easily implemented;

3. Proteins and images must have a way to be linked to taxonomic information.

3.2.1 Image and protein annotation

The image annotation module of the CentrioleDB schema has its focus on four

tables: ‘pics info‘, ‘picture annotation‘, ‘picture has ann‘ and ‘papers‘. ‘pics info‘

stores the basic information of each image: it’s id, file location, figure number, the

publication from which it comes (via a foreign key to the ‘papers‘ table) and the

taxon to which it belongs (via a foreign key to the ‘view taxon‘ table). The an-

notations themselves are stored in the ‘picture annotation‘ table, with an id, the

group to which they belong, the annotation itself and an optional description. For

example, the annotation used to describe the image annotation appears in the ta-

ble as (id = 3; picture annotation group = ‘image‘; picture annotation = ‘image

magnification‘; description = ‘The magnification at which the image was taken.‘).

The ‘picture has ann‘ table implements a many-to-many association between the

‘pics info‘ and ‘picture annotation‘ table, with a ‘picture annotation value‘ text op-

tional attribute. In the image magnification example described above, this attribute

would take the value of the magnification; when associating an image with the an-

notation that describes the figure legend, the value of the attribute would be the

text of the legend.

While this structure does not completely eliminate redundancy, it allows for

great flexibility when adding new annotations or new values to existing annotations.

The controlled vocabulary used for image annotation changed often during the first

months after CentrioleDB was implemented, but the database structure did not have

to be modified. Instead, annotations were simply inserted, removed or altered in the

‘picture annotation‘ table. On the other hand, since the picture annotation value

attribute is of the type TEXT, it relies on the previous validation of user input to

assure that it is meaningful in the context of its annotation.

The protein annotation module follows the same structure as the image one, only

without a ‘papers‘ table and with specific gene/protein tables. It also has a greater

number of attributes in the ‘has ann‘ table, including a foreign key to a table with

the different methods used to generate the protein annotations (thus making it a
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Figure 3.1: Database schema for CentrioleDB. The Django generated tables for user
authentication are not shown.
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table implementing a triple association, instead of a binary one) and a confidence

attribute which takes values appropriate (if any) to the different methods used. The

table containing the gene/protein entities (‘genes‘) is also linked to a ‘gene names‘

table, so that different external identifiers can be used for each protein, like Uniprot

and GenBank accession numbers.

3.2.2 Taxonomic information

Both images and genes are connected to a unique NCBI taxon ID. This ID, stored

in the ‘view taxon‘ table, supplies a taxonomical and evolutionary context. The

‘view taxon‘ and ‘view taxon name‘ tables were sourced from the open source project

BioSQL and implement the NCBI taxonomic tree. Not only do they store the level

and names of each taxa and what is its predecessor in the tree, it also includes

two columns with the pre-computed left and right values of a pre-order depth-first

transversal of the tree, starting at its root. This way, complex queries involving tree

transversals are simplified.

3.3 Development of the controlled vocabulary

The controlled vocabulary used to describe EM images of centriolar structures con-

sists of a collection of specific terms to define different characteristics observed in

the images. Some of these terms denote the presence of a main centriolar struc-

ture (’centriole’ or ’basal body’ for example) while others refers to details of certain

structures (’basal body cartwheel’ or ’axoneme radial spokes’, for example).

Each term in the vocabulary is assigned to an annotation group. To use some of

the previous examples, terms like ’centriole’ or ’basal body’ belong to the annotation

group ’structure’ while ’basal body cartwheel’ and ’axoneme radial spokes’ belong

to the annotation groups ’basal body’ and ’axoneme’, respectively. The groups help

define a form of hierarchical association between the different terms, as a image will

only be annotated with structure-specific terms if it has been annotated with the

term that denotes that structure to begin with. A selection of some of the terms in

the vocabulary and their relationships can be seen in figure 3.2.

The vocabulary was developed in an iterative manner. The image annotators

started with a set of terms that described the most common centriolar structures.

