
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

DOCUMENT FLOW TRACKING
WITHIN CORPORATE NETWORKS

Tiago Gomes da Silva Mendo

MESTRADO EM SEGURANÇA INFORMÁTICA

November 2009

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

DOCUMENT FLOW TRACKING
WITHIN CORPORATE NETWORKS

Tiago Gomes da Silva Mendo

Orientador
Hyong Kim

Co-Orientador
Miguel Pupo Correia

MESTRADO EM SEGURANÇA INFORMÁTICA

November 2009

Resumo

Notícias sobre documentos sensíveis publicados na Internet são cada vez mais frequentes
nos cabeçalhos da imprensa de hoje em dia. Em Outubro de 2009, o Manual de Segurança
do Ministério da Defesa do Reino Unido, com 2389 páginas, que descreve a totalidade do
protocolo militar do Reino Unido relativamente a operações e informações de segurança,
foi tornado público por acidente. Este é apenas um caso, mas existem exemplos de fugas
de informação em praticamente qualquer área, desde a médica à financeira. Estas fugas
de informação podem ter consequências sérias para quem seja afectado por elas, como a
exposição de segredos de negócio, danos da imagem de marca ou a aplicação de multas el-
evadas por parte de entidades reguladoras. Uma fuga de informação pode ter várias causas,
sendo uma delas devido a empregados que expõem documentos sensíveis para o exterior
da empresa, de forma não intencional.

Neste trabalho propomos uma solução capaz de rastrear ficheiros numa rede empresarial e
detectar situações que podem levar a que um documento sensível se torne público. Fazemos
uso de um agente que é instalado nas máquinas que pretendemos monitorizar, que detecta
e regista a utilização de ficheiros em operações potencialmente perigosas, como a cópia
para um dispositivo amovível ou o envio por correio electrónico como anexo. Essas op-
erações são registadas e recolhidas para uma localização central, onde podemos fazer uso
de um motor de correlação para encontrar relações entre diferentes cópias de um mesmo
ficheiro. Para finalizar, desenvolvemos e avaliámos um protótipo que implementa a solução
proposta, provando que pode efectivamente ser usado para detectar fugas de informação.

Palavras-chave: fuga de informação, publicação acidental, rastreio de ficheiros, monitor-
ização de ficheiros

i

Abstract

News about sensitive documents being leaked to the Internet are becoming a commonplace
in today’s headlines. In October of 2009, the United Kingdom Ministry of Defense Manual
of Security, with 2389 pages, which fully describes the United Kingdom military protocol
for all security and counter-intelligence operations, was inadvertently made public. This
is only one, but there are examples of information leaks from almost any area, from med-
ical to financial. These information leaks can have serious consequences to those affected
by them, such as exposing business secrets, brand damaging or large fines from regula-
tion entities. An information leak can have multiple causes, being one the employee that
inadvertently exposes sensitive documents to the exterior of the company.

In this work, we propose a solution capable of tracking files within a corporate network
and detecting situations that can lead to a sensitive document being leaked to the exterior.
We resort to an agent installed on the hosts to be monitored that detects and logs the usage
of files by potentially dangerous operations, such as copying it to a removable drive or
sending it by e-mail as an attachment. Those operations are logged and collected to a
central repository, where we make use of a correlation engine to find relationships between
different copies of a same file. Finally, we have developed and evaluated a prototype that
implements the proposed solution, proving that it can indeed be used to detect information
leaks.

Keywords: information leak, inadvertent disclosure, file tracking, file monitor

ii

Acknowledgments

First, I would like to thank my company, Portugal Telecom, for supporting my presence in
this program, as well as my colleagues that took care of the projects I left behind.

I want to thank my advisor, Hyong Kim, for providing me with the vision to guide my
thesis to success, and my co-advisor Miguel Pupo Correia, for his promptly availability for
my questions.

I cannot forget to mention my MSIT-IS colleagues, that were my full-time friends for the
last months and had a vital role to my success on this program.

My parents and sister... I thank them for being so patient with me on these last sixteen
months.

Finally, I want to thank my girlfriend, Filipa, for being so understanding. Now, I will make
up for being so away.

Lisboa, November 2009

iii

iv

Dedicated to my parents, Adelaide and Orestes.

v

vi

Contents

1 Introduction 1

1.1 Related work . 3

1.2 Contribution . 8

2 The information leakage problem 9

2.1 How it occurs . 9

2.2 Classes of solutions . 12

2.2.1 By goal . 12

2.2.2 By architecture . 13

3 Design 15

3.1 Overview . 15

3.2 Components . 16

3.2.1 Host agent . 16

3.2.2 Event collector . 17

3.2.3 Event correlation engine . 18

3.3 Security assumptions . 19

4 Architecture 21

4.1 Collecting file information . 21

4.1.1 File system modification monitor 22

4.1.2 Removable drive monitor . 24

vii

4.1.3 Spooling monitor . 25

4.1.4 E-mail sending monitor . 26

4.1.5 Event storage . 27

4.2 Correlation of events . 28

4.2.1 Filename heuristics . 31

4.2.2 Non-atomic operations . 32

5 Implementation 35

5.1 Host agent . 35

5.1.1 FileSystemWatcher . 35

5.1.2 WndProc overriding . 37

5.1.3 WMI . 37

5.1.4 Visual Studio Tools for Office . 37

5.2 Alternative approaches . 38

5.2.1 Proxy DLL . 38

5.2.2 IAT modification . 39

5.2.3 API patching . 39

5.2.4 Event Tracing for Windows . 39

5.2.5 Redemption library . 40

5.3 Correlation engine . 40

6 Discussion 41

6.1 Experimental evaluation . 41

6.2 Performance evaluation . 43

6.3 Privacy . 46

6.4 Applicability . 46

7 Conclusions and future work 49

7.1 Conclusion . 49

7.2 Future work . 49

viii

Bibliography 53

ix

x

List of Figures

2.1 Example of an information leak on an enterprise network 10

2.2 Network-based analysis . 13

2.3 Host-based analysis . 14

3.1 Host agent integration with the operating system 17

3.2 Event collection using a tree structure . 18

4.1 Host agent components . 22

4.2 Available attributes from a print job . 26

4.3 Saving an event to temporary storage . 28

4.4 Sending an event from temporary storage 28

4.5 Undetected file copy via USB pen . 30

4.6 Microsoft Word temporary files creation 32

6.1 Functional test action diagram . 42

6.2 Detected Microsoft Word temporary files 43

6.3 Performance test 1 results . 44

6.4 Performance test 2 results . 45

xi

xii

List of Tables

4.1 Typical operating system operations . 22

4.2 Information collected by operation type 23

4.3 Events intercepted upon drive connect/disconnect 25

4.4 Information extracted from a print job . 26

5.1 Possible values for NotifyFilter . 36

6.1 Evaluation test-bed hardware . 41

6.2 Performance test input files . 43

xiii

xiv

Abbreviations

ACL Access Control List

API Application Programming Interfaces

COM Component Object Model

CPU Central Processing Unit

DLL Dynamic-link library

DLP Data Loss Prevention / Data Leak Prevention

DMA Direct Memory Access

EMF Enhanced Metafile

ETW Event Tracing for Windows

FTP File Transfer Protocol

GB Gigabyte

Gb/s Gigabit per second

GDI Graphics Device Interface

GHz Gigahertz

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IAT Import Address Table

IM Instant Messaging

IMAP Internet Message Access Protocol

IPsec Internet Protocol Security

JVM Java Virtual Machine

xv

KB Kilobyte

MB Megabyte

MTA Mail Transfer Agent

P2P Peer-to-peer

PCL Printer Control Language

PDF Portable Document Format

POP Post Office Protocol

PS PostScript

RPM Revolutions Per Minute

SATA Serial ATA

SSL Secure Sockets Layer

TB Terabyte

TLS Transport Security Layer

USB Universal Serial Bus

VoIP Voice over Internet Protocol

VSTO Visual Studio Tools for Office

WMI Windows Management Instrumentation

xvi

Chapter 1

Introduction

News about sensitive documents being stolen or leaked to the Internet are becoming a
commonplace in today’s headlines. In 2007, five laptops containing data about tens of
thousands of retirement-plan clients at multiple companies were reported stolen by Towers
Perrin [1]. Other companies such as Boeing, Fidelity or even the United States Department
of Veterans suffered similar thefts [2].

These leaks were all consequence of intentional actions, but there is a surprisingly increase
in the number of situations where the leak was inadvertent. In 2008, the United States
Computer Security Institute released its annual Computer Crime and Security Survey for
2008, in which 522 security personnel members from United States corporations particip-
ated [3]. The report showed that 44% of the inquired suffered at least one insider incident
involving leakage of sensitive information. The amount of news about this type of vulner-
ability seems to corroborate the report. In October of 2009, the United Kingdom Ministry
of Defense Manual of Security, with 2389 pages, was inadvertently made public [4] [5].
The document fully describes the United Kingdom military protocol for all security and
counter-intelligence operations. Ironically, it included instructions on how to deal with in-
formation leaks. As more everyday services go online, the problem starts to affect them too.
In 2007, it was found that the UPMC Health System had posted on its website the names,
social security number and other personal information for nearly 80 patients, without their
permission [6]. Some of those entries were online since 2002, making a damage evaluation
assessment nearly impossible. Time Warner’s AOL, in 2006, incidentally left a large file on
their research web site containing over 19 millions queries made by around 500 thousands
users, exposing queries that reveal sensitive information about who did it [7].

The sheer amount of leaked documents might be difficult to account, but one can have an
idea visiting WikiLeaks [8], a website that dedicates to the collection of documents with

1

sensitive information that have leaked to the public. The actual count is around 1.2 million
documents.

The consequence of each one of these leaks differs in each situation, but they are well
beyond data exposition to the public. First, it depends on the contents of the data, to whom
it belongs, and to what it refers. Company business plans are one of their most well kept
secrets, since it details their strategy regarding investments, new products, new markets
and how they will defend from competitors. These documents are often target of industrial
espionage by competitors to gain advantage. Failure to protect that information may take
a company out of business. However, it does not directly affects their clients in the sense
that their private information is not revealed.

