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RESUMO 

O principal objectivo deste trabalho é o estudo da homeostasia de linfócitos T CD4
+
 

naive e de memória em humanos, com ênfase particular no papel desempenhado pela IL-7 

neste processo. Para tal, investigámos os efeitos desta citocina na homeostasia de 

subpopulações de linfócitos T CD4
+
 naive identificados pela expressão de CD31. 

Demonstramos pela primeira vez que a IL-7 induz a proliferação preferencial da 

subpopulação CD31
+
 de linfócitos T CD4

+
 naive do sangue periférico de adultos. Além 

disso, a IL-7 promove a manutenção ou mesmo o aumento dos níveis de CD31 em células 

T CD4
+
 naive CD31

+
, apesar de não induzir a re-expressão deste marcador na 

subpopulação CD31
-
. Os nossos resultados indicam que tanto a proliferação como a 

manutenção de CD31 induzidas pela IL-7 são dependentes da via de sinalização PI3K.  

Neste estudo, também investigámos quais os potenciais mecanismos responsáveis 

pelo restabelecimento da homeostasia após transplante haploidêntico de células 

estaminais, particularmente pela manutenção da subpopulação T CD4
+
 naive CD31

+
. Os 

nossos dados sugerem que a reconstituição imunológica a longo prazo foi atingida com 

sucesso num grupo de receptores de transplante haploidêntico, provavelmente através de 

uma combinação de mecanismos dependentes e independentes do timo, levando ao 

estabelecimento de subpopulações equilibradas de linfócitos T CD4
+
 e CD8

+
, bem como a 

um repertório de células T diverso.  

Por fim, o estudo da homeostasia dos linfócitos T CD4
+
 de memória teve como base a 

investigação do potencial impacto da acumulação de linfócitos T CD4
+
 CD45RA

+
CD27

-
 

que se observa durante a infecção por CMV. Analisámos a capacidade replicativa e 

funcional destas células altamente diferenciadas, assim como o putativo envolvimento da 

IL-7 na re-expressão de CD45RA em linfócitos T CD4
+
 de memória. Os nossos 

resultados demonstram que os linfócitos T CD4
+
 CD45RA

+
CD27

-
 não constituem uma 

subpopulação exausta, mantendo potencial replicativo e funcional. No entanto, estas 

células apresentam características de senescência independentes do comprimento dos 

telómeros, mediadas parcialmente pela via de sinalização p38 MAPK.  

Globalmente, os nossos dados reiteram a contribuição da IL-7 para a homeostasia de 

linfócitos T CD4
+
 naive e de memória, sugerindo um potencial envolvimento na 
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manutenção da população T CD4
+
 naive CD31

+
 em adultos e na indução da expressão de 

CD45RA em linfócitos T CD4
+
 de memória.  

 

Palavras-chave: Homeostasia, Interleucina-7, Linfócitos T CD4
+
, Reconstituição 

imunológica, Senescência. 
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SUMMARY 

The main focus of this work is to study the homeostasis of human naive and memory 

CD4
+
 T cell subsets, particularly assessing the role of IL-7 in this process. For this 

purpose, we assessed the potentially distinct effects of IL-7 in the homeostasis of naive 

CD4
+
 T cell subsets defined by CD31 expression. We describe for the first time the 

preferential proliferation of the CD31
+
 subset within adult naive CD4

+
 T cells in response 

to IL-7 stimulation. Furthermore, we showed that IL-7-induced proliferation sustained or 

even increased the level of CD31 expression in CD31
+
 naive CD4

+
 T cells, although it did 

not induce CD31 re-expression in the CD31
-
 subset. We also demonstrated that both IL-7-

induced proliferation and CD31 maintenance were dependent on the PI3K pathway. 

Furthermore, we investigated the mechanisms involved in the restoration of T cell 

homeostasis following haploidentical haematopoietic stem cell transplantation (HSCT), 

particularly in the maintenance of the CD31
+
 naive CD4

+
 T cell pool. Our data suggest 

that long term immune reconstitution was successfully achieved in a cohort of 

haploidentical HSCT recipients, likely through a combination of thymus-dependent and -

independent mechanisms which gave rise to balanced CD4
+
 and CD8

+
 T cell subsets and 

to a diverse T cell repertoire. 

Finally, we focused on memory CD4
+
 T cell homeostasis in order to clarify the impact 

of the increasing representation of CD45RA
+
CD27

-
 CD4

+
 T cells observed during CMV 

infection. We sought to determine the replicative and functional potential of these highly 

differentiated cells, as well as the putative involvement of IL-7 in CD45RA re-expression 

in memory CD4
+
 T cells. Our results show that CD45RA

+
CD27

-
 CD4

+
 T cells do not 

constitute an exhausted subset, retaining replicative and functional potential. However, 

these cells display senescence-associated traits independent of telomere length, which are 

at least partly mediated by the p38 MAPK pathway.  

Overall, our data reiterates the contribution of IL-7 signalling to naive and memory 

CD4
+
 T cell homeostasis, suggesting a role for IL-7 in the maintenance of the CD31

+
 

naive T cell pool throughout adulthood as well as in the induction of CD45RA on 

memory CD4
+
 T cells. 
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Keywords: Homeostasis, Interleukin-7, CD4
+
 T Lymphocytes, Immune reconstitution, 

Senescence. 
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INTRODUCTION 

 

1. Interleukin-7: a key cytokine in T cell homeostasis 

1.1. The role of γC cytokines in T cell homeostasis 

Homeostasis can be defined as the tendency of a system to maintain internal stability 

through coordinated responses that compensate for environmental changes, allowing the 

return to a steady-state following perturbation 
1
. Although the aim of homeostasis is to 

achieve equilibrium, its nature is not static but rather dynamic, ensuring stability by 

continually adjusting to changing conditions 
1
. The homeostasis of the immune system 

operates through a tightly regulated network of sensing and feedback mechanisms that 

counteract disturbances in order to restore steady-state settings 
2
. T cell homeostasis 

ensures the maintenance of the size and diversity of the T cell pool 
3,4

. A typical example 

is the preservation of relatively constant peripheral T cell numbers in the face of constant 

antigenic challenge, which is achieved by counterbalancing the proliferation of antigen-

specific cells with the contraction of the expanded population during an immune response 

5-7
. Likewise, drastic reductions of peripheral T cell numbers, as observed following 

chemotherapy 
8
, bone-marrow transplantation 

9
 and human immunodeficiency virus 

(HIV) infection 
10

, exaggerate the response to mechanisms responsible for naive T cell 

homeostasis under steady-state conditions, i.e. cytokines, in order to restore the size of the 

T cell pool through lymphopenia-induced proliferation 
11

. However certain challenges to 

T cell homeostasis ultimately prove too disruptive to allow the return to a steady-state. 

For example, transformed T cells are able to circumvent cell cycle checkpoints and 

consequently undergo uncontrolled proliferation which cannot be counteracted by 

homeostatic feedback mechanisms 
2
. Several therapeutic approaches have been developed 

to help restore immune competence following T cell depletion caused by a variety of 

immune disorders as well as by tumour therapy regimens and following allogeneic stem 

cell transplantation 
12

. Interleukin-7 (IL-7) is a cytokine from the common γ chain (γC) 

family with potential application as a therapeutic approach in a multitude of clinical 

settings associated with T cell deficiency, such as ageing, HIV infection and following 
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radio- or chemotherapy utilized in the treatment of tumours or as part of a conditioning 

regimen for hematopoietic stem cell transplantation (HSCT) 
13-17

. 

T cell homeostasis relies mainly on signals triggered by self-MHC/peptide complexes 

and members of the γC family of cytokines 
1
. The γC family encompasses cytokines, such 

as IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, whose receptor complexes share the γC chain 

(CD132), in addition to various cytokine-specific chain(s) 
18

. IL-7 and IL-15 are the key 

cytokines involved in the maintenance of T cell homeostasis 
1
. The homeostasis of naive 

T cells is dependent on T cell receptor (TCR) interaction with self-MHC/peptide 

complexes plus IL-7 signalling 
19-23

. In vivo studies in mice have demonstrated that both 

CD4
+
 and CD8

+
 naive T cells require IL-7 for survival and homeostatic proliferation 

19,20,24-26
, while in vitro studies have shown that IL-7 alone is able to promote the survival 

and proliferation of human CD4
+ 

naive T cells from umbilical cord blood 
27-30

. As for 

memory T cells, CD4
+
 and CD8

+
 T cells are similarly independent of TCR tickling 

31,32
 

but they appear to have distinct γC cytokine requirements: both IL-7 and IL-15 are 

reportedly involved in memory CD8 homeostasis 
33-36

, whereas IL-7 is considered critical 

for the generation and maintenance of memory CD4
+
 T cells 

37-42
. Thus, several lines of 

evidence point to IL-7 as a key cytokine in the maintenance and restoration of naive and 

memory T cell homeostasis 
28-30

. 

 

1.2. IL-7 Receptor signalling in T cells 

IL-7 was initially described as a growth factor for murine B cell precursors in a bone 

marrow culture system 
43

. It has since been described as a non-redundant cytokine in the 

development of T cells in mice and humans 
44-47

, as well as being essential for the 

survival and proliferation of naive and memory T cells in the periphery 
35,48-50

. Several 

studies have also demonstrated that IL-7 is a homeostatic cytokine able to promote 

memory CD4
+
 and CD8

+
 T cell generation 

37,38,51,52
. The presence of IL-7 during culture 

of tumour-specific CD8
+
 T cell clones has been shown to promote long-term survival 

whilst progressively quenching cytotoxic responses, suggesting that IL-7 may play a role 

in memory induction by supporting the transition from an activated to a resting state 
53

. 

IL-7 is mainly produced by non-lymphoid cells within lymphoid tissues, such as 

stromal cells in the bone marrow and lymph nodes, and epithelial cells in the thymus and 

gut 
7,43,54-56

. IL-7 production appears to occur in a constitutive fashion without influence 
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from extrinsic stimuli 
25,45

. On the other hand, the production of other γC cytokines such 

as IL-2 and IL-15 increases greatly with the activation of T cells, macrophages and 

dendritic cells during an immune response 
57,58

. The response to IL-7 appears to be tightly 

regulated by the expression of the α chain of the IL-7 receptor (IL-7Rα, CD127). The 

expression of IL-7Rα on lymphocytes fluctuates according to the stage of development 

and/or activation 
58

. IL-7 itself 
59,60

, other γC cytokines 
59,61

 and TCR activation 
19,60,62

 

induce the down-modulation of IL-7Rα expression. Conversely, IL-7Rα is up-regulated in 

the absence of its cognate cytokine 
59,60

. Hence, unlike the receptor chains specific for IL-

2 and IL-15, which are up-regulated following activation 
63-66

, IL-7Rα expression appears 

to be transiently dampened upon triggering of signalling pathways that promote cell 

survival. This feedback regulatory mechanism has been suggested to maximise the 

number of cells that can make use of the limited amount of IL-7 available 
59

. However, 

the in vitro survival and proliferation of human naive CD4
+
 T cells in response to limiting 

amounts of IL-7 appear to be independent of IL-7Rα expression levels 
60

, which argues 

against the in vivo “altruistic” model proposed by Park et al. 
59

.  

IL-7 stimulation induces several pro-survival pathways, particularly through the 

modulation of the expression of Bcl-2 family members 
67-69

, in addition to promoting cell 

proliferation, growth and metabolic activity 
62,70-73

. IL-7 signalling is triggered by ligation 

of IL-7 to IL-7Rα, inducing the hetero-dimerisation of IL-7Rα with the γC chain  
74

 and 

consequent activation of the receptor-associated Janus kinases (JAK) -1 and -3 
75

. JAK1 

and JAK3, which are respectively associated with the γC chain and IL-7R-α, 

phosphorylate each other and then IL-7Rα, creating docking sites for the signal 

transducers and activators of transcription (STAT) factors, such as STAT1, -3 and -5 
76-78

. 

STAT5, the most relevant STAT in IL-7-induced signalling, comprises two isoforms: 

STAT5a and STAT5b 
79

. Both STAT5 isoforms are then phosphorylated by JAK1/3, 

inducing their homo- or hetero-dimerisation and translocation to the nucleus where they 

activate the expression of genes involved in cell survival and proliferation 
80-84

. The 

STAT5 signalling pathway promotes cell survival through the modulation of Bcl-2 family 

members, up-regulating the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL and 

down-regulating the pro-apoptotic proteins Bax and Bad 
85-87

. STAT5 signalling also 

leads to the inhibition of protein kinase C θ (PKCθ) and subsequently to the down-

modulation of the cyclin-dependent kinase inhibitor p27
kip1

, inducing cell cycle entry 
88

. 
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Another major pathway induced by IL-7 is the phosphoinositide 3-kinase (PI3K) 

signalling pathway which plays a key role in regulating cell survival, growth, metabolism 

and proliferation 
89

. The major substrate of PI3K is Akt, a serine/threonine kinase, also 

known as protein kinase B (PKB) 
90

. Activation of PI3K by growth factors or cytokines 

induces the recruitment of Akt to the plasma membrane where it is phosphorylated on two 

residues, Thr308 and Ser473, becoming fully activated 
91

. The substrates of Akt include 

several molecules that directly or indirectly impact on cell survival and proliferation, such 

as pro- and anti-apoptotic Bcl-2 family members, caspases and forkhead transcription 

factors 
92

. Through its targets in the Bcl-2 family, Akt protects mitochondrial membrane 

integrity and thus prevents the release of factors such as cytochrome c which can trigger 

apoptosis in response to stress 
93

. The phosphorylation of Bax by Akt induces 

conformational changes that hinder the translocation of Bax to the mitochondrial 

membrane, blocking pore formation and consequent cytochrome c release 
94

. Akt directly 

phosphorylates the pro-apoptotic protein Bad 
95

, forcing the dissociation of Bad from Bcl-

2 complexes, releasing the latter free to perform its anti-apoptotic functions 
96,97

. Akt 

promotes CD4
+
 cell survival in part by phosphorylating, and consequently inactivating, 

the forkhead transcription factor FOXO3a, which leads to the down-regulation of the pro-

apoptotic protein Bim 
98

. The PI3K pathway is also required for the IL-7-induced increase 

of GLUT1 expression, a key glucose transporter in T cells, thus promoting glucose uptake 

and metabolic activity 
71,99

. In addition, IL-7 also up-regulates the transferrin receptor 

CD71 
80,99

, the major mediator of iron uptake associated with increased metabolic activity 

100-102
. Hence, IL-7 is a pleiotropic cytokine that promotes T cell survival, proliferation, 

growth and metabolism.  

 

1.3. Therapeutic applications of IL-7 

IL-7 has been suggested as a potential therapeutic agent in a variety of settings, 

particularly in the improvement of immune reconstitution following T cell depletion 
25

. In 

pre-clinical studies performed both in mice 
103-107

 and in non-human primates 
108

, IL-7 

administration has been shown to accelerate the rate of immune reconstitution following 

bone-marrow transplantation 
103-108

. Furthermore, IL-7 has also been shown to boost T 

cell homeostasis in simian immunodeficiency virus (SIV)-infected non-human primates 

109,110
. Several reports have attributed the beneficial effects of IL-7 therapy on T cell 
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reconstitution to the enhancement of peripheral T cell expansion 
108,109,111

, whereas other 

studies suggest that IL-7 can also increase thymic output 
104,105,110,112,113

. The beneficial 

effects of IL-7 on thymic output of naive T cells might require prolonged IL-7 treatment 

113,114
. Furthermore, the impact of IL-7 in thymic function might be more relevant for 

younger hosts, given that IL-7 administration does not seem to significantly increase 

thymic output in aged mice 
104

. Regardless of the putative enhancement of thymic output, 

IL-7 administration has been shown to enhance T cell recovery through the preferential 

expansion of newly generated naive T cells, termed recent thymic emigrants (RTEs), 

following allogeneic bone marrow transplantation in mice 
115,116

. Hence IL-7 therapy 

appears to induce cycling of RTEs, consequently allowing the maintenance of a diverse 

TCR repertoire in patients recovering from T cell depletion which might prove 

particularly relevant following allogeneic stem-cell transplantation 
25

.  

IL-7 administration has been shown to enhance proliferation driven by high- and low-

affinity antigens in T cell depleted mice 
104

. Hence, it might be particularly useful as a 

vaccine adjuvant targeting poorly immunogenic antigens, such as those associated with 

tumours, given its ability to enhance responses to low-affinity antigens 
25,104,117,118

. Pre-

clinical studies in mice have confirmed that IL-7 can serve as a potent vaccine adjuvant, 

preferentially enhancing responses to sub-dominant antigens and thus broadening the 

scope of immune responses 
117

. A model of skin graft rejection mediated by a male 

antigen in athymic T cell-depleted female mice has shown that IL-7 administration 

ensures restoration of immune competence following transfer of only 1% of the T cell 

repertoire, whereas 10% of the repertoire is required in the absence of IL-7 
118

. Thus, IL-7 

therapy might potentially improve immune reconstitution through peripheral expansion, 

ensuring the restoration of a diverse TCR repertoire even in the absence of thymic 

function. The conversion of non-immunogenic antigens into mitogenic stimuli in the 

presence of increased IL-7 levels is potentially beneficial for the generation of a diverse 

TCR repertoire following T cell depletion, although it might also favour the development 

of autoimmunity 
119

. Autoimmune diseases have been linked with settings characterised 

by T cell depletion and the consequent lymphopenia-induced proliferation 
120-123

, as well 

as with elevated IL-7 levels 
124,125

. Furthermore, chronic elevation of IL-7 levels in mice 

has been associated with the development of lympho-proliferative disorders 
126,127

. In 

vitro studies have also demonstrated that IL-7 promotes the viability, metabolic activity 

and proliferation of leukemic T cells 
71,80,128,129

, underlying the importance of taking into 
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account the potential  tumourogenic effects of IL-7 when designing IL-7-based clinical 

trials as well as the potential therapeutic application of blocking IL-7 signalling in 

particular clinical settings 
130

. 

Even in T cell-replete hosts, supra-physiological levels of IL-7 have been shown to 

induce naive CD4
+
 and CD8

+
 T cell proliferation, as observed in mice 

51,109,131
 and in 

macaques 
114

, suggesting that the endogenous levels of IL-7 constitute a limiting resource 

12
. IL-7-expanded naive CD4

+
 and CD8

+
 T cells have been shown to acquire a memory-

like phenotype both in immune-competent macaques 
114

 and following stem cell 

transplantation in mice 
103,115

. Similarly, lymphopenia-induced proliferation in the 

absence of IL-7 treatment has also been reported to induce naive T cells to acquire a 

memory-like phenotype 
132-138

. However, these memory-like cells have been shown to 

regain phenotypic and functional characteristics of naive T cells upon reconstitution of 

the T cell pool 
132,133,138

 or upon discontinuation of IL-7 treatment in immune-competent 

hosts 
114

. Therefore the beneficial effects of IL-7 administration in the reconstitution of 

the naive T cell pool following stem cell transplantation might be initially masked by this 

phenomenon 
103,115

. The impact of IL-7 on proliferation is not restricted to the naive 

subset as it also induces cycling of different memory CD4
+
 and CD8

+
 subsets, thus 

contributing to the maintenance of the whole T cell pool 
114

. Moreover, IL-7 enhances the 

ability of memory CD4
+
 and CD8

+
 T cells to produce cytokines, reinforcing its potential 

use for IL-7 as a vaccine adjuvant  
114

.  

IL-7 serum levels have been shown to be elevated in children following allogeneic 

bone-marrow transplantation, showing a direct correlation with the degree of T cell 

depletion 
139

. Furthermore, an inverse correlation between IL-7 serum levels and 

peripheral CD4
+
 T cell numbers, particularly naive CD4

+
 T cells, has been reported in 

HIV-infected individuals 
140,141

. Conversely, the restoration of CD4
+
 T cell numbers 

following anti-retroviral therapy is associated with a decline in IL-7 levels 
140,141

. Other 

settings involving CD4
+
 T cell depletion, such as chemotherapy 

140
 and idiopathic CD4

+
 

lymphopenia 
142

, have been associated with elevated levels of circulating IL-7, which 

return to baseline upon recovery of CD4
+
 T cell numbers. Immune reconstitution appears 

to be impaired in patients who display lower levels of circulating IL-7 than would be 

expected for the degree of lymphopenia observed, suggesting that elevated levels of 

endogenous IL-7 might aid the recovery of T cell homeostasis following T cell depletion 

143,144
. 
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The investigation of the potential causes underlying the increase in IL-7 levels during 

lymphopenia generated conflicting reports arguing either in favour of increased 

production, or of decreased consumption, of IL-7 following T cell depletion 
119

. The 

increased production hypothesis was substantiated by the presence of significantly 

increased levels of cell-associated IL-7 within lymphocyte-depleted peripheral lymph 

nodes from acquired immunodeficiency syndrome (AIDS) patients 
141

, together with the 

observation of a greater delay between the recovery of CD4
+
 T cell numbers and the 

restoration of steady-state IL-7 levels in patients recovering from CD4 depletion than 

would be expected if IL-7 consumption was the underlying mechanism 
140

. A putative 

increase of IL-7 production in response to CD4
+
 T cell depletion would require one or 

more sensing mechanisms able to monitor CD4
+
 T cell levels and regulate IL-7 secretion 

accordingly 
119

, however no such mechanisms have been so far identified. On the other 

hand, studies in mice have reported a decline rather than a rise in IL-7 production in 

response to lymphopenia 
25

. In addition, IL-7 production in the lymph nodes has been 

shown not to be significantly higher in HIV-infected patients than in non-infected 

individuals 
145

. Hence it has been proposed that IL-7 is produced at a fixed constitutive 

rate and that its levels rise during lymphopenia as a result of reduced consumption due to 

a decrease in the number of T cells competing for IL-7 
13,58,130

. 

A major question regarding the potential efficacy of IL-7 therapy is whether IL-7 

administration would be of any benefit in settings already associated with elevated IL-7 

levels. The IL-7 serum concentration is in the pg/ml range, even in lymphopenic 

individuals 
13

, whereas IL-7 levels have been shown to rise to supra-physiological 

concentrations (≥ 1000 pg/ml) following IL-7 administration in SIV-infected macaques 

109
. Furthermore, quantification of IL-7 in the serum might not provide an accurate 

assessment of the concentration to which T cells are exposed in IL-7-rich 

microenvironments, as is the case for lymph nodes which contain IL-7-secreting stromal 

cells 
56

, and for extracellular matrix-associated IL-7 deposits which increase the tissue 

availability of IL-7 
146,147

. Hence the elevated IL-7 serum levels observed following T cell 

depletion are not likely to preclude potential beneficial effects of IL-7 therapy on T cell 

reconstitution 
13,109

. 

Several clinical trials in humans have sought to evaluate the safety and efficacy of 

recombinant human (rh) IL-7 IL-7 therapy alone or as an adjuvant for immune-based 

therapies for cancer or chronic infection 
14-17,148

. A clinical phase I trial assessed the 
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efficacy of a vaccine consisting of autologous tumour cells ectopically expressing IL-7 in 

a group of patients with disseminated malignant melanoma 
148

. Indicators of anti-tumour 

immunity, such as the number of tumour-reactive cells, assessed both in terms of 

proliferative and cytolytic responses, could be detected post-vaccination 
148

. However, 

only minimal anti-tumour efficacy was observed 
148

. In a pre-clinical study in mice, IL-7 

adjuvant treatment following immunization with a lentiviral vector encoding tumour-

associated antigens enhanced the survival and proliferation of tumour antigen-specific, as 

well as naive, CD8
+
 T cells, thus improving long-term anti-tumour CD8

+
 T cell responses 

149
. 

In a phase I/IIa clinical trial in HIV-infected patients with persistently low CD4
+
 

counts despite virologic suppression under combination antiretroviral therapy (c-ART), 

rhIL-7 administration induced the expansion of naive as well as memory CD4
+
 and CD8

+
 

T cells, which remained functional and produced cytokines in response to HIV antigen 

150
. Another trial in HIV-infected patients receiving antiretroviral therapy, rhIL-7 induced 

CD4
+
 and CD8

+
 T cells to enter cycle, increasing their circulating numbers 

14
. Thus, the 

quantitative and functional changes induced by rhIL-7 therapy observed in these studies 

indicate that rhIL-7 may have potential therapeutic relevance in HIV infection and other 

settings of lymphopenia. 

Phase I clinical trials performed in cancer patients have reported that rhIL-7 

administration induces T cell survival and cycling in vivo, increasing CD4
+
 and CD8

+
 T 

cell numbers 
15-17

. Naive CD4
+
 and CD8

+
 T cells were preferentially expanded 

15-17
. 

Specifically, the absolute numbers of CD31-expressing naive CD4
+
 T cells, a population 

enriched in RTEs, were increased following IL-7 administration, leading to the generation 

of a diverse TCR repertoire even in older individuals 
16,17

. IL-7’s effects upon naive T cell 

numbers and repertoire diversity appeared to be due to increased proliferation of RTEs 

rather than augmented thymic output, since they are age-independent and no thymic 

enlargement was observed 
16

. Nevertheless these results do not preclude a potential effect 

of IL-7 therapy on thymic output. A clinical study in adults assessing the involvement of 

thymic function in immune reconstitution after autologous transplantation has shown that 

a thymic contribution is only observed after several months 
151

, suggesting that any 

putative effect on thymopoiesis might require a longer time span of IL-7 administration. 

As observed in pre-clinical studies, IL-7-expanded T cells appear to have enhanced 

responses to sub-dominant antigens 
16

. In contrast, the proportion of senescent CD8
+
 and 
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regulatory T cells decreased following IL-7 therapy 
15,16

. IL-7Rα expression was down-

regulated during continued IL-7 administration, which might constitute a negative feed-

back loop that hinders uncontrolled T cell expansion in the presence of excess IL-7 and 

thus prevents the development of lympho-proliferative disorders in response to this 

cytokine 
16,130

. 

These studies suggest a potential application for IL-7 therapy in the enhancement and 

broadening of immune responses in clinical scenarios associated with low naive T cell 

numbers and a skewed TCR repertoire, such as ageing, HIV infection and following 

transplantation 
16

. 

 

1.4. Hematopoietic Stem Cell Transplantation: a major 

disturbance to T cell homeostasis 

The factors and mechanisms underlying the maintenance of T cell homeostasis have 

been largely unravelled by investigating how T cell populations are modulated upon 

severe disruption of T cell homeostasis, namely following stem cell transplantation. 

Allogeneic HSCT constitutes a suitable and often successful therapeutic approach for 

patients with leukemia, particularly for patients with high risk factors of relapse 
152

. 

Reconstitution of the T cell pool after HSCT can occur through de novo thymic-

dependent generation of T cells, or through thymic-independent peripheral expansion of 

donor T cells infused with the stem cell graft 
103

. The recovery of CD4
+
 T cell numbers 

following HSCT can be protracted due to impairment of the reconstitution process, for 

instance damage to IL-7-producing stromal cells induced by the conditioning regimen can 

hinder thymic function 
153

, whilst susceptibility to apoptosis might limit T cell peripheral 

expansion following transplantation 
154

. Pre-clinical studies in animal models have 

suggested that IL-7 therapy may improve immune reconstitution after stem cell 

transplantation by improving both de novo generation and peripheral expansion of CD4
+
 

T cells 
104-106,112,116

. Interestingly, a study in T cell-depleted mice following HSCT has 

shown that donor mesenchymal stem cells transduced with the IL-7 gene improved 

immune reconstitution through both enhanced thymopoiesis and peripheral T cell 

expansion, whilst concomitantly preventing GVHD 
155

. 

The ideal donor for HSCT is a genotipically human leukocyte antigen (HLA)-matched 

related sibling, however approximately 70% of patients lack an HLA-identical sibling 
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156,157
. For those patients, potential alternative donors comprise HLA-matched unrelated 

donors found through the international registries, although this search constitutes a 

lengthy and laborious process that can take several months, with the chances of finding a 

suitable unrelated donor ranging from approximately 10% for ethnic minorities to 

between 60 and 70% for Caucasian patients 
158

. Furthermore, the risk of mortality and 

long-term morbidity following HLA-identical unrelated transplantation are still high 

159,160
. On the other hand, the use of genotipically haploidentical related donors, i.e. 

related donors who only share one haplotype with the patient 
152

, provides an opportunity 

for patients to benefit from HSCT when a HLA-matched donor is not available 
156

. The 

advantages of haploidentical related donors are their prompt availability for most patients, 

allowing an expedited access to more donor cells if donor-derived cellular therapy or even 

a second transplant are needed, and a potentially enhanced graft-versus-leukemia (GVL) 

effect 
156,157

. Moreover, when several potential haploidentical donors are available, the 

most suitable donor can be chosen according to relevant criteria, such as age, 

cytomegalovirus (CMV) status and natural killer (NK) cell alloreactivity 
161-163

. 

The key challenges facing haploidentical HSCT are to effectively overcome the HLA 

barrier, preventing graft rejection as well as graft-versus-host disease (GVHD), whilst 

maximizing GVL and improving immune reconstitution 
156,157

. Some of these issues have 

been partly surmounted through depletion of T cells from the graft to evade GVHD, 

infusion of a high-dose of donor stem cells and/or use of increasingly intensive 

conditioning regimens to prevent graft failure and malignancy relapse, and resorting to 

donor lymphocyte infusion (DLI) after transplantation to boost GVL and immune 

reconstitution 
156,157

. The adoption of less toxic conditioning regimens for haploidentical 

HSCT in conjunction with T cell-depleted grafts and delayed DLI, to prevent GVHD and 

retain GVL respectively, might circumvent the transplant-related mortality associated 

with high-dose conditioning regimens 
157

. 

A possible strategy to maximize GVL is to choose a donor who confers NK 

alloreactivity due to killer immunoglobulin-like receptor (KIR) ligand incompatibility in 

the graft-versus-host direction. KIR ligand incompatibility has been correlated with 

enhanced ability of donor NK cells to kill recipient tumour cells and thus with improved 

GVL, although there are conflicting reports on this matter 
157,164

. Nevertheless, NK 

alloreactivity in the graft-versus-host direction has not been reported to aggravate GVHD 

and hence its potential beneficial effects for the outcome of haploidentical HSCT might 



The role of IL-7 in the Homeostasis of Human Naive and Memory CD4
+
 T cell subsets 11 

 

outweigh the possibility of it being ineffectual 
157

. Another approach to improve immune 

competence following haploidentical HSCT is to infuse tumour- or pathogen-specific 

donor T cells in order to avert malignancy relapse and opportunistic infections, 

respectively 
156

. In particular, infusion of CMV-specific T cells might prevent CMV 

reactivation which constitutes a recurrent problem in immune-suppressed transplant 

recipients 
156,157,165

. 

Therefore, therapeutic approaches employing adoptive cellular immunotherapy with 

different cell types, such as regulatory T cells, NK cells, mesenchymal stem cells and 

relevant antigen-specific T cells, might improve the outcome of haploidentical HSCT 

156,157
. Nevertheless, immune reconstitution in this setting is still delayed due to the 

requirement for T cell depleted grafts and intensive conditioning regimens, leading to 

major imbalances in T cell homeostasis. 

 

2. Immune response: Naive to Memory 

2.1. T cell subsets: Markers & Nomenclature 

Naive T cells can be defined as mature T cells that have not yet encountered their 

cognate antigen in the periphery. CD4
+
 and CD8

+
 naive T cells continually re-circulate 

between peripheral blood and secondary lymphoid organs. Once they encounter cells 

presenting their cognate antigen-MHC complex, naive T cells undergo proliferation and 

differentiation which induce phenotypic changes conferring suitable migratory and 

functional properties. Upon antigen clearance, the expanded T cell population undergoes 

a contraction phase during which most cells perish through apoptosis, although a 

proportion of the expanded population is preserved to ensure long-term protection against 

subsequent antigenic challenge. Antigen-experienced cells can be broadly termed 

memory T cells although they constitute a highly heterogeneous population, differing in 

cell surface phenotype, functional ability and history of antigen encounter 
166-168

. Memory 

T cells provide more rapid and effective immunity against previously encountered 

antigens, as they can be activated by lower concentrations of antigen and accumulate, as 

well as perform effector functions quicker than their naive counterparts upon antigen re-

exposure 
169-171

. Furthermore, the distinct migratory capacity of memory T cells allows 

them to enter non-lymphoid tissues, potentially detecting and responding to infection 

earlier 
172,173

.  
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Isoforms of the transmembrane phosphatase CD45, resulting from alternative RNA 

splicing, were initially considered the crucial markers of naive and memory T cells, with 

naive cells expressing the CD45RA isoform and memory cells CD45RO 
174-176

. These 

markers are no longer used in isolation to identify naive and memory cells since antigen-

primed CD8
+
 
177,178

 and CD4
+
 
179-181

 T cells have been shown to re-express CD45RA. In 

order to dissect the heterogeneous T cell pool, CD45 isoforms are used in conjunction 

with other markers associated with lymphocyte differentiation, such as co-stimulatory 

molecules (CD27, CD28) 
177

 or chemokine receptors (CCR7) 
182

, to identify naive and 

memory T cell subsets within the CD4
+
 and CD8

+
 T cell pools. 

There has been much debate about the pathway of T cell differentiation, particularly 

concerning the nomenclature and respective phenotype of each stage of differentiation 
183

. 

Hence terms like “effector” and “memory” may be misleading in as much as the markers 

used to define them are not universal. A more accurate way to refer to the different T cell 

subsets is to name the markers that identify them. In this thesis, the CD4
+
 T cell subsets 

studied were defined according to the expression of CD45RA together with the 

expression of the recent thymic emigrant maker CD31 or of the co-stimulatory molecule 

CD27, and each subset will be referred to by the corresponding phenotype. The terms 

“naive” and “memory” will be used to respectively describe cells that have yet to 

encounter their cognate antigen and antigen-experienced cells. 

 

2.2 Naive CD4
+
 T cell subsets defined by CD31 expression 

The output of naive T cells from the thymus begins to decrease in early human 

adulthood and continues to decline with ageing, a phenomenon termed thymic involution 

184
. Although this process limits the replenishment of the peripheral naive T cell pool by 

RTEs, the size of the naive pool is kept relatively constant throughout adult life 
185-188

. 

Hence peripheral T cell proliferation must contribute at least partly to the maintenance of 

the naive T cell pool, implying that naive T cells are able to proliferate post-thymically 

whilst retaining their phenotypic and functional properties 
189

. The assessment of the 

relative contribution of thymic output versus peripheral expansion to naive T cell 

homeostasis requires markers able to distinguish RTEs from naive T cells which have 

undergone post-thymic proliferation. The quantification of T cell receptor excision circles 

(TRECs) has been used to assess the relative proliferative history of T cell populations 
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186
. TRECs are stable DNA episomes resultant from the re-arrangement of TCR gene 

segments during T cell differentiation in the thymus 
186,190-194

. Given that TRECs are not 

replicated upon cell division, they are diluted out by T cell expansion in the periphery 

191,195,196
. Thus TREC content has been proposed to constitute an indicator of thymic 

output, allowing the identification of RTEs 
194

. Umbilical cord naive CD4
+
 T cells can be 

used as a model for RTEs given their high TREC content 
28

. IL-7 has been shown to 

rescue RTEs from spontaneous apoptosis in vitro through the up-regulation of Bcl-2 and 

Bcl-xL 
27,28,30,99,197

. In addition, RTEs have been shown to proliferate in response to IL-7 

in an antigen-independent manner more efficiently than naive T cells from adult 

peripheral blood 
28-30

. The ability of IL-7 to promote the homeostatic proliferation of 

RTEs has been proposed to allow the maintenance of the peripheral naive CD4
+
 T cell 

pool whilst preserving a diverse TCR repertoire 
28

. IL-7 boosts the proliferative response 

of RTEs to TCR stimulation whilst preserving their naive phenotype, thus inducing 

maturation but not differentiation of RTEs 
27,197 

.  

Unlike the memory T cell population, which has been described to comprise of a 

variety of subsets differing in differentiation stage, migratory ability and functional 

properties, naive T cells apparently constitute a fairly homogeneous population 

identifiable by a characteristic surface phenotype, expressing CD45RA, CD62L, CD27, 

CD28 and CCR7, whilst lacking or displaying low levels of CD45RO, CD95 and CD11a 

198,199
. However, the naive CD4

+
 T cell population has been shown to comprise two 

subsets with distinct proliferative histories distinguishable by the expression of the 

platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) 
200

. CD31 is a trans-

membrane glycoprotein from the immunoglobulin super-family which is expressed by a 

variety of cell types, including endothelial cells, platelets, monocytes, neutrophils and T 

cells 
201-203

.  

The expression of CD31 on umbilical cord blood as well as on adult CD31
+
 naive 

CD4
+
 T cells has been shown to be down-regulated upon activation with anti-CD3 and 

IL-2 
204

. Although this overt TCR activation also leads to the differentiation into a 

CD45RO
+
CD62L

-
 memory phenotype 

204
, it has been proposed that the CD31

-
 naive 

CD4
+
 T cell subset could result from TCR triggering with low-affinity antigens, which 

would induce the loss of CD31 without affecting their overall naive phenotype 
200,205

. 

Moreover, CD31
-
 naive CD4

+
 T cells have been shown to express higher levels of 

BFL1/A1, a marker specifically induced by TCR but not cytokine stimulation, than their 
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CD31
+
 counterparts 

205
. These data raise the possibility that the non-immunogenic signals 

triggered by self-MHC/peptide complexes which contribute to the survival and 

homeostasis of naive CD4
+
 T cells may also play a role in the generation and/or 

maintenance of the CD31
-
 naive CD4

+
 T cell subset 

11,22,23,206-209
. 

CD31 has been shown to be required for the transendothelial migration of neutrophils 

and monocytes 
210

. Hence it might potentially play a role in the transendothelial migration 

of CD31
+
 naive T cells into secondary lymphoid organs 

200
, a proposed site for 

homeostatic proliferation of naive T cells 
211

. Furthermore, CD31 engagement has been 

shown to inhibit TCR-mediated signal transduction via immunoreceptor tyrosine-based 

inhibitory motifs  (ITIMs) present in its cytoplasmic domain 
202

, raising the possibility 

that CD31 might hamper peripheral proliferation of CD31
+
 naive CD4

+
 T cells upon TCR 

triggering with self-MHC/peptide complexes 
189

. 

The absolute numbers, as well as the frequency, of CD31
+
 naive CD4

+
 T cells in 

human peripheral blood decrease with ageing, in parallel with the decline in TREC 

content 
200,205,212,213

. In contrast, the absolute numbers of CD31
-
 naive CD4

+
 T cells 

remain relatively constant throughout adult life despite thymic involution 
200,205,212,213

. 

Nevertheless, the proportion of CD31
-
 cells within the naive CD4

+
 T cell population 

increases with age, allowing the maintenance of naive T cell numbers in the elderly 

through peripheral expansion 
187,188,200,205,212,214

. On the other hand, the proliferation of 

CD31
-
 naïve CD4

+
 T cell subset has been shown to cause a contraction of the naive TCR 

repertoire, which might contribute to the impaired immune responses to novel antigens 

observed in the elderly 
205,215,216

. However, a more recent study has demonstrated that 

clonal TCR diversity within the naive CD4
+
 T cell pool is preserved during ageing despite 

peripheral expansion 
213

. 

Human CD31
+
 naive CD4

+
 T cells have significantly higher levels of TRECs than their 

CD31
-
 counterparts, implying that the latter subset has undergone a higher degree of post-

thymic proliferation 
200,212,213,217

. Nonetheless, the TREC content within CD31
+
 naive 

CD4
+
 T cells has been reported to decrease slightly with age 

213
 and following IL-7 

administration in humans 
16

. Furthermore, the absolute numbers of CD31
+
 naive CD4

+
 T 

cells in the elderly are higher than the values estimated by the assessment of thymic 

output through the quantification of TREC levels 
186

. Hence the CD31
+
 naive CD4

+
 T cell 

subset appears to also undergo post-thymic proliferation which is likely induced by a 

TCR-independent mechanism driven by homeostatic cues, such as γC cytokines 
189

. Thus, 
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although the high TREC content and the age-associated decrease in the absolute numbers 

as well as in the frequency of CD31
+
 naive CD4

+
 T cells, together with the observation 

that a substantial proportion of naive CD4
+
 T cells from cord blood express CD31 

189,218
, 

suggest that the CD31
+
 naive CD4

+
 T cell subset is highly enriched in RTEs 

200,205,212,213
, 

CD31 expression alone is probably insufficient to identify RTEs 
186,189,213

. The combined 

assessment of CD31 expression and TREC content within naive CD4
+
 T cells may 

constitute a more accurate strategy to identify RTEs and evaluate thymic function 
189

. 

 

2.3. CD45RA re-expressing memory T cells 

In light of reports on viruses able to establish persistent latent infection, the expression 

of CD45RO appears to better define cells that have been recently primed by cognate 

antigen, while CD45RA re-expression would identify cells that have not encountered 

antigen for some time 
178,180,181,219-223

. 

Herpes viruses, such as Epstein-Barr virus (EBV) 
224

 and cytomegalovirus (CMV) 
225

, 

are classical examples of viruses capable of establishing persistent latent infection in 

humans. Other persistent viruses have developed different strategies to allow coexistence 

with their hosts which is reflected in the distribution of virus-specific T cells among the 

memory subsets. During the acute phase of infection, the virus-specific cells have a 

similar phenotype regardless of the persistent virus studied 
181,226,227

. However, during 

chronic infection each virus-specific pool becomes enriched in distinct memory subsets 

depending on the respective viral load 
181,226,227

. For example, in HIV infected patients 

with a high viral load, the HIV-specific cells have a phenotype associated with the acute 

phase of viral infection 
227

; on the other hand, controlled HIV infection in long-term non-

progressors gives rise to T cell responses associated with repetitive antigen exposure and 

low viral load 
181

. The latter profile is similar to that of CMV- and EBV-specific T cell 

responses, as these viruses represent persistent, well-controlled infections with only 

moderate antigen burden 
181

. 

During persistent viral infections, the emergence of a CD45RA re-expressing subset 

appears to only occur upon resolution of the acute phase of infection and comprises of 

cells specific for lytic but not latent antigens 
178,180,181,219-223

. A report showing that HIV 

infected individuals lacked HIV-specific CD45RA re-expressing cells, whilst CMV-

specific cells from the same patients did re-express CD45RA concluded that there was an 
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HIV-induced blocking of T cell differentiation with deleterious effects upon the HIV-

specific response 
228

. These results were re-interpreted by Carrasco et al as a consequence 

of the distinct viral loads associated with CMV and HIV infections, with only the former 

providing the long term absence of antigen conducive to CD45RA re-expression 
220

. 

Therefore the distribution of the T cell subsets during persistent viral infections appears 

not to be static but rather to dynamically fluctuate in response to changes in antigen load 

227
. In addition, the expression of CD45 isoforms appears to be reversible, with cells 

reverting to a CD45RA phenotype in the absence of antigen. CD45RA re-expressing cells 

have been suggested to ensure the persistence of immunological memory against antigens 

that are no longer present, such as lytic antigens during the latent stage of a persistent 

infection 
220,229

. In agreement with this view, the CD45RA re-expressing subset has been 

proposed to constitute a quiescent reservoir of memory T cells which can be re-activated 

to perform effector functions 
221

. It is not clear if the same applies for elderly individuals, 

where these cells show evidence of terminal differentiation 
230

. 

The majority of the reports on the CD45RA re-expressing memory subset focus on 

CD8
+
 T cells. The characterisation of this subset in CD4

+
 T cells is hampered by the very 

low frequencies observed, with some studies even reporting an absence of CD45RA re-

expressing cells within CD4
+
 T lymphocytes 

177,220,231
. CD45RA positivity has been used 

in conjunction with the lack of CCR7 
182,220,232

, CD27 
177,233,234

 and/or CD28 
235

 to 

identify the CD45RA re-expressing memory subset. In CD8
+
 T cells, this subset has been 

suggested to have marked cytotoxic potential, displaying cytolytic activity together with 

high levels of FasL, perforin and granzyme B 
177,221,222,234,236-239

. CD8
+
 CD45RA re-

expressing cells have also been shown to produce the pro-inflammatory cytokines IFN-γ 

and TNF-α, but little or no IL-2 and IL-4 
177,222,237

. This subset is characterised by 

expression of CD57 
177,240

, a marker of highly differentiated and cytotoxic cells 
241

. 

Furthermore, the elevated levels of CD57 displayed by CD8
+
 CD45RA re-expressing 

cells have been associated with increased susceptibility to apoptosis and replicative 

senescence 
177,242

. The CD8
+
 CD57

+
 T cell population is accumulated during chronic 

immune activation 
243-245

, such as CMV infection  
240,246,247

, and is thought to comprise 

senescence-prone cells that are constantly generated and subsequently driven to cell death 

by persistent antigenic stimulation 
242,248

. Several studies describe the CD8
+
 CD45RA re-

expressing subset as a resting population, exhibiting a slow rate of ex vivo turnover 

220,221,237
. However, there are conflicting reports concerning the susceptibility to apoptosis 
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and replicative potential of this subset. CD8
+
 CD45RA re-expressing cells have been 

described as an apoptosis-resistant population expressing high levels of Bcl-2 expression 

221
, whilst another study found them to be apoptosis-prone following activation, a feature 

associated with low Bcl-2 levels 
232

. As for their replicative potential, some studies report 

that CD8
+
 CD45RA re-expressing cells are able to proliferate upon activation 

220-222,238
, 

whereas others state the opposite 
232,237,239

. An argument supporting the maintenance of 

replicative potential in these cells is the observation that CD8
+
 EBV-specific CD45RA

+
 

cells have relatively long telomeres in comparison to their CD45RO
+
 counterparts 

221
. 

CD8
+
 CD45RA re-expressing cells display high levels of the adhesion molecule LFA-

1 
237

, whilst expressing concomitantly low levels of the chemokine receptor CCR7 and of 

L-selectin (CD62L) 
182

. Furthermore, this subset has been reported to be significantly 

under-represented in lymph nodes, whilst accounting for virtually all CD8
+
CD45RA

+
 T 

cells in peripheral tissues of the same individuals 
237

. Their phenotype and tissue 

distribution led to the speculation that CD8
+
 CD45RA re-expressing T cells might 

migrate into extra-lymphoid tissues rather than re-circulate to secondary lymphoid organs 

234,237
.  

CD4
+
 T cells are pivotal for the generation and maintenance of immunological 

memory 
249-251

. Nonetheless, most studies concerning CD45RA re-expression have been 

performed on CD8
+
 T cells, whereas the occurrence of this phenomenon on CD4

+
 T cells 

has been largely overlooked due to the relatively small proportion of CD4
+
 CD45RA re-

expressing cells. The CD4
+ 

CD45RA re-expressing subset has been described as 

terminally differentiated, with short telomeres, lack of proliferative ability and high levels 

of CD57 expression 
181

. Their cytokine production profile is apparently similar to that of 

the CD8
+
 CD45RA re-expressing subset, i.e. IFN-γ, but no IL-2 or IL-4 production 

252
. 

Despite their low frequency, virus-specific CD45RA re-expressing CD4
+
 T cells have 

been detected through their production of IFN-γ and TNF-α 
253

. 

The mechanisms that induce CD45RA re-expression in T cells, including the 

signalling pathways and respective molecular targets that are engaged, are yet to be fully 

understood. CD45RA re-expression has been shown to occur on CD8
+
 CD45RA

-
CCR7

+
 

cells in the presence of IL-7 and IL-15 upon cytokine-driven homeostatic proliferation in 

the absence of antigen 
232

. The CD8
+ 

CD45RA re-expressing subset was proposed to be 

continuously replenished from proliferating CD45RA
-
CCR7

+
 precursors, seeing that the 

naturally occurring CD45RA
+
CCR7

-
 subset was prone to cell death and had the lowest 
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turnover of all the memory subsets 
232

. In another study, IL-15 was shown to induce 

CD45RA re-expression on CD8
+
 T cells 

239
. However CD45RA re-expression could not 

be induced in the concomitant presence of TCR stimulation 
232,239

, suggesting that this 

process may be driven by homeostatic mechanisms in non-inflamed tissues. 

The induction of CD45RA re-expression on T cells is likely to entail changes in the 

transcriptional program. However, the transcription factors potentially driving CD45RA 

re-expression are yet to be identified. Transcription factors known to be involved in the 

homeostasis of highly differentiated T cells such as the T-box family members T-bet and 

eomesodermin (Eomes) 
254-256

 are likely candidates. T-bet is essential for Th1 lineage 

commitment and IFN-γ production in CD4
+
 T cells 

255,257
. Eomes drives effector function 

and IFN-γ production in CD8
+
 T cells 

254
. It is not known if Eomes and/or T-bet are 

relevant for the differentiation of memory CD4
+
 T cells. The transcriptional repressor 

Blimp-1, a well known key regulator of terminal differentiation of B cells 
258

, was also 

found to be essential for controlling the late stages of CD4
+
 and CD8

+
 T cell 

differentiation in mice 
259,260

. Blimp-1 expression is controlled by γC cytokines which are 

also involved in regulating T cell homeostasis: IL-2 is thought to induce Blimp-1 

expression, after which Blimp-1 itself represses IL-2 transcription in a negative feedback 

loop 
261,262

, whilst IL-15 does not seem to maintain Blimp-1 expression 
261

. Interestingly, 

CD45RA
+
CD27

-
 cells have been shown to express the highest levels of T-bet, Eomes and 

Blimp-1 amongst CD8
+
 T cells during latent human CMV infection 

263
. The differential 

expression of these transcription factors in CD8
+
 T cell subsets was more dramatic when 

T-bet levels were compared, with CD45RA
+
CD27

-
 cells displaying significantly higher 

expression, at both the mRNA and the protein level, than CD45RA
-
CD27

+
 cells 

263
. 

Even though the exact mechanism underlying the expression of CD45RA on memory 

T cells has not thus far been described, this process has been proposed to depend on 

homeostatic cues, such as γC cytokines, in the absence of antigen stimulation 
220,232,239

. 

 

3. Immune and Cellular senescence 

Immune-senescence encompasses multiple phenotypic and functional abnormalities 

observed in the elderly associated with impaired protection against infections, increased 

susceptibility to cancer and autoimmune diseases, and poor vaccine efficacy 
264-268

. 

Although the size of the T cell pool remains relatively stable during ageing, the functional 
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aptitude and the distribution of the different T cell subsets may suffer striking changes 
268

. 

In particular, the increased frequency of senescent T cells observed during ageing may 

significantly contribute to the diminished immune function observed in the elderly 
269,270

. 

Cellular senescence is defined as the irreversible loss of replicative capacity 
271

, thus the 

accumulation of senescent T cells may compromise the ability to mount an effective 

immune response and consequently contribute to immune-senescence 
272

. Chronic 

immune activation, namely during CMV infection, has also been shown to induce the 

accumulation of senescent T cells 
243-245,273-277

. One of the factors that can lead to cellular 

senescence is the progressive decrease in telomere length that occurs with each cell 

division, a process termed telomere erosion 
278,279

. Telomeres are nucleoprotein structures 

that cap the terminal portions of linear chromosomes, preventing the loss of coding 

sequences and maintaining chromosomal integrity 
280,281

. Telomere erosion can be 

compensated for by the induction of telomerase activity, an enzyme which is able to add 

back telomere sequences and thus increase the replicative lifespan by compensating for 

proliferation-induced telomere shortening 
282-285

. Unlike other somatic cells, lymphocytes 

are able to activate telomerase during development and following activation 
286

. However, 

T cells lose the ability to induce this enzyme after repeated stimulation 
287,288

, eventually 

leading to critically short telomeres which in turn trigger either apoptosis or senescence 

288-290
. Therefore, persistent T cell activation, together with other stress factors present 

during chronic immune activation, compromise the ability of telomerase to compensate 

for the loss of telomere sequences that occurs upon cell division and thus might accelerate 

the onset of senescence 
288

.  

 

3.1. Telomeres, Telomerase and Senescence 

The dynamic interplay between telomere erosion and the compensatory effect of 

telomerase activity is critical for the maintenance of immune function 
281

. An appropriate 

balance between cell survival and proliferation on the one hand, and cell death on the 

other, has to be reached in order to dispose of expanded populations that are no longer 

needed whilst simultaneously maintaining long-term memory against previously 

encountered antigens 
281

. The need for constant renewal of the existing memory T cell 

pool constitutes a challenge for the preservation of immune-competence in the elderly. 

The life-long proliferative stress on memory T cells is reflected in the shorter telomeres 

observed in T cells from old individuals as compared to those from young individuals 
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230,291
. Moreover, both CD4

+
 and CD8

+
 memory T cells have shorter telomeres than their 

naive counterparts,  further pointing to cell proliferation as the major driving force behind 

telomere erosion 
286,292-296

. 

Telomeres comprise repetitive hexameric DNA sequences associated with a variety of 

telomere-binding proteins and are located at the terminal portions of chromosomes 
280,297

. 

These capping structures maintain the integrity of linear chromosomes by averting 

chromosomal fusion and rearrangement, as well as preventing the loss of coding 

sequences during DNA replication 
297

. DNA polymerase requires a RNA primer to 

initiate replication in the 5'-3' direction 
298

 and it synthesises the leading strand 

continuously until the end of the linear DNA template 
299,300

. In contrast, the synthesis of 

the lagging strand runs in the opposite direction based on a series of DNA fragments 

termed Okazaki fragments, each requiring a RNA primer 
299,300

. When synthesis is 

complete, the primers are degraded and the resulting gaps between consecutive Okazaki 

fragments are filled to form an uninterrupted progeny strand 
299,300

. However, because the 

Okasaki fragments do not start from the very end of the DNA template and the gap left by 

the most distal RNA primer cannot be filled, the lagging strand synthesis on linear DNA 

templates is incomplete 
299,300

. Hence each round of DNA replication results in the loss of 

terminal sequences, a phenomenon known as the end-replication problem 
299,300

. The 

presence of telomeres at the ends of linear chromosomes prevents the loss of coding 

sequences following DNA replication 
281

. Instead, telomere length decreases with each 

round of cell division 
278,279

. Hence, the replicative potential of T cells is limited by the 

telomere erosion brought about by cell proliferation 
293

, which eventually leads either to 

apoptosis or replicative senescence 
288-290

. Induction of telomerase may initially 

compensate for telomere shortening but repeated stimulation hinders further activation of 

this enzyme and ultimately leads to telomere erosion 
282,283,285,291

. The telomerase 

holoenzyme is comprised by a catalytic protein (telomerase reverse transcriptase, TERT) 

and a RNA template (telomerase RNA component, TERC, or telomerase RNA, TR) 
291

. 

The expression of TERC is ubiquitous, whereas the expression of human (h)TERT is 

tightly regulated 
301,302

. Over-expression of hTERT in CD4
+
 T cells allows for constitutive 

telomerase activity which has been shown to slow down the rate of telomere shortening, 

although it does not prevent telomere erosion and consequent onset of cellular senescence 

303
. 
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In resting CD8
+
 
284

 and CD4
+
 T cells 

304
 virtually no telomerase activity is detectable, 

although high levels can be induced by mitogenic stimuli such as TCR stimulation and γC 

cytokines 
30,286,305,306

. Although telomerase activity is potently induced in T cells during a 

primary response to antigen 
282,283,285

, the ability to activate telomerase is progressively 

lost upon repeated stimulation which leads to telomere erosion and eventually cell 

senescence 
286,288,291,294

. The mechanisms by which telomerase activity is switched off are 

not yet fully understood. Type I interferon (IFN-α, IFN-β) has been shown to inhibit 

telomerase activity in CD4
+
 T cells, potentially accelerating telomere erosion and thus 

reducing the replicative lifespan of these cells during secondary immune responses in vivo 

307
. Furthermore, the progressive differentiation of CD8

+
 T cells into the highly 

differentiated CD27
-
CD28

-
 phenotype has been shown to be associated with defective 

telomerase activity upon TCR stimulation 
308

. Telomerase deficiency in CD27
-
CD28

-
 

CD8
+
 T cells was not reversed by the restoration of CD28 signalling and was 

accompanied by defective phosphorylation of Akt at serine 473 
308

. Phosphorylation of 

hTERT by Akt has been shown to induce its translocation to the nucleus 
304

 and to 

enhance telomerase activity 
309

. These data, together with the observation that Akt 

inhibition abrogated the induction of telomerase activity 
308

, indicated Akt(Ser473) 

phosphorylation as a key trigger of telomerase activity. However a recent study has 

shown that blocking the senescence-associated inhibitory receptor KLRG1 improved 

Akt(Ser473) phosphorylation but did not restore telomerase activity in CD27
-
CD28

-
 

CD8
+
 T cells 

310
. These data suggest that Akt(Ser473) phosphorylation may be necessary 

but not sufficient to induce telomerase activity, which is apparently regulated through a 

multi-factorial process possibly involving transcription and post-translational changes of 

hTERT, translocation between different cellular compartments and access to relevant 

DNA targets 
296,302,311

. 

Telomerase has been reported to promote cell survival and stress resistance 

independently of its telomere elongation activity 
312-316

. Upon oxidative stress, telomerase 

can shuttle from the nucleus to the mitochondria which improves overall mitochondrial 

function 
317

. Moreover, the levels of induced telomerase activity and hTERT expression 

have been shown to inversely correlate with cell death in CD4
+
 T cells cultured with IL-7, 

thus implying a role for telomerase in the IL-7-induced survival of human CD4
+
 T cells 

318
. 
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3.2. Immune-senescence in the elderly 

Ageing has an adverse impact on various physiological processes, not least of which is 

on the development and function of the peripheral T cell pool 
319

. Thymic involution 

plays a major role in the decline of immune function during ageing 
320

. A decrease in the 

proportion of thymopoietic epithelial space and a thymosuppressive cytokine 

environment have been suggested to contribute to the waning thymic function observed 

with ageing 
321,322

. The decreased thymic output of naive T cells is associated with the 

expansion of the memory population in order to maintain the overall size of the T cell 

pool, leading to a shift in the ratio of naive to memory T cells in the periphery 
320,323,324

. In 

addition, the residual naive T cells have increased longevity to compensate for the 

declining thymic replenishment, which leads to age-related defects in T cell function 
325

. 

Naive CD4
+
 T cells from aged mice have been shown to have defective cell survival, 

proliferation and IL-2 production following antigen stimulation 
326-329

. In contrast, when 

young naive CD4
+
 T cells are transferred into aged mice, they show an inferior ability to 

expand and produce cytokines than the ones transferred into young hosts 
330

. Furthermore, 

naive CD4
+
 T cells generated from aged stem cells in young mice have been shown to be 

highly functional 
331

, suggesting that environmental factors present in both the thymus 

and the periphery of aged hosts contribute to the impaired naive CD4
+
 T cell function 

observed during ageing. Hence the impaired CD4
+
 T cell responsiveness to novel 

antigenic challenges observed with ageing is due to a decline both in the number of naive 

cells and in the functional capability of the naive CD4
+
 T cells that do persist 

326
. 

Memory CD4
+
 T cell responses are also compromised in aged mice, featuring 

defective signalling and proliferation following activation 
332

. In humans, the 

accumulation of CD28
-
 cells within both the CD4

+
 and CD8

+
 T cell populations is a 

consistent change observed during ageing 
270,333-335

 that is associated with diminished 

immune response to pathogens and vaccine efficacy in the elderly 
336-338

. T cells lacking 

CD28 expression have been shown to have a skewed TCR repertoire and defective 

proliferation in response to antigenic stimulation, whilst displaying enhanced cytotoxic 

activity 
339,340

. 

The loss of CD28 expression with age is thought to result from recurring activation 

and cell cycling episodes 
268

, which is supported by the shorter telomeres observed in 

CD28
-
 T cells as compared to their CD28

+
 counterparts 

295,341,342
.  In addition to T cell 
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activation, type I interferon 
292,343

 and TNF-α 
270,344

 have also been shown to contribute to 

the accumulation of CD28
-
 T cells in vitro, with the latter directly inhibiting CD28 gene 

transcription 
344,345

. The accumulation of CD4
+
 CD28

-
 T cells at the expense of their naive 

and memory CD28
+
 counterparts has been shown to be induced during inflammation and 

to in turn exacerbate the pro-inflammatory environment, contributing to tissue injury and 

compromising responses to novel antigens 
346,347

. High frequencies of CD4
+
 CD28

-
 T 

cells and elevated TNF-α levels are concomitantly observed during ageing 
348-350

, chronic 

inflammation 
351,352

 and persistent viral infections, particularly CMV infection 
353

. TNF-α 

inhibition has been shown to delay CD28 loss and the onset of senescence on CD8
+
 T 

cells in vitro, increasing the proliferative ability and telomerase activity on these cells 
354

. 

Anti-TNF-α therapy in rheumatoid arthritis patients has been shown to restore CD28 

expression within the CD4
+
 T cell population 

355
. These data suggest that the pro-

inflammatory environment observed during ageing and CMV infection may contribute to 

the accumulation of senescence-prone highly differentiated T cells.  

IL-7 has been shown to boost T cell reconstitution through the increase of both 

thymopoiesis and peripheral T cell proliferation following stem cell transplantation in 

mice 
104,105,112

, suggesting IL-7 therapy as a potential approach to improve immune 

function in the elderly by raising naive T cell numbers.  

 

3.3. CMV infection accelerates immune-senescence 

The prevalence of CMV infection increases with age 
356

. Although this infection is 

largely asymptomatic in immune-competent individuals 
357

, it can cause life-threatening 

diseases in immune-suppressive settings, such as HIV infection and following bone 

marrow transplantation 
358-361

. 

The control of CMV infection requires substantial immune resources, with CMV-

specific cells constituting a substantial proportion of both the CD4
+
 and CD8

+
 T cell 

pools 
362-364

. CD4
+
 T cells have been shown to directly contribute to the control of CMV 

infection 
365,366

, with CMV-specific CD4
+
 T cells displaying a terminally differentiated 

phenotype and cytotoxic activity, in addition to IFN-γ and TNF-α production 
367

. 

Ageing and CMV infection induce similar alterations to the subset distribution of the T 

cell pool as both are associated with a decrease in naive T cells and a concomitant 

accumulation of cells with effector functions 
226,368-371

. CMV infection accelerates the 
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age-related changes in the TCR repertoire by triggering the expansion of CMV-specific 

cells at the expense of diversity 
235,372

. In the elderly, there is an increase in the proportion 

of CMV-specific CD4
+
 cells whilst the frequency of CD4

+
 T cells with other specificities, 

such as Varicella zoster virus (VZV)-specific cells, diminishes 
292

. This enrichment in 

CMV-specific cells at the expense of other specificities may be behind the reactivation of 

latent pathogens like VZV often seen in the elderly 
268,373,374

.  

CMV infection is not only characterised by the presence of highly differentiated CMV-

specific CD4
+
 T cells, but also by a bystander effect on the rate of differentiation of CD4

+
 

T cells with other specificities 
292

. The pronounced levels of non-specific T cell 

differentiation observed during CMV infection might be explained by the CMV-induced 

secretion of IFN-α 
375

 and TNF-α 
353

, two cytokines reported to accelerate the loss of co-

stimulatory molecules 
343-345

 and to inhibit telomerase activity 
307,354

. Interestingly, CD4
+
 

CMV-specific cells have been reported to have low levels of telomerase activity and to 

reach growth arrest earlier than cells with other specificities, indicating that these cells are 

susceptible to replicative senescence 
292

.  

The consequences of the accumulation of highly differentiated CD45RA re-expressing 

T cells observed during ageing 
294,376

 and CMV infection 
222,235,292

 are not clear. These 

cells might be functionally relevant and grant protection against recurring pathogens; on 

the other hand they might be smothering the available memory space and directly 

contributing to immune-senescence. It is therefore of major interest to characterise these 

cells in detail, determining their functional potential and uncovering the mechanisms 

behind their generation. 

 

3.4. Cellular Senescence 

Cellular senescence is a state of irreversible growth arrest that can be induced in 

normal somatic cells by critically short telomeres 
377,378

 or by several other stress factors, 

such as non-telomeric DNA damage 
379-381

, over-expression of oncogenes 
382

, 

chemotherapeutic agents 
383

 and oxidative stress 
384

. The former type of senescence is 

called replicative senescence and its onset can be delayed by inducing telomerase activity 

385
; the latter is called stress-induced premature senescence and it cannot be bypassed by 

the ectopic expression of telomerase 
386,387

, suggesting a telomere-independent 

mechanism. Cellular senescence was originally described in human fibroblast cultures 
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when it was observed that these cells could only undergo a limited number of population 

doublings before they would irreversibly withdraw from the cell cycle 
388

, a phenomenon 

that has become known as the Hayflick Limit. The majority of the reports on cell 

senescence have been performed in fibroblasts, but it has become clear that this 

phenomenon also occurs in T lymphocytes 
389

. The inducible nature of telomerase 

activity, delaying the rate of telomere loss, and the potential exposure to stresses that can 

accelerate the onset of cellular senescence make it very difficult to predict the number of 

population doublings achievable before a T cell becomes senescence in vivo, suggesting 

that the Hayflick Limit does not define the replicative lifespan of T cells in vivo 
389

. The 

surface markers for senescent T cells are not well-established, although the expression of 

CD57 and KLRG1, and conversely the lack of CD27, CD28 and CCR7 expression appear 

to be relevant 
177,182,228,238,242,390,391

. Cellular senescence has been argued to comprise 

genetic and phenotypic changes that result in altered function of T cells, not necessarily 

only loss but also gain of function, as is the case for the increased production of the pro-

inflammatory cytokines TNF-α and IL-6 
392

. 

Chronic T cell activation driven by persistent viruses that establish latent infection or 

by tumour-associated antigens may drive antigen-specific cells to senescence 
392

. Cellular 

senescence has been proposed to constitute a tumour suppression mechanism that 

prevents the transformation of damaged cells 
393,394

; on the other hand, it might lead to the 

accumulation of senescent cells and thus contribute to age-related loss of tissue function 

272,395
. 

Cellular senescence can be triggered by DNA damage 
396

. The DNA damage response 

(DDR) allows cells to sense damaged DNA and to respond by arresting cell cycle 

progression 
396

, providing time to repair the damage and prevent cellular transformation. 

When repair is not possible, the persisting damage either triggers apoptosis or causes the 

cell cycle arrest to become irreversible, thus inducing senescence 
397

. The DNA damage 

response can be triggered by DNA double strand breaks (DSBs) or by telomere 

uncapping, i.e. destabilisation of telomeric loops due to telomere shortening 
271,377

. This 

response induces the recruitment and activation of the ATM/ATR kinases which in turn 

phosphorylate the H2AX histone, a variant of the histone H2A family, adjacent to the site 

of damage 
271,395

. Phosphorylated H2AX (γ-H2AX) promotes the assembly of DNA repair 

factors and the phosphorylation of Chk1/2 which leads to the activation of the tumour 

suppressors p53/p21 
398-400

. The function of H2AX is thought to be primarily related to 
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DNA damage repair, although H2AX phosphorylation by the mitogen activated protein 

kinase (MAPK) p38 has been shown to be required for serum starvation- 
401

 and 

chemotherapeutic drug-induced apoptosis 
402

.  

MAPKs comprise three major signalling pathways: extracellular signal regulated 

kinase (ERK), c-Jun N-terminal kinase (JNKs) and p38 MAPKs 
403

. The activation of the 

MAPK pathways is triggered by a variety of extracellular stimuli. The Erk pathway, also 

known as the mitogen-activated protein kinase/ERK (MEK/ERK) pathway, is thought to 

be mainly activated by growth-promoting mitogenic factors, whereas the JNK and p38 

pathways appear to be activated by environmental stress, including oxidative stress, 

growth factor withdrawal and pro-inflammatory cytokines such as TNF-α 
404

. Although a 

previous study reported an IL-7-induced activation of p38 
405

, the p38 pathway is thought 

to be activated by the withdrawal of trophic factors such as IL-7 and IL-2 
406-408

. The 

induction of increasing levels of activated p38 can be achieved through different 

mechanisms, as was shown in CMV infection which has been reported to lead to the 

accumulation of activated p38 by both inhibiting the dephosphorylation of p38 and by 

promoting its phosphorylation in order to induce the host cell changes necessary for viral 

DNA replication 
409

. 

The activation of MAPK signalling pathways triggers a cascade of kinases, which can 

either be shared or specific for each MAP kinase. The full activation of each MAPK 

requires dual phosphorylation on Thr and Tyr residues within the activation loop by the 

respective MAPK kinases (MAPKKs) 
410

. The involvement of each MAPKK in the in 

vivo activation of p38 varies according to the triggering stimulus 
410

. The two specific up-

stream activators of p38 are the MAPKKs MKK3 and MKK6 
411

. Studies in mouse 

fibroblasts have shown that MKK3 and MKK6 play redundant but essential roles on the 

activation of p38 MAPK induced by TNF-α 
410

. The abrogation of p38 activation leads to 

defective cell cycle arrest and promotes tumorigenesis 
410

. Together with the observation 

that p38 is able to activate the tumour suppressor protein p53 
412,413

, these data suggest 

that the p38 pathway may contribute to tumour-suppression. On the other hand, TCR 

stimulation has been shown to activate p38 by mono-phosphorylation of Tyr in the 

activation loop via an alternative pathway, independent of the classical MAPK cascade, 

resulting in altered substrate specificity 
414

. 

The p38 family is composed by four p38 isoforms: p38α, p38β, p38γ and p38δ 
415

. The 

different p38 isoforms are encoded by distinct genes although they have a high degree of 
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homology 
415

. Nevertheless, they vary in substrate specificity and tissue distribution 

suggesting that the different p38 isoforms might be independently regulated in vivo 
411

. 

The dissimilarities between the p38 family members have been further highlighted by the 

selectivity of p38 inhibitors for certain p38 isoforms. For example, the commonly used 

SB203580 compound specifically inhibits p38α and p38β 
416,417

, but not p38γ and p38δ 

418,419
. On the other hand, the BIRB796 compound has been shown to inhibit all the p38 

isoforms both in vitro and in vivo 
420,421

, rendering it a valuable tool for the effective 

switching off of the p38 signalling pathway.  

The substrates of MAPKs encompass a variety of molecular effectors that regulate a 

wide range of cellular processes, including cell cycle, differentiation and apoptosis. 

Besides its role in tumour suppression 
422,423

, the p38 MAPK pathway has been described 

to have a potential role in inflammatory responses 
424

. One of the mechanisms through 

which the p38 pathway appears to respond to inflammation is a positive feedback loop 

with TNF-α, wherein this pro-inflammatory cytokine has been shown to trigger p38 

activation 
404,410

, which in turn induces the production of TNF-α 
425

. 

The p38 pathway has been proposed to play a key role in mediating both telomere-

dependent and –independent senescence 
426

. The mechanisms by which p38 signalling 

induces cell senescence are yet to be fully characterised, but p38 is known to induce cell 

cycle arrest by up-regulating p16
INK4a

 expression, which leads to pRb hypo-

phosphorylation 
427,428

, and by phosphorylating p53, which induces p21
Cip1

 expression 

422,429
. DSBs generated by γ-radiation have been shown to activate p38 MAPK in vitro 

and consequently induce cell cycle arrest 
430

. The p38 pathway has also been shown to be 

activated in vivo by DSBs resulting from V(D)J recombination in mouse thymocytes, 

inducing a p53-dependent G2/M cell cycle checkpoint to allow DNA repair and maintain 

genomic stability 
431

. In order to allow cell cycle progression and further differentiation of 

thymocytes, the p38 pathway has to be inactivated 
431

. 

The p38 pathway has also been described as a mediator of cell death via the triggering 

of intracellular alkalinisation following growth factor withdrawal 
406

 and by inducing the 

translocation of the pro-apoptotic protein Bax to the mitochondria during 

chemotherapeutic drug-induced cell cycle arrest 
432

. In addition, p38 has been shown to 

phosphorylate Bcl-2, decreasing its anti-apoptotic potential and triggering apoptosis 

following serum deprivation of mouse embryonic fibroblast cultures 
433

. The 

phosphorylation of Bcl-2 by p38 induces apoptosis by promoting cytochrome c release 
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from mitochondria and caspase activation 
434

, possibly by abrogating the ability of Bcl-2 

to hetero-dimerise with Bax and thus allowing the translocation of the latter to the 

mitochondria 
433,435,436

. Besides suffering post-translational modifications mediated by 

p38, Bcl-2 has also been shown to be a transcriptional target of p38α on mouse 

embryonic stem cells 
437

. 

Cellular senescence thus constitutes a complex process which may work as a tumour 

suppressive mechanism, whilst possibly hindering immune surveillance during ageing 
396

.  
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CHAPTER 1 

Role of IL-7 in the homeostasis of human 

CD31
+
 naive CD4

+
 T cells 

 

Introduction 

Homeostasis of the T cell pool constitutes a dynamic process encompassing a variety 

of mechanisms working concertedly in order to constantly adapt to fluctuating conditions. 

In particular, naive CD4
+
 T cell homeostasis has to compensate for the decreasing 

contribution of the thymus to the replenishment of the peripheral naive T cell pool during 

ageing through post-thymic proliferation of naive T cells 
1,2

. In order to maintain the size 

and diversity of the naive CD4
+
 T cell pool, this peripheral expansion should be driven by 

homeostatic mechanisms that induce proliferation, whilst preserving the phenotypic and 

functional characteristics of naive CD4
+
 T cells, as well as ensuring an unbiased 

stimulation in order to maintain a diverse TCR repertoire 
2
. The homeostatic γC cytokine 

IL-7 has been shown to promote the survival of recent thymic emigrants derived from 

umbilical cord blood 
3-7

, in addition to inducing antigen-independent homeostatic 

proliferation of cord blood RTEs more potently than of naive CD4
+
 T cells from adult 

peripheral blood 
5,6,8

. These data suggest that IL-7-mediated homeostatic proliferation of 

RTEs contributes to the maintenance of the peripheral naive CD4
+
 T cell pool 

5
.  

The expression of CD31 within naive CD4
+
 T cells has been proposed to identify a 

population enriched in RTEs
9-12

, whereas naive CD4
+
 T cells lacking CD31 have been 

suggested to have undegone homeostatic proliferation driven by low-affinity TCR 

triggering 
9,12

. In the first part of this chapter, we sought to investigate the effects of IL-7 

stimulation on naive CD4
+
 T cell subsets defined by the expression of CD31 from 

umbilical cord and adult peripheral blood samples. Specifically, we were interested in 

clarifying the outcome in terms of survival, proliferation and levels of CD31 expression 

following in vitro culture of purified CD31
+
 and CD31

-
 naive CD4

+
 T cell subsets in the 



58 Chapter 1 

 

presence of IL-7, in addition to elucidating the signalling pathways mediating these 

effects. 

In this same line of research, concerning T cell homeostasis, we had the opportunity to 

perform an evaluation of long term immune reconstitution in a clinical setting associated 

with major disturbances in T cell homeostasis. In the second part of this chapter, our aim 

was to assess the distribution of naive and memory T cell subsets in a group of five 

patients who underwent haploidentical HSCT from a related donor, at an average of five 

years post-transplant, simultaneously comparing their profile to the T cell distribution 

observed in the respective donors and age-matched controls. We were particularly 

interested in investigating the mechanisms that drove T cell reconstitution in these 

patients by determining the relative contribution of thymic output and peripheral 

expansion of mature T cells. For that purpose, we assessed the expression of CD31 within 

naive CD4
+
 T cells, the TREC content and the telomere length in recipients of 

haploidentical HSCT, as well as in donors and age-matched controls. 

 

Methods 

1. Blood samples 

1.1. Adult peripheral blood and umbilical cord blood samples 

Adult peripheral blood samples from healthy volunteers and umbilical cord blood 

samples collected immediately after delivery of full-term infants were obtained with 

approval from the Ethics Board of the Faculty of Medicine of Lisbon. Umbilical cord 

blood samples were provided by Dr. Helena Ferreira from Hospital Universitário de Santa 

Maria, Lisboa, with informed consent obtained in accordance with the Declaration of 

Helsinki.  

1.2. Haploidentical HSCT recipients 

This study was approved by the Ethics Committee of the Faculdade de Medicina da 

Universidade de Lisboa. Heparinized peripheral blood and serum samples from five 

haploidentical related hematopoietic stem cell transplantation recipients were obtained 

four to six years post-transplant through collaboration with Dr. João Lacerda from 

Serviço de Hematologia, Hospital de Santa Maria. In parallel, samples were collected 
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from the respective donors, who were always one of the parents, and age-matched healthy 

controls. 

2. Purification of lymphocyte subsets 

Mononuclear cells from adult peripheral blood and from cord blood were isolated by 

Ficoll-Hypaque density gradient (Amersham Pharmacia Biotech, Uppsala, Sweden). 

CD4
+
 T cells were negatively selected using the EasySep Human CD4

+
 T Cell 

Enrichment Kit (StemCell Technologies, Vancouver, BC) according to the 

manufacturers’ instructions. CD4
+
 T cells were subsequently sorted into CD31

+
 and 

CD31
-
 naive subsets using a FACSAria flow cytometer (BD Biosciences, San Jose, CA) 

after staining with CD45RA, CD45RO, CD4, and CD31 for 30 minutes at 4ºC in 

phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA; Sigma-

Aldrich). 

3. In vitro cell culture 

Cells were cultured in RPMI 1640 (Invitrogen, Carlsbad, CA) supplemented with 10% 

heat-inactivated human AB serum (Sigma-Aldrich, St Louis, MO), 100 U/mL penicillin, 

100 mg/mL streptomycin, and 2 mM L-glutamine (Invitrogen), in the presence or absence 

of recombinant human (rh) IL-7 (10 ng/mL; R&D Systems, Minneapolis, MN) or rhIL-2 

(10 U/mL; obtained through the National Institutes of Health (NIH)/ AIDS Research and 

Reference Program, Division of AIDS, National Institute of Allergy and Infectious 

Diseases, NIH [IL-2] from Hoffman-La Roche). PI3K and MEK/ERK activity were 

respectively blocked by incubation of cells for 1 hour at 37°C before IL-7 stimulation 

with either 10 μM LY294002 or 10 μM PD98059 (both from Calbiochem, Merck 

Biosciences, Nottingham, United Kingdom) or the equivalent volume of the vehicle 

control dimethyl sulfoxide (DMSO; Sigma-Aldrich) alone. LY294002, PD98059 and 

DMSO were re-added to the culture at day 4. 

4. Flow cytometric analysis 

4.1. Surface staining 

Cells resuspended in PBS containing 1% BSA (Sigma-Aldrich) and 0.1% sodium 

azide (Sigma-Aldrich) were stained for 20 minutes at room temperature with the 

following anti–human monoclonal antibodies: CD4 phycoerythrin–cyanin 7 (PE-Cy7; 
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clone L3T4), CD8 peridinin chlorophyll protein (PerCP; clone RPA-T8), CD45RA 

fluorescein isothiocyanate (FITC) or allophycocyanin (APC; clone HL100), CD45RO PE 

(clone UCHL1), CD62L APC-Cy7 (clone DREG 56), CD27 FITC (clone O323) and 

CD31 PE or APC (clone WM59) from eBioscience (San Diego, CA); CD38 PE (clone 

HB7), CD25 APC (clone 2A3) and CD3 PerCP (clone SK7) from BD Biosciences; and 

CD127 PE (IL-7Rα; clone 40131; R&D Systems). 

4.2. Intracellular staining 

Intracellular staining for Bcl-2 FITC (clone 124; Dako, Glostrup, Denmark), Ki67 

FITC (clone B56; BD Biosciences) and Foxp3 PE (clone PCH101; eBioscience) was 

performed using fixation and permeabilization reagents from eBioscience. Samples were 

acquired on a BD FACSCanto flow cytometer (BD Biosciences) after fixation with 1% 

formaldehyde (Sigma-Aldrich). Data were analyzed using FlowJo software version 8.1.1 

(TreeStar, Ashland, OR). 

4.3. Apoptosis assessment 

Apoptosis was assessed using 7-aminoactinomycin D (7-AAD) viability Staining 

Solution (eBioscience) or Annexin V/Propidium Iodide (PI) detection kit (BD 

Biosciences). For the former assay, cells resuspended in PBS were incubated with 7-AAD 

for 5 minutes at 4ºC. As for the latter, cells resuspended in 1x Binding Buffer were 

incubated with Annexin V antibody and PI for 15 minutes at room temperature. Samples 

were immediately acquired on a BD FACSCanto flow cytometer (BD Biosciences). Data 

were analyzed using FlowJo software version 8.1.1 (TreeStar, Ashland, OR). 

4.4. Proliferation assessment by CFSE dilution assay 

Cells were labeled with 0.5 μM carboxyfluorescein diacetate succinimidyl ester 

(CFSE; Molecular Probes-Invitrogen, Carlsbad, CA) at 37°C for 15 minutes in the dark, 

quenched with ice-cold culture medium at 4°C for 5 minutes, and washed 3 times before 

culture. Samples were acquired on a BD FACSCanto flow cytometer (BD Biosciences) 

after fixation with 1% formaldehyde (Sigma-Aldrich). Data were analyzed using FlowJo 

software version 8.1.1 (TreeStar, Ashland, OR). 

4.5. Assessment of STAT-5 phosphorylation 

Cells were surface stained and stimulated with 50 ng/mL of rhIL-7 for 15 minutes, 

fixed with 2% formaldehyde at 37°C for 10 minutes, and placed on ice. Cells were then 
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permeabilized with ice-cold 90% methanol (Sigma-Aldrich) at 4°C for 30 minutes and 

incubated with anti–phospho-STAT-5 (pY694) antibody coupled to Alexa Fluor 488 (BD 

Biosciences) at room temperature for 1 hour. Samples were immediately acquired on a 

BD FACSCanto flow cytometer (BD Biosciences). Data were analyzed using FlowJo 

software version 8.1.1 (TreeStar, Ashland, OR). 

4.6. Telomere length measurement by Flow-FISH 

Telomere length was measured using a modified version of the fluorescent in situ 

hybridization coupled to flow cytometry (Flow-FISH) protocol that was previously 

described 
13,14

. In brief, PBMCs were surface stained using CD4 FITC (clone RPA-T4; 

BD Pharmingen), CD8 biotin (clone OKT8, eBioscience), CD45RA biotin (clone HI100, 

eBioscience), Streptavidin Cy3 (Cedarlane Laboratories) and CD27 FITC (clone O323; 

eBioscience). After washing in PBS, cells were fixed in 1 mM BS
3
 (Perbio Science). The 

reaction was quenched with 50 mM Tris (pH 7,2) in PBS. After washing in PBS followed 

by hybridization buffer, cells were incubated in 0.75 μg/ml of the protein nucleic acid 

telomeric probe (C3TA2)3 conjugated to Cy5 (Panagene).  After being heated for 10 

minutes at 82°C, samples were left to hybridize. Samples were washed in post-

hybridization buffer followed by PBS and analyzed immediately by flow cytometry. All 

samples were run in triplicate alongside cryopreserved PBMC with known telomere 

fluorescence to ensure consistency of results. Kilobase length was determined from mean 

fluorescence intensity values using a standard curve. The standard curve was constructed 

using samples of varying telomere length analyzed both by flow-FISH
 
and telomeric 

restriction fragment analysis 
15

. 

5. Signal-Joint TREC quantification by Real-Time PCR 

DNA was purified from 10
6
 PBMCs using DNAzol reagent (Gibco Life 

Technologies). Signal-joint TRECs were quantified by nested Real-Time PCR using 

Power SYBR Green PCR Master Mix (Applied Biosystems) and ABI PRISM 7000 

Sequence Detection System (Applied Biosystems). Specific primers and probes were 

used for sjTRECs and the CD3γ, used as a housekeeping gene for absolute quantification 

of sjTRECs levels: sj-out5 5’-CTCTCCTATCTCTGCTCTGAA-3’; sj-out3 5’-

ACTCACTTTTCCGAGGCTGA-3’; sj-in5 5’-CCTCTGTCAACAAAGGTGAT-3’; sj-

in3 5’-GTGCTGGCATCAGAGTGTGT-3’; CD3-out5 5’-ACTGACATGGAACAGGGG 

AAG-3’; CD3-out3 5’-CCAGCTCTGAAGTAGGGAACATAT-3’; CD3-in5 5’-
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GGCTATCATTCTTCTTCAAGGT-3’; CD3-in3 5’-CCTCTCTTCAGCCATTTAA 

GTA-3’; sj-Probe1 5’-AATAAGTTCAGCCCTCCATGTCACACTf-3’; sj-Probe2 5’-

XTGTTTTCCATCCTGGGGAGTGTTTCAp-3’; CD3-Probe1 5’-GGCTGAAGGTTAG 

GGATACCAATATTCCTGTCTCf-3’; CD3-Probe2 5’-XCTAGTGATGGGCTCTTCC 

CTTGAGCCCTTCp-3’. pCD3-TREC plasmid was kindly provided by Rémy Cheynier 

(Institute Pasteur, Paris). 

6. TCR-chain CDR3 spectratyping 

Total RNA was extracted from 10
5
 to 10

6
 cells with RNeasy kit (Qiagen) and first 

strand cDNA synthesized from 1-2μg of RNA with the Superscript III kit (Invitrogen) 

using an equivolume mixture of random hexamers and oligo (dT). Spectratyping analysis 

was performed by Dário Ligeiro from Immunogenetics Laboratory, Centro de 

Histocompatibilidade do Sul – CHSul. Briefly, amplification of the TCRVB CDR3 was 

performed using primers specific for each Vβ family 
16

 except for Vβ6 and Vβ21 
17

 and a 

common CB reverse primer 
16

; followed by a run-off reaction that extends each different 

PCR product with a constant CB FAM labelled primer 
16

; and a third step, in which each 

different Vβ PCR labelled fragment is separated on a capillary electrophoresis based 

DNA automated sequencer. Data was collected and analyzed with GeneMapper v4.0 

(Applied Biosystems) for size and fluorescence intensity determination. The results are 

depicted as peaks and classified as normal polyclonal repertoire, if the CDR3 in-frame 

transcript distribution has a Gaussian shape with 8 to 10 peaks for each Vβ family, or 

skewed if there is predominance of a few classes of clonotypes, according with the 

scoring previously detailed 
18,19

. 

7. Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 4.00 (GraphPad 

Software, San Diego, CA). Data are presented as mean plus or minus standard error of 

mean (SEM). P values less than 0.05 were considered significant: * indicates P < 0.05; ** 

indicates P < 0.001; *** indicates P < 0.0001. 
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Results 

Chapter 1.1 

IL-7 sustains CD31 expression in human naive CD4
+
 T cells 

and preferentially expands the CD31
+
 subset 

in a PI3K-dependent manner 
 

The expression of CD31 has been proposed to identify two subsets within the naive 

CD4
+
 T cell pool which have undergone different levels of post-thymic proliferation 

9
. 

The CD31
+
 naive CD4

+
 T cell subset has been described as comprising the RTE 

population 
9-12

, whereas the CD31
-
 naive CD4

+
 T cell subset has been proposed to arise 

following homeostatic proliferation in the periphery 
9,12

. IL-7 is a key modulator of naive 

T cell homeostasis 
20-23

, promoting survival and mediating homeostatic proliferation of 

the naive CD4
+
 T cell pool 

24
. Interestingly, naive T cells, particularly CD31

+
 naive CD4

+
 

T cells, have been shown to proliferate following IL-7 administration in a clinical trial 
25

. 

Therefore, we sought to investigate potentially distinct effects of IL-7 in vitro stimulation 

of CD31
+
 and CD31

-
 naive CD4

+
 T cell subsets from umbilical cord and adult peripheral 

blood. 

In order to circumvent possible fluctuations in CD31 expression during IL-7 

stimulation, we purified the CD31
+
 and CD31

-
 subsets within naive CD4

+
 T cells by 

FACS sorting prior to culture (Figure 1). A representative gating strategy for the isolation 

of CD31 subsets from adult and cord samples by selecting the CD31
bright

 and CD31
low

 

populations within naive (CD45RA
+
 CD45RO

-
) CD4

+
 T cells is illustrated on Figure 1A. 

The resulting post-sort populations were highly pure (Figure 1B). 

We first investigated the expression of the cell cycle entry marker Ki67 on the CD31 

naive CD4
+
 T cell subsets following a 7 day culture period in the presence of IL-7 (Figure 

2A). As previously described 
5,6,8

, IL-7-induced cycling is more potent in naive CD4
+
 T 

cells derived from cord blood than from adult peripheral blood (Figure 2A). Moreover, 

only 12 out of the 22 adult samples studied entered cell cycle in the presence of IL-7, 

whereas a substantial proportion of all 12 cord blood samples assessed expressed Ki67 in 

response to IL-7. The adult IL-7-responders did not significantly differ from non-

responders in terms of sex distribution, proportion of naive (CD45RA
+
) cells within the 
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CD4
+
 T cell population, proportion of CD31

+
 cells within naive or total CD4

+
 T cell 

population, nor proportion of IL-7Rα
+
 cells within CD31

+
, CD31

-
 or total naive CD4

+
 T 

cells (data not shown). Of note, the average age of adult IL-7-responders was lower than 

of non-responders although the age distribution was not significantly different between 

them (28.9 ± 2.42 years vs 36.4 ±3.41 years, respectively; P = .109).  

 

 

Figure 1: CD31 expression profiles and gating strategy used to purify CD31
+
 and CD31

-
 naive CD4

+
 T 

cell subsets from adult and cord blood. 

CD4
+
 T cells were negatively selected using the EasySep Human CD4

+
 T cell Enrichment Kit and stained 

using monoclonal antibodies for CD4, CD45RO, CD45RA and CD31. A) Representative flow cytometry 

profiles of CD4
+
 T cells stained for CD45RO, CD45RA and CD31 are shown for adult and cord blood 

samples. Also shown is the gating strategy used for FACS sorting. After gating on viable lymphocytes and 

CD4
+
 T cells, cells were gated on CD45RA

+
 and CD45RO

-
 expression followed by tight gates on CD31

+
 

and CD31
-
 cells.  B) Representative pseudo-colour plots showing the purity of CD31

+
 and CD31

-
 subsets 

isolated by FACS sorting. 
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Figure 2: IL-7-induced cycling of adult naive CD4
+
 T cells is restricted to the CD31

+
 subset. 

A) Representative dot-plots of CD31 and Ki67 flow cytometric analysis of purified CD31
+
 and CD31

-
 naive 

CD4
+
 T cell subsets from adult (top panel) and cord blood (lower panel) samples cultured in the presence of 

IL-7 for 7 days. B) Ex vivo analysis of IL-7Rα median fluorescence intensity (MFI) on freshly isolated 

mononuclear cells from adult and cord blood samples. Each symbol represents one individual.  C) CD31 

MFI was assessed within the purified CD31
+
 naive subset further gated on Ki67

+
 or Ki67

-
 cells after 7 days 

in culture with IL-7. Three adults and four cord blood samples were studied. D) Representative dot-plot 

illustrating CFSE labelling of cord blood CD45RA
+
 CD4

+
 T cells cultured with IL-7 for 7 days. CD31

+ 
cells 

were further gated according to the number of cell divisions and bars show CD31 MFI from four 

experiments. Bars represent mean±SEM. Statistical analysis was performed using paired or unpaired t test 

as appropriate (GraphPad Prism). 
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Within adult IL-7-responders, only CD31-expressing naive CD4
+
 T cells were able to 

enter cell cycle in response to IL-7 (Figure 2A, upper panel), although the proportion of 

Ki67-expressing cells was significantly lower than within cord blood CD31
+
 naive CD4

+
 

T cells (2.82% ± 1.11% vs 26.7% ± 3.22% Ki67
+
 cells, respectively; P = 0.001). On the 

other hand, IL-7 induced cell cycling of both CD31
+
 and CD31

-
 naive CD4

+
 T cells from 

cord blood (Figure 2A, lower panel). We next investigated if the proliferative responses 

to IL-7 correlated with the basal levels of IL-7Rα expression (Figure 2B). Although adult 

CD31
+
 naive CD4

+
 T cells expressed significantly higher levels of IL-7Rα than their 

CD31
-
 counterparts, the opposite was true for cord blood samples (Figure 2B). 