As their worked progressed meetings between the annotators, the domain experts

and the database developers were held. In these meetings the annotators would

present images where there was doubt about whether some structures could be

described using the existing terms and the parties involved would discuss if new

terms were necessary. Should that be the final decision, the terms would be added

to the database, a process made easy by the database schema used.
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Figure 3.2: Representation of part of the centriole controlled vocabulary. Each node
represents a term and an edge means that a term belongs to a group. For example,
’transition zone’ belongs to the ’structure’ group and the terms characterising a
transition zone belong to the ’transition zone’ group.
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3.4 Website implementation

The website for CentrioleDB was implemented using the Python-based web frame-

work Django. This framework uses specially designed classes representing the database

schema, allowing for complex querying inside the Python code. Django also has

modules to deal with user authentication, sessions, forms and pagination, for exam-

ple, facilitating the website development. While the back-end for the system is in

Python, Django uses HTML templates with special markup to build the responses

to the user.

A note on style. During the development of CentrioleDB I built the HTML

templates and corresponding CSS and it was in that form that it first launched.

Recently, Marg Gouw, a colleague at the Computational Genomics Laboratory has

started to participate on the project and made great contributions to the CSS and

to the aesthetic component of the website, so that the way it looks today is the

result of our collaboration. On the other hand, the choice of views available to the

user, the content that is displayed in each view, and the back-end that generates it,

were done by me.

The main users of the website have been Dr. Mónica Bettencourt-Dias, Zita

Carvalho-Santos, Joana Pinto and Neuza Matias. They contributed generously with

interface suggestions leading to better usability.

3.4.1 From user to database

The Django framework provides easily customised Python scripts and classes to deal

with all the necessary steps between a HTTP request by a end-user and the HTML

response to be rendered by his browser (Fig. 3.3).

Figure 3.3: Diagram of the inner working of a Django-based back-end. The end-user
is represented in blue, Django classes or functions are represented in green and the
MySQL database is represented in orange.

When the server receives a request, the first thing Django does is resolve the
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URL and call the appropriate function. In Django, a function associated with a

URL is called a ‘view‘. Apart from GET or POST arguments, the views functions

can also take arguments encoded in the URL and retrieved using regular expressions

in the URL resolver.

It’s in the view functions that most of the request and data processing takes place.

It does not interact directly with the database, relying instead on ‘model‘ classes.

These are defined by the developer and there is usually a one to one correspondence

between a model class and a table in the relational database. Restraints on the SQL

code and foreign keys can be defined in the model class. This way, when defining

the view functions, the developer has Python objects that represent his database

and allow him to do any necessary query, insertion or update without having to

explicitly mix Python and MySQL in the same functions.

After retrieving and processing the necessary information, the view function

supplies context to a template. The template consists mainly of HTML code with

specific Django template language that allow the template loader to dynamically

prepare the final HTML page. The Django template language implements inten-

tionally simple loops and logic checks, allowing for limited final data processing.

After rendering, the final HTML page is sent to the user as the response to his

original request.

3.4.2 Interaction scenarios

Submitting or editing an image

To submit an image the user first clicks on the corresponding link on the left-hand

side menu. He is prompted for the number of pictures he wants to submit in one go

and, upon answering, is directed to the main submission form. Here the user fills

in the necessary information relating to the paper and to the image. Regarding the

paper, should it have a PubMed ID, it and a pdf file are all that is required for the

complete paper information to be added to the database. Otherwise the user has to

manually insert the paper’s details.

Regarding the image annotations, the user is presented with a series of check

boxes, drop-down menus and text fields with the appropriate labels. In an attempt

not to overwhelm the user with choices, some options only appear after certain

selections. For example, detailed annotations describing a basal body only appear

after the user has indicated that such a structure is present in the image (Fig. 3.4).