People are normally more concerned about seeing their personal information posted on the
Internet, such as which films they have ordered from their Video-On-Demand system, or
the balance on their checking account. When that happens, they will likely switch to a
competitor, and will spread the word about how bad their old company is. The impact of
such negative information is extremely prejudicial to companies, and nowadays it can reach
a large number of persons very quickly due to the proliferation of social networks services
in the Internet. This kind of publicity has a great impact on the company brand, damaging
it for an undetermined period, causing current clients to cease contracts, pushing away new
clients, reducing investments by third parties, and possibly affecting stocks, if quoted in a
stock exchange.

In addition to the damage directly associated to current and potential clients, there are
also regulation entities. These entities specify policies regarding how sensitive information
must be treated, and which information is considered sensitive. In heavily regulated en-
vironments, such as telecommunications, mistreating client data normally incurs in large
fines. Although some companies refrain from disclosing all leaks, there are places where it
is mandatory to warn clients if their data has been exposed, such as in the state of California,
United States [9] [10].

One of the root causes for these leaks is the need to share information. Often company em-
ployees need to share documents and pieces of information amongst them, within a project
team in the same room or amongst company branches spread around the world. Sometimes
there is the need to share sensitive information with people outside it, but within the context
of a professional relationship. Examples are contractors that install services at the client’s
home, suppliers who deliver goods at the company such as computer hardware, or lawyers
that evaluate the legal impact of a new advertising campaign. Many of these relationships

2

are supported by electronic means such as e-mail, USB drives or shared folders, but often
people misuse them. Reasons are as variable as lack of knowledge on how to define an
Access Control List (ACL) for a shared folder or just careless handling of which files are
copied to a USB drive that its going to be handed out to a contractor. These exchanges of
information between internal and external networks blur the electronic boundaries of the
company creating an information management problem, leading, for instance, to situations
where employees save a file to a place they think nobody outside the company can access,
but that is made public to the Internet by a web server.

The thesis is about detecting inadvertent information leaks in corporate networks. We focus
on detecting the leakage right in the computer, assuming they can take place through other
venues than only through the network. For that, we make use of an agent installed in the
machines to be monitored, that intercepts and logs file operations that have the potential to
cause a leak. The monitoring takes place regardless of the file containing sensitive data,
thus overcoming possible limitations derivate from the file being misclassified.

1.1 Related work

Various authors have addressed the information leakage problem through electronic formats.
In most approaches, the authors assume that the information exit point is the network,
specifically at the gateways or bridges between networks such as internal networks and
the Internet. The Sensitive Information Dissemination Detection (SIDD) is a multilevel
framework focused on detecting exfiltration1 from a protected network [11], even if covert
communication is used, such as encryption, modulation by the communication protocol,
slight content modifications and stenography tools. It works on the idea that all traffic leav-
ing the protected network must pass through it, where it can be compared against a set of
signatures of sensitive information. SIDD is a complete framework, in the sense that its
building blocks can be used to construct other solutions. For this purpose, it was built as a
three-component system: the network-level application identification, the content signature
generation and detection, and the covert communication detection.

The network-level identification component purpose is to provide a better work base for the
content signature generation (and identification), since it identifies the format of the com-
munication and its partial context. Traffic characteristics, such as temporal patterns, sizes

1”Exfiltration” is used by the military as jargon for exiting an area, but is being used also to refer to the
unauthorized publication of data from a computer system to its outside, for instance, to a network different
from where it was.

3

of packets, and inter-arrival packet time are used to match the application against a set of
previously identified list of authorized or frequent applications. The content identification
process will then retrieve the content from the application traffic and generate the corres-
ponding signatures. The limitation of such approach is that sensitive information must be
defined a priori which might not be possible with very dynamic information. In addition,
it requires the sensitive information to be somehow collected and analyzed by SIDD, again
incompatible with a company where the information is scattered around multiple branches,
departments, and employees.

Regarding covert communication detection, the authors focused on digital audio medium
as covert channels, for instance, using VoIP or Skype2. They use steganalysis3 to detect
modifications of the signal’s properties such as distortion introduced by the hidden inform-
ation. This is, however, very prone to false-positives or false-negatives as an ill intentioned
person can be as creative as possible when it comes to covert communication.

This is a versatile solution, since it can work as anomaly detection (as described) or as
misuse detection. It is also a complete solution, from the perspective that it provides de-
tection and prevention, either for inadvertent or deliberate information leaks. Prevention
can be enforced using a mechanism that approves or disapproves the information release
through the network, after something matched the detection layer. Because it operates at
the network-level, it must be placed at the edge of the protected network, for instance at
the Internet gateway. The consequence is that it must operate at the high rates at which the
traffic flows through the gateway.

A different approach is to resort to deception, being Honeypots one of the most well known
methods to achieve this purpose. Its primary objective is not to detect information leaks
but can be used as tool to help identify the potential for information leakage, by detecting
employees accessing system they should not even know about [12] [13] [14]. This object-
ive is traditionally achieved through a vulnerable system placed in the network waiting for
someone to access it. The reasoning behind this approach is that no one should be aware
of the existence of this system as it does not have any useful function to the company, and
neither has any important information. Thus, every access to this system can be considered
a potential threat, as no one should have the need to access it. Depending on where it is
placed, in the internal or external network, it can detect inside or outside threats, respect-
ively.

Although this approach is very effective and has a very low rate of false positives, since
2Skype is a popular software that allows users to make free voice calls over the Internet, using a proprietary

communication protocol.
3Act of analyzing communications with the objective of finding messages hidden using steganography.

4

every access to the honeypot can be considered a potential threat, it still requires the at-
tacker to have some level of sophistication to exploit one of its vulnerabilities and success-
fully break-in. There may be that some disgruntled employee, or even just curious, wants
to get access to sensitive information but does not know how to bypass even a simple ACL
mechanism. However, it might browse the network with its computer for shared folders, a
task that requires no kind of security knowledge and it is easily achievable using the every-
day computer GUI, searching for documents of his interest. Honeytokens are a mechanism
based on the same principles as honeypots created to detect these situations [15]. Quoting
Lance Spitzner ”Honeytokens are everything a honeypot is, except they are not a com-
puter” [16]. Honeytokens are fake information, specially created to look similar to the real
information of the environment where it is placed. An example is a bogus medical record
entry about a non-existent person inserted in the database that holds the records for all the
real patients. Monitoring every access to this entry will raise an alarm every time a person
reads this information, in a violation of the patient privacy, and possibly other policies.

Honeytokens can take almost every shape possible, such as Microsoft Word file, a user and
password pair, or a medical entry, fitting to the environment as needed. Even though they
have a great potential to catch unauthorized accesses, it can only detect access to bogus
documents, not to the real ones. Our solution mitigates this limitation by allowing monitor-
ing of every file, not only honeytokens. Limiting our system to monitor only honeytokens
files would make it to a honeytoken-based honeypot.

Another solution based on fake information is the Decoy Document Distributor system or
D3, by Bowen et al [17]. Its objective is to detect malicious users that attempt to exfiltrate
sensitive information. The authors classify them as Masqueraders, if impersonating another
user, or Traitors, if using their own credentials. D3 is in fact a large-scale automated creation
and management system for deploying decoys. These decoys are documents crafted by a
set of techniques developed to aid in the detection of the malicious users. Their creation
followed a set of properties formalized by the authors with the objective of increasing the
likelihood of successfully baiting malicious users with different levels of sophistication.

For that purpose, a decoy document can contain a watermark and a beacon. The watermark
is an embedded mark in the binary format of the document file to detect when it is open or
loaded to memory, but can also be analyzed at an egress point of the network. The beacon
is a command embedded in the document with the objective of signaling a remote web
site, named SONAR, upon opening of the document. In addition, as backup solution, the
contents of the document also contain information that can be monitored. The advantage of
such approach is that is works even after the decoy document left the company environment.

5

Depending of the number of decoys and how they are deployed in the network, this solution
could be highly effective in detecting leakage attempts. However, malicious users might
already know which files are important and attempt to exfiltrate those files only, completely
avoiding the detection system.

None of the previously described solutions are concerned with information leaking through
a specific application. Instead, they focus on monitoring documents and information re-
gardless of the application that is manipulating it. Capizzi et al takes a different approach,
named shadow execution [18]. Shadow execution is a mechanism developed to prevent
applications from sending sensitive information over the network, while communicating
with third parties, i.e. someone who should not have access to the sensitive information.
Examples are programs with automatic updaters that periodically connect to a server on
the Internet to check for an updated version of the program, that normally enjoy full access
to the user’s personal data. This situation may lead to an information leak if the program
author is malicious, or in case there is a bug that inadvertently sends that personal data
through the network. The basic idea of shadow execution is to replace the original applica-
tion with two copies of the same program. One of those copies is prevented from accessing
the network, but has full access to the user’s private information, while the other copy has
only access to non-confidential constant data, not related with the user. The latter is al-
lowed to communicate with the network, and the response obtained is shared with the copy
that has no network access. Although this approach does indeed prevent sensitive inform-
ation from leaking to the network, it has a considerable overhead due to the duplication of
the resources needed to run the application. Another limitation, which our solution does
not have, is that it can only be applied to certain, simple, applications. Direct access to
sensitive information by the operating system cannot be prevented with this method since
there might exist functionalities that are not easily treated as isolate applications that can
be duplicated and executed in parallel.

A solution similar to our proposal is the ELICIT system [19]. It is a network-based sys-
tem developed for detecting malicious users who operate outside the scope of their duties,
potentially violating the company security policy, for instance by accessing sensitive doc-
uments. The system consists of four main steps: first, decoders process network traffic and
create high-level events. Then a group of detectors, complemented with context informa-
tion about the employee organization within the company, issues alerts. These alerts are
classified by a Bayesian network into different levels of threat, and finally, that information
is presented to security analysts in a GUI. The high-level events mentioned above corres-
pond directly to the events captured by our solution, but in this case they are extract from

6

the network traffic. These events match a set of user actions that, given the right context,
can be considered suspect, such as downloading and printing documents that they do not
usually access. This context is based on their identity, past activity and organizational con-
text. This approach has the potential to reduce the number of events captured and stored
from each user, but can be affected by false-negatives, as the user can be careful and avoid
detection. One of the techniques employed to improve the quality of contextual information
is take advantage of files in users’ public folders or shared file systems.

Contrary to our approach, the ELICIT system extracts the high-level events from the traffic,
so it has decoders for the different kinds of traffic. For instance, a file can be transmitted
over a network using a large number of protocols, such as HTTP, FTP, or proprietary
protocols such as Skype. However, these protocols can be combined with encryption at IP
level, with IPsec, or at application level, with SSL, avoiding detection. Their option for the
network-based approach was because it would be impractical to instrument every machine
with the necessary software, but we believe that depends on how the company workstations
are managed. With automated installation procedures and a centralized management it is
possible to deploy our software without much effort.