Furthermore, the levels of IL-7Rα were significantly higher on cord blood than on adult 

CD31
-
 cells, whereas CD31

+
 cells from cord blood and adult samples expressed similar 

levels of this marker (Figure 2B). Thus the ex vivo levels of IL-7Rα expression did not 

correlate with the extent of the proliferative responses to IL-7, suggesting that alternative 

factors other than the basal levels of IL-7Rα expression might influence the ability to 

undergo IL-7-driven proliferation. 

Given that CD31 down-modulation has been proposed to be triggered by homeostatic 

proliferation, we next assessed if IL-7-driven cycling was associated with decreased 

CD31 expression on adult and cord blood CD31
+
 naive CD4

+
 T cells. As shown on 

Figure 2C, we found no significant differences on the intensity of CD31 expression 

between cycling and non-cycling cord blood CD31
+
 naive CD4

+
 T cells, whereas cycling 

adult CD31
+
 naive CD4

+
 T cells expressed significantly higher levels of CD31 than non-

cycling cells. These results suggest that CD31 expression is not lost upon IL-7-driven 

cycling. We further confirmed this hypothesis by investigating if the number of cell 

divisions affected the level of CD31 expression. For that purpose, we performed a CFSE 

dilution assay on IL-7-stimulated naive CD4
+
 T cells from cord blood and assessed the 

intensity of CD31 expression within non-proliferating as well as within each generation 

of proliferating CD31
+
 cells (Figure 2D). As previously described 

8,26
, the low levels of 

cell cycling within adult naive CD4
+
 T cells in response to IL-7 precluded the 

performance of this assay on adult samples. The intensity of CD31 expression remained 

relatively high throughout the rounds of cell division (Figure 2D). Hence IL-7-driven 

proliferation of cord blood CD31
+
 naive CD4

+
 T cells did not significantly affect CD31 

expression levels (paired t test comparing all generations; data not shown). 
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We further assessed if, in addition to maintaining CD31 expression levels on CD31
+
 

naive CD4
+
 T cells, IL-7 stimulation could induce CD31 re-expression on CD31

-
 naive 

CD4
+
 T cells (Figure 3). Although we observed a significant increase in the intensity of 

CD31 expression on CD31
+
 naive CD4

+
 T cells after a 7 day culture period with IL-7, 

CD31 expression on both adult and cord blood CD31
-
 naive CD4

+
 T cells remained 

virtually undetectable (Figure 3A). These results were confirmed with a CD31 expression 

time-course, during which we observed consistently high levels of CD31 within adult 

CD31
+
 naive CD4

+
 T cells for up to 13 days in the presence of IL-7 (Figure 3B). Culture 

of these cells in medium alone (Control) or in the presence of IL-2 induced a similar 

reduction in the intensity of CD31 expression (Figure 3B). As for adult CD31
-
 naive 

CD4
+
 T cells, the extremely low levels of CD31 expression quantified immediately after 

purification (Day 0) were maintained throughout the time-course in all culture conditions 

tested (Figure 3B).  Hence IL-7 stimulation does not induce the loss of CD31 expression 

on CD31
+
 nor its re-expression on CD31

-
 naive CD4

+
 T cells.  

In order to investigate if the failure of adult CD31
-
 naive CD4

+
 T cells to proliferate in 

the presence IL-7 was due to an overall inability to respond to IL-7 stimulation, we 

assessed several markers associated with IL-7 responsiveness (Figure 4). The expression 

of IL-7Rα has been described to be down-modulated in the presence of IL-7 
27,28

. Thus, 

we measured the expression of IL-7Rα before and after 7 days of culture with IL-7, and 

observed that its levels were dramatically decreased in all the subsets following IL-7 

stimulation (Figure 4A). Bcl-2 is an anti-apoptotic protein that is up-regulated by IL-7-

induced signalling 
29

. Again all subsets responded to IL-7 stimulation by expressing 

substantially higher levels of Bcl-2 following 7 days in culture with IL-7 (Figure 4B). IL-

7-induced Bcl-2 up-regulation is known to involve the activation of the JAK/STAT 

signalling pathway and the subsequent phosphorylation of STAT-5 
29-31,31

. After a short 

stimulation with IL-7, STAT-5 phosphorylation was enhanced in comparison with cells 

left unstimulated (Control) for the same period of time, regardless of the subset studied 

(Figure 4C). We next assessed the incorporation of the viability dye 7-AAD after a 7 day 

culture period in the presence or absence (Control) of IL-7 (Figure 4D). As previously 

described 
3-7

, cord blood naive CD4
+
 T cells were highly susceptible to spontaneous 

apoptosis (Figure 4D).  The presence of IL-7 was able to reduce the proportion of non-

viable cells to negligible levels within CD31
+
 and CD31

-
 naive CD4

+
 T cells from cord 

blood as well as from adult samples (Figure 4D). Taken together, these data indicate that 
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although adult CD31
-
 naive CD4

+
 T cells do not proliferate following IL-7 stimulation, 

they are responsive to IL-7-induced survival signals. Thus, despite inducing distinct 

proliferative outcomes in CD31
+
 and CD31

-
 naive CD4

+
 T cells, IL-7 promotes the 

survival of both subsets, in association with STAT-5 phosphorylation and Bcl-2 up-

regulation. 

 

 

 

 

Figure 3: IL-7 promotes the maintenance but not re-expression of CD31 on both adult and cord blood 

naive CD4
+
 T cells.  

A) Bar graph shows the MFI of CD31 expression on purified CD31
+
 and CD31

-
 naive CD4

+
 T cells from 

adult (n=13) and cord blood (n=5) samples before (Day 0) and after 7 days in the presence or absence 

(Control) of IL-7. Analysis of cord blood subsets cultured in the absence of IL-7 was precluded by the high 

rate of cell death. B) Longitudinal analysis of CD31 MFI of adult naive CD4
+
 subsets cultured in the 

presence of IL-7, IL-2 or medium alone (Control) for up to 13 days (data representative of three 

individuals). Open symbols represent CD31
+
 purified cells while closed symbols correspond to the CD31

-
 

fraction. Statistical analysis was performed using paired t test (GraphPad Prism). 
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Figure 4: IL-7 stimulation leads to IL-7Rα down-modulation, Bcl-2 up-regulation, STAT5 

phosphorylation and rescue from apoptosis in both CD31
+
 and CD31

-
 naive CD4

+
 subsets.  

IL-7Rα (A), Bcl-2 (B), and p-STAT5 (C) expression levels as well as 7-AAD incorporation (D) were 

evaluated by flow cytometry within gated CD31
+
 and CD31

-
 naive CD4

+
 subsets. IL-7Rα  and Bcl-2 MFI 

were evaluated ex vivo in adult PBMC (n=6 and n=9, respectively) and cord blood cells (n=4 and n=6, 

respectively) and in the corresponding purified CD31
+
 and CD31

-
 naive subsets cultured in the presence of 

IL-7 for 7 days. p-STAT5 was assessed on freshly isolated mononuclear cells from adult  (n=5) and cord 

blood (n=3) samples either stimulated with IL-7 for 15 minutes or left unstimulated for the same period of 

time (Control). 7-AAD incorporation was measured in purified CD31
+
 and CD31

-
 subsets after 7 days of 

culture in the presence or absence (Control) of IL-7. Bars represent mean MFI values ± SEM. 
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The next important question was which signalling pathways were upstream of the 

observed IL-7-induced proliferative responses. The PI3K pathway constituted a likely 

candidate given its suggested role in the IL-7-induced modulation of cell survival, 

growth, metabolism and proliferation 
32

. Interestingly, the PI3K pathway has been shown 

to be essential for the proliferation but not the survival of cord blood naive CD4
+
 T cells 

3
. The MEK/ERK pathway is a member of the MAPK family which is thought to be 

mainly activated by growth-promoting mitogenic factors 
33

 and has been shown to be 

activated in T-ALL cells by IL-7 
34

. Hence we first assessed the effects of blocking either 

the PI3K or the MEK/ERK signalling pathways on the cycling and proliferation levels in 

response to IL-7 stimulation (Figure 5). For this purpose, cells were incubated with cell-

permeable specific inhibitors of either the PI3K or MEK/ERK pathways, LY294002 or 

PD98059 respectively, prior to culture with IL-7. As illustrated in Figure 5, blocking the 

PI3K pathway abrogated the IL-7-induced cycling of the adult CD31
+
 subset and 

proliferation of cord blood naive CD4
+
 T cells. In contrast, blocking the MEK-ERK 

pathway had negligible effects on the proliferative responses to IL-7 (Figure 5). 

We next assessed if inhibiting the PI3K pathway also impacted the modulation of Bcl-

2 and IL-7Rα expression induced by IL-7 (Figure 6). Neither the up-regulation of Bcl-2 

(Figure 6A) nor the down-regulation IL-7Rα (Figure 6B) expression was substantially 

affected by blocking the PI3K pathway. Similar results were obtained when the 

MEK/ERK pathway was blocked (Figure 6). In order to investigate whether the PI3K 

pathway was also essential for the IL-7-induced pro-survival effects, we assessed the 

impact of the PI3K and MEK/ERK inhibitors on the apoptosis levels of IL-7-stimulated 

naive CD4
+
 T cell subsets using Annexin V staining and PI incorporation (Figure 7). As 

illustrated by the representative experiment shown in Figure 7, the proportion of apoptotic 

(Annexin V
+
 PI

-
) and dead (Annexin V

+
 PI

+
) cells was not substantially affected by the 

inhibition of either the PI3K or the MEK/ERK pathways. However we observed a slight 

reduction in the viability of adult CD31
-
 naive CD4

+
 T cells in the presence of the PI3K 

inhibitor LY294002 (Figure 7). A previous study has reported a minimal decrease in cell 

viability of human naive CD4
+
 T cells in the presence of the PI3K inhibitor LY294002, 

although this decrease was observed both in the presence and in the absence of IL-7 
3
. 

Thus the minor impact of the PI3K inhibition on the survival of adult CD31
-
 naive CD4

+
 

T cells might reflect an IL-7-independent effect of LY294002 itself. 
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Figure 5: IL-7-induced proliferation of adult CD31
+
 and cord blood naive CD4

+
 T cells is dependent 

on the PI3K pathway. 

Purified CD31
+
 and CD31

-
 subsets from adult as well as total naive CD4

+
 T cells from cord blood were 

cultured in the presence of IL-7 with or without the PI3K inhibitor LY294002 or the MEK/ERK inhibitor 

PD98059 for 7 days. Proliferation was assessed using Ki67 in adult subsets. CFSE labelling was used to 

measure proliferation on whole naive CD4
+
 T cells from cord blood samples. Representative examples out 

of six adults and four cord blood studied are shown. 
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Figure 6: Bcl-2 and IL-7Rα expression on adult CD31
+
 naive CD4

+
 T cells is independent of the PI3K 

pathway. 

Purified CD31
+
 and CD31

-
 naive CD4

+
 T cells from adult and cord blood were cultured in the presence of 

IL-7 with or without the PI3K inhibitor LY294002 or the MEK/ERK inhibitor PD98059 for 7 days. 

Overlays show Bcl-2 (A) and IL-7Rα (B) expression at day 0 within CD31
+
 (grey filled) and CD31

-
 cells 

(black line), and at day 7 within CD31
+
 (blue line) and CD31

-
 (red line) cells. Representative examples out 

of six adults and four cord blood studied are shown. 
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Finally, we assessed the impact of PI3K or MEK/ERK inhibition on the expression 

levels of CD31 and of the CD31 ligand CD38 
35

 on IL-7-stimulated CD31
+
 naive CD4

+
 T 

cells from cord blood as well as from adult samples (Figure 8). Blocking the PI3K 

pathway resulted in significantly lower levels of CD31 expression on both adult and cord 

blood CD31
+
 naive CD4

+
 T cells in comparison with the CD31 levels obtained after 

culture with IL-7 alone (P = 0.002 and P = 0.009, respectively, paired t test ; Figure 8A). 

Interestingly, the loss of the IL-7-induced up-regulation of CD31 was observed both in 

adults with a proliferative response to IL-7 (filled symbols) and in IL-7-non-responders 

(opens symbols) (Figure 8A), suggesting that the PI3K pathway independently mediates 

the maintenance of CD31 expression and the proliferative responses induced by IL-7 

stimulation. As previously described 
4
, IL-7 stimulation significantly down-modulated 

CD38 expression on cord blood naive CD4
+
 T cells to levels similar to those observed on 

adult naive CD4
+
 T cells (P < 0.001, paired t test; Figure 8B). The levels of CD38 were 

also significantly decreased on adult naive CD4
+
 T cells following IL-7 stimulation (P < 

0.001, paired t test; Figure 8B). Blocking the PI3K or MEK/ERK pathways did not 

significantly affect the levels of CD38 on either adult or cord blood naive CD4
+
 T cells 

(Figure 8B). These data suggest that the PI3K pathway is involved in the IL-7-induced 

modulation of CD31 but not of CD38 expression.  

Overall we showed that in vitro stimulation with IL-7 alone is able to induce cell 

cycling and up-regulation of CD31 expression on adult CD31
+
 naive CD4

+
 T cells. 

Moreover, both CD31
+
 and CD31

-
 naive CD4

+
 T cells from cord blood samples 

proliferated in the presence of IL-7. Finally, we demonstrated that the PI3K pathway 

plays a major role on the IL-7-induced effects on proliferation and CD31 expression but 

not on survival of naive CD4
+
 T cells. 
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Figure 7: IL-7-mediated survival of naive CD4
+
 T cell subsets is only minimally affected by PI3K 

inhibition.  

Purified CD31
+
 and CD31

-
 naive CD4

+
 T cells from adult and cord blood were cultured in the presence of 

IL-7 with or without the PI3K inhibitor LY294002 or the MEK/ERK inhibitor PD98059 for 7 days. 

Representative pseudo-colour plots are shown illustrating the evaluation of apoptosis by Annexin V and 

Propidium Iodide (PI) staining out of six adults and four cord blood studied.  
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Figure 8: IL-7-mediated CD31 maintenance on both adult and CB naive CD4
+
 T cells is dependent on 

the PI3K pathway.  

A) CD31 MFI was assessed on purified CD31
+
 naive CD4

+
 T cells at day 0 and after 7 days in culture with 

IL-7 alone or in addition to LY294002 or PD98059. Each symbol represents one individual. B) CD38 MFI 

is shown in the same culture conditions in adult (n =6) and cord blood (n=4) samples, respectively. Filled 

symbols refer to individuals with a proliferative response to IL-7 and open symbols to those that did not 

proliferate. 
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Chapter 1.2 

Long Term Immune Reconstitution Following Haplotype-

Mismatched Hematopoietic Stem Cell Transplantation 
 

Haploidentical HSCT is an allogeneic stem cell transplant from a family donor who 

shares only one haplotype with the recipient 
36

. The mismatched CD34
+
 stem cell graft 

infused into the patient contains only residual numbers of T cells, which leads to the 

generation of a donor-derived immune system wherein thymic T cell selection will take 

place in an HLA-mismatched environment 
37

. The use of intensive conditioning regimens, 

together with the use of T cell depleted grafts, leads to major imbalances in T cell 

homeostasis and provide a tool to study the mechanisms of de novo T cell reconstitution, 

albeit in a HLA-mismatched environment. Although this therapeutic approach is 

increasingly adopted in patients with hematological malignancies who lack a suitable 

related or unrelated HLA-matched donor, there are few studies characterizing immune 

reconstitution following this type of HSCT 
38,39

. In the present study, we performed a 

detailed evaluation of the composition of naive and memory T cell pools in a group of 

patients who underwent haploidentical related HSCT after a chemotherapy-alone 

conditioning regimen for the treatment of high risk leukemia 
40

. These patients were at the 

time of the study four to six years post-transplant and were studied in parallel with the 

respective donors, who were always one of the parents, and age-matched healthy controls. 

We first evaluated the degree of immune reconstitution in the transplant recipients by 

assessing the absolute numbers of lymphocyte subsets in peripheral blood (Figure 9). 

Although we observed a tendency for slightly lower numbers of total lymphocytes 

(Figure 9A) and T cells, as assessed by the expression of CD3 (Figure 9B), in transplant 

recipients when compared to donors and age-matched controls, the lymphocyte and T cell 

counts were not statistically different between the three cohorts. Conversely, transplant 

patients tended to have higher absolute numbers of B cells, identified by the expression of 

CD19 (Figure 9C), than the other two groups, but again these differences did not reach 

statistical significance. Similarly, the number of NK cells, identified by the co-expression 

of CD16 and CD56 (Figure 9D), were not statistically different when recipients, donors 

and age-matched controls were compared. 
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Taken together, these data suggest that our cohort of haploidentical HSCT recipients 

featured similar numbers of basic lymphocyte subsets as compared to age-matched 

controls, indicating a successful reconstitution of the size of these peripheral lymphocyte 

pools. 

 

 

 

 

 

Figure 9: Absolute numbers of basic lymphocyte subsets. 

Absolute numbers of basic lymphocyte subsets in peripheral blood were determined in donors, recipients 

and age-matched controls. Graphs show the cell number per μl of total lymphocytes (A), T cells identified 

by CD3 expression (B), B cells identified by CD19 expression and natural killer cells identified by the co-

expression of CD56 and CD16 (D). Each symbol represents an individual. Mean values are shown as 

horizontal lines. There was no statistically significant difference in the absolute numbers of the different 

lymphocyte subsets when the three cohorts were compared. Statistical analysis was performed using the 

Wilcoxon matched pairs test (GraphPad Prism). 
 

 

Donors Recipients Controls
0

1000

2000

3000

4000

5000

C
e

ll
 n

u
m

b
e

r 
p

e
r


l

Lymphocyte counts

A
CD3+ T cell counts

B

Donors Recipients Controls
0

1000

2000

3000

C
e

ll
 n

u
m

b
e

r 
p

e
r


l

B cell counts

C
NK cell counts

D

Donors Recipients Controls
0

200

400

600

800

C
e

ll
 n

u
m

b
e

r 
p

e
r


l

Donors Recipients Controls
0

200

400

600

800

C
e

ll
 n

u
m

b
e

r 
p

e
r


l



78 Chapter 1 

 

We next assessed the absolute numbers of CD4
+
 (Figure 10A) and CD8

+
 (Figure 10B) 

T cells in the three cohorts. We observed a modest decrease in CD4
+
 T cell counts in 

recipients as compared to donors and age-matched controls (Figure 10A). Nevertheless, 

we found no statistically significant differences in CD4
+
 (Figure 10A) and CD8

+
 (Figure 

10B) T cell counts between the three cohorts. These results further indicate that the size 

of the T cell pool has been effectively restored in haploidentical HSCT recipients. The 

high degree of HLA mismatch between donor and recipient does not seem to hinder long 

term immune reconstitution in these patients, although it might preferentially impact the 

restoration of the CD4
+
 T cell pool.  

 

 

Figure 10: Absolute numbers of CD4
+
 and CD8

+
 T cells. 

Absolute numbers of CD4
+
 (A) and CD8

+
 (B) T cells in peripheral blood were determined in donors, 

recipients and age-matched controls. The results are expressed as cell number per μl. Each symbol 

represents an individual. Mean values are shown as horizontal lines. There was no statistically significant 

difference in the absolute numbers of CD4
+
 (A) and CD8

+
 (B) T cells when the three cohorts were 

compared. Statistical analysis was performed using the Wilcoxon matched pairs test (GraphPad Prism). 
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In order to investigate whether T cell reconstitution was associated with any 

imbalances in naive and memory T cell subset distribution, we determined the frequency 

of naive and memory subsets as defined by the expression of CD45RA and CD27 within 

CD4
+
 and CD8

+
 T lymphocytes (Figure 11). We observed a tendency for a greater 

proportion of naive CD45RA
+
CD27

+
 CD4

+
 (Figure 11A) and CD8

+
 (Figure 11B) T cells 

in transplant recipients as compared to donors and age-matched controls. On the contrary, 

recipients showed lower frequencies of the highly differentiated CD45RA
-
CD27

-
 and 

CD45RA
+
CD27

-
 memory subsets both within CD4

+
 (Figure 11A) and CD8

+
 (Figure 11B) 

T cell populations, particularly when compared to donors. These differences were more 

striking within CD8
+
 T cells, although they did not reach statistical significance (Figure 

11B). The levels of naive T cells have been shown to decrease, whereas highly 

differentiated memory T cells increase, during ageing 
1,41-47

. Hence the distinct 

differentiation state profiles observed in recipients and donors are likely due to the age 

gap between these two cohorts, given that the donors were always one of the parents. 

Nonetheless, recipients tended to have a “younger” profile than age-matched controls, 

suggesting that age is not solely responsible for these differences. 

We next sought to assess the mechanisms underlying T cell reconstitution in these 

patients, in particular the relative contribution of thymic output and peripheral expansion. 

In order to achieve this, we assessed the levels of Recent Thymic Emigrants, as estimated 

by the expression of CD31 within naive CD4
+
 T cells and quantification of signal-joint 

TRECs (sjTRECs), and measured telomere length as an indicator of peripheral expansion 

(Figures 12, 13). The detrimental effects of ageing, disease and conditioning regimens on 

thymic function might limit the replenishment of the naive T cell pool with de novo 

generated T cells and thus favour immune reconstitution via peripheral expansion 
48-52

. 

Nevertheless, the increase in TREC content observed within CD4
+
 T cells in adults 

following highly active anti-retroviral therapy in HIV-infected patients 
53-57

, as well as 

after stem cell transplantation 
58,59

, suggest that the adult thymus retains the ability to 

generate new T cells. Several studies have used CD31 expression within naive CD4
+
 T 

cells to indirectly assess thymic output following hematopoietic stem cell transplantation 

11,60,61
. Although CD31 expression cannot be considered an absolute marker of Recent 

Thymic Emigrants given that CD31
+
 naive CD4

+
 T cells are able to undergo IL-7-driven 

homeostatic proliferation without losing CD31 expression (Figure 2), it identifies the 

population that is most enriched in newly generated T cells, as supported by the 
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observation that practically all de novo produced naive CD4
+
 T cell after autologous stem 

cell transplantation express CD31 
61

. 

 

 

 

 

Figure 11: Frequency of naive and memory subsets within the CD4
+
 and CD8

+
 T cell pools. 

The frequency of the naive and memory subsets, as defined by the expression of CD45RA and CD27, was 

determined within CD4
+
 (A) and CD8

+
 (B) T lymphocytes. A) There were no statistically significant 

differences on the subset distribution within CD4
+
 T lymphocytes between the three groups. B) Although 

recipients tended to have higher frequencies of CD45RA
+
CD27

+
 cells and lower frequencies of 

CD45RA
+
CD27

-
 cells within the CD8

+
 T population than donors and age-matched controls, these 

differences did not reach statistical significance. Mean values are shown as horizontal lines. Statistical 

analysis was performed using the Wilcoxon matched pairs test (GraphPad Prism). 
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We thus assessed the proportion of CD31-expressing cells within naive 

CD45RA
+
CD62L

+
 CD4

+
 T lymphocytes and found that it was significantly higher in 

recipients than in donors, and similar to that observed in age-matched controls (Figure 

12A). In order to further assess the contribution of thymic output to immune 

reconstitution in our cohort of haploidentical HCST recipients, we quantified the levels of 

sjTRECs within peripheral blood mononuclear cells (Figure 12B). The assessment of 

TREC content within purified CD4
+
 and CD8

+
 T cell subsets, particularly within naive 

CD4
+
 T cells, was precluded by the small number of cells that could be allocated to this 

assay, given that only a single 50 ml peripheral blood sample was collected from each 

individual to carry out all the experiments performed in this study. During thymic T cell 

development, excision of the δ-chain locus during re-arrangement of the T cell receptor α-

chain locus produces a signal-joint (sj)-TREC which remains in the nucleus as a non-

replicating episomal DNA 
62

. Thus, upon cell division, the sjTREC is passed on to only 

one of the two daughter cells. As the progeny cells undergo further divisions, the sjTREC 

produced in the mother cell is progressively diluted out. Hence, at a population level, 

sjTREC content reflects the overall outcome of the TREC-enriching contribution of 

thymic output and the TREC-diluting effect of peripheral expansion 
62

. In agreement with 

the CD31 expression profile, sjTREC content in recipients tended to be higher than in 

donors and similar to the levels observed in age-matched controls (Figure 12B). These 

results point to a substantial contribution of thymic output to the immune reconstitution 

observed in these patients. The assessment of telomere length within T cell subsets gives 

an indication of the relative replicative history of these populations. Hence, naive CD4
+
 T 

cells have been shown to have longer telomeres than their memory counterparts 
63,64

. 

Given that the CD45RA
+
 CD4

+
 T cell population is highly enriched in naive T cells, we 

expected to observe higher telomere-specific fluorescence intensity in this subset than in 

CD4
+
 T cells lacking CD45RA expression. As illustrated in Figure 13A, we did observe a 

brighter fluorescence resulting from hybridisation with a telomere probe within CD45RA-

expressing CD4
+
 T cells. In all three cohorts, CD45RA

+
 CD4

+
 T cells had significantly 

longer telomeres than their CD45RA
-
 counterparts (paired t test: donors P= 0.0125; 

recipients P= 0.0364; controls P= 0.0004). When we compared the telomere length within 

CD45RA
+
 or CD45RA

-
 CD4

+
 T cells between the three cohorts, we observed no 

statistically significant difference (Figure 13B). 
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Figure 12: Assessment of relative RTE levels through the expression of CD31 and sjTREC content. 

A) CD31 expression was used to identify a population enriched in Recent Thymic Emigrants (RTEs). The 

proportion of CD31
+
 cells within naive CD45RA

+
CD62L

+
 CD4

+
 T lymphocytes was significantly higher in 

recipients when compared to donors. B)  The levels of signal-joint T cell Receptor Excision Circles 

(sjTRECs) were quantified within PBMCs. Results are expressed as the copy number of sjTRECs per 10
6
 

PBMCs. In agreement with the proportion of CD31
+
 cells within naive CD4

+
 T cells, the sjTREC content 

tended to be higher in recipients than in donors, although it did not reach statistical significance. Mean 

values are shown as horizontal lines. Gaussian distribution was confirmed with the Kolmogorov-Smirnov 

normality test and statistical analysis was performed using paired t test (GraphPad Prism). 
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Figure 13: Telomere length measurement within CD4
+
 and CD8

+
 T cells. 

A) Representative pseudo-colour plot showing telomere probe fluorescence plotted against CD45RA 

staining within CD4
+
 T cells. B) Telomere length was measured within CD45RA

+
 and CD45RA

-
 CD4

+
, as 

well as within CD27
+
 and CD27

-
 CD8

+
 T lymphocytes. In all three cohorts, CD45RA

+
 CD4

+
 and CD27

+
 

CD8
+
 cells had significantly longer telomeres than their respective CD45RA

-
 CD4

+
 and CD27

-
 CD8

+
 

counterparts. Telomere length within each subset was not significantly different when donors, recipients 

and age-matched controls were compared. Mean values are shown as horizontal lines. Statistical analysis 

was performed using the Wilcoxon matched pairs test (GraphPad Prism). 

 

 

For the measurement of telomere length within CD8
+
 T cells, given that we could only 

use another surface marker besides CD8, we chose CD27 as it allows the discrimination 

between a CD27
+
 population comprising naive CD45RA

+
CD27

+
 and early memory 

CD45RA
-
CD27

+
 CD8

+
 T cells, and a CD27

-
 population containing highly differentiated 

memory CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 CD8

+
 T cells. As expected, CD27

+
 CD8

+
 

T cells had significantly longer telomeres than their CD27
-
 counterparts in all three 

cohorts (paired t test: donors P= 0.002; recipients P= 0.0173; controls P= 0.0018). 

Similarly to the results obtained for CD4
+
 T cell subsets, the telomere length within 

CD27
+
 and CD27

-
 CD8

+
 T cells was not statistically different between the three cohorts 

(Figure 13B). The observation that CD4
+
 and CD8

+
 T cell subsets from recipients and 

age-matched controls have similar telomere lengths further suggests that peripheral 

expansion was not the major mechanism driving T cell recovery in these patients. 
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Circulating IL-7 levels have been shown to inversely correlate with peripheral CD4
+
 T 

cell counts in lymphopenic hosts, namely in HIV-infected individuals 
65,66

 and as a result 

of chemotherapy 
65

. In agreement with the observation that the absolute numbers of CD4
+
 

T cells were not significantly decreased in our cohort of transplant recipients in 

comparison to age-matched controls (Figure 10A), we found that the IL-7 serum levels 

observed in recipients were no higher than those observed in donors and age-matched 

controls (data not shown). This result further suggests that these patients have 

successfully restored the size of the CD4
+
 T cell pool. Furthermore, persistent TCR 

activation has been shown to chronically down-modulate IL-7Rα expression 
28,67

. Hence, 

if antigen-driven proliferation was a major mechanism behind the recovery of T cell 

numbers, we could expect to find significantly lower IL-7Rα levels in these patients. In 

order to clarify this issue, we assessed the IL-7Rα expression levels within CD4
+
 and 

CD8
+
 T cell subsets (Figure 14). The MFI of IL-7Rα within naive and memory CD4

+
 T 

cell subsets as defined by CD45RA and CD27 expression were very similar between the 

three cohorts (Figure 14A). The same was true for the IL-7Rα levels within 

CD45RA/CD27 CD8
+
 T cell subsets (Figure 14C). We further dissected the naive CD4

+
 

T cell population into CD31
+
 and CD31

-
 subsets, and found comparable levels of IL-7Rα 

expression between the three cohorts (Figure 14B). The expression of IL-7Rα levels 

comparable to the ones observed in healthy age-matched controls suggests that TCR-

driven homeostatic proliferation was probably not the major mechanism underlying 

immune reconstitution in these patients. 

Finally, we sought to investigate if the restoration of T cell numbers was accompanied 

by maintenance of a diverse TCR repertoire. For this purpose, we performed a 

spectratyping analysis within CD4
+
 and CD8

+
 T cells (Figures 15-19). This analysis 

allows us to assess the complementarity-determining region 3 (CDR3) length distribution 

within each Vβ family (Figures 15-18). The gene segments encoding T cell receptor α- 

and β-chains must be re-arranged to produce a functional gene 
68

. This process involves 

the stochastic re-arrangement of gene segments from the variable (V), diversity (D) in the 

case of the TCR β chain, and joining (J) libraries 
68

. The diversity of each TCR chain is 

concentrated in the CDR3, comprising the junction between V and J or V, D, and J 

segments, which plays a key role in antigen recognition 
68

. In the TCR β-chain, the CDR3 

region of any Vβ-Jβ combination may vary in length by as many as six to eight amino 

acids 
69,70

. 
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Figure 14: IL-7Rα expression within CD4
+
 and CD8

+
 T cell subsets. 

IL-7Rα expression was assessed within naive and memory CD4
+
 and CD8

+
 T cell subsets. Graphs show the 

median fluorescence intensity of IL-7Rα within CD4
+
 (A) and CD8

+
 (C) T cell subsets defined by CD45RA 

and CD27 expression. IL-7Rα expression levels within each CD45RA/CD27 CD4
+
 and CD8

+
 subset were 

not significantly different when donors, recipients and age-matched controls were compared. B) Graph 

shows the MFI of IL-7Rα expression within CD31
+
 and CD31

-
 naive CD4

+
 T cell subsets. IL-7Rα levels 

within each CD31 naive CD4
+
 subset were not significantly different between the three cohorts. Mean 

values are shown as horizontal lines. Statistical analysis was performed using the Wilcoxon matched pairs 

test (GraphPad Prism). 
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The progress of T cell repertoire recovery following stem cell transplantation can be 

monitored by spectratype analysis, which provides a measure of diversity at the level of 

CDR3 length, reflecting the overall sequence heterogeneity 
71,72

. The CDR3 region of the 

re-arranged TCR β-chain variable region is amplified by PCR, followed by size-based 

separation and quantification by a multicapillary electrophoresis based Genetic Analyser 

73
. Primers specific for each TCR Vβ family are used to provide independent 

spectratypes, which are classically presented as histograms of the number of T cells 

bearing receptors plotted against receptor length for each of the TCR Vβ family 
73

. T cell 

pools comprising a diverse polyclonal TCR repertoire present a Gaussian distribution of 

CDR3 length. If the TCR repertoire is skewed, the distribution of CDR3 lengths is not 

Gaussian, showing a reduction in the number of peaks or even comprising a single peak 

in case of clonal dominance 
69,74

. We present our results as the proportion of individuals 

in a given cohort presenting a polyclonal Gaussian, polyclonal skewed, oligoclonal or 

monoclonal distribution of CDR3 length for each Vβ family within CD4
+
 (Figure 15) and 

CD8
+
 (Figure 17) T cells. We also show representative spectratypes of CD4

+
 (Figure 16) 

and CD8
+
 (Figure 18) T cells from a transplant recipient together with the respective 

donor and age-matched control. 

As illustrated in Figure 15B, all the recipients displayed a polyclonal distribution of 

CDR3 length within the CD4
+
 T cell pool, except for a recipient who had an oligoclonal 

distribution of the Vβ13 and Vβ22 families. This markedly polyclonal spectratype profile 

closely resembled the one observed in CD4
+
 T cells from age-matched controls (Figure 

15C). As previously described 
75-80

, we observed more perturbations in TCR Vβ 

repertoire diversity in CD8
+
 T cells (Figure 17) than in CD4

+
 T cells (Figure 15). This 

may be due to the more robust and prolonged proliferative response upon antigen 

encounter observed in CD8
+
 compared to CD4

+
 T cells 

78
. Although CD8

+
 T cells from 

one recipient displayed a monoclonal distribution within the Vβ9 and Vβ11 families, 

while another recipient had a monoclonal distribution within the Vβ22 family, the CD8 

TCRBV repertoire was largely polyclonal (Figure 17B). Furthermore, we determined the 

overall complexity of the TCR Vβ repertoire by assessing the number of discrete peaks 

detected
 
per Vβ family and scoring each family accordingly, as previously described 

19
. 

The overall spectratype complexity
 
score was calculated as the sum of the scores for each 

subfamily in each individual. Results are expressed as the average complexity score for 

CD4
+
 and CD8

+
 T cells within each cohort (Figure 19). 
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Figure 15: Assessment of TCR repertoire by spectratyping analysis of the CDR3 Vβ regions of CD4
+
 

T cells. 

Spectratyping analysis was performed in RNA isolated from purified CD4
+
 T cells from donors (A), 

recipients (B) and age-matched controls (C), producing histograms of the number of T cells displaying a 

given receptor length for each TCR Vβ family. The distribution of each Vβ family was classified as: 

polyclonal Gaussian when 8 to 10 peaks were present with a dominant peak at the center of the distribution; 

polyclonal skewed when one of the peaks represented over 40% of the total area or when two dominat 

peaks represented 70% of the total area for that Vβ; oligoclonal when only two peaks were present or 

monoclonal when one Vβ peak comprised an area corresponding to over 90% of the total Vβ families. 

Representation of the peaks were calculated according to the formula % VBn = (peak area VBn1/ Σ peaks 

area VBn1-10) x 100. Results are expressed as the percentage of individuals who displayed each of the above 

described distributions for each Vβ family, within each cohort. No major imbalances were observed in 

recipients as compared to donors and age-matched controls. 
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Figure 16: Spectratyping analysis of the CDR3 Vβ regions of CD4
+
 T cells from a representative 

recipient together with the respective donor and age-matched control. 

The spectratypes obtained for each Vβ family on CD4
+
 T cells from a representative recipient, the 

respective donor and age-matched control are shown. 
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Figure 17: Assessment of TCR repertoire by spectratyping analysis of the CDR3 Vβ regions of CD8
+
 

T cells. 

Spectratyping analysis was performed in RNA isolated from purified CD8
+
 T cells from donors (A), 

recipients (B) and age-matched controls (C). The distribution of each Vβ family was classified as described 

in Figure 15. Results are expressed as the percentage of individuals who displayed polyclonal Gaussian, 

polyclonal skewed, oligoclonal or monoclonal distributions for each Vβ family, within each cohort. No 

major imbalances were observed in recipients when compared to donors and age-matched controls. 
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Figure 18: Spectratyping analysis of the CDR3 Vβ regions of CD8
+
 T cells from a representative 

recipient together with the respective donor and age-matched control. 

The spectratypes obtained for each Vβ family on CD8
+
 T cells from a representative recipient, the 

respective donor and age-matched control are shown. 
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The complexity score within CD4
+
 and CD8

+
 T cells was very similar between 

recipients and age-matched controls, suggesting the maintenance of a broad T cell 

repertoire (Figure 19). Hence, the spectratyping analysis revealed a largely polyclonal 

TCRBV repertoire both within the CD4
+
 and CD8

+
 T cell pools, suggesting that immune 

reconstitution was accomplished in these patients whilst maintaining a diverse repertoire. 

Overall, our data show that, once the initial post-transplantation period is successfully 

overcome, full immune reconstitution can be achieved following haploidentical HSCT, 

pointing to a substantial contribution of thymic output to immune reconstitution, despite 

the high degree of HLA-mismatch between donor and recipient in this setting.  

 

Figure 19: Complexity score within CD4
+
 and CD8

+
 T cells. 

Spectratype histograms for each Vβ family were given a complexity score depending on the number of 

peaks obtained (adapated from Wu et al. 
19

), whereby the appearence of 8 to 10 peaks gives a score of 8 and 

then onwards, to a minimum score of 1 when only one peak can be observed. The maximum overall 

complexity score that can be achieved is 176 that would originate from all 22 Vβ families having 

spectratypes with 8 peaks. Graphs show the overall complexity score within CD4
+
 (A) and CD8

+
 T cells (B) 

from each donor, recipient and age-matched control. Mean values are shown as horizontal lines. 
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Discussion 

We demonstrated that IL-7-induced cycling of naive CD4
+
 T cells from adult 

peripheral blood is restricted to the CD31-expressing subset. Furthermore, IL-7 

stimulation was associated with maintained or even increased levels of CD31 expression, 

thus demonstrating that CD31
+
 naive CD4

+
 T cells are able to proliferate without losing 

CD31 expression.  IL-7-induced proliferation and CD31 preservation were both 

dependent on the PI3K pathway, likely contributing to the homeostastic maintenance of 

the CD31
+
 naive CD4

+
 T cell pool. Although our results suggest that adult CD31

-
 naive 

CD4
+
 T cells require other triggers to undergo homeostatic proliferation, IL-7-induced 

cell survival is likely to play a key role in the maintenance of both CD31
+
 and CD31

-
 

naive CD4
+
 T cell subsets. 

Thymic involution leads to a decreased output of de novo generated naive T cells into 

the periphery throughout adulthood 
1
. Hence the maintenance of the naive T cell pool has 

to be achieved through a combination of residual thymic output and homeostatic 

proliferation in the periphery, sustaining naive T cell numbers whilst preserving a diverse 

repertoire as well as naive phenotypic and functional hallmarks. In particular, the 

maintenance of the CD31
+
 naive CD4

+
 T cell subset during ageing requires homeostatic 

cues which will induce proliferation without down-modulating CD31 expression. The 

CD31
+
 naive CD4

+
 T cell subset was initially described to comprise cells that had not yet 

undergone post-thymic proliferation, contrary to the CD31
-
 subset which was proposed to 

be generated upon homeostatic prolifertation in the periphery given their lower TREC 

content compared to CD31
+
 naive CD4

+
 T cells 

9,81
. However, thymic output alone has 

been suggested to be insufficient to achieve the CD31
+
 naive CD4

+
 T cell numbers 

observed during ageing, implying a contribution from peripheral expansion to the 

maintenance of the CD31
+
 naive CD4

+
 T cell subset 

62
. Moreover, TREC levels within 

CD31
+
 naive CD4

+
 T cells, despite being consistently higher than within the CD31

-
 

subset, have also been shown to decrease, albeit modestly, during aging, further 

suggesting that CD31
+
 naive CD4

+
 T cells undergo at least some level of post-thymic 

proliferation 
10

. Interestingly, a clinical trial in cancer patients has reported that IL-7 

administration leads to an age-independent increase in absolute numbers of CD31
+
 naive 

CD4
+
 T cells 

25
. Our results point to IL-7 as a potential homeostatic cue with the capacity 

to induce proliferation of CD31
+
 naive CD4

+
 T cells in the periphery whilst preserving 
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CD31 expression, ensuring the maintenance of the size as well as diversity of the naive T 

cell pool. 

These data imply that CD31 expression is not sufficient to identify RTEs given that the 

CD31
+
 naive CD4

+
 T cell subset might include cells that have already undergone post-

thymic proliferation. Nonetheless, CD31 is a relevant marker which distinguishs a naive 

CD4
+
 T cell population highly enriched in RTEs, as demonstrated by the high TREC 

content and the age-dependent decrease in the size of the CD31
+
 naive CD4

+
 T cell pool 

9-

12
.  

On the other hand, our results show that IL-7-induced proliferation of CD31
+
 naive 

CD4
+
 T cells does not result in the appearance of a CD31

-
 sub-population, suggesting that 

other homeostatic mechanisms are implicated in the generation of the CD31
-
 naive CD4

+
 

T cell subset. TCR triggering with low-affinity antigens, namely self-MHC/peptide 

complexes involved in naive T cell homeostasis, has been proposed as a likely candidate 

9,12
, supported by evidence of recent TCR engagement in these cells 

12
, although a 

putative co-stimulatory role for IL-7 in this process cannot be precluded.  

CD31 expression might be associated with sensitivity to TCR-mediated stimuli, given 

that CD31 engagement has been shown to inhibit TCR-mediated signal transduction via 

its cytoplasmic ITIMs 
82

. We can thus speculate that the CD31
-
 naive CD4

+
 T cell subset 

might undergo homeostatic proliferation upon TCR engagement with self-MHC/peptide 

complexes 
2
, whereas CD31

+
 naive CD4

+
 T cells might be impervious to this proliferative 

trigger. Furthermore, the involvement of CD31 in transendothelial migration of 

neutrophils and monocytes 
83

 points to a putative role for this marker in the migration of 

CD31
+
 naive T cells into secondary lymphoid organs 

9
, where they might encounter IL-7 

and consequently undergo homeostatic proliferation. 

The distinct responses to IL-7 observed in adult CD31
+
 and CD31

-
 naive CD4

+
 T cells 

did not correlate with the basal levels of IL-7Rα expression. This observation is in 

agreement with another in vitro study where the responsiveness of human naive CD4
+
 T 

cells to IL-7 has been found to not correlate with IL-7Rα expression levels 
28

.  

In order to investigate which signalling pathways mediate the IL-7-induced effects on 

naive CD4
+
 T cell subsets, we used inhibitors to specifically block the MEK/ERK and 

PI3K pathways. We found that IL-7-induced proliferation of adult CD31
+
, as well as of 

both CD31
+
 and CD31

-
 naive CD4

+
 T cells from cord blood, required PI3K activation, as 

previously described for total naive CD4
+
 T cells from cord blood 

3
. Furthermore, the 



94 Chapter 1 

 

effects of IL-7 on the maintenance or increase of CD31 expression levels were also 

dependent on the PI3K pathway. Conversely, the down-modulation of the CD31 ligand 

CD38 following IL-7 stimulation was not reversed upon PI3K inhibition. Although IL-7-

induced proliferation was PI3K-dependent, IL-7 stimulation led to IL-7Rα down-

modulation, Bcl-2 up-regulation and protection against apoptosis in both CD31
+
 and 

CD31
-
 naive CD4

+
 T cells even in the presence of the PI3K inhibitor. Thus the 

observation that IL-7-induced proliferation of adult naive CD4
+
 T cells was restricted to 

the CD31
+
 subset might be due to a selective block in the activation of the PI3K pathway 

in adult CD31
-
 naive CD4

+
 T cells in response to IL-7.  

Overall, our data suggests that CD31 expression identifies a naive CD4
+
 T cell 

population enriched in RTEs that is preferentially expanded upon IL-7 stimulation via a 

PI3K-dependent pathway. Hence therapeutic administration of IL-7 might benefit the 

maintenance of a diverse T cell repertoire by promoting the survival and homeostatic 

proliferation of the CD31
+
 naive CD4

+
 T cell subset in different settings, namely during 

ageing and following stem cell transplantation. 

In the case of the latter scenario, recovery of a CD31
+
 naive CD4

+
 T cell pool might be 

hindered by age-related thymic involution as well as by conditioning regimens that 

further disrupt the IL-7-rich thymic micro-environment 
84

. On the other hand, CD31
+
 

naive CD4
+
 T cell numbers may also be recovered through homeostatic proliferation in 

the periphery 
85

, which according to our results might be driven by IL-7. In order to assess 

if naive T cell homeostasis was restored following haploidentical HSCT and the potential 

mechanisms underlying this recovery, we performed an evaluation of immune 

reconstitution in a group of five patients who were four to six years post-transplant at the 

time of the study. We found that transplant recipients displayed CD4
+
 and CD8

+
 T cell 

counts, as well as a naive and memory profile, comparable to age-matched controls. In 

particular, the proportion of CD31
+
 cells within the naive CD4

+
 T cell population in 

recipients was similar to that observed in age-matched controls and significantly higher 

when compared to the respective donors. A study in mice has shown that RTEs have a 

survival advantage over resident naive T cells in the periphery, being preferentially 

incorporated in the naive T cell pool 
86

. Hence the substantial proportion of CD31
+
 cells 

within the naive CD4
+
 T cell pool suggests that thymic output might have contributed to 

the replenishment of the naive T cell pool. We sought to further investigate the relative 

contribution of thymic output and peripheral expansion to the replenishment of the T cell 
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pool in these patients. The relatively high TREC content within PBMCs and the presence 

of similarly long telomeres in CD4
+
 and CD8

+
 T cell subsets from recipients when 

compared to age-matched controls indicate that thymic output must have contributed at 

least partly to immune reconstitution. 

The levels of IL-7Rα expression within naive and memory CD4
+
 and CD8

+
 T cells, 

particularly within CD31 naive CD4
+
 subsets, were very similar when the three cohorts 

were compared, suggesting that homeostatic stimuli rather than TCR activation, which 

has been shown to persistently down-modulate IL-7Rα expression 
28,67

, were probably the 

major triggers for peripheral T cell expansion in these patients. Moreover, the presence of 

a broad and largely polyclonal T cell repertoire in transplant recipients, comparable to the 

one observed in age-matched controls, supports the view that immune reconstitution was 

likely driven by thymic output together with homeostatic proliferation of peripheral T 

cells. The contribution of thymic output to immune reconstitution might decrease the risk 

of GVHD through negative selection of self-reactive T cells during de novo T cell 

generation 
87

. Pre-clinical studies in animal models have reported that IL-7 therapy boosts 

thymic function and homeostatic proliferation in the periphery following stem cell 

transplantation 
88-93

. As mentioned above, a rhIL-7 clinical trial in cancer patients has 

shown that IL-7 administration leads to increased numbers of CD31
+
 naive T cells 

25
. In 

light of our results, we can speculate that this outcome is at least partly due to the 

preferential expansion of CD31
+
 naive T cells driven by IL-7. 

Overall, our data demonstrate that IL-7 induces proliferation and maintenance of CD31 

expression on CD31
+
 naive CD4

+
 T cells through a PI3K-dependent mechanism, possibly 

contributing to the homeostatic maintenance of this subset throughout adulthood. 

Furthermore, our results suggest that T cell homeostasis, in particular the CD31
+
 naive 

CD4
+
 T cell pool, was successfully restored following haploidentical HSCT, a process 

which appears to have relied on both thymus-dependent and -independent mechanisms. 
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CHAPTER 2 

Characterization of human 

CD45RA
+
CD27

-
 CD4

+
 T cells 

 

Introduction 

Human CD4
+
 T cell subsets can be identified according to the expression of CD45RA 

and CD27: CD45RA
+
CD27

+
, CD45RA

-
CD27

+
, CD45RA

-
CD27

-
 and CD45RA

+
CD27

-
. 

The characterisation of these subsets based on surface receptor expression, functional 

properties, TREC content and telomere length has established that the CD45RA
+
CD27

+
 

population comprises naive cells, the CD45RA
-
CD27

+
 subset encompasses cells at an 

early stage of differentiation, whereas both CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 subsets 

consist of highly differentiated CD4
+
 T cells 

1,2
. The latter population has been described 

in human CD8
+ 

T cells as the most differentiated type of memory cells, which is 

supported by their low proliferative capacity,
 
high susceptibility to apoptosis and loss of 

CD28, CD27, and CCR7 expression 
1,3-5

. CD45RA
+
27

-
 CD8

+ 
T cells have been shown to 

accumulate during ageing 
6,7

 and chronic viral infections 
8-12

, comprising large clonal 

expansions of virus-specific cells 
4,10

. On the other hand, CD45RA
+
27

- 
CD4

+
 T cells are 

only present at very low frequencies and, although these cells also accumulate with 

ageing and, more strikingly, with CMV infection 
2
, this subset remains poorly 

characterized. While the origin of these cells remains to be elucidated, it has been 

proposed that CD45RA re-expression only occurs in the absence of antigen 
5,13,14

. 

The aim of this work was to perform a detailed study of the CD45RA
+
27

- 
CD4

+
 T cell 

subset in order to understand the relevance and the impact of the accumulation of this rare 

and under-characterized subset. In the first part of this chapter, we report a detailed 

characterization of the CD4
+
 T cell subsets defined by the expression of CD45RA and 

CD27 in terms of their degree of differentiation, functionality, ability to proliferate, 

survive and trigger relevant signalling pathways following activation. We also sought to 

uncover the potential mechanism responsible for the re-expression of CD45RA on 
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memory CD4
+
 T cells. In the second part, our aim was to elucidate whether the 

CD45RA
+
27

- 
CD4

+
 T cell subset is truly quiescent, as was previously reported for 

CD45RA re-expressing CD8
+
 T cells 

12
, or if this subset was actually close to senescence. 

Cellular senescence differs from quiescence in that the growth arrest state is permanent, 

whilst quiescent cells may re-enter the cell cycle upon appropriate stimulation 
15

. For this 

purpose, we assessed several senescence-associated markers, such as γ-H2AX, telomere 

length and telomerase activity, and the impact of the p38 pathway on the expression of 

these markers in CD45RA
+
27

- 
CD4

+
 T cells. 

 

Methods 

1. Blood samples 

Heparinized peripheral blood was collected from healthy volunteers between the ages 

of 26 and 60 (median age 39). All donors provided written informed consent and the work 

was approved by the Ethics Committee of the Royal Free Hospital. 

2. Purification of Lymphocyte Subsets 

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Hypaque density 

gradient (Amersham Pharmacia Biotech, Uppsala, Sweden). CD4
+
 T cells were purified 

by positive selection using the VARIOMACS system (Miltenyi Biotec) according to the 

manufacturer’s instructions. In some experiments, CD4
+
 T cells were further sorted into 

CD45RA/CD27 subsets using a FACSAria flow cytometer (BD Biosciences, San Jose, 

CA) after staining with CD45RA and CD27 antibodies for 30 minutes at 4°C in 

phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA; Sigma-

Aldrich). 

3. In vitro Cell Culture 

Cells were cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal calf 

serum (FCS), 100 U/mL penicillin, 100 mg/mL streptomycin, 50 µg/ml gentamicin and 2 

mM L-glutamine (all from Invitrogen) at 37°C in a humidified 5% CO2 incubator. 

Purified CD4
+
 subsets were activated in the presence of anti-CD3 antibody (purified 

OKT3, 0.5 µg/ml), together with rhIL-2 (5 ng/ml; R&D Systems) or  autologous PBMC 

irradiated with 40 Gy γ-radiation, as a source of multiple co-stimulatory ligands provided 
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by B cells, dendritic cells, and macrophages found in these populations. In other 

experiments, cells were cultured in the presence of rhIL-2 (5 ng/ml), rhIL-7 (10 ng/ml) or 

rhIL-15 (5 ng/ml) (all from R&D Systems). Cytokines were added at the beginning of the 

cell culture and were not replenished. Cells were harvested at different times for 

phenotypic and functional analyses. In some experiments, the p38 inhibitor BIRB796 was 

added to the culture. BIRB796 was obtained from David Kipling already dissolved in 

DMSO at the concentration of 50 mM. It was diluted in 0.1% DMSO and used at a final 

concentration of 500 nM. Cells were pretreated with the inhibitor for 30 minutes. A 

solution of 0.1% DMSO was used as a vehicle control. 

4. Proliferation assessment by [
3
H]Thymidine Incorporation 

Purified CD45RA/CD27 CD4
+
 T cell subsets were stimulated with anti-CD3 (purified 

OKT3, 0.5 μg/mL) and irradiated APCs in a 1:1 ratio on 96-well round-bottomed tissue 

culture plates (Falcon, BD). The cells were incubated at 37°C in a humidified 5% CO2 

atmosphere for 4 days before adding tritiated thymidine ([
3
H]thymidine) (GE Healthcare) 

and incubating for a further 7 hour period before placing the plates at -20ºC. Proliferation 

was expressed as the mean [
3
H]thymidine incorporation, quantified as counts per minute 

(cpm), of triplicate wells.  

5. Flow Cytometric Analysis 

5.1. Surface staining 

Cells resuspended in PBS containing 1% BSA and 0.1% sodium azide (Sigma-

Aldrich) were stained for 10 minutes at room temperature with the following anti–human 

monoclonal antibodies: CD45RA FITC (clone HI100; BD Pharmingen) or APC (clone 

MEM-56; Caltag); CD45RO PE (clone UCHL1); CD4 PerCP (clone SK3) or PE-Cy7 

(clone SK3); CD27 PE (clone M-T271); CD28 FITC (clone CD28.2); CD127 PE (clone 

hIL-7R-M21); CCR7 PE-Cy7 (clone 3D12) (all from BD Pharmingen); CD57 PE (clone 

TB03; Miltenyi Biotec). Samples were acquired on a BD BD LSR II flow-cytometer (BD 

Biosciences) after fixation with 1% formaldehyde (Sigma-Aldrich). Data were analyzed 

using FlowJo software (TreeStar, Ashland, OR). 
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5.2. Intracellular staining 

Intracellular staining for Granzyme B PE (clone GB11; eBioscience), Perforin FITC 

(clone δG9; BD Pharmingen), Bcl-2 FITC (clone 124; Dako) or PE (clone Bcl-2/100; BD 

Pharmingen), Ki67 FITC (clone B56; BD Biosciences) and total p38 Alexa Fluor 488 

(rabbit anti-p38, Cell Signaling; Alexa Fluor 488 goat anti-rabbit Ig, Invitrogen) was 

performed using the Foxp3 Staining Buffer Set (Miltenyi Biotec) according to the 

manufacturer’s instructions. Samples were acquired on a BD FACS Calibur 2 flow-

cytometer (BD Biosciences) after fixation with 1% formaldehyde (Sigma-Aldrich). Data 

were analyzed using FlowJo software (TreeStar, Ashland, OR). 

5.3. Measurement of Cytokine Production. 

PBMCs were activated with anti-CD3 (purified OKT3, 0.5 μg/ml) and rhIL-2 (5 

ng/ml; R&D Systems) at 37°C in a humidified 5% CO2 incubator. Unstimulated controls 

were also included. After 2 hours, Brefeldin A (5 μg/ml, Sigma-Aldrich) was added, and 

cells were incubated overnight at 37°C. Cells were subsequently washed and stained for 

surface CD4, CD45RA and CD27, followed by staining for intracellular TNF-α PE (clone 

MAb11; BD Pharmingen) using the Foxp3 Staining Buffer Set (Miltenyi Biotec) 

according to the manufacturer’s instructions. Samples were acquired on a BD FACS 

Calibur 2 flow-cytometer (BD Biosciences). Data were analyzed using FlowJo software 

(TreeStar, Ashland, OR). 

5.4. Assessment of Apoptosis 

Apoptosis was assessed using an Annexin V/ Propidium Iodide (PI) detection kit (BD 

Biosciences). Cells resuspended in 1x Binding Buffer were incubated with Annexin V 

antibody and PI for 15 minutes at room temperature. Samples were immediately acquired 

on a BD FACS Calibur 2 flow-cytometer (BD Biosciences). Data were analyzed using 

FlowJo software (TreeStar, Ashland, OR). 

5.5. CFSE dilution assay 

Proliferation was assessed by carboxyfluorescein diacetate succinimidyl ester (CFSE) 

dilution assay. Cells were labeled with 0.5 µM CFSE (Molecular Probes-Invitrogen, 

Carlsbad, CA) at 37°C for 15 minutes in the dark, quenched with ice-cold culture medium 

at 4°C for 5 minutes, and washed 3 times before culture in the presence of 50 ng/ml rhIL-

7. Samples were acquired on a BD FACS Calibur 2 flow-cytometer (BD Biosciences) 
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after fixation with 1% formaldehyde (Sigma-Aldrich). Data were analyzed using FlowJo 

software (TreeStar, Ashland, OR). 

5.6. Phosphorylation state analysis by Phosflow 

For the detection of pAkt(Ser473), PBMCs were rested overnight in RPMI (Sigma-

Aldrich) with 1% human AB serum (Sigma-Aldrich), and then starved in serum-free 

RPMI for 2 hours prior to stimulation. The analysis of p38 (pT180/pY182) was 

performed directly ex vivo or after stimulation with 25ng/ml of TNF-α for 10 minutes. 

Following surface staining for CD45RA, CD27 and CD4, cells were activated with anti-

CD3 (purified OKT3, 1 μg/ml) on ice for 20 minutes. Primary mAbs were cross-linked 

with anti-mouse IgG F(Ab′)2 (20 μg/ml, Jackson ImmunoResearch) by incubating on ice 

for 20 minutes. Cells were then stimulated at 37°C (5 minutes for pAkt; 20 minutes for 

phospho-p38). The unstimulated control cells underwent the same manipulations but 

without addition of anti-CD3 and cross-linker. Activation was arrested by fixing the cells 

with warm Cytofix Buffer (BD Biosciences) at 37°C for 10 minutes. Cells were 

permeabilized with ice-cold Perm Buffer III (BD Biosciences) at 4°C for 30 minutes and 

then incubated with PE mouse anti-Akt (pS473) or with Alexa Fluor 488 anti-p38 

(pT180/pY182) (both from BD Biosciences) for 30 minutes at room temperature. Cells 

were washed in Stain Buffer (BD Pharmingen) before acquisition.  

-H2AX (pSer139) (Alexa 488; clone 2F3; Biolegend) expression was assessed 

directly ex vivo or after short-term activation (30 min, 1h, 24h) of total CD4
+
 T cells with 

0.5 μg/ml of immobilized anti-CD3 and 5 ng/ml of rhIL-2, following surface staining for 

CD45RA and CD27. In other experiments, purified CD45RA/CD27 CD4
+
 subsets were 

activated in the same conditions for 4 days. As a positive control, total CD4
+
 T cells were 

irradiated with with 40 Gy γ-radiation. Intracellular staining for -H2AX was performed 

using the BD Phosflow buffers as described above. 

Samples were acquired on a BD LSR II flow cytometer (BD Biosciences) and 

analysed using FlowJo software (TreeStar, Ashland, OR). 

5.7. Telomere length measurement by Flow-FISH  

MACS-sorted CD4
+
 T were surface stained using CD45RA biotin (clone HI100; 

eBioscience), Streptavidin Cy3 (Cedarlane Laboratories) and CD27 FITC (clone M-T271; 

BD Pharmingen). Telomere length of cell populations defined by expression of CD45RA 
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and CD27 was measured using the Flow-FISH protocol as described on section 4.6 of the 

Methods in Chapter 1. 

6. Measurement of Telomerase Activity by TRAP assay 

Telomerase activity was determined using a modified version of the telomeric repeat 

amplification protocol (Oncor, Gaithersburg, MD) as previously described 
16

. Purified 

subsets were activated with anti-CD3 (purified OKT3, 0.5 μg/ml) and irradiated APCs for 

4 days. Cell extracts from equivalent numbers of Ki67
+
 cells were used for telomeric 

elongation, using a [γ-
33

P] ATP-end-labeled telomerase substrate (TS) primer. These 

samples were then amplified by PCR amplification, using 25 to 28 cycles of 30 seconds at 

94°C and 30 seconds at 59°C. The PCR products were run on a 12% poly-acrylamide gel 

(Sigma-Aldrich) which was then exposed to an autoradiography film (Hyperfilm MP, 

Amersham). Telomerase activity was calculated as a ratio between the optical density of 

the telomeric repeat bands and of the internal standard band (IS). As a negative control 

lysis buffer was used in place of cell extract. A control template containing the same 

sequence as the TS primer plus 8 telomeric repeats was used as a PCR positive control. 

7. Real-Time quantitative PCR (RT-qPCR) 

The mRNA levels of the transcription factors Blimp-1, T-bet and Eomes were 

measured in purified CD4
+
 CD45RA/CD27 before (ex vivo) and after a 3 day culture 

period in the presence of rhIL-7 (5, 10, 25, 50 ng/ml). Expression of Bcl-2 mRNA was 

analyzed in CD4
+
 cells cultured with anti-CD3 (purified OKT3, 0.5 μg/ml) and rhIL-2 (5 

ng/ml) in the presence or absence of BIRB796 for 3 days. Total RNA was purified with 

RNeasy columns (Qiagen). Reverse transcriptions were performed with random primers 

using the MuLVRT reverse transcriptase (Invitrogen). The mRNA levels of Blimp-1, T-

bet, Eomes and Bcl2 were determined by real-time quantitative PCR (RT-qPCR) on an 

ABI PRISM 7500 with SYBR® Green PCR Master Mix according to the protocol 

provided by the manufacturer (both from Applied Biosystems) with the following 

primers: Bcl-2 forward 5'-TTG CTT TAC GTG GCC TGT TTC-3', Bcl-2 reverse 5'-GAA 

GAC CCT GAA GGA CAG CCAT-3'; T-bet forward 5'-GGT CGC GCT CAA CAA 

CCA CCT-3', T-bet reverse 5'-CAT CCG CCG TCC CTG CTT GG-3'; Eomes forward 

5'-GGC AAA GCC GAC AAT AAC AT-3', Eomes reverse 5'-TTC CCG AAT GAA 

ATC TCC TG-3'; Blimp-1 forward 5'-CTT ATC CCG GAG AGC TGA CA-3', Blimp-1 



The role of IL-7 in the Homeostasis of Human Naive and Memory CD4
+
 T cell subsets 109 

 

reverse 5'-GCT CGG TTG CTT TAG ACT GC-3'. The housekeeping 18S mRNA, used 

as an external standard, was amplified from the same cDNA reaction mixture using the 

primers: forward 5'-GGA GAG GGA GCC TGA GAA AC-3', reverse 5'- TCG GGA 

GTG GGT AAT TTG C-3'. Each sample was run in triplicate and target mRNA level was 

expressed as a ratio to the level of 18S to control for differing levels of cDNA in each 

sample.  

8. Western blot analysis 

CD4
+
 T cells were activated with PMA (0.5 μg/ml, Sigma-Aldrich) and ionomycin 

(0.5 μg/ml, Sigma-Aldrich) in the presence or absence of BIRB796. Cells were harvested 

after 30 minutes of stimulation and lysates were obtained by sonicating cells in 50 mM 

Tris-HCl (pH 7.5), 2 mM EGTA, 0.1% Triton X-100 buffer. Lysates from 2 x10
6
 cells 

were fractionated on SDS-polyacrylamide electrophoresis gels and analyzed by 

immunoblotting with either anti-phospho-p38 (pThr180/pTyr182, Cell Signaling), anti-

pJNK (pThr183/pTyr185, Cell Signaling) or anti-β-actin (Abcam) using the ECL 

Advanced Western Blotting Detection kit (Amersham Biosciences), according to the 

protocol provided by the manufacturer. 

9. Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 4.00 (GraphPad 

Software, San Diego, CA). Data are presented as mean plus or minus standard error of 

mean (SEM). P values less than 0.05 were considered significant: * indicates P < 0.05; ** 

indicates P < 0.001; *** indicates P < 0.0001. 
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Results 

Chapter 2.1 

IL-7-driven homeostatic mechanism induces CD45RA re-

expression on CD45RA
-
CD27

+
 CD4

+
 T cells 

 

The CD45RA
+
CD27

-
 CD8

+
 T cell subset has been described as terminally 

differentiated with limited capacity for self-renewal 
1,17

. The small numbers of 

CD45RA
+
CD27

-
 cells within the CD4

+
 T cell population has thus far precluded the 

extensive study of this subset in healthy donors. Therefore we sought to purify the four 

subsets defined by the expression of CD45RA and CD27 by FACS sorting in order to 

efficiently isolate and characterise the CD45RA
+
CD27

-
 CD4

+
 T cell subset. We observed 

that the percentage of CD4
+
 CD45RA

+
CD27

-
 cells is higher in older individuals, with a 

significant positive correlation with CMV infection, and that these cells have a highly 

differentiated phenotype (low IL-7Rα, CD28 and CCR7 expression) 
2
. We further 

characterised the CD4
+
 CD45RA

+
CD27

-
 subset in healthy donors by assessing their 

cytotoxic potential and the expression of activation markers (Figure 1). We analysed the 

expression of the apoptotic marker Fas (CD95) and of CD57, a marker known to be 

expressed on late stage effector CD8
+
 T cells 

18
, by gating within each of the 

CD45RA/CD27 CD4
+
 subsets directly ex vivo (Figure 1B, C). As expected, the 

expression of CD57 was practically undetectable within CD45RA
+
CD27

+
 cells (Figure 

1B). The CD45RA
+
CD27

-
 subset expressed significantly higher levels of CD57 than any 

of the other subsets, indicating that this is indeed a highly differentiated population 

(Figure 1B). In contrast, the expression of CD95 was significantly lower on the 

CD45RA
+
CD27

-
 subset compared to the CD45RA

-
CD27

+
 and CD45RA

-
CD27

-
 subsets 

(Figure 1C), as was previously described for CD45RA
+
CD27

-
 CD8

+ 
T cells 

3
. We also 

investigated the functional properties of the CD45RA/CD27 CD4
+
 T cell subsets by 

determining the expression of cytolytic molecules granzyme B and perforin, which was 

similarly low in CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 CD4

+
 T cells (Figure 1D, E). In 

contrast, CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 CD4

+
 T cells expressed both markers, the 

levels of which were significantly higher in the latter population (Figure 1D, E). 
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Figure 1: CD4
+
 CD45RA

+
 CD27

-
 cells express high levels of differentiation markers and of cytolytic 

molecules.  

A) Phenotypic analysis of CD45RA/CD27 expression on CD4
+
 T cells. PBMCs stained for CD4, CD45RA 

and CD27 were analysed by flow cytometry. Representative pseudo-color plots are shown. B-E) CD4
+
 T 

cells were purified using Magnetic Cell Sorting and surface stained for CD45RA, CD27, CD57 (B) and 

CD95 (C), and intracellularly for Granzyme B (D) and Perforin (E). The percentage of cells expressing each 

marker was analysed gating within total CD4
+
 cells and within each of the CD45RA/CD27 subsets. 

Horizontal lines depict median values. Statistical analysis was performed using the Wilcoxon matched pairs 

test (GraphPad Prism). 
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These data indicate that although CD45RA
+
CD27

-
 CD4

+
 T cells display phenotypic 

characteristics of highly differentiated T cells, they are potentially able to perform 

cytotoxic effector functions. 

In addition to their cytotoxic potential, CD45RA
+
CD27

-
 CD4

+
 T cells are also 

multifunctional as assessed by multiparameter flow cytometric analysis of IFN-, IL-2, 

TNF-α and CD40 ligand co-expression 
2
. Another crucial indicator of CD4

+
 T cell 

functionality is the ability to proliferate and survive following TCR activation. In order to 

address this issue, we evaluated the ability of purified subsets defined by CD45RA and 

CD27 expression to accumulate in culture following activation with anti-CD3 and 

irradiated autologous APCs (Figure 2). We observed that, after an initial slight increase in 

cell number, CD45RA
+
CD27

-
 cells underwent a steeper decline than the other subsets 

(Figure 2A).  CD45RA
+
CD27

-
 cells consistently showed the lowest cell recovery, failing 

to accumulate in culture after activation (Figure 2B). To clarify the contribution of 

reduced proliferation and/or increased cell death to the decreasing numbers of 

CD45RA
+
CD27

-
 cells after in vitro activation, we first assessed the proliferative ability of 

the CD45RA/CD27 CD4
+
 T cell subsets (Figure 3). The expression of the cell cycle-

related nuclear protein Ki67 was quantified before (ex vivo) and after TCR activation 

(Figure 3A). Within the freshly isolated CD45RA/CD27 CD4
+
 T cell subsets, only 

CD45RA
-
CD27

+
 and CD45RA

-
CD27

-
 cells appear to express an appreciable amount of 

Ki67 (Figure 3A upper panel), suggesting that the CD45RA
+
CD27

-
 CD4

+
 T cell subset is 

comprised of mostly resting cells as was described for CD45RA re-expressing CD8
+
 T 

cells 
12

. Following in vitro activation with anti-CD3 and irradiated autologous APCs, 

CD45RA
+
CD27

-
 CD4

+
 T cells consistently expressed high levels of Ki67 (Figure 3A 

lower panel, B). Proliferation was also assessed by tritiated thymidine incorporation 

(Figure 3C) which confirmed the results obtained by Ki67 staining, with CD45RA
+
CD27

-
 

CD4
+
 T cells showing proliferative ability following activation. These results indicate that 

the CD45RA
+
CD27

-
 CD4

+
 T cell subset is not exhausted and suggest that the inability to 

accumulate in culture might be due to a high susceptibility to apoptosis following 

activation. To confirm this hypothesis, we performed an apoptosis time-course by 

monitoring Annexin V staining and PI incorporation during activation (Figure 4). The 

percentage of live cells (Annexin V
-
 PI

-
) observed in each time point is shown (Figure 

4B). By day 3, the proportion of live cells within the CD45RA
-
CD27

-
 and 

CD45RA
+
CD27

-
 subsets was reduced to less than 50%.  
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Figure 2: CD4
+
 CD45RA

+
CD427

-
 cells do not accumulate in culture following activation.  

A) Purified CD45RA/CD27 CD4
+
 T cell subsets were activated with anti-CD3 and irradiated APCs. On the 

indicated time-points, the cell number was determined using a hemocytometer. Results are expressed as a 

percentage of the initial number of cells placed in culture. Error bars represent the SE from the mean of two 

separate experiments. B) Purified CD45RA/CD27 CD4
+
 T cell subsets were activated with anti-CD3 and 

IL-2 for 4 days. Bar graph shows the cell numbers recovered as a percentage of the initial number of cells 

placed in culture. Error bars represent the SE from the mean of three separate experiments (GraphPad 

Prism). 
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Figure 3: CD4
+
 CD45RA

+
 CD27

-
 cells display slow turnover ex vivo but are able to proliferate 

following activation.  

A, upper panel) CD4
+
 T cells were stained ex vivo and analysed by flow cytometry. The percentage of cells 

expressing Ki67 was determined by gating within total CD4
+
 cells and within each of the CD45RA/CD27 

subsets. Pseudo-colour plots from a representative experiment out of two performed are shown. A, lower 

panel, B, C) Purified CD45RA/CD27 CD4
+
 T cell subsets were activated with anti-CD3 and irradiated 

APCs for 4 days. A, lower panel) Ki67 expression was assessed within each subset. Representative pseudo-

colour plots are shown. B) Bar graph shows the percentage of Ki67 positive cells within each subset. Error 

bars represent the SE from the mean of five separate experiments. C) Proliferation was also assessed by 

tritiated thymidine incorporation under the same culture conditions. Results are expressed as counts per 

minute (cpm). Error bars represent the SE from the mean of three separate experiments. 
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The susceptibility to apoptosis following activation was more pronounced within the 

CD45RA
+
CD27

-
 population, which was extinct by day 15 (Figure 4B). Moreover, we 

observed that CD4
+
 CD45RA

+
CD27

-
 cells expressed significantly lower levels of the 

anti-apoptotic protein Bcl-2, measured by intracellular staining of CD4
+
 T cell subsets 

directly ex vivo, compared to all the other subsets 
2
. Taken together, these data indicate 

that pro-survival pathways are defective in CD45RA
+
CD27

-
 CD4

+
 T cells making them 

susceptible to apoptosis, as has been described for CD8
+
 T cells 

5,19
. 

The PI3K/Akt pathway plays a critical role in T cell survival by blocking pro-apoptotic 

proteins and promoting the function of pro-survival components, in particular several 

members of the Bcl-2 family 
20-23

. Akt can be phosphorylated on two residues, serine 473 

and threonine 308 
24

. Previous studies have shown that there is defective phosphorylation 

of Akt(Ser473) but not Akt(Thr308) in highly differentiated CD27
-
CD28

-
 CD8

+
 T cells 

25,26
. The CD27

-
CD28

-
 subset is heterogeneous and comprises both CD45RA

-
CD27

-
 and 

CD45RA
+
CD27

-
 T cells 

1
. We sought to determine whether CD45RA

+
CD27

-
 CD4

+
 T 

cells also had impaired Akt(Ser473) phosphorylation. In order to achieve this goal, we 

proceeded with the optimization of pAkt(Ser473) detection by flow cytometry (Figure 5). 

The detection of pAkt with traditional methods for analysing intracellular signalling 

pathways, such as Western Blot, was precluded by the extremely low percentages of the 

CD45RA
+
CD27

-
 subset within CD4

+
 T cells (less than 1% in most healthy donors). The 

flow cytometric approach allowed us to work with total CD4
+
 T cells and analyse the 

expression of phospho-proteins at a single cell level by gating within each 

CD45RA/CD27 CD4
+
 subset. As described for other CD4

+
 T cell populations 

27,28
, the 

background levels of Akt phosphorylation may hinder the detection of pAkt(Ser473) up-

regulation upon activation. To overcome this issue, CD4
+
 T cells were rested over-night 

in medium containing 1% human serum, followed by a further 2 hour starvation in serum-

free medium. This approach was effective in lowering the pAkt(Ser473) background 

levels, allowing a maximal increase in phosphorylation upon activation. We opted to 

optimize the technique using anti-CD3 and anti-CD28 as an optimal stimulation of total 

CD4
+
 T cells (Figure 5). As predicted, the levels of Akt(Set473) phosphorylation upon 

activation correlated with the expression levels of the co-stimulatory molecule CD28: the 

subsets that expressed high levels of CD28, i.e. CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 
2
, 

had the highest levels of pAkt(Set473), whilst cells that expressed low or negligible levels 
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of CD28, i.e. CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 

2
, were unable to  phosphorylate 

Akt(Ser473) upon activation (Figure 5). 

 

 

 

Figure 4: CD4
+
 CD45RA

+
CD427

-
 cells have impaired cell survival following activation.  

Purified CD45RA/CD27 CD4
+
 T cell subsets were activated with anti-CD3 and irradiated APCs. Apoptosis 

was assessed by Annexin V staining and PI incorporation. A) Pseudo-colour plots show the Annexin V/PI 

profile of each subset ex vivo (Day 0) and after 7 days in culture with anti-CD3 and irradiated APCs. The 

results shown are representative of four experiments performed. B) The percentage of live cells (Annexin 

V
-
 PI

-
) was assessed within each subset in the indicated days of culture with anti-CD3 and irradiated APCs. 
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In order to ensure that the pAkt(Ser473) staining was specific, the PI3K/Akt pathway 

was blocked, as a negative control, by incubating the cells with the PI3K inhibitor 

LY294002 prior to activation, which abrogated Akt(Ser473) phosphorylation in 

CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 cells (Figure 5). As a vehicle control to exclude 

any impact from the DMSO present in the PI3K inhibitor solution, activated cells were 

pre-incubated with an equivalent concentration of DMSO.  

Once the technique was validated, we were then able to assess Akt(Ser473) 

phosphorylation within the CD45RA/CD27 CD4
+
 subsets by activating total PBMCs 

(Figure 6).  By removing the requirement for purified CD4
+
 T cells, autologous APCs 

were retained as a source of multiple co-stimulatory ligands to enable the activation of all 

the subsets, including the ones that express low levels of CD28. Nevertheless, despite the 

presence of alternative co-stimulatory signals provided by these APCs, CD45RA
+
CD27

-
 

CD4
+
 T cells still showed impaired Akt(Ser473) phosphorylation (Figure 6). The results 

thus far portray the CD45RA
+
CD27

-
 CD4

+
 T cell subset as a potentially effective 

cytotoxic population with proliferative potential. On the other hand, this subset is prone to 

apoptosis following activation, a characteristic associated with low levels of Bcl-2 

expression and Akt(Ser473) phosphorylation. 

Although the presence of CD45RA
+
CD27

-
 CD4

+
 T cells has been previously described 

29
, the mechanism by which they are generated is not known. While it has been shown 

that IL-7 and IL-15 can induce CD45RA re-expression on CD8
+
 T cells 

5
, it remains 

unclear if either CD45RA
-
CD27

+
 or CD45RA

-
CD27

-
 CD4

+
 T cells are able to re-express 

CD45RA and, if they are, which stimulatory signal could drive this process. It has been 

proposed that memory CD8
+
 T cells progressively re-express CD45RA in the absence of 

antigenic stimulation and hence this process would appear to be indicative of a resting or 

quiescent state 
12,14

. Moreover, virus-specific CD45RA re-expressing CD8
+
 T cells 

activated with peptide Ag in vitro have been shown to down-modulate CD45RA, while 

concomitantly up-regulating CD45RO 
10,12,30,31

. We also observed that purified 

CD45RA
+
CD27

-
 CD4

+
 T cells lose CD45RA expression and progressively acquire a 

CD45RA
-
CD45RO

+
 phenotype following activation with anti-CD3 and IL-2 (data not 

shown). This result is in agreement with the view that CD45RA re-expression, which is 

observed in the presence of homeostatic cytokines, is prevented by TCR stimulation 
5
. As 

mentioned above, previous studies have shown that γC cytokines, which drive 

homeostatic proliferation, can also induce CD45RA
 
re-expression on CD8

+
 T cells 

5,32,33
.



118 Chapter 2 

 

 

Figure 5: Detection of pAkt(Ser473) phosphorylation by flow cytometry.  

Total CD4
+
 T cells were starved over-night in 1% human serum. Prior to stimulation, cells were starved in 

serum-free medium for 2 hours. After surface staining for CD45RA and CD27, cells were stimulated with 

1μg/ml of anti-CD3 and 1μg/ml of anti-CD28 for 10 minutes at 37°C. Activated cells were immediately 

fixed with 2% formaldehyde. Cells were permeabilized with 90% methanol and then incubated with anti-

pAkt(Ser473) antibody. Samples were immediately analysed by flow cytometry. Pre-incubation with the 

PI3K inhibitor LY294002 was used as a negative control. DMSO was used as a vehicle control. 
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Figure 6: CD4
+
 CD45RA

+
CD27

-
 cells have impaired Akt(Ser473) phosphorylation. 

A) Representative overlays of pAkt(Ser473) expression within CD4
+
 CD45RA/ CD27 subsets are shown. 

PBMCs were activated with anti-CD3 (solid line) or left unstimulated whilst undergoing the same protocol 

in the absence of anti-CD3 (grey histogram). The values represent the median fluorescent intensity of 

pAkt(Ser473) within each subset following activation. B) Bar graph represents the fold change in 

pAkt(Ser473) MFI after activation relative to the MFI observed in unstimulated cells within the respective 

subset. Error bars represent the SE from the mean of five separate experiments. Statistical analysis was 

performed using paired t test (GraphPad Prism). 
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In order to elucidate whether CD45RA re-expression on CD4
+
 T cells is driven by a 

homeostatic mechanism mediated by γC cytokines, we cultured purified CD45RA
-
CD27

+
 

and CD45RA
-
CD27

-
 cells in the presence of IL-2, IL-7 or IL-15 in the absence of TCR 

stimulation (Figures 7-8). IL-7 is known to induce the proliferation of CD45RA
+
 CD4

+
 T 

cells without inducing CD45RO expression 
34,35

. We first investigated whether this 

cytokine could induce CD45RA re-expression on CD45RA
-
CD27

+
 CD4

+
 T cells. As 

illustrated on Figure 7A, a population re-expressing CD45RA and down-modulating 

CD45RO emerged from the CD45RA
-
CD27

+
 subset cultured in the presence of IL-7. 

TCR stimulation alone did not induce CD45RA re-expression neither did the other 

cytokines tested, such as TGF-β, IL-10 and IFN-α (data not shown). In order to clarify 

whether CD45RA re-expression is accompanied by IL-7-driven proliferation, we 

performed a CFSE dilution assay on CD45RA
-
CD27

+
 cells in the presence of IL-7. The 

CD45RA
+ 

population showed a higher rate of proliferation than the cells that did not re-

express CD45RA (Figure 7B), indicating that CD45RA re-expression is accompanied by 

IL-7-driven proliferation. We next determined whether the CD45RA re-expressing cells 

that were generated in vitro phenotypically resembled those that are found in vivo. In 

order to achieve this, CD45RA
-
CD27

+
 CD4

+
 T cells were cultured in vitro in the presence 

of IL-7 and the expression of Bcl-2 and IL-7Rα was monitored at different time points 

(Figure 7C). The population that did not re-express CD45RA (CD45RA
-
) showed high 

levels of Bcl-2 throughout the culture period (Figure 7C). As for IL-7Rα expression, the 

CD45RA
-
 population displayed the normal kinetics associated with the presence of IL-7 

36,37
, that is an initial down-modulation of IL-7Rα, followed by a recovery of the original 

levels (Figure 7C). In contrast, the progressive down-regulation of both Bcl-2 and IL7-Rα 

on the population that re-expressed CD45RA (CD45RA
+
) was not transient (Figure 7C). 

The CD45RA re-expressing CD4
+
 T cells generated in vitro by IL-7 thus closely resemble 

the naturally occurring CD45RA
+
CD27

-
 cells in terms of Bcl-2 and IL-7Rα expression. 

These results suggest that IL-7-driven homeostatic proliferation could induce the re-

expression of CD45RA on a sub-population of CD45RA
-
CD27

+
 CD4

+
 T cells. We also 

investigated if CD45RA re-expression could be induced on CD45RA
-
CD27

+
 cells by 

other γC cytokines. Although a low level of CD45RA expression was observed in a small 

proportion of CD45RA
-
CD27

+
 CD4

+
 T cells that were cultured with IL-2 or IL-15 (Figure 

8A), this was considerably lower than that induced by IL-7 (Figure 7A).
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Figure 7: CD4
+
 CD45RA

-
CD27

+
 cells stably re-express CD45RA following IL-7-driven proliferation.  

CD4
+
CD45RA

-
CD27

+
 cells were purified by FACS sorting and analysed for the expression of CD45RA 

and CD45RO prior to culture. A) Cells were stimulated with IL-7 and CD45RA/CD45RO expression was 

assessed by flow cytometry at the indicated time-points. The results shown are representative of twelve 

experiments. B) CFSE dilution was assessed in the cells that re-expressed CD45RA (grey line) and in the 

population that remained CD45RA
-
 (grey histogram) following 14 days of culture in the presence of IL-7. 

Values represent the percentage of cells that underwent over 2 rounds of cell division. Histograms from a 

representative experiment out of two performed are shown. C) Overlays represent Bcl-2 and IL-7Rα 

expression before and during culture in the presence of IL-7. Expression of these markers was assessed in 

the cells that re-expressed CD45RA (blue line) and in the population that remained CD45RA
-
(grey 

histogram). Histograms from a representative experiment out of three performed are shown. 
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Figure 8: CD4
+
 CD45RA

-
CD27

+
cells do not re-express CD45RA when stimulated with other γC 

cytokines nor do CD45RA
-
CD27

-
.  

CD4
+ CD45RA

-
CD27

+
 (A) and CD45RA

-
CD27

-
 (B) cells were purified by FACS sorting and analysed for 

the expression of CD45RA and CD45RO prior to culture. Cells were stimulated with IL-2, IL-7 or IL-15 

and CD45RA/CD45RO expression was assessed by flow cytometry at the indicated time-points. The results 

shown are representative of three experiments. 
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Finally, we assessed if the CD45RA
-
CD27

-
 subset cultured in the same experimental 

conditions would re-express CD45RA. We observed that, regardless of the γC cytokine 

tested, the cells remained CD45RO
+
 throughout the culture period (Figure 8B). These 

results suggest that IL-7-driven homeostatic proliferation can induce the CD45RA re-

expression on CD45RA
-
CD27

+
 but not on CD45RA

-
CD27

-
 CD4

+
 T cells to generate a 

CD45RA
+
 memory population. 

The induction of CD45RA re-expression is most likely prompted by changes in the 

transcriptional program. We next assessed which transcription factors could be 

responsible for the switch to CD45RA re-expression on a sub-population of CD45RA
-

CD27
-
 CD4

+
 T cells. We looked for potential candidates known to be involved in T cell 

differentiation, such as the T-box transcription factors T-bet and Eomes, and the 

transcriptional repressor Blimp-1. In order to assess if these transcription factors were 

differentially expressed in CD45RA/CD27 CD4
+
 T cell subsets, we measured the ex vivo 

mRNA levels of Blimp-1, T-bet and Eomes in these purified subsets by reverse 

transcription PCR (Figure 9A). All three transcription factors were present in relatively 

negligible levels in CD45RA
+
CD27

+
 cells, peaking within the CD45RA

-
CD27

-
 and 

CD45RA
+
CD27

-
 subsets (Figure 9A). T-bet and Eomes expression was markedly higher 

in CD45RA
+
CD27

-
 cells compared to all the other subsets (Figure 9A). Of note, 

CD45RA
-
CD27

+
 cells expressed relatively low levels of both these transcription factors 

(Figure 9A). The next key question was whether IL-7-induced CD45RA re-expression 

was associated with the up-regulation of any of these transcription factors on CD45RA
-

CD27
+
 cells. Thus we measured mRNA levels of these same transcription factors were 

measured in purified CD4
+
 CD45RA

-
CD27

+
 cells before (ex vivo) and after a 3 day 

culture period in the presence of increasing concentrations of IL-7 (Figure 9B). Blimp-1 

mRNA levels did not change after culture with IL-7 (Figure 9B). As for Eomes, even 

though we didn’t measure the ex vivo mRNA levels in this particular experiment, the 

results shown in Figure 9A indicate that CD45RA
-
CD27

+
 cells express low levels of this 

transcription factor ex vivo. Nevertheless, Eomes mRNA levels did not show a dose 

response to IL-7 (Figure 9B), suggesting that the expression of this transcription factor is 

probably not induced in CD45RA
-
CD27

+
 in the presence of IL-7. Only T-bet appeared to 

be induced by IL-7 in CD45RA
-
CD27

+
 cells, peaking following stimulation with the same 

IL-7 concentration that induced CD45RA re-expression on these cells (10ng/ml) (Figure 

9B). Interestingly, a recent study investigating the impact of CMV infection on the 
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transcriptional program of human CD8
+
 T cell subsets has shown that CD45RA

+
CD27

-
 

cells express significantly higher levels of T-bet when compared to CD45RA
-
CD27

+
 

CD8
+
 T cells 

38
. 

 

Figure 9: Transcription factors involved in T cell differentiation are highly expressed in CD4
+
 

CD45RA
+
CD27

-
 cells but only T-bet is induced by IL-7.  

A) The mRNA levels of the transcription factors Blimp-1, T-bet and Eomes were measured ex vivo in 

purified CD45RA/CD27 CD4
+
 subsets by reverse transcription PCR. Bar graph represents the mRNA levels 

in each subset normalized for the levels observed in the CD45RA
+
CD27

+
 subset. Error bars represent the 

SE from the mean of three separate experiments. B) The mRNA levels of the same transcription factors 

were measured in purified CD4
+
 CD45RA

-
CD27

+
 cells before (ex vivo) and after a 3 day culture in the 

presence of different concentrations of IL-7. Bar graph represents the fold change in mRNA levels 

following IL-7 culture relative to the levels observed ex vivo. 
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Moreover, T-bet is known to repress IL-7Rα expression on CD8
+
 T cells 

39,40
 which 

raises the possibility that T-bet might be a good candidate for the mediator of the 

phenotypic changes we observed upon CD45RA re-expression (Figure 7C). Although 

these results are preliminary, they point to a possible role for T-bet in the transcriptional 

program that is activated in the population of CD45RA
-
CD27

+
 cells induced to re-express 

CD45RA in the presence of IL-7. 

The data gathered so far indicate that CD45RA
+
CD27

- 
CD4

+
 T cells are not exhausted, 

although they appear to be prone to cell death following activation. We can hypothesise 

that this population might be replenished in vivo by CD45RA re-expressing cells 

originating from the CD45RA
-
CD27

+
 CD4

+
 T cell pool through a homeostatic process 

driven by IL-7. 
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Chapter 2.2 

CD45RA
+
CD27

-
 CD4

+
 T cells exhibit p38 MAPK-regulated 

telomere-independent senescence 
 

The CD45RA
+
CD27

-
 CD4

+
 T cell subset displays several characteristics of a 

senescence-prone population, including expression of high levels of the senescence 

markers CD57 (Figure 2) and KLRG1 (Di Mitri et al., submitted for publication), and 

susceptibility to apoptosis following activation (Figure 4). Although CD45RA
+
CD27

-
 

cells retain proliferative ability (Figure 3), these cells might only be able to undergo a 

small number of cell divisions before reaching critically short telomeres, which in turn 

could trigger apoptosis or telomere-dependent senescence. Telomere erosion is a common 

feature of cells approaching senescence, usually associated with failure to induce 

telomerase activity upon repeated stimulation 
7,41-43

. In order to investigate if 

CD45RA
+
CD27

-
 CD4

+
 T cells show signs of telomere erosion, we assessed the telomere 

length on the CD4
+
 T cell subsets defined by the expression of CD45RA and CD27 

(Figure 10A). As previously described for naive CD4
+
 T cells 

44,45
, CD45RA

+
CD27

+
 cells 

had significantly longer telomeres in comparison to any of the memory subsets (Figure 

10A). We also found that, despite their differentiated phenotype, CD45RA
+
CD27

-
 cells 

had significantly longer telomeres than the other memory subsets (Figure 10A), 

suggesting that these cells are not undergoing telomere-dependent senescence. Although 

telomere length may give an indication of residual replicative capacity of T cell subsets, 

the modulating effects of telomerase, an enzyme able to add back telomeric sequences, 

must be taken into consideration. Hence we measured telomerase activity following TCR 

stimulation in all the CD45RA/CD27 subsets and we observed that it was impaired in 

CD45RA
+
CD27

-
 cells (Figure 10B). Taken together, these data suggest that 

CD45RA
+
CD27

-
 cells do not constitute a subset that has reached end-stage 

differentiation, since they have relatively long telomeres. However these cells may have 

limited replicative potential, seeing that they lack the ability to turn on telomerase upon 

activation and will thus not be able to restore any telomere loss resulting from cell 

division. 
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The relatively long telomere length observed on CD4
+
 CD45RA

+
CD27

-
 cells suggests 

that the senescent traits displayed by this subset are not driven by telomere-dependent 

senescence, whereas their defective telomerase activity implies the opposite. 

 

 

Figure 10: CD4
+
 CD45RA

+
CD27

-
 cells do not have the shortest telomeres but have impaired 

telomerase activity. 

(A) Telomere length was determined by Flow-FISH. Each circle represents one individual with the mean 

telomere length shown as a horizontal bar. Statistical analysis was performed using the Wilcoxon matched 

pairs test (GraphPad Prism). (B) Telomerase activity was determined by telomeric repeat amplification 

protocol assay. Purified subsets were activated with anti-CD3 and irradiated APCs for 4 days. Cell extracts 

from equivalent numbers of Ki67
+
 cells were used to determine telomerase activity, calculated as a ratio 

between the optical density of the telomeric repeat bands and of the internal standard band (IS). Graph 

represents telomerase activity normalized for the activity observed in the CD45RA
+
CD27

+
 subset. Error 

bars represent the SE from the mean of five separate experiments. Statistical analysis was performed using 

the Wilcoxon matched pairs test (GraphPad Prism). C) Autoradiography of a TRAP assay acrylamide gel 

from a representative experiment is shown. Control template consists of PCR mix and telomeric template 

with no cell extract added. As a negative control, lysis buffer was used instead of cell extract. 
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In order to clarify these apparently contradictory results, we sought to determine if 

CD4
+
 CD45RA

+
CD27

-
 cells expressed the cellular senescence marker γ-H2AX, the 

phosphorylated form of the histone H2AX. Human senescent cells can be identified by 

the presence of senescence-associated DNA-damage foci (SDFs) 
46

, which consist of 

proteins that are associated with DNA damage, such as γ-H2AX 
15

. The local induction of 

γ-H2AX allows microscopic detection of distinct foci that most likely represent a single 

DSB 
47

. Flow cytometric approaches can also be used to detect γ-H2AX 
48,49

. Several 

studies report a good correlation between the levels of γ-H2AX detected by flow 

cytometry and the number of DSBs 
50-52

. We first optimized the detection of γ-H2AX by 

flow cytometry (Figure 11). Immuno-fluorescence studies have shown that ionizing 

radiation (IR) induces the formation of γ-H2AX nuclear foci at the sites of IR-induced 

DSBs 
53-56

. Therefore we used irradiated CD4
+
 T cells as a positive control for γ-H2AX 

staining (Figure 11A). We performed a time-course of γ-H2AX staining on total CD4
+
 T 

cells activated with anti-CD3 and IL-2 also stained for CD45RA/CD27 (Figure 11B). γ-

H2AX-expressing cells are virtually undetectable ex vivo in any of the subsets (Figure 

11B). Following activation, small percentages of γ-H2AX positive cells are seen, 

especially after over-night stimulation (Figure 11B). However, the proportion of γ-

H2AX-expressing cells was very low following short-term activation, regardless of the 

subset we gated on (Figure 11B). Activation of total CD4
+
 T cells for more than 24 hours 

may lead to changes in the CD45RA/CD27 profile and hence hinder the identification of 

the original subsets. Therefore we decided to purify the CD45RA/CD27 CD4
+
 subsets by 

FACS sorting in order to activate the cells for longer periods of time. The purified subsets 

were activated with anti-CD3 and IL-2 for 4 days before staining for γ-H2AX (Figure 

12). As illustrated in Figure 12A, the longer activation period revealed different profiles 

of γ-H2AX expression between the subsets. CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 cells 

had relatively low levels of γ-H2AX, while the CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 

subsets expressed similarly high levels of γ-H2AX (Figure 12). These data raise the 

hypothesis that CD45RA
+
CD27

-
 cells might be prone to enter a state of senescence 

independently of telomere shortening. This type of cellular senescence is called stress-

induced premature senescence and has been described to be induced by stressful stimuli, 

such as DNA damage 
57,58

, over-expression of oncogenes 
59

 or oxidative stress 
60

. The 

characterisation of telomere-independent senescence has been mostly performed in 

fibroblasts 
46

, whereas its occurrence in human T cells remains to be elucidated.
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Figure 11: Assessment of -H2AX expression by flow cytometry.  

Detection of the DNA damage marker phosphorylated histone H2A variant X (-H2AX) by flow cytometry 

was optimized on CD4
+
 T cells. A) As a positive control, cells were irradiated with 40 Gy γ-radiation. B) 

CD4
+
 T cells were stained for CD45RA, CD27 and -H2AX ex vivo and at the indicated time-points 

following stimulation with anti-CD3 and IL-2. Histogram overlays from a representative experiment out of 

three performed are shown. The values represent the percentage of -H2AX-positive cells within each 

subset. 
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Figure 12: CD4
+
 CD45RA

+
CD27

-
 cells express high levels of -H2AX following activation.  

Purified CD45RA/CD27 CD4
+
 T cell subsets were activated with anti-CD3 and IL-2 for 4 days. -H2AX 

expression was assessed by flow cytometry. A) Representative histogram overlays are shown. The values 

represent the percentage of -H2AX-positive cells within each subset. B) Bar graph shows the percentage of 

-H2AX positive cells within each subset. Error bars represent the SE from the mean of three separate 

experiments. 
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Besides its well-known functions in inflammation and other types of stress, the p38 

MAPK pathway also plays crucial roles in telomere-dependent and -independent 

senescence 
61-63

. In addition, p38 has been found to directly phosphorylate H2AX 
64,65

. 

We addressed the hypothesis that the p38 MAPK pathway may be upstream of the 

senescence markers observed on CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 cells by assessing 

the levels of p38 in each CD45RA/CD27 CD4
+
 subset (Figure 13). The MFI of both total 

(Figure 13A) and phosphorylated p38 (Figure 13B) was significantly higher in CD45RA
-

CD27
-
 and CD45RA

+
CD27

-
 cells compared to the other subsets. The highest levels of 

both total (Figure 13A) and phosphorylated p38 (Figure 13B) were consistently observed 

within the CD45RA
+
CD27

-
 subset.  

Interestingly, when we measured the levels of total p38 following culture of CD45RA
-

CD27
+
 cells in the presence of IL-7, we saw that its expression was only detectable within 

the CD45RA re-expressing population (data not shown). In order to further test the 

hypothesis that the p38 pathway was involved in the senescent-like phenotype of 

CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 cells, we assessed the impact of p38 inhibition on 

these subsets. We first ascertained the efficacy and specificity of the p38 inhibitor 

BIRB796 by testing its effects on p38 and JNK phosphorylation. As illustrated in Figure 

14A, the p38 inhibitor BIRB796 specifically inhibited p38 phosphorylation, whilst having 

no effect on the phosphorylation of JNK. We next assessed its influence on γ-H2AX 

levels (Figure 14B). As expected, p38 inhibition had no considerable effect on the already 

low levels of γ-H2AX observed within the CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 subsets 

(Figure 14B). We observed that γ-H2AX levels within CD45RA
-
CD27

-
 cells were similar 

in the presence or absence of p38 inhibitor, but p38 inhibition induced a considerable 

decrease on the percentage of γ-H2AX positive cells within the CD45RA
+
CD27

-
 subset 

(Figure 14B). However, the γ-H2AX levels remained relatively high, indicating that other 

pathways may contribute to γ-H2AX expression on CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 

cells. 

The p38/H2AX pathway has been shown to be required for stress-induced apoptosis in 

murine fibroblasts 
64

 and cancer cell lines 
65

. We assessed wether p38 inhibition had an 

effect on cell recovery by activating purified CD45RA/CD27 CD4
+
 subsets with anti-

CD3 and IL-2 in the presence of the p38 inhibitor BIRB796 (Figure 15A).  
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Figure 13: CD4
+
 CD45RA

+
CD27

-
 cells express higher levels of total and phosphorylated p38.  

Expression of total and of phosphorylated p38 was assessed ex vivo in PBMCs by gating within total CD4
+
 

T cells and within each of the CD45RA/CD27 subsets. Representative histogram overlays of total p38 (A) 

and of phospho-p38 (B) are shown. The values represent the median fluorescent intensity of p38 within 

each subset. Bar graphs show the ex vivo mean fluorescence intensity of total (A) and phospho-p38 (B). 

Error bars represent the SE (A n=7, B n=10). Statistical analysis was performed using Dunn’s Multiple 

Comparison Test (GraphPad Prism). 
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Figure 14: CD4
+
 CD45RA

+
CD27

-
 cells express lower levels of -H2AX when the p38 pathway is 

inhibited. 

A) Western blot showing the effects of the p38 inhibitor BIRB796 on p38 and JNK phosphorylation on 

CD4
+ 

T cells. β-actin was used as a loading control. B) Purified CD45RA/CD27 CD4
+
 T cell subsets were 

activated with anti-CD3 and IL-2 for 4 days in the presence or absence (control) of the p38 inhibitor 

BIRB796. -H2AX expression was assessed by flow cytometry. Histogram overlays from a representative 

experiment out of two performed are shown. The values represent the percentage of -H2AX-positive cells 

within each subset. 
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As could be anticipated, the cell recovery of CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 

cells was not affected by p38 inhibition (Figure 15A). Although p38 inhibition induced 

only a marginal increase in the cell recovery of CD45RA
-
CD27

-
 cells, it led to 

approximately a 2-fold increase in the cell recovery of CD45RA
+
CD27

-
 cells (Figure 

15A). This observation may result from increased cell proliferation and/or decreased cell 

death within the CD45RA
+
CD27

-
 subset. To clarify this issue, we determined the 

expression of Ki67 following activation in the presence of the p38 inhibitor BIRB796 

(Figure 15B). We did observe a slight increase in the percentage of Ki67 positive cells 

within the CD45RA
-
CD27

+
 and CD45RA

-
CD27

-
 subsets, yet p38 inhibition had the 

opposite effect on the CD45RA
+
CD27

-
 subset (Figure 15B). The decrease in Ki67-

expressing cells within the CD45RA
+
CD27

-
 subset in the presence of the p38 inhibitor 

BIRB796 points to a preferential effect on cell survival. To verify this hypothesis we 

assessed the impact of p38 inhibition on Annexin V staining and PI incorporation 

following activation with anti-CD3 and IL-2 (Figure 15C). Again, p38 inhibition did not 

greatly affect the CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 subsets, but both the CD45RA

-

CD27
-
 and CD45RA

+
CD27

-
 subsets had considerably less apoptotic cells in the presence 

of the p38 inhibitor BIRB796 (Figure 15C). The inhibition of apoptosis by blocking the 

p38 pathway was most striking in the CD45RA
+
CD27

-
 subset (Figure 15C), with an 

average of 70% less apoptotic cells. 

We next sought to investigate the mechanism by which p38 inhibition was promoting 

cell survival of CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 cells. The p38 pathway has been 

shown to reduce Bcl-2 levels 
66

. As described above, the CD45RA
+
CD27

-
 subset is 

defective for Akt(Ser473) phosphorylation (Figure 6) and expresses low levels of Bcl-2 

ex vivo 
2
. We assessed the levels of Bcl-2 expression and of Akt(Ser473) phosphorylation 

on CD4
+
 T lymphocytes activated in the presence or absence (control) of the p38 inhibitor 

BIRB796 (Figure 16). Bcl-2 expression was increased at the protein (Figure 16A) and 

mRNA (Figure 16B) levels as a result of p38 inhibition. In contrast, the levels of 

pAkt(Ser473) were not increased by p38 inhibition in any of the CD45RA/CD27 subsets 

(Figure 16C), ruling out any cross-reactivity of the p38 inhibitor BIRB796 with the 

PI3K/Akt pathway. These data suggest that the p38 pathway may be partly responsible 

for the susceptibility to apoptosis following activation of CD45RA
+
CD27

-
 cells through 

down-modulation of Bcl-2 expression.  
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Figure 15: p38 inhibition improves cell recovery and survival but not proliferation of 

CD45RA
+
CD27

-
 cells.  

Purified CD45RA/CD27 CD4
+
 T cell subsets were activated with anti-CD3 and IL-2 (A, C) or irradiated 

APCs (B) for 4 days in the presence or absence of the p38 inhibitor BIRB796. A) Cell numbers were 

determined on a hemocytometer. Results are expressed as a percentage of the initial number of cells placed 

in culture. Error bars represent SE from three separate experiments. B) Ki67 expression was determined as 

a marker of cell proliferation. Bar graph shows the percentage of Ki67 positive cells. Error bars represent 

SE from four separate experiments. C) Apoptosis was assessed by Annexin V staining and PI incorporation. 

Bar graph shows the percentage of apoptotic cells (Annexin V
+
 PI

-
) within each subset in the presence or 

absence of the p38 inhibitor. Error bars represent SE from three separate experiments. 
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Figure 16: p38 inhibition increases Bcl-2 expression but not pAkt(Ser473) phosphorylation. 

A, B) CD4
+
 T cells were activated with anti-CD3 and IL-2 in the presence or absence of the p38 inhibitor 

BIRB796. A) On day 4, Bcl-2 expression was assessed at the protein level by flow cytometry. B) Bar graph 

shows the levels of Bcl-2 mRNA in the presence of the p38 inhibitor BIRB796 normalized for the levels 

observed in its absence (control). Error bars represent the SE from the mean of three separate experiments.  

C) pAkt(Ser473) expression was assessed within CD45RA/ CD27 CD4
+
 subsets activated with anti-CD3 in 

the presence (red line) or absence (blue histogram) of the p38 inhibitor BIRB796. As a negative control, 

cells were left unstimulated (grey histogram). Overlays from a representative experiment out of two 

performed are shown. 
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The lack of telomerase activity upon TCR stimulation is a hallmark of pre-disposition 

to replicative senescence 
67

. As we observed that CD45RA
+
CD27

-
 cells have impaired 

telomerase activity following in vitro activation (Figure 10B), we were interested in 

assessing if p38 inhibition could restore the ability to induce this enzyme. For that 

purpose, telomerase activity was measured in purified CD45RA/CD27 CD4
+
 subsets 

activated with anti-CD3 and irradiated APCs in the presence or absence of the p38 

inhibitor BIRB796 (Figure 17). The inhibition of p38 had a negligible impact on the 

telomerase activity observed in the CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 subsets 

(Figure 17). Although we could observe a considerable increase in the telomerase activity 

in the CD45RA
-
CD27

-
 subset in the presence of the p38 inhibitor BIRB796, it did not 

reach statistical significance (Figure 17B). The inhibition of p38 had a major impact on 

the CD45RA
+
CD27

-
 subset, significantly increasing telomerase activity to levels similar 

to those observed in CD45RA
+
CD27

+
 and CD45RA

-
CD27

+
 cells (Figure 17B). These 

data suggest that the p38 pathway is at least partially responsible for the impaired survival 

and telomerase activity following activation observed in the CD4
+
 CD45RA

+
CD27

-
 

subset. Moreover, these senescence traits were at least partly reversible through specific 

inhibition of the p38 pathway. 

Subsequently, we investigated which up-stream stimulus might be triggering p38 in 

CD4
+
 CD45RA

+
CD27

-
 cells. The frequency of this subset significantly correlates with 

CMV infection 
2
, which in turn is associated with high levels of pro-inflammatory 

cytokines such as TNF-α 
68

. This cytokine has been proposed to be linked to the extreme 

T cell differentiation observed during CMV infection 
69-72

. As previously described in 

HeLa cells 
73

, we observed that TNF-α induces p38 phosphorylation in CD4
+
 T cells 

(Figure 18A). Interestingly, CD4
+
 T cells activated in the presence of TNF-α showed 

lower levels of telomerase activity (Figure 18B). Moreover, TNF-α inhibition has been 

shown to increase telomerase activity and delay the onset of senescence on CD8
+
 T cells 

in vitro 
74

. Hence we investigated whether p38 inhibition would abrogate the impact of 

TNF-α upon telomerase activity. As illustrated in Figure 18C, the telomerase activity 

levels in CD4
+
 T cells activated in the presence of both TNF-α and the p38 inhibitor 

BIRB796 were similar to those observed in cells activated with anti-CD3 and irradiated 

APCs alone (control). Thus p38 inhibition does seem to subvert the telomerase down-

modulation induced by TNF-α, suggesting that the p38 pathway may act down-stream of 

TNF-α to hinder telomerase activity. 
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Figure 17: p38 inhibition significantly increases telomerase activity in CD4
+ 

CD45RA
+
CD27

- 
cells. 

Telomerase activity was determined by telomeric repeat amplification protocol assay as described in Figure 

10. Purified subsets were activated with anti-CD3 and irradiated APCs for 4 days in the presence or absence 

of the p38 inhibitor BIRB796. A) Autoradiography of a TRAP assay acrylamide gel from a representative 

experiment is shown. As a negative control, lysis buffer was used instead of cell extract. B) Bar graph 

represents telomerase activity for each subset with or without (control) the p38 inhibitor BIRB796. Error 

bars represent the SE from the mean of four separate experiments. Statistical analysis was performed using 

the Wilcoxon matched pairs test (GraphPad Prism). 
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Figure 18: Inhibition of p38 abrogates the TNF-α-induced down-modulation of telomerase activity. 

A) Phospho-p38 expression was assessed on CD4
+
 T cells incubated with TNF-α or left unstimulated 

(control). A representative overlay is shown. B) CD4
+
 T cells were cultured with anti-CD3 and APCs in the 

presence or absence (control) of TNF-α for 4 days. Telomerase activity was determined by telomeric repeat 

amplification protocol assay as described in Figure 10. Autoradiography of a TRAP assay acrylamide gel 

from a representative experiment is shown. Bar graph represents telomerase activity in activated CD4
+
 T 

cells with or without (control) TNF-α. Error bars represent the SE from the mean of three separate 

experiments. Statistical analysis was performed using the Wilcoxon matched pairs test (GraphPad Prism). 

C) CD4
+
 T cells were cultured for 4 days with anti-CD3 and APCs alone or in combination with the p38 

inhibitor BIRB796, TNF-α or both. Autoradiography and bar graph show the telomerase activity observed 

under these culture conditions. D) PBMCs were activated with anti-CD3 and IL-2 overnight. The 

production of TNF-α within the CD45RA/CD27 CD4
+
 subsets was assessed by flow cytometry. Histograms 

illustrate the profile of TNF-α expression observed in each CD45RA/CD27 subset upon activation. 
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We then sought to elucidate which subsets were the potential sources of TNF-α. 

Highly differentiated CD4
+
 
75-77

 and CD8
+
 
3
 T cells have been described to produce TNF-

α, particularly those re-expressing CD45RA. To verify if this was also the case for 

CD45RA
+
CD27

-
 CD4

+
 T cells, we assessed the production of TNF-α by CD45RA/CD27 

subsets activated with anti-CD3 and IL-2 (Figure 18D). We observed substantial levels of 

TNF-α-producing cells within all the CD4
+
 memory T cell subsets, particularly within 

CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 cells (Figure 18D).  

These data indicate that CD45RA
+
CD27

-
 CD4

+
 T cells are prone to cellular 

senescence, displaying senescence-associated markers such as γ-H2AX and lack of 

telomerase activity following activation. The observation that CD45RA
+
CD27

-
 CD4

+
 T 

cells have relatively long telomeres suggests that the mechanism driving these cells to 

senescence might be telomere-independent. The apparent involvement of the stress-

induced p38 pathway further supports this hypothesis. Interestingly, the modulating 

effects of p38 on cellular senescence appear to be partly reversible, raising the possibility 

that therapeutic approaches targeting this pathway might improve immunity during 

ageing and chronic viral infection. 
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Discussion 
 

We reported for the first time a detailed study characterising the CD45RA
+
CD27

-
 

CD4
+
 T cell subset. The CD45RA re-expressing  CD4

+
 T cell population has only 

previously been described in a few reports, which portray it as a terminally differentiated 

population with low replicative potential 
78

, albeit capable of producing pro-inflammatory 

cytokines 
77,79

. 

Our work has revealed that CD45RA
+
CD27

-
 CD4

+
 T cells are multi-functional, with 

respect to their ability to secrete cytokines following activation 
2
,  and are potentially 

capable of exerting cytotoxic functions (Figure 1). We further report that 

CD45RA
+
CD27

- 
CD4

+
 T cells appear to exist in a quiescent state in vivo, as has been 

described for their CD8
+
 counterparts 

8,12,14
, but can be induced to proliferate upon 

activation. Our results show that these cells are not exhausted, although they appear to be 

prone to cell death following activation. Given that CD45RA
+
CD27

- 
CD4

+
 T cells express 

only intermediate levels of CD95, other cell death pathways might be involved in the high 

susceptibility to apoptosis observed in these cells following activation. In agreement with 

this hypothesis, CD45RA re-expressing CD4
+
 T cells have been previously shown to be 

relatively resistant to CD95-induced apoptosis 
80

. Furthermore, CD95 expression does not 

strictly correlate with susceptibility to apoptosis, given that this molecule can also exert 

co-stimulatory functions 
33

. In lymphopenic settings, increased IL-7 levels favour the co-

stimulatory activity of CD95, which is able to induce the proliferation of T cells activated 

by low-affinity antigens 
81

. In addition, the CD95 levels were assessed directly ex vivo 

and resting T cells may not be susceptible to CD95 triggering, a process which probably 

requires previous T cell activation 
82-84

. 

We have shown that CD45RA
+
CD27

-
 CD4

+
 T cells accumulate in the elderly, showing 

a strong positive correlation with CMV infection 
2
, which is unexpected from a 

population that is prone to apoptosis following activation. This observation suggests that 

CD45RA
+
CD27

-
 CD4

+
 T cells have to be constantly generated to compensate for their 

high susceptibility to activation-induced apoptosis. In agreement with this hypothesis, the 

overall CMV-specific population has been proposed to be maintained by a continuous 

replacement of short-lived, functional cells during chronic CMV infection in mice 
85

. We 

report for the first time a mechanism able to induce CD45RA re-expression on memory 
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CD4
+
 T cells by showing that IL-7 stimulation triggers CD45RA re-expression whilst 

concomitantly driving homeostatic proliferation of CD45RA
-
CD27

+
 CD4

+
 T cells. In 

order to determine as to where CD45RA re-expression might occur in vivo, we 

investigated which immune compartments were enriched in both IL-7 and 

CD45RA
+
CD27

-
 CD4

+
 T cells. We observed that the frequency of CD45RA

+
CD27

-
 cells 

within the CD4
+
 T cell population is significantly higher in the bone marrow than in the 

peripheral blood of the same individuals 
2
. Moreover, IL-7-producing bone-marrow 

stromal cells have been shown to constitute survival niches for memory CD4
+
 T cells 

86
. 

Taken together these results point to the bone-marrow as a potential site where IL-7-

driven CD45RA re-expression might occur in vivo. We further hypothesise that the 

CD45RA
+
CD27

-
 CD4

+
 T cell subset might be replenished in vivo by CD45RA re-

expressing cells derived from the CD4
+
 CD45RA

-
CD27

+
 pool through a homeostatic 

process driven by IL-7. Culture of the CD45RA
-
CD27

+
 CD4

+
 T cells in the presence of 

IL-7 efficiently gave rise to CD45RA re-expressing cells, although it only modestly 

induced CD27down-modulation in this sub-population (data not shown). The fact that IL-

7 stimulation alone could not lead to to a CD45RA
+
CD27

-
 phenotype upon CD45RA

-

CD27
+
 T cells might suggest that loss of CD27 expression requires TCR stimulation or 

other factors that can induce down-modulation of co-stimulatory molecules. Upon several 

rounds of stimulation, CD4
+
 T cells successively lose CCR7, CD27 and CD28 expression 

87,88
. CD27 expression has been shown to be transiently up-regulated upon TCR 

engagement, followed by a progressive and irreversible down-regulation following 

repeated antigenic stimulation in vivo 
89,90

. On the other hand, TNF-α has been shown to 

promote the loss of CD28 expression on CD8
+
 T cells 

91-93
, raising the possibility that this 

pro-inflammatory cytokine might also accelerate the down-modulation of co-stimulatory 

molecules on CD4
+
 T cells. 

As illustrated in Figure 10A, CD45RA
-
CD27

+
 CD4

+
 T cells have significantly shorter 

telomeres than those observed on the CD45RA
+
CD27

-
 subset. Although this result 

apparently contradicts our hypothesis that the former subset comprises precursors of the 

CD45RA
+
CD27

-
 CD4

+
 T cell population, it might be explained by the induction of 

telomerase activity alongside with CD45RA re-expression by IL-7, resulting in longer 

telomeres on the CD45RA
+
 daughter population than on the CD45RA

-
 precursors. In 

agreement, IL-7 has been shown to induce telomerase activity on cord blood naive T cells 

34
, as well as on naive and memory CD4

+
 T cells 

94
 and CD8

+
 T cells 

33,95
. The assessment 
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of telomerase activity on CD45RA
-
CD27

+
 CD4

+
 T cells stimulated with IL-7, in 

particular within the sub-population re-expressing CD45RA, would help clarify this issue. 

Interestingly, CD45RA re-expressing cells generated in the presence of IL-7 alone 

resemble the ex vivo CD45RA
+
CD27

-
 CD4

+
 T cell subset in that they express low levels 

of IL-7Rα (Figure 7) and Bcl-2 
2
. IL-7Rα expression on mouse CD8

+
 T cells has been 

shown to display different kinetics when stimulated with LCMV strains associated either 

with viral clearance or persistence: the former only transiently down-modulated IL-7Rα 

expression, the restoration of which was associated with improved survival and induction 

of a quiescent state, whereas the latter suppressed IL-7Rα expression and this correlated 

with reduced Bcl-2 expression 
96

. In a recent study of human naive CD4
+
 T cells, IL-7Rα 

was shown to be chronically down-modulated following TCR activation 
37

. Interestingly, 

neither CD45RA
+
CD27

-
 CD4

+
 and CD8

+
 T cells nor CMV-specific CD8

+
 T cells were 

able to re-express IL-7Rα after resting over-night in medium alone, possibly due to 

epigenetic modifications to the IL-7Rα promoter 
37,97

. Our data supports the correlation 

between IL-7Rα and Bcl-2 expression and shows that IL-7 stimulation, so far solely 

associated with a transient down-modulation of IL-7Rα and up-regulation of Bcl-2 

expression, can also induce a persistent down-modulation of both these markers on a sub-

population of CD45RA
-
CD27

+
 T cells. Although IL-15 has been shown to induce 

CD45RA re-expression on CD8
+
 T cells 

32
, only a negligible CD45RA-expressing 

population was observed when CD45RA
-
CD27

+
 T cells were cultured in the presence of 

IL-15 or IL-2. The differential effect of IL-15 on CD4
+
 and CD8

+
 T cells mirrors the 

distinct dependence on IL-15 for T cell homeostasis, with CD4
+
 T cells apparently not 

requiring IL-15 
98-102

. CD45RA
-
CD27

-
 T cells could not be induced to re-express 

CD45RA by any of the γC cytokines tested, as previously reported for CD8
+ 

T cells, 

where γC cytokines could trigger CD45RA re-expression on CD45RA
-
CCR7

+
 but not on 

CD45RA
-
CCR7

-
 cells 

5
. The induction of CD45RA re-expression is probably linked to 

IL-7-driven modifications to the transcriptional program on a subset of CD45RA
-
CD27

+
 

CD4
+
 T cells. The T-box transcription factor T-bet emerged as the most likely candidate 

to be associated with CD45RA re-expression since the CD45RA
+
CD27

-
 subset expressed 

the highest levels of this transcription factor ex vivo and its expression could be up-

regulated on CD45RA
-
CD27

+
 cells by IL-7. This hypothesis is supported by a recent 

study reporting significantly higher levels of T-bet expression on CD45RA
+
CD27

-
 cells 

than on CD45RA
-
CD27

+
 CD8

+
 T cells during latent human CMV infection 

38
.  
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As mentioned above, the ex vivo frequency of Ki67-expressing cells within the CD4
+
 

CD45RA
+
CD27

- 
subset is very small, suggesting that this population might have a low 

turnover rate in vivo and thus represent a quiescent subset, similarly to what has been 

proposed for CD45RA re-expressing CD8
+
 T cells 

8,12,14
. However the susceptibility to 

activation-induced apoptosis, associated with low Bcl-2 levels and defective Akt(Ser473) 

phosphorylation, in addition to high level expression of the senescence-associated 

markers CD57 and KLRG1 (Di Mitri et. al., manuscript under submission), raised the 

possibility that CD45RA
+
CD27

-
 CD4

+
 T cells might be approaching senescence rather 

than being quiescent. Unlike the transient cell cycle arrest observed in quiescent cells, the 

growth arrest induced by cellular senescence is thought to be irreversible 
15

. The 

relatively long telomeres observed in CD45RA
+
CD27

-
 CD4

+
 T cells argued in favour of a 

quiescent rather than a senescent state. However telomere length cannot be interpreted as 

an absolute marker of replicative potential as it only gives a snap-shot of the relative 

levels of telomere erosion in the different subsets. Assessing the ability of each subset to 

induce telomerase activity is critical for the interpretation of the telomere data, since it 

reveals the potential to add back telomere repeats upon subsequent activation and thus 

provides a more dynamic depiction of the residual replicative potential. In contrast to the 

telomere length data, the inability to induce telomerase activity following TCR 

stimulation observed on CD45RA
+
CD27

-
 CD4

+
 T cells indicated that this subset had a 

limited capacity to be maintained in vivo by continuous proliferation and is therefore 

prone to senescence. The susceptibility to cellular senescence of CD45RA
+
CD27

-
 CD4

+
 T 

cells was further supported by the assessment of the senescence marker γ-H2AX, which 

reached the highest levels on CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 CD4

+
 T cells. The 

p38 MAPK pathway appears to be at least partly responsible for the senescence traits 

displayed by these subsets, most strikingly so in the case of the CD45RA
+
CD27

-
 CD4

+
 T 

cells. The expression of total and phosphorylated p38 was highest within the 

CD45RA
+
CD27

-
 CD4

+
 T cell subset, although CD45RA

-
CD27

-
 cells also expressed 

considerable levels of these proteins. Of note, the expression of total p38 was exclusive to 

the CD45RA re-expressing population that emerged during the culture of CD45RA
-

CD27
+
 cells in the presence of IL-7. It remains to be elucidated whether p38 expression is 

a cause or consequence of CD45RA re-expression in these cells, but this observation 

further implies that p38 expression is characteristic of highly differentiated cells, 

particularly CD45RA re-expressing cells. 
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Inhibition of the p38 MAPK pathway has been shown to delay the onset of senescence 

in human fibroblasts 
62

. Thus we ascertained the involvement of the p38 MAPK pathway 

in the senescence-associated features of CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 CD4

+
 T 

cells by re-assessing these traits in the presence of the p38 inhibitor BIRB796. We found 

that p38 inhibition had a greater impact on the CD45RA
+
CD27

-
 subset, inducing a slight 

decrease on γ-H2AX expression and boosting cell recovery during TCR stimulation. We 

further determined that the increase in CD45RA
+
CD27

-
 cell numbers following activation 

was due to improved cell survival rather than elevated proliferation levels induced by p38 

inhibition. Our data suggest that the p38 pathway might hamper cell survival by down-

modulating Bcl-2 levels in an Akt-independent fashion. The persistent activation of p38 

MAP kinase in transgenic mice expressing a constitutively activated form of MKK6 led 

to a decrease in the CD8
+
 but not CD4

+
 T cell numbers 

66
. The selective loss of the CD8

+
 

T cell population was associated with increased apoptosis and lower Bcl-2 levels, 

although the rate of in vivo proliferation was not altered by p38 activation 
66

. The MKK6-

driven in vivo activation of p38 had a negligible effect on in vivo and spontaneous 

apoptosis of CD4
+
 T cells 

66
. Although in vitro p38 inhibition was shown to increase cell 

recovery of CD8
+
 T cells following polyclonal T cell activation with concanavalin A 

(Con A), the same experiment was not performed on CD4
+
 T cells 

66
. As mentioned 

above, p38 can be activated by two specific kinases: MKK3 and MKK6. Interestingly, 

CD4
+
 T cells from MKK3- but not from MKK6-deficient mice have been shown to be 

more resistant to cell death induced by TCR activation or by cytokine withdrawal 
103

. 

Proliferation of CD4
+
 T cells was not greatly affected by either MKK3 or MKK6 knock-

down 
103

. In addition, CD4
+
 T cells from MKK3-deficient mice had a greater reduction in 

p38 activation compared to those from MKK6-deficient mice 
103

. These data suggest that 

the p38 pathway negatively impacts the survival of both CD4
+
 and CD8

+
 T cells, although 

p38 might be activated by different MAPK kinases in these populations. A major effect of 

p38 inhibition was to endow CD45RA
+
CD27

-
 cells with the ability to induce telomerase 

activity upon TCR stimulation. The telomerase activity on CD45RA
-
CD27

-
 cells was also 

improved by p38 inhibition. Interestingly, the telomerase activity boost induced by p38 

inhibition was not associated with improved Akt(Ser473) phosphorylation, further 

supporting the view that pAkt(Ser473) is not as crucial as initially thought for the 

triggering of telomerase activity 
26

. Although CD45RA
+
CD27

-
 cells had significantly 

longer telomeres than CD45RA
-
CD27

-
 cells, p38 inhibition appears to revert some of the 
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senescence-associated traits of both these subsets. Our data suggests that the p38 pathway 

might be involved in both telomere-dependent and –independent senescence of CD4
+
 T 

cells, as previously demonstrated for other cell types 
62

. The potential role of the p38 

pathway in the generation and/or maintenance of senescence-prone CD45RA
+
CD27

-
 

CD4
+
 T cells which accumulate in the elderly, mainly in CMV-infected individuals 

2
, 

compels the investigation of putative triggers that may be inducing p38 signalling in these 

cells. A likely candidate is TNF-α, a pro-inflammatory cytokine reportedly associated 

with the pronounced T cell differentiation observed during CMV infection 
69-72

. We 

confirmed that TNF-α is able to activate the p38 pathway and to inhibit telomerase 

activity, two outcomes that are probably interlinked. In addition, the production of TNF-α 

has been shown to increase not only during CMV infection 
68

 but also upon the 

establishment of cellular senescence 
104

. We observed that the CD45RA
-
CD27

-
 and 

CD45RA
+
CD27

-
 subsets display the highest frequency of TNF-α-producing cells. These 

data allude to a hypothetical scenario where the high levels of TNF-α present during 

CMV infection might lead to the generation of highly differentiated CD4
+
 T cells, which 

would in turn produce more TNF-α, further contributing to the pro-inflammatory 

environment and the accumulation of these cells. TNF-α-induced signalling would 

activate the p38 pathway, potentially impairing survival and telomerase activity following 

TCR stimulation of these highly differentiated CD4
+
 T cells. The apparently incongruous 

accumulation of apoptosis-susceptible cells might be due to a continuous replenishment 

of the subset by precursors driven to differentiate, as has been proposed for CD45RA re-

expressing CD8
+
 T cells 

5
. Interestingly, TNF-α has been shown to increase the 

production of IL-7 by bone-marrow stromal cells 
105

 as well as to increase IL-7Rα 

expression in both CD4
+
 and CD8

+
 mouse T cells 

36
. Furthermore, IL-7 has been shown 

to stimulate TNF-α production by intra-articular CD4
+
 T lymphocytes and accessory cells 

in patients with rheumatoid arthritis, exacerbating the pro-inflammatory responses in 

these patients 
106

. These data suggest a potential positive feedback-loop between TNF-α 

and IL-7 production which might contribute to the accumulation of CD45RA re-

expressing memory CD4
+
 T cells.  

Taken together, our data indicate that CD45RA
+
CD27

-
 CD4

+
 T cells do not constitute 

an exhausted subset, displaying cytotoxic potential and proliferative capacity upon TCR 

activation. Given that CD45RA
+
CD27

-
 CD4

+
 T cells are highly susceptible to cell death 

following activation, we hypothesize that this subset is comprised by short-lived cells and 
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thus has to be constantly replenished. We demonstrated that CD45RA re-expression can 

be induced by IL-7 in CD45RA
-
CD27

+
 CD4

+
 T cells, suggesting a role for this cytokine 

in the generation of the CD4
+
 CD45RA

+
CD27

-
 subset, although this process appears to 

require other factors. Finally, we found that CD45RA
+
CD27

-
 CD4

+
 T cells are prone to 

telomere-independent senescence through a process partly driven by the p38 MAPK 

pathway.  
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CONCLUSIONS 

Homeostasis of the T cell pool allows the preservation of relatively constant cell 

numbers and adequate diversity in face of declining thymic output and constant antigenic 

challenge 
1
. IL-7 is a key mediator in both naive and memory T cell homeostasis through 

its ability to induce signalling pathways that promote cell survival and proliferation 
1-6

. 

We assessed the potentially distinct effects of IL-7 in the homeostasis of naive CD4
+
 T 

cell subsets defined by CD31 expression. Furthermore, we investigated the mechanisms 

involved in the restoration of T cell homeostasis following haploidentical HSCT, 

particularly in the maintenance of the CD31
+
 naive CD4

+
 T cell pool. As pertaining to 

memory CD4
+
 T cell homeostasis, we sought to determine the replicative and functional 

potential of highly differentiated CD45RA
+
CD27

-
 cells, in order to clarify the impact of 

the increasing representation of this subset observed during CMV infection, as well as the 

putative involvement of IL-7 in CD45RA re-expression on memory CD4
+
 T cells.  

During ageing, the replenishment of the naive T cell pool with recent thymic emigrants 

progressively declines due to thymic involution 
7
. Hence homeostatic mechanisms in the 

periphery are required to maintain the size and diversity of the naive CD4
+
 T cell pool. 

IL-7 has been shown to induce homeostatic proliferation of umbilical cord blood naive 

CD4
+
 T cells, a population that can be used as a model for RTEs 

8-10
. Hence we sought to 

investigate if IL-7 was also able to expand the RTE-enriched subset in adult peripheral 

blood identifiable by CD31 expression within naive CD4
+
 T cells. We described for the 

first time a selective proliferation of the CD31
+
 subset within adult naive CD4

+
 T cells in 

response to IL-7 stimulation. Furthermore, we showed that IL-7-induced proliferation did 

not lead to down-modulation of CD31 and consequent generation of a CD31
-
 sub-

population. On the contrary, IL-7 sustained or even increased the level of CD31 

expression in CD31
+
 naive CD4

+
 T cells, although it did not induce CD31 re-expression 

in the CD31
-
 subset. We also demonstrated that both IL-7-induced proliferation and 

CD31 maintenance required the activation of the PI3K pathway. Conversely, other 

characteristic IL-7 read-outs, namely up-regulation of the anti-apoptotic protein Bcl-2 and 

promotion of in vitro cell survival, were observed both in CD31
+
 and CD31

-
 naive CD4

+
 

T cells and were not dependent on PI3K activation. These data allow us to hypothesize 
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that IL-7-induced PI3K signalling might be defective in adult CD31
-
 naive CD4

+
 T cells. 

In order to clarify this issue, Akt phosphorylation levels should be assessed in purified 

CD31
+
 and CD31

-
 naive CD4

+
 T cells stimulated with IL-7. This assessement was 

precluded by the low levels of pAkt induced by IL-7 alone in primary naive CD4
+
 T cells, 

which were undetectable both by Western blot and flow cytometry. 

The role of CD31 expression on naive CD4
+
 T cells is yet to be clarified, although it 

has been proposed to hamper the proliferation of CD31
+
 naive CD4

+
 T cells in response 

to TCR triggering through its cytoplasmic ITIMs 
11

. Alternatively, CD31 might be 

required for transendothelial migration, as described for other cell types 
12

, potentially 

driving the migration of CD31
+
 naive CD4

+
 T cells into IL-7-rich microenvironments 

where they might undergo homeostatic proliferation. A transendothelial migration assay 

in the presence or absence of CD31-blocking antibodies might elucidate whether CD31 

plays a role in naive CD4
+
 T cell migration. 

Our data suggest the CD31
+
 naive CD4

+
 T cell pool is maintained throughout 

adulthood, at least partly, by IL-7 signalling and hence IL-7-based therapies might exhert 

a preferential effect on this population. For instance, we hypothesise that the increased 

CD31
+
 naive CD4

+
 T cell numbers observed after IL-7 administration during a phase I 

clinical trial in cancer patients 
13

 was likely driven by IL-7-induced expansion of this 

naive CD4
+
 subset. The expansion of RTE-enriched CD31

+
 naive CD4

+
 T cells has been 

associated with an age-independent broadening of the T cell repertoire diversity 
13

. 

Therefore IL-7 administration has a promising therapeutic potential in a variety of clinical 

settings, namely those associated with limited naive T cell numbers and skewed T cell 

repertoire. IL-7 therapy might thus be relevant as an aid for immune reconstitution 

following stem cell transplantation, potentially accelerating the restoration of T cell 

numbers and diversity by promoting thymic output and peripheral expansion of naive T 

cells, particularly the CD31
+
 naive CD4

+
 T cell subset.  

Haploidentical HSCT constitutes a particularly challenging clinical setting because the 

number of mature T cells in the graft needs to be minimal in order to prevent GVHD, 

delaying early immune reconstitution through peripheral expansion and limiting the GVL 

effect, whereas the conditioning regimen might damage thymic or peripheral lymphoid 

tissues, hindering naive T cell output as well as memory T cell maintenance 
14

. We 

performed a cross-sectional evaluation of long term immune reconstitution following 

haploidentical HSCT in a group of five patients who had received a CD34
+
 purified stem 
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cell graft from full-haplotype mismatched related donors. The study took place four to six 

years post-transplant and allowed us to assess whether T cell homeostasis was 

successfully restored in these patients, not only in terms of cell numbers but also of T cell 

diversity. We were also interested in elucidating the mechanisms involved in T cell 

reconstitution, particularly in the replenishment of the naive CD4
+
 T cell population. We 

observed that these patients had comparable absolute numbers of CD4
+
 and CD8

+
 T cells, 

as well as of B and NK cells, to healthy age-matched controls. We next assessed the 

proportion of naive and memory subsets as defined by the expression of CD45RA and 

CD27 within CD4
+
 and CD8

+
 T cells.  We found that transplant recipients tended to have 

slightly increased frequencies of naive CD45RA
+
CD27

+
 cells, equivalent frequencies of 

early stage differentiation CD45RA
-
CD27

+
 cells and lower frequencies of highly 

differentiated CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 cells when compared to the other 

two cohorts. We demonstrated that CD45RA
+
CD27

-
 CD4

+
 T cells are prone to cellular 

senescence and that these cells are accumulated during chronic CMV infection, a setting 

associated with persistent antigen stimulation. Hence, the absence of inflated 

CD45RA
+
CD27

-
 T cell populations in these transplant recipients suggests that restoration 

of T cell numbers was not mainly driven by clonal expansions but rather relied largely on 

homeostatic mechanisms. Furthermore, the proportion of CD31
+
 cells within the naive 

CD4
+
 T cell subset in patients was similar to the one observed in age-matched controls 

and it was significantly higher than in donors, which was likely due to the age gap 

between the two cohorts, given that the donors were always one of the parents. The 

CD31
+
 naive CD4

+
 T cell subset is highly enriched in RTEs and hence this result might 

lead us to speculate that thymic output played a major role in the maintenance of this 

population. However, as mentioned above, IL-7-driven peripheral expansion might also 

have contributed to the expansion of CD31
+
 naive CD4

+
 T cells, particularly since IL-7 

levels have been described to be increased during lymphopenia, such as the one 

established immediately following stem cell transplantation. At the time of the study, 

transplant recipients did not have higher IL-7 serum levels than the other two cohorts. As 

previously reported, IL-7 levels return to steady-state levels once CD4
+
, particularly naive 

CD4
+
, T cell numbers are restored 

15-17
. Hence, the absence of elevated IL-7 levels is in 

agreement with the observation of comparable CD4
+
 T cell counts as well as CD31

+
 naive 

CD4
+
 T cell frequencies between recipients and age-matched controls. In order to 

elucidate the relative contribution of thymic output and peripheral expansion to immune 
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reconstitution, we quantified TREC content within PBMCs and measured telomere length 

within CD4
+
 and CD8

+
 T cell subsets. Both these assays revealed similar results when the 

three cohorts were compared, further suggesting that thymic output contributed, at least 

partly, to immune reconstitution. In agreement with these observations, we found 

comparably diverse TCRVB repertoires in transplant recipients and age-matched controls. 

It would be interesting to analyse the TREC content and telomere length within CD4
+
 and 

CD8
+
 T cell subsets in order to get a clearer picture of the replicative histories of each 

population. These data would also inform us of the relative contribution of thymic output 

and IL-7-driven expansion to the maintenance of the CD31
+
 naive CD4

+
 T cell subset. 

Overall, our data suggest that long term immune reconstitution was successfully achieved 

in this cohort of haploidentical HSCT recipients, likely through a combination of thymus-

dependent and -independent mechanisms which gave rise to balanced CD4
+
 and CD8

+
 T 

cell subsets and to a diverse T cell repertoire. In order to assess the functional properties 

of these T cells, we are currently assessing proliferative responses and cytokine 

production profiles after polyclonal as well as antigen-specific stimulation.  

As mentioned above, CD45RA
+
CD27

-
 CD4

+
 T cells are accumulated during CMV 

infection 
18

, constituting large clonal expansions of CMV-specific cells 
19,20

. Given the 

high prevalence of CMV infection, particularly in elderly individuals, we sought to 

investigate if the accumulation of CD45RA
+
CD27

-
 CD4

+
 T cells might constitute a 

hindrance for immune competence. For that purpose, we compared the phenotypic and 

functional characteristics of these cells with the remaining CD45RA/CD27 CD4
+
 T cell 

subsets. Our data indicate that CD45RA
+
CD27

-
 CD4

+
 T cells are not exhausted, being 

able to produce multiple cytokines 
18

 and to proliferate in response to TCR activation. 

However, these cells are highly susceptible to cell death following activation, which is 

associated with low Bcl-2 and IL-7Rα basal levels 
18

, as well as with defective 

Akt(Ser473) phosphorylation. Nevertheless, CD45RA
+
CD27

-
 CD4

+
 T cells do 

accumulate in CMV-infected individuals during ageing 
18

, which suggests a continual 

replenishment of this subset from CD45RA
-
 precursors. The highly differentiated 

phenotype of CD45RA
+
CD27

-
 CD4

+
 T cells indicates that they are not directly derived 

from CD45RA
+
CD27

+
 naive cells induced to lose CD27 expression. This scenario can be 

ruled out by comparing the TREC content within these subsets, which will reveal their 

replicative histories and thus clarify if CD45RA
+
CD27

-
 cells display TREC levels 

consistent with them being a potential direct differentiation product of CD45RA
+
CD27

+
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precursors. We demonstrated that CD45RA
-
CD27

+
 CD4

+
 T cells can be induced to re-

express CD45RA as a result of IL-7 stimulation. In contrast, IL-2 or IL-15 stimulation 

only induced modest levels of CD45RA-expression in these cells, whereas CD45RA
-

CD27
-
 CD4

+
 T cells failed to re-express CD45RA in the presence of IL-2, IL-7 or IL-15. 

Similarly to what we observed in ex vivo CD45RA
+
CD27

-
 CD4

+
 T cells 

18
, the IL-7-

induced CD45RA re-expressing population displayed low levels of Bcl-2 and IL-7Rα. 

Interestingly, we found that a larger proportion of CD45RA re-expressing cells 

proliferated during IL-7 stimulation when compared to the population that remained 

CD45RA
-
, which appears incongruous with the persistently low IL-7Rα levels observed 

in the former population. However, IL-7Rα expression levels have been shown not to 

correlate with IL-7-induced signalling in human CD4
+
 T cells 

21
. Our results point to a 

role for IL-7 in the induction of CD45RA re-expression on memory CD4
+
 T cells. A 

potential site where IL-7-driven CD45RA re-expression might occur in vivo is the bone 

marrow, an IL-7-rich immune compartment which also has increased frequencies of 

CD45RA
+
CD27

-
 CD4

+
 T cells in comparison to peripheral blood 

18
. CD45RA re-

expression is likely to entail changes in the transcriptional program, namely IL-7-driven 

up-regulation of certain transcription factors in a sub-population of CD45RA
-
CD27

+
 

CD4
+
 T cells. Our results point to T-bet as a potential transcription factor involved in this 

process, given that ex vivo CD45RA
+
CD27

-
 CD4

+
 T cells expressed the highest levels of 

T-bet in relation to the other subsets and that IL-7 up-regulated its expression in 

CD45RA
-
CD27

+
 CD4

+
 T cells. The specific knock-down of T-bet expression in 

CD45RA
-
CD27

+
 CD4

+
 T cells stimulated with IL-7 would help to clarify if this 

transcription factor is required for IL-7-induced CD45RA re-expression in these cells. 

Nevertheless, we found that IL-7-induced CD45RA re-expressing cells only modestly 

decreased CD27 expression, suggesting that other factors might co-operate with IL-7 in 

the generation of CD45RA
+
CD27

-
 CD4

+
 T cells from CD45RA

-
CD27

+
 precursors. A 

likely candidate is TNF-α, a pro-inflammatory cytokine which has been shown to down-

modulate the expression of co-stimulatory molecules on CD8
+
 T cells 

22-24
. The effects on 

the CD45RA/CD27 profile of CD45RA
-
CD27

+
 CD4

+
 T cells cultured in the presence of 

IL-7 together with TNF-α are currently being assessed. 

Although we found that CD45RA
+
CD27

-
 CD4

+
 T cells retain functional and 

proliferative potential, these cells also displayed senescence-associated traits, such as high 

levels of CD57 and KLRG1 (Di Mitri et. al., manuscript under submission) expression. 
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Surprisingly, CD45RA
+
CD27

-
 CD4

+
 T cells showed relatively long telomeres but were 

defective in the induction of telomerase activity following TCR stimulation, giving 

contradictory indications about the replicative capacity and susceptibility to senescence of 

these cells. In order to clarify this issue, we assessed the expression of the senescence 

marker γ-H2AX after activation and found that CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 

CD4
+
 T cells expressed the highest levels, suggesting that the latter subset is prone to 

telomere-independent senescence. Given that the p38 MAPK pathway has been shown to 

mediate both telomere-dependent and -independent senescence in human fibroblasts 
25

, 

we investigated if blocking this pathway might reverse the senescence characteristics 

observed in CD45RA
-
CD27

-
 and CD45RA

+
CD27

-
 CD4

+
 T cells. We found that p38 

inhibition led to a modest decrease in γ-H2AX expression in the latter subset and 

substantially improved cell survival in both subsets, which was probably associated with 

increased Bcl-2 levels, following TCR activation. Moreover, blocking the p38 pathway 

enhanced telomerase activity upon TCR stimulation in CD45RA
-
CD27

-
 and 

CD45RA
+
CD27

-
 CD4

+
 T cells, although its impact was more striking in the latter subset. 

These data, together with our observation that p38 expression was only detectable on 

CD45RA-expressing cells when CD45RA
-
CD27

+
 CD4

+
 T cells were cultured with IL-7, 

suggest that the p38 pathway might mediate the generation and/or maintenance of 

CD45RA re-expressing memory CD4
+
 T cells. We sought to investigate which factors 

might be responsible for the activation of the p38 pathway, potentially prompting the 

replenishment and accumulation of senescence-prone CD45RA
+
CD27

-
 CD4

+
 T cells 

during CMV infection. Again, we found evidence to suggest that TNF-α may be involved 

in this process, given that p38 inhibition reversed the TNF-α-induced down-modulation 

of telomerase activity in CD4
+
 T cells. Interestingly, this pro-inflammatory cytokine has 

been shown to be elevated during ageing 
26

, CMV infection 
27

 and in CD8
+
 T cells that 

have reached replicative senescence in vitro 
28

, as well as to increase IL-7 production by 

bone marrow stromal cells 
29

. Hence we can speculate that the high levels of TNF-α 

present during CMV infection would increase the levels of IL-7 in the bone-marrow, 

which in turn would be conducive to the generation of CD45RA
+
CD27

-
 CD4

+
 T cells 

from CD45RA
-
CD27

+
 precursors through a mechanism involving IL-7-induced CD45RA 

re-expression and TNF-α-driven CD27 down-modulation. These CD45RA
+
CD27

-
 CD4

+
 

T cells would in turn produce more TNF-α, thus exhacerbating the pro-inflammatory 

environment and perpetuating the accumulation of these cells. Moreover, TNF-α would 
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also contribute to the onset of telomere-independent senescence in these cells through the 

activation of the p38 pathway. Although this is an hypothetical scenario, TNF-α 

inhibition during long-term cultures of human CD8
+
 T cells has been shown to delay the 

onset of senescence 
30

, whereas anti-TNF-α therapy in patients with rheumatoid arthritis 

has been associated with the restoration of the CD28
+
 T cell population within diseased 

joints 
23,31

, further suggesting a role for TNF-α in the accumulation of senescent T cells 

during chronic inflammation. Overall, our data show that the telomere-independent 

senescence traits found in CD45RA
+
CD27

-
 CD4

+
 T cells were at least partly mediated by 

the p38 MAPK pathway and could be reversed to an extent by p38 inhibition. This link 

between p38 activation and senescence in lymphocytes identifies a potential target for 

therapeutic interventions.  

Taken together, our results further emphasize the contribution of IL-7 signalling to 

naive and memory CD4
+
 T cell homeostasis, ensuring the maintenance of the CD31

+
 

naive T cell pool and potentially contributing the generation of a CD45RA re-expressing 

reservoir of memory T cells which can be re-activated to perform effector functions. 

 

 

 

 

 

 

 

 

 



162 Conclusions 

 

References 

1. Mahajan VS, Leskov IB, Chen JZ. Homeostasis of T cell diversity. Cell Mol 

Immunol. 2005;2:1-10. 

2. Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B. Differential 

requirements for survival and proliferation of CD8 naive or memory T cells. Science. 

1997;276:2057-2062. 

3. Schluns KS, Kieper WC, Jameson SC, Lefrancois L. Interleukin-7 mediates the 

homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol. 2000;1:426-432. 

4. Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron 

metabolism. Int J Biochem Cell Biol. 2001;33:940-959. 

5. Brocker T. Survival of mature CD4 T lymphocytes is dependent on major 

histocompatibility complex class II-expressing dendritic cells. J Exp Med. 

1997;186:1223-1232. 

6. Boursalian TE, Bottomly K. Survival of naive CD4 T cells: roles of restricting 

versus selecting MHC class II and cytokine milieu. J Immunol. 1999;162:3795-3801. 

7. Mackall CL, Gress RE. Thymic aging and T-cell regeneration. Immunol Rev. 

1997;160:91-102. 

8. Hassan J, Reen DJ. Human recent thymic emigrants--identification, expansion, and 

survival characteristics. J Immunol. 2001;167:1970-1976. 

9. Dardalhon V, Jaleco S, Kinet S, et al. IL-7 differentially regulates cell cycle 

progression and HIV-1-based vector infection in neonatal and adult CD4+ T cells. Proc 

Natl Acad Sci U S A. 2001;98:9277-9282. 

10. Soares MV, Borthwick NJ, Maini MK, Janossy G, Salmon M, Akbar AN. IL-7-

dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive 

repertoire. J Immunol. 1998;161:5909-5917. 

11. Kohler S, Thiel A. Life after the thymus: CD31+ and CD31- human naive CD4+ T-

cell subsets. Blood. 2009;113:769-774. 

12. DeLisser HM, Yan HC, Newman PJ, Muller WA, Buck CA, Albelda SM. 

Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation 

involves cell surface glycosaminoglycans. J Biol Chem. 1993;268:16037-16046. 

13. Sportes C, Hakim FT, Memon SA, et al. Administration of rhIL-7 in humans 

increases in vivo TCR repertoire diversity by preferential expansion of naive T cell 

subsets. J Exp Med. 2008;205:1701-1714. 

14. Atkinson A. Clinical bone marrow and blood stem cell transplantat: Cambridge 

University Press; 2004. 

15. Fry TJ, Connick E, Falloon J, et al. A potential role for interleukin-7 in T-cell 

homeostasis. Blood. 2001;97:2983-2990. 

16. Napolitano LA, Grant RM, Deeks SG, et al. Increased production of IL-7 

accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat 

Med. 2001;7:73-79. 



The role of IL-7 in the Homeostasis of Human Naive and Memory CD4
+
 T cell subsets 163 

 

17. Smith DK, Neal JJ, Holmberg SD. Unexplained opportunistic infections and CD4+ 

T-lymphocytopenia without HIV infection. An investigation of cases in the United States. 

The Centers for Disease Control Idiopathic CD4+ T-lymphocytopenia Task Force. N 

Engl J Med. 1993;328:373-379. 

18. Libri V, Azevedo RI, Jackson SE, et al. IL-7 Induces Short-Lived, Multifunctional 

CD4+ CD27-CD45RA+ T Cells That Accumulate During Persistent Cytomegalovirus 

Infection. Immunology. 2010;In press. 

19. Appay V, Rowland-Jones SL. Lessons from the study of T-cell differentiation in 

persistent human virus infection. Semin Immunol. 2004;16:205-212. 

20. Wills MR, Okecha G, Weekes MP, Gandhi MK, Sissons PJ, Carmichael AJ. 

Identification of naive or antigen-experienced human CD8(+) T cells by expression of 

costimulation and chemokine receptors: analysis of the human cytomegalovirus-specific 

CD8(+) T cell response. J Immunol. 2002;168:5455-5464. 

21. Bazdar DA, Kalinowska M, Sieg SF. Interleukin-7 receptor signaling is deficient in 

CD4+ T cells from HIV-infected persons and is inversely associated with aging. J Infect 

Dis. 2009;199:1019-1028. 

22. Borthwick NJ, Lowdell M, Salmon M, Akbar AN. Loss of CD28 expression on 

CD8(+) T cells is induced by IL-2 receptor gamma chain signalling cytokines and type I 

IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol. 

2000;12:1005-1013. 

23. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ. Down-regulation of CD28 

expression by TNF-alpha. J Immunol. 2001;167:3231-3238. 

24. Lewis DE, Merched-Sauvage M, Goronzy JJ, Weyand CM, Vallejo AN. Tumor 

necrosis factor-alpha and CD80 modulate CD28 expression through a similar mechanism 

of T-cell receptor-independent inhibition of transcription. J Biol Chem. 2004;279:29130-

29138. 

25. Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the 

common senescence-signalling pathway. Genes Cells. 2003;8:131-144. 

26. Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in 

mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23:2375-2378. 

27. Geist LJ, Hopkins HA, Dai LY, He B, Monick MM, Hunninghake GW. 

Cytomegalovirus modulates transcription factors necessary for the activation of the tumor 

necrosis factor-alpha promoter. Am J Respir Cell Mol Biol. 1997;16:31-37. 

28. Effros RB. Replicative senescence of CD8 T cells: potential effects on cancer 

immune surveillance and immunotherapy. Cancer Immunol Immunother. 2004;53:925-

933. 

29. Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R. Interleukin-7 stimulates 

osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic 

cytokines. Blood. 2000;96:1873-1878. 

30. Parish ST, Wu JE, Effros RB. Modulation of T lymphocyte replicative senescence 

via TNF-{alpha} inhibition: role of caspase-3. J Immunol. 2009;182:4237-4243. 



164 Conclusions 

 

31. Bryl E, Vallejo AN, Matteson EL, Witkowski JM, Weyand CM, Goronzy JJ. 

Modulation of CD28 expression with anti-tumor necrosis factor alpha therapy in 

rheumatoid arthritis. Arthritis Rheum. 2005;52:2996-3003. 

 



The role of IL-7 in the Homeostasis of Human Naive and Memory CD4
+
 T cell subsets 165 

 

LIST OF PUBLICATIONS 

Peer-reviewed articles 

Cytomegalovirus infection induces the accumulation of short-lived, multifunctional 

CD4
+
 CD45RA

+
CD27

-
 T cells: the potential involvement of interleukin-7 in this 

process. 

Valentina Libri
1*

, Rita I Azevedo
1,2*

, Sarah E. Jackson
1*

, Diletta Di Mitri
1,3

, Raskit 

Lachmann
4
, Stephan Fuhrmann

4,5
, Milica Vukmanovic-Stejic

1
, Kwee Yong

6
, Luca 

Battistini
3
, Florian Kern

4
,  Maria V.D. Soares

7
 and Arne N. Akbar

1
 

1
Division of Infection and Immunity, University College London, UK, 

2
Unidade de Imunologia 

Clínica, Instituto de Medicina Molecular, Lisboa, Portugal, 
3
European Center for Brain Research 

(CERC)/Santa Lucia Foundation, Rome, Italy, 
4
Division of Medicine, Brighton and Sussex 

Medical School, University of Sussex Campus, Brighton, UK, 
5
Department of Haematology, 

HELIOS Klinikum Berlin-Buch, Germany, 
6
Department of Haematology, University College 

London, UK, 
7
Unidade de Citometria de Fluxo, Instituto de Medicina Molecular, Lisboa, 

Portugal. 

* 
VL, RIA and SEJ contributed equally to this work. 

Article first published online in Immunology on 7 January 2011. 

DOI: 10.1111/j.1365-2567.2010.03386.x 

 

KLRG1 signaling inhibits Akt (Ser473) phosphorylation and proliferation of highly 

differentiated CD8
+
 T cells. 

Sian M. Henson
1
, Ornella Franzese

1-2
, Richard Macaulay

1
, Valentina Libri

1
, Rita I. 

Azevedo
1-3

, Sorena Kiani-Alikhan
1
, Fiona J. Plunkett

1
, Joanne E. Masters

1
,Sarah 

Jackson
1
, Stephen Griffiths

1
, Hans-Peter Pircher

4
, Maria V.D.

 
Soares

3
, 

 
and Arne N. 

Akbar
1
 

1
Department Immunology, University College London, UK, 

2
Department of Neuroscience, 

University of Tor Vergata, Rome, Italy, 
3
Unidade de Imunologia Clínica, Instituto de Medicina 

Molecular, Lisboa, Portugal, 
4
Institute for Medical Microbiology and Hygiene, Department of 

Immunology, University of Freiburg, Germany. 

Published in Blood Journal, June 25
th

 2009, Volume 113, Number 26, 6619-6628. 

 



166  List of Publications 

 

IL-7 sustains CD31 expression in human naive CD4
+
 T cells and preferentially 

expands the CD31
+
 subset in a PI3K-dependent manner. 

Rita I. Azevedo
1*

, Maria Vieira D. Soares
1*

, João T. Barata
2
, Rita Tendeiro

1
, Ana Serra-

Caetano
3
, Rui M.M. Victorino

1
 and Ana E. Sousa

1
 

1
Unidade de Imunologia Clínica, 

2
Unidade de Biologia do Cancro, 

3
 Unidade de Citometria de 

Fluxo, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 

Portugal. 

* 
R.I.A. and M.V.D.S. contributed equally to this work. 

Published in Blood Journal, March 26
th

 2009, Volume 113, Number 13, 2999-3007. 

 

Manuscripts under submission 

CD45RA Re-Expressing CD4
+
 Memory T Cells Exhibit p38 MAP kinase Regulated 

Telomere Independent Senescence 

Diletta Di Mitri
1,2

, Rita Azevedo
1,3

, Valentina Libri
1
, Sian M. Henson

1
, Luca Battistini

2
, 

David Bagley
4
, David Kipling

4
, Arne N. Akbar

1
 

1
Division of Infection and Immunity, University College London, London, W1T 4JF, UK; 

2
Neuroimmunology Unit, European Brain Research Institue, Santa Lucia Foundation, Rome, 

Italy; 
3
Unidade de Immunologia Clinica, Instituto de Medicina Molecular, Lisboa, Portugal; 

4
School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, Wales 

Submitted to the Journal of Experimental Medicine on December 2010. 

 

Manuscripts in preparation 

Long term immune reconstitution following haplotype-mismatched hematopoietic 

stem cell transplantation. 

Maria V.D. Soares
1,2

, Rita Azevedo
1
, Rita Tendeiro

1
, Rui Soares

1
, Adriana Albuquerque

1
, 

Rui M.M. Victorino
1
, João F. Lacerda

1,3
 and Ana E. Sousa

1
 

1
Unidade de Imunologia Clínica and 

2
Unidade de Citometria de Fluxo, Instituto de Medicina 

Molecular, Lisboa, Portugal, 
3
Serviço de Hematologia, Hospital de Santa Maria, Lisboa, 

Portugal. 

 



The role of IL-7 in the Homeostasis of Human Naive and Memory CD4
+
 T cell subsets 167 

 

Communications 

Oral presentations 

IL-7 sustains CD31 expression in human naive CD4
+
 T cells and preferentially 

expands the CD31
+
 subset in a PI3K-dependent manner 

Rita I. Azevedo
1
 and Maria Vieira D. Soares

1
, João T. Barata

2
, Rita Tendeiro

1
, Ana Serra-

Caetano
3
, Rui M. M. Victorino

1
, Ana E. Sousa

1
 

1
Unidade de Imunologia Clínica, 

2
Unidade de Biologia do Cancro, and 

3
Unidade de Citometria 

de Fluxo, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 

Lisbon, Portugal.  

7
th

 EAACI-GA
2
LEN-Immunology-winter School, Davos, Switzerland, February 5

th
-

8
th

 2009. 

 

Long term immune reconstitution following haplotype-mismatched hematopoietic 

stem cell transplantation. 

Rita Azevedo
*
, Maria V.D. Soares

*
, Rui M.M. Victorino

*
, João F. Lacerda

*#
 and Ana E. 

Sousa
*
 

*
Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina de 

Lisboa and 
#
 Serviço de Hematologia, Hospital de Santa Maria, Lisboa, Portugal. 

13
th

 International Congress of Immunology, Rio de Janeiro, Brazil, August 21
st
-25

th
 

2007. 

 

Poster presentations 

IL-7 sustains CD31 expression in human naive CD4
+
 T cells and preferentially 

expands the CD31
+
 subset in a PI3K-dependent manner 

Rita I. Azevedo
1
 and Maria Vieira D. Soares

1
, João T. Barata

2
, Rita Tendeiro

1
, Ana Serra-

Caetano
3
, Rui M. M. Victorino

1
, Ana E. Sousa

1
 

1
Unidade de Imunologia Clínica, 

2
Unidade de Biologia do Cancro, and 

3
Unidade de Citometria 

de Fluxo, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 

Lisbon, Portugal.  

2
nd

 European Congress of Immunology, Berlin, Germany, September 13
th

-16
th

 2009. 

 



168  List of Publications 

 

IL-7-driven homeostatic proliferation induces the generation of short-lived 

functionally distinct memory CD4
+
 T cells re-expressing CD45RA 

Valentina Libri
1
, Sarah E. Jackson

1
, Rita I. Azevedo

1-2
, Joanne E. Cook

1
, Maria V.D. 

Soares
3
, Peter C.L. Beverley

4
  and Arne N. Akbar

1
 

1
Department Immunology, Division of Infection & Immunity, University College London, UK, 

2
Unidade de Imunologia Clinica, Instituto de Medicina Molecular, Lisboa, Portugal, 

3
Unidade de 

Citometria de Fluxo, Instituto de Medicina Molecular, Lisboa, Portugal, 
4
Edward Jenner Institute 

for Vaccine Research, Compton, UK. 

2
nd

 European Congress of Immunology, Berlin, Germany, September 13
th

-16
th

 2009. 

 

Human naive CD4
+
CD45RA

+
CD31

+
 recent thymic emigrants can be maintained by 

IL-7. 

Maria V. D. Soares*, Rita Azevedo*, João T. Barata
#
 and Ana E. Sousa* 

*Unidade de Imunologia Clínica and 
#
Unidade de Biologia do Cancro, Instituto de Medicina 

Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal. 

13
th

 International Congress of Immunology, Rio de Janeiro, Brazil, August 21
st
-25

th
 

2007. 

 

IL-7 and maintenance of naive CD4
+
 T cell pools: insights from HIV-1 and HIV-2 

infections.  

Maria V.D. Soares*, Rita I. Azevedo*, Rui Soares*, Adriana Albuquerque*, Catarina 

Cortesão*, Russell Foxall* and Ana E. Sousa*. 

*Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina de 

Lisboa, Lisboa, Portugal. 

16
th

 European Congress of Immunology – ECI, Paris, 2006. 

 

Major Conferences Attended 

7th European Congress of Biogerontology, “Centenarian lesson: a life beyond time” 

Palermo, Italy, October 14
th

-17
th

 2010. 

2
nd

 European Congress of Immunology, “Immunity for Life – Immunology for 

Health”, Berlin, Germany, September 13
th

-16
th

 2009. 

7
th

 EAACI-GA
2
LEN-Immunology-winter School, “Immune Responses in Allergy and 

Asthma”, Davos, Switzerland, February 5
th

-8
th

 2009. 



The role of IL-7 in the Homeostasis of Human Naive and Memory CD4
+
 T cell subsets 169 

 

BSI Joint London Immunology Group / Differentiation and Immunosenescence 

Meeting, “Leukocyte differentiation and regulation in disease”, Institute of Child Health, 

London, September 12
th

 2008. 

14
th

 FEBS International Summer School on Immunology, “Immune System: Genes, 

Receptors and Regulation”, Hvar, Croatia, September 10
th

 -17
th

 2007. 

13
th

 International Congress of Immunology, “ImmunoRio 2007”, Rio de Janeiro, 

Brazil, August 21
st
-25

th
 2007. 



170   

 



The role of IL-7 in the Homeostasis of Human Naive and Memory CD4
+
 T cell subsets 171 

 

APPENDIX 

Related Publications 

In agreement with the Decreto-Lei 388/70, art. 8º, parágrafo 2, the results presented here 

were published or are currently being prepared for publication in the following scientific 

journals: 

Chapter 1 

Chapter 1.1 

IL-7 sustains CD31 expression in human naive CD4
+
 T cells and preferentially 

expands the CD31
+
 subset in a PI3K-dependent manner. 

Rita I. Azevedo*, Maria Vieira D. Soares*, João T. Barata, Rita Tendeiro, Ana Serra-

Caetano, Rui M.M. Victorino, and Ana E. Sousa.  

Blood, 26 March 2009, Vol. 113, No. 13, pp. 2999-3007. 

 

Chapter 2 

Chapter 2.1 

Cytomegalovirus infection induces the accumulation of short-lived, 

multifunctional CD4
+
 CD45RA

+
CD27

-
 T cells: the potential involvement of 

interleukin-7 in this process. 

Valentina Libri*, Rita I. Azevedo*, Sarah E. Jackson*, Diletta Di Mitri, Raskit 

Lachmann, Stephan Fuhrmann, Milica Vukmanovic-Stejic, Kwee Yong, Luca 

Battistini, Florian Kern, Maria V.D. Soares and Arne N. Akbar.  

Article first published online in Immunology on 7 January 2011. 

 

Chapter 2.2 

CD45RA Re-Expressing CD4
+
 Memory T Cells Exhibit p38 MAP kinase 

Regulated Telomere Independent Senescence. 

Diletta Di Mitri, Rita Azevedo, Valentina Libri, Sian M. Henson, Luca Battistini, 

David Bagley, David Kipling, Arne N. Akbar. 

Submitted to the Journal of Experimental Medicine in December 2010. 

* these authors contributed equally 



doi:10.1182/blood-2008-07-166223 
Prepublished online Nov 13, 2008;
2009 113: 2999-3007
 
 
 

 
M. Victorino and Ana E. Sousa 
Rita I. Azevedo, Maria Vieira D. Soares, João T. Barata, Rita Tendeiro, Ana Serra-Caetano, Rui M.
 

  subset in a PI3K-dependent manner+preferentially expands the CD31
 T cells and+IL-7 sustains CD31 expression in human naive CD4

 http://bloodjournal.hematologylibrary.org/cgi/content/full/113/13/2999
Updated information and services can be found at: 

 (3849 articles)Immunobiology �
 collections: BloodArticles on similar topics may be found in the following 

 http://bloodjournal.hematologylibrary.org/misc/rights.dtl#repub_requests
Information about reproducing this article in parts or in its entirety may be found online at: 

 http://bloodjournal.hematologylibrary.org/misc/rights.dtl#reprints
Information about ordering reprints may be found online at: 

 http://bloodjournal.hematologylibrary.org/subscriptions/index.dtl
Information about subscriptions and ASH membership may be found online at: 

. Hematology; all rights reservedCopyright 2007 by The American Society of 
200, Washington DC 20036.
semimonthly by the American Society of Hematology, 1900 M St, NW, Suite 
Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published
 
 
 
 

 For personal use only. at UCL Library Services on May 29, 2009. www.bloodjournal.orgFrom 

http://bloodjournal.hematologylibrary.org/cgi/content/full/113/13/2999
http://bloodjournal.hematologylibrary.org/cgi/collection/immunobiology
http://bloodjournal.hematologylibrary.org/misc/rights.dtl#repub_requests
http://bloodjournal.hematologylibrary.org/misc/rights.dtl#reprints
http://bloodjournal.hematologylibrary.org/subscriptions/index.dtl
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl
http://bloodjournal.hematologylibrary.org
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


IMMUNOBIOLOGY

IL-7 sustains CD31 expression in human naive CD4� T cells and preferentially
expands the CD31� subset in a PI3K-dependent manner
*Rita I. Azevedo,1 *Maria Vieira D. Soares,1 João T. Barata,2 Rita Tendeiro,1 Ana Serra-Caetano,3 Rui M. M. Victorino,1 and
Ana E. Sousa1

1Unidade de Imunologia Clínica, 2Unidade de Biologia do Cancro, and 3Unidade de Citometria de Fluxo, Instituto de Medicina Molecular, Faculdade de
Medicina, Universidade de Lisboa, Lisboa, Portugal

The CD31� subset of human naive CD4�

T cells is thought to contain the popula-
tion of cells that have recently emigrated
from the thymus, while their CD31� coun-
terparts have been proposed to originate
from CD31� cells after homeostatic cell
division. Naive T-cell maintenance is
known to involve homeostatic cytokines
such as interleukin-7 (IL-7). It remains to
be investigated what role this cytokine
has in the homeostasis of naive CD4�

T-cell subsets defined by CD31 expres-
sion. We provide evidence that IL-7 exerts
a preferential proliferative effect on CD31�

naive CD4� T cells from adult peripheral
blood compared with the CD31� subset.
IL-7–driven proliferation did not result in
loss of CD31 expression, suggesting that
CD31� naive CD4� T cells can undergo
cytokine-driven homeostatic prolifera-
tion while preserving CD31. Furthermore,
IL-7 sustained or increased CD31 expres-

sion even in nonproliferating cells. Both
proliferation and CD31 maintenance were
dependent on the activation of phospho-
inositide 3-kinase (PI3K) signaling. Taken
together, our data suggest that during
adulthood CD31� naive CD4� T cells are
maintained by IL-7 and that IL-7–based
therapies may exert a preferential effect
on this population. (Blood. 2009;113:
2999-3007)

Introduction

Human naive CD4� T cells have recently been shown to contain
2 subpopulations distinguished by the expression of CD31 (platelet
endothelial cell adhesion molecule-1, PECAM-1). The CD31�

subset is thought to incorporate the population of cells recently
emigrated from the thymus, whereas the CD31� subset has been
proposed to derive from CD31� after homeostatic cell division.1

During T-cell development in the thymus, rearrangement of the
T-cell receptor (TCR) genes generates stable episomal DNA
excision circles (TRECs) that are progressively diluted with cell
division.2-4 Accordingly, CD31� naive CD4� T cells have higher
TREC content compared with the CD31� naive subset.1 Moreover,
the progressive age-associated decline in naive CD4� T cells is
mainly due to a reduction in the CD31� naive subset while the
CD31� subset persists,5,6 further supporting the contribution of
thymic output to the maintenance of CD31� cells. However, the
decrease in TREC levels observed during aging is disproportion-
ally greater compared with the decline in CD31� naive T cells,
implicating other mechanisms, in addition to thymic output, in the
persistence of these cells into old age.4

Cytokine-driven expansion has been proposed to significantly con-
tribute to a low level of homeostatic proliferation that maintains naive
T-cell numbers.7 Besides its established importance in thymopoiesis,
interleukin-7 (IL-7) is considered to play a key role in naive T-cell
survival and proliferation in the periphery.2,7 In vitro studies of human
naive CD4� T cells cultured in the presence of IL-7 revealed, alongside
with its antiapoptotic properties, an ability to induce proliferative
responses without a switch to a memory phenotype.8 IL-7 seems to exert
a preferential effect on umbilical cord blood (CB) naive T cells that

proliferate significantly more than adult peripheral blood naive T cells in
response to IL-7.8,9 Despite this, a considerable reliance upon IL-7 in
naive T-cell homeostasis after T-cell depletion has been established.7,10

IL-7 was able to promote T-cell reconstitution after bone marrow
transplantation in mice acting not only at the thymic but also at the
peripheral level,11-13 and to expand naive and memory T cells in
uninfected14 and simian immunodeficiency virus (SIV)–infected nonhu-
man primates.15 Furthermore, IL-7 serum levels were shown to increase
in different lymphopenic settings in humans in strong inverse correlation
with naive CD4� T-cell counts, suggesting a feedback mechanism to
counteract T-cell depletion.16-19 IL-7 administration to patients with
metastatic melanoma led to CD4� and CD8� T-cell expansion, particu-
larly of CD45RA� naive T cells,20 and further clinical trials are currently
exploring its therapeutic potential.

The possibility of IL-7 having distinct effects on human CD31� and
CD31� naive subsets has not yet been investigated. These data are
relevant not only to further clarify the mechanisms involved in the
maintenance of these 2 naive populations during aging, but also to better
characterize the potential cellular targets of therapeutic interventions
involving IL-7 administration. In this respect, a recently published phase
1 clinical trial with IL-7 in refractory cancer shows a preferential
expansion of the CD31� naive CD4� subset.21 This was associated with
a decrease in TREC content in this population consistent with the
induction of proliferation by IL-7 in this subset.21

Here, we report that IL-7 exerted a selective proliferative effect
on CD31� naive CD4� T cells from adult peripheral blood
compared with their CD31� counterparts. We further observed that
proliferation of adult CD31� naive CD4� T cells was dependent on
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the activation of phosphoinositide 3-kinase (PI3K) signaling path-
way and was not associated with loss of CD31 expression. IL-7
also promoted the preservation of CD31 levels in nonproliferating
naive T cells through PI3K activation. Taken together, our data
suggest that IL-7 may play a preferential role in the maintenance of
CD31� naive CD4� T cells during adult life.

Methods

Cell isolation

This study was approved by the Ethics Board of the Faculty of Medicine of
Lisbon. Mononuclear cells were isolated from heparinized adult peripheral
blood of healthy volunteers, and from umbilical cord blood (CB) obtained
immediately after delivery of full-term infants, with informed consent
obtained in accordance with the Declaration of Helsinki, by Ficoll-Hypaque
density gradient (Amersham Pharmacia Biotech, Uppsala, Sweden). CD4�

T cells were negatively selected using the EasySep Human CD4� T-Cell
Enrichment Kit (StemCell Technologies, Vancouver, BC) and subsequently
sorted into CD31� and CD31� naive subsets using a FACSAria flow
cytometer (BD Biosciences, San Jose, CA) after staining for CD45RA,
CD45RO, CD4, and CD31 as described below.

Cell culture

Cells were cultured in RPMI 1640 (Invitrogen, Carlsbad, CA) supple-
mented with 10% heat-inactivated human AB serum (Sigma-Aldrich, St
Louis, MO), 100 U/mL penicillin, 100 mg/mL streptomycin, and 2 mM
L-glutamine (Invitrogen), in the presence or absence of recombinant human
IL-7 (10 ng/mL; R&D Systems, Minneapolis, MN) or recombinant human
IL-2 (10 U/mL; obtained through the National Institutes of Health (NIH)/
AIDS Research and Reference Program, Division of AIDS, National
Institute of Allergy and Infectious Diseases, NIH [IL-2] from Hoffman-La
Roche). PI3K and mitogen-activated protein kinase (MEK)–extracellular
signal-regulated kinase (ERK) activity were respectively blocked by
incubation of cells for 1 hour at 37°C before IL-7 stimulation with either
10 �M LY294002 or 10 �M PD98059 (both from Calbiochem, Merck
Biosciences, Nottingham, United Kingdom) or the equivalent volume of the
vehicle control dimethyl sulfoxide (DMSO; Sigma-Aldrich) alone.
LY294002, PD98059, and DMSO were readded to the culture at day 4.

Phenotypic analysis

Cells resuspended in phosphate-buffered saline (PBS) containing 1%
bovine serum albumin (BSA; Sigma-Aldrich) and 0.1% sodium azide
(Sigma-Aldrich) were stained for 20 minutes at room temperature with the
following anti–human monoclonal antibodies: CD4-phycoerythrin (PE)–
cyanin 7 (PE-CY7; clone, L3T4), CD45RA–fluorescein isothiocyanate
(FITC) or allophycocyanin (APC; clone, HL100), CD45RO-PE (clone;
UCHL1), CD62L-APC-cyanin 7 (APC-Cy7; clone, DREG 56) and CD31
PE or APC (clone, WM59) from eBioscience (San Diego, CA); CD38 PE
(clone, HB7) and CD3–peridinin chlorophyll protein (PerCP; clone, SK7)
from BD Biosciences; and CD127 PE (IL-7R�; clone 40131; R&D
Systems). Intracellular staining for Bcl-2 FITC (clone 124; Dako, Glostrup,
Denmark) and Ki67 FITC (clone B56; BD Biosciences) was performed
using fixation and permeabilization reagents from eBioscience. Cells were
labeled with 0.5 �M carboxyfluorescein diacetate succinimidyl ester (CFSE;
Molecular Probes-Invitrogen, Carlsbad, CA) at 37°C for 15 minutes in the
dark, quenched with ice-cold culture medium at 4°C for 5 minutes, and
washed 3 times before culture. Apoptosis was assessed using 7-amino-
actinomycin D (7-AAD) viability Staining Solution (eBioscience) or by
annexin V/propidium iodide (PI) detection kit (BD Biosciences). Samples
were acquired on a BD FACSCanto flow cytometer (BD Biosciences) after
fixation with 1% formaldehyde (Sigma-Aldrich). Data were analyzed using
FlowJo software version 8.1.1 (TreeStar, Ashland, OR).

STAT5 tyrosine phosphorylation analysis

Cells were surface stained and stimulated with 50 ng/mL IL-7 for 15 min-
utes, fixed with 2% formaldehyde at 37°C for 10 minutes, and placed on
ice. Cells were then permeabilized with ice-cold 90% methanol (Sigma-
Aldrich) at 4°C for 30 minutes and incubated with anti–phospho-STAT5
(pY694) antibody coupled to Alexa Fluor 488 (BD Biosciences) at room
temperature for 1 hour. Samples were immediately acquired on FACSCanto.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 4.00
(GraphPad Software, San Diego, CA). Data are presented as mean plus or
minus standard error of mean (SEM). P less than .05 was considered
significant.

Results

IL-7–induced proliferation of adult naive CD4� T cells is
restricted to the CD31� subset

IL-7 is known to induce proliferation of naive CD4� T cells,8,22,23

but the possibility of distinct effects on naive subsets defined by
CD31 expression has not been determined. Our preliminary data
from the culture of adult total naive CD4� T cells
(CD4�CD45RA�CD45RO�) with recombinant human IL-7 for
7 days suggested that the proliferative response was confined to
CD31� cells (data not shown). Of note, in agreement with previous
reports,23,24 similar results were obtained when the concentration of
IL-7 was increased from 10 to 50 ng/mL. Proliferation was
assessed using the cell-cycle entry marker Ki67, because we found
it to be the most reliable method to quantify low levels of
proliferation. Although we cannot guarantee that all Ki67� cells
complete the proliferative cycle, we were able to confirm the
proliferation using CFSE staining in adult cells upon IL-7 stimula-
tion (Figure S1, available on the Blood website; see the Supplemen-
tal Materials link at the top of the online article). Moreover, IL-7
has previously been shown to induce similar levels of cell division
in adult naive CD4� T cells.9,25

To exclude a gain of CD31 upon proliferation, we proceeded by
investigating the ability of purified CD31� and CD31� naive
(CD45RA�CD45RO�) CD4� T cells from adult peripheral blood
as well as umbilical CB to proliferate in response to IL-7 after
7 days of in vitro culture. Figure 1 illustrates representative flow
cytometry dot plots of CD31/CD45RA profiles of freshly isolated
CD4� T cells from adult and CB as well as the gating strategy used
to purify the subsets. We confirmed that proliferative responses
from adult naive CD4� T cells were only observed within the
CD31� subset (Figure 2). In agreement with previous reports,8 CB
naive T cells showed consistently stronger proliferative responses
to IL-7 stimulation than adult naive T cells. Only 12 of the 22
studied adult samples proliferated in response to IL-7, whereas all
12 CB samples proliferated. Purified CD31� naive CD4� T cells
from adults also proliferated significantly less than CD31� from
CB (2.82% � 1.11% vs 26.7% � 3.22% Ki67� cells, respectively;
P � .001). Of note, both CD31� and CD31� naive CD4� T-cell
subsets isolated from CB were found to proliferate in response to
IL-7, while in all analyzed adults proliferation was restricted to the
CD31� subset, as illustrated in Figure 2A. Adult cells able to
proliferate in response to IL-7 did not significantly differ from
nonresponders with respect to the proportion of males and females,
the percentage of naive (CD45RA�) or CD31� naive within CD4�

cells, or the percentage of CD31� within the naive CD4� subset
(data not shown). We also did not find any differences comparing
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the expression of the alpha chain of the IL-7 receptor (IL-7R�)
within the total naive CD4� gate, or within the
CD4�CD45RA�CD31� and CD4�CD45RA�CD31� gates (data
not shown). Interestingly, responders tended to be younger than
nonresponders, although this did not reach statistical significance
(28.9 � 2.42 years and 36.4 � 3.41 years, respectively; P � .109).

CD31� naive CD4� T cells are thought to represent a subpopu-
lation that has undergone peripheral expansion.1 Thus, we next
addressed whether in vitro IL-7–induced proliferation resulted in
loss of CD31 expression. We found that proliferating CD31� naive
CD4� T cells did not lose CD31, and that the CD31 median
fluorescence intensity (MFI) was significantly higher in Ki67-
expressing than in noncycling CD31� cells (Figure 2B). Further-
more, we were able to monitor cell divisions using CFSE labeling
in CB naive CD4� T cells given their strong proliferative responses
to IL-7, and observed that cells that divided up to 4 times during the
culture period maintained CD31 expression. Statistical analysis
using paired t test showed no statistically significant differences in
CD31 expression levels between undivided populations and those
that had undergone proliferation (Figure 2C).

We next evaluated whether the different levels of proliferative
responses could be attributed to a distinct basal expression of
IL-7R�. We measured ex vivo IL-7R� expression levels by flow

cytometry in freshly isolated lymphocytes, and found that adult
CD31� naive CD4� T cells expressed lower levels than their
CD31� counterparts (Figure 2D). The opposite was found in CB
subsets where CD31� cells showed higher IL-7R� expression than
CD31�. Although the levels of IL-7R� expression were signifi-
cantly higher in the CD31� subset of CB compared with adults,
they were similar in adult CD31� and CB CD31� subsets (Figure
2D). Thus, the proliferative outcome of IL-7 stimulation is unlikely
to rely solely on IL-7R� expression levels.

These data suggest that in adulthood, the ability of naive CD4�

T cells to proliferate in response to IL-7 is restricted to the CD31�

subset and show that CD31 is not lost after IL-7–induced
proliferation.

IL-7–induced proliferation of adult CD31� naive CD4 T cells is
dependent on the PI3K pathway

We next investigated whether the decreased proliferation of the
CD31� naive CD4� subset was associated with a general inability
to respond to IL-7. A consequence of IL-7 binding is the down-
regulation of its own receptor which has been shown to be
controlled at the transcriptional level.9,26 We found a clear down-
regulation of the IL-7R� in all populations compared with freshly

Figure 1. CD31 expression profiles and gating strat-
egy used to purify CD31� and CD31� naive CD4�

T-cell subsets from adult and cord blood. CD4� T cells
were negatively selected using the EasySep Human CD4�

T-cell Enrichment Kit and stained using monoclonal antibod-
ies for CD45RA, CD45RO, CD4, and CD31. Flow cytometry
profiles of CD4� T cells stained for CD45RA and CD31 are
shown for representative adult (A) and cord blood (B)
samples. Also shown is the gating strategy used for FACS
sorting.After gating on viable lymphocytes and CD4� T cells,
cells were gated on CD45RA� and CD45RO� expression
followed by tight gates on CD31� and CD31� cells as
illustrated by the resulting postsorting profiles.
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isolated cells (Figure 3A). IL-7–mediated signaling is known to
induce signal transducer and activator of transcription-5 (STAT5)
phosphorylation that promotes not only cell cycling but also cell
survival through Bcl-2 up-regulation.8,27,28 We found induction of
STAT5 phosphorylation (Figure 3B) and Bcl-2 up-regulation
(Figure 3C) in both adult and CB CD31� and CD31� naive CD4
subsets after IL-7 stimulation in comparison with freshly isolated
cells. In agreement, similar levels of inhibition of apoptosis
(ranging from 60%-70%) were observed in all subsets, using
7-AAD incorporation to compare unstimulated with IL-7 stimu-
lated cells after 7 days of culture (Figure 3D). These data show that
despite exerting distinct proliferative effects, IL-7 is able to induce
STAT5 phosphorylation, to up-regulate Bcl-2 expression, to pre-
vent apoptosis, and to down-regulate IL-7R� in both CD31� and
CD31� naive CD4� subsets.

IL-7–mediated signaling leads to PI3K activation, a pathway
that regulates cell proliferation and metabolism.23,27 In particular,
IL-7–induced proliferation and glucose uptake of naive CD4�

T cells from CB was shown to be dependent upon the PI3K

pathway.23 Through the use of the cell-permeable PI3K-specific
inhibitor LY294002, we investigated whether the PI3K pathway
was required for IL-7–mediated proliferation of adult and CB
CD31� and CD31� subsets. As shown in Figure 4A, LY294002
was very effective at blocking proliferation of adult CD31� naive
CD4� T cells cultured in IL-7 for 7 days. IL-7R� down-modulation
was found to be PI3K independent (Figure 4B). Despite blocking
proliferation, LY294002 did not affect Bcl-2 levels, showing a
dissociation of these pathways in these cells (Figure 4C). As
previously reported,23,29 we observed a minor increase in apoptosis
in the presence of LY294002 in adult naive CD4� T-cell subsets
that was not observed in CB cultures (Figure 4D). Although the
possibility of a contribution of apoptosis to the observed block in
proliferation induced by PI3K inhibition in the adult CD31� subset
cannot be excluded, this is unlikely to be the case because
LY294002 completely blocked proliferation in CB cultures (Figure
4A) without an increase in apoptosis (Figure 4D).

The ability of IL-7 to activate the MEK-ERK pathway in T cells
remains controversial. Although IL-7 is able to induce ERK1/2

Figure 2. IL-7–induced proliferation of adult naive CD4�

T cells is restricted to the CD31� subset. (A) Representa-
tive dot-plots of CD31 and Ki67 flow cytometry analysis after
7-day culture in the presence of IL-7 of purified CD31� and
CD31� naive CD4� T-cell subsets from adult peripheral
blood, for an IL-7 “nonresponder” (top panel), an IL-7 “re-
sponder” (middle panel), and CB (bottom panel). Cells were
successively gated on a viable lymphogate, CD3�, CD4�,
and CD45RA�. (B) CD31 MFI was assessed within the
purified CD31� naive subset further gated on Ki67� or Ki67�

cells after 7-day culture with IL-7. Three adults and 4 CB
samples were studied. (C) Representative dot-plot illustrating
CD31 expression plotted against CFSE labeling of CB
CD4�CD45RA� T cells cultured with IL-7 for 7 days. CD31�

cells were further gated according to the number of cell
divisions, and bars show CD31 MFI from 4 experiments.
(D) Ex vivo analysis of IL-7R� MFI on freshly isolated
mononuclear cells from adult and CB samples sequentially
gated on CD3�, CD4�, CD45RA�, and CD31� or CD31�

lymphocytes. Each symbol represents one individual. Bars
represent mean plus or minus SEM. Data were compared
using paired or unpaired t test as appropriate and significant
P values are shown.
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phosphorylation in human leukemia T-cell precursors,27 it does not
appear to do so in some mouse T-cell lines,30 in normal human
thymocytes,31 or in human peripheral blood T cells.32 We used the
MEK-specific inhibitor PD98059 to test the involvement of this
pathway in IL-7–mediated effects on human adult CD31� naive
CD4� subset. As illustrated in Figure 4, PD98059 did not impair
any of the IL-7–dependent effects assessed, indicating that the

MEK-ERK pathway does not play a critical role in the overall
effects of IL-7 in human naive CD4� T cells.

The same findings were observed for CB CD31� and CD31�

naive CD4� T cells. Namely, proliferation was blocked by
LY294002 but not PD98059, while all the other IL-7 readouts
assessed were unaffected by PI3K or MEK-ERK inhibition
(Figure 4).

Overall, we show that despite their inability to proliferate in
response to IL-7, adult CD31� naive CD4� T cells are not
refractory to IL-7–mediated signaling as measured by STAT5
phosphorylation, Bcl-2 up-regulation or IL-7R� down-modulation.
These data suggest a selective inability of IL-7 to activate the
signaling pathways that lead to proliferation in these cells. More-
over, we show for the first time that adult CD31� naive CD4�

T-cell proliferation is dependent on PI3K activation.

IL-7 promotes the maintenance of CD31 expression in both
adult and CB naive CD4� T cells in a PI3K-dependent manner

As shown in Figure 2B, cells actively proliferating in response to
IL-7 do not lose CD31 expression. We further assessed whether
CD31� cells could reexpress CD31 after culture in the presence of
IL-7. As shown in Figure 5A, purified CD31� cells from either
adult or CB did not acquire CD31 during the culture period. In
addition, Figure 5A clearly shows that the levels of CD31
expression were maintained or even increased in CD31� naive
CD4� cells after in vitro culture with IL-7, whereas cells cultured
in medium alone showed reduced CD31 expression (P � .008,
paired t test comparison of adult CD31� cells cultured in the
presence of IL-7 and in its absence). This was also the case when
cells were cultured for up to 13 days, where CD31 levels were
maintained in the presence of IL-7, while cells cultured in medium
alone or in the presence of IL-2 exhibited decreased CD31
expression (Figure 5B).

We next asked whether the preservation of CD31 expression in
cells cultured with IL-7 was dependent on the PI3K pathway. For
this purpose, we monitored CD31 levels in the presence of IL-7
alone or with the PI3K inhibitor (Figure 5C), and found that
blocking the PI3K pathway led to a statistically significant decrease
in CD31 expression levels in both adult and CB naive cells
(P � .002 and P � .009, for adults and CB, respectively, paired
t test comparison of IL-7 culture with and without LY294002).
DMSO, used as a vehicle control, and PD98059 had no effect on
CD31 MFI compared with IL-7 alone (Figure 5C).

As mentioned above, CB samples always proliferated in
response to IL-7, while approximately one-half of the adults
studied exhibited proliferative responses in vitro. Importantly,
blocking the PI3K pathway prevented CD31 maintenance in all
adults tested regardless of their ability to proliferate in response to
IL-7. This is shown in Figure 5C, where individuals who prolifer-
ated in response to IL-7 and those who did not are represented.
These data suggest that the preservation or increase of CD31
expression is independent of proliferation.

We also assessed the possible effects of blocking PI3K signal-
ing on the expression of the CD31 ligand, CD38.33 This molecule
has been shown to decrease on naive CB T cells cultured in the
presence of IL-7.22 As shown in Figure 5D, we observed that adult
and CB CD31� naive CD4� T cells exhibited a significant reduc-
tion of CD38 expression after culture with IL-7 (P � .001, paired
t test), and this was not altered by the presence of PI3K or

Figure 3. IL-7 stimulation leads to STAT5 phosphorylation, Bcl-2 up-regulation,
and IL-7R� down-modulation in both CD31� and CD31� naive CD4� subsets.
IL-7R� expression (A), STAT5 phosphorylation (B), Bcl-2 expression (C), and 7-AAD
incorporation (D) were evaluated by flow cytometry within gated CD31� and CD31�

naive CD4 subsets. p-STAT5 was assessed on freshly isolated mononuclear cells
from adult (n � 5) and CB (n � 3) samples either unstimulated or stimulated with IL-7
for 15 minutes. Bcl-2 and IL-7R� MFI were evaluated ex vivo in adult PBMC (n � 6
and n � 9, respectively) and CB cells (n � 4 and n � 6, respectively) and in the
corresponding purified CD31� and CD31� naive subsets cultured in the presence of
IL-7 for 7 days. 7-AAD incorporation was measured in purified CD31� and CD31�

subsets after 7 days of culture in the presence of IL-7 and in its absence (control).
Bars represent mean MFI values plus or minus SEM.
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MEK-ERK inhibitors. These data show that LY294002 is unable to
recover the reduction of CD38 expression associated with IL-7
culture, suggesting that IL-7 may regulate CD31 expression
independently of its ligand.

Overall, we report a role for IL-7 not only in the proliferation of
adult CD31� naive CD4� T cells, but also in the maintenance or
increase of CD31 expression levels in a PI3K-dependent manner.

Discussion

Our data indicate that IL-7 preferentially promotes proliferation of
CD31�CD4� naive T cells in adults, while preventing the loss
of CD31 expression in both cycling and noncycling cells. The
2 mechanisms appear to depend upon the activation of the PI3K

Figure 4. The IL-7–induced proliferation of adult CD31� naive CD4� T cells is dependent on the PI3K pathway. CD31� and CD31� naive CD4� T cells were purified from
adult peripheral blood and CB, cultured in the presence of IL-7 with or without the PI3K inhibitor LY294002 or the MEK-ERK inhibitor PD98059 as indicated, and harvested at
day 7 of culture. DMSO was used as a vehicle control. Representative examples of the 6 adults and 4 CBs studied are shown. (A) Assessment of proliferation using Ki67 in an
adult sample. Representative analysis of a CB (1 of 4) is also shown illustrating the blocking effects of LY294002 on whole naive CD4� T-cell subset proliferation as assessed
by CFSE labeling. CD31 staining is shown on the y-axis. (B) IL-7R� and (C) Bcl-2 expression analyzed at day 0 within CD31� (gray filled histograms) and CD31� cells (black
line). Analysis at day 7 within CD31� (red line) and CD31� (green line) purified populations cultured in the presence of IL-7 and the indicated inhibitors are also shown.
(D) Evaluation of apoptosis by annexin V and PI staining after 7 days of culture of the purified CD31� and CD31� naive subsets.
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pathway and likely contribute to the maintenance of CD31� naive
CD4� T cells promoted by IL-7. In contrast, the CD31� subset
appears to rely on other homeostatic cues.

The selective ability of IL-7 to induce proliferation of the
CD31� subset during adulthood, and in this way contribute to the
maintenance of a population that is known to incorporate recent
thymic emigrants,1 is expected to have a physiologic role in the
preservation of the TCR repertoire diversity within naive CD4�

T cells.
Thus, as thymic output is reduced during aging, IL-7 may

contribute to the persistence of the CD31� population through
low-level proliferation. This is in agreement with recent data
showing that both TREC content and telomere length decrease in
CD31� naive CD4� T cells during aging, implying that their
persistence is dependent on proliferation in the periphery.6 The
persistence of relatively high TREC content in the CD31� subset
can be attributed to both residual thymic output and to a low rate of
peripheral cell division.

Importantly, we have previously associated IL-7 serum levels
and preservation of CD31� naive subset during aging in lym-
phopenic settings, and suggested that this positive correlation may
contribute to the slower rate of CD4� T-cell decline in HIV-2
compared with HIV-1 infection.16

Our observation that the adult CD31� subset did not proliferate
in response to IL-7 in vitro does not exclude the possibility of IL-7
acting as a costimulus to other homeostatic proliferation mecha-
nisms, such as self-peptide–major histocompatibility complex
(MHC) interactions.34 However, our findings suggest that the
CD31� subset may be preferentially regulated by mechanisms
other than direct IL-7–driven proliferation.

The maintenance of CD31 expression upon IL-7 stimulation
raises questions regarding the mechanisms underlying the loss of
CD31 in naive CD4� T cells. CD31 expression has been shown to
be lost after TCR stimulation of naive CD4� T cells,35 and
therefore low-affinity self-peptide–MHC interactions may be impli-
cated in the generation as well as maintenance of the CD31�

subset.34 Our observation of a restricted IL-7 proliferative effect on
adult CD31� naive CD4� T cells further support this possibility. In
agreement with this, Kholer et al5 reported that the CD31� subset
expresses increased levels of BFL-1/A1 ex vivo compared with the
CD31� subset. BFL-1/A1 has been described as a marker of recent
TCR engagement whose expression is not induced by cytokine
stimulation,36 further implying that the CD31� subset is likely to be
maintained by mechanisms that rely on TCR engagement rather
than cytokine-induced proliferation. On the other hand, the pres-
ence of CD31 may impair TCR-mediated maintenance of CD31�

cells, since there are data supporting an inhibitory function for
CD31 in TCR activation through its cytoplasmic immunoreceptor
tyrosine-based inhibitory motifs (ITIMs).37,38 Our data further
support the view that CD31 expression may impact on the
homeostatic mechanisms involved in the maintenance of the adult
naive CD4� T-cell pool.

We also demonstrated that the distinct responses of the CD31�

and CD31� subsets to IL-7 could not be solely attributed to
differences in IL-7R� expression. Interestingly, a previous study
addressing the effects of IL-7 in human B-cell progenitors compar-
ing pro-B and pre-B cells reported that only pro-B cells proliferate
in response to IL-7 despite similar levels of IL-7R� in both
subsets.39 In addition, this study demonstrated that in contrast to the
pre–B-cell subset, pro-B cells expressed CD31, further demonstrat-
ing an association between CD31 expression and the ability to
proliferate in response to IL-7.39

In addition, we show that IL-7–induced proliferation of CD31�

naive CD4� T cells from adults is dependent on PI3K activation, in
agreement with what was previously reported for umbilical cord
blood naive T cells.23 Furthermore, we show for the first time that
IL-7 induces maintenance or an increase of CD31 expression in a
PI3K-dependent manner and that this occurs irrespectively of the
induction of proliferation. The biologic significance of this finding
is further emphasized by the absence of changes in the expression
of the CD31 ligand (CD38) upon PI3K inhibition.

Figure 5. IL-7 promotes the maintenance of CD31
expression on both adult and CB naive CD4 T cells
through the PI3K pathway. (A) CD31 MFI on CD31�

and CD31� sorted subpopulations of naive CD4� T cells
from adult (n � 13) and CB (n � 5) at day 0 and day 7 in
the presence or absence (control) of IL-7. Analysis of CB
subsets cultured in the absence of IL-7 was precluded by
the high rate of cell death. (B) Longitudinal analysis of
CD31 MFI of adult naive CD4� subsets cultured in the
presence of IL-7, IL-2, or medium alone (control) for up to
13 days (data representative of 3 individuals). Open
symbols represent CD31� purified cells while closed
symbols correspond to the CD31� fraction. (C) CD31
MFI assessed on purified CD31� naive CD4� T cells at
day 0 and after 7-day culture in the presence of IL-7
alone or in addition to LY294002, PD98059, or DMSO.
Each symbol represents one individual. Filled symbols
refer to individuals with a proliferative response to IL-7
and open symbols to those that did not proliferate.
(D) CD38 MFI are shown in the same culture conditions
in adult (n � 6) and CB (n � 4) samples, respectively.
Bars represent mean values plus or minus SEM.
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While contributing to the understanding of the role of IL-7 in
the maintenance of naive CD4� subsets in humans, our data further
imply that the CD31� subset is likely to be the main target of
IL-7–driven proliferation during its therapeutic use. This is in
agreement with data recently published of a phase 1 trial using
recombinant IL-7.21 A clear induction of T-cell proliferation was
shown, whereby naive CD4� expansion was accounted by prolifera-
tion of the CD31� naive CD4� T-cell subset that was associated
with a decrease in TREC content which is highly suggestive of
IL-7–driven peripheral expansion.21

In conclusion, our data support the view that the adult naive
CD4� T-cell subset identified by the CD31 marker, besides
including the recent thymic emigrants,1 represents a population
with a unique ability to proliferate in response to IL-7. Moreover,
we show that IL-7 sustains CD31 expression in naive CD4� T cells
in a PI3K-dependent manner. This preferential effect of IL-7 on the
CD31� population provides a biologic rationale for the use of IL-7
therapy in clinical settings where the expansion of the T-cell
repertoire diversity is required.
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Cytomegalovirus infection induces the accumulation of short-lived,
multifunctional CD4

+ CD45RA+ CD27
) T cells: the potential

involvement of interleukin-7 in this process

Introduction

The function of the immune system declines with age

leading to increased susceptibility to infectious diseases

and poor responses to vaccination.1 With the demo-

graphic shift towards an older age in many countries it is

of increasing importance to understand the nature of the

dysfunctional immunity in older subjects.2 This informa-

tion will provide information on possible strategies for

intervention to boost immunity during ageing.

The immune dysfunction in older humans is partly the

result of thymic involution, which restricts the production

of naive T cells in older individuals, compromising their

ability to respond to new antigens.3 In addition, memory

T cells, especially those that are specific for antigens that

are encountered frequently, are driven to differentiate

continuously towards an end-stage, marked by poor sur-

vival, telomere erosion, replicative senescence3 and func-

tional exhaustion.4 This may result in ‘holes’ in the T-cell

repertoire as T cells that are specific for certain antigens
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Summary

The relative roles that ageing and lifelong cytomegalovirus (CMV) infec-

tion have in shaping naive and memory CD4+ T-cell repertoires in

healthy older people is unclear. Using multiple linear regression analysis

we found that age itself is a stronger predictor than CMV seropositivity

for the decrease in CD45RA+ CD27+ CD4+ T cells over time. In contrast,

the increase in CD45RA) CD27) and CD45RA+ CD27) CD4+ T cells is

almost exclusively the result of CMV seropositivity, with age alone having

no significant effect. Furthermore, the majority of the CD45RA) CD27)

and CD45RA+ CD27) CD4+ T cells in CMV-seropositive donors are spe-

cific for this virus. CD45RA+ CD27) CD4+ T cells have significantly

reduced CD28, interleukin-7 receptor a (IL-7Ra) and Bcl-2 expression,

Akt (ser473) phosphorylation and reduced ability to survive after T-cell

receptor activation compared with the other T-cell subsets in the same

donors. Despite this, the CD45RA+ CD27) subset is as multifunctional as

the CD45RA) CD27+ and CD45RA) CD27) CD4+ T-cell subsets, indicat-

ing that they are not an exhausted population. In addition,

CD45RA+ CD27) CD4+ T cells have cytotoxic potential as they express

high levels of granzyme B and perforin. CD4+ memory T cells re-express-

ing CD45RA can be generated from the CD45RA) CD27+ population by

the addition of IL-7 and during this process these cells down-regulated

expression of IL-7R and Bcl-2 and so resemble their counterparts in vivo.

Finally we showed that the proportion of CD45RA+ CD27) CD4+ T cells

of multiple specificities was significantly higher in the bone marrow than

the blood of the same individuals, suggesting that this may be a site

where these cells are generated.
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are lost, which in turn may make older humans suscepti-

ble to certain infectious agents.2 However, instead of the

potential loss of specific T cells through replicative senes-

cence, immune dysfunction during ageing may also arise

from accumulation of certain T-cell populations. Longitu-

dinal studies have defined a cluster of immune parame-

ters in healthy older individuals, which are predictive of

significantly decreased 2-year and 4-year survival of

subjects over 80 years of age (reviewed in Derhovanessian

et al.5). These parameters include a CD4 : CD8 ratio of

< 1, which is the result of clonal expansion of highly dif-

ferentiated CD8+ CD28) T cells, cytomegalovirus (CMV)

seropositivity and elevated levels of pro-inflammatory

cytokines in the serum.5 Furthermore, a large proportion

of the expanded CD8+ T cells in older subjects may be

CMV-specific.6–8 Therefore, although CMV infection is

harmless to healthy young individuals, infection with this

virus may have a previously unappreciated role in

immune dysfunction during ageing, which is associated

with the accumulation of CMV-specific T cells. This sug-

gests that CMV infection may induce the accumulation of

CD8+ effector T cells that hinder the function of other

memory T-cell populations.8 This possibility is indirectly

supported by data in mice indicating that expanded T-cell

clones reduce T-cell diversity and inhibit the function of

non-clonal cells in vivo9 and that there is a negative effect

of CMV infection on the size and function of Epstein–

Barr virus-specific T-cell populations in humans.10

There have been many studies on the CMV-specific

CD8+ T-cell population,6,11–13 but less is known about

the characteristics of CMV-specific CD4+ T cells and the

impact that CMV infection has in shaping the CD4+

T-cell pool in infected healthy humans.14–16 Progressive

stages in T-cell differentiation can be identified by

sequential changes of expression of surface receptors such

as CD45RA, CD28, CD27 and CCR7.8,17 The most differ-

entiated T cells in both the CD8+ and CD4+ populations

are CD28) CD27) CCR7).17 It has been shown that

CMV-specific CD8+ T cells are more differentiated phe-

notypically than those that are specific for other persistent

viruses.6 A proportion of these highly differentiated T

cells can re-express CD45RA, a marker that was consid-

ered to identify unprimed T cells.18–20 The CD8+

CD45RA+ CD27) T-cell population is expanded in CMV-

infected individuals and although some reports suggest

that these cells are terminally differentiated,21–23 other

studies indicate that these cells can be re-activated to

exhibit potent functional responses.24,25 Some studies

have shown that CD45RA+ CD27) CD4+ T cells increase

during ageing and in some autoimmune diseases,26,27 but

it is currently not clear whether CMV infection has an

impact on their generation and whether these cells are

functionally competent.

In this study we show that CMV infection significantly

increases the proportion of CD45RA) CD27) and

CD45RA+ CD27) effector memory-like CD4+ T cells in

older humans. Furthermore, CD45RA+ CD27) CD4+ T

cells were found to be multifunctional but potentially

short lived after activation and may arise through inter-

leukin-7 (IL-7) -mediated homeostatic proliferation,

possibly in the bone marrow. These results suggest the

possible involvement of homeostatic cytokines in the

CMV infection-induced expansion of CD45RA+ CD27)

CD4+ T cells during ageing.

Materials and methods

Volunteer sample collection and isolation

Heparinized peripheral blood was collected from young

(mean age, 29 years; range, 20–39 years; n = 67), middle-

aged (mean age, 51 years; range, 40–65 years; n = 18) and

old (mean age, 80 years; range, 71–91 years; n = 40)

donors, with approval from the Ethics Committee of the

Royal Free Hospital. The old volunteers in this study were

not treated with any immunosuppressive drugs and

retained physical mobility and social independence. All

donors provided written informed consent. Paired blood

and bone marrow samples (mean age, 34 years; range,

21–57 years; n = 18) were obtained from healthy bone

marrow donors by the Department of Haematology, Uni-

versity College Hospital London. Peripheral blood mono-

nuclear cells (PBMCs) were isolated by Ficoll–Hypaque

density gradient (Amersham Pharmacia Biotech, Uppsala,

Sweden).

Cell culture

The CD4+ T cells were purified by positive selection using

the VARIOMACS system (Miltenyi Biotec, Bergisch Glad-

bach, Germany) according to the manufacturer’s instruc-

tions. In some experiments, CD4+ T cells were further

sorted into CD45RA/CD27 subsets using a FACSAria flow

cytometer (BD Biosciences, San Jose, CA) after staining

with CD45RA and CD27 antibodies for 30 min at 4� in

PBS containing 1% BSA (Sigma-Aldrich, Gillingham, UK).

Cells were cultured in RPMI-1640 supplemented with 10%

heat-inactivated fetal calf serum, 100 U/ml penicillin,

100 mg/ml streptomycin, 50 lg/ml gentamicin and 2 mM

L-glutamine (all from Invitrogen, Eugene, OR) at 37� in a

humidified 5% CO2 incubator. Purified CD4+ subsets were

activated in the presence of anti-CD3 antibody (purified

OKT3 0�5 lg/ml) and autologous PBMCs irradiated with

40 Gy gamma-radiation, as a source of multiple co-stimu-

latory ligands provided by B cells, dendritic cells and

macrophages found in these populations.28 In other experi-

ments, cells were cultured in the presence of recombinant

human (rh) IL-2 (5 ng/ml), IL-7 (10 ng/ml) or IL-15

(5 ng/ml) (all from R&D Systems, Minneapolis, MN).

Cytokines were added at the beginning of the cell culture
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and not replenished. These cells were harvested at different

times for phenotypic and functional analyses.

Measurement of antigen-specific CD4+ T cells

The PBMCs were stimulated with 10 lg/ml of purified

protein derivative (PPD; Statens Serum Institut, Copen-

hagen, Denmark), 1/50 dilution of varicella zoster virus

(VZV) -infected cell lysate, 1/200 dilution of Epstein–Barr

virus (EBV) -infected cell lysate or 1/50 dilution of herpes

simplex virus (HSV) -infected cell lysate (all from

Virusys, Taneytown, MD). A CMV-infected cell lysate

(used at 1/10 dilution) was prepared by infecting human

embryonic lung fibroblasts with the Towne strain of

CMV (European Collection of Animal Cell Cultures) at a

multiplicity of infection of 2. After 5 days, the infected

cells were lysed by repeated freeze–thaw cycles. The

PBMCs were left unstimulated or stimulated with anti-

genic lysates for 15 hr at 37� in a humidified CO2 atmo-

sphere, with 5 lg/ml brefeldin A (Sigma-Aldrich) added

after 2 hr. The cells were surface stained with peridinin

chlorophyll protein-conjugated (-PerCP) CD4, phycoery-

thrin-conjugated (-PE) CD27 and phycoerythrin-Cy7-

conjugated CD45RA (BD Biosciences) on ice. After being

fixed and permeabilized (Fix & Perm Cell Permeabiliza-

tion kit; Caltag Laboratories, Buckingham, UK), cells were

stained with allophycocyanin-conjugated (-APC) inter-

feron-c (IFN-c). Samples were acquired on an LSR I flow

cytometer (BD Biosciences). For bone marrow experi-

ments, paired peripheral blood and bone marrow samples

were stimulated and analysed in parallel.

Flow cytometric analysis of cell phenotype

Cells resuspended in PBS containing 1% BSA and 0�1%

sodium azide (Sigma-Aldrich) were stained for 10 min at

room temperature with the following anti-human mono-

clonal antibodies: CD45RA-FITC (clone HI100; BD

Pharmingen, San Diego, CA) or CD45RA-APC (clone

MEM-56; Caltag); CD45RO-PE (clone UCHL1); CD4-

PerCP (clone SK3); CD27-PE (clone M-T271); CD28-

FITC (clone CD28�2); CD127-PE (clone hIL-7R-M21);

CCR7-PE-Cy7 (clone 3D12) (all from BD Pharmingen);

CD57-PE (clone TB03, Miltenyi Biotec). Intracellular

staining for Granzyme B-PE (clone GB11; eBioscience,

San Diego, CA), perforin-FITC (clone dG9; BD Pharmin-

gen), Bcl-2-FITC (clone 124; Dako, Glostrup, Denmark)

and Ki67-FITC (clone B56; BD Biosciences) was

performed using the Foxp3 Staining Buffer Set (Miltenyi

Biotec) according to the manufacturer’s instructions.

Proliferation was assessed by carboxyfluorescein diacetate

succinimidyl ester (CFSE) dilution assay. Cells were

labelled with 0�5 lM CFSE (Molecular Probes-Invitrogen,

Carlsbad, CA) at 37� for 15 min in the dark, quenched

with ice-cold culture medium at 4� for 5 min, and

washed three times before culture in the presence of

50 ng/ml IL-7. Apoptosis was assessed using an annexin

V/propidium iodide (PI) detection kit (BD Biosciences).

Samples were acquired on a BD FACSCalibur 2 flow

cytometer (BD Biosciences) after fixation with 1% form-

aldehyde (Sigma-Aldrich). Data were analysed using

FLOWJO software (TreeStar, Ashland, OR).

Intracellular cytokine analysis using polychromatic flow
cytometry

The PBMCs (2 · 106 cells/ml) were stimulated with anti-

CD3 (purified OKT3 0�5 lg/ml) for 2 hr at 37�. Unstimu-

lated samples were incubated with equivalent amounts of

PBS (negative control). After the addition of brefeldin A

(10 lg/ml; Sigma), samples were incubated for another

14 hr. Cells were then incubated with 2 mM EDTA at room

temperature for 10 min, washed in PBS/BSA/Azide and

stained for 30 min at 4� with the following surface antibod-

ies: CD4-PerCP (clone SK3), CD8-APC-H7 (clone SK1),

CD27-PE (clone L128), CD16-FITC (clone 3G8), CD56-

FITC (clone NCAM16.2) (all from BD Biosciences),

CD45RA Energy Coupled Dye (ECD, clone MB1;

IqProducts, Groningen, The Netherlands), CD3 Quantum

Dot 605 (QDot605, clone UCHT1; Invitrogen), live/dead

fixable Aqua stain (Invitrogen). After washing, lysing and

permeabilizing according to the manufacturer’s instruc-

tions (Perm 2 and Lysis; BD Biosciences), cells were stained

intracellularly for 30 min at 4� with the following antibod-

ies: IL-2-APC (clone 5344.111), IFN-c-PE-Cy7 (clone B27),

tumour necrosis factor-a (TNF-a) -Alexa Fluor 700 (clone

MAb1) (all from BD Biosciences), CD40L Pacific Blue

(clone 24-31; Biolegend, San Diego, CA). Samples were

acquired on a BD LSR II flow cytometer (BD Biosciences).

Data were analysed using FLOWJO software (TreeStar) and

PESTLE AND SPICE (kindly donated by M. Roederer).

Akt (Ser473) phosphorylation analysis by flow cytometry

After resting the PBMCs overnight in RPMI-1640 (Sigma-

Aldrich) with 1% human AB serum (Sigma-Aldrich), they

were starved in serum-free RPMI-1640 for 2 hr before

stimulation to reduce phosphorylation background. Fol-

lowing surface staining with CD45RA-FITC, CD27-APC

(clone O323; eBioscience) and CD4-PE-Cy7 (clone SK3;

BD Pharmingen) cells were activated with anti-CD3 (puri-

fied OKT3, 1 lg/ml) on ice for 20 min. Primary monoclo-

nal antibodies were cross-linked with anti-mouse IgG

F(ab0)2 (20 lg/ml; Jackson ImmunoResearch, West Grove,

PA) by incubating on ice for 20 min. Cells were then stim-

ulated at 37� for 5 min. The unstimulated control cells

underwent the same manipulations but without the addi-

tion of aCD3 and cross-linker. Activation was arrested by

fixing the cells with warm Cytofix Buffer (BD Biosciences)

at 37� for 10 min. Cells were then permeabilized with ice--
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cold Perm Buffer III (BD Biosciences) at 4� for 30 min

and incubated with PE mouse anti-Akt (pS473) (BD

Biosciences) for 30 min at room temperature. Cells were

washed in stain buffer (BD Pharmingen) and acquired on a

BD FACS Calibur 2 flow-cytometer (BD Biosciences) and

analysed using FLOWJO software (TreeStar).

Statistical analysis

Statistical analysis was performed using GRAPHPAD PRISM

version 4.00 (GraphPad Software, San Diego, CA) and

P < 0�05 was considered significant. Multiple linear

regression was performed using PASWSTATISTICS 18.0 (IBM-

SPSS, Chicago, IL).

Results

Persistent CMV infection, but not age itself, correlates
with the increase of CD45RA) CD27) and
CD45RA+ CD27) CD4+ T cells

Age and CMV infection have been shown to profoundly

affect the overall composition of the CD8+ T-cell com-

partment.12 We found that the frequency of CD45RA+

CD27+ (naive) CD4+ T cells significantly decreased with

age (Fig. 1a,b; P = 0�0003) whereas the frequencies of all

the primed/memory subsets significantly increased with

age: CD45RA) CD27+ (P = 0�0033), CD45RA) CD27)

(P = 0�0321), CD45RA+ CD27) (P = 0�0315). However,

this analysis does not take into account the individual

contribution of ageing and CMV infection in shaping the

CD4+ T-cell compartment. An earlier study showed that

CMV infection is associated with the accumulation of

highly differentiated CD4+ T cells.16 Here we extend these

observations by further discriminating between highly

differentiated CD4+ T cells in the basis of CD45RA

re-expression. We analysed the results in two ways. First,

we divided the subjects into young (< 40 years) and old

(> 60 years) groups and further subdivided these individ-

uals on the basis of their CMV seropositive or negative

status (Fig. 1c). Second, we performed multiple linear

regression analysis to examine more closely the impact of

aging and CMV in determining the T-cell subset compo-

sition during ageing.

The percentage of CD45RA+ CD27+ (naive) CD4+ T

cells decreased with age; this decrease was significant in

CMV-positive (P = 0�003) but not in CMV-negative

donors as assessed by the Mann–Whitney U-test. How-

ever, when we analysed the data using multiple linear

regression analysis (see Supplementary Information,

Table S1) we found that age and CMV both induce a sig-

nificant decrease of the CD45RA+ CD27+ CD4+ T-cell

compartment (P < 0�001 and P < 0�045, respectively) but

age alone seems to be the main factor modulating the

increased CD45RA) CD27+ subset.

The frequencies of CD45RA) CD27) and CD45RA+

CD27) subsets were significantly higher in CMV-infected

donors in both young and old age groups (Fig. 1c). Fur-

thermore, old CMV-positive donors had significantly

higher proportions of these cells compared with young

seropositive subjects as assessed by the Mann–Whitney

U-test (Fig. 1c, lower panels). When the results were anal-

ysed by multiple linear regression analysis there was a

highly significant impact of CMV infection on the increase

of both these populations during ageing (P < 0�0001 in

both cases) but age itself did not have a significant role in

the accumulation of these subsets (see Supplementary

Information, Table S1). In conclusion, age and CMV sero-

status both contribute to the decrease in CD45RA+

CD27+ CD4+ T cells during ageing but the increase in

CD45RA) CD27) and CD45RA+ CD27) T cells in old

individuals is primarily the result of CMV infection.

Identification of virus-specific CD4+ T-cell
populations in healthy donors of different ages

We next investigated whether the increase in CD45RA)

CD27) and CD45RA+ CD27) CD4+ cells in CMV-seropos-

itive donors only occurred within CMV-specific CD4+ T

cells or also in those that are specific for different persistent

viruses. To do this, we first identified virus-specific popula-

tions by intracellular IFN-c staining after stimulation with

lysates of virus-infected cells for 18 hr (see Supplementary

Information, Fig. S1a).15 Background responses detected in

unstimulated cells (negative control) were subtracted from

those detected in stimulated samples. Only responses

> 0�02% above background were considered positive. The

IFN-c secretion after stimulation with viral lysates was spe-

cific because no cytokine production was observed when

CMV lysate was used to stimulate CD4+ T cells from CMV-

seronegative donors as described previously.15 We found

that in CMV-seropositive donors, there was a significantly

higher proportion of CMV-specific CD4+ T cells compared

with T cells that were specific for other persistent viruses

such as VZV, HSV EBV or mycobacterial antigens (tuber-

culin PPD) (see Supplementary Information, Fig. S1b).

We next investigated whether the increased proportion

of CD45RA) CD27) and CD45RA+ CD27) CD4+ T cells

in CMV-seropositive donors (Fig. 1c) was only the result

of changes within the CMV-specific T-cell population. We

found that there were significantly more CD45RA) CD27)

and CD45RA+ CD27) CD4+ T cells in CMV-seropositive

donors compared with CMV-seronegative donors

(Fig. 2a,b). However, although the majority of CD45RA)

CD27) and CD45RA+ CD27) CD4+ T cells in CMV-sero-

positive donors were CMV-specific, there was also a higher

proportion of CD45RA) CD27) and CD45RA+

CD27) CD4+ T cells specific for the other viruses in CMV-

seropositive subjects (Fig. 2b,c). Similar results were

observed in both young and old donors (data not shown).
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This result reinforces the idea that CMV infection

influences directly the composition of the CD4+ T-cell

pools. Furthermore, our results indicate that CMV infec-

tion may have a global effect on driving the differentiation

of other antigen-specific CD4+ T cells. This confirms our

previous observations where the relative expression of

CD28 and CD27 instead of CD45RA and CD27 was used to

identify CD4+ T cells at different stages of differentiation.15

Highly differentiated CD45RA) CD27) and
CD45RA+ CD27) CD4+ T-cell subsets are
multifunctional

Several reports on CD8+ T cells suggest that the

CD45RA+ CD27) subset is terminally differentiated17,22

with limited capacity for self-renewal. To date, few data

are available on CD4+ CD45RA+ CD27) T cells in healthy
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Figure 1. The inflation of CD45RA) CD27)

and CD45RA+ CD27) CD4+ T-cell subsets is

the result of cytomegalovirus (CMV) exposure

and not of age itself. (a) Phenotypic analysis of

CD45RA/CD27 expression on young, middle-

aged and old CD4+ T cells. Peripheral blood

mononuclear cells stained for CD4, CD45RA

and CD27 were analysed by flow cytometry.

Representative pseudocolour plots for each age-

group are shown. (b) Frequencies of each of

the CD45RA/CD27 populations within total

CD4+ T cells are represented in correlation to

the age of the donors. Line of best fit was gen-

erated by linear regression and the correlation

assessed by Pearson and Spearman rank

(GraphPad Prism): CD45RA+ CD27+ (r =

)0�3154, P = 0�0003), CD45RA) CD27+ (r =

0�2620, P = 0�0033), CD45RA) CD27)

(r = 0�1918, P = 0�0321), CD45RA+ CD27)

(r = 0�1924, P = 0�0315). (c) Frequencies of

each of the CD45RA/CD27 populations within

total CD4+ T cells are represented by grouping

via age (young, < 40 years; old, > 60 years)

and CMV status. Horizontal lines depict

median values. Statistical analysis was per-

formed using the Mann–Whitney U-test

(GraphPad Prism). * indicates P value �
0�05; ** indicates P value � 0�001; *** indi-

cates P value � 0�0001.
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donors. To determine the functional characteristics of the

increased CD45RA) CD27) and CD45RA+ CD27) CD4+

T-cell populations in CMV-seropositive subjects we first

examined their surface expression of markers that were

previously shown to be associated with migration

(CCR7), co-stimulation (CD28), responsiveness to cyto-

kines (IL7-Ra) and end-stage differentiation (CD57). We

found that CD45RA) CD27) and CD45RA+ CD27) CD4+

T cells both showed low CCR7, CD28 and IL-7Ra but

higher CD57 expression compared with naive CD45RA+

CD27+ and CD45RA) CD27+ populations indicating that

they were more differentiated (Fig. 3a). In addition, on

the basis of CD28, IL-7Ra and CD57 expression, the

CD45RA+ CD27) subset was significantly more differenti-

ated than the CD45RA) CD27) population (Fig. 3a).

We next investigated the functional properties of the

CD45RA) CD27) and CD45RA+ CD27) subsets of CD4+

T cells. We showed that the expression of molecules

associated with cytolytic potential such as granzyme B

and perforin were not detectable in naı̈ve CD45RA+

CD27+ and CD45RA) CD27+ CD4+ T cells (Fig. 3b). In

contrast, both CD45RA) CD27) and CD45RA+ CD27)

CD4+ T cells expressed granzyme B and perforin, the

levels of which were significantly higher in CD45RA+

CD27) cells when these populations were compared

(Fig. 3b). Other indicators of CD4+ T-cell functionality

include production of cytokines such as IFN-c, IL-2 and

TNF-a, and the expression of the CD40 ligand. The

co-expression of more than one function in individual

cells may be associated with enhanced viral control.29

We therefore performed multiparameter flow cytometric

analysis to identify simultaneously the relative expression

of IFN-c, IL-2, TNF-a and CD40 ligand in individual

CD4+ T cells at different stages of differentiation

defined by relative expression of CD45RA and CD27

(Fig. 3c; see Supplementary Information, Fig. S2 and

Table S2).

The CD45RA) CD27+, CD45RA) CD27) and CD45RA+

CD27) subsets contained more cells with three and four

functions compared with the CD45RA+ CD27+ CD4+

naive T-cell population (functions expressed are detailed

in Supplementary Information, Table S2). These differ-

ences were highly significant (Wilcoxon matched pairs

test; for all comparisons naive versus other subsets P <

0�0001; Fig. 3c). Both CD45RA) CD27) and CD45RA+

CD27) CD4+ T cells showed equivalent multifunctionality

(P = ns), which was higher than in the CD45RA) CD27+

and naive CD45RA+ CD27+ CD4+ T-cell populations

(P < 0�01). This indicates that although CD45RA+ CD27)

CD4+ T cells bear phenotypic characteristics of highly

differentiated T cells, they are not exhausted functionally

but instead are capable of potent effector function. We

found no evidence for a decreased functionality of

CD45RA) CD27) and CD45RA+ CD27) CD4+ T cells

when we compared old with young donors after activa-

tion with a polyclonal T-cell stimulus (anti-CD3 anti-

body); these populations were equally multifunctional in

both groups of subjects (Mann–Whitney U-test, data not

shown).
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Figure 2. Frequency of CD45RA) CD27) and CD45RA+ CD27)

CD4+ subsets within virus-specific cells in cytomegalovirus seroneg-

ative (CMV)) and CMV+ individuals. Peripheral blood mononu-

clear cells were stimulated with CMV, Epstein–Barr virus (EBV),

herpes simplex virus (HSV) or varicella zoster virus (VZV) lysates

and the phenotype of the antigen-specific CD4+ T cells was assessed

by flow cytometry after staining with CD4, CD45RA, CD27 and

interferon-c (IFN-c) antibodies. Only responses > 0�02% above

background (unstimulated cells) were considered positive. The

CD45RA/CD27 profile of CMV-specific CD4+ T cells (CD4+ IFN-

c+) from a representative donor is shown (a). (b) The percentage

of antigen-specific CD4+ T cells with a CD45RA) CD27) or

CD45RA+ CD27) phenotype was assessed in CMV+ and CMV)

individuals. Horizontal lines depict median values. Statistical analy-

sis was performed using the Mann–Whitney U-test (GraphPad

Prism).
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Survival of CD45RA+ CD27) CD4+ T cells following
activation

Beside the ability to secrete cytokines and express cyto-

toxic machinery, another critical element for T-cell-medi-

ated immune protection is their ability to proliferate and

survive after activation. We observed that after T-cell

receptor stimulation in vitro CD45RA+ CD27+ and

CD45RA) CD27+ CD4+ T-cell populations expanded

more than CD45RA) CD27) and CD45RA+ CD27) sub-

sets during culture (Fig. 4a,b; see Supplementary Informa-

tion, Fig. S3a). To understand the extent to which

increased cell death, rather than reduced proliferation,

contributes to the decline of the CD45RA+ CD27) popu-

lation after in vitro stimulation, we measured the rate of

cell death by monitoring Annexin V staining and PI

incorporation after activation (Fig. 4c,d). The analysis of

early apoptotic (Annexin V+ PI)) and late apoptotic/

necrotic (Annexin V+ PI+) cells in the different subsets at

day 3 after activation showed that CD4+ CD45RA+

CD27) T cells are significantly more prone to cell death

than all other subsets. A time–course of Annexin V stain-

ing and PI incorporation showed that by day 15 CD4+

CD45RA+ CD27) T cells are almost completely dead

(a) (b)

100

200

300

100

200

300

400 *
*

In
iti

al
 c

el
l n

um
be

r 
(%

)

(c)

(d)

0 4 8 12 16
0

Day

In
iti

al
 c

el
l n

um
be

r 
(%

)

0

0·94 50·2
36·3 12·5

0·1 2·86
95·6

105

104

103

102

0

1·47
0·13 7·2
91·3 1·32

0·35 11·2
82·6 5·88

*

P
I

Annexin V

Day 3

0

4

8

12

*
*

**
**

A
nn

ex
in

+
 P

I–
 (%

)

A
nn

ex
in

+
 P

I+
 (%

)

5

0

10

15

20

25
*

*

*

RA+ 27+ RA– 27+ RA– 27– RA+ 27–

RA+ 27+ RA– 27+ RA– 27– RA+ 27– RA+ 27+ RA– 27+ RA– 27– RA+ 27–

RA+ 27+ RA– 27+ RA– 27– RA+ 27–

RA+ 27+

RA– 27+

RA– 27–

RA+ 27–

Figure 4. CD4+ CD45RA+ CD27) cells do not accumulate in culture following activation. (a) Purified CD45RA/CD27 CD4+ T-cell subsets were

activated with anti-CD3 and irradiated antigen-presenting cells. At the indicated time-points, the cell number was determined on a haemocytom-

eter. Results are expressed as a percentage of the initial number of cells placed in culture; one representative experiment is shown (results from

another donor is shown in supplementary information Fig. S3). (b) Bar graph represents cell recovery at day 3 after anti-CD3 and interleukin-2

(IL-2) activation. Error bars represent the SE from the mean of three separate experiments. Statistical analysis was performed using paired t-test

(GraphPad Prism). (c,d) Apoptosis was assessed by Annexin V staining and propidium iodide (PI) incorporation. The percentage of early apop-

totic (Annexin V+ PI)) and late apoptotic/necrotic (Annexin V+ PI+) cells was assessed after anti-CD3 and interleukin-2 (IL-2) activation on day

3. Representative pseudocolour plots are shown (c). (d) Bar graph represents early apoptotic (left panel) and late apoptotic/necrotic cells (right

panel) at day 3 after anti-CD3 and IL-2 activation. Error bars represent the SE from the mean of four separate experiments. Statistical analysis

was performed using paired t-test.

8 � 2011 The Authors. Immunology � 2011 Blackwell Publishing Ltd, Immunology

V. Libri et al.



when all other subsets are still present in culture (see

Supplementary Information, Fig. S3c).

To explore the possibility that pro-survival pathways

are defective in CD45RA+ CD27) CD4+ T cells, which

makes them susceptible to apoptosis, we investigated the

expression of the anti-apoptotic protein Bcl-2, measured

by intracellular staining of CD4+ T-cell subsets directly

ex vivo (Fig. 5a).30 We found that Bcl-2 expression is sig-

nificantly lower in CD45RA+ CD27) CD4+ T cells com-

pared with all the other subsets (P < 0�0001). A critical

role in promoting cell survival is also ascribed to Akt,

which operates by blocking the function of pro-apoptotic

proteins and processes.28,31 Akt is phosphorylated at two

sites – serine 473 and threonine 308. We previously

showed that there is defective phosphorylation of Akt

(ser473) but not Akt(thr308) in highly differentiated

CD8+ T cells.28,31 We now show that there is a decrease

in pAkt(ser473) from CD45RA+ CD27+ (naive), CD45RA)

CD27+, CD45RA) CD27) and CD45RA+ CD27) subsets,

respectively (Fig. 5b). Therefore CD45RA+ CD27) CD4+

T cells have potent effector function but have decreased

capacity for survival after activation, associated with

decreased Bcl-2 expression and Akt(ser473) phosphorylation.

CD4+ memory T cells re-expressing CD45RA+ derive
from CD45RA) CD27+ CD4+ T cells by IL-7-driven
homeostatic proliferation

Previous studies have shown that within CD8+ T cells

cytokines such as IL-15 that drive homeostatic proliferation

also induce the generation of CD45RA+ CD27) CD8+ T

cells.21,32,33 Although the presence CD4+ CD45RA+

CD27) T cells has been described previously26 the mecha-

nism by which they are induced is not known. We

showed previously that IL-7 can induce the proliferation

of CD4+ CD45RA+ (naive) T cells without inducing

CD45RO expression,34 which was subsequently supported

by other studies.35 We therefore investigated whether

this cytokine could induce CD45RA re-expression in

CD45RA) CD27+ or CD45RA) CD27) CD4+ T cells.

These cells were isolated by cell sorting then cultured in

the presence of IL-2, IL-7 or IL-15 without T-cell receptor

stimulation (Fig. 6; see Supplementary Information,

Figs S4 and S5). After 6 days, a population re-expressing

CD45RA and down-modulating CD45RO emerged from

the CD45RA) CD27+ cells cultured in the presence of

IL-7 (Fig. 6a). T-cell receptor stimulation alone did not

induce CD45RA re-expression and neither did a panel of

cytokines including transforming growth factor-b, IL-10

and IFN-a (unpublished observations). We also per-

formed a CFSE dilution assay on CD45RA) CD27+ cells

in the presence of IL-7 to assess whether CD45RA

re-expression is accompanied by proliferation driven by

IL-7. The CD45RA+ cells that were generated in vitro

from CD45RA) CD27+ cells by IL-7 divided more than

the cells that remained CD45RA) and CD45RO+ in the

same culture (Fig. 6b). Although a low level of CD45RA

expression was observed in a small proportion of

CD45RA) CD27+ CD4+ T cells that were cultured with

IL-2 or IL-15 (see Supplementary Information, Fig. S4),

this was considerably lower than that induced by IL-7

(Fig. 6a). The relatively weak effect of IL-15 on the induc-

tion of CD45RA in CD45RA) CD27+ cells was not

enhanced by a higher dose (10 ng/ml) of this cytokine

(data not shown).

The CD45RA) CD27) subset cultured in the same

experimental conditions did respond to IL-7 in terms of
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vation relative to the MFI observed in unstimulated cells within the

respective subset. Error bars represent the SE from the mean of five

separate experiments. Statistical analysis was performed using paired

t-test (GraphPad Prism).

� 2011 The Authors. Immunology � 2011 Blackwell Publishing Ltd, Immunology 9

IL-7 induces re-expression of CD45RA in CD4+ T cells



survival (data not shown) but did not re-express CD45RA

and remained CD45RO+ throughout the culture period

(see Supplementary Information, Fig. S5). These results

suggest that IL-7-driven homeostatic proliferation can

induce the re-expression of CD45RA in CD45RA) CD27+

CD4+ T cells but cannot induce the CD45RA) CD27)

population to form the CD45RA+ memory population.

We next determined whether the memory CD45RA+ cells

that were generated in vitro resembled phenotypically

those that are found in vivo. To do this we monitored the

expression of CD27, Bcl-2 and IL-7Ra after different

time-points of IL-7 treatment of CD45RA) CD27+ CD4+

T cells in vitro. The population that remained CD45RA)

CD45RO+ expressed homogeneously high levels of Bcl-2

and IL-7Ra throughout the culture period (Fig. 6c),

except for the initial down-regulation of IL-7Ra (visible

at day 5). In contrast the population of CD45RA+ cells

that emerged down-regulated both Bcl-2 and IL7-Ra over

time (Fig. 6c). Interleukin-7 stimulation of CD45RA)

CD27+ CD4+ T cells results in the generation of a popu-

lation with heterogeneous expression of CD27. However,

a small percentage of the CD45RA re-expressing cells are

CD27) (see Supplementary Information, Fig. S6). As IL-7

induces CD45RA but not complete loss of CD27 in the

timeframe of experimental protocol we acknowledge that

other factors in addition to IL-7 may also be required for

the generation of a CD45RA+ CD27) T-cell population

from CD45RA) CD27+ cells.

Preferential localization of CD45RA+ CD27) CD4+

T cells in the bone marrow

All the results presented so far were performed using CD4+

T cells from peripheral blood. The bone marrow has been

known to be a source of IL-7 in vivo.36 We therefore exam-

ined the possibility that there was preferential accumula-

tion of CD45RA+ CD27) CD4+ T cells of a particular

specificity in this lymphoid compartment. First we com-

pared the distribution of CD4+ CD45RA/CD27 subsets in

paired blood and bone marrow samples from healthy

donors and observed a significant increase in the percent-

age of CD45RA) CD27) and CD45RA+ CD27) CD4+

T cells in the bone marrow compared with the blood of

the same individuals (Fig. 7a). We investigated next

whether the specificity of T cells in the bone marrow was

similar to that found in the blood of the same individuals

(Fig. 7b). We found that the increased proportion of

CMV-specific CD4+ T cells relative to other populations

was also observed in bone marrow samples, indicating that

the inflation of CMV-specific T cells occurs in more than

one lymphoid compartment in vivo (Fig. 7b). In addition,

the proportion of CMV-, VZV- and EBV-specific CD4+
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analysed for the expression of CD45RA and

CD45RO before culture. (a) Cells were stimu-

lated with IL-7 and CD45RA/CD45RO expres-
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T cells was not significantly different between the two

compartments. However, there were significantly more

PPD-specific CD4+ T cells in the bone marrow compared

with the peripheral blood from the same donors, although

the significance of this is not clear at present.

We next investigated whether there was preferential

accumulation of CD45RA) CD27) and CD45RA+ CD27)

CD4+ T cells of a particular specificity in the bone

marrow. We found that the proportion of CMV-, VZV-,

EBV- and PPD-specific populations in the bone marrow

that were CD45RA) CD27) and CD45RA+ CD27) was

not different to that in the blood of the same individuals

(Fig. 7c). Therefore it appears that CD45RA) CD27) and

CD45RA+ CD27) T cells of all specificities have equal

propensity to accumulate in the bone marrow and that it

is not a unique site for the generation of CMV-specific

effector/memory CD4+ T cells.

Discussion

In this study we show that whereas persistent CMV infec-

tion is mainly responsible for the increase of CD45RA)

CD27) and CD45RA+ CD27) CD4+ T cells in older sub-

jects, both ageing as well as CMV infection contribute to

the decrease of CD45RA+ CD27+ CD4+ T cells. This latter

observation may reflect the impact of thymic involution

compounded with persistent CMV infection during age-

ing.1 The majority of CD45RA) CD27) and CD45RA+

CD27) populations in CMV-infected subjects are CMV-

specific but there are also increased numbers of these

effector CD4+ cells that are specific for other viruses, i.e.

EBV, HSV and VZV. This suggests that CMV infection

may drive a global increase in CD4+ T-cell differentiation

suggesting a bystander phenomenon. However, we cannot

rule out the possibility that some people are particularly

susceptible to the reactivation of latent viruses in general,

CMV included. The bystander effect may be mediated in

part by IFN-a that is secreted by CMV-stimulated

plasmacytotoid dendritic cells as a result of toll-like

receptor stimulation15 or by TNF-a.26 IFN-a and TNF-a
have been shown to accelerate the loss of CD27 and

CD28 in both CD4+15,37,38 and CD8+39 T cells in humans.

However, the induction of IFN-a may also lead to the

secondary secretion of other cytokines such as IL-15,40,41

which may induce homeostatic proliferation and CD45RA

re-expression during CMV-specific CD8+ T-cell activa-

tion.20,42–44 It is currently not known whether IFN-a can

also induce IL-7 secretion by leucocytes or stromal cells

but this is under investigation. These observations suggest

that the accumulation of highly differentiated

CD45RA) CD27) and CD45RA+ CD27) CD4+ T cells in

CMV-infected individuals may be related in part to the
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Figure 7. CD4+ CD45RA+ CD27) cells appear

to accumulate in the bone marrow. (a) Pheno-

typic analysis of CD45RA/CD27 expression on

paired peripheral blood mononuclear cell

(PBMC) and bone marrow (BM) samples. Fre-

quencies of each of the CD45RA/CD27 popu-

lations within total CD4+ T cells are shown.

(b,c) Paired PBMCs and BM cells were stimu-

lated overnight with varicella zoster virus

(VZV), cytomegalovirus (CMV) and Epstein–

Barr virus (EBV) viral lysates or purified pro-

tein derivative (PPD) in the presence of brefel-

din A and analysed by flow cytometry.

Antigen-specific populations were identified by

intracellular staining for interferon-c (IFN-c)

production along with CD4, CD45RA and

CD27 surface staining. (b) The frequency of

CD4+ T cells that were antigen-specific in

PBMC and BM samples was determined in all

donors (n = 11) with a positive response

(> 0�02% once corrected for background). (c)

The percentage of antigen specific CD4+ T cells

that displayed a CD45RA) CD27) or a

CD45RA+ CD27) phenotype was assessed in

PBMCs and BM (n = 15). Statistical analysis

was performed using the Wilcoxon matched

pairs test (GraphPad Prism).
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cytokines that are secreted either as a direct or indirect

consequence of CMV re-activation in vivo.

There has been controversy about the extent to which

CMV re-activation occurs in seropositive individuals. Ear-

lier studies did not find increased CMV DNA in the

blood of older humans.45 However, a recent study

confirmed that while CMV viral DNA is undetectable in

the blood of healthy old volunteers, it is significantly

increased in the urine of these individuals compared with

a younger cohort of CMV-seropositive subjects.46 This

indicates that the ability to control CMV re-activation

may be compromised during ageing and that this may

lead to increased activation of CMV-specific T cells in

older subjects.46 Therefore, the increased CMV-specific

T-cell re-activation together with secretion of differentia-

tion-inducing cytokines such as IFN-a,15,37,39 may culmi-

nate in the highly differentiated memory T-cell repertoire

that is found in older CMV-infected humans.

Previous reports on CD8+ T cells that re-express

CD45RA have described them as terminally differentiated

and exhausted.21,22 However, we and others have shown

that CD45RA+ CD27) CD8+ T cells can be re-activated to

proliferate and exhibit effector functions in vitro,20,25,32

indicating that they are functional and retain replicative

potential and are an important memory subset.47 We

now extend these observations by showing that the same

applies to CD45RA+ CD27) cells within the CD4+ T-cell

population that secrete multiple cytokines as efficiently as

the CD45RA) CD27) population and more efficiently

than the naive CD45RA+ CD27+ and CD45RA) CD27+

subsets after T-cell receptor activation. In addition, the

CD45RA+ CD27) and CD45RA) CD27) CD4+ T-cell

populations that accumulate in CMV-seropositive donors

also have cytotoxic potential but it is not clear what their

target population may be.

In addition to their functionality, the ability of

CD45RA) CD27) and CD45RA+ CD27) T cells to prolif-

erate and survive after T-cell receptor or homeostatic cyto-

kine stimulation is crucial for their role in immunity. We

showed that not only CD45RA) CD27) but especially

CD45RA+ CD27) CD4+ T cells have reduced levels of Bcl-

2 and impaired Akt phosphorylation. These changes may

account for the susceptibility of these cells to apoptosis

after activation, which contributes to their inability to

accumulate after stimulation in vitro. However, this

does not necessarily imply that CD45RA) CD27) and

CD45RA+ CD27) CD4+ T cells are short lived in vivo. It

has been shown that stromal cells can promote the survival

of apoptosis-prone T cells that have down-regulated Bcl-

230,48 and that the cytokines involved are type 1 interferons

(IFN-a, IFN-b).49 In addition, IFN-a/b secreted by stromal

cells can also prevent the activation-induced apoptosis of

antigen-specific CD4+ T-cell clones.50 These data indicate

that although CD45RA) CD27) and CD45RA+ CD27)

cells may appear to be susceptible to apoptosis in vitro,

there may be soluble factors that are present in vivo that

enable them to persist. This may explain why

CD45RA+ CD27) CD8+ T cells from older humans show

unusual kinetic properties in deuterated glucose uptake

studies, where their persistence in the blood is not related

to the extent to which they proliferate,51 indicating a pos-

sible role for anti-apoptotic factors in vivo.

Our studies suggest that one way in which CMV-spe-

cific CD45RA+ CD27) CD4+ T cells may be generated is

by IL-7-driven homeostatic proliferation, possibly in

combination with other factors. This raises the question

as to where this process may occur in vivo. It is widely

accepted that bone marrow stromal cells are a source of

IL-7 that enables the maturation and differentiation of

specific progenitor cells36 and it has been shown that

professional memory CD4+ T cells co-localize with IL-7-

producing stromal cells in vivo.52 We therefore investi-

gated whether the bone marrow was a possible site for

IL-7-driven CD45RA re-expression in memory T cells.

There were significantly more CD45RA+ CD27) T cells

in the total CD4+ compartment in the bone marrow

compared with the blood of the same subjects. However,

there was not a preferential accumulation of CD45RA+

CD27) T cells of any particular specificity in the bone

marrow. This suggests two possibilities. First, that

CD45RA+ CD27) T cells of all specificities preferentially

migrate to the bone marrow, or alternatively IL-7 in the

bone marrow may induce CD45RA re-expression on

CD4+ T cells irrespective of their antigen specificity. Our

current experimental system does not allow us to dis-

criminate between these possibilities.

Collectively our results suggest that cytokine secretion

may have a largely ignored role in shaping the highly dif-

ferentiated T-cell repertoire in older humans. Although it

is currently unclear why the increase in highly differenti-

ated T cells that are largely CMV-specific is detrimental

during ageing,5 the manipulation of the cytokines that

may be involved in their generation may be a possible

strategy to prevent their accumulation.
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Figure S1. High frequency of cytomegalovirus (CMV) -

specific CD4+ T cells. Peripheral blood mononuclear cells

were stimulated with CMV, Epstein–Barr virus (EBV),

herpes simplex virus (HSV), varicella zoster virus (VZV)

or purified protein derivative (PPD) lysate and the per-

centage of interferon-c (IFN-c) secreting antigen-specific

CD4+ T cells was assessed by flow cytometry (a). The fre-

quency of CD4+ T cells that were specific for CMV, EBV,

HSV, VZV or PPD was determined in individuals who

were seropositive for these agents (b). Only responses

> 0.02% above background (unstimulated cells) were

considered positive. Horizontal lines depict median val-

ues. Significantly increased frequency of CMV specific

CD4+ T cells relative to the other antigens is indicated

(Wilcoxon rank test, GRAPHPAD PRISM).

Figure S2. Multiparameter flow cytometric analysis.

Representative dot plots from one donor show the distri-

bution of stimulated CD4 T cells within each CD45RA/

CD27 subset. Panels show CD4 plotted against: CD40

ligand (CD40L; upper right), interferon-c (IFN-c; upper

left), interleukin-2 (IL-2; lower right) and tumour necro-

sis factor-a (TNF-a; lower left), each for unstimulated

and anti-CD3 stimulated T cells.

Figure S3. Cell recovery. Purified CD45RA/CD27 CD4+

T-cell subsets were activated with anti-CD3 and irradiated

antigen-presenting cells and irradiated antigen-presenting

cells. At the indicated time-points, the cell number was

determined on a haemocytometer. Results are expressed as

a percentage of the initial number of cells placed in cul-

ture; results for one donor are shown. (b,c) Apoptosis was

assessed by Annexin V staining and propidium iodide (PI)

incorporation. The percentage of early apoptotic (Annexin

V+ PI)) and late apoptotic/necrotic (Annexin V+ PI+) cells

was assessed in the indicated days. Representative pseudo-

colour plots are shown (b).

Figure S4. CD4+ CD45RA) CD27+ cells were purified

by FACS sorting and analysed for the expression of

CD45RA and CD45RO before culture. Cells were stimu-

lated with interleukin-2 (IL-2) or IL-15 and CD45RA/

CD45RO expression was assessed by flow cytometry at

the indicated time-points. The results shown are represen-

tative of four experiments.

Figure S5. CD4+ CD45RA) CD27) cells were purified

by FACS sorting and analysed for the expression of

CD45RA and CD45RO before culture. Cells were stimu-

lated with interleukin-7 (IL-7), IL-2 or IL-15 and

CD45RA/CD45RO expression was assessed by flow

cytometry at the indicated time-points. The results shown

are representative of three experiments.

Figure S6. CD4+ CD45RA) CD27+ cells were purified

by FACS sorting. Cells were stimulated with interleukin-7

(IL-7), or IL-15 and CD45RA/CD27 expression was

assessed by flow cytometry at the indicated time-points.

Table S1. Results from multiple linear regression fitting
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Table shows the unstandardized coefficient, significance

and 95% confidence interval from the output of SPSS soft-

ware for each CD45RA/CD27 subset. Unit of age is equal

to 1 year.

Table S2. Mean frequencies and the standard error of

the mean of CD40 ligand (CD40L), interferon-c (IFN-c),

interleukin-2 (IL-2) and tumour necrosis factor-a (TNF-a)

in all possible combinations in each CD45RA/CD27 subset.
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Abstract 

In this study we demonstrate that memory CD4+ T cells that re-express CD45RA 

(CD27-CD45RA+; EMRA) express high levels of surface KLRG-1, reduced replicative 

capacity, decreased survival, low telomerase activity and high expression of nuclear 

H2AX after T cell receptor (TCR) activation. Paradoxically, despite exhibiting these 

characteristics of senescence, this population has significantly longer telomeres then 

central memory-like (CD45RA-CD27+) and effector memory-like (CD45RA-CD27-) CD4+ 

T cells in the same individuals. The p38 mitogen activated protein kinase (MAPK) has 

been shown to regulate telomere independent senescence in fibroblasts and we found 

that the expression of both total and phosphorylated forms of this molecule were highest 

in the EMRA population. Furthermore the inhibition of p38 signaling after TCR activation 

significantly reduced apoptosis and enhanced both the survival and telomerase activity 

in CD27-CD45RA+ T cells. We conclude therefore that EMRA CD4+ T cells exhibit 

telomere independent senescence. Furthermore, this senescence programme is 

maintained by active p38 signaling and is reversible.   
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Introduction 

Human T cell memory is mainly maintained throughout life by episodes of 

proliferation induced by antigenic challenge and to a much lesser extent by continued 

generation of new cells, as the thymus involutes early in life. However there is a finite 

limit to the proliferative capacity of T memory cells that is set by the erosion of repeating 

hexameric sequences of DNA at the ends of chromosomes known as telomeres, that 

are lost with each replicative cycle (Goronzy et al., 2006). Without compensatory 

mechanisms such as the induction of the enzyme telomerase, telomeres attrition in 

cycling cells results in growth arrest or replicative senescence (Hayflick and Moorhead, 

1961). This process was first described in fibroblasts but also occurs in human T cells 

after activation and is known as telomere-dependent senescence (Akbar and 

Vukmanovic-Stejic, 2007; Effros, 2004; Plunkett et al., 2005).  Proliferative arrest that is 

independent of telomere length can also occur in cells (telomere independent 

senescence) (Toussaint et al., 2002). This process occurs when DNA is damaged by 

reactive oxygen species, by ionizing radiation, chromatin perturbation and activation of 

p53 and stress pathways (Campisi and d'Adda di Fagagna, 2007; Toussaint et al., 

2000). Telomere independent senescence has been extensively investigated in 

fibroblasts (von Zglinicki et al., 2005) however it is not clear whether this process also 

occurs in human T cells.   

 

Since the original use of CD45RA and CD45RO antibodies to identify unprimed and 

primed/memory subsets of T cells (Akbar et al., 1988; Merkenschlager and Beverley, 

1989; Sanders et al., 1988) it has become clear that some primed/memory T cells can 

re-express the CD45RA molecule (Bell and Sparshott, 1990; Faint et al., 2001; Hamann 

et al., 1997; Pilling et al., 1996). These cells were subsequently shown to be CCR7- , 

CD27- and CD28-, and therefore have an effector memory-like phenotype (EMRA; 

effector memory-like cells that re-express CD45RA) (Appay et al., 2008; Harari et al., 

2004; Sallusto et al., 2004). Initially, it was thought that the EMRA population were end-

stage T cells (Champagne et al., 2001) however subsequent studies indicated that this 

population can be induced to exhibit effector functions and to proliferate to a limited 

extent provided that they are activated under optimal conditions (Barber et al., 2006; 
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Dunne et al., 2005; Waller et al., 2007). These EMRA T cells are found in both CD4 and 

CD8 populations (Akbar and Fletcher, 2005; Koch et al., 2008; Okada et al., 2008; 

Romero et al., 2007) and are the dominant memory population that persists after some 

forms of vaccination (Akondy et al., 2009). However the exact nature of these T cells is 

not clear.  

 

When human T cells differentiate from a naïve to an effector memory phenotype they 

lose their capacity to upregulate telomerase activity and this is associated with 

progressive telomeres reduction (Effros et al., 2005; Fletcher et al., 2005; Plunkett et al., 

2005; Weng et al., 1995). However the telomere length or telomerase activity of 

CD4+CD27-CD45RA+ (EMRA) T cells has never been investigated.  In this study we 

made the unexpected observation that although CD4+ EMRA T cells have many 

phenotypic and functional characteristics of a senescent population, they have 

significantly longer telomeres than CD27+ CD45RA- (central memory; CM) and CD27-

CD45RA- (effector memory; EM) cells from the same donor. We found that the 

senescence characteristics of this population was mediated in part by active p38 

signaling and was reversible. This is the first report that CD4+ CD27-CD45RA+ EMRA T 

cells exhibit characteristics of senescence that is not due to excessive telomere erosion. 

This identifies a new functional constraint on the memory T cell pool of older humans 

(Hong et al., 2004), subjects with persistent viral infections (Hislop et al., 2005; Khan et 

al., 2002; Libri et al., 2010; Wills et al., 2002) and autoimmune diseases (Lindstrom and 

Robinson, 2010; Thewissen et al., 2005; Weyand et al., 2003) that all contain increased 

proportions of these cells.  
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Results and Discussion 

CD4+ CD27-CD45RA+ (EMRA) T cells exhibit phenotypic and functional 

characteristics of cellular senescence. 

CD4+ T cells can be subdivided into 4 populations on the basis of their relative 

expression of CD27 and CD45RA (Fig.1A). In previous studies, on the basis of surface 

receptor expression, functional activity and telomere length, undifferentiated populations 

have been shown to express CD27+CD45RA+, those that are at an early stage of 

differentiation are CD27+CD45RA- while highly differentiated CD4+ T cells are CD27-

CD45RA- (Appay et al., 2008; Libri et al., 2010). These subsets are analogous to those 

identified in other reports where surface CCR7 together with CD45RA expression were 

used (Appay et al., 2008; Harari et al., 2004). In addition, both sets of markers identify a 

fourth subset that is CD27-CD45RA+ (EMRA) and the proportion of these cells are 

increased in older humans (Harari et al., 2004; Libri et al., 2010) and patients with 

chronic viral infections (Dunne et al., 2002; Faint et al., 2001; Hislop et al., 2005; Khan 

et al., 2002; Wills et al., 2002) and may therefore represent an end-stage population. 

The observation that these cells expressed high levels of surface KLRG1 that has been 

shown to identify senescent T cells (Ouyang et al., 2003; Voehringer et al., 2001), 

supported this possibility (Fig. 1B). However the CD27-CD45RA- population also 

expressed high levels of this molecule indicating that they may also have characteristics 

of senescence. The phosphorylation of the histone protein H2AX can be used to identify 

DNA damage foci in senescent fibroblasts (Passos et al., 2010; Tanaka et al., 2007).  

We found that after TCR activation, both the CD27-CD45RA- and the CD27-CD45RA+ 

populations expressed significantly higher levels of H2AX than the other subsets (Fig 

1C). This was not due to the identification of replicating instead of damaged DNA as we 

only included non-proliferating T cells in our analysis (Supplementary Fig. A).  Therefore 

both CD27-CD45RA- and CD27-CD45RA+ T cells have the phenotype of senescent 

populations.  

Previous studies showed that highly differentiated CD4+ T cells can be identified by 

the loss of CD27 and CD28 expression (CD27-CD28-) and these cells have low 

telomerase activity and reduced replicative potential compared to less differentiated 
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populations in the same subjects (Fletcher et al., 2005; Romero et al., 2007). The CD27-

CD28- population is heterogeneous and consists of both CD27-CD45RA- and CD27-

CD45RA+ T cells (Appay et al., 2008). We found that telomerase activity was 

significantly reduced in the CD27-CD45RA+ cells compared to the other populations 

(Fig. 1C).  Therefore although both CD27-CD45RA- and CD27-CD45RA+ T cells exhibit 

characteristics of senescence, the loss of telomerase activity is more pronounced in the 

latter population.  

CD4+CD27-CD45RA+ T cells have relatively long telomeres. 

The low telomerase activity in CD27-CD45RA+ T cells prompted us to investigate 

whether they had very short telomeres. The relatively low numbers of these cells in vivo 

precluded the use of conventional DNA isolation and electrophoresis methods to 

analyze their telomere lengths (Fletcher et al., 2005; Libri et al., 2010; Roth et al., 2005).  

We therefore investigated the telomere length of MACS isolated CD4+ T cells by 3 

colour fluorescence in situ hybridization coupled to flow cytometry using CD45RA, 

CD27 and a fluorescence labeled telomere probe (flow-FISH; Fig. 2A). We confirmed 

that relatively undifferentiated T cells (CD27+CD45RA+) have longer telomeres than the 

early differentiated, central memory-like subset (CD27+CD45RA-), which in turn have 

significantly longer telomeres than the effector memory-like (CD27-CD45RA-) T cell 

population (Fig. 2B). However an unexpected observation was that CD27-CD45RA+ T 

cells that have significantly longer telomeres than the CD27+CD45RA- and the CD27-

CD45RA- memory subsets but shorter telomeres than the undifferentiated/naive 

CD27+CD45RA+ T cells (Fig. 2B). This suggested that although both CD27-CD45RA- 

and CD27-CD45RA+ T cells have the characteristics of pre-senescent T cells, the 

senescence in the latter population was associated with telomerase inhibition but 

paradoxically, not excessive telomere erosion.  

CD4+CD27-CD45RA+T cells express high levels of p38 MAP kinase activity. 

The activation of p38 MAP kinase has an essential role in both telomere dependent 

and telomere independent senescence of fibroblasts (Iwasa et al., 2003; Maruyama et 

al., 2009). Furthermore telomere-independent senescence can be induced in fibroblasts 
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by the constitutive activation of p38 (Davis and Kipling, 2009; Haq et al., 2002; Passos 

et al., 2010). We therefore investigated whether p38 signaling regulated the senescence 

in CD27-CD45RA+ T cells that resembled telomere independent senescence in 

fibroblasts. Although several studies have been performed on the role of p38 in the 

development and cytokine secretion of T lymphocytes (Berenson et al., 2006; Dodeller 

and Schulze-Koops, 2006; Rincon and Pedraza-Alva, 2003), it’s involvement with 

lymphocyte differentiation is unclear. When we examined either the total level of p38 or 

the phosphorylated form of this molecule we found that the highest expression of both 

was found in CD27-CD45RA+ T cells (Fig. 3A, 3B). However the CD27-CD45RA- subset 

also showed significantly higher levels of this molecule than the CD27+CD45RA+ and 

CD27+CD45RA- populations (Fig. 3A, 3B). Therefore both the CD27-CD45RA- and 

CD27-CD45RA+ T cells upregulate the p38 MAP kinase that is a characteristic of 

senescence in fibroblasts. However, the senescence in the latter population is unlikely 

to be related to telomere erosion.  

p38 Map kinase signaling regulates senescence associated functional changes 

in CD4+CD27-CD45RA+ T cells. 

Previous studies showed that CD4+CD27-CD45RA+ T cells had diminished capacity 

to expand in culture and were highly susceptible to apoptosis compared to the other 

subsets (Libri et al., 2010). We investigated whether this defect as well as the decrease 

in telomerase induction in these cells was mediated by p38 signaling. To do this we 

blocked p38 signaling in activated T cell by the addition of BIRB796 (BIRB), a p38 

inhibitor that blocks the activation of all four of the isoforms of p38 (Bain et al., 2007). 

We first showed that this inhibitor was specific as it blocked the phosphorylation of p38 

(pThr180/pTyr182) but not JNK (pThr183/pTyr185) in activated T cells (Fig. 4A) in 

accordance with others (Bagley et al., 2010; Davis et al., 2010). We next confirmed that 

CD27-CD45RA+ T cells were impaired in their ability to expand in culture after TCR 

activation compared to the other subsets (Fig. 4B). The addition of BIRB to these cells 

during activation however significantly increased the cell recovery after activation (Fig. 

4B). In addition we showed that the inability of CD27-CD45RA+ T cells to expand after 

activation was due to increased levels of apoptosis (Fig. 4C, Supplementary Fig. B) and 
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not decreased capacity to enter cell cycle identified by ki67 staining (Fig. 4D). A 

fundamental difference in the manifestation of senescence in T cells and fibroblasts is 

that senescence fibroblasts can persist without cell division for extended periods in vitro 

while senescent T cells are very susceptible to apoptosis (Campisi and d'Adda di 

Fagagna, 2007; Feldser et al., 2003). An important observation was that the increased 

recovery of CD27-CD45RA+ T cells after blocking p38 signaling was due to the 

significant reduction of apoptosis (Fig. 4C, supplementary Fig. B) and not increased cell 

cycling (Fig. 4D). The inhibition of apoptosis by p38 blockade was due in part to the 

upregulation of the anti-apoptotic molecule Bcl-2 in these cells (Supplementary Fig.C, 

D).  

Although several studies have highlighted the pivotal role of p38 signaling in cellular 

senescence, the relationship between the activation of this molecule and telomerase 

activity has not been investigated. We therefore questioned whether the low telomerase 

activity in the CD27-CD45RA+ T cell population was linked to increased p38 signaling in 

these cells. We found that the low telomerase activity in the CD27-CD45RA+ T cell 

population was significantly enhanced by up to 3.5 fold in these cells by blocking p38 

compared to the cells without the inhibitor (Fig. 4D). Although telomerase activity in the 

CD27-CD45RA- population was also increased by blocking p38 signaling, this result was 

not significant. This is the first demonstration that the low telomerase activity that has 

previously been found in highly differentiated human T cells is due mainly to decreased 

induction in the CD27-CD45RA+ T cell population (Effros et al., 2005; Fletcher et al., 

2005; Plunkett et al., 2005; Weng et al., 1995). Collectively these data suggest that p38 

signaling actively shapes the senescence characteristics of human CD4+ lymphocytes 

and its effects are most striking in CD27-CD45RA+ T cells that express the highest 

levels of this molecule after activation. 

A fundamental characteristic of CD27-CD45RA+ T cells is that they upregulate a 

senescence programme after activation that is mediated in part by p38 signaling and is 

not due to excessive telomere erosion. In contrast, on the basis of their significantly 

short telomeres, the CD27-CD45RA- population may be more susceptible to telomere 

dependent senescence. One key unanswered question is how are the CD27-CD45RA+ 

T cells generated in vivo? Indirect observations suggest that proinflammatory cytokines 
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such as TNF-  may have a role since the treatment of T cells with this cytokine 

upregulates p38 expression (Raingeaud et al., 1995) while the inhibition of TNF-  

signaling enhances telomerase activity in cultured T cells (Parish et al., 2009). In 

addition, homeostatic cytokines like IL7 and IL-15 can also induce re-expression of 

CD45RA by primed T cell populations (Geginat et al., 2001; Libri et al., 2010) however it 

is not clear if they also have a role of initiating a senescence programme in T cells. Our 

preliminary observations suggest that p38 also has a similar role in regulating 

telomerase activity and senescence in CD8+ T cells however there are some differences 

compared to the CD4+ population. Interestingly, telomerase can also be enhanced in 

human CD8+ T cells by activating the ERK pathway (Fauce et al., 2008) with a small 

molecule telomerase activator (TAT2) however the potential interplay between the ERK 

and p38 MAP kinase pathways in the regulation of telomerase activity requires further 

investigation.  Immunity declines during ageing and the identification of ways to boost 

the activity of the immune system is crucial.  Understanding the signaling processes that 

regulate T cell senescence may be important in diverse clinical situations for example 

during chronic viral infection and ageing. The identification that some of the senescence 

related changes are reversible raises the possibility of identifying a safe therapeutic 

window for blocking T cell senescence to improve immunity in certain situations. 
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Materials and methods 

Blood sample collection and isolation 

Heparinized peripheral blood was collected from healthy volunteers between the 

ages of 26 and 60 (median age 39), with approval from the Ethics Committee of the 

Royal Free Hospital. Peripheral blood mononuclear cells (PBMCs) were isolated by 

Ficoll-Hypaque density gradient (Amersham Pharmacia Biotech, Uppsala, Sweden). 

CD4+ T cells were purified by positive selection using the VARIOMACS system (Miltenyi 

Biotec) according to the manufacturer’s instructions. In some experiments, CD4+ T cells 

were further sorted into CD45RA/CD27 subsets using a FACSAria flow cytometer (BD 

Biosciences, San Jose, CA) after staining with CD4, CD45RA and CD27 antibodies for 

30 minutes at 4°C in 1% phosphate-buffered saline (PBS) containing 1% bovine serum 

albumin (BSA; Sigma-Aldrich). 

Cell culture and use of inhibitors  

Cells were cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal calf 

serum (FCS), 100 U/mL penicillin, 100 mg/mL streptomycin, 50 µg/ml Gentamicin and 2 

mM L-glutamine (all from Invitrogen) at 37°C in a humidified 5% CO2 incubator. Purified 

CD4+ subsets were activated in the presence of anti-CD3 antibody (purified OKT3, 

0.5µg/ml) and PBMCs irradiated with 40 Gy gamma-radiation, as a source of multiple 

co-stimulatory ligands provided by B cells, dendritic cells, and macrophages found in 

these populations. In other experiments, cells were cultured in the presence of 

recombinant human (rh) IL-2 (5 ng/ml) (R&D Systems). In some experiments the p38 

inhibitor BIRB796 was added to the culture. BIRB796 was obtained from David Kipling 

already dissolved in DMSO at the concentration of 50mM (Bagley et al., 2006). It has 

been diluted in 0,1% DMSO and used at a final concentration of 500nM. Cells were 

pretreated with the inhibitor for 30 minutes. A solution of 0.1% DMSO was used as 

control.  

Flow cytometric analysis of cell phenotype 

Isolated T cells were re-suspended in PBS containing 1% BSA and 0.1% sodium 

azide (Sigma-Aldrich) then stained for 10 minutes at room temperature with the 
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following anti–human monoclonal antibodies: CD45RA (Allophycocyanin; clone MEM56, 

Abcam); CD27 (Phycoerythrin; clone M-T271, BD Pharmingen); CD4 (Phycoerythrin-

Cy7; clone SK3, BD Pharmingen); KLRG1 (AlexaFluro 488, kind gift from Prof P. 

Pircher, University of Freiburg). Intracellular staining was performed for Bcl-2 

(Phycoerythrin; clone Bcl-2/100, BD Pharmingen), Ki67 (Fluorescein isothiocyanate; 

clone B56, BD Pharmingen) and p38 (rabbit polyclonal anti-p38, Cell Signaling; Alexa 

Fluor 488 goat anti-rabbit Ig, Invitrogen). The intracellular staining was performed using 

the Foxp3 Staining Buffer Set (Miltenyi Biotec) according to the manufacturer’s 

instructions. Apoptosis was assessed using an Annexin V/ Propidium Iodide (PI) 

detection kit (BD Pharmingen). Samples were acquired on a BD LSR II flow-cytometer 

(BD Biosciences) after fixation with 1% formaldehyde (Sigma-Aldrich). Data were 

analyzed using FlowJo software (TreeStar, Ashland, OR). 

Staining of phosphorylated proteins by flow cytometry 

The analysis of p38 (pT180/pY182) was performed directly ex vivo. Following surface 

staining for CD45RA, CD27 and CD4, PBMCs were fixed with warm Cytofix Buffer (BD 

Biosciences) at 37°C for 10 minutes. Cells were then permeabilized with ice-cold Perm 

Buffer III (BD Biosciences) at 4°C for 30 minutes and incubated with the anti-p38 

antibody (pT180/pY182) (Alexa Fluor 488; clone 36/p38, BD Pharmingen) for 30 

minutes at room temperature. Cells were washed in Stain Buffer (BD Pharmingen). For 

the detection of γH2AX (pSer139) (Alexa 488, clone 2F3, Biolegend), purified subsets 

were activated with 0.5 μg/ml of immobilized anti-CD3 and 5 ng/ml of rhIL-2 for 4 days. 

Intracellular staining was performed using the BD Phosflow buffers above mentioned. 

Samples were acquired on a BD LSR II flow-cytometer (BD Biosciences) and analyzed 

using FlowJo software (TreeStar, Ashland, OR).  

Telomere length measurement by flow fluorescent in situ hybridization coupled 

to flow cytometry (flow-FISH) 

Telomere length of MACS-sorted CD4+ T cell populations defined by expression of 

CD45RA and CD27 were measured using a modified version of the flow-FISH method 

that was previously described (Henson et al., 2009; Plunkett et al., 2007). In brief, CD4+ 
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cells were surface stained using surface antibodies, washed in PBS then fixed in 1 mM 

BS3 (Perbio Science). The reaction was quenched with 50 mM Tris (pH 7.2) in PBS. 

After washing in PBS followed by hybridization buffer, cells were incubated with the 

protein nucleic acid telomeric probe (C3TA2)3 conjugated to Cy5 (Panagene).  After 

heating for 10 minutes at 82°C, samples were left to hybridize. Samples were washed in 

post-hybridization buffer followed by PBS and analyzed immediately by flow cytometry. 

All samples were run in triplicate alongside cryopreserved PBMCs with known telomere 

fluorescence to ensure consistency of results. Kilobase length was determined from 

mean fluorescence intensity values using a standard curve. The standard curve was 

constructed using samples of varying telomere length analyzed both by flow-FISH and 

telomeric restriction fragment analysis (Plunkett et al., 2007). 

Measurement of telomerase activity 

Telomerase activity was determined using a modified version of the telomeric repeat 

amplification protocol (Oncor, Gaithersburg, MD) by Holt et al (Holt et al, 1996). In brief, 

purified subsets were activated with anti-CD3 (0.5μg/ml) and irradiated APCs for 4 days. 

Cell extracts from equivalent numbers of Ki67+ cells were used for telomeric elongation, 

using a [γ-32P] ATP-end-labelled telomerase substrate (TS) primer. These samples 

were then amplified by PCR amplification, using 25 to 28 cycles of 30 s at 94°C and 30 

s at 59°C. The PCR products were run on a 12% polyacrylamide (Sigma-Aldrich) gel 

that was then exposed to an autoradiography film (Hyperfilm MP, Amersham). 

Telomerase activity was calculated as a ratio between the optical density of the 

telomeric repeat bands and of the internal standard band (IS). As a negative control 

lysis buffer was used in place of cell extract. A control template containing the same 

sequence as the TS primer plus 8 telomeric repeats was used as a PCR positive 

control. 

RT-PCR analysis of Bcl-2 mRNA 

Expression of Bcl-2 mRNA was analyzed by semiquantitative reverse transcription 

(RT)-PCR amplification. CD4+ cells were cultured with anti-CD3 (0.5μg/ml) and rhIL-2 (5 

ng/ml) in the presence or absence of BIRB796 for 3 days. Total RNA was isolated using 
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RNeasy kit (Qiagen), and cDNA was synthesized. Bcl-2 expression was evaluated by 

RT-PCR on an ABI PRISM 7500 (Applied Biosystems) with the following primers: 

forward 5'-TTGCTTTACGTGGCCTGTTTC-3'; reverse 5'-

GAAGACCCTGAAGGACAGCCAT-3'. The housekeeping 18S mRNA, used as an 

external standard, was amplified from the same cDNA reaction mixture using specific 

primers. The level of Bcl-2 was expressed as a ratio to the level of 18S to control for 

differing levels of cDNA in each sample.  

Western blot analysis 

CD4+ T cells were activated with PMA (0.5 μg/ml, Sigma-Aldrich) and ionomycin (0.5 

μg/ml, Sigma-Aldrich) in the presence or absence of BIRB796. Cells were harvested 

after 30 minutes of stimulation and lysates were obtained by sonicating cells in 50 mM 

Tris-HCl (pH 7.5), 2 mM EGTA, 0.1% Triton X-100 buffer. Lysates from 2 x106 cells 

were fractionated on SDS-polyacrylamide electrophoresis gels and analyzed by 

immunoblotting with either anti-phospho-p38 (pThr180/pTyr182, Cell Signaling), anti-

pJNK (pThr183/pTyr185, BD Biosciences) or anti-β-actin (Abcam) using the ECL 

Advanced Western Blotting Detection kit (Amersham Biosciences), according to the 

protocol provided by the manufacturer. 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 4.00 (GraphPad 

Software, San Diego, CA). Data are presented as mean plus or minus standard error of 

mean (SEM). P less than 0.05 was considered significant. 
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Figure 1. CD4+ revertants express high levels of KLRG-1 and -H2AX following 

activation and are defective for telomerase activity . (A) Phenotypic analysis of 

CD27/CD45RA expression on CD4+ T cells. PBMCs stained for CD4, CD27 and 

CD45RA were analysed by flow cytometry. Representative pseudo-color plots are 

shown. (B) Bar graph shows the cumulative data for the percentage of KLRG-1 

expressed on CD4+ CD27/CD45RA T cell subsets. Error bars represent the SE from the 

mean of sixteen donors. Statistical analysis was performed using the two-tailed 

Student’s t test (GraphPad Prism). (C) Purified CD27/CD45RA CD4+ T cell subsets 

were activated with anti-CD3 and rhIL-2. On day 4, expression of the DNA damage 

marker -H2AX was assessed by flow cytometry. The analysis has been performed on 

non-proliferating lymphocytes (gate A). Bar graph shows the percentage of -H2AX 

positive cells within each subset. Error bars represent the SE from the mean of three 

separate experiments. Statistical analysis was performed using the two-tailed Student’s 

t test (GraphPad Prism). Pseudo-color plots from a representative experiment out of 

three are shown. (D) Telomerase activity was determined by telomeric repeat 

amplification protocol assay. Purified subsets were activated with anti-CD3 and 

irradiated APCs for 4 days. Graph represents telomerase activity normalized for the 

activity observed in the Naive subset. Error bars represent the SE from the mean of five 

separate experiments. Statistical analysis was performed using the two-tailed Student’s 

t test (GraphPad Prism). Autoradiography of a TRAP assay acrylamide gel from a 

representative experiment is shown. Control template consists of PCR mix and 

telomeric template with no cell extract added. As a negative control, lysis buffer was 

used instead of cell extract.  

Figure 2. CD4+ revertants do not have the shortest telomeres (A) Representative 

confocal microscopy image showing CD4+ cells (red) hybridized with a quantitative 

fluorescent PNA telomere probe (blue), the intensity of which is proportional to telomere 

length. (B) Telomere length was determined by Flow-FISH. Each circle represents one 

individual with the mean telomere length shown as a horizontal bar. Statistical analysis 

was performed using the two-tailed Student’s t test (GraphPad Prism). 

Figure 3. CD4+ 27-RA+ express higher levels of total and phosphorylated p38 ex 
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vivo. The median fluorescence intensity of total p38 (A) and of phosphorylated p38 (B) 

was assessed ex vivo in PBMCs by gating within total CD4+ T cells and within each of 

the CD27/CD45RA subsets. Overlays of total p38 (A) and of phospho-p38 (B) within the 

respective subsets are shown. The values represent the median fluorescent intensity of 

p38 within each subset. Bar graphs represent the ex vivo mean fluorescence intensity of 

total p38 (A) and phospho-p38 (B) normalized for the levels of expression in the naive 

population. Error bars represent the SE (A n=7, B n=10). Statistical analysis was 

performed using the two-tailed Student’s t test (GraphPad Prism).  

Figure 4. p38 inhibition improves cell survival and increases telomerase activity 

on CD4+ revertants. (A) Western blot showing the effects of the p38 inhibitor BIRB796 

on p38 and JNK phosphorylation. β-actin was used as a loading control. (B) Effects of 

BIRB796 on cell recovery. On day 4, the cell number was determined on a 

hemocytometer. Bar graph represents the number of cells recovered normalized for the 

initial number of cells placed in culture. Error bars represent the SE (n=3). (C) Bar graph 

shows the percentage of apoptotic cells (Annexin V+ PI-) within each subset in the 

presence or absence of BIRB796 treatment. Purified CD27/CD45RA CD4+ T cell 

subsets were activated with anti-CD3 and IL-2, with (white bars) or without (grey bars) 

BIRB796. On day 4, apoptosis was assessed by Annexin V staining and PI 

incorporation. Error bars represent the SE (n=3). (D) Bar graph shows the percentage of 

Ki67+ proliferating cells in presence and absence of BIRB796. Purified CD45RA/CD27 

CD4+ T cell subsets were activated with anti-CD3 and rhIL-2, with (white bars) or 

without (grey bars) BIRB796. On day 4, proliferation was assessed by Ki67 staining. 

Results from 5 experiments are shown. (E) Autoradiography of a TRAP assay 

acrylamide gel from a representative experiment is shown. Telomerase activity was 

determined by telomeric repeat amplification protocol assay. Purified subsets were 

activated with anti-CD3 and irradiated APCs for 4 days in absence and presence of 

BIRB796. Bar graph shows the fold change of telomerase activity following treatment 

with BIRB796. As a negative control, lysis buffer was used instead of cell extract. 

Results have been normalized for the telomerase activity of each population in the 

absence of inhibitor. Error bars represent the SE (n=4). Statistical analysis was 

performed using the two-tailed Student’s t test (GraphPad Prism).
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Supplementary data. (A) Purified CD27/CD45RA CD4+ T cell subsets were activated 

with anti-CD3 and rhIL-2. On day 4, expression of the DNA damage marker -H2AX was 

assessed by flow cytometry. The analysis has been performed on non-proliferating 

lymphocytes (gate A). (B) Purified CD27/CD45RA CD4+ T cell subsets were activated 

with anti-CD3 and rhIL-2, with (lower panel) or without (upper panel) BIRB796. On day 

4, apoptosis was assessed by Annexin V staining and PI incorporation. Representative 

pseudocolour plots are shown. (C) Bcl-2 expression was assessed at the protein level 

by flow-cytometry. Total CD4 were stimulated for four days with anti-CD3 and IL2 with 

and without BIRB796. A representative plot from three donors is shown. (D) Bar graph 

shows Bcl-2 mRNA levels measured in total CD4 stimulated for three days with anti-

CD3 and rhIL2 in the presence or absence of BIRB796 treatment. The mRNA levels 

have been measured by Real Time PCR. The results from three different experiments 

are represented in the graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CD45RA Re-Expressing CD4
+
 Memory T Cells Exhibit p38 MAP kinase Regulated Telomere Independent Senescence 

25 
 

Supplementary Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


