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Resumo

Dada uma variedade X de dimensao 2n + 1, chama-se forma de contacto de
X a uma forma diferencial w de grau 1 tal que w(dw)” =w Adw A -+ A dw
é nao-nula em todos os pontos. Pelo teorema de Darboux existe localmente
um sistema de coordenadas (zi,...,Zn,D1,...,Pn—1) tal que w = dx, —
Z?:_ll pidx;. Seja L um Ox-modulo do feixe das formas diferenciais de grau
1, Qﬁ( O feixe L diz-se uma estructura de contacto sobre X se para todo o
0 € X existe uma forma de contacto w definida numa vizinhanca aberta U
de o tal que L |y = Oxw. O par (X, £) diz-se uma variedade de contacto.
A geometria de contacto é o equivalente em dimensdo impar da geome-
tria simpléctica. Seja I' um subconjunto analitico de uma variedadede de
contacto (X, L) de dimensao 2n — 1. O conjunto I' diz-se uma variedade
Legendriana se I' tem dimensao n — 1 e a restricao a parte regular de I' de
qualquer seccao w de L se anula identicamente. Uma variedade Legendriana
é o equivalente em geometria de contacto a uma variedade Lagrangeana em
Geometria Simplética.

Dada uma variedade complexa X de dimenséo n, o fibrado cotangente T*X
de X estd munido de uma forma diferencial 8 de grau 1, a forma candnica
de T*X. Vamos denotar por 7 a projeccao de T*X sobre X. A forma df
é uma forma simpléctica de T*X. Na verdade df™ é nao-nula em todos os
pontos. O fibrado projective cotangente P*X tem uma estructura canénica
de variedade de contacto. Se X = C™",T*X = C™ x C,, onde C,, representa
o dual de C™. Se considerarmos em C" as coordenadas (z1,...,x,) e em C,
as coordenadas duais (§1,...,&,), 0 =Y 1" &dxy, e df = >0 | d&;dx;.
Entao P*C" = C" x P,,, onde P, denota o espago projectivo de C". Temos

que P*C™ é a uniao dos abertos U; = {& # 0},1 < i < n. Temos em U;

o sistema de coordenadas (x1, ..., zy, %, e 52—;1, %, ce %) A forma de
0 .

contacto wj = — = d§; + Zj# %dl’i é uma forma de contacto sobre U;. As
; J

&

formas diferenciais w;, 1 < i < n, determinam uma estructura de contacto
L sobre P*C™.

Dada uma hipersuperficie S = {f = 0} sobre um aberto de C", temos uma

o (L@ glw)

aplicacao



definida sobre a parte regular de .S com valores em P,. O fecho em P*C"
do grafico desta aplicagdo diz-se o conormal de S. O conormal de S é
uma variedade Legendriana de P*C". Dado um ponto a € S, o conjunto
Y =TI'N7n~!(a) diz-se o limite de tangentes de S no ponto a.

Seja (S,0) um germe de hipersuperficie de uma variedade complexa X
definido por um germe de funcao holomorfa f € Ox,. Dizemos que (S, 0)

é uma hipersuperficie quasi-ordindria se existe um sistema de coordenadas

locais (z1,...,zy) centrado em o tal que a imagem pela aplicagao
(T1y.eoymy) = (T1,. .oy Tp—1) (0.0.1)
do conjunto
of
= =0 0.0.2
{=3L —o} (002
é igual a
{z1-- 2, =0} (0.0.3)

O conjunto (0.0.2) diz-se o contorno aparente de S relativamente a projecgao
(0.0.1) e o conjunto (0.0.3) diz-se o discriminante de S relativamente a
projeccao (0.0.1).

A singularidade quasi-ordindria caracteriza-se pelo facto de admitir parame-

trizacoes em séries de poténcias fracionarias do tipo
T =@(x1,...,Tp-1). (0.0.4)

Toda a curva (hipersuperficie de uma variedade de dimensao 2) é uma
superficie quasi-ordinaria. Newton foi o primeiro a descobrir que toda a
curva complexa admite uma parametrizagao do tipo (0.0.4), normalmente
chamada de expansdo de Puiseux.

O objectivo central desta tese é o estudo das variedades Legendrianas que
sao conormais de hipersuperficies quasi-ordinarias.

O primeiro capitulo dedica-se ao estudo das curvas Legendrianas. O re-
sultado fundamental é um teorema de classificagao de curvas Legendrianas.
Trata-se de uma versao para curvas Legendrianas de um teorema de Delorme
(ver [7]) para curvas planas. Mostra-se que o conjunto das curvas Legendri-
anas que verificam uma condigao de genericidade associada ao semigrupo da

curva formam um aberto de Zariski de um espaco projectivo pesado.
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Um dos instrumentos fundamentais para a prova do teorema consiste num
teorema que descreve todas as transformagoes de contacto de uma variedade
de contacto de dimensdo trés. Consideramos em (C3,0) a estructura de
contacto definida pela forma de contacto dy — pdx. toda a transformagao de
contacto cuja derivada deixe invariante a recta {y = p =0} é a composicao

de transformagoes do tipo

(@, 9,p) = (Az, py, %p) (0.0.5)

(z,y,p) = (x+ o,y + B,p+7) (0.0.6)

onde a, 3,7 pertencem ao ideal maximal do anel C{z,y,p}. Dados o €

C{x,y,p} e Bo € C{z,y}, temos que (3 é solugao do problema de Cauchy

B da  da B\ _
il Clae)) <1+(9x+p(9y> +p<1+8y> =0,

com 3 — [y € (p). Além disso,

(1,00, 00\ (95 (08 00 da
T ox p@y or P oy Ox p@y ’

Temos que toda a transformagao de contacto de (C3,0) em (C3,0) é a com-
posigao de transformagoes do tipo (0.0.5), (0.0.6) e uma transformagao de

contacto paraboloidal (ver [11])

1 1
(x,y,p) — (ax + bp,y — Zacz® — §bdp2 — bexp, cx + dp),

2 c

b'zl'

O teorema de classificacao de transformacgoes de contacto referido acima é
talvez o mais importante resultado de [1], tendo ja sido citado em [6]. E
também citado em dois outros trabalhos actualmente em preparacao.

Como consequéncia do teorema fundamental deste capitulo, é possivel clas-
sificar explicitamente em muitas situacgoes todas as curvas Legendrianas que
s80 os conormais de uma curva plana com um unico par de Puiseux (p, q).
O segundo capitulo desta tese dedica-se ao estudo dos limites de tangentes
de uma hipersuperficie quasi-ordinaria. Podemos encontrar a solugao deste

problema num caso muito particular em [2].
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Uma das consequéncias fundamentais deste resultado é mostrar que, sempre
que o cone tangente de uma hipersuperficie quasi-ordindria é um hiperplano,
o limite de tangentes é um invariante topoldgico da hipersuperficie.

Este resultado leva-nos a perguntar se podemos esperar que, quando o cone
tangente de uma hipersuperficie arbitraria é um hiperplano, o limite de
tangentes é um invariante topolégico da hipersuperficie.

No terceiro capitulo da tese aplica-se o resultado fundamental do segundo
capitulo ao estudo do comportamento por explosao do conormal de uma
hipersuperficie quasi-ordindria. Obtemos desta forma um teorema de res-
olucao de singularidades para superficies Legendrianas que sdo conormais
de superficies quasi-ordinarias.

Seja 7 : X — X uma explosao de uma variedade de contacto X com um
centro dado D. Dada uma estructura de contacto £ em X nao podemos
esperar que exista em X uma estructura de contacto £ para a qual 7w é uma
transformagao de contacto. Na verdade toda a transformacao de contacto
é bijectiva, e m 86 é bijectiva se D = (). Neto mostrou em [18] que existe
uma nogao de variedade de contacto logaritmica que generaliza a nogao de
variedade de contacto. Dada uma variedade Legendriana lisa A de X, o
blow up X de X com centro A tem uma estructura de variedade de contacto
logaritmica com polos ao longo do divisor excepcional de 7. As secgOes
do fibrado cotangente T*M sao as formas diferenciais de grau 1 que sao
as seccoes do feixe Q}w Dado um divisor com cruzamentos normais N de
M, vamos denotar por Q},(N) o feixe das formas diferenciais logaritmicas
de grau 1 com polos em N. Vamos chamar fibrado cotangente logaritmico
ao fibrado T*(M/N) cujo feixe de secgdes é Q},(N). Vamos denotar por
P*(M/N) a projectivizagao do fibrado T*(M/N).

Seja L uma subvariedade lisa de M tal que para toda a componente irre-
dutivel N; de N, L estd contida em N; ou L é transversal a IN;. Podemos
definir P, (M/N) de forma semelhante & usada para definir Py M.

O resultado seguinte é um dos instrumentos essenciais na prova do teorema

fundamental deste capitulo.

Theorem 0.0.1. (i) Seja (X, £) uma variedade de contacto logaritmica com

polos ao longo de Y. Seja A uma subvariedade Legendriana bem comportada
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de X. Sejat:X — X o blow up de X ao longo de A. Seja E = 7~ H(A).
Entao Og-module O (E)T*L é uma estructura de contacto logaritmica em
X com polos ao longo de 771(Y).

(ii) Seja M uma variedade e N um divisor com cruzamentos normais de M.
Seja L uma subvariedade bem comportada de M. O conormal A = P; M de
L ¢é uma subvariedade Legendriana bem comportada de P*(M/N). Seja
p: M — M o blow up de M ao longo de L. Seja E = p~YL). Seja
N = p~Y(N). Entdo existe uma transformac¢do de contacto injectiva ¢ de
um subconjunto aberto denso Q do blow up X de P*(M/N) ao longo de A
para P*(M/N) tal que o diagrama (0.0.7) comuta.

P*(M/N) £ X~ & P<(M/N)
Tl IR: (0.0.7)
M £ M

(iii) Seja M uma variedade e N um divisor com cruzamentos normais de M.
Seja L uma subvariedade bem comportada de (M, N). Seja o a projec¢ao
canonica de TAP*(M/N) sobre T, M. Seja S um germe de um subconjunto
analitico natural de (M, N) emo € N. Sejal' = P¢(M/N). Se S tem limite
de tangentes trivial em o, entdo I N7~ (0) = {A\} e CA(T) N~ (L) C A,
[ CQ e @) =PLM/N).

A prova do Teorema de resolugdo de singularidades depende de um argu-
mento combinatério baseado no algoritmo de resolugao de singularidades

para superficies quasi-ordindrias.

Palavras chave: Espagos de Moduli; Geometria Algébrica; Hipersuperficie
quasi-ordindria; Limites de tangentes; Teoria das singularidades; Variedade

de contacto; Variedade Legendriana.






Abstract

This thesis is a study of the Legendrian Varieties that are conormals of
quasi-ordinary hypersurfaces.

In the first chapter we study the analytic classification of the Legendrian
curves that are the conormal of a plane curve with a single Puiseux pair.
Let xm,n be the set of Legendrian curves that are the conormal of a plane
curve with a Puiseux pair (m,n), where g.c.d.(m,n) =1 and m > 2n, with
semigroup as generic as possible. We show that the quotient of x.,, by
the group of contact transformations is a Zariski open set of a weighted
projective space.

The main tool used in the proof of this theorem is a classification/construction
theorem for contact transformation that has since proved useful in other in-
stances.

In the second chapter we calculate the limits of tangents of a quasi-ordinary
hypersurface. In particular, we show that the set of limits of tangents is, in
general, a topological invariant of the hypersurface.

In the third chapter we prove a desingularization theorem for Legendrian
hypersurfaces that are the conormal of a quasi-ordinary hypersurface. One
of the main ingredients of the proof is the calculation of the limits of tangents

achieved in chapter two.

Keywords: Algebraic Geometry; Contact Variety; Legendrian Variety;
Limits of tangents; Moduli Spaces; Quasi-ordinary Hypersurface; Singu-

larity theory.
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Chapter 1

Moduli of Germs of

Legendrian Curves

In this chapter We construct the generic component of the moduli space of
the germs of Legendrian curves with generic plane projection topologicaly

equivalent to a curve y" = x".






1.1 Introduction

Zariski [23] initiated the construction of the moduli of plane curve singu-
larities. Delorme [7] organized in a systematic way the ideas of Zariski,
obtaining general results o the case of curves with one characteristic expo-
nent in the generic case (see also [20]). Greuel, Laudal and Pfister (see the
bibliography of [8]) stratified the space versal deformations of plane curves,
constructing moduli spaces on each stratum.

In this chapter we initiate the study of the moduli of Legendrian curve sin-
gularities. We construct the moduli space of generic irreducible Legendrian
singularities with equisingularity type equal to the topological type of the
plane curve y" = 2™, (n,m) = 1. Our method is based on the analysis of
the action of the group of infinitesimal contact transformations on the set
of Puiseux expansions of the germs of plane curves.

In section 2 we associate to each pair of positive integers n, m such that
(n,m) =1 a semigroup I'(n,m). We show that the semigroup of a generic
element of this equisingularity class equals I'(n, m). In section 3 we classify
the infinitesimal contact transformations on a contact threefold and study
its action on the Puiseux expansion of a plane curve. In section 4 we discuss
some simple examples of moduli of germs of Legendrian curves. In section 5
we show that the generic components of the moduli of germs of Legendrian
curves with fixed equisingularity class are the points of a Zariski open subset

of a weighted projective space.

1.2 Plane curves versus Legendrian curves

Let A be the germ at o of an irreducible space curve. A local parametrization
v: (C,0) — (A, 0) defines a morphism +* from the local ring Oy, into its
normalization C{t}. Let v : Op , — Z U {oo} be the map g — order(:*(g)).
We call v(g), g € On,o, the valuation of g. We callT' = v(Oh ,) the semigroup
of the curve A. There is an integer k such that [ € I" for all [ > k. The
smallest integer k with this property is denoted by ¢ and called the conductor
of T'.



Let C be the germ at the origin of a singular irreducible plane curve C

parametrized by
[0.9]
x=t", Y= Z a;t', (1.2.1)
i=m

with a,, # 0 and (n,m) = 1. The pair (n,m) determines the topological
type of C (see for instance [5]).

Example 1.2.1. A monomial space curve is a curve defined by a parametriza-
tion of the type t — (x,y,p) = (ait", ast™, ast®), a; € C*. Let C be
a monomial space curve. The semigroup of any space curve includes the
valuations of all the monomials ziy/p*, i,j,k € Ny, which are equal to
order(*(x'yip*)) = order(t"t/™tks) = in + jm + sk. Hence I' D {in +
jm + ks,i,j,k € Ng}. Since C' is a monomial curve, if u,v are monomials
of Op, and a,b € C, then order(¢*(au + bv)) = min(order(u), order(v)), or
t*(au+bv) = 0. Hence, for a monomial curve I' = {in+jm+ks,i,j,k € Z*}.
The same result applies to monomial plane curves as a particular case, with

the obvious modifications.

Example 1.2.2. Let C be the germ of plane curve germ defined at the
origin of C? by y3 — 2! = 0. Let ¢ be the parametrization of C' defined by
t — (t3,t'1). Then v(z'y’) = order(s*(z'y’)) = order(t3+14) = 3i 4 11j
and, since C' is a monomial curve, the semigroup I' of C is equal to the set
of all such orders for %, 7 € Ny.

It is useful to represent the semigroup of a curve in a table with v(z) columns,
where each place (i,7) of the table represents the valuation iv(z) + j. In
each place of the table we display a monomial that has the corresponding
valuation. Once a monomial u is placed in the table we know that all places
below that monomial along the same column are also in the semigroup, since
moving down one line along a fixed column corresponds to multiplying u by
powers of x. Hence we omit displaying all monomials in (z), except for z
itself. In the current example, we obtain the table (1.1).

Hence, it is easy to see that in this case the semigroup equals
I'=1{3,6,9,11,12,14,15,17,18,20,21,22...}

In particular, the conductor is ¢ = 20. In general, c = (n — 1)(m — 1) for a

plane curve ¢ — (t",¢™ + 3", a;t") such that (n,m) = 1.



0112
0
3 |z
6
9 Y
12
15
18
21 | . | 2

Table 1.1: Semigroup table of C{z,y}/(y> — z'!)

Example 1.2.3. Let A be the space curve defined in (Ci%p by the ideal (3% —
o't y—(3/11)px). A parametrization of I is given by ¢(t) = (3, ¢11 (11/3)t®).
The semigroup is equal to the set of valuations v(z’y/p*),i,j, k € Ng. The

semigroup table is

0| 112
0
3 | x
6
9 Yy
12
15 p?
18 Py
21 y?

Table 1.2: Semigroup table of C{z,y,p}/(y> — 2,y — (3/11)px)

Hence the semigroup is the union of {3,6, 8,9} with all the integers greater

or equal to 11 except for 13, and the conductor is ¢ = 14.

Example 1.2.4. Consider the family of plane curves defined by ¢ s (3, ¢!+
>isq1 ait’), a; € C. Since (3,11) = 1, ¢ = (3 — 1)(11 — 1) = 20, and for

k < ¢, there is at most one monomial with valuation k (the smallest k



where two monomials coincide is v(z'!) = v(y®) = 33). Hence we still have
I' = {v(z'y’),i,7 € No}, and the semigroup table is the same as in example
(1.2.2).

Example 1.2.5. Let A be the space curve defined in Ci,ym

tion o(t) = (63, ¢" + 3,0 q ait’, 38+ 3,01, £a;it"™3), a; € C. Notice that
the projection of A through (x,y,p) — (x,y) coincides with the curve C of

by the parametriza-

the previous example. The semigroup of A contains all the valuations of the

type v(zlyip*),4, 5, k € Nyg. In addition, we have
11

2
Uy — ?psv) = —apo11tt — ﬁalgtl?’ + O(tM).

Hence, if a12 # 0, v(y — I—;px) = v(z*) = 12. Suppose aja # 0. Then

x 11 aiz 2
w=1"(y— 3P + ﬁafl) = —ﬁalgtl?’ +O(t').

Hence, if a12 # 0,a13 # 0, 13 € I', although 13 is not the valuation of a
monomial. In this case the semigroup table is table (1.3). Therefore I' =
{3,6,8,9}U(11+Ng). Now suppose ajz = 0,a13 # 0. Then v(y—tpz) =13
and we get the same table again, so we see that the value of aq9 is irrelevant.
But if a;3 = 0 then 13 no longer belongs to I' and the semigroup is that of
table (1.2).