Behind the scenes, the form is generated using costumized Django ‘Form‘ classes

and templates. In the classes, I defined which fields the form will have, their types,

the permissible data and, where appropriate, the available choices. I mentioned when

describing the database schema that, to allow for annotation flexibility, the onus is

on the user to make sure that he is inserting the correct annotation values, if any.
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(a)

(b)

Figure 3.4: Detail of the image submission form. Note the expanding basal body
annotations in (b).
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In CentrioleDB, the database user is the Django back-end, not the end-user, so by

correctly designing the form classes the database and website administrator ensures

that the correct type of data is inserted. On end-user submission, the back-end

validates the form against the defined classes and should something not be correct

(the image file is in fact a text file, for example) returns the filled-in form with

the corresponding error messages. On submission of a form that passes validation,

the paper and image files and information are inserted into the database and are

available for querying right away.

Should a user want to edit the annotations for an existing image, by following the

link on the left-hand side of the page he will be presented with the list of submitted

papers and, after choosing one, with the list of annotated pictures in that paper,

where he can chose to delete one of them (not without being prompted if he is sure

about his actions) or simply edit the annotations. In case the user wants to do the

latter, he will be directed to a form similar to the original image submission one,

already filled in with the existing annotations.

Searching for images

Figure 3.5: The Browse view. The presence matrix is interactive and dynamically
generated.
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There are two main ways a user can search for images in the database. The

most intuitive one is ‘Browse‘ view (Fig. 3.5). Here the user is presented with

a dynamically generated presence matrix listing the species for which images are

available and the annotated structures for each of them. The presence matrix is

interactive; by clicking on a position in the matrix the user is directed to a list

of the images that satisfy his request. A second way to search for images is in the

‘Search‘ view (Fig. 3.8). The user selects the characteristic he wants to search for (at

the moment the choices are Paper, Taxon and Structure) and the form seamlessly

updates to show the available instances of that characteristic. After choosing and

submiting the form, the user is taken to a list of images identical to the one he would

get had he done the search through the ‘Browse‘ view.

Figure 3.6: An example of the results in a search for images. Note the URL describ-
ing the user location.

The image search result view includes thumbnails for the images, the paper from

which the image was taken, the figure number in said paper and a list of the main

structures present in that figure, as can be seen in figure 3.6. Note the URL on the

figure. It describes the status of the user at that moment. In this example, the user

was searching for pictures of basal bodies in Lithodesmium undulatum and the URL

reflects that by stating that the user is doing an image search for the taxon 59812
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(the corresponding NCBI taxon ID) and for the basal body structure. This address

is static, it will always direct the user for the list of images stored in the database at

that moment that answer this query. Similar URLs are used if the search is based

only on paper, taxon or structure. On clicking on the desired thumbnail, the user is

finally directed to a view describing the image in greater detail using the controlled

vocabulary (Fig. 3.7).

Figure 3.7: The detailed description of a particular image. The vocabulary is the
same that is used when submitting the images.

Searching for proteins

The starting point when searching for proteins is the same ‘Search‘ view that can

be used to search for images accessible through the left-hand column. However, the

user now fills in the lower forms to obtain either a list of proteins that belong to a

certain family or proteins that map to certain structure.

Should the user want to search for a family, he will be directed to a view that

provides a brief description of the family, the list of sequences that are annotated as

belonging to that family and a taxonomic tree showing where this family appears.

Statistics about the number of sequences, species and number of sequences per

species are also provided. The user can drill-down the taxonomic tree to investigate
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Figure 3.8: The general search view, where the user can search for images or for
proteins.
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whether the distribution of sequences inside a taxon is homogenous.

Figure 3.9: An example of the information stored in the database about a particular
protein.

If the user searches for proteins that map to a certain structure and selects one

of them, or if he selected a protein from the family description, he is taken to a page

where more detailed information about the protein is presented to him (Fig. 3.9).

This information includes the protein names, GO annotations, families it belongs

to, structural domains and a dynamically generated matrix that shows to which

structures (if any) the protein is mapped to and what orthologs it has.

3.5 Current status

As of September 6, 2009, CentrioleDB has had 304 annotated images submitted,

covering 58 different organisms. The current controled vocabulary has 123 differ-

ent possible annotations, arranged in 13 different annotation groups, which range

from technical image details like magnification to specific characteristics of certain

structures, like the presence of a cartwheel in a centriole.

Information about protein mapping to structures came from literature [17] [19]

[37] and from a personal communication by Dr. Julliete Azimzadeh. The proteins
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associated with families of importance in centriolar function and biogenesis came

from work by Zita Carvalho-Santos of the Cell Cycle Regulation Laboratory which

has been submitted for publication. Orthologs were mapped for a list of organisms of

interest in the study of centriolar structures using the bidirecional best-hit method

[24].

As for the future, the ongoing annotation of images will continue, done both

by members of the Cell Cycle Regulation Lab and by its international collabora-

tors. In addition, the controlled vocabulary is to be expanded to properly annotate

tissue-specificity in multi-cellular organisms and to describe morphological varia-

tions arising from mutations. Finally, on the protein side, algorithms are expected

to be developed that can deal with the coiled-coil structures that are frequent in

centriolar components.
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Conclusions

I expect to proceed with the biological analysis of the protein trafficking network

results and to submit a manuscript for publication in October, 2009. In addition,

my work during the stay at the Computational Genomics Laboratory also enabled

two studies in which I am a co-author and which will be submitted soon:

1. ’Stepwise Evolution of Centriole Assembly Mechanisms’, by Zita Carvalho-

Santos, Pedro Machado, Pedro Branco, Filipe Tavares-Cadete, Ana Rodrigues-

Martins, José B. Pereira-Leal and Mónica Bettencourt-Dias

2. ’Extensive innovation in the evolution of Rab:effector interactions by Maria

Luisa Rodrigues, Filipe Tavares-Cadete and José B. Pereira-Leal.

In this work I present two new resources for the cell biology community. Their

differences are more than the cellular processes each one covers or the type of in-

formation displayed. A fundamental distinction is the way that information was

obtained. In the first resource presented here, TrafficDB, the information contained

therein was compiled by my own bioinformatics analysis. In contrast, the main

component of CentrioleDB, its images, were not a direct result of my work, which

consisted of providing the means for users familiar with centriolar structures to

upload existing images and annotate them themselves.

There is still scope for improvement in both projects. In TrafficDB, apart from

the already mentioned development of a lighter and faster tool to identify rab pro-

teins in new sequences using the results of the Rabifier and further analysis of its

biological significance, the next logical step is the incorporation of data on the other

components of the protein trafficking system. These include rab effectors and reg-

ulators, SNARE proteins and vesicle coat proteins, to name a few. By adding the

different components of the system, we can further infer its state in the LECA and

how it adapted and innovated, evolving into the forms present nowadays. The Traf-

ficDB system is already designed with this in mind and rabGAPs, while not being

displayed in the interface, have already been added to the database.

43
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CentrioleDB will benefit from ongoing annotation of more structures in a greater

variety of organisms. When we have sampled the taxonomic and morphologic di-

versity, we can attempt to correlate it with the molecular diversity, through the

comparison of phylogenetic profiles of structures and molecules. If a particular pro-

tein only appears in organisms with a particular structure, we can use this as a

prediction that the protein is involved in the formation or interacts with the struc-

ture. The best of these predictions can then be brought to the laboratory to be

experimentally validated.

The two works developed here use different techniques to obtain their data. The

one dealing with rab proteins is based on automatic sequence annotation while the

one dealing with centrioles is based on tools for the manual annotation on images.

Where they cross is in their final purpose, the study of evolution of complex systems,

and in the way the data is present, always with an eye on evolution, using taxonomy

as its proxy.
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[23] José L Nepomuceno-Silva, Luiz Dione B de Melo, Sergio M Mendonçã, Julio C
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