With the exception of Honeypots that can be found as either research or commercial tools,
the other solutions were academic efforts that did not result directly in commercial solu-
tions. Nevertheless, there are multiple commercial products sold under the Data Loss Pre-
vention / Data Leak Prevention (DLP) denomination, among others.

One such solution is the Websense Data Security solution [20]. This solution is com-
prised of a set of products focused on specific objectives. The Websense Data Monitor is a
network-based solution that identifies and monitors confidential data, providing contextual
information on the data being monitored, such as who is accessing it, its destination, and
in-depth detail about the data itself. The identification process relies on policy templates
that describe the regulated data and contains fingerprints of the sensitive information being
protected. A more complete version of it is the Websense Data Protect solution, similar
to the one described previously, but capable of preventing the leak from taking place by
blocking dangerous actions, such as e-mail sending. Websense Data Discover is agent-less
centralized solution that discovers sensitive data placed in public or unprotected network
file shares, databases, e-mail servers or other kind of data repositories. Also based on a
set of policy templates that help matching documents against the company definition of
sensitive information, it searches the network for files with those characteristics, provid-
ing the option to automatically protect those files, by encryption, removal or replacement.
Although this may effectively prevent some leak from occurring, there is a significant risk

7

of false positives prejudicing the employee’s tasks. In addition, there is a solution that
aggregates the products described above, named Websense Data Endpoint, and a version
that interacts with other products from the company for better accuracy and completeness,
which is the Websense Data Security Suite.

1.2 Contribution

Most of the previously described solutions for the information leakage problem assume
documents will leak through the network, with only Bowen et al [17] taking an additional
measure regarding leaks at the host level. In this thesis, we propose a solution capable of
tracking files within a corporate network and detect situations that can potentially lead to
the file leaking from the protected environment. Instead of assuming the leaks will only
occur through the network, we try to account for other situations such as printing and copy-
ing the file to removable drives. Following a host-based approach, we place an agent on
each host that, without significant overhead, can intercept operating systems events caused
by certain operations such as file copying. Gathering these events from multiple hosts that
share files among them makes it possible to draw a timeline of the actions done over a spe-
cific file, and possible copies that could exist in other hosts from the company. To increase
the coverage of our solution, we provide offline monitoring, i.e. we can continue monit-
oring even if the machine is taken away from the network. Such solution will not prevent
the leak from taking place but will detect it, providing liability and defining responsibility,
which could prevent future leaks. Although our solution may detect intentional information
leaks, the focus is on inadvertent leaks.

8

Chapter 2

The information leakage problem

2.1 How it occurs

Before devising a solution for the information leakage problem, one must comprehend how
it occurs and what are the reasons that cause such threat. An information leak is said to
occur as soon as a piece of sensitive information is made publicly available, even if for
a restrict group of people, such as when a laptop is stolen. Although the information is
not immediately available to the world, it is in the hands of the thieves that may choose to
do anything with it, from destroying it to posting it on a website accessed by millions of
people around the world.

The definition of ”publicly available” is normally associated with the information being
available to persons outside the company, but it depends on who should have access to the
information in the first place. The payment sheet of the company employees should not
be public to every employee, just to the human resources department and the employee
manager, so if an employee gets hold of a payment sheet of its colleagues, an information
leakage has occurred. Although not critical to the company future, it may influence the
motivation and performance of the trespassing employee. In this situation, the information
did not left the company environment, but it has left its protected environment.

An information leak can take place intentionally or inadvertently. However, an intentional
leak might be caused by an inadvertent action, such as leaving a sensitive document ex-
posed without the necessary protection mechanisms. From the multiple possible classifica-
tion schemes [21] we choose to classify the person who leaks the information based on his
motivation and access to the information:

9

Figure 2.1: Example of an information leak on an enterprise network: An employee ac-
cesses unprotected network shares and copies sensitive documents to its home computer.

• Inadvertent insider - user entitled with the access to sensitive information that inad-
vertently discloses it, i.e. without the intention to deliver the information to anyone
who is not entitled to access it.

• Intentional insider - user entitled with the access to sensitive information that delib-
erately discloses it, with the purpose of making it available to someone who cannot
access it.

• Malicious insider - user not entitled with the access to the sensitive information, that
uses unauthorized methods to gain access to it. An example is shown in Figure 2.1.

The intentional insider is sometime referred in the literature as traitor [17]. Both him and
the malicious insider might or might not be aware of the security mechanisms protecting
the sensitive information. For instance, the malicious user might know that every access to
a given protected file is being monitoring by a detecting system and may try to erase that
entry, but the intentional insider might not be aware of such protection mechanism.

An example of an inadvertent insider is an employee that saves a sensitive document to a
folder accessible by other users of that computer, without knowing those users can read
the document. On the other hand, an intentional insider would save the document on a
shared folder on purpose, with the objective of sharing the document with other person
of his interest. A malicious insider example is an employee that purposely searches for
shared folders and tries to get access to them, for instance by brute-forcing the shared
folder password.

10

Many of the leaks caused by inadvertent and intentional insiders are motivated by their
duties within the company. The need to share documents with the colleagues to get a
task done before its deadline may increase the potential for these leakages to occur. If an
employee needs to share a large file with another colleague and has to do it quickly, it is
very likely that we will do it in the easiest and quickest manner possible, such as sharing the
file folder. Depending on the sophistication of the user, its hurry and the GUI usability [22]
[23] [24], he may configure it correctly or not. If the ACL mechanism is too fine-grained
or the GUI is cumbersome, the user might choose to leave the share open to everyone or
just share an entire drive instead of a single folder to avoid the burden of the configuration.

Lending a removable drive, such as a common USB pen, may mean leakage of the entire
contents of the device, for instance if the borrower copy its entire contents without the user
noticing it. This problem becomes more serious as the capacity of this devices increases.
Printing can also be problematic because the printed document can easily be taken home,
or taken from the printer tray by a passing employee. Purposely or mistakenly sending
information through e-mail or IM software to unauthorized recipients is another situation
company face nowadays. That can happen with entire files or just with the clipboard con-
tents that may hold sensitive information copied from the original document.

Less obvious situations that can lead to an information leak are hidden fields within docu-
ments, such as hidden columns in Microsoft Excel, or comments from the document revi-
sion tool from Microsoft Word. Backup and temporary files created by some text editors
can also be problematic if left behind after the original file is moved or removed. Edit-
ors such as Vi and Microsoft Word create temporary files while editing files, often hidden,
which are automatically deleted when the editor quits normally. The problem happens
when these editors quit abruptly and leave the temporary files behind, possibly forgotten
by the user in a folder that can be shared or on a removable drive.

P2P sharing software can also be blamed for leaking sensitive files to the Internet [22]. P2P
software basic functioning is to share files from a particular folder on the host computer
that are indexed by the P2P server and made available to other clients who can search for
them, much as if it is done by a web search engine, such as Google. There are several
manners for sensitive information to be exposed in a P2P network: the client software
might automatically share more folders than the user wants; the software may have a bug
that unintentionally shares more than it should; or may include malware that exposes the
files. Some of them may be blamed on the user: misplaced files or poor organization habits
may lead to sensitive files being placed in those shared folders; share large number of files
because some P2P reward those who share more [25]; or just laziness on the part of the

11

user to select specific folders inside his home directory, instead of sharing the entire home
directory.

2.2 Classes of solutions

Solutions to deal with this sort of problems can be classified by a number of criteria, but
two frequent classification schemes are by goal and architecture.

2.2.1 By goal

Classification by goal refers to the macro objective of the solution, which can be one of
these:

• Prevention - the objective is to prevent the information from taking place by mediat-
ing the user actions and blocking them if necessary. An example of an action with
the potential to be blocked is the sending of an e-mail with sensitive documents at-
tached. This is the desired solution from the point-of-view of who is responsible by
the security of the information, however it has some drawbacks, such as the risk of
false positives, i.e. blocking legitimate actions, interfering with the person’s tasks.
Blocking of an action requires high level of knowledge about it, thus deep document
analysis is a requirement.

• Detection - in this approach the leak takes places but typically, a posteriori detection
of the occurrence is provided, although it can be provided in real-time. Detection
can be seen as a building block of prevention-based approaches, but also as a way
to define responsibility and possibly preventing future occurrences. An example of
such approach is to log the user actions, raising an alarm in a security management
console if a leak takes place. It is easier to implement than prevention-based solutions
since it only needs to log illegal actions and does not need to stop them. This has the
advantage of not interfering with the person’s tasks.

• Deterrence - enforced by a contract, such as the company security policy. Normally
solutions of this type do not have a technological implementation but it is possible
to incorporate detection techniques to raise warnings when a potentially dangerous
action is about to occur. Such solution could be implemented in environments with
strong privacy regulation that do not allow centralized or permanent data collection

12

regarding people actions in a computer system. Deterrence-based solutions without
enforcing mechanisms are likely to have very limited impact, and may be difficult to
determine responsibility [21].

2.2.2 By architecture

Classification by architecture refers to the place where the system enforces its objectives,
i.e. where it is deployed and consequently what it is monitoring:

• Network-based - this kind of solution is deployed on the network, monitoring its
traffic, as depicted in Figure 2.2. Typically, it is placed on the egress points of the
protected network, for instance at the Internet gateway. Without a key escrow sys-
tem it cannot analyze traffic encrypted end-to-end, for instance those using SSL or
TLS, as it happens in the case of a secure connection to a webmail service. Mak-
ing decisions based only on traffic analysis has the drawback of lacking part of the
context where the action took place, potentially increasing false-positives and false-
negatives. One important advantage is that deployment and management are easier
because of the smaller number of sites to monitor, although the volume of data to
process at each site could be overwhelming.

Figure 2.2: Network-based analysis: A network monitor analyses the Internet gateway
traffic for sensitive documents.

• Host-based - instead of being deployed at the network, it is deployed at each target
we wish to monitor, as depicted in Figure 2.3. At the limit, it can be installed on
every company host. This approach has the advantage of having access to much
more information about the action being monitored, providing a detailed context
and reducing the chance of false-positives and false-negatives. It can also support
offline mode. For instance if installed on a laptop, the user can take it home to

13

continue his work and still be monitored. Afterwards, the logs can be collected as
soon as the laptop reconnects to the company network. This approach has to take in
consideration the fact that the host might be controlled by the user, so some measures
need to be taken to prevent him from tampering or disabling the monitor.

Figure 2.3: Host-based analysis: An agent installed on the computer monitors file system
operations.

14

Chapter 3

Design

3.1 Overview

We propose a file tracking solution for corporate environments, with the objective of de-
tecting information leaks. Tracking a file since it is created right until it is deleted allows a
timeline of the actions done over that file to be drawn. Such timeline can provide inform-
ation as who created the file, who changed it, if copies were made and to where, if it was
printed, sent by e-mail, or even copied to a removable drive. These timeline events mark the
critical moments of a file regarding its potential to be exposed to the outside of its protected
environment. In case of effective information leak, the timelines of the affected files can
be analyzed to find the culprit and assign responsibilities, both technically and legality. To
achieve such objective we have designed a monitoring system that logs the relevant actions
done over a file within a host, by a user. Those actions are represented by events that are
collected by a centralized and trusted entity. Upon collection of those events from multiple
sources, they are analyzed, searching for a correspondence that indicates if two separate
files are in fact copies of the same file. Finding such relationship is important in order to
track down possible copies of a file containing sensitive information that escaped detection
when that copy was made.

The main characteristics of our solution are:

• Detection-based - monitors and logs the user actions providing accountability of his
actions, allowing a posteriori detection of an information leak and tracking it back
to its origin. However, it does not prevent it from taking place.

• Host-based - monitoring is done within each target host, enabling a more complete

15

vision of a document path than would be possible by just looking at the network.
This provides accountability for actions that are not network-based, such as printing.

• Focused on inadvertent leaks - this type of threat has a high probability to occur, as
every honest user with access to sensitive information has the potential to inadvert-
ently expose it, as demonstrated by multiple examples [4] [6] [7].

• Offline support - can monitor file operations even if the host is temporarily discon-
nected from the protected network, which is common for laptops.

• Small and unobtrusive fingerprint - does change files in any manner, and does not
compete with other applications to access them. Makes extensive use of the API
provided by the operating system, avoiding changing its internal functioning.

Although our primary focus is to detect inadvertent leaks, we have developed mechanisms
that can also detect intentional leaks, as long as the person who perpetrates it is not aware
of the security measures currently in place, or else he will likely bypass them. Detecting all
intentional leaks is very improbable given the diversity of methods to exfiltrate information
from a network, and the sophistication of some attackers.

3.2 Components

Our solution is composed of three main components: the host agent, the event collector,
and the event correlation engine.

3.2.1 Host agent

The host agent component is responsible for the tracking of all relevant operations done
at the host intended to be monitored. It sits between user applications and the operating
system, capturing information about the interaction files and folders.

Each time the user acts on a file through the GUI of an application, for instance to send an
e-mail with an attachment, it is in fact asking the underlying operating system to access a
file and do something with it. We have identified a set of actions that can be potentially
dangerous as they can be an information leakage venue. From the user point-of-view they
are:

16

• Printing - duplicating a file or a part of it to paper format, allowing it to leave the
protected environment file.

• E-mail sending - replicating a file to some recipient(s), possibly to the outside of the
protected environment.

• File copying - duplicating a file to a local, remote or removable file system.

Figure 3.1: Host agent integration with the operating system: the agent is notified by the
operating system of any relevant file system operation.

Figure 3.1 shows how the host agent interacts with the operating system and user applica-
tions. The instrumentation of these actions should be done in a way that is not obtrusive to
the user, regarding performance and usability. However, for deterrence purposes, the user
can be made aware of such monitoring. In addition, the agent should satisfy two properties:
completeness and integrity.

• Completeness - the agent must capture all the occurrences of the operations it tracks.
Failure to comply will mean that a window of opportunity would exist where a file
could leak without detection.

• Integrity - the information produced by the agent must not be tampered with. Allow-
ing such tampering would enable a malicious user to evade detection.

3.2.2 Event collector

This is the component responsible by permanently storing all the information captured
and generated by the agent host. It collects information generated by the agent host and
forwards it to a central storage server that stores it securely and permanently, in a database,
for later consumption by the event correlation engine.

17

Because the collected information might be considered sensitive, it must ensure confidenti-
ality and integrity while transmitting it to the central storage server. For instance, some files
have extensive names that can be auto-explicative and reveal information about its contents
or the person who manipulated it.

In some cases, a company may have multiple branches, possibly with different adminis-
trative domains. In those situations, it is possible to deploy the event collector in a tree
structure. In such setup, each branch or administrative domain would have an event col-
lector relaying events to another one, placed higher in the tree, until it reaches the root, as
shown in Figure 3.2. This setup scales better than having all monitored hosts connected to
a single server, and facilitates the management.

Figure 3.2: Event collection using a tree structure: each branch relays their events to the
headquarters.

3.2.3 Event correlation engine

The event correlation engine is the component responsible by the analysis of the events
collected by the two other components. It is coupled with the central storage server, taking
as input the events stored on its database.

The analysis of those events is based on heuristics derivate from the context where the
system is deployed. For instance, in a company with a strong presence of Microsoft Office
products it is possible to know in advance some of the characteristics of new files, such as

18

the file name or file size. The objective of the correlation is to find possible copies of a file,
scattered on multiple machines, however that may not always be possible. If the amount of
modifications done to one of the copies is too large, it may be very difficult to infer which
file it was originated from.

The file characteristics over which the analysis is done are limited to the file name and its
size, due to the effort to limit the potential negative impact the agent could have on the
host being monitored. Reading the contents of a file being edited by a user could lead to
situation where the user wants to move the file and it is prevented from doing it because the
agent is currently accessing the file.

3.3 Security assumptions

Given that the host agent is to be installed on machines controlled by the user, we have
to ensure that he does not tamper with the agent execution. We assume the user cannot
stop the agent execution, or prevent it from sending its logs through the network. This
assumption can be enforced segregating their privileges such that the agent executes with
a higher privilege than the user, for instance as the machine administrator. In addition,
the agent should be executed with a higher priority than that the user processes execute
to prevent the situation where an excessive load on the machine causes the agent to miss
relevant events. Such load can be due either to the natural usage of the system or to the user
introducing load to purposely lead the agent to miss events.

Additionally to ensuring the user cannot tamper with the agent executing, it is recommen-
ded to monitor the agent execution with a trusted server. The monitoring can be done
with a keep-alive mechanism where the agent periodically sends a message to the trusted
server. Failure to send the keep-alive does not necessarily means that the agent execution
was tampered, since it may be to a network problem.

Regarding the log transmission, we assume they will eventually be transmitted, i.e. the user
can disconnect the machine from the network, but eventually it will be re-connected, and
he cannot selectively choose what traffic to transmit or to drop.

19

20

Chapter 4

Architecture

We now describe our solution in detail. We describe each component thoroughly, explain-
ing the reasoning behind the decisions made while building this solution.

4.1 Collecting file information

Our objective is to provide file-tracking capabilities in corporate environments, but our
proposal is not limited to such environment. For our prototype, we assumed a Microsoft
environment, based on Microsoft Windows and Microsoft Office. We support our decision
on the fact that the statistics, from June 2009, show that around 80% of the companies
make use of at least one Microsoft Office product [26]. In addition, companies based on
Microsoft Windows XP architecture represent around 90% of the market [27]. We took
advantage of this homogeneity by developing components that are specifically aimed at
Microsoft Office products.

After defining in Section 3.2.1 which high-level actions we wanted to monitor, we decom-
posed them to more specific and lower-level actions, and mapped them to the corresponding
operating system calls. That decomposition resulted in the following host agent compon-
ents, shown in Figure 4.1:

• File system modification monitor

• Removable drive monitor

• Spooling monitor

• E-mail sending monitor

21

Figure 4.1: Host agent components. The host agent layer is virtual, since it is implemented
as a user-level process.

4.1.1 File system modification monitor

This component is responsible by monitoring some of the operations that can be done over
a file in a file system, described in Table 4.1. Most of these operations are also available
for directories, but some of them may have a different semantic, as it is the case with open
that when applied to a directory typically means entering into the directory, as part of a file
system navigation process. If applied to a file, it will open it for further operations, such
as reading or changing its contents. Seek is normally associated to the navigation within a
single file, and so it has no direct meaning regarding directories.

Operation Description
open opens a file for other operations
close closes access to the file
create creates a new file
write writes data to a file
read reads the file contents
seek navigates within a file
copy duplicates a file to a new one
delete deletes the file

rename renames a file
list lists files in the file system

Table 4.1: Typical operating system operations

22

Operation Specific information
File rename old path, new path, size, attributes

Folder rename old path, new path, attributes
File delete path

Folder delete path
File change path, size, attributes

Folder change path, attributes
File create path, size

Folder create path

Table 4.2: Information collected by operation type

There is, however, no need to monitor all of these operations as some of them provide no
benefit to our objective. For instance, monitoring file opening would inform that someone
was granted access to a file, at least for reading. A user that opens a file can indeed read
and copy its contents to another file but it can also memorize it. While we cannot detect the
latter in any possible fashion, the former can be detected if we monitor file modification,
because the copied contents must be placed somewhere. There is another reason for not
to monitor opens or reads, which is performance. These operations are very frequent so
instrumenting all calls would create a large overhead, specially for large files that require
multiple reads. Consequently, we also excluded the close operation from being monitored.

After analyzing the importance of each operation, we concluded that we would only need
to monitor create, write, copy, delete and rename. These are the only operations that ef-
fectively change a file, so by tracking them we can know if a file was changed, moved,
copied to another directory or renamed. While these are common everyday operations,
they will define the file timeline and may help in a forensic analysis with the objective of
understanding how the information leak took place.

The tracking of these operations is done by hooking a handler to them, which is triggered
every time one is executed. When triggered, the handler collects detailed information about
the current operation: the current date and time, the user who request it, and other variable
information, that depends on the operation. Table 4.2 details what is collected for each
operation. For operations that change the path of the file, we save the old and the new path.
For the remaining operations, we just save the affected path. The size of the file or folder
is also saved every time we detect an operation that has the potential to change it, such as
changing its contents. The same applies to file attributes that help understanding the type
of file we are dealing with, and if the user is trying to hide it using a file system feature
[28].

23

Our system is designed so that it can monitor any type of file and any folder, but there is
no need to monitor the entire hard disk of a host. Operating systems such as Microsoft
Windows XP have a large number of files that are used internally and without any kind of
control by the user. DLL files are an example of what makes no sense to monitor, amongst
others. There is also a performance concern, since that each change made to a file being
monitored triggers the execution of our code. Even if the code is very small and with low
complexity operations, it still causes some overhead, therefore it should only monitor a
limited set of folders. These folders should be chosen so that they cover virtually all the
places where a user might create or save files, such as the desktop folder, its home directory
and system-wide temporary directories.

Frequently, a user works with files stored not only on his local hard drive, but also at
remote drives possibly shared with others. If these drives are known in advance, such as
the case with a possible company document repository that is mounted on the workstations
at boot time, we can set the file system modification monitor to watch that drive also at boot
time. However, there may be the case that the user only mounts the drive when it needs it.
Another example of drives mount a posteriori is the ubiquitous USB pens. These issues
are addressed by the removable drive monitor component.

4.1.2 Removable drive monitor

This component complements the file system modification monitor by notifying it of changes
to the drives accessible by the user. As described in Section 4.1.1, a user can connect new
drives to his computer, either local or remote. Examples of local drives are USB pens,
portable hard drives, memory card readers, and every device with some sort of storage that
can be connected to a computer via USB and mounted as a drive. Given the large amount
of devices that can be connected for this purpose, their very small physical size, and their
increasing capacity (already measured in TB), these devices are substantial threat. Re-
mote drives are common in enterprise environments given the frequent necessity of sharing
files between multiple employees. However, these drives can be created for recreational
purposes such as sharing music files or pictures from the company last gathering, and be
misused by placing there sensitive files.

We detect each drive change by intercepting the corresponding operating system events
[29]. These events are described in Table 4.3. Upon reception of an event indicating the
insertion of a new device, we identify the letter assigned to the recently connected drive,
information that is provided in the details of the event. We then add that drive to the list of

24

Event Description
DBT_DEVICEARRIVAL A device or piece of media has been inserted

and is now available.
DBT_DEVICEQUERYREMOVE Permission is requested to remove a device or

piece of media.
DBT_DEVICEREMOVECOMPLETE A device has been removed.

Table 4.3: Events intercepted upon drive connect/disconnect

folders being monitored by our agent. Despite the letter represents a new drive, it is in fact a
folder so it is treated in the same way as other folders. The DBT_DEVICERQUERYOMPLETE
event is handled by reconfiguring the agent to stop monitoring that specific folder. The oc-
currence of this event presupposes that the user, or an application, requested permission to
remove a device. To prevent a possible failure of the removal procedure due to our agent
being using it, we stop the monitoring of the drive immediately. Upon reception of the
DBT_DEVICEREMOVECOMPLETE event we are assured that it is no longer connected.
Failure to receive such confirmation will indicate that the removal was not successfully, so
we should continue monitoring it.

4.1.3 Spooling monitor

The spooling monitor detects when a user issues a print request. Although we cannot
be certain that unauthorized personnel will read the printed document, we monitor each
document being printed to any one of the installed printers. Because the spooling monitor
is not associated directly with the printers, but instead with the operating system spooler,
it can detect documents being spooled to printers that were not installed at the time the
monitor started execution. This monitor subscribes, from the operating system, the event
that indicates that a print job was created. Upon reception of one instance of that event, it
extracts the values of the attributes described in Table 4.4. Figure 4.2 shows other existent
attributes that were not used because they not relevant or they were not common to all
spooled jobs. A company that has a good knowledge of the printers it has could take
advantage of more specific attributes that could aid in identifying the document or the
context where it was printed. However, there is the necessity of previous knowledge about
which attributes are to be collected because their semantics must be known in advance.

25

Figure 4.2: Available attributes from a print job

Attributes
Job owner

Spooled pages
Print size

Document name
Document pages

Table 4.4: Information extracted from a print job

4.1.4 E-mail sending monitor

Sending e-mails with documents attached is one of the many possible venues for inform-
ation leakage. Most medium and large size companies have some sort of corporate e-mail
infrastructure in place, typically accessible by an e-mail client installed on the employees
workstations. Normally, an e-mail sent from one of those workstations will pass through
the e-mail client even if it was created outside the client, for instance through a PDF reader
or an image processing software. This is not always true, because one may connect dir-
ectly to the e-mail server, for instance using the command telnet. However, monitoring the
e-mail sending action directly at the e-mail client is a good idea, since it is much simpler
to instrument just that program, instead of all possible programs that could trigger the send
of an e-mail.

26

Statistics show that Microsoft Outlook is the most common e-mail client found in the enter-
prise market [30], so we developed a monitor specifically for it. This is the only component
of the host agent that is limited to specific software, in this case Microsoft Outlook. In ad-
dition, this monitor is separated from the other components of the host agent, because it
was developed as an application that executes on top of other software, instead of executing
directly on top of the operating system.

The detection of an e-mail being sent is achieved by intercepting the Microsoft Outlook
event corresponding to that particular action. When the user pushes a button that triggers
an e-mail being sent, an ItemSend event is created. Upon capture of that event, we analyze
the e-mail searching for attachments. If no attachment is found we do nothing, i.e. we
do not record anything about that particular e-mail. However, if at least one attachment is
found we extract some information from it, namely the e-mail recipient, the name of file
in attachment and its size. This information is extracted from all attachments found in the
e-mail.

One could argue that monitoring e-mail attachments is best done at the server, for instance,
in the company MTA, but such solution will not be able to detect e-mails sent through
another server, which the user may have configured manually.

4.1.5 Event storage

Every piece of information collected by the host agent is relayed to a central storage server,
for later analysis. Each captured event is processed, as described in the previous sections,
and normalized to a suitable transmission format. Each event is transmitted as a comma
separate line. Each type of event is assigned a type that allows the recipient of the message
to know how to process the rest of the line, i.e. separate the fields of each event type. This
format is easily extendable in case other events are required to be captured and transmitted,
as is simple to implement.

At the receiving end, each event is validated accordingly to a number of rules that depend
on its type. Some validations are common to every event, such as checking if the timestamp
is in the expected format and if the type of the event is known. Then, depending on its type,
a specific validation is done to check if all mandatory fields of that event are present. If the
event is valid, it is then saved on an input queue on a database, where it will remain until it
is consumed by the correlation engine.

During its normal operation, the event collector component gets inputs from the agent
host and immediately forwards them to the central storage server. However, the central

27

storage server might not always be available, for multiple reasons: there can exist some
network problem such as partitioning; the storage server can be down; or the target host
can be a laptop that lost connectivity temporarily because it was taken home or to company
branch. In those situations, the event collector mechanism changes to offline mode and
stores whatever data it has to send in the target host hard drive. Later, when the connection
to the storage server is reestablished it would send the saved data. Figures 4.3 and 4.4
depict how the components works.

Figure 4.3: Saving an event to temporary storage

Figure 4.4: Sending an event from temporary storage

4.2 Correlation of events

The correlation objective is to find relationships between files, namely if two files are a
copy, possibly with minor modifications. For that purpose, we developed a simple correl-
ation engine, completely separated from the component that collects events from the host
agent. The only requirement of the engine is, at least, to be able to read from the input
queue where the events are stored for processing. The correlation engine will consume
those events starting by the oldest ones, processing them one by one.

The correlation itself is based on a small set of heuristics that can be enhanced with a
better knowledge of the context where the events are collected, and by doing a deeper
inspection of files being monitored. Currently, we use only three file attributes and very
limited information about the environment. Those attributes are the file name, its size, and
the date of the latest modification.

28

There are two main reasons for why we used a relatively small number of attributes for
correlation. One of them is that obtaining more information from the file, such as metadata
contained in the file itself, would require a deep knowledge of its format and more intrusive
analysis, possibly concurrent with the user trying to access the file. The other is that the
correlation process is only supposed to complement the event collection process. In a
hypothetical environment where we could be sure that no relevant operation done over a
file would evade our system, we would be able to draw a perfect timeline for that file and
know exactly when and to where copies were made. There are, however, a number of
situations where we could loose track of a file allowing a duplicated to be made without
our knowledge. For instance, as depicted in Figure 4.5, file A1 is copied from the hard disk
of a computer being monitored to a USB pen, and later that pen is connected to another
computer that does not have our agent installed. Using that computer, the user makes a
copy of the file to the pen, possibly changing that copy’s name to A2. Connecting back
the pen to the first computer, which is being monitored, we havez now three files that are
essentially the same: A1 in the hard disk, A1 in the pen, and A2 also in the pen.

29

—————————————-

—————————————-

Figure 4.5: Undetected file copy via USB pen. In the first figure, A is copied to the USB
pen and that action is logged. In the second figure, A is duplicated and modified in a
computer without the host agent. Then, in the third figure, the USB pen is reconnected to
the initial computer and the host agent believes B is not related to A.

Without proper correlation of the events regarding those files, one would be led to think
that A2 is an entirely new file. Depending on the amount of change made to the name of
the file A2, we could infer that A1 and A2, having the same size, being in the same folder,
and having a similar latest modification date are likely to be the same file.

These and other correlations will have more information to work with if done in batch and
periodically, instead of in real-time as events arrive. This is due to the fact that is possible
for events to be stored locally at offline hosts, such as a laptop taken home for the weekend.
It is only after the laptop reconnects to the network, possibly on the next working day, that
we can do a thoroughly analysis taking in consideration those events. The period between
analyses should be calculated regarding the need to obtain such information. For a normal
monitoring situation we can just do the correlation once a day, in the morning, after the
employees get back with their laptops used to work at home at night, or we can do it hourly
if we are suspicious of someone and we want to do a close monitoring.

30

4.2.1 Filename heuristics

There are several heuristics that can be developed regarding file names, being one based on
the default file name for new files. Microsoft Office tools new files are, depending on how
they are created, prefixed with ”New ”. This prefix is usually added while creating empty
files, so it can be used to distinguish files that are similar (same name and same size). The
importance of distinguishing those files is to prevent that every file once prefixed with ”New
” would be identified as being the same (at least those with very similar size and close in
date of modification).

One assumption that we are making is that users will assign their files meaningful names.
People identify files by their name so it is only natural to have them change the file name
to represent its contents and have some significance. The important part is that a document
represents essentially the same for different persons. For instance, the sales report for 2009
will likely have some of those terms in the name, possibly in a different order or separated
with spaces instead of hyphens, but the name would be similar even for different versions
manipulated by different users. Using a distance function we can measure the degree of
similarity of those file names and infer their relationship. Situations where the user renames
a file to completely different name are covered by the capture of rename events.

One difficulty is related to temporary files associated with files being edited or open dir-
ectly from some applications. Many text editors create a backup of the file being edited
in the same directory of the original file, normally adding a prefix or a suffix that clearly
identifies it as a backup or temporary file. When that file name is similar to the original
one, correlating them is trivial with the help of a string distance function. On the other
hand, some applications create those temporary files with random names. Microsoft Word
is one of such application, as shown in Figure 4.6. A possible heuristic, although not im-
plemented, is to wait until the original file is closed, moment at which the temporary files
will be deleted and the most recent will replace the original file. At that moment, we know
that those temporary files, that increased size progressively as the user edited them, were
related to the original file.

Compressed files are a special kind of file. They may contain multiple other files that are
now represented as a single one, although it is likely that they were contained in a folder,
potentially with the same name as the compressed file. In the context of the previous
example with the USB pen and two computers, one instrumented with our agent and other
without, lets assume there is a folder A with multiple files on the USB pen and we know

31

Figure 4.6: Microsoft Word temporary files creation

which files are inside it. A user can take that pen to the computer without the agent and
compress the folder to a file with the same name (suffixed with, for instance, ”.zip”). If,
meanwhile, our agent catches the compress file we can try to infer its contents based on its
name, by searching the database for directories with the same name (or very similar). Then,
we could compare the compressed file size against the size of the files we have logged as
being in that directory, assuming a compression ratio based on the file type.

4.2.2 Non-atomic operations

Some of the operations a user can do to a file translate to multiple file system calls, despite
only one action is performed. Moving files from folder to folder in a Microsoft Windows
environment is executed in a single step at the GUI (and even in the command line using
the MOVE command), but our agent detects it as a sequence of four steps: delete source
file, create target file, change target folder, and change target file. The two last steps are the
setting of the folder modifications times and file original properties, respectively.

There are other GUI operations that are translated to a sequence of file system calls. De-

32

pending on how a file is created, i.e. depending on which application is used, it may gener-
ate just a file create event or it may also generate a sequence of file change events, each one
indicating a file property being modified. These steps must be treated as a whole since they
make no sense as individual events from a information leakage analysis point-of-view.

33

34

Chapter 5

Implementation

In this section, we describe the implementation of the proposal prototype, and note some
relevant implementation decisions.

5.1 Host agent

We decided to implement the host agent and all its components in the highest possible layer
where we could achieve our objectives. Currently, the highest layer where one can program
in a Microsoft environment is based on the Microsoft .NET Framework, version 3.5, using
C#. It includes a large library that provides a wide range of features from cryptography
to user interface libraries. It also includes a virtual machine that provides a runtime envir-
onment that abstracts the programmer from dealing with specific CPU issues. In addition,
provides mechanisms to facilitate memory management, security and exception handling.

One advantage of using higher layers of programming is that the code becomes independent
of the underlying operating system, to some extent, and is not so dependent of specific
versions of the operating system and its libraries. For instance, low-level programming
where there is no abstraction of the memory address space and the programmer makes that
kind of management, is prone to be broken by some library update by the operating system
manufacturer.

5.1.1 FileSystemWatcher

The FileSystemWatcher class [31] provides the programmer with a method to listen to
file system modifications, raising events for directories and files. It can watch files on a

35

local computer and on a network drive, and it supports filters to specify a single file to be
monitored, or a file type, for instance such as PDF. It is also possible to define NotifyFilters
specifying what changes we want to cause a notification. Table 5.1 shows the possible
values for the filter.

Value Description
FileName The name of the file

DirectoryName The name of the directory
Attributes The attributes of the file or folder

Size The size of the file or folder
LastWrite The date the file or folder last had anything written to it

LastAccess The date the file or folder was last opened
CreationTime The time the file or folder was created

Security The security settings of the file or folder

Table 5.1: Possible values for NotifyFilter

Our prototype starts monitoring a predetermined list of folders, such as the users home dir-
ectory and the system-wide temporary directory, which correspond to a FileSystemWatcher
instance. New drives detected by the removable drive monitor are monitored by another
instance of the class created for that purpose, so we can easily manage the folders being
monitored by creating or destroying instances of the FileSystemWatcher class. The operat-
ing system will then notify the class instance of any file change, as long as it matches the
filter, in a buffer managed by the FileSystemWatcher class. An overload of events can fill
up the buffer, a situation that we can try to address using the correlation engine.

Another issue that must be address by the correlation engine is that many common file
system operations might raise more than one event. Saving and closing a text file being
edited can create multiple events: temporary files being deleted, the text file being modified
and its attributes being set (such as hidden or archive).

Some of the drawbacks of this approach are that it only works from Windows 2000 on-
wards. Although the vast majority of the installed operating systems will be of versions
greater than Windows 2000, this limitation prevents monitoring in Windows NT based
hosts. Another limitation exists because this class only notifies its subscribers that a file
system operation took place, not allowing them to prevent that action from finishing. This
means that if we get an event notifying a file was deleted, we no longer have access to that
file so we cannot obtain its size.

36

5.1.2 WndProc overriding

WndProc is a method from the Microsoft Windows API that corresponds exactly to the
WindowsProc function [32]. This method is executed upon reception of some types of
Windows messages. One of those messages is the WM_DEVICECHANGE that indicates
some hardware change occurred, including when a removable drive is inserted or removed.
That information can be extracted from one of the message fields, enabling us to know
exactly what happen. Thus, we override the WndProc method to add the necessary handler
for the messages that indicated arrival or removal of a media device. Upon detection of a
new drive, we set a FileSystemWatcher to monitor it, as mentioned previously. As soon as
we detect a request from the user to eject the removable device, we stop the FileSystem-
Watcher assigned to it, allowing the ejection procedure to complete.

To ensure code isolation and portability we call the original WndProc method before we
execute our handlers.

5.1.3 WMI

The spooling monitor was implemented using the WMI infrastructure. This technology
supports management data and operations on Windows-based operating systems. It is typ-
ically used in enterprise applications and administrative scripts that require the extraction
of more complete and detailed information about the operating system operation.

Every time a user prints a document, a Win32_PrintJob WMI management event is cre-
ated, which we can subscribe, so that we are notified of job being spooled to the printer.
Upon reception of such event, we extract the desired information about the document being
printed. Most of the event available attributes are printer specific so we ignored them. The
remaining attributes are common to all printers, but may be unusable. For instance, the size
of the job being spooled is not directly related to the size of the file being printed. Depend-
ing on how the operating system communicates with the printer, it can generate smaller or
larger spool files. While printing a document, the operating system GDI generates an EMF
file that is later converted to printer language that can be PCL, PS or even GDI directly,
with the size depending on which printer language was used.

5.1.4 Visual Studio Tools for Office

Visual Studio Tools for Office (VSTO) is the standard method for developing Microsoft
Office applications using the .NET framework, extending existing programming capabilit-

37

ies with the ones .NET provides. We used VSTO to develop a Microsoft Outlook add-in,
intended to implement the e-mail sending monitor. The benefit of this approach is that we
can take advantage of the .NET potential, instead of programming a DLL or a COM that
are both known by their complexity, and that our code is not a stand-alone software but
instead something that is plugged into the e-mail client each time it is loaded.

Microsoft Outlook exposes a large number of events to the programmer via VSTO that can
be processed by custom build handlers. We subscribed one of those events, the ItemSend
event, and programmed a handler capable of extracting the e-mail attachments. As soon
as the event is triggered, our handler is executed. Since we are not interested in e-mail
without attachments, we immediately discard events caused by those e-mails. However, if
the e-mail contains attachments, we analyze each one of them. Because the captured event
does not provide us with the size of the attachment, we extract it from the event and save it
to a temporary location in order to get the file size. After that we delete the temporary copy.
This limitation is imposed only if the target platform is Microsoft Outlook 2003, which is
still prevalent in the enterprise market.

5.2 Alternative approaches

During the implementation of our prototype we considered other methods to achieve the
same objectives. Next, we present them and explain why they were discarded.

5.2.1 Proxy DLL

A proxy DLL objective is to interpose between the DLL being emulated and its callers and
allow the instrumentation of those calls. This can be accomplished by creating a proxy
DLL that contains a stub for each of the functions exported by the original DLL. Naming
the proxy DLL after the original one and placing it in the same directory of the application
we want to monitor, then the interception of those calls happens automatically, because the
applications loads the proxy DLL instead of the original one. Because of this technique
was often used by malware, now one must first configure the operating system and the
application to allow the loading of proxy DLL’s. The drawback of this approach is that
creating a proxy for a DLL that exports a few hundred functions requires the creating of a
stub for every one of them, even if we are not interested on them. Furthermore, for DLL’s
that export a large number of functions, the probability of one of them being updated by the

38

software manufacturer increases drastically, in which case the proxy DLL would become
useless.

5.2.2 IAT modification

Windows executable files and DLLs are often relocated (due to collisions) after they are
loaded into memory, so instead of having to search for every single call made to an imported
function and patch it to the new memory address, each Windows executable file has an IAT
entry to where calls made to imported functions are routed. This mechanism offers a simple
way for intercepting API function calls. Replacing the IAT entry with the address of our
handler, we can intercept those API calls, execute our code, and then redirect execution to
the original address. This is a fairly easy and clean method of achieving our objectives,
however it is more intrusive that ours, since it requires the modification of the application
binary.

5.2.3 API patching

A more complex solution is to patch the API. This requires changing the API function so it
executes our code, either by placing it inside the function or by forcing a jump to our code.
This could be achieved by placing a CALL or JMP CPU instruction to our code just in the
beginning of the API function. However, these creates a constant context switch between
our code and the original function code. In addition, there is an inherent complexity in this
approach since it requires a very low-level modification and is prone to errors caused by
instructions being overwritten and mismatch of control-transfer based on relative jumps.

5.2.4 Event Tracing for Windows

Event Tracing for Windows (ETW) is a general-purpose tracing facility provided by the
operating system, available since its introduction on Windows 2000. It implements a buf-
fering and logging mechanism directly in the operating system kernel, that can track events
raised by both user-mode and kernel code. It is based on a producer-consumer model,
where the consumer can be a user application or a file acting as a ring buffer. Due to be-
ing a built-in function of the operating system, thus having access to a broader scope of
events, ETW easily generates an overwhelming amount of events that require a carefully
filtering. Even if filtered, these events are still generated by ETW, creating the potential for
performance problems related with the generation, filtering and handling of those events.

39

5.2.5 Redemption library

The Outlook Redemption is a COM library developed to overcome some limitations im-
posed by the Microsoft Outlook Security Patch and Service Pack 2 of Microsoft Office [33].
In addition, it provides a number of objects and functions that are not accessible through
the public API. It could be used to extract the required information about attachments and
the correspondent e-mail, without the need to save the attachment to disk. Although we
could take advantage of this library, for instance to avoid the need to save the attachment to
disk, we did not used it since it is an external library and for the sake of the prototype the
VSTO API was enough, despite its limitations.

5.3 Correlation engine

Because our host agent was specifically developed for the Microsoft Windows operating
system we chosen to implement it in a language that could take the most advantage of what
the operating system had to offer, thus the C# option. However, for the event collector
and event correlation engine, we were not bounded by any operating system so we opted
by using another language: Java. The reason behind such decision is solely based on
portability, since Java has JVMs for almost any modern operating system, therefore it could
be placed virtually anywhere.

For the event storage, we used a MySQL database, since it is free and it has the reputation
of being a very stable and fast product. Furthermore, there are API for MySQL connection
for almost high-level languages, being Java one of them.

40

Chapter 6

Discussion

In this section we describe the results from the experimental and performance evaluation
of our system. The experimental part of our evaluation was carried in three machines with
the same characteristics, described in the Table 6.1. All of them had a clean install of the
operating system, with all available updates applied.

Machine model Dell Optiplex 745
Operating Microsoft Windows XP Professional

system Version 2002, Service Pack 3
CPU Intel Core 2 CPU 6400 @2.13GHz
RAM 1GB

Hard disk Seagate Barracuda ST3160815AS
7200 RPM, SATA 3.0Gb/s

Table 6.1: Evaluation test-bed hardware

6.1 Experimental evaluation

In this section we present a experimental evaluation of our solution, in order to verify the
effectiveness of our prototype to intercept and log all the operations with files that have the
potential to cause an information leak. For that end, we have installed our agent on three
test machines, where the actions of three users were simulated, one user per machine. Each
user performed the actions described in Figure 6.1. This figure shows the actions taken by
each user, from their point-of-view, i.e. these actions represent an action at the GUI level,
such as creating a file or sending an e-mail.

These actions represent a hypothetical situation where three employees from a company
share the edition of a file. The user at computer A creates that file, does some modifications

41

Figure 6.1: Functional test action diagram. This figure shows the sequence of actions
carried out on each test computer.

and then sends a copy, by e-mail, to the other two users. Upon reception, these two users
modify their copy of the file and then return it to the sender, one through a USB pen disk
and the other by e-mail. Then, those modifications are merged to the original file.

The 21 GUI level actions described in Figure 6.1 translated to 383 events captured by the
host agent. This means than an action at the GUI level causes more than 10 events to be
triggered. However, 270 of those 383 events are caused by temporary files, specifically
by the ones created by Microsoft Word while editing the test file. Many of these events
do not seem to have an obvious explanation, such as change in the contents of the file or
being saved by the auto-save feature of the application. Figure 6.2 shows an example of
this phenomenon. Depending on which editor we use, there could have been less events
caused by temporary files since this behavior is tightly related with the application we are
using.

42

Figure 6.2: Microsoft Word temporary files. The figure shows a sequence of events cap-
tured by the agent while monitoring a file being edit with Microsoft Word. Each line
includes the file full path, its size in bytes, and attributes, if any is set.

Despite the total amount of events generated by a relatively small number of actions, the
host agent was able to capture all the relevant events. Analyzing those captured events, it
is possible to draw the timeline of the file A, and clearly identify all the actions described
in the Figure 6.1.In addition, the correlation engine was able to infer that files A, A’ and A”
were related among them, more precisely, that A’ and A” were copies of the file A.

6.2 Performance evaluation

In order to see how our prototype impacts on the overall performance of the system, we
performed some benchmarks with different sets of files as input. The characteristics of the
test files are described in Table 6.2. The two tests consisted in copying those files from
one directory to another, both of them located in the same hard disk, using a command line
copy command for each run. Each test was run with and without the host agent running. In
the runs that the host agent was running, the events were send to another machine that was
configure to collect them to a database.

Test 1 Test 2
File count 835 1000

Total size (KB) 3214642 1000
Average size (KB) 3849 1

Minimum size (KB) 1 1
Maximum size (KB) 259866 1

Test run count 10 10

Table 6.2: Performance test input files

43

For the first test we used files relatively large for typical documents, such as Microsoft Word
or PDF files. However, many times these files grow to large sizes because of the inclusion of
metadata, figures, diagrams and other objects. We also included some significantly smaller
and large files to increase the diversity of the test set. The results are shown in Figure 6.3.

Figure 6.3: This graph shows the amount of time it took to copy the test files.

Analyzing the figure, the impact of the host agent becomes noticeable, with 11% of over-
head when compared with the runs where it was disabled. However, this overhead is mostly
due to the files being copy in bulk, i.e. a single copy operation, from the user point-of-view,
of a folder with many files. Because of this, the files are copied as fast as possible, with
virtually no waiting between each one of them. Thus, the host agent code, specifically the
handler that is treating the event triggered as each file is copied, is executing concurrently
with the copy operation itself. The concurrency and the fact that there is almost no slack
between each file being copied, effectively delays the copy operation. However, this sort
of operation, at least with this large amount of files, is not expected to occur frequently in
a workstation, since users, usually, do not deal with so many files at once.

For the second test we used much smaller files in comparison with those used in the first
one. The objective of using very small files is to have a better measure of the impact of
the event handling by the host agent, since very small files will be copied faster than larger
files with a few MBs, causing the handler code to be executed more frequently. In addition,

44

instead of copying the files with a single command, in this test we copied each file one
by one, calling the copy command per file. This creates a delay between each copy, as the
command is loaded and executed, that although at a much smaller scale than a delay caused
by a human, it approximates the test from a human utilization pattern, in comparison with
the first one. Figure 6.4 shows the results of the test.

Figure 6.4: Graph of the time it took to copy the second set of test files.

The impact of the host agent in this test was of 1.8%, much smaller than in the previous
test. This is likely due the fact that many small files tend to take longer to copy than a few
large files, for the same size in total. Such phenomenon happens because while copying
many small files the number of operations done by the hard drive and the operating system
are much higher than for a few files [34]. For every file there is the need to issue the
hard drive the necessary commands, done by the operating system, and there is the need
to reposition the hard drive heads in right place. This is commonly referred to as the
disk access time. However, while the hard drive is seeking the file to read, the CPU can
be executing instructions not related to that operation, a possibility enabled by the DMA
mechanism. Therefore, those CPU cycles might be used to run the host agent event handler.
Since the overhead of copying small files is present even if our agent is not running, the
impact of our code is less noticeable.

Analyzing the graphic is possible to see some differences between runs. For instance,
while in run 3 both executions took nearly the same time to complete, in run 5 there was

45

a larger difference between them. This is likely to be caused by a scheduling decision of
the operating system that during that run executed the currently available processes in a
different manner.

6.3 Privacy

The deployment of our solution without a carefully evaluation of what it should monitor is
prone to raise privacy issues. This comes from the fact that our agent cannot distinguish
between sensitive and non-sensitive files, and between corporate and personal files. De-
pending on where it is deployed, there may be regulations that entitle employees to have
personal files in their company workstation and prevent them from being monitored.

Since the agent cannot distinguish between sensitive and non-sensitive files, employees
may feel their work is being monitored for purposes of quantifying it and possibly evalu-
ating the performance of the employee based on that. Such situation may lead to employ-
ees doing bogus file operations just to feed the host agent with data, therefore raising the
amount of work produced. On the other hand, they could try to evade the agent, either
bypassing or disabling it, to prevent the company from collecting information about the
employee actions.

These privacy issues must always be taken in consideration when deployment this sort of
system, as the consequences for ignoring them can be disastrous for the company, ranging
from unmotivated employees to heavy fines imposed by a court.

6.4 Applicability

Due to the ability to track any kind of file, our system can be useful in a number of different
situations. In an ubiquitous deployment, all computers within a network are instrumented
with the host agent. This kind of deployment can be used to enforce a continuous tracking
of files within a company, which can be helpful since virtually all operations would be
logged. In case of an information leak, this kind of deployment allows a forensic analysis
that otherwise would be much more difficult, if not impossible.

An alternative to a complete deployment is to install the agent only for a group of users,
suspected of participating in activities that could lead, or led, to an information leak. For
instance, in continuous information leakage situations, and after identifying potential sus-
pects, our system can be installed on the machines of those suspects and of those who

46

normally interact with them, in an effort to find strong evidence of the leakage so that can
be dealt adequately. This kind of deployment seems likely to find less resistance due to
privacy or management problems, than a full deploy.

Both of the deployments methods, complete and partial, can be made for the purpose of
gathering security metrics regarding the information security within a corporate network.
From a perspective of risk management, this could answer a number of questions such as
How many files leave the company network per day? or How many information leaks take
place in a week?. Answering these and other questions is relevant from the security point-
of-view since it can help identify which areas require more investment towards the goal of
preventing information leaks. Following the same principle, one could take advantage of
those metrics to educate users to a correct handling of sensitive documents in a computer
system, for instance, indicating which of the actions them took have the potential to cause
an information leak.

All of the previous applications regard to production environments with systems already
deployed and operational, but our system can also be used for quality assurance purposes,
while doing tests to an application before its release. This could help identify potential in-
formation leak venues, such as documents left in temporary folders due to forgotten debug
code that was not removed.

47

48

Chapter 7

Conclusions and future work

7.1 Conclusion

We have successfully designed a system capable of detecting inadvertent information leaks
within a corporate environment, using a host-based approach. Such an approach overcomes
the limitations of the solutions proposed by other authors, who addressed this problem
with network-based solutions, which cannot cover information leaks that do not take place
through the network. In addition, our system can continue the monitoring even outside
the corporate network, useful to deal with the problem of users taking the company laptop
home for working. We have also implemented a prototype to evaluate its performance and
feasibility of being deployed on a company network.

Given the low overhead and benefit it provides, we believe our solution has the potential
to help reduce the number of sensitive documents that leak from companies to the public,
thus improving the overall security of the corporate environment.

7.2 Future work

One of the limitations of our prototype is that it monitors every single file within the folders
that is configured to watch, which may be unnecessary and lead to an overhead in the
resources consumed by the host agent, as well as with the number of events collected. The
solution to this issue is to limit the scope of the monitoring, allowing a configuration with
a finer granularity. We propose a number of criteria to limit the monitoring, which could
be implemented in a future version of the prototype:

49

• Limit by file extension: a computer system contains files from a range of a few hun-
dreds of different file extensions, but we are, typically, only interested in monitoring
a small subset of them. Document files are a likely monitoring target, as well as
text-based files. On the other hand, EXE1 or DLL are not typically monitored on
the scope of information leakage. The decision of which type of files to monitor can
be done based on the corporate context of the deployment. For instance, on envir-
onments based on Microsoft Office products we know in advance the most common
type of files: docx for Microsoft Word, xlsx for Microsoft Excel and so on and so
forth. There are others types used frequently, such as PDF files.

• Limit by file header: this is similar to limiting by file extension, but in this case, the
decision is made based on the file headers and not on the extension. Although such
analysis may require more resources it is more accurate and detect files correctly
even if the user changed its extension, a technique some times used to bypass naive
security mechanisms.

• Limit to sensitive documents: the idea behind this approach is to monitor only files
that contain some sort of sensitive content. This seems the most obvious and ad-
equate approach but is also the most challenging one, due to the need to classify the
documents with regard to its contents. A priori classification requires the user to set
a tag on the document, indicating the clearance level required to access it. However
not all sensitive documents may have that tag, either because it was not tagged yet,
it was misclassified as not sensitive, or it is tagged but it no longer requires such
classification.

A possible improvement to the file tracking mechanism is the addition of markers to files.
The idea is to embedded a mark, similar to [17], in the files we want to keep track of.
However, the mark would be embedded in all files, instead of the decoy files. Benjamim
proposes a method to automatically insert hidden (tags) information on selected documents
that contains sensitive information, for tracking purposes [35]. Monitoring that tag with a
modified version of our host agent, we would be able to determine with higher accuracy if
different files are indeed related.

Although we have tried to cover as much venues of inadvertent information leakage as pos-
sible, some of them are not implemented, thus left unmonitored. An important improve-
ment would be to extend the host agent to detect upload of files to the browser. Currently

1common filename extension for executable files in Microsoft Windows environments.

50

there are an infinite number of sites to where one can upload files, such as web file re-
positories, blogs or web-based e-mail clients (commonly referred to as webmails). Many
employees will consult their personal e-mail using a web-based client, for instance to by-
pass POP and IMAP blockage from within the company network, and these clients allow a
user to upload a file as attachment of an e-mail. Such action must be monitored given the
high potential for sensitive information to be made public.

Another possibility that should be taken in consideration is that information may leak in
other formats than a file. A user may copy the file contents and send them in the body of
an e-mail, instead of as attachment, bypassing our solution. In addition, instead of sending
the entire file contents, it can send only parts of it, making detection even more difficult.
Adding such detection capability to our agent would greatly improve its completeness.

51

52

Bibliography

[1] Theo Francis. Towers perrin laptops, client data stolen. Wall Street Journal, January
2006. 1

[2] Jennifer Levitz and John Hechinger. Laptops prove weakest link in data security. The
Wall Street Journal, March 2006. 1

[3] United States Computer Security Institute. 2008 CSI computer crime and security
survey. Technical report, United States Computer Security Institute, 2008. 1

[4] John Oates. MoD ’how to stop leaks’ guide leaks. The Register, October 2009. 1, 3.1

[5] WikiLeaks. UK MoD manual of security volumes 1, 2 and 3 issue 2. URL http:

//wikileaks.org/. 1

[6] Steve Twedt. UPMC patients’ personal data left on web. Pittsburgh Post-Gazette,
April 2007. 1, 3.1

[7] Parmy Olson. AOL shoots itself in the foot. Forbes, August 2006. 1, 3.1

[8] WikiLeaks. Wikileaks, 2009. URL http://wikileaks.org. 1

[9] Kevin Poulsen. California disclosure law has national reach. SecurityFocus, January
2003. 1

[10] Senator Peace. SB 1386 senate bill. URL http://info.sen.ca.gov. 1

[11] Yali Liu, Cherita L. Corbett, Ken Chiang, Rennie Archibald, Biswanath Mukherjee,
and Dipak Ghosal. SIDD: A framework for detecting sensitive data exfiltration by
an insider attack. In System Sciences, 2009. HICSS ’09. 42nd Hawaii International
Conference on, pages 1–10, January 2009. 1.1

[12] The Honeynet Project. The honeynet project, November 2009. URL http:

//honeynet.org. 1.1

53

http://wikileaks.org/
http://wikileaks.org/
http://wikileaks.org
http://info.sen.ca.gov
http://honeynet.org
http://honeynet.org

[13] Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Professional, 1 edi-
tion, September 2002. 1.1

[14] Niels Provos and Thorsten Holz. Virtual Honeypots: From Botnet Tracking to Intru-
sion Detection. Addison Wesley Professional, 1 edition, July 2007. 1.1

[15] Lance Spitzner. Honeytokens: The other honeypot. SecurityFocus, 2003. URL
http://www.securityfocus.com. 1.1

[16] Lance Spitzner. Honeypots: catching the insider threat. In Computer Security Applic-
ations Conference, 2003. Proceedings. 19th Annual, pages 170–179, 2003. 1.1

[17] Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, and Salvatore J. Stolfo.
Baiting inside attackers using decoy documents. Technical report, Columbia Univer-
sity Department of Computer Science Technical Report, September 2009. 1.1, 1.2,
2.1, 7.2

[18] Roberto Capizzi, Antonio Longo, V.N. Venkatakrishnan, and A. Prasad Sistla. Pre-
venting information leaks through shadow executions. In Proceedings of the 2008
Annual Computer Security Applications Conference, pages 322–331. IEEE Computer
Society, 2008. 1.1

[19] Marcus A. Maloof and Gregory D. Stephens. Elicit: A system for detecting insiders
who violate need-to-know. In Recent Advances in Intrusion Detection, 10th Interna-
tional Symposium, RAID 2007, pages 146–166, 2007. 1.1

[20] Websense. Websense data security. URL http://www.websense.com. 1.1

[21] Kenneth J. Knapp. Cyber Security and Global Information Assurance: Threat Ana-
lysis and Response Solutions. Information Science Reference - Imprint of: IGI Pub-
lishing, Hershey, PA, 1 edition, 2009. 2.1, 2.2.1

[22] M. Eric Johnson and Scott Dynes. Inadvertent disclosure – information leaks in the
extended enterprise. In The 2007 Workshop on the Economics of Information Security
(WEIS 2007), June 2007. 2.1

[23] Roy A. Maxion and Robert W. Reeder. Improving user-interface dependability
through mitigation of human error. International Journal of Human-Computer Stud-
ies, 63:25–50, July 2005. 2.1

54

http://www.securityfocus.com
http://www.websense.com

[24] Nathaniel S. Good and Aaron Krekelberg. Usability and privacy: a study of kazaa P2P
file-sharing. In CHI ’03: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 137–144, New York, NY, USA, 2003. ACM. 2.1

[25] Thomas D. Sydnor II and Lee Hollaar. Filesharing programs and technological fea-
tures to induce users to share. Technical report, United States Patent and Trademark
Office from the Office of International Relations, November 2006. 2.1

[26] Sheri McLeish. Enterprise plans for productivity tools: Holding out for microsoft
office 2010. Technical report, Forrester Research, Inc., June 2009. 4.1

[27] Thomas Mendel. Enterprise desktop and web 2.0/SaaS platform trends. Technical
report, Forrester Research, Inc., March 2008. 4.1

[28] Microsoft Corporation. File attributes (windows). URL http://msdn.

microsoft.com. 4.1.1

[29] Microsoft Corporation. Wm_devicechange message (windows). URL http://

msdn.microsoft.com. 4.1.2

[30] Inc. The Radicati Group. Microsoft exchange and outlook analysis, 2006-2010. Tech-
nical report, The Radicati Group, Inc., May 2006. 4.1.4

[31] Microsoft Corporation. Filesystemwatcher class (system.io). URL http://msdn.

microsoft.com. 5.1.1

[32] Microsoft Corporation. Control.wndproc method (system.windows.forms). URL
http://msdn.microsoft.com. 5.1.2

[33] Dmitry Streblechenko. Outlook redemption. URL http://www.dimastr.com.
5.2.5

[34] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping:
Exploiting disk bandwidth for small files. Laboratory for Computer Science Mas-
sachusetts Institute of Technology, Proceedings of the USENIX 1997 Annual Tech-
nical Conference Anaheim, California, January 1997. 6.2

[35] Benjamim Durães. Data flows of classified documents. Master’s thesis, Information
Networking Institute at Carnegie Mellon University, November 2009. 7.2

55

http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://msdn.microsoft.com
http://www.dimastr.com

	1 Introduction
	1.1 Related work
	1.2 Contribution

	2 The information leakage problem
	2.1 How it occurs
	2.2 Classes of solutions
	2.2.1 By goal
	2.2.2 By architecture

	3 Design
	3.1 Overview
	3.2 Components
	3.2.1 Host agent
	3.2.2 Event collector
	3.2.3 Event correlation engine

	3.3 Security assumptions

	4 Architecture
	4.1 Collecting file information
	4.1.1 File system modification monitor
	4.1.2 Removable drive monitor
	4.1.3 Spooling monitor
	4.1.4 E-mail sending monitor
	4.1.5 Event storage

	4.2 Correlation of events
	4.2.1 Filename heuristics
	4.2.2 Non-atomic operations

	5 Implementation
	5.1 Host agent
	5.1.1 FileSystemWatcher
	5.1.2 WndProc overriding
	5.1.3 WMI
	5.1.4 Visual Studio Tools for Office

	5.2 Alternative approaches
	5.2.1 Proxy DLL
	5.2.2 IAT modification
	5.2.3 API patching
	5.2.4 Event Tracing for Windows
	5.2.5 Redemption library

	5.3 Correlation engine

	6 Discussion
	6.1 Experimental evaluation
	6.2 Performance evaluation
	6.3 Privacy
	6.4 Applicability

	7 Conclusions and future work
	7.1 Conclusion
	7.2 Future work

	Bibliography