0] 112
0
3 |z
6
9 (0
12 w
15 p?
18 Py
21 | . | 92

Table 1.3: Semigroup table of A when a3 # 0.

Hence we see that the semigroup of a space curve depends on the values of

at least some of the coefficients a;.



Let M be a complex manifold of dimension n. The cotangent bundle 7, :
T*M — M of M is endowed of a canonical 1-form 6. The differential
form (d#)"™ never vanishes on M. Hence df is a symplectic form on T*M.
Given a system of local coordinates (z1,...,x,) on an open set U of X,
there are holomorphic functions &, ..., &, on my/ (U) such that 6 | A )=
&dxy + - + &pdxy,.
Let X be a complex threefold. Let Q’)“( denote the sheaf of differential
forms of degree k on X. A local section of Qﬁ( is called a contact form if
w A dw never vanishes. Let £ be a subsheaf of the sheaf Q4. The sheaf
L is called a contact structure on X if L is locally generated by a contact
form. A pair (X, £), where L is a contact structure on X, is called a contact
threefold. Let (X;,L;), i = 1,2, be two contact threefolds. A holomorphic
map ¢ : X1 — Xo is called a contact transformation if p*Lo = L1.
Let P*C?* = C? x P! = {(z,y,(¢ : ) : z,y,§,m € C, (§,1) # (0,0)} be
the projective cotangent bundle of C2. Let 7 : P*C? — C? be the canonical
projection. Let U and V be the open sets of P*C? defined respectively by
n# 0and & # 0. Set p = =¢/n, ¢ = —n/&. The sheaf L defined by
L |y = Ouy(dy — pdx) and L |, = Oy (dx — qdy) is a contact structure on
P*C2. By the Darboux theorem every contact threefold is locally isomorphic
to (U, Oy(dy—pdzx)). We call infinitesimal contact transformation to a germ
of a contact transformation ® : (U,0) — (U, 0).
A curve A on a contact manifold (X, £) is called Legendrian if the restriction
of w to the regular part of A vanishes for each section w of £. Let C' = {f =
0} be a plane curve. Let A be the closure on P*C? of the graph of the Gauss
map G : {a € C : df(a) # 0} — P! defined by G(a) = (df(a)). The set
A is a Legendrian curve. We call A the conormal of the curve C. If C is
irreducible and parametrized by (1.2.1) then A is parametrized by
n - i dy i i—n
x=1t", y:izzmait, pZ@ZZEGit . (1.2.2)

i=m
Given a Legendrian curve A of P*C? such that A does not contain any fibre
of m, m(A) is a plane curve. Moreover, A equals the conormal of m(A) (see

[21]).
Let (X, L) be a contact threefold. A holomorphic map ¢ : (X, 0) — (C2,0)



is called a Legendrian map if Dy(0) is surjective and the fibers of ¢ are
smooth Legendrian curves. The map ¢ is Legendrian if and only if there is a
contact transformation 1 : (X, 0) — (P*C2, (0,0, (0 : 1)) such that ¢ = 7.
Let (A, 0) be a Legendrian curve of X. Let C,(A) be the tangent cone of A
at 0. We say that a Legendrian map ¢ : (X,0) — (C2,0) is generic relatively
to (A, 0) if it verifies the transversality condition T, ~1(0) N C,(A) = {0}.
We say that a Legendrian curve (A, o) of P*C? is in strong generic position
if 7 : (P*C2,0) — (C?,7(0)) is generic relatively to (A, o). The Legendrian
curve A parametrized by (1.2.2) is in strong generic position if and only
if m > 2n + 1. Given a Legendrian curve (A,o0) of a contact threefold X
there is a contact transformation ¢ : (X, 0) — (P*C2,(0,0, (0 : 1)) such that
(¥(A), 0) is in strong generic position (cf [10], section 1).

Example 1.2.6. Let C be the germ of plane curve 4% —z3 = 0. The tangent
cone of C is obtained by considering the deformation to the tangent cone

map,

()\2y2 o )\3$3)
\2

and setting A = 0. Hence the tangent cone of C' is {y = 0}.

A= :yz—)\a}S,

Let A be the conormal of C'. A is the curve parametrized by

t (z,y,p) = (1%,1%,(3/2)1),

hence A verifies the equations y? — 23 = 0, p? — (9/4)z = 0. From the first
equation, the tangent cone is contained in {y = 0}. from the second we get
Ap? —(9/4)x = 0, hence x = 0. Hence the tangent cone of A is {z =y = 0},

therefore A is not in strong generic position.

We say that two germs of Legendrian curves are equisingular if their images
by generic Legendrian maps have the same topological type.
1.3 Infinitesimal Contact Transformations

Let m be the maximal ideal of the ring C{z,y,p}. Let G denote the group of
infinitesimal contact transformations ® such that the derivative of ® leaves

invariant the tangent space at the origin of the curve {y = p = 0}. Let J

10



be the group of infinitesimal contact transformations

(z,y,p) = (z+,y+B,p+7) (1.3.1)

such that o, ,7,0a/0x,08/0y,0v/0p € m. Set H = {¥y, : A\, u € C},

where
\I’A,,u(‘rvy,p) = <)“T,:U’ya %P) . (132)

Let P denote the group of paraboloidal contact transformations (see [11])

a

1 1
(z,y,p) — (ax+bp,y— §acx2 — ibdp2—bcxp, cx+dp),

b
=1. (1.3.3)

c d
The contact transformation (1.3.3) belongs to G if and only if ¢ = 0. The

paraboloidal contact transformation

(@,y,p) = (=p,y — 2p, x) (1.3.4)
Is called the Legendre transformation.

Theorem 1.3.1. The group J 1is an invariant subgroup of G. Moreover,

the quotient G/ J is isomorphic to H.

Proof. . If H e Hand ® € J, HPH! € J. Hence it is enough to show
that each element of G is a composition of elements of H and J. Let ® € G
be the infinitesimal contact transformation (z,y,p) — (2/,9',p'). There is
¢ € C{x,y,p} such that ¢(0) # 0 and

dy' —p'dx’ = o(dy — pdzx). (1.3.5)

Composing ® with H € H we can assume that ¢(0) = 1. Let ® be the germ
of the symplectic transformation (z,v,p;n) — (2,9, —np’; 0~ 'n). Notice
that ©(0,0;0,1) = (0,0;0,1). Since D®(0,0;0,1) leaves invariant the linear
subspace 1 generated by (0,0;0, 1), D@(O, 0;0,1) induces a linear symplectic
transformation on the linear symplectic space p/u. There is a paraboloidal
contact transformation P such that DP(0,0;0,1) equals D®(0,0;0,1) on
p*/p. Since D(P~1®)(0,0;0,1) induces the identity map on pu'/u, P~'®
is an infinitesimal contact transformation of the type (x,y,p) — (z+a, v/, p+

7v), where
Oda da 0y 0Oy

ge 2 B9 e, 1.3.
8:L”8p’8:1:’8p€m (1.3.6)
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Set f =y —y. It follows from (1.3.5) and (1.3.6) that (93/0y)(0) = 0.
Hence P~1® € 7. Since ® and P71d € G, P € G. Therefore p is the

composition of an element of H and an element of 7. O
Theorem 1.3.2. Let o € C{z,y,p}, Bo € C{x,y} be power series such that

9B
, B0, — € m. 1.3.7
a, Bo gy €™ (1.3.7)
There are 3,7 € C{x,y, p} such that 3—/p € (p), v € m and «, 3,y define an
infinitesimal contact transformation ®, g, of type (1.3.1). The power series
B and v are uniquely determined by these conditions. Moreover, (1.3.1)

belongs to J if and only if

o 8ﬁ0 8260
92 9n Badp €™ (1.3.8)
The function 3 is the solution of the Cauchy problem
Oa oda\ 00 da 0B Oadp Jda
14+ — — = —p— — —— =p—. 1.3.
< +3$ +p8y> Op p@p@y Op Oz pap (1.3.9)

with initial condition 8 — By € (p).

Proof. . The map (1.3.1) is a contact transformation if and only if there is
¢ € C{z,y,p} such that ¢(0) # 0 and

d(y + B) — (p+7)d(z + ) = p(dy — pdz). (1.3.10)

The equation (1.3.10) is equivalent to the system

15) 0

aﬁ - (p+»y)£ (1.3.11)

ap o
_ _ ga 1.3.12
@ +8y (p+7)8y (1.3.12)

_ 96 Oa
Y = 5 (p+'y)(1+8x)- (1.3.13)

By (1.3.12) and (1.3.13),

op Oa Jda ap
7w 14+ 2= 4 p== 1+22) = 1.3.14
. (p+'y)< +8x+p8y> +p< +8y> 0, (1.3.14)

By (1.3.11) and (1.3.14), (1.3.9) holds.
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By the Cauchy-Kowalevsky theorem there is one and only one solution 3 of
(1.3.9) such that 8 — By € (p). It follows from (1.3.14) that

oo da\ ' /0B 08 da  da
=(1+>= +p=— - o)), 1.3.1
v ( +8x+p8y) (8x+p(8y oz pay)> (1.3.15)

Since 00y /0y € m, 0f/dy € m. By (1.3.12), ¢(0) # 0.
(ii) Since 06y/0x € m, 93/0x € m. By (1.3.15), v € m. By (1.3.15),

oy (78 98 oo
Op 0xdp Oy oz'P )"

By (1.3.7) and (1.3.8), 0v/dp € m. O

Example 1.3.3. Setting o = %pkil, k>2 a¢€Cand () =0, we find
that

7 = z+ Praph!
y = z+aph (1.3.16)
/ — p

is a contact transformation.

Example 1.3.4. Setting a = %xiyjpkfl, such that @ € C, and either

k>2or k>1andij#0, there are ¢ € m and v € C{x,y, p}, such that
r = x+ %axiyjpk_l

y = x4 azr’yiph(l+e) (1.3.17)
P = pt7

is a contact transformation.

Corollary 1.3.5. The elements of J are the infinitesimal contact transfor-
mations ®q g, such that o, By verify (1.3.7) and (1.3.8).

Lemma 1.3.6. Given A € C and w € I'(m,n) such that w > m + n, there
are «, By verifying the conditions of theorem 1.3.2 such that 1*(8 — pa) =
At A4

Proof. . By (1.5.1) there is b € C{x,y,p} such that +*b = X" + ---, b =
Zkzo brp® and v(bg) > v(b) — v(z) — kv(p) + 1. Set o = —Ab/dp, Py = bo.
Set a = Zk‘ZO ak‘pka B = ZkZO /kak7 where ak’/ﬁk‘ € C{.’E,y} By (139)’

k—1

. Oaj—j  Oop_j_q
kB + Z]ﬁj ( ) 4+ ) =
= Ox oy
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k-1

= (k—1)agp_1+ kaki + Z <8ﬁk 7 aﬁka—yj—1> ’

for k > 1. Since oy = —(1 + 1)byyq for I > 1, v(a;p*) > w+1,if j < k — 2.
Moreover, v(ag_1p¥) > w+ 1 —n and v(agp®) > w + 1 — m. Therefore

k‘ﬁkpk*l'liijﬁj (aog;j + aagyj1> P = (k—Dap_1p"+ (k—1Daj_; (f;
mod (t“*!) for k > 1. We show by induction in & that

kBrp" = (k — 1)og—1p®  mod (t*T1), for k > 1.
Hence 3 — pa = b mod (t¥*1). O

There is an action of J into the set of germs of plane curves C such that
the tangent cone to the conormal of C' equals {y = p = 0}. Given ® € J we
associate to C' the image by 7® of the conormal of C'. Given integers n,m
such that (m,n) =1 and m > 2n + 1, J acts on the series of type (1.2.1).
Given an infinitesimal contact transformation (1.3.1) there is s € C{t} such

that s™ = t" + « and for each 7 > 1

e (il ) () )

Lemma 1.3.7. If v(fy) > v(a) + v(p), the contact transformation (1.3.1)
takes (1.2.1) into the plane curve parametrized by v = s", y = y(s) + B(s) —
p(s)a(s) + e, where v(e) > 2v(a) + m — 2n.

Proof. . Since t' = s* — (i/n)t" "a(t) + (i(i —n)/n?)a(t)?t 72" + ...

- Z a;is' — aft) Z %aiti*m +& =y(s) —alt)p(t) + &,

i>m i>m

p(t)a(t) = p(s)a(t) — a(t)? Z(%)Qaiti’m +e" =p(s)als) + 7,

>m

where v(g"),v(e”),v(e"”) > 2v(a) + m — 2n. O

Example 1.3.8. Recall the family of contact transformations

= x+ Praph!
y = z+apF (1.3.18)
=
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from example 1.3.3. A member of this family takes (1.2.1) into the plane
curve parametrized by x = s,y = y(s)+ B(s) —p(s)a(s) + OtV (@+m=2n) =
y(s) — 725" + ¢, where v(e) > v(pF). Hence these transformations allow
us to eliminate the coeficients ay, k € v(p*) of the parametrization. In a
similar fashion, the transformations of example 1.3.4 allows us to eliminate

coefficients of the type a;, i = v(2'y/p*), k > 2 or k > 1 and ij # 0.

1.4 Examples

Example 1.4.1. If m odd all plane curves topologicaly equivalent to y? =

™ are analyticaly equivalent to y?> = 2™ (cf. [23]). Hence all Legendrian

x
curves with generical plane projection y? = 2™ are contact equivalent to the

conormal of y? = z™.

Example 1.4.2. Let m, s, € be positive integers. Assume that m = 3s + ¢,

1 <e<2. Let C3,,, be the plane curve parametrized by
T = t3 y = tm + tm+3u+e—3.

™ is analyticaly

By [23] a plane curve topologically equivalent to y* = x
equivalent to y3 = ™ or to one of the curves C3muy, 1 <v<s—1. The

infinitesimal contact transformation

(x,y,p) = (x = 2p,y + p*, p)
takes the plane curve C3 , 51 into the plane curve C' parametrized by

3z =3t —mt™ 3 — ..., y=1t"

By Lemma 1.3.7, the curve C’ admits a parametrization of the type z = s3,

y = s"+7, where v(§) > m+3s+e—6. By [23], the curve C’ is analyticaly
equivalent to the plane curve y3 = ™.

The semigroup of the conormal of the plane curve 3 = 2™ equals
'3 mo = (3,m — 3). The semigroup of the conormal of the curve Cs .,
equals I's,, = 3,m —3,m+3v+¢€), 1 < v <s—1. The map from
{0,1,...,s—2} into P(N) that takes v into I's ,,, ,, is injective. Hence there

are s — 1 analytic equivalence classes of plane curves topologicaly equivalent
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to y3 = 2™ and s — 2 equivalence contact classes of Legendrian curves with
generical plane projection y® = 2™. In this case the semigroup of a curve is
an analytic invariant that classifies the contact equivalence classes of Leg-
endrian curves. We will see that in the general case there are no discrete
invariants that can classify the contact equivalence classes of Legendrian

curves.

Given a plane curve

r=1 y=t"+ > at’, (1.4.1)

1>m-e
the semigroup of the conormal of (1.4.1) equals I'3 ,,, 1 if and only if @y, # 0.
It is therefore natural to call I'(3,m) :=I's ,, 1 the generic semigroup of the

family of Legendrian curves with generic plane projection 3% = z™.

1.5 The generic semigroup of an equisingularity

class of irreducible Legendrian curves

We will associate to a pair (n,m) such that m > 2n+ 1 and (m,n) =1 a
semigroup I'(n,m). Let (k1,...,k,) be the submonoid of (N, +) generated
by ki,...,k-. Let ¢ be the conductor of the semigroup of the plane curve
(1.2.1). Set I'. = (n)U{c, c+1,...}. We say that the trajectory of k > c equals
{k,k+1,...}. Let us assume that we have defined I'; and the trajectory of
j for some j € (n,m —n) \ e, 7 > m. Let i be the biggest element of
(n,m —n) \I';. Let #; be the minimum of the cardinality of the set of
monomials of C[z,y, p] of valuation ¢ and the cardinality of {i,7+1,...}\T;.
Let w; be the #;-th element of {i,i+1,...}\I';. We call trajectory of i to the
set ;= {i,i+1,...,w;}\ (n). Set I'; = 7 JI'j. Set I'(n,m) =T'p,—,. The

main purpose of this section is to prove theorem 1.5.2. Let us show that
w; <i4+n—2. (1.5.1)

fw >i+n—1,T;D{i,...,i+n—1}. HenceT'; D {i,i+1,...} and i > c.
Therefore (1.5.1) holds.
Let X =", Y = Yo gamyit™, P = Y 50(p + i)amyit™ " be power

series with coefficients in the ring Z[a,,, . . ., ac—1, p]. Given J = (i, j,1) € N3,
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set v(J) = v(ziyipl). Let N ={J € N3:j+1>1and v(J) <c—1}. Let
T =(Ysk), J €N, m<k<c—1be the matrix such that

X'YIP = Z Tyt (mod (t9)). (1.5.2)
Since 9Y/0u = 0 and XOP/0ou =Y,

Xy Pl , , oY
aaMZZX“YJ“P” and a:"f:zraj,k, (1.5.3)

where 9(i + 1, 4,0+ 1) = (i, + 1,1). Moreover,

i ll

Tie= > Z I ey, (1.5.4)

acA(k) veG(a, l)

where A(k) = {a = (m, ..y 1) : o] = j+land Y o sas = k—(i—1)n},
Gla,l) ={y:|y|=1land 0 <~ < a} and 7 = [[5Z} (u — m + s)%. Let
us prove (1.5.4). We can assume that i = [. Since G(a, N) = {a} and
XNpN = Zkgotk > acaN/a)u®a® , (1.5.4) holds for J = (N,0,N).
Let us show by induction in j that (1.5.4) holds when j +1 = N. Set
es = (0sr), 0 < 8,7 < N. Given v € G(a,l — 1), set ) = 7+ es. Set
AY = 1if y(5) < a. Otherwise, set A = 0. Since

1 jut - owy l—l ,
T Tamiar = 2 Z i (s + DAL

l ’yEG(Oé,l) (Oé ’Y)’Y 8“ ’yEG(al 1 s—m ’)/( ( )

—1

]' | — 1
Y. e Z
yEG(a,l—1) s=m
- ¥ w
— |~/ ’
~EG(a,l-1) (@ =)t

the induction step follows from (1.5.3). We will consider in the polynomial
ring Clay,, ..., a. 1] the order a® < a if there is an integer ¢ such that

ag < By and a; = G; for i > g+ 1. Set w(P) = sup{i : a; occurs in P}.

Lemma 1.5.1. Let M,N,q € Z such that 0 < M < N and g+ N > 0. If
A= (M), where M <I <N, k>0, Ny ="y, and J = (qg+1,N —1,1),
the minors of A with N — M 4+ 1 columns different from zero do not vanish

at p=m.
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Proof. . One can assume that ¢ = 0. When we multiply the left-hand
side of (1.5.2) by P the coefficients of T are shifted and multiplied by an
invertible matrix. Hence one can assume that M = 0. Set Z = (Z; 1), where
Zik = (i)/ﬂ*k, 0 < j,k < N. Notice that Z is lower diagonal, det(Z) = 1

and 5
7 )
87%]6 = ]Zj—l,k = (k‘ —+ 1)Zj,k+1~ (155)
“w
Let us show that

Z7I\ = Mo (1.5.6)

Since Ay is a polynomial of degree IV in the variable p with coefficients in
the ring Z[ay, . . ., ac—1], there are polynomials Z; ;, € Qay,, ..., ac—1] such
that Ay = SN, (QV)Z,-,WN—%’. Set Z=(Z;4),0<i<N,0<k<c—1.

Since Z|,—o = Id, it is enough to show that ZZ = \. By construction,

N
Nk = ZjiZin (1.5.7)
=0

when j = N. By (1.5.3) and (1.5.5) statement (1.5.7) holds for all j. Remark
that
No(1)+klp=0 =0 if and only if k<l (1.5.8)

Let 0; 1, be the leading monomial of X; ;. When & > [,
Oro(ry+k = ay " amik it 1=0, (1.5.9)

Oro(ryik = aby lab by i 1> 1 (1.5.10)

Let us prove (1.5.10). Set a9 = j, aq =1 —1, a1 = 1 and as = 0
otherwise. By (1.5.4), a € A(k) and there is one and only one v € G(«, j)
such that v9 = 0, the tuple @ given by &y = 0 and &; = «; if ¢ # 0. Since

1

R 11T o
Z -0~ (@_am l H s% =(k—14+1)l mod p,
YEG(a,l) s=0

N-I
m

for some r > 1 implies that vy > 0 for all v € G(a, ). Hence (1.5.10) holds.

the coefficient of a alr;lrlak,lﬂ does not vanish. By (1.5.4), ag_j4r # 0

Let X be the square submatrix of A with columns g@i) + Nm, 0 < g(0) <
-+ < g(N). By (1.5.6), det(N|u=0) = det(Z71N) = det(Z) ! det X' = det X
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Hence det X does not depend on p and det(N|,—p) = det(N|,—0). Set
det(X) = 30, sgn(m)Ax, where A = [[g X, ;) If Ax # 0, let 6 be the
leading monomial of .

Let ¢ be the following permutation of {0,..., N}. Assume that ¢ is defined
for 0 < i <1—1. Let p; and ¢q; be respectively the maximum and the
minimum of {0,..., N}\e{o,...,t—1}). If \j1,4 = 0, set () = ¢;. Otherwise,
set (1) = p;. Let us show that (1.5.8) implies that A\ # 0. It is enough to
show that \; ;,, # 0 for all 4. Since g(0) > 0, Ag ¢, 7# 0. Assume that [ > 1 and
Aiyg; # 0 for 0 <i <1—1. Hence g(q—1) > 1 —1. If \; 4, | # 0 then N\ 4 # 0.
If \jg,_, =0then et -1) = ¢—1. Therefore g(a) = gla—1 +1) > gla-1) +1 > 1
and A\, # 0.

Let us show that 6. is the leading monomial of det(\|,—0). Let 7 be a
permutation of {1,..., N}. Assume that 7(i) = (i) if 0 < ¢ <1 —1 and
w(l) # e(l). If Njg_, = 0 then 7(l) # ¢ and Ay = 0. If A\j4_, # 0 then
7(l) # py and w([TY, Air(i)) < w([TE, Aie(i))- Therefore A\x < A..  OThe
semigroup of the legendrian curve (1.2.2) only depends on (G, ..., 0c—1)-

We will denote it by I'(

amv--wac—l)'
Theorem 1.5.2. There is a dense Zariski open subset U of C°™™ such that
if (@my -y 0e-1) €U, T ao ) = L(n,m).

Proof. . Since U is defined by the non vanishing of several determinants, it
is enough to show that U # (). Let j € (n,m —n), j > m. Set ¢ = (7).
Assume that we associate to j a family of triples I1,...,I;, € N such that
v(ls) > j, 1 < s < gq, and if E is the linear subspace of Clam,...,a.—1]{t}
spanned by Y7, klu=m, 1 < s < ¢, v(E) = 75 U {oo}. Let i be the biggest
element of (n, m—n)\I';. Assume that 7;,07; # (. Hence 7; contains 7;. Since
v(E) = 7; U {oo} and §(7;) = ¢, the determinant D’ of the matrix (Yy, 1),
1 <s<gq, k € 7j, does not vanish at ;= m. In order to prove the theorem
it is enough to show that there are Iy11,..., Iy, € N such that v([,) =1,
q+1 < s < g+, and the determinant D of the matrix (Y7, 1), 1 < s < g+4;,
k € 7;, does not vanish at u = m. Set Ijys41 = (M—s,5,N—s), M < s <N,
where i = v(z™p"). By (1.5.8), (1.5.9) and (1.5.10),

9T k) <9(Yr, k) if k>4 and s<qg<r. (1.5.11)
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Set N = (Y1, k), ¢+1 < s < q+4i, k € 7;\7;. By lemma 1.5.1, det(X|,=m) #
0. Set Y. = Hgiﬁf Y1, ) for each bijection ¢ : {1,...,¢+ #i} — 7. By
(1.5.11), g(Ye) < g(D'N|j=m) if e{g+1,...,a+4:}) # 73 \ 7. Since

DXy = 5 signlTe,
e({g+1,...,q+H:})=mi\T;
the product of the leading monomials of D’|,—,, and X|,—y, is the leading

monomial of D|,—,. O

1.6 The moduli

Set s = s(n,m) = inf(['(n,m)\(n,m — n)). We say that (1.2.1) is in Legen-
drian short form if a,, = 1 and if a; = 0 for i € I'(n,m), i & {m, s(n,m)}.

Ifn=2orif n=3and m e {7,8}, '(n,m) = (n,m —n) O {m,...} and
x =1t", y =t" is the only curve in Legendrian normal form such that the
semigroup of its conormal equals I'(n,m). If n =3 and m > 10 or if n > 4,

(ny,m—m) p{m,...,m+n—1} and s(m,n) € {m,...,m+n—1}.

Lemma 1.6.1. If(1.2.1) is in Legendrian normal form, T'(n, m) # (n,m—n)

and the semigroup of the conormal of (1.2.1) equals I'(n,m), asym) 7 0.

Proof. . Each f € C{z,y,p} is congruent to a linear combination of the

series
y, nep—my, ', p',  w(@'),v(p’) <s (1.6.1)

modulo (). Since the series (1.6.1) have different valuations, one of these
series must have valuation s, s € T'(n,m) \ (n,m — n) and nxp — my =
sast® + -+, as # 0. O
Let X, ,, denote the set of plane curves (1.2.1) such that (1.2.1) is in Leg-
endrian normal form and the semigroup of the conormal of (1.2.1) equals
I'(n,m). Let W,, be the group of n-roots of unity. There is an action of W),
on X, ,, that takes (1.2.1) intox =", y =) 0""ma;t?, for each 6 € W,,.
The quotient X}, /W, is an orbifold of dimension equal to the cardinality
of the set {m, .. }\(I'(n,m) \ {s(n,m)}).

i>m

Theorem 1.6.2. The set of isomorphism classes of generic Legendrian

curves with equisingularity type (n,m) is isomorphic to Xy m/Wh,.
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Proof. . Let A be a germ of an irreducible Legendrian curve. There is a
Legendrian map 7 such that w(A) has maximal contact with the curve {y =
0} and the tangent cone of the conormal of A equals {y = p = 0}. Moreover,
we can assume that 7(A) has a parametrization of type (1.2.1), with a,, = 1.
Assume that there is i € I'(m, n) such that ¢ # m, s(m,n) and a; # 0. Let k
be the smallest integer ¢ verifying the previous condition. By lemmata 1.3.6
and 1.3.7 there are a € C{z,y,p} and ® € J such that +*a = azt® + ---
and ® takes (1.2.1) into the plane curve z = s", y = y(s) — a(s) + J, where
v(d) > 2v(a) + m — 2n. Hence we can assume that a; = 0 if i € T'(m,n),
i # m,s(m,n), and i is smaller then the conductor o of the plane curve
(1.2.1). There is a germ of diffeomorfism ¢ of the plane that takes the curve
(1.2.1) into the curve & = ", y = .71 a;t* (cf. [23]). This curve is in
Legendrian normal form. The diffeomorphism ¢ induces an element of G.

Let @ be a contact transformation such ®(X) = X'. Since the tangent cone
of the conormal of an element of X’ equals {y = p = 0}, ® € G. By theorem
1.3.1, & = ¥V, ,, where ¥ € J and A\, € C*. Moreover, A € W,, and
= A". By lemmata 1.3.6 and 1.3.7, ¥ = Id. O

21






Chapter 2

Limits of tangents of

quasi-ordinary hypersurfaces

We compute explicitly the limits of tangents of a quasi-ordinary singularity
in terms of its special monomials. We show that the set of limits of tangents

of Y is essentially a topological invariant of Y.
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2.1 Introduction

The study of the limits of tangents of a complex hypersurface singularity was
mainly developped by Le Dung Trang and Bernard Teissier (see [13] and its
bibliography). Chunsheng Ban [2] computed the set of limits of tangents A
of a quasi-ordinary singularity Y when Y has only one very special monomial
(see Definition 2.1.3).

The main achievement of this chapter is the explicit computation of the
limits of tangents of an arbitrary quasi-ordinary hypersurface singularity
(see Theorems 2.2.17, 2.2.18 and 2.2.19). Corollaries 2.2.20, 2.2.21 and
2.2.22 show that the set of limits of tangents of Y comes quite close to being
a topological invariant of Y. Corollary 2.2.21 shows that A is a topological
invariant of Y when the tangent cone of Y is a hyperplane. Corollary 2.2.23
shows that the triviality of the set of limits of tangents of Y is a topological
invariant of Y.

Let X be a complex analytic manifold. Let 7w : T* X — X be the cotangent
bundle of X. Let I' be a germ of a Lagrangean variety of 7% X at a point
a. We say that I is in generic position if T N7~ 1(7(a)) = Ca. Let Y be
a hypersurface singularity of X. Let I' be the conormal 7Ty X of Y. The
Lagrangean variety I' is in generic position if and only if Y is the germ of
an hypersurface with trivial set of limits of tangents.

Let M be an holonomic Dx-module. The characteristic variety of M is a
Lagrangean variety of T* X. The characteristic varieties in generic position
have a central role in D-module theory (cf. Corollary 1.6.4 and Theorem
5.11 of [10] and Corollary 3.12 of [16]). It would be quite interesting to have
good characterizations of the hypersurface singularities with trivial set of
limits of tangents. Corollary 2.2.23 is a first step in this direction.

After finishing this chapter, two questions arise naturally:

Let Y be an hypersurface singularity such that its tangent cone is an hy-
perplane. Is the set of limits of tangents of Y a topological invariant of
Y?

Is the triviality of the set of limits of tangents of an hypersurface a topological

invariant of the hypersurface?
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Let p : C"*!1 — C" be the projection that takes (z,y) = (x1,...,%n,¥y)
into . Let Y be the germ of a hypersurface of C"*! defined by f €
C{z1,...,zn,y}. Let W be the singular locus of Y. The set Z defined
by the equations f = 0f/0y = 0 is called the apparent contour of f rela-
tively to the projection p. The set A = p(Z) is called the discriminant of f

relatively to the projection p.

Example 2.1.1. The apparent contour consists of the singular points and of
those points where the surface has a non-generic number of points with the
same ”shadow”, or where the surface ”turns” with regard to the projection

axis. If X = {(z1,22,v) : y? — 125 = 0}, then
Sing(X) = {(z1,22,y) : f = 0f /0wy = 0f |Oxs = 0f |0y = 0} = {wy =y = 0}.

Hence the apparent contour with regard to the projection (x1,x2,y) —

(z1,22) is
of

{(z1,20,y) - [ = (‘Ty =0} = {z129 = y = 0},

and the discriminant with regard to the projection is {(x1,z2) : z122 = 0}.

LN

Near ¢ € Y \ Z there is one and only one function ¢ € Ogn+1 4 such that
f(z,p(z)) = 0. The function f defines implicitly y as a function of x.

Moreover,

dy Do Ofou,
ox; Ox;  Of/0y
Let 0 = &dxy + ... &pdxy, + ndy be the canonical 1-form of the cotangent

onY\ Z. (2.1.1)

bundle T*C"*! = C"*! x C,41. An element of the projective cotangent

bundle P*C"*t! = C"*! x P, i s represented by the coordinates
(T1yee oy @,y &1 1 & i ).
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We will consider in the open set {n # 0} the chart

(mlw s Iny Yy Py - 7pn)7

where p; = —&;/n,1 < i < n. Let 'y be the graph of the map from Y \ W
into P, defined by

of of Of

Let I be the smallest closed analytic subset of P*C"*! that contains I'g. The
analytic set I' is a Legendrian subvariety of the contact manifold P*C"*+!.
The projective algebraic set A = I' N w~1(0) is called the set of limits of
tangents of Y.

Remark 2.1.2. It follows from (2.1.1) that

<§i§x'ig£> = (—;;yl:-u:—aaxyn:l) onY \ Z.
Let c1,...,c, be positive integers. We will denote by (C{Jri/cl, . ,:U,ll/c”}
the C{x1,...,z,} algebra given by the immersion from C{z1,...,z,} into
C{ti1,...,t,} that takes z; into t;*,1 < i < n. We set xi/ci’ = t;. Let
ai,...,ap be positive rationals. Set a; = b;/c;, 1 < i < n, where (b;,¢;) = 1.

Civen a ramified monomial M = -z =t} ...t we set O(M) =
C{zl/, . a/m)

Let Y be a germ at the origin of a complex hypersurface of C"*t1. We say
that Y is a quasi-ordinary singularity if A is a divisor with normal crossings.
We will assume that there is [ < m such that A = {z1---2; = 0}.

If Y is an irreducible quasi-ordinary singularity there are ramified monomials
No,N1,...,Npm,gi € O(N;),0 < i < m, such that Ny = 1, N;_; divides N;
in the ring O(N;), ¢; is a unit of O(N;),1 < i < m, go vanishes at the origin

and the map = — (z, p(x)) is a parametrization of Y near the origin, where
©=go+ Nig1 + ...+ Nmgm. (2.1.2)

Replacing y by y — gg, we can assume that gg = 0. The monomials N;, 1 <
i < m, are unique and determine the topology of Y (see [15]). They are
called the special monomials of f. We set O = O(N,y,).
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Definition 2.1.3. We say that a special monomial N;, 1 < i < m, is very
special if {N; =0} # {N;_1 = 0}.

Let My, ..., M, be the very special monomials of f, where M), = N,,,1 =
np<ng <...<mng1l<k<g. Set My=1,n441 =mng+ 1. There are units
fi of O(Ny,,,-1), 1 <i < g, such that

(P:lel“‘---"i‘Mgfg- (213)

Example 2.1.4. If f(x1,z2,y) = y*> — 123, the ramified series y = x}/zx;’/z

is a root of f. The ramification order is 2 and ¢ = H(m}/Q,xéﬂ) with

H(z1,75) = z175. The conjugates of ¢; are the series

1/2 1/2

Yij = H(Eiflfl/ ,8]‘1'2/ ), €i,65 € {—1,1}.
That is:

P11 = L1,

o = () = e

o1 = H(=a,25%) = —21%23% = ¢y,

po1-1 = H(=a1"*, —2y/") = 2)%a3* = 1.
Therefore f(z1,22,y) = (y — w1(71,22))(y — p2(21, 72)).
Example 2.1.5. Let X be defined by

Y= :17?5 + a:}/z + xi’/5 + x?/loxéﬂ + :Ui{’azg

The special monomials of X are

Ny = x?/E),NQ = xi/Q, N3 = x?/loa:;/z.
The very special monomials of X are

M, = xf/g), My = xﬁ/wx;/z.
Furthermore, we have
1/5 1/10

O(N) = Ca)"}, O(IV:) = C{z, "}

and

0 = O(N3) = C{zy"", 2%}
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2.2 Limits of tangents

After renaming the variables x; there are integers my,1 < k < g+ 1, and

positive rational numbers ag;;, 1 <k < g,1 <i <k, 1 < j < my such that

kmk

My=][]]=2", 1<k<g (2.2.1)
i=1j=1

The canonical 1-form of P*C"**! becomes

g+l m;

0 = ZZ&]CZ:C” (2.2.2)

i=1 j=1
We set p;j = —&/1n,1 <i<g+1,1<j <m; Remark that
9y M;

= aiij— 0y, 2.2.3
Dy Qiij i Oij ( )

where 0;; is a unit of O.

Example 2.2.1. In this notation,

2/5 1/2

y=a1" + oy 4oy

becomes

_9/5 . 1/2 . 6/10 1/2
Y=z txyp T Ty

and we have
af M of M

5. — — 011, a. —021-
81‘11 T11 81:21 Z21

The following examples motivate a strategy for constructing A, by estab-
lishing an ”upper bound” that depends (almost) exclusively on the signal of

the sums of the exponents of the very special monomials.

Example 2.2.2. Let y = xi/ 2303/ % The conormal verifies the equations

Oy _ 1 -3.3
pP1 = 8x1:§x1 [132,

oy 111
T

Setting z = 0 we obtain from squaring both sides of the second equation
that A C {{&2 = 0}. We notice that this happens because the z3 is raised to

a power greater than 1. We can’t conclude anything from the first equation.
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Example 2.2.3. For a slightly trickier case, let y = x}/?)x;l/?

Now none of the powers are larger than 1, but their sum is. We have

Oy _L -2 45
p1 = O T3 1 2
_ Oy _éx1/3x—1/5

The product doesn’t seem to work:

P 1§$—1/3x3/5
1P2 35 1 2

But raising p1, p2 to adequate powers c;, c2, maybe we can ensure only posi-
tive powers for z1, z9 (from now on we’ll write the monomials modulo prod-

ucts by non-zero constants). We have

c1. Co 72/3614»1/362 4/50171/502
b1'py =1y Lo .

Then it is enough to find a solution of the system of inequalities

—2/3c1+1/3ca > 0,
4/561 — 1/502 > 0.

Setting ¢y = 1 we get 2 < co < 4. Taking co = 3 we get:

. 1,4
3 3 1/3 1/5

bip2 = g(g) x1/ x2/

Then at = 0 we get p1p3 = 0. Therefore the limit of tangents verifies

p1p2 = 0. It remains to be shown if this procedure can always be made to

work, even with more than one special monomial.
Example 2.2.4. Still trickier: Take

_1/2 3/2 1/2 3/2 1/3 4/5
Y =129y T1p T T11 Tip Top Tog -
We have combined the two previous examples into a case with two special
monomials. Can we apply both the previous methods independently? We
have 5
Y 1 1 1
P12 = % = —5951211"122¢, $(0) # 0.
Then, setting x = 0, we conclude that A C {12 = 0}.
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Furthermore, when we take derivatives on variables xo; we eliminate the first
monomial, and the exponents of the variables of the first monomial present

on those derivatives are always positive. Hence

1. 4.5 1/3 1/5
pupd = 5 ot 0’6, $(0) =0,

Therefore pa1paa = 0 (or €21€22 = 0) in A. So the two monomials can be

handled independently.

Example 2.2.5. Now suppose that ) . a11; < 1. For example, consider the

case
2/3 1/5
Y= x1/ 332/ :
Then
0y -1/3 1/5
p1 = axl - xl :UQ ’
Jdy 2/3 —4/5
p2 = Oy = 951/ Loy~ -
and
1/3 —3/5

P1p2 = T Ty

We notice that if we raise p; to a larger power we can make the exponent

of z1 positive in p{*p5?. But we cannot make it arbitrarily large otherwise

9 will have a negative power, and we want both to be positive. We have

c1. Co 71/361+2/302 1/50174/502
bypy =1, Lo

In particular,

-1/3 —1/5
p?pzle /552 /

Then

1/3 1/5
5%52%/ x2/ = 774

Setting 1 = 292 = 0, we get n = 0 in A. It remains to be shown that this

works in general.

Example 2.2.6. Suppose ), ai1; = 1. For example,
Y= ax}/zx;/z + xiﬂxéﬂxém, a € C*.
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Then

po= (/22 Py 0+ ay?),
p = (1/2)xy %2y (0 + )

and

pips = (1/4)(a® + 2azy’” + z3).
Hence,

£16 = n*(1/4)(a® + 2aw§/2 + x3).
Therefore

A C{&& = (@®/4n*}.
One can always find powers ¢; such that the product of the p;" in the first
monomial verifies a homogeneous relation with . We note that the cone
we obtained depends not only on the special exponents but also on the
coefficient a. Hence the cone is not a topological invariant.
The following theorems show that the previous constructions will work in

general.

Theorem 2.2.7. If >~ aj; < 1, A C {n=0}.

Proof. Set m = my, ©; = z1; and a; = a115, 1 < i < m. Given positive

integers ci, . .., ¢y, it follows from (2.2.3) that
m m Zm
) a; > L ci—cy;
[Ipi =] =" "o (2.2.4)
i=1 i=1
for some unit ¢ of O. By (2.1.3) and (2.2.3),
m
m . [
$(0) = f1(0)==% [ af. (2.2.5)
j=1
Hence
m Zm
m Coci—a; Y il cy
,721':1 ¢ = q) H 3 =t (2.2.6)
i=1
for some unit ¢. If there are integers c1, ..., ¢, such that the inequalities
agy iy <ck 1<k<m, (2.2.7)
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hold, the result follows from (2.2.6). Hence it is enough to show that the set
Q2 of the m-tuples of rational numbers (cy, ..., ¢, ) that verify the inequalities
(2.2.7) is non-empty. We will recursively define positive rational numbers
l;,cj,uj such that

lj < ¢ < uy, (2.2.8)

j=1,...,m. Let ¢1,l1,u; be arbitrary positive rationals verifying (2.2.8);.

Let 1 < s <m. If l;,¢;, u; are defined for ¢ < s — 1, set

s—1 .
= 1“_%;_12] s = (as/as1)eer. (229)
Since ;> a; <1 and
" m
us —ly = 1 SZT:S P (1-— j;laj)cs—1 - as_1j<zszlcj
Gs

- a571(1_2;n:saj) (- Z aj)(cs—1 —ls—1) | »

j=s—1

it follows from (2.2.8),_;1 that Iy < us. Let cs be a rational number such
that Is < ¢s < us. Hence (2.2.8) holds for s < m.
Let us show that (c1,...,¢y) € Q. Since ¢ < uy, then

a

K cp_1, for k> 2.
ak—1

cr <

Then, for j < k,

ar Gp—1 aj41 ag
c < R Cj = —Cj.
Qf—1 Af—2 Qj Qj
Hence,
apc; < ajcy, for j > k. (2.2.10)

Since I, < ¢,
k—1 m
akZCj < cp — Zajck.
j=1 j=k
Hence, by (2.2.10),
k—1 m
akZCj <cp— Zakcj.
j=1 =k
Therefore ay, Zgnzl ¢j < ck. O
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Theorem 2.2.8. Let 1 <k <g. Let I C {1,...,my}. Assume that one of
the following three hypothesis is verified:

1. Zje[ agkj > 1;
2. k=1, Zje[allj =1 and Z;n:ll ajj > 1;
3. k>2 and Zjel apr; = 1.

Then A C {[[;er &k = 0}

Proof. Case 1: We can assume that I = {1,...,n}, where 1 <n < my. Set

a; = agk;. Given positive integers cy, ..., cp, it follows from (2.2.3) that
n n " . .
H §i= xzz 2= Clnzizl Cig, (2.2.11)
i=1 i=1

where ¢ € O. Hence it is enough to show that there are positive rational
numbers cq, ..., ¢, such that

ar(d ¢j)—er>0, 1<k<n (2.2.12)
7j=1

We will recursively define [, ¢;,u; € ]0,+00] such that ¢;,1; € Q,
lj < ¢j < uy, (2.2.13)

j=1,...n, and u; € Q if and only if Z?:j a; < 1. Choose c1, 11, u; verifying
(2.2.13). Let 1 < s < n — 1. Suppose that l;, ¢;,u; are defined for 1 < i <
s—1 If Y70 aj <1, set

as Zj;% Gy
ls = (as/as—l)cs—h Us = 1_27na (2214)
Jj=s ]
Since
a s—2 n
us —lg = - Gs_1 ch —cs—1(1— Z a;)
as—1(1 =325 aj) = ot
a n
S
1— a;)(Us—1 — Cs—1 ,
as—l(l o Z;L:S a]) ( ]:zs:l ])( S S )

it follows from (2.2.13)s_; that l5 < us.
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If Z?:s a; > 1, set I as above and uy = +00.

We choose a rational number ¢y such that I < ¢s < us. Hence (2.2.13),
holds for 1 < s < n.

Let us show that ¢y, ..., ¢, verify (2.2.12). We will proceed by induction.
First we will show that c¢i,...,¢, verify (2.2.12),,. Suppose that a, < 1.

Since ¢, < u,, we have that

an Z;L:_ll Gy

Ccp <
" 1—ay,

Hence a, Z;'l:1 ¢j > ¢y If @, > 1, then

n n
ang chE cj > Cp.
Jj=1 Jj=1

Hence (2.2.12),, is verified. Assume that ¢y, ..., ¢, verify (2.2.12), 2 < k <

n. Since ¢ > I,

n
ag
ag ci > Cp > Ck—1-
7j=1
Hence aj,_; Z?:l ¢j > cp—1. Therefore (c1,...,cp) verify (2.2.12)_1.
Case 2: Set a; = a11; and z; = z1;. We can assume that I = {1,...,n},
where 1 < n < my. Given positive integers ci, ..., ¢y, it follows from (2.1.2)
that
n n Zn
) a; Y i ci—¢; n )
[[e =TLa " i, (2.2.15)
i=1 i=1
where ¢ € O and £(0) = 0. Hence it is enough to show that there are positive
rational numbers ¢y, ..., c,, such that
n
ary cj=cp, 1<k<n (2.2.16)
j=1

We choose an arbitrary positive integer c¢1. Let 1 < s < n. If the ¢; are

defined for 7 < s, set
as

Csg —

Cor1. (2.2.17)

As—1
Let us show that ¢y, ..., ¢, verify (2.2.16). We will proceed by induction in
k. First let us show that (2.2.16), holds.
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Let j <n—1. By (2.2.17),

Cnot = T e = e (2.2.18)

n—1 n—1
(279 Cn—1 Cn—1 a;
— 1 = 1 _ ) — .
n Gn—1 =1 an—1 ( Z aj) an—1 Z an—1 =1
Jj=1 j=1
Hence, by (2.2.18)
= - cj
p— Z -
j=
Therefore, 3 7, ¢j = ¢y—1/an—1. Hence by (2.2.17),
aanJ = anan = = cp.
Therefore (2.2.16),, holds.
Assume (2.2.16); holds, for 2 < k < n. Then
ap Y cj=cp= Ch—1-
Z ) —
Hence, aj_1 2?21 Cj = Cp_1.
Case 3: We can assume that I = {1,...,n}, where 1 < n < my. Given
positive integers ci, . .., ¢y, it follows from (2.2.3) that

H 5 < akkz(Z?:l Cj)ci> 172221 Cig,
=1

where ¢ € O and £(0) = 0. We have reduced the problem to the case 2. [
Theorem 2.2.9. If Zk 1a11; = 1, A is contained in a cone.

Proof. Set a; = aj114,t = 1,...m;. Given positive integers ci, ..., cn,, there

is a unit ¢ of O such that

Hé“ = (—1)%= 10]¢Hx R e (2.2.19)

=1
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By the proof of case 2 of Theorem 2.2.8, there is one and only one mi-tuple

of integers c1, ..., cp, such that (c1,...,cmy) = (1), a; 372 ¢j =¢;, 1 <i <

m1, and A is contained in the cone defined by the equation

mi
[1¢ - (—n=Peagop=iie = o, (2.2.20)
i=1

where ¢(0) is given by (2.2.5). O

Remark 2.2.10. Set D} = {z € C : 0 < |z| < €}, where 0 < ¢ << 1.
Set p = Zig my. Let 0 : C — C# be a weighted homogeneous curve
parametrized by

o(t) = (Erit™)1<k<g+1,1<i<my-

Notice that the image of ¢ is contained in C* \ A. Set 6y(t) =1 and

(@(t),(e(t), 1<k<g+1,1<i<my,
for t € Df. The curve o induces a map from D7 into I' defined by
t (o), (o (8);011(8) : -+ = Og1,my+1(2) = o))
Let ¥ : D} — P* be the map defined by
t (011(t) - Oga1my+1(t) 2 Oo(t))- (2.2.21)

The limit when ¢ — 0 of ¥(t) belongs to A. The functions 6; are ramified
Laurent series of finite type on the variable t. Let h a be ramified Laurent
series of finite type. If h = 0, we set v(h) = oo. If h # 0, we set v(h) = a,
where « is the only rational number such that }g% t~“h(t) € C\ {0}. We
call « the valuation of h. Notice that the limit of ¢ only depends on the
functions 6y;, 8g of minimal valuation. Moreover, the limit of ¥} only depends
on the coefficients of the term of minimal valuation of each 6;;, 6p. Hence the
limit of ¥ only depends on the coefficients of the very special monomials of
f. We can assume that my1; = 0 and that there are A\, € C\{0},1 <k < g,
such that

g
o = Z e M. (2.2.22)
k=1
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Remark 2.2.11. Let L be a finite set. Set C* = {(24)aer : 24 € C}. Let
> acr &adrq be the canonical 1-form of T*CL. Let A be the subset of P,
defined by the equations

[[¢.=0 1€z (2.2.23)
a€l

where Z C P(L). Set ' ={JCL:JNnI#0forall I €I}, IT*={J T
such that there isno K € 7’ : K C J,K # J}. The irreducible components
of A are the linear projective sets Ay, J € %, where A is defined by the

equations

Example 2.2.12. Suppose that

J— aill ,.a112 a211 ,.a212 ,.4221 ,.A222
Y=oy Ty T I Ty Tal Loy o,

with a111 + a112 > 1, ag11 + ag212 > 1. By theorem 2.2.8, we have

A C {&1612 = 0} N {&21802 = 0.
Call A := {£11612 = 0} N {€21€22 = 0} the upper bound for A. Hence, with
the notation &1 := £11, & := &12,&3 1= €91, &4 := £29, we have that
7' = {{1,2},{1,3},{1,4}, (.. ){1,2,3},{1,2,4}, (.. .){1,2,3,4}}
and
7r ={{1,3},{1,4},{2,3},{2,4}}.
The irreducible components of A are:
Apgy = {& =01 & =0},
Ay ={& =0AE& =0},
Apgy ={&=0AE& =0},
Mgy ={&=0AE& =0}.
Let Y be a germ of hypersurface of (C¥,0). Let A be the set of limits of
tangents of Y. For each irreducible component Ay of A there is a cone
V; contained in the tangent cone of Y such that Aj is the dual of the

projectivization of Vj;. The union of the cones Vj is called the halo of Y.
The halo of Y is called ”la auréole” of Y in [13].
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Remark 2.2.13. If A is defined by the equations (2.2.23), the halo of Y
equals the union of the linear subsets V, J € Z* of C © | where V; is defined
by the equations

xq =0, a€L\J

Example 2.2.14. We have already established a method to find a set that
constitutes an upper bound A for A. It remains to be seen if that set equals

A. The following example sugests a method for ”filling up” the upper bound
of A.

Let y = x}/zxg/z. Then, by theorem 2.2.8, A C A := {16 = 0}. The

irreducible components of A are £&; = 0 and & = 0. We have
oy Oy 1 172 3/2 3 172 172
92((%:1:(%:—1):(2:1:1/362/:le/:nz/:—1 .

T; = eit™, 1€ {1,2},0[@ €Q+,€Z‘ e C".

Set

Then
55

This is valid modulo product by a non-zero constant, since we are working

1 _ 1 3 1 1
0 = ( 1 1/263/2t_§°‘1+5a2 : 6}/26§/2t5°‘1+50‘2 : —1) .

in P2. In particular we can multiply by powers of ¢, out of the origin. For
this reason the valuation of the components of @ is defined modulo addition
of a constant. Therefore we can set the valuation of the term of smallest
valuation to zero and the other terms will be O(t) and vanish as ¢ — 0. The
vector of valuations is then

1 3

1 1
v(f) = —5M + 5021 50 + Jaz: 0].

What limits can we obtain? Suppose we want a limit with #; and 62 non-
zero. Then by equaling the valuations of both components we get:

LN SN SN SN
20&1 20&2 = 2&1 20&2 a] = (9.

But then 6, is the component with smallest valuation:

1 3
v(bh) = v(b2) = —o™M + S =0 > 0 =v(6y).

Therefore the only limit with v(61) = v(f2) is the trivial limt (0 : 0 : 1).

(as expected since the exponent of xy is larger than 1, therefore we know
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that A C {& = 0}. Let’s consider then the set irreducible component of A
defined by V5 = {& = 0}. Can we get all the limits in V27 All such limits
are of the type (¢1 : 0 : ¢,). So we’d like to set v(f;) = v(6,) and ensure
that v(f2) is larger than both. We have

1 3
U(Hl) = U(‘gy) =0& _5051 + 5052 =0< a1 = 3as.

and with that choice,

1 1
U(HQ) = 50&1 + 5&2 =209 > 0= ’U(ey).

Hence with this choice of «; we are restricted to the set {2 = 0}. Substi-
tuting into the expression of § and passing to the limit t — 0 we get

1 _ 1 _
Yae(t) =lim O = lim (261 1/263/2t0 : 6}/2%/2150‘2 : —1) = (251 1/253/2 :0: —1) .

t—0 t—0

Choosing ¢; adequately we get all the limits in {&&» = 0}.
This sugests the following strategy: Considering the map

(o, €) — qa(e) := }g% I(t).

we fix a certain J € Z*, that is, an irreducible component V; of A, by fixing
the values of «, and then show that by varying the parameters € for fixed «
we can get all the limits in V; (more precisely, that the image of the map

restricted to the choice of « is dense in V).
Example 2.2.15. Consider the hypersurface defined by

— aiil ,.a112 a211 ,.a212 ,.0221 ,.A222
Y=oy Tip TE] Tyy Tal To)

Suppose the two very special monomials are such that ai17 + a112 < 1,
a921 + a9 < 1. Then there is a single irreducible component V; of A that
can be identified with {¢ = 0} in C§11,§12,§21,§22,n' By fixing adequate values
of a;; for the parametrization x;; = €;;1%% we restrict ourselves to V. Set

1Tk my _akij
M; =T[;Z; [[;% &7 Then

M, My Mo My
(611751275217622) — ¢a(€) = |aQ11— ai12—— 1 a21—— 1 A222——
€12 €12 €21 €22
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maps each choice of coeficients € to the limit of tangents obtained through

the corresponding curve. The Jacobian of v is

aiii(ainn — )M, ai1ari2M
5 + mi1 — +tm mi3 mig
€11 €11€12
aii2a111 M aiz2(arz — 1)M
—— +ma 5 + ma2 ma3 maq
€12€11 €12
m m asi2(agi2 — 1) Mo a212a222 Mo
31 32 5
€ €21€22
21
a222a221 Mo ag22(agge — 1) Mo
maq M4 2
€22€21 €59

= MEM3(c+ €), where €(0) = 0,m;j € (Mz). The permutations that result
in a minimum valuation monomial (MZM3) are the ones corresponding to
the product of the determinants of the block diagonal (2 x 2 blocks, or, in
the general case, n; X n;, where n; is the number of new variables in the i-th
very special monomial). All other permutations result, as a consequence of
the total ordering of special monomials, in monomials that are in the ideal
generated by the first monomial. It is enough to show that the product of
the diagonal blocks is not identically null in a neighbourhood of the origin.

In each block we have something of the type

aiii(ai; — 1)M, airiaii2M
2
€11 €11€12
aii2a111 M1 ariz(aiiz — )M,
2
€12€11 €12
ain — 1 a112
2
= Mie11€12a1110112
a1 a2 — 1
) -1 0
= M{ieri€12a1110112
aiil +aie —1

and this is non-zero since we suppose ai11 + a112 < 1. This Jacobian will be

zero only in a closed set which is a divisor with normal crossings.

Lemma 2.2.16. The determinant of the n x n matriz (A\; — d;5) equals

(=D"(1=>"N).
i=1
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Proof. Notice that det(\; — d;;) =

1 1
_ —dn-1 _ —dn-1
1 1
Mo A | A1 0 - 0|3, N—1

Theorem 2.2.17. Assume that > " aj1; < 1. Set

L=Ul_y{k} x{1,...ome}, T=Ul_{{k} xT:) ap =1}
jel
The set A is the union of the irreducible linear projective sets Ay, J € %,

defined by the equations n =0 and
§j =0, (k. j)€EJ (2.2.24)

The tangent cone of Y equals {11 -+ x1m, = 0}. The halo of Y is the union
of the cones Vy, J € I*, where V; is defined by the equations x1; = 0,
1<j5<mi, and

xr; =0,(k,j) € L\ J. (2.2.25)

Proof. Let us show that Ay C A. We can assume that there are integers
ni,..ong, 1< np < my, 1 <k < g, such that J = UJ_ {k} x {ng +
1,...,my}. We will use the notations of Remark 2.2.10.

Set m = Zi:l my,n = m — #J. Assume that there are positive rational
numbers ayg, Ok, 1 < k < g, such that ag; = ap if 1 <17 < ng, ag; = O, if
ng + 1 <i<my, and o > Bk, 1 < k < g. Since v(0g;) = v(My) — v(xg;) =
v(My) — ag;,

lim 9(t) € Ay.

t—0

Let ¢ : (C\ {0})™ — A be the map defined by

bley) = lim d(t). (2.2.26)

The map 1 has components ¥, 1 < i < ng,1 < k < g. In order to prove

the Theorem it is enough to show that we can choose the rational numbers
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ag, O in such a way that the Jacobian of ¢ does not vanish identically. We
will proceed by induction in k. Let k = 1. Since Z;le a1, < 1, n1 = my.
Choose positive rationals a1, 81, a1 > (1. There is a rational number vy < 0
such that v(61;) = v, for all 1 < i < njy.

Assume that there are ag, B such that v(0g;) = vp for 1 < i < ng and
v(0k;) >vo for ng +1 <i <myg, k=1,...,u. Set

o= 2 + 2 k1 2 (Gut 1 ki — Guki) ki
Qo1 =30 Gyt ur,

Since the special monomials are ordered by valuation and, by construction
of Ay, Yo% agk; < 1forall 1 <k < g, a,,, is a positive rational number.

Choose a rational number 3,41 such that 0 < 8,41 < 1. Set

m
D it 1 Gut Lu 1,iBut
L= augruti
Then, v(Oy+t1,i) = v(Mys1) — g1 = v(My) — ay, = vg for 1 < i < myqq.

Set M, = Hle H;n:’“l 8?;”, 1<i<mng,1<k<g. With these choices of ay;,

we have that
1 g — .
Ui = ?le:k ag M, 1 <i<my,1<k<g.
Let D be the jacobian matrix of ¥. The matrix D has n, X ng blocks D,.,
1<r,s<g. If r <s, the entries of D, are

1 g
=

arias;; M.
Eri€sj S

Moreover, D, has entries

—

M,

Eri€rj

g —
(arm’(arrj - 51]) + Zl:r—i—l arm-am«j)Ml> .

P

Let m be the maximal ideal of the ring O(Mj). If r < s the entry (4, j) of
D, belongs to the ideal generated by M. s/(erierj). Hence det(D,,) belongs
to the ideal I, generated by

- . 2
(M,an/H’# gm-) , 1<r<g. (2.2.27)

Moreover, det(D) belongs to the ideal I generated by

L g my 2
<ngl Mlml/HH51i> . (2.2.28)

l=11=1
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Let o be a permutation of {(1,1),...,(1,m1),...,(g,1),...,(g9,mg)}. If
there are (r,7),(s,j) such that o(r,i) = (s,j) and r # s, the product of
the entries (r,4),0(r,i) of D belongs to the ideal I'm. Therefore det(D) is
congruent modulo I'm to the product of the determinants of the diagonal
blocks D, 1 < r < g. Moreover, det(D,,) is congruent modulo I,m to the

determinant of the matrix D, with entries

—

Mr
%arri(arm - 51])
By Lemma 2.2.16 det(D,) equals the product of (2.2.27) by a nonvanishing
complex number. Therefore there are A € C\ {0} and ¢ € m such that
det(D) equals the product of (2.2.28) by an unit of O(]/\J\g). Hence det(D)
does not vanish identically and A contains an open set of Aj. Since A is a

projective variety and Ay is irreducible, A contains A ;. ]

Theorem 2.2.18. Assume that Y ;"' a11; > 1. Set
L=Ul_{k} x{1,...om}, T=UL_ {{k} xT:) apy>1}
jel
The set A is the union of the irreducible linear projective sets Ay, J € IT*,
defined by the equations (2.2.24).

The tangent cone of Y equals {y = 0}. The halo of Y is the union of the
cones Vy, J € T*, where Vj is defined by the equations y = 0 and (2.2.25).

Proof. The proof is analogous to the proof of Theorem 2.2.17. On the first

induction step we choose

B = 1—2?:1161111' o
D it 1 A1t
Hence 1 < aq, v(01;) = v(n) = 0 for 1 < i < n; and v(fy;) > 0 for

n1+1 < ¢ < my. The rest of the proof proceeds as in the previous case. [

Theorem 2.2.19. Assume that > " aj1; = 1. Set

L=Ul_y{k} x{L,...ome}, T=U_{{k} xT:> apy>1}
JeI
The set A is the union of the irreducible projective algebraic sets Ay, J € T*,
where Ay is defined by the equations (2.2.20) and (2.2.24).
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There are integers c,d; such that aj1; = d;j/e,1 < i < mq and c is the l.c.d.

of di,...,dpm,. The tangent cone of Y equals
mi
v = fO) ][5 =0. (2.2.29)
i=1

The halo of Y is the union of the cones Vj, J € T*, where Vj is defined by
the equations (2.2.25) and (2.2.29).

Proof. Following the arguments of Theorem 2.2.17, it is enough to show
that Ay C A for each J € Z*. Choose J € I*. Let A be the linear
projective variety defined by the equations (2.2.24). We follow an argument
analogous to the one used in Theorem 2.2.17. We have n; = m1. We choose
positive rational numbers aq, 5 such that 8; < a;. Then v(6y;) = 0 for all

i =1,...,m1. The remaining steps of the proof proceed as before. Hence

lim 19(75) S AJ.

t—0
Let ¢ : (C\ {0})” — A be the map defined by (2.2.26). By Theorem 2.2.9
the image of ¢ is contained in Ay. By Lemma 2.2.16, det(D1) = 0. Let D'y
be the matrix obtained from D; by eliminating the mi-th line and column.
The argument of the proof of Theorem 2.2.17 works when we replace Dy by
D). Hence, Ay C A. O

Let Y be a quasi-ordinary hypersurface singularity.

Corollary 2.2.20. The set of limits of tangents of Y only depends on the
tangent cone of Y and the topology of Y.

Corollary 2.2.21. If the tangent cone of Y is a hyperplane, the set of limits
of tangents of Y only depends on the topology of Y .

Corollary 2.2.22. Let z{" ---x* be the first special monomial of Y. If
a1 + -+ ag # 1, the set of limits of tangents of Y only depends on the
topology of Y.

Corollary 2.2.23. The triviality of the set of limits of tangents of Y is a

topological invariant of Y.

Proof. The set of limits of tangents of Y is trivial if and only if all the

exponents of all the special monomials of Y are greater or equal than 1. [
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Chapter 3

Desingularization of

Legendrian Varieties

In this chapter we prove a desingularization theorem for Legendrian hyper-
surfaces that are the conormal of a quasi-ordinary hypersurface. One of the
main ingredients of the proof is the logarithmic version of the results on

limits of tangents proved in the previous chapter.
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3.1 Introduction

Neto introduced in [18] the notion of logarithmic contact manifold and con-
structed the blow up of a contact manifold along a Legendrian variety. He
proved in [17] a desingularization theorem for Legendrian varieties and ap-
plied it in [19] to prove a desingularization theorem for regular holonomic
systems of partial differential equations with holomorphic coefficients.

The main idea of the proof of the desingularization theorem is that the blow
up along the conormal of a point o of the conormal of a curve Y equals the
conormal of the blow up of the curve along o. This means that we can use
the algorithm of resolution of singularities of plane curves to desingularize
Legendrian curves.

We cannot expect the same phenomena will always occur when we replace a
curve by a surface S. We need at least to ask that the limit of tangents (or
its logarithmic version) be trivial at each singular point of S. Moreover, we
need to ask for a condition on the normal cone of the conormal of S along
the conormal of each center.

The natural generalization of [17] would be a general theorem for Legendrian
surfaces. We overcame in this chapter most of the problems that we can find
on the way to reaching this goal. Unfortunately we could not find a good
description of the limits of tangents in terms of topological invariants of a
surface, if such a description exists.

The results we obtained in this direction for quasi-ordinary surfaces are
already not completely trivial.

Hironaka [9] proved his celebrated theorem of resolution of singularities in
1964. Bierstone and Milman [3], and Villamayor [22] gave constructive ver-
sions of this result. Lipman [15] proved a desingularization thorem for quasi-
ordinary surfaces and Ban and Mcewan [4] gave an ambedded version of this
result using the invariants of [3].

We follow the algorithm of [3], which allows us to forget about the global
problems and the ”historical” invariants that dealt with them. The main
result of this chapter relies on the commutation between the operations of
blowing up and taking the conormal and the hereditarity of the conditions

that guarantee it. Example 3.8.3 shows that there is at least a case where
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this hereditarity fails. This fact forces us to prove the theorem through a
case by case combinatorial analysis, that the reader can find in Lemma 3.8.4.
It is common to use the coordinates of C™ when dealing with the projective
space P"~! = P(C"). We call these coordinates the homogeneous coordi-
nates of P"~!'. When dealing with contact manifolds it is common to use the
coordinates of the associated symplectic manifolds within the same spirit.
In particular we will often use the coordinates of T*(M/N) when dealing
with P*(M/N).

3.2 Logarithmic differential forms

Let X be a complex manifold. Let Ox denote the sheaf of holomorphic
functions on X. Let Q% denote the sheaf of differential forms on X. A

subset Y of X is called a divisor with normal crossings at o € X if there

is an open neighborhood U of o, a system of local coordinates (x1,...,x,)
and a nonnegative integer v such that x;(0) =0,i =1,...,n, and
YNU={z1- -2z, =0} (3.2.1)

We call v the index of Y at o. We say that Y is a divisor with normal
crossings if Y is a divisor with normal crossings at each point of X. We call
index of Y to the maximum of the indexes of Y at 0,0 € X. Notice that the
index of Y is smaller or equal to the dimension of X.

A germ of a divisor with normal crossings (Y, 0) defines a canonical strat-
ification of (X,0). The k-strata are the connected components of the set
of points of index k of X. A k-stratum is a locally closed submanifold of
codimension k of X.

The closure Z of a k-stratum Z’ of (X,Y) is a closed submanifold of X,
the intersection of the irreducible components of Y that contain Z’. If o0 has
index k, Z has codimension [ and [ < k, Y induces in Z the normal crossings
divisor Z — 7' of index k — [.

Example 3.2.1. Set X = C3,0 = (0,0,0). The strata induced in X by the
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divisor Y = {12223 = 0} are

{z120w3 # 0}

{zg =0} \{ziz; =0}, k=1,23{ij,k} ={1,2,3}
{zi =2; =01\ {(0,0,0)}, i<y,

{(0,0,0)}.

If 7/ ={x1 = 0,903 £ 0}, Z ={x1 =0} and Z — Z' = {as23 =0} N Z.
7 ={x1 =22=0,23 #0}, Z={x1 =22 =0} and Z — Z' = {23 =
0}y N Z.

Let Y be a divisor with normal crossings of a complex manifold X. Let U be
an open set of X. Let j: U\Y — X be the open inclusion. Let f € Ox(U).
If f71(0) C Y NU let 6f denote the section df /f of j*Qllj\Y. Otherwise, set
of =df.

Let Q% (Y) be the smallest complex of j*Q}\Y stable by exterior product
that contains Ox and & f for each local section f of Ox. The local sections
of Q% (Y') are called logarithmic differential forms with poles along Y.

Let ©x be the sheaf of vector fields of X. Let Iy be the defining ideal of Y.
We say that a vector field u of X is tangent to Y if uly C Iy. Let ©x(Y)
be the sheaf of vector fields tangent to Y.

The Ox-modules Q4 (Y') and ©x (Y) are locally free and dual of each other.
Given a system of local coordinates verifying (3.2.1),

dx dz,
QWMly = OU?; @30y

® Ovpdry11 @ --- ® Opdwy,

0 0
@’”EBOUa—xn.

Definition 3.2.2. Let W be a smooth irreducible component of Y. We can

Ty

0 0
@X<Y>’U = OU$187331@"‘@OU$V87%@OU8£UV+1

associate to a € Q4(Y") an holomorphic function Resya € Oy. We call
Resy a the Poincaré residue of a along W.

Assume that we are in the situation of (3.2.1),

v n

ay = EO&ZC?.Z + Z a;dx;
i=1 '

1=v+1

and WNU = {x; =0}, where 1 <i <w. Then

Reswalunw = oilunw.
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3.3 Logarithmic symplectic manifolds

Let us recall some definitions and some results introduced in [18].

Definition 3.3.1. Let X be a complex manifold and Y a divisor with normal

crossings of X. Let
m:TYX/)Y)— X (3.3.1)

be the vector bundle with sheaf of sections Q% (V). We will call (3.3.1) the
logarithmic cotangent bundle of X along Y. Let

T T(X)Y) = X (3.3.2)

be the vector bundle with sheaf of sections ©x(Y). We call (3.3.2) the
logarithmic tangent bundle of X along Y.

Remark 3.3.2. Given a section « of Q% (©x) we will represent its value at
2Y € X as a section of Q% (Ox) by Qz0y € Th X (€ T X). Given a section
a of QL(Y)(©x(Y)) we will represent its value at 2% € X as a section of
Q (V) (Ox(Y)) by apo) € Tjo(X/Y)(€ To(X/Y)).

Definition 3.3.3. Let X be a complex manifold and Y a divisor with nor-
mal crossings of X. We say that a locally exact section o of Q%(Y) is a
logarithmic symplectic form with poles along Y if 0,0y is a symplectic form
on T, (X/Y) for any z° € X.

We say that a complex manifold X endowed with a logarithmic symplectic
form with poles along a divisor with normal crossings Y of X is a logarithmic
symplectic manifold with poles along Y.

If X1, Xo are logarithmic symplectic manifolds with logarithmic symplectic
forms o1, 02 and ¢ is a holomorphic map from X; to X5 such that ¢*os = 01
then ¢ is called a morphism of logarithmic symplectic manifolds. If moreover
 is biholomorphic we say that ¢ is an isomorphism of logarithmic symplectic

manifolds or a canonical transformation.

Remark 3.3.4. (i) If Y is the empty set we get the usual definition of
symplectic manifold.

(ii) A logarithmic symplectic manifold has always even dimension.
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(iii) Suppose that X has dimension 2n. A locally exact section o of Q3 (Y)
is a logarithmic symplectic form with poles along Y if and only if ¢ is a

generator of Q3%(Y).

Definition 3.3.5. Given a complex manifold X we say that a C-bilinear
morphism

{*,*} : OX X OX HOX

is a Poisson bracket if it verifies the following conditions:

(i) {fg,h} = flg, h} +g{f,h}
(i) {{f.g},h} +{{g, 2}, f} +{{h, [} 9} =0

We call {f, g} the Poisson bracket of f and g. If f is a local section of Oy,
the derivation g — {f,g} determines a vector field Hy, the Hamiltonian
vector field of f.

We call a complex manifold X endowed with a Poisson bracket a Poisson
manifold.

If (X3, {*,*}1),(Xa,{*,x}2) are Poisson manifolds and ¢ : X; — Xy is
a complex map such that {o*f,0*g}1 = ¢*{f, g}e, for any holomorphic
functions f, g defined in an open set of X5 we call ¢ a morphism of Poisson

manifolds.

Example 3.3.6. A logarithmic symplectic manifold has a canonical struc-

ture of Poisson manifold.

Definition 3.3.7. Let X be a Poisson manifold. An analytic subset V of
X is called involutive if {Iy, Iy} C Iy.

Proposition 3.3.8. Let o be a logarithmic symplectic form on a symplectic

manifold X . Then we can recover o from the Poisson bracket it determines.

Corollary 3.3.9. Let X1, X3 be logarithmic complex manifolds and ¢ a
biholomorphic map from X1 onto Xo. The map ¢ is a canonical transfor-

mation if and only if it is a morphism of Poisson manifolds.
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Example 3.3.10. If X is a complex manifold and Y is a divisor with normal
crossings of X then the vector bundle 7 : T*(X/Y) — X has a canonical

structure of logarithmic symplectic manifold with poles along 7=!(Y).

Actually, there is a canonical section 6 of QlT*< X)) (r71(Y)). We call @ the
canonical 1-form of T*(X/Y). Given an integer v and a system of local
coordinates (z1,...,%,) on an open set U of X verifying (3.2.1) there is
one and only one family of holomorphic functions &;,1 < i < n, defined on
7~1(U) such that

Oy =& d;: + Y Gda.
i=1

1=v+1
The functions

xlv"')xnaélu'”vén

define a system of local coordinates on 7~ !(U), called the system of sym-
plectic coordinates with poles along Y associated to the system of local coor-
dinates (x1,...,xy,).

The 2-form o = df is called the canonical 2-form of T*(X/Y). The canonical
2-form is a symplectic form with poles along 7~1(Y).

Given holomorphic functions f, g, defined on a open set V contained in
771(U), we have that

_”‘ﬁc’)g_af@ " aiag_af@
{f79}—;x1 (8& ox; Oz 8&) +i§rl (8& Oz; Oz 8&).

Definition 3.3.11. Let (X, 0) be a logarithmic symplectic manifold with

poles along a divisor with normal crossings Y. Let U be an open set of X
and Yy a global smooth hypersurface contained in Y N U. A holomorphic

function & defined on U is called a residual function along Yy if

d€ly, = dResy,(co|v).

Let X be a complex manifold. A group action « : C* x X — X is called
a free group action of C* on X if, for each x € X, the isotropy subgroup
{t e C*: a(t,x) = =} equals {1}. A manifold X with a free froup action «
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of C* is called a conical manifold. We associate to each free group action «

of C* on X a vector field p, the radial vector field of c, in the following way:

0
pf = &O‘:f’t:hf € Ox.

Here ay(z) = a(t, ). We put

Ox(A) ={f €Ox :pf =Af}

for any A € C and
O% = GrezOx (k).

A section f of Ox () is called a homogeneous function of degree A. Given
conic complex manifolds (X1, a;) and (X3, ag), a holomorphic map ¢ : X; —

X5 is called homogeneous if it commutes with the actions aq, ao, that is, if

Q1P = QA ¢,
for any t € C*.

Definition 3.3.12. A logarithmic symplectic manifold (X, o) with a free

group action « is called a homogeneous symplectic manifold if
ajo =to,t € C*.

If (X1,01), (X2, 02) are homogeneous symplectic manifolds and ¢ : X1 — Xy
is a canonical transformation we say that ¢ is a homogeneous canonical
transformation or a contact transformation if it is homogeneous.

Given a homogeneous logarithmic symplectic manifold (X,o0) we call the

logarithmic differential form of degree 1

6= u(p)o

the canonical 1-form of (X, o), where ((p)o is the contraction of p and o.
We notice that a canonical transformation ¢ : (X1,01) — (X2,02) is a
homogeneous canonical transformation if and only if ©*0y = 6;. Here 6; =
up)(oi), i =1,2.

A homogeneous logarithmic symplectic manifold is locally isomorphic to
T* (X/Y) in the category of homogeneous symplectic manifolds. Given a
vector bundle E over X we denote by E the complex manifold F\ X, where

we identify X with the image of the zero section of E.
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Theorem 3.3.13. Let o be a homogeneous logarithmic symplectic form on
a complex manifold X with poles along a divisor with normal crossings Y .
Given z° € X let v be the number of irreducible components of Y at 2°. Then
there is a system of local coordinates (x1,...,2n,&1,...,&n) on U such that
YNU={z1--x, =0}, x1,..., 2, are homogeneous of degree 0, &1,...,&,

are homogeneous of degree 1 and

oly = Zd{f?i + > déida;.

=1 i=v+1

Remark 3.3.14. If (X, 0) is a homogeneous logarithmic symplectic man-
ifold and z;, 1 < j < n, &, 1 < k < n, is a system of homogeneous

logarithmic symplectic coordinates for o on an open set U of X then

n a n
p’U = Zélg and 0|U = Z@é:z;z
i=1 ¢ i=1

Definition 3.3.15. Let (X,0) be a homogeneous logarithmic symplectic
manifold with poles along a divisor with normal crossing Y. Let W be the
intersection of the smooth irreducible components Yi,...,Y, of Y. We call
residual submanifold of X along W to the set of points o € W such that
the residual of 6 along Y; vanishes at o for 1 < ¢ < u. We will denote the
residual submanifold of X along W by Ry X .

Proposition 3.3.16. Let X be an homogeneous logarithmic symplectic man-
ifold with poles along a smooth divisor Y. Let W be the intersection of the

smooth irreducible components Y1,...,Y,, of Y. Then:
(i) X, RwX are involutive submanifolds of X.

(ii) The manifold Ryw X has a canonical structure of homogeneous sym-

plectic manifold with poles along the divisor induced in W by Y.

Proof. Let o € W. There is a system of symplectic coordinates (x1,...,zy,
&1,...,&,) on a conic open set U that contains o such that
0, = ig-d‘” + zn: €id;
Y i=1 iz i=v+1 o
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and W = {z; =--- =2, = 0}. Hence
RyXNU={x1 = =2, =6 =---=§,=0}.
The restriction to Ry X NU of the Poisson bracket of X is given by

- of &g  Of dg " /0f g Of dg
o= 3 (G- mae)* 3 (aton - me)

i=v+1

By proposition 3.3.8, Ry X NU is endowed with a 1-form

K dl’i "
d & — > Gda

i=v—+1 b i=ptl

O]

Definition 3.3.17. Let X be a complex manifold of dimension 2n+1,n > 0,
and Y a divisor with normal crossings of X. A local secton w of Q% (Y) is
called a logarithmic contact form with poles along Y if w(dw)™ is a local
generator of Q3" TH(Y).

We say that a locally free sub Ox-module £ of Q% (Y) is a logarithmic
contact structure on X with poles along Y if it is locally generated by a log-
arithmic contact forms with poles along Y. We say that a complex manifold
with a logarithmic contact structure with poles along a divisor with normal
crossings Y is a logarithmic contact manifold with poles along Y. We call Y
the set of poles of the logarithmic contact manifold (X, L).

Let (X1,L1), (X2,L2) be logarithmic contact manifolds. We say that a
holomorphic map ¢ : X7 — Xs is a contact transformation if for any local

generator of Lo its inverse by ¢ is a local generator of L;.

Let Yy be a smooth irreducible component of Y. We say that a point z°
of Y is in the residual set of X along Yj if the residue along Yy of all the

sections of £ vanishes at z°.

Proposition 3.3.18. There is an equivalence of categories between the cat-
egory of logarithmic contact manifolds and the category of homogeneous log-

arithmic symplectic manifolds.

Let X be a homogeneous logarithmic symplectic manifold. Let 6 be the
canonical 1-form of X and let Y be the set of poles of X. Let X, be the
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quotient of X by its C* action. Then X, is a complex manifold and the
canonical epimorphism 7 : X — X, is a C*-bundle. Put Y, = v(Y). Let £
be the sub Ox,-module of Q}(* (Y') generated by the logarithmic differential
forms s*60, where s is a holomorphic section of v. Then L, is a structure of
logarithmic contact manifold with poles along Y.

Let P*(X/Y) be the projective bundle associated to T*(X/Y). We call
P*(X/Y) the projective logarithmic cotangent bundle of X with poles along
Y.

The projective bundle P*(X/Y) has a canonical structure of logarithmic
contact manifold. Moreover the associated homogeneous logarithmic sym-
plectic manifold equals T(X/Y).

A logarithmic contact manifold of dimension 2n is locally isomorphic to

P*(C"/{xy---x, = 0}) , for some integer v.
Theorem 3.3.19. Let X be a complex manifold of dimension 2n + 1.

(i) Let w be a logarithmic contact form of X. Given a point z° on the
domain of w there are holomorphic functions x1,...,Tp41,C1s-- -, Cutl
defined in an open neighbourhood U of X such that

n+1

wlo =) G, (3.3.3)
=1

Moreover, there is an i such that (;(x°) # 0. For any io such that
Cio (29) # 0 the functions

10

are a local system of coordinates for X on U.

(ii) Let L be a logarithmic contact structure on X with poles along a di-
visor with normal crossings Y. Given a point 2° of X, suppose that
the germ (Y,xo) has irreducible components Y1,...,Y, and that the
residual values of ¥ along Y; vanish for 1 < 1 < v. Then there is a
system of coordinates (1, ...,Tp41,P1,-.-,Pn) in a neighbourhood U

of ¥ such that the logarithmic differential form

v n

dx;
dCL‘nJrl - Zpi :L'"L - Z pidﬂfi (334)
i=1 R |
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is a local generator of L and Y;NU = {x; =0}, for 1 <i<wv .

3.4 Legendrian Varieties

Let (X, £) be a contact manifold of dimension 2n + 1. An analytic subset I'
of X is a Legendrian variety of X if it verifies the following three conditions:
I" has dimension n, I' is involutive and the restriction to the regular part of
I of a local generator of £ vanishes.

Each two of these three conditions imply the remaining one.

Given a manifold M and an irreducible analytic subset .S of M there is one
and only one Legendrian variety PEM of P*M such that m(PgM) = S. The
analytic set PgM is called the conormal of S (see for instance [12]). If S has
irreducible components S;,¢ € I, the conormal PG M of S equals Uje [ng M.

Let us introduce stratified versions of the definitions above.

Definition 3.4.1. Let X be a logaritmic contact manifold of dimension
2n+ 1 with set of poles Y. An analytic subset I" of X is called a Legendrian

variety of X if I is involutive and :
1. The intersection of I' with X \ Y is a Legendrian variety of X \ Y.

2. If an irreducible component of I' is contained in the closure Z of a
codimension 1 stratum of Y, it is contained in the residual set Rz X
of X along Z.

3. If Z is the closure of a codimension 1 stratum of (X, Y"), the irreducible
components of I'N Z that are not contained in the singular locus of Y

are Legendrian varieties of the residual set Rz X of X along Z.

Remark 3.4.2. Let M be a manifold. Let N be a divisor with normal
crossings of M. Let I' be a Legendrian variety of P*(M/N). Let @ be a
codimension 1 stratum of (M, N). Let R the divisor with normal crossings
induced in Q by N. If T is contained in 771(Q), it follows from condition
2) of definition 3.4.1 that I' is contained in P*(Q)/R).

Example 3.4.3. Let X be a logarithmic contact manifold of dimension

2n + 1 with poles along Y. If n = 0 the irreducible Legendrian varieties of
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X are the points of X \ Y. If n = 1 the irreducible Legendrian varieties of
X are the points of the residual set of X and the irreducible curves I' of X
such that I'\ Y is dense in I and I" \ Y is a Legendrian curve of X \ Y.

An analytic subset S of (X,Y) is natural if no germ of S is the germ of the
closure of a stratum of (X,Y’). A Legendrian variety of a logarithmic contact

manifold X with poles along Y is a natural analytic subset of (X,Y).

Definition 3.4.4. Let S be a natural irreducible subset of (M, N). Let @
be the closure of the stratum Q' of (M, N) of biggest codimension such that
S is contained in the closure of Q). Set R = QN N. We call conormal of S to
the closure P¢(Q/R) of the conormal of the analytic subset S\ R of @\ R
in P*(Q/R).

Let S be a natural analytic subset of (M, N). We call conormal of S to the

union P (M/N) of the conormals of its irreducible components.

The two definitions above have even dimensional equivalents: A conic an-
alytic subset I' of a conic symplectic manifold is called a Lagrangian vari-
ety if y(I") is a Legendrian variety. The conic analytic subset T¢(M/N) =
771 (P5(M/N)) of the conic symplectic manifold 7% (M /N)\ M is also called

conormal of S.

Theorem 3.4.5. The conormal of a natural analytic set is a Legendrian

variety.

Proof. Let S be a germ of a natural analytic subset of (M, N). We can
assume that S is irreducible and that M is the closure of the stratum of
(M, N) of biggest codimension that contains S. The intersection of I' with
7 1(M \ N) is the Legendrian variety P (M \ N) of the contact manifold
P*(M\N). Hence condition 1) is verified. Since I' is the closure of P (M \
N), T is involutive. Condition 2) follows from the definition of conormal
variety.

Let us prove statement 3) by induction in the dimension of M. State-
ment 3) is trivial if dimM = 1. Let Z be the closure of a l-stratum Z’ of
P*(M/N),7=1(N)). Since Z’ is invariant, Z is invariant. The set Q = 7(2)
is the closure of a l-stratum of (M, N) and Z = 7~ 1(Q). Let R be the
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divisor induced in @ by N. Let I'g be an irreducible component of I' N Z

that is not contained in the singular locus of 7=(V). Let us show that
'y C P*(Q/R). (3.4.1)

It is enough to show that 4 ~1(Tg) is contained in the residual set of T* (M /N).
Let o € v 1(I'o N Z’). There is an open conic neighborhood U of o and a

system of local coordinates (x1,...,2n,&1,...,&,) on U such that
dx -
1
0l = 5171 +) &dz;
i=2

and y"1(Z")NU = {z; = 0}.
There is a holomorphic map
§:{teC:|t| <1} =~y ()
such that
7(6(0)) = 0 and 6~ (v (77 H(IV))) = {0}

Set §; = z;08, 1 <i < n. Since § vanishes on v 1(T'y \ Z’),

gl(a(t))gigt) +) LB =0 it #£0. (3.4.2)
=2

t)
Hence

&1(o) =0, (3.4.3)
and (3.4.1) holds.
Since Z is invariant, I'N Z is an involutive submanifold of P*(M/N). Hence
I'N Z is an involutive submanifold of P*(@Q/R). Hence its irreducible compo-
nents are involutive. Since the diml'y = dimI'—1, To\7~!(R) is a Legendrian
subvariety of P*(Qqo \ Ro). Let Sy be the closure in @ of the projection of
o\ 7 1(R). Then Iy is the conormal of Sy. By the induction hypothesis,
I’y is a Legendrian variety of P*(Q/R). O

Theorem 3.4.6. An irreducible Legendrian subvariety of a projective loga-

rithmic cotangent bundle is the conormal of its projection.

Proof. The result is known for Legendrian subvarieties of a projective cotan-
gent bundle (see for instance [21]). The theorem is an immediate conse-

quence of this particular case. O
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3.5 Blow up and deformation of the normal cone

We recall that the blow up @ of theset D = {x; =--- =z =0} of C" is
the glueing of k open affine sets U,,, 1 <1¢ < k, where U,, is a copy of C"

with coordinates

T Ti—1 L Tit1 T
(Ev"') z; y Ly zi 7"‘797.7:17/6—%17"'51:71

and the restriction to Uy, of the blow up map 7 : (é% — C™ is given by
T (%,...,xi,...,%,xkﬂ,...,xn) = (xi%,...,xi7...,xi%,xk+1,...’$n)
The charts U,; and Uy, are glued by the change of coordinates

ﬁ:ﬂ(xi)*l’ 1<i<k, i#3,k,

T Tj Ty
% = (%I;)_la$j = mk(%)_la

ri=x, k+1<i<n.

Let M be a complex manifold of dimension n and D a closed submanifold of
codimension k of M. We can cover M with open sets endowed with charts

adapted to D and construct the blow up of M with center D,
7 M, D — M.

We call E = 7~1(D) the exceptional divisor of the blow up.
Let us recall the construction of the normal cone of an analytic set S rela-

tively to a submanifold D. See [12].

Consider in C"*! the coordinates (s, T1, ..., Tk, T, ---,Tn). Let 7: CPTL\
{1 =---=7, =0} — C” be the map defined by

T(SyT1y e o vy Ty Tl - -+ Tn) = (ST1y vy SThy Tht 1y -« -5 Tn)-
Let 7 : C* — C" be the blow up of C" with center {zy = -+ =z =

0}. Let U;,1 < i < k, be the affine open set of Cn with coordinates
(m—l ..,xi,...,%,xk+1,...,xn>. Let ®; : C"*1\ {z; = 0} — U; be the

x; 7"

map defined by

Oo(s 5 _ B k
i(Sy T, e Ty Tt 1y v -y Tpy) = Zoee 8Ty = Tty T |
(] 7



There is a map ® : C"™ 1\ {7 = - =7}, =0} — C such that
@|cntiy 7,20y = P

and

Tod=rT.

Let M be an open set of C™ that contains the origin. Set D = {x; =
o=ux, =0} N M. We call Mp = 7=Y(M) the deformation of the normal
cone with center D. There is a canonical map ® : M, D — M, p such that
mo® = 7. We can identify the subset {s = 0} of Mp with TpM. Here
TpM is the normal bundle of M along D, defined by the exact sequence of

vector bundles
0—-TD—DxyTM —TpM — 0.

Notice that
Mp= TpMUM\D.

Moreover, ®( TpM) equals the exceptional divisor E of Mp. Hence ®

induces an isomorphism of manifolds between the projective normal bundle

PpM and E.

Assume that M is the polydisc of C". Let S be a hypersurface of M defined
by f € O(M). We can write f = >, fi, where f; € C{z1,...,z,} and
fi is homogeneous of degree [ in the v;riables T1,...,Tk. We assume that
fm # 0. Note that f o7 is divisible by s and

(s, T1y ooy Ty Tl 1y -5 Tm)) /S = fin(@1y .o, Thy Thot 1, -+ -, ) mod ().

Hence
closurez; (T Y9\ {s=0}) N{s =0} = {f, = 0}.

Remark that when we fix x° = (z{,,,...,7;) € D, {fm = 0} N {z; =
x¢,k+1 <i<n} is a cone of the vector space (TpM)gze.

Definition 3.5.1. We call

Cp(S) = closureg; (T7HS)\ {s =0}) N {s =0}
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the normal cone of S along D. We call

Cp(S) = closure;; (r71(S)\ {s =0})

the deformation of the normal cone of S along D.

Remark that:

(i) The image by @ of the deformation of the normal cone of S equals the
proper inverse image S of S by .

(i) The image by ® of Cp(S) equals SN E.

(iii) The map ® induces an isomorphism between the analytic sets Cp(S)/C*
and SN E.

Let M be a complex manifold and D a closed submanifold of M. We can
generalize the construction of M p in the following way:

(i) We cover M with open sets M; endowed with charts adapted to D; =
M;ND.

(ii) We construct maps 7 : ]\ZDi — M;.

(iii) We glue the manifolds M, p, and the maps 7.

This construction is quite similar to the construction of the blow up of a
manifold M along a closed submanifold D.

Set X = C*tb+¢ with coordinates

(xla"'7$a7y1a"'5yb7217"',zc)~

Set © = (x1,...,24),T = (Z1,...,Z,) and so on.
Set A = {z =y =0},

L={(%73,2) € TaX : T =0}

The blow up of X along A is the union of the affine open sets U,,,1 < i <
aaija]- S] S b.

Lemma 3.5.2. Let I' be the germ of a closed analytic subset of X. If
Ca(T)NL c{z=yg=0},

I'NEC U U,,.
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Proof. Let E be the exceptional divisor of the blow up of X along A. Notice

that £ = P*t0~1 x C¢ and a point of E has coordinates

Moreover,

Hence,

(T i@ i1t P Ub 2Ly e ey Ze)-

(ENU,,) =7({s =0, #0}),
E\U,, = ({s = 0,4 = 0}).

E \ U?:lUﬂCi = T({S =0,z = O})7

(TN E)\ Ui Uy, = 7(CA(T) N {Z = 0}).

Therefore the following statements are equivalent:

I'NECU, U,
(fm E) \ U?:lUxi = (2)7
Ca(T)NL Cc{z=g9=0}.

O]

Lemma 3.5.3. Let f : X — Y be a holomorphic map between complex

manifolds. Let A [B] be a submanifold of X [Y].

If f(A) = B and f and

fla : A — B are submersions, there is a canonical holomorphic map o from

T4 X into TRY .

Proof. Given a € X, Df(a) defines maps from T, X onto Tf(,)Y and from
T,A onto Tyq)B. Hence Df(a) induces a map from 7,X/T,A onto
Tt(a)yX/Tf@yB. Therefore Df induces a map o : TaX — TgY. Locally

there are coordinates

on X and (uq,..

(Ilw"7xa7y1)"'7ybvzlv'”7ZC)w17"‘7wd)

.y Ug, V1, ..., U:) on Y such that

A={z=w=0},B={v=0}
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and f(x,y,z,w) = (z,z). Hence there are local coordinates

($17--'7xa7y17"'7y57217"'7267w17"-7wd)

on Ty X and (uq,...,uq,v1,...,0.) on TgY such that A and B are respec-
tively the zero sections {Z = w = 0} of T4 X and {v = 0} of TgY and

o(x,y,z,w) = (z,2).

3.6 Blow ups

Theorem 3.6.1. Let (X, L) be a logarithmic contact manifold with poles
along Y. Let Z be the closure of a stratum of Y contained in the singular
locus of Y. Let T : X — X be the blow up of X along Z. Then the O -
module 7L is a logarithmic contact structure on X with poles along 7=1(Y).
Let M be a manifold and let N be a divisor with normal crossings of M.
Let Q) be the closure of a stratum of N contained in the singular locus of
N. The set 171(Q) is the closure of a nowhere dense stratum of the set
of poles of P*(M/N). Let p : M — M be the blow up of M along Q. Set
N = p~Y(N). Then the blow up of P*(M/N) along 7=1(Q) is a logarithmic

contact manifold isomorphic to P*(M/N) and diagram (3.6.1) commutes.

P*(M/N) « P*(M/N)
| | (3.6.1)

M — M

If S is a natural analytic subset of M, the proper inverse image of the

conormal of S equals the conormal of the proper inverse image of S.

Proof. Let 0 be the logarithmic symplectic form of X. The blow up of
X along 7 is a conic manifold. Let us show that 70 is a homogeneous
logarithmic symplectic form with poles along 7~ (V). We can assume that
X is an open set of C2" with coordinates (z1,...,on,&1,...,&,) and Y and

Z equal respectively
{z1-+-2, =0} and {z1 =--- =21 =0}, where 2 <k <w. (3.6.2)
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The blow up of X is the union of k open set Xl,...,)?k. Let 1 < j <k

There is a system of local coordinates (xf,...,z,&},...,&,) on X; such
that 7%z, = 3:;-, T*E, = xgx;, 1<i<k,i#j, mix;=2,, k+1<i<n,and

7% =€), 1 <i < n. Hence 7°6 equals

F dx’. v da’ n
! J 127 130
AZ & T/*Z & x,ffE gldz). (3.6.3)
i=1,i#] J i=1,i#j 3 i1

Set X = T*(M/N)\ M and set Z = 7*(Q) \ Q. Let E be the exceptional
divisor of p. By the universal property of the blowing up there is a map 7
from the blow up of X onto M such that the even dimensional version of
diagram (3.6.1) commutes when we replace 7*(M /N) by the blow up of X.
Moreover, fr\%,l(AM\E) eqlials Tr\%,l(ﬁ\E). By (3.6.3) the CanonAiSal}—fogl/l of
the blow up of X along Z equals the canonical 1-form of T*(M /N) \ M.

Set I' = P§(M/N). By the definitions of proper inverse image and conormal,
the proper inverse image T of I is the conormal of the proper inverse image

of S. By theorem 3.4.5, I' is a Legendrian variety of X. O

Let X be a manifold and let Y be a closed hypersurface of X. We will denote
by Ox(v) the sheaf of meromorphic functions f such that fIy C Ox.

Theorem 3.6.2. Let N be the normal crossings divisor of a complex man-
ifold M. Let L be a well behaved submanifold of (M, N). Let T be the blow
up of X along A = P%5(M/N). Set E=7"Y(A). Let p: M — M be the blow
up of M along L. Set N = p Y(N).

(i) If L is the canonical contact structure of P*(M/N), the Og-module
O (E)T*L is a structure of logarithmic contact manifold on X with poles
along 7= (7= (M)).

(ii) There is an injective contact transformation ¢ from a dense open subset

Q of X onto P* (M/ZV) such that diagram (3.6.4) commutes.

P*M/N) £ X<~ & P<(M/N)
T s (3.6.4)
M L M

(iii) Let S be a germ of a natural analytic subset of (M,N) at o € N. Set
I'=P¢{(M/N). Let S be the proper inverse image of the blow up of M along
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L. If S has trivial limits of tangents at o and CA(T') No~Y(L) C A, then
L cQ and o) = Pg(ﬂ/ﬁ), where o denotes the canonical projection
from TAP*(M/N) onto T, M introduced in Lemma 3.5.3.

Proof. We can assume that there is an open neighbourhood U of o and a

system of local coordinates

(l’l, e 7x’n+1a£17 L) 7£n+1)
on 7~ 1(U) such that
v ds n+1
Ol =65+ Y g
i=1 v i=v+1

and there is ¢ € {1,...,v} such that
L={x,= - =xp =xn41 =0}.
Hence,
A={z,=- =ap=p1==p, =Dhp1 =" = Dn = Tpp1 = 0}.

Therefore A is contained in the open subset X of 7=(U) defined by the

condition &,11 # 0. Hence

14 n
dl‘i
w=drp41 — E pi— = E pidx;
i=1 ¢ i=v+1

generates the logarithmic contact structure of P*(M/N) on X.

The blow up of X along A is the glueing of the open affine sets U;,j =
ty...;kyn+1,and V;,j = 1,...,v,k +1,...,n. The open sets U;,V; are
associated to the generators x;, p; of the defining ideal of A.

If v <j<k,m°w/z; equals

v k A
d$n+1 + Tn41 _ bi § pﬂ x]
Tj Zj X ’LQ?]' x]

=1 i=v+1
—1 v i k n
B PR e 4% Pi g
T T T Di 2. 0&i.
Jx Jj =t ) €T J
i=1 i=t zj i=v+1 J i=k+1



If1<j<v, 7"w/p; equals

v
\ dp;
Tnt1 Tn+l § Pi J
d pj + ( pj pj> pj

1=1+1
v T4 n
N dE pbiNT by,
Pi g pj Ti p;
i=1 i:;;l Dj i=k+1
i#]
IfTEk+1<j<n, 7™w/p; equals
J > bj €q
Tn+t1
dZie Pj v .
P pi _ angs | Wi
Intl Dj Pj 4
Zig pj i=1+1 P
pj
v Ti n
N pi Pi Pi o
Dj Dj T D (A
i x; j Li j
i=1 i=iFl Py i=v+1
1#]

(ii) Assume that M c C"*', N = {z1 -2, = 0} and X = P*(M/N).
The canonical 1-form 6 of T*(M/N) equals

dl’z n+1
Zfl + Z §idx;.

1=v+1

Let )AZ be the homogene(ﬁls symplectic manifold assg\ciated to X. Let 0 be
the canonical 1-form of X. By the argument of (i) X is the union of open
set ﬁj,j:L,--- ,k,n+1 and XA/j,j:l,...,y,k—i—l,--- ,N

Set Q = Uj(/j]-. Set §j =0 ‘ﬁj' Endow C?" with the coordinates

T x
Tly,...,Typ—1, :,T;’:UH-L R T 7 ?;7:31/—4—17 ey T 1, My e v v 5 1

We can assume that

Uj = {(m. - tms1) # (0, ,0)}

and

—1 v d zz n+1
xz

é\j Z dxl +Z iz, Thde + Z nida;.

i=1 i=v+1 i=k+1

The blow up of M along L is the glueing of the open affine sets M;,j =

Ly...,k,n+1 where Mj is associated to the generator z; of the defining ideal
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L. Hence T*(M/N) is the glueing of the open affine sets T*(M;/NNM;),j =
by..., k,n+ 1.
Set Wj =T (Mj/N N Mj). Let 0 be the canonical 1-form of T*(M/N). Set

5]- ] o Endow C?"*2 with the coordinates
j

x z
O I e B ;;.»l‘wrl, ceey Ly ey Ty—1, ﬁ?xlﬂrla s 7:En+17c1> .- '7<n+1-

We can assume that

W ={(C.- -, Cag1) # (0,---,0)}

and
év._L_l dw; - d% dw; : gt - s
]_;Q Ti +;CZ;C;+CJ i +i§|’1C’L g[’,j—i_z‘:zk;rlcZ "
Since

X —T(M\L/N\L)=T"M\p " (L)/N\ p~(L)) = T*(M\ N)
There is a bimeromorphic contact transformation
7' X — T'(M/N).

It is enough to show that the domain of ¢ contains Q and its image equals
T"(M/N).
Since

Ui\ 7 N (L) = V;\ 7 (p~ (L)),

1; = (; on a dense open set of their domain. Hence 7; = (; everywhere and
the domain of @ contains U; for j =¢,..., k,n+ 1.

(iii) The result follows from the Lemma 3.5.2 and the arguments of the proof
of theorem 3.6.1. 0

3.7 Resolution of quasi-ordinary surfaces

Quasi-ordinary surface singularities have a property that distinguishes them
from other hypersurfaces singularities: they are stable by explosion of ad-

missible centers. Lipman [14] used this fact to achieve the first algorithmic
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proof of the existence of a desingularization procedure for this type of sin-
gularities. We will follow the procedure presented in [4]. Theorem 3.6.1 and
7?7 show that as long as its hypothesis are hereditary by explosion along
admissible centers, we can reduce the algorithm of desingularization of the
conormal of a quasi-ordinary surface to the algorithm of desingularization
of the surface. Since the surface of the blow up in P*(M/N) is invariantly
defined by the center of the blow up im (M/N), we only have to consider
the local situation.

Let (M, 0) be the germ of a complex manifold of dimension 3 and (S, 0) the
germ of a quasi-ordinary surface of M with characteristic pairs (A, 1),7 =
1,---,s. We will assume always that the characteristic pairs are labeled
such that A\; < Xo... < Agand p1 < pa... < ps. Let (z,y, z) be a system of
local coordinates such that f(z,y, 2) = 2™ +am_1(2,y)2™ 1 +.. . +ao(z,y),
(S,0) = {f = 0}, and the discriminant of f relative to z is contained in
{zy = 0}. If ¢,¢ = 1,...,m are the roots of f, f = [[2(z — ). Set
¢=¢ = H(zY™ yY"), H e C{x,y}. We call ¢ a parametrization of (S, o).

We say that a parametrization is normalized in (x,y, z) if

(i) M #Zorm ¢Z;
(ii) A\ + g1 < 1 implies Ay, g # 0
We say that a normalized parametrization is strongly normalized if

ALy Ae) > (1 ) (3.7.1)

for the lexicographic order.

Assume that we fix the hypersurface Y’ = {z = 0} and that the discriminant
of f relatively to the projection (z,vy,z) — (z,y) is contained in {zy = 0}.
Now we cannot perform changes of coordinates that take z into z — h. In
this situation we say that the parametrization ( is normalized if there is a

polynomial p and a unit H of C{z,y} such that
¢ = pla,y) + aMy" Hz'/", y' /")

where (A1, 1) € Z? and A1 + p1 is greater than the degree of p. If p # 0, let

2 y* be the monomial of smallest degree of p.
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We say that ( is strongly normalized if A > p or A = p and (3.7.1) holds.
Assume that = 0. If

o,

oy ’
let 2%y® be the monomial of smallest degree of ¢ that depends on y. Other-
wise set b = 4-00.
Lipman presented a desingularization procedure for a quasi-ordinary hyper-
surface (c.f. [14]). Ban and McEwan have shown in [4] that the invariants
of Bierstone and Milman constructive desingularization procedure depend
only on the first characteristic pair and the history of the desingulariza-
tion procedure. From now on, all sequences of blow-ups come from this
constructive procedure. We will also give some information about the sys-
tem of exceptional divisors. Let 0 be a point of S , the strict transform of
(S,0) by a sequence of blow-ups. Let (x,y,z) be a system of local coor-
dinates centered at 6 such that (§ ,0) is defined by a strongly normalized
parametrization with characteristic pairs ()TZ, i;),i=1,...,5 Assume that
0 is a point where the maximum multiplicity has just dropped. Following

[4] the exceptional divisors that pass through o are contained in the set

Hz =0}, {y —q(x, 2 — p(z,y)) = 0}, {z — q(=,y) = 0}},

where y — q(z, 2 — p(z,y))|;,—¢) = y-unit or xMy divides g(z,y) or q(z,y) =
x%P - unit, for some a, b positive integers such that z%y? divides z My,
Let (S,0) be a quasi-ordinary surface. Let S Dbe the strict transform of S
with center L. Let E be the exceptional divisor. Let (z,y, z) be a system of
local coordinates centered at o such that (S, 0) admits a strongly normalized
parametrization relatively to this system of local coordinates.

Assume L = {z =y = z = 0}. Notice that U; N E = {(z,%,2) : © = 0},
(U, 0 B)\ (U, UTZ) = {(0,0,0)}.

We call (0,0,0) the non-generic point of E in the affine open set U, N E.
We call the other points of U N E the generic points of U, N E.

Assume that L = {z = y = 0}. Notice that

UsNE={(z,%,2): 2 =0}

(U, NnEY\U, ={(z,%,2) : 2 =0,

Y

8l

=0} (3.7.2)

We call the points of 3.7.2 the non-generic points of U, N E.
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Theorem 3.7.1. [}] The special exponents of S are affected by the blow up

with center at the origin according to the following table:

0 non-generic 0 generic chart
Mt > 1 #0 (Ni + pi — 1, i) (Ai +pi —1,0) Us
7 (Ais Ai +pi — 1) (0, Ai + pi — 1) Uy
Ly Ap)(A=M) o 14p o (4p) (=)
(i + i Y2, 2 1) (N i 20| U,
M4 <1 (,U«i + (+ 12\(11—,&1) -2, 1->i\-1>w _ 1) (Ni + W _ 2’0) Uy
(>\i(1—m)+u¢/\1 Mi(1_>\1)+>\iul) _ U
I-—(Qatpr) 0 1-(Atm) ?
M >2 =0 (Ni +pi — 1, 114) (Ai +pi — 1,0) Us
1 M1 —
(Ao, Ai 4+ i — 1) (0, A 4+ pi — 1) Uy
Aitpi Aitp
M<2,1=0 (=1~ L) (5=t ~1.0) Ur
’ (A, i + i — 1) (0, + s — 1) U,

Table 3.1:

The special characteristic exponents of S are affected by the blow up with

center at a curve according to the following table:

center conditions 0 non-generic 0 generic chart
A =land pp #0 | (N =1, 1) (Ai —1,0) Uz
)\1 > 2 and 1 =0 ()\i—l,,ui) (/\i—l,O) U,
{z =2=0} N N
A1 <2and puy =0 (,\111 —LMz‘) ()\111 _170) Us
{y=2=0} p>1 Nispi —1) | (0, —1) | Uy
Table 3.2:

3.8 Resolution of Legendrian surfaces

Theorem 3.8.1. Let N be a normal crossings divisor of a germ of complex

manifold (M, o) of dimension 3, let (x,y, z) be a system of local coordinates
of M centered at o. Let (S,0) be a germ of surface of M such that the

discriminant of S relatively to the projection (x,y,z) — (x,y) is contained

in {zy = 0} = 0. Let ¥ be the logarithmic limit of tangents of S relatively

to N. Let (\;, ;) be the very special characteristic exponents of S. Assume

that the parametrization of S is in strong normal form.
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(i) If N =0, X is trivial if and only if
(V) p1 > 1 or
(v2) 1 =0 and pg > 1.

(ii) If N = {z = 0}, X is trivial if and only if
(x1) p1 > 1 or
(x2) 1 =0 and pg > 1.

(ii)If N = {y = 0}, X is trivial if and only if
(y1) My > 1.

(iv)If N = {ay = 0},
Y is always trivial.

(V)If N = {z =0}, X is trivial if and only if
(z) u=0andb>1

(vi)If N = {xzz = 0}, ¥ is trivial if and only if
(xz1) p#0 or
(x22) p=0 and b > 1.
(xz3) p=0andb<1la= A\

(vii) If N = {y= = 0},
> is always trivial

(viii)If N = {zyz = 0},

> is always trivial.

Proof. (i) This case is treated in chapter 2.

(ii) Set 6 = f% +ndy + (dz = ((dz —pd?x —qdy).

Assume that 0 < puy1 < 1. There is an integer m > 0 and there are units ¢;
of C{x%,y%}, 1 < i< 3, such that z = 2y e, is a parametrization of S
and

z=aMyter, p=aMytey, g=aMy" e

defines a parametrization of the regular part of I'.

Set

)\104

B= :
L=
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where « is a positive integer. There are A, B € C*, and units 0; of C{t},
1 <i < 3, such that

Er (A1, B%, AN B gy AN o gy AN e ) )
is a curve of I'. Since aA; + fu1 > 0 and ar; + B(pu1 — 1) =0,
(14A113M1takl+ﬁula2 . AN g lpad+BGn-1) 5, 1)

converges to (0 : AM B*1~163(0) : 1). Hence ¥ is not trivial.
Assume that g7 = 0 and po < 1. There are units &1 of (C{x%}, €9, €3, €4 Of
(C{a:%,y%} such that

A1

z=aMe F a2y ey, p=aMey, =272y le

defines a parametrization of I';.;. Hence we can repeat the previous argu-
ment.
Assume that p1 > 1. There are units &; of (C{:IJ#, y%}, 1 <4 < 2, such that

z = 2™yt e defines a parametrization of S and

defines a parametrization of a hypersurface that contains I'.

Hence ¥ C {n = 0}. By (3.4.3), ¥ C {¢£ = 0}.

If 41 = 0 and ps > 1 we can obtain a proof of the triviality of 3 combining
the arguments of the previous cases.

(iii) Set 0 = &dx + n@ + ({dz = (dz — pdx — qdy> .

By (3.4.3), X C {n zyO} g

If 1 = 0, Ay > 1. By the arguments of case (ii), ¥ C {{ = 0}. The same
arguments hold if A\; > 1 and p; > 0.

If Ay < 1, the argument of the first case considered in (ii) shows that X is
not trivial.

(iv) By arguments very similar to the previous cases, 3 is always trivial.
(v) Set 6 = &dx + ndy + C% = C(% — pdx — qdy).

Assume that p # 0. There are units g; of (C{ac%,y%}, 1 <4 < 3, such that
g x>\_1 62 A M_lgj

y'—=, q=2"y

A
z=a"y'er, p
z z

75



defines a parametrization of I';y. Hence there are units 6; of C{t}, 1 <i < 3,
such that
0o 03
t At®, Bt®, A2 BoteM g 2 5
— < ) ) 1 Ata’ Bta
is a curve of I'. Since
09 03
—= . —_:1) =(Bd;: Ady : ABt®
<Ata Bte ) (Boy : Ao, )
converges to (Bd1(0) : Ad2(0) : 0), ¥ = {¢ = 0}.
Assume that © =0 and b < 1. Setting
a+1-—X\
b= 1—-b
we can show that ¥ = {{ = 0}.
Assume that 4 = 0 and 1 < b < +oo. There are units 1, of C{x%}, g; of

C{x%,yi}, 2 < <5, such that
2z = ae1 + 2%Yley = 2'eg
defines a parametrization of S and

€4 a=A,b=1_

A
Z =T €3, nga q= ) 5

defines a parametrization of I',.4. Moreover, I' is contained in the hypersur-

faces defined by the equations
w€+es( =0, n+a? Ny es( =0,

Hence ¥ = {n = (¢ = 0}.
If w=0and b= +o0, ¥ C {n =0}. By the argument above, ¥ C {¢ = 0}.
(vi) Set 6 = 5%" +ndy + C% = C(df —pdf — qdy).
Assume that 4 = 0. Then b > 1, and this case is quite similar to the previous
one.
Assume that pu # 0. Then there are units ; of (C{x%, y%}, 1 <1 <3, such
that

€3

z =2 yle), p=ey, a=

defines a parametrization of I';.4. Hence I' is contained in the hypersurfaces
§+e(=0, yn+e3(=0.
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Therefore ¥ = {{ = ( = 0}.
Assume that © = 0,b < 1,a = \. There are units ¢; of C{x%,y%}, 1< <

3, such that

A b—1
Z2=T &1, pP=E¢E2, q=1Y €3

defines a parametrization of I';.4. Hence I' is contained in the hypersurfaces
determined by
E+e(=0, y'nte=0.

Therefore ¥ = {{ = ( = 0}.
Assume that ¢4 =0,b < 1,a > A. Then, setting

B =ala—A)/(1-D),
it can be shown by the previous methods that there is a u € C* such that
Yo{(u:v:1):veC}

(vii) This case is symmetric with the previous one, except that, because we

are assuming a parametrization in strong normal form, Y is always trivial.

(viii) Set
)]

Assume that p # 0. There are units &; of C{xi,y%}, 1 < <3, such that

I" is contained in the hypersurfaces with parametrizations defined by
p =2y 2 and g = patyh =,
z z
where £1(0) = £2(0) = £3(0). Hence
Y={(A:p: 1}

A similar argument shows that we arrive to the same conclusion when p =

0. O
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Table 3.3 summarizes the results of the previous theorem and indicates what
is in each case the admissible center chosen by the resolution algorithm. In
some cases different centers can be chosen, depending on the previous history

of the resolution procedure. We set

op={r=y=2=0},0, ={xr =2=0} and 0, = {y = 2 = 0}.

Divisor Conditions Label | Center
p1 =1 vl o
0 w1 =0and pus >1 v2 Oy
(z =0} pwp >1 x1 00, Oy
p1 =0 and pug > 1 x2 Oy
{y =0} A >1and pp #0 vl O, 00
xyl opif Ay <1or uy =0.
{zy =0} xy2 oy if A\ > 1.
xy3 oy if p1 > 1.
{z =0} p=0and b>1 zl Oy
w#0 xz1 o)
p=0and b>1 xz2 Oz

{zz =0}
w=0>b<1,and a = X | xz3 Oy

w>1 xz4 oy
(g2 = 0) yzl op if A < 1.
yz2 00,0, if A > 1.
xyzl | og
{zyz =0} xyz2 | opif A> 1

xyz3 | oy if p > 1.

Table 3.3: List of conditions for generic position and admissible centers.

Table (3.3) is a compilation of tables (3.4) - (3.11), that describe the desin-
gularization procedure considered in [4]. We do not transcribe here the
notations that describe the history of the procedure since we make no use

of them.
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Center | Conditions

0o p1 >0

Og 1 =0

Table 3.4: Divisor N = 0.

Center | Conditions

00

<1
AM>land 0< pup <1
1 >0andi:k:(0i),k:(oi)+1

Og

p1 =0

Oy

p1>1and i > k(o) +1

Table 3.5: Divisor N = {z = 0}.

Center | Conditions
A <1
0o
1= ]C(Oi), k?(OZ) +1
o A1 >1and i > k(o) +1

Table 3.6: Divisor N = {y = 0}.

Center | Conditions
A <1
o0 i =k(o;),k(0;) +1
i>k(o;) +1,u1 =0, and {y =0} C E;i(0;)
A > 10> k(o) +1,u1 >0, and [ =i
O A >1i> k(o) +1,and 0 < py <1
p1 =0,i>k(o;) +1, and {y =0} ¢ Ei(0;)
oy p1 > 1,0 > k(o)) + 1, and k=i

Table 3.7: Divisor N = {zy = 0}.
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Center | Conditions

(o) u/\aéO
Oz nw=20

Table 3.8: Divisor N = {z = 0}.

Center | Conditions

)\1<1
o)) A:)\lzland0<u:u1<1
>0, and i = k(0;), k(0;) + 1

Oz pw=20

ay p>1andi> k(o) +1

Table 3.9: Divisor N = {zz = 0}.

Center | Conditions
M <1
00
7= kJ(Oi), k‘(OZ) +1
Oy A>1andi> k(o) +1

Table 3.10: Divisor N = {zy = 0}.

Center | Conditions
A <1
g0 = k(Oi), k(Ol) +1

i>k(o;))+1,p=0and {y =0} C E;(0)

A>1i>k(o)+1,p>0and =1

Oy A= M >1i>k(o)+land0<p=p; <1
w=0,i>k(o;) +1and {y =0} ¢ Ei(0;)
oy w>1,i> k(o)) +1and k=1

Table 3.11: Divisor N = {zzy = 0}.
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Theorem 3.8.2. Let N be a normal crossings divisor of a germ of a complex
manifold (M,o) of dimension 3. Let S be the germ of a quasi-ordinary
surface at o with trivial limit of tangents. Set I' = P¢(M/N). Let L be one
of the admissible centers for S considered in table (3.3). Set A =P} (M/N).
Let T be the proper inverse image of I' by the blow up of P*(M/N) with
center A. Then

I CQandT =P5(M/N).

Proof. Let A be the only limit of tangents of S at 0. By Lemma 3.5.2 it is
enough to prove that

Ca(D)Nno (L) C A. (3.8.1)
holds in order to prove that T cQ.
(i) Set 0 = &dx + ndy + (dz = ((dz — pdx — qdy).
(vl) Set L ={x =y =2=0}. Hence A = {& =y = 2z = 0}. We identify L
with the zero section {z =y =z = 0} of P, M. We identify A with the zero
section {7 =y =z = 0} of PAP*(M/N). Near A,

o : PAP*(M/N) —PrM
is given by

O—(:’i:7 ﬂ? z7p7 q) = (E’ @/7 %/)'
Hence, 0~(L) = A.
(v2) Set L ={x =2=0}. Hence A ={z =2=¢=0} and o(7,9,%,p,q) =
(Z,y,2). Since p; =0,

A2 > A1 > 1. (3.8.2)

Since

A A2, A
z2=ax 0T + .. APy 4

there is a unit € of C{x%,y%} such that

d
q= 8—; = ey le (3.8.3)

for some integer m. It follows from (3.8.2) and (3.8.3) that I" is contained

in a hypersurface
n—1
q" + Z aiq' =0
i=0
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where a; € C{z,y} and a; € (z)""*. Hence there are @; € () such that

C(T) is contained in an hypersurface

and (3.8.1) holds.
(ii) Set N = {x = 0}, hence

dx dx
0 = f; +ndy + (dz = ((dz —p - qdy).

(x1) Assume that g > 1. U L={z=y=2=0},A={z=y=2=p=0}
and 0(2,9,%,p,q) = (2,9, 2).
Since there is a unit ¢ such that z = 2y, there is a unit § such that

p= xAlyF‘l(S. Since A1 4+ u1 > 2,
Cp(T) Cc {p = 0}.

Hence, (3.8.1) holds.
Assume L = {y = z = 0}. Hence A = {y = 2z =p = 0}. If yg > 1, the
argument is similar to the previous one. Assume p; = 1.

There are units €1,e2 of C{azi,y%} such that
z = x)‘lyal, p= x)‘lyag.

Hence CA(T)No~Y(L) c {p =0}.
(x2) Since L = {x = 2 =0}, A = {x = 2 = p = ¢ = 0}. There are units ¢ of
(C{xijyi}, €1,...,64 Of (C{:ci,y%} such that

z=aMe; = aMe 4+ 2My2ey, p=aMes, q =12y ey

Since py = 0, A\; > 1. Therefore CA(T") C {p = 0}.
Since Ag > A1 > 1, pg > 1. Therefore Cy(T') C {q = 0}.
(iii) This case is similar to the previous one.
(iv) If N = {zy = 0},

dx d dx d

6= 6= +n~L +(dz = ((dz —p— —q-").

T Y z Yy

Set L={z=y=2=0}. Honce A={x =y=2=p=q=0}.
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There are units ¢; of C{xi, y%}, 1 <7 < 3, such that
z=aMylle, p=2yle, g=aMyte

defines a parametrization of I';..4. Hence there are units 4, €5 of (C{a:i, y%}
such that

A
z=a"yMey, p=rzey4, q=zes5

define a parametrization of I'..y. Therefore I' is contained in the hypersur-
faces with parametrizations given by p = ze4, ¢ = ze5. Hence I is contained

in hypersurfaces of the type
k-1 -1
PP ap' =0, ¢+ big =0,
i=0 i=0

where a; € (2F77),b; € (2!7).
Assume that g =0, L={z=2=0}or y > 1, L = {y = z = 0}. In both
cases CA(I') C {p = ¢ = 0} by the standard arguments.
(v) If N = {z = 0},
d d d
0:§dx+ndy+C—Z —C(z —pdm—qdy) —{(dm—rdy—sz) .
z z z

(z1) Assume that p=0,b>1and L ={r =2 =0}. Hence A ={z =2=

r = s = 0}. There are units £1, 3 of (C{:):%}, E1,...,€8 of (C{:r%,y%} such
that
z=xte1 + x“ybeg =gy (3.8.4)
A-1
1
p::E 6226*5:7 (3.8.5)
z T xeg
a,b—1
g= 2L o =Ny (3.8.6)
z

Hence zegé + ¢ =0, n+ x4 P leg¢ = 0.
Therefore I' is contained in the hypersurfaces with parametrizations given
by

s=ce¢r, r+z* My legs =0.

Hence CA(I)N{z =Zz=0} C {r=5=0}.
(vi) If N = {zz = 0},



Assume that 4 #0. Set L={zr=y=2=0}. Hence A={z =y =2 =
r = s = 0}. Notice that

m/\y“ x/\y“_l 1
€2 =263, q= 5 sy
5

A
z=a"yler, p=

E+e3(=0, yesn+(=0.

u=-¢e35=0, s=yes.

Hence Cy(T)Np~ (L) C (F=35=0).

If u#0and L ={y =2 =0}, then A = {y =z =r = s =0}, and this case
is solved in a similar fashion.

Assume that ¢ = 0. In this case L = A = {x = z = 0}. This situation is
solved by theorem 3.6.1.

(vii) Set N = {yz = 0}.

If i # 0, we are in the situation of (xzl).

Assume that g = 0. Set 6 = &dx + 77% + C% = ¢(de — r¥ — s22),

Yy 4
Following the scheme of the previous cases,

882
2z = 1'e] = 2'eg + 2%Ple3, where —= =0
dy
A—1 a,b
o 1 A
b= &4 = , 4= €6 =T yer,

xes z

wesé +C =0, n+a"Myler( =0,
s=uxe5, r+x2 Mylers =0. (3.8.7)

It follows from 3.8.7 that CA(T) Np Y (L) C{F=5=0}if L={r =y =
z=0}or L ={z=2=0} O

Example 3.8.3. Given § € (C{:J;%}, €€ C{x%,y#}, A>1land 0< b <1,

the surface S with parametrization
z =20 + 2Myle

verifies the condition (xz3) of Theorem 3.8.1. Hence its logarithmic limits

of tangents relatively to the divisor {xz = 0} is trivial. The proper inverse
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image of S by the blow up with center {x = z = 0} admits the parametriza-
tion

z a1 Abb—1, b
=10t yleq.

By theorem 3.8.1, the logarithmic limit of tangents of S relatively to the

divisor {zZ = 0} is not trivial.

Example (3.8.3) shows that the triviality of limits of tangents is not heredi-
tary by blowing up. Lemma 3.8.4 solves this problem.

Lemma 3.8.4. Let N be the normal crossings divisor of a germ of complex
manifold (M, o) of dimension three. Let S be a surface of M such that the
logarithmic limit of tangents of S along N is trivial. Let m : M — M be
the blow up of M along an admissible center for S and N. Let E be the
exceptional divisor of w. Let p € SNE. If SN do not verify condition
(x23) of table (3.3) at o

(i) S has trivial logarithmic limit of tangents along N at p.

(i) S, N do not verify condition (xz3) at p.

Proof. We will denote by ¢; a unit of C{mi, yi} and by §; a unit of (C{a:i},
for a convenient m. We will denote by (xy), (yz), (xyz) the situations (xyi),
(yzi), (xyzi) for each i.

(v1) We can assume that z = 2Myt1e;. On the chart (z, Y, 2),

Z — pAitpi—1yH
w—l‘ o €9.

Since A\; > p1 > 1 and (A1, X2) € Z2, we are in situation (x1) at each point
of N = {z = 0}. The same happens in the chart (%,y, %)

(v2) We can assume that z = 2§y + 2*2y#2e;. On the chart (z,y, 2),
N = {z =0} and

z _ A1 A2—1, po
Z=x 0o+ yH2es.

If \; > 2 we are in situation (x2). Assume A; < 2. By table (3.2), S admits
the parametrization
A1 A

2
7= (BN + ()N Ty

Hence we are in situation (z1).

The cases (x1),(x2),(y1) are similar to the previous cases.
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), N = {z% = 0} and

x

(xyl) Assume that A\; 4+ py > 1. In the chart (z, Z,

z
T

S admits the parametrization

z — pMtpi—lym

o o €9.

Let o be a point of N where z 0. If up =0, S is smooth at 0. Otherwise

1

= (%)Nl £3.

SR

Hence we are in situation (z1). The same holds at a point of N where 4#£0.
The situation is similar in the chart (%, Y, 5)
Assume that A\; + g1 < 1. In the chart (2,%,2), N = {24z = 0} and S

z7 27
admits the parametrization

" A1 y p1
2= (;)14\1*#1 (;) T=X1-H1 gq.

We are in the situation (xyz) at (0,0,0). Let o be a point of N where 2#0.
Ifpu=0o0r 2\ +p =1, S is smooth at o. If pp # 0 and 2A; + p1 # 1, we
are in situation (x2) or in situation (z1). The situation is similar at a point
of N where £ # 0.

The cases (xy2) and (xy3) are quite similar.

(z1) The blow up produces situation (z1) if A > 2 and (x1) if A < 2.

(xz1) Assume that we blow up op. Assume that A + x4 > 1. In the chart

(z,2,2), N = {zZ =0} and S admits the parametrization

z l)\-l—u—l%u

z £9.

Assume that A + g > 1. We are in situation (xz1) at (0,0,0). Let o be a
point of N. If z # 0, S is in situation (yz) at o.

Assume that A + p = 1. Setting 2 = 2,y = 2,2 = £ S admits the
parametrization

7 =dwey and N = {77 = 0}.

We are in situation (xy) at (0,0,0). Let o be a point of N. If § # 0 we are
in situation (x2) at o.
The case A + pu < 1 is similar to the case A + p > 1.
(xz2) We can assume that z = %01 + 2%Ps;. On the chart (z,yZ2), N =
{zZ =0} and

Z= 2710y + 2971y Pey.

86



If A > 2 we are in situation (xz2). Assume A < 2. By table (3.2), S admits

the parametrization

P —a_
T = (%) x—103 + (%) =1 yb<€3
and we are in situation (xz2) at (0,0, 0).
(xz4) We can assume that z = 2261 + z%’e.
On the chart (z,y, %), N = {zys = 0} hence we are in situation (xyz) at
the origin.

The remaining cases are similar to those considered above. O

Theorem 3.8.5. Let S be a quasi-ordinary surface of a germ of complex
manifold of dimension 3, (M,0). Assume that the limit of tangents of S at
o is triwial. Let Mo = M,I' =PgM. Let

Mo — My — My -+ — My,

be the sequence of blow ups that desingularizes S. Let L; be the center of
the blow up M;v 1 — M; for 0 < i < m — 1. Let S; be the proper inverse
image of S by the map M; — My. Let N; be the inverse image of {o} by the
map M; — My. SetI'; = P§i<Mi/Ni>, A = Py, (M;/N;). Let X; be the blow
up of P*(M;/N;) along A;. There are inclusion maps P*(M;+1/Nit1) — X;
such that the diagram (3.8.8) commutes.

P*My «— P*(M;/Ni) « - — P*(Mu/Ny)
| | | (3.8.8)
My « My = o o= M,

Moreover I'y, is a reqular Lagrangean variety transversal to the set of poles of
P(M,,/Ny,) and Ty, is the proper inverse image of T'g by the map P* (M., /Np,)
— P*M.

Proof. This result is an immediate consequence of the Theorem of resolution
of singularities for quasi-ordinary surface singularities, Theorems 3.6.1, 3.6.2,
3.8.1, 3.8.2 and Lemma 3.8.4. O
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