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Resumo 
 

 

A análise de obras de arte com recurso a técnicas analíticas tem demonstrado ser de 

elevada utilidade na determinação dos materiais e técnicas de trabalho usados pelos 

artistas, auxiliando em questões tais como autenticidade e escolha do tratamento de 

conservação ou restauro mais adequado. 

Em Portugal, o principal responsável pelo estudo, conservação e restauro de obras de 

arte (de natureza pública e privada) é o Laboratório de Conservação e Restauro José de 

Figueiredo (LCRJF), Instituto dos Museus. Durante a última década foi requisitada a este 

laboratório a avaliação da autenticidade de várias pinturas atribuídas ao pintor Português do 

séc. XIX, Henrique Pousão (1859-1884). Tido como um dos mais importantes pintores do 

Naturalismo em Portugal, o seu estilo único e original levou a que, por vezes, fosse 

considerado pintor do Impressionismo. 

Infelizmente, o número de referências bibliográficas dedicadas a este importante pintor é 

escarço e sobre os materiais e técnica por ele usados apenas se dispõe dos dados de um 

estudo, não publicado, conduzido no LCRJF em 1984. 

Para colmatar esta lacuna, a presente investigação tem como um dos principais 

objectivos identificar os pigmentos e corantes usados por Pousão em diferentes períodos da 

sua carreira, ou seja estabelecer a sua paleta. Em simultâneo, pretende-se caracterizar a 

técnica usada pelo pintor e avaliar o estado de conservação das pinturas. 

 

Com a ajuda de especialistas em História de Arte, foram seleccionadas para objecto 

desta investigação, 23 pinturas a óleo de Henrique Pousão, pertencentes ao Museu 

Nacional Soares dos Reis, Porto, cobrindo quatro períodos cronológicos (Inicial, Francês, 

Italiano e Final) e dois tipos de suporte (tela e madeira) 

No estudo de 1984, recorrendo a testes microquímicos, foi possível concluir que as 

amostras das pinturas de Pousão são muito complexas, com uma estrutura em 

multicamadas, cada uma composta por um elevado número de pigmentos. A complexidade 
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das amostras tornou óbvia a necessidade de uma abordagem envolvendo várias técnicas 

analíticas. Além disso, dada a reduzida dimensão das amostras e, uma vez que se pretende 

analisar individualmente cada uma das camadas, as técnicas a utilizar devem ser 

microscópicas e envolver recolha de amostras.  

Como os processos de análise são processos interactivos, ou seja novos resultados 

podem confirmar ou contrariar resultados antigos levantando novas questões, foi decidido 

iniciar esta investigação, usando duas técnicas analíticas principais e, sempre que 

necessário, recorrer a outras técnicas especificamente direccionadas para a solução das 

questões não resolvidas pelas primeiras. 

De entre as várias técnicas disponíveis no LCRJF que podiam ser usadas para a análise 

deste tipo de amostras foi seleccionada, como uma das técnicas principais a usar, a 

microscopia de infravermelho (µ-IR). 

A espectroscopia de infravermelho tem sido extensivamente utilizada há cerca de 50 

anos para analisar compostos orgânicos e inorgânicos presentes em objectos de arte 

devido, entre outros atributos, à sua especificidade. Dadas as reduzidas dimensões das 

amostras de obras de arte, o desenvolvimento do microscópio de infravermelho e dos 

espectrómetros com transformada de Fourier, tornaram aquela técnica ainda mais adequada 

para este fim que, por isso, dispõe uma ampla base de dados.  

Outra técnica de espectroscopia vibracional, relativamente recente e que tem gerado 

grande interesse devido a atributos tais como elevadas resolução espacial (ca. 1 µm) e 

espectral (ca. 1 cm-1), excelente sensibilidade, especificidade e reprodutibilidade, relativo 

baixo custo, curto tempo de aquisição de dados e, principalmente por poder ser utilizada não 

destrutivamente é a espectroscopia de Raman, em particular a microscopia de Raman (µ-R). 

 Apesar de esta técnica ter sido considerada como uma das mais eficazes para a 

identificação de pigmentos, à data do início desta investigação e ainda presentemente, 

poucos foram os estudos realizados em pinturas de cavalete e, ainda em menor número os 

que consistiam na análise de estratigrafias daquele tipo de pinturas.  

 Uma vez que µ-R é a técnica vibracional complementar de µ-IR e que os resultados 

obtidos em alguns testes preliminares foram muito encorajadores, µ-R foi seleccionada 

como a segunda técnica principal a usar neste estudo, também com o propósito de 

averiguar se será vantajoso para o LCRJF adquirir um equipamento deste tipo. 

Com o objectivo de responder às questões levantadas pelas técnicas principais (µ-IR e 

µ-R) foram seleccionadas três técnicas auxiliares, nomeadamente microscopia electrónica 

de varrimento com análise dispersiva de raios-X (SEM/EDS), micro-difracção de raios-X (µ-

XRD) e microscopia de fluorescência (FM) com base no tipo de questões levantadas, 

acessibilidade e custo. 
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Para além destas técnicas, e como é usual nestes casos, a microscopia óptica (OM) foi 

também usada para determinar a estratigrafia de todas as amostras. 

 

A complexidade das amostras, não só constitui um desafio para qualquer técnica 

analítica como permite testar a sua eficácia na identificação de pigmentos em amostras 

estratigráficas de pinturas a óleo. 

Deste modo e porque, em particular µ-R ainda não foi suficientemente testada para a 

análise deste tipo de amostras, o segundo objectivo deste estudo consiste em avaliar a sua 

eficácia e compará-la com a de µ-IR para o mesmo fim. 

 

 153 amostras foram removidas das margens e lacunas das pinturas em estudo e 

preparadas como estratigrafias (µ-R) e como estratigrafias de camada fina (µ-IR). Mais de 

800 espectros de µ-IR e 2000 espectros de µ-R foram adquiridos e interpretados. 

Ambas as técnicas foram bem sucedidas na identificação dos compostos presentes nas 

amostras. µ-IR demonstrou ser mais eficaz na identificação de cargas e compostos 

associados, como por exemplo, caulino, gesso, quartzo, do que na identificação de 

pigmentos. Dos 18 compostos identificados por µ-IR apenas 11 são pigmentos. 

Contrariamente a µ-IR, µ-R demonstrou ser mais eficaz na identificação de pigmentos do 

que na identificação de cargas e compostos associados. Dos 41 compostos identificados por 

µ-R, 25 são pigmentos. 

As vantagens e desvantagens das técnicas analíticas µ-IR, µ-R, SEM/EDS, µ-XRD e FM, 

no que respeita a preparação de amostras, tempo de análise, resolução espacial, 

interpretação de resultados e serem ou não destrutivas foram também detalhadamente 

analisadas. 

 

Combinando os resultados obtidos por todas as técnicas analíticas foi possível 

estabelecer a paleta de Pousão como sendo constituída por 26 pigmentos e nenhum 

corante. Alguns dos pigmentos são pigmentos tradicionais, tais como óxido de ferro, 

oxihidróxido de ferro, celadonite, malaquite, amarelo de chumbo e antimónio, negro de 

osso/marfim, negro de carbono, realgar/pararealgar, vermelhão/cinábrio, laca de cochinilha, 

laca de garança, branco de chumbo e azul da Prússia, enquanto outros são pimentos do 

séc. XIX, tais como azul de cobalto, azul de cerúleo, ultramarino francês, amarelo de crómio, 

laranja de crómio, amarelo de estrôncio, amarelo de zinco, amarelo de cádmio, viridian, 

verde esmeralda, verde de Scheele, verde de crómio e branco de zinco. 

Quanto à técnica usada pelo pintor, em geral, as pinturas são caracterizadas pela 

presença de uma camada de preparação de branco de chumbo, sobre a qual foram 
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aplicadas 1 até 10 camadas pictóricas. As camadas pictóricas, além de variarem 

significativamente em espessura (4 - 358 µm), em geral são constituídas por uma mistura 

complexa de pigmentos e foram aplicadas após secagem da camada de preparação ou da 

camada pictórica anteriormente aplicada. 

Foi ainda observado que as pinturas se encontram em bom estado de conservação, uma 

vez que não existem rupturas, destacamentos, protuberâncias/saliências, ou algum sinal de 

descoloração dos pigmentos ou de decomposição. 

Em relação ao segundo objectivo deste estudo, µ-R provou ser a técnica mais indicada 

para a identificação de pigmentos em amostras microscópicas, complexas de multicamadas 

devido aos atributos já referidos para esta técnica. Apesar disso, uma vez que cada técnica 

tem as suas próprias vantagens e desvantagens e provou ser útil em diferentes fases deste 

estudo, apenas uma abordagem envolvendo complementarmente várias técnicas permitiu 

obter o máximo de informação sobre as complexas misturas elaboradas por Henrique 

Pousão. 

 

Palavras-chave: Henrique Pousão, pigmentos, Microscopia de Infravermelho, Microscopia 

de Raman. 
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Abstract 
 

 

Twenty-three paintings by the Portuguese painter Henrique Pousão (1859-1884) were 

analysed by Infrared and Raman microscopy (µ-IR and µ-R) in order to establish the 

painter’s palette and technique, as well as assess the paintings’ conservation state. A total of 

153 samples were removed from the paintings and prepared as thin sections and cross 

sections for analysis. 

The analysis of Pousão’s samples, composed by several layers of a complex mixture of 

compounds, was not always straightforward. Therefore, besides optical microscopy (OM), 

always used for the analysis of this type of samples, three auxiliary techniques, namely, 

scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM/EDS), micro 

X-ray diffraction (µ-XRD) and fluorescence microscopy (FM) were used to confirm results 

which were uncertain and to identify compounds which were not identified by the µ-IR and µ-

R techniques. 

The high complexity of the samples under analysis constituted a case study that surveyed 

the advantages and limitations of these five techniques for pigment identification. 

It was concluded that the paintings are in good state of conservation and that Pousão’s 

palette is composed by 26 pigments, namely ironIII oxide, ironIII oxyhydroxide, celadonite, 

malachite, lead antimonate yellow, bone/ivory black, carbon-based black, 

realgar/pararealgar, vermilion, cochineal and madder lakes, lead white and Prussian blue, 

cobalt blue, cerulean blue, ultramarine blue, chrome yellow, chrome orange, strontium 

yellow, zinc yellow, cadmium yellow, viridian, emerald green, Scheele’s green, chrome green 

and zinc white. 

Regarding Pousão’s technique, in general it consists in a lead white ground layer, over 

which 1 up to 10 paint layers, ranging from 4 - 358 µm and constituted by a complex mixture 

of pigments, were applied after the ground layer or previous paint layers had dried. 
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µ-R proved to be the most efficient technique to identify most individual pigment particles 

on minute, complex, multi-layered samples, when used on its own. However, only the use of 

a multi-technique approach allowed for the maximum information to be obtained.  

 

Keywords: Henrique Pousão, pigments, Infrared microscopy, Raman microscopy. 
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Introduction 
 

The scientific analysis is a window through 

which we gain an appreciation of the 

structure of a painting just as paintings 

themselves are windows through which we 

may view ourselves and the world. 

 

 

W.S. Taft and J.W. Mayer 
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Background to the research 

Our historic and cultural heritage is extremely valuable, as it relates ours and future 

generations, to their roots and development. It makes it possible to know, for instance, how 

the pre-historic man hunted or Napoleon looked like. 

Unfortunately, due to numerous factors, such as bad quality materials, wars, natural 

catastrophes, bad storage, vandalism, misguided conservation treatments and even 

accidents, part of that legacy is in poor condition or has been irretrievably lost. Nevertheless, 

thanks to conservation science, museums and public/private institutions have been able to 

keep a large number of works of art in good condition, which, owing to natural ageing, would 

have extensively deteriorated. 

Conservation science is the term that became prevalent to describe the multidisciplinary 

use of analytical techniques, material science and environmental science, among others, in 

the study of artworks and archaeological objects, even if the study has not as its main 

purpose the conservation of the object (1,2). In last decades conservation science has 

expanded enormously, as evidences that it provides a better understanding of how these 

works/objects were created, how they changed, and how should be preserved are made 

available (3-5). 

By employing a wide range of analytical techniques, it has been possible to: i) achieve a 

better knowledge of technical developments at different regions and times, ii) achieve a 

better understanding of past societies and cultural development, iii) distinguish between 

different schools and periods, iv) determine causes of degradation and vulnerability to 

storage or exhibition conditions, v) choose the appropriate conservation or restoration 

procedures, avoiding incompatible materials, vi) study degradation phenomena and vii) 

establish authorship – authentication. 

Authentication, in particular, is a very complex and controversial process (6-8). Based on a 

scientific approach, a database with the materials and techniques of works with attested 

origin can be used for comparison. Incompatibilities between materials and techniques 

identified in suspected artworks and those known to have been used by the artists, or the 

presence of post materials, can indicate a non-original work, a forgery or a fake1, but 

restoration and retouching works must also be taken in consideration (9,10). 

Thanks to technologic and scientific developments, nowadays a large number of analytical 

techniques are available that can be applied to examination, characterization and analysis of 

artworks. 

                                                
1 According to Craddock P. (6) a forgery is a new object that is entirely the imitation of something else, while a fake 
is an object that has been altered so as to appear something else (generally more valuable). 
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Some of the most used techniques are: autoradiography, dendochronology, differential 

thermal analysis (DTA), electron probe microanalysis (EPMA), fiber optic reflectance 

spectroscopy (FORS), gas-chromatography with mass spectrometry (GC/MS), high-

performance liquid chromatography (HPLC) and high performance liquid chromatography 

with mass spectrometry (HPLC/MS), imaging secondary ion mass spectrometry (SIMS), 

infrared spectroscopy (IR) and infrared microscopy (µ-IR), infrared reflectography (IRR), 

laser-Induced breakdown spectroscopy (LIBS), Mössbauer spectroscopy, nuclear magnetic 

resonance (NMR), neutron activation analysis (NAA), optical microscopy (OM), particle-

induced X-ray emission (PIXE), polarized light microscopy (PLM), Raman spectroscopy (RS) 

and Raman microscopy (µ-R), radiocarbon dating, scanning electron microscopy with 

energy-dispersive X-ray spectrometry (SEM/EDS), thermal gravimetry (TG), 

thermoluminescence, thomography, ultraviolet reflected photography (UVR), X-radiography 

(XRR), X-ray absorption near edge structure (XANES), X-ray diffraction (XRD) and micro X-

ray diffraction (µ-XRD), X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy 

(XPS) (3,9,11-19). 

In addition, a large number of analytical techniques used in this field are those used at the 

cutting edge of modern materials science, such as those that employ synchrotron radiation. 

Of course, each technique has its own strengths, suitability, limitations and costs, thus, 

the selection of the most appropriate analytical method (both sample preparation and 

technique) to be used is an important task. It is well known that, for most cases, no single 

technique will provide all the necessary answers, therefore a multi-technique approach must 

be employed for a complete and trustworthy analysis (3,9). 

 

In Portugal, the Laboratório de Conservação e Restauro José de Figueiredo (LCRJF) has 

been one of the major institutions active in the study, conservation and preservation of 

artworks, both of public and private ownership2. This laboratory has a strong know-how in 

analysis of materials and conservation interventions, due to the strong effort which has been 

made in the last decade to implement new methodologies and techniques. When this study 

set out (2003), LCRJF was equipped with a MuSIS 2007 multi-spectral imaging system 

(which includes a plurality of imaging modes, reflectance, fluorescence, with different 

spectral bands ranging from UV to NIR), XRF, µ-IR, HPLC/MS, and OM3. Recently, GC/MS 

and µ-XRD were also implemented. Additionally and, whenever necessary, other techniques, 

                                                
2 This public institution was created in 1967 under the name Instituto José de Figueiredo and was re-named 
Instituto Português de Conservação e Restauro from 1999 to 2006. 
3 LCRJF has currently three microscopes, one specific for minerals, another one for metals and a third for 
biological materials. 
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such as SEM/EDS and XPS have also been used, thanks to a close collaboration with 

university and research institutions. 

During the last decade LCRJF has been requested to evaluate the authenticity of several 

paintings attributed to the Portuguese 19th century painter Henrique Pousão. However, due 

to the scarcity of studies devoted to this painter, as well as to the lack of information 

regarding materials and technique employed by the artist, except for a brief study conducted 

at LCRJF in 18844, this task became a challenge. In order to respond to it properly, the 

construction of a database of materials (especially the palette) and technique used by the 

painter was mandatory. 

 

Henrique Pousão 

Henrique Pousão (1859-1884) is one of the most important Portuguese Naturalist 

painters. 

Possessing an extended academic background, filled with excellent grades and numerous 

prizes, it is the originality of his work, with luminous colours and a festive view of nature, 

especially during the last period of his life, which made him renowned. Despite his short life, 

Pousão produced a significant number of paintings and drawings, representing, among 

others, façades, streets and country landscapes (20) (see Appendix B). 

The study of a few of Pousão’s paintings undertaken at LCRJF in 1984 consisted in 

stratigraphic determination by OM, pigment identification by microchemical analysis, binder 

identification by dispersive infrared and identification of the support by OM5. 

Optical microscopy and microchemical analysis showed that Pousão’s paintings are 

constituted by very complex mixtures of both traditional and new synthetic pigments brought 

about by the industrial revolution. However, a large number of pigments might not have been 

identified. On the one hand, new synthesized pigments are characterized by the presence of 

grains of reduced dimensions (0.1-0.5 µm), which are poorly resolved by optical microscopes 

(21); on the other hand, the microchemical analysis is based on chemical reactions with 

metals or ions and in complex mixtures, different pigments may contain the same metals or 

ions in their composition, thus hampering the identification of some of the pigments. 

 

Research aims and methodology 

The first main objective of this study is to identity the pigments and dyes used by Pousão 

at different stages of his career, i.e. to establish his palette. This contributes to the 

                                                
4 This study was undertaken when some of the paintings belonging to the collection of Museu Nacional Soares 
dos Reis, Porto, were transferred to this laboratory to undergo a conservation intervention. 
5 This study was not published, but a summary of the results of pigment identification is presented in Appendix A. 
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understanding of both materials and technique used by the artist, by constructing a database 

for future reference purposes, such as authentication and, at the same time, helps to assess 

the state of conservation of the paintings. 

 

Due to the complex nature of the samples of Pousão’s paintings, which are composed by 

several layers, each layer in turn composed by a large number of pigments (as shown by the 

1984 study), the need for a multi-technique analysis became immediately evident. In 

addition, in order to analyse each layer of the intricate multi-layered structure of Pousão’s 

paintings, some of the analytical techniques to be employed should be invasive (involving 

sample collection) and microscopic, as the painting samples are of reduced size. Since the 

analytical process is interactive, because new results, either confirm or reject previous ones 

and new questions can arise, it was decided to start this study using two main analytical 

techniques, and to employ other analytical techniques, whenever necessary, geared to the 

specific questions to be answered. 

A wide range of techniques has been used for pigment and dye analysis, some of the 

most common being: HPLC (22,23), IR and µ-IR (24-26), LIBS (27,28), PIXE (29-31), PLM (27,32), µ-R 
(10,33,34), SEM/EDS (35), SIMS (36-38), XPS (39-41), XRD (42,43) and XRF (44-46). 

Among others, IR has been a well-established technique for about 50 years and one of 

the most widely applied to pigment identification and to the characterization of artworks’ 

materials (26,47,48). With the development of infrared microscopes, infrared microscopy (µ-IR) 

became much more suitable for the analysis of artworks’ samples which are, in general, of 

reduced size. µ-IR offers several advantages, such as high specificity for both inorganic and 

organic compounds, good spatial resolution and the existence of comprehensive spectra 

databases of pigments and other materials used in artworks. 

Due to its advantages and to the fact that it was available in-house (LCRJF), µ-IR was 

chosen as one of the two main analytical techniques for this study. 

On account of its high spatial and spectral resolution, excellent sensitivity and molecular 

specificity and, most importantly, because it can be applied to samples non-destructively6 

and to objects non-invasively and in situ (34), Raman microscopy (µ-R), among all the 

techniques used for pigment identification, has been the object of special interest. In fact, this 

technique has been considered to be the best single technique, among a large number of 

other techniques, for pigment identification (32,49,50). However, until the publication of the first 

results which came out of this research (51), relatively few studies had been published on the 

analysis of wood panel and canvas paintings by µ-R (34,52) and fewer on the analysis of cross-

                                                
6 Generally, the µ-R analysis does not produce destruction or alteration of the samples. In spite of the laser 
radiation may cause sample degradation, in general, there are ways to avoid it. 
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sectioned samples of this type of paintings (53,54). In fact, even today, the number of 

publications on these topics is relatively small (55-58).Therefore, no conclusions about the 

suitability of this acclaimed technique (not available in-house) for the analysis of Pousão’s 

paintings could be drawn. 

Since µ-R is non-destructive and, furthermore, complements µ-IR, it was decided to test 

its advantages for pigment identification on the samples under study, especially in order to 

evaluate the possibility of purchasing µ-R equipment by LCRJF. As the first results turned out 

to be very encouraging, µ-R was chosen, in conjunction with µ-IR, as the main techniques for 

this study. 

Although very helpful and used to examine all samples, OM was not considered a main 

technique in this study, since it was only employed to examine the stratigraphy of the 

samples and not to identify the pigments. 

In order to address questions raised during the µ-IR and µ-R analysis, three auxiliary 

techniques, namely SEM/EDS, µ-XRD and FM were chosen, based on their suitability to the 

questions to be answered, accessibility and cost. 

 

The complex nature of the samples under analysis constitutes a challenge to any 

analytical technique. Their study makes it possible to test the efficiency of different analytical 

techniques for pigment identification in oil painting’s stratigraphic samples, especially of µ-R, 

which has not been significantly tested, as well as to compare their efficiencies for this 

purpose. 

Therefore, the second main objective of this study is to evaluate how efficient µ-R is for 

pigment identification in oil paintings' cross sections and how it compares with µ-IR efficiency 

for the analysis of such samples. 

 

This research is focused on the examination and analysis of 23 paintings by Pousão 

(Appendix B), painted between 1880 and 1884. The paintings are owned by the Museu 

Nacional de Soares dos Reis, Porto, and their authenticity is not questioned. 

 

 

Thesis outline 

This thesis is structured in 9 chapters plus 7 appendices. Chapter 1 presents a short 

biography of Henrique Pousão and major information regarding his work. Chapter 2 provides 

a brief introduction to the structure and composition of easel paintings and also a survey of 

some of the most frequently employed analytical techniques for its analysis. This chapter 

targets especially those outside the field of art, providing an insight into the making of 
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paintings and their analysis. Chapter 3 reproduces the paintings under study and describes 

the sampling procedures. 

Chapter 4 provides a brief introduction to OM and presents the major results of the 

analysis of the cross-sectioned samples obtained by this technique. Chapters 5 and 6 are 

devoted to µ-IR and µ-R, the core of the analytical techniques of this project. Chapter 5 

provides a brief introduction to these two vibrational techniques, which share the same 

theoretical background. Chapter 6 presents the results of the analysis of the paintings’ 

samples by µ-IR and µ-R. The results and discussion are presented separately for each 

technique, µ-IR followed by µ-R, in order to analyse the major advantages and limitations of 

each one for the identification of the samples’ components. At the end, a comparison of the 

efficiency of µ-IR and µ-R for the referred purpose is outlined. Chapter 7 presents the results 

of the analysis of some of the paintings’ samples obtained by the auxiliary analytical 

techniques: SEM/EDS, µ-RXD and FM, employed to answer some questions raised during 

the µ-IR and µ-R analysis. In this chapter, a discussion of the main advantages and 

limitations of the auxiliary techniques for the analysis of the samples under study, as well as 

a comparison of these results with those previously obtained by the microchemical tests are 

also outlined. 

Chapters 8 and 9 report the most important findings on Pousão’s palette and technique. In 

chapter 8, targeting basically those outside the analytical field, an overall discussion of the 

analytical results presented in the previous chapters is undertaken. Additionally, a 

comparison of the final results with art history information about easel paintings and 

information culled from studies on other painters is sketched out. Finally, chapter 9 

summarizes the main conclusions of the current work, either concerning the samples, or the 

employed analytical techniques. The thesis concludes by lining up some suggestions and 

guidelines for future work. 
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1 On Henrique Pousão 
 

A sua obra […] podendo sugerir muita 

‘literatura’, em boa verdade, não aceita 

nenhuma. Existe por si, vive por si, fala por si.7 

 

 

M. Figueiredo 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents a brief summary of the most relevant aspects of 

life and work of Henrique Pousão. 

 

 

 

                                                
7 His work […] suggesting a large number of ‘literature’, truly does not accept any one. Exists by itself, lives by 
itself, speaks by itself. 
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1.1 His life 

Henrique César de Araújo Pousão (Figure 1.1) was born on 1 January 1859 in Vila 

Viçosa, Portugal, son of Francisco Augusto Nunes Pousão and Maria Teresa Alves de 

Araújo, who died victim of tuberculosis when Pousão was only three years old. 

 

 

Figure 1.1 Pousão, auto-portrait. 1879. Oil on canvas, 78.5 x 51.7 cm (MNSR Invº 89). Photo: 

Museu Nacional Soares dos Reis, Porto 

 

He was eight years old, when, drawing an oil lamp globe, he revealed his skills, which his 

father encouraged, inscribing Pousão in a local classroom. 

In 1872 he moved to Porto (to the house of a father’s friend, Engº Evaristo Nunes Pinto) 

to frequent the atelier of António José da Costa (1840-1929), in order to prepare himself for 

the admission to the Academia Portuense de Belas-Artes, where he gets matriculated, in that 

same year, on a general course. Pousão proved to be a brilliant student, wining several 

prizes and honours and in completing the course in 1879. 

In 1880 he wins the competition for a shoralship to study abroad in the landscape class (a 

speciality where he had no information neither experience) and moved to Paris. Arriving 

there, at the end of that year, he frequented the atelier of Alexander Cabanel (1823-1889) 

and worked intensely preparing himself for the examinations to enter to the École des Beaux-

Arts (February of 1881), where he was admitted in 35th position out of the 70 entrants from 

234 participants. At the École he frequented the atelier of Adolphe Yvon (1817-1893). 
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Supposedly, it was during one friezing morning that he went out to work that he got sick 
(59) being diagnosed with bronchitis. Therapeutically advised, he went to the watering-place 

La Bourbole-les-Bains, in Puy-de-Dôme, where he spent two months. However, his health 

did not improved and following a further medical suggestion, he moved to Rome that 

presents a more worm winter than Paris, at the end of 1881.  

Although constantly moving between Rome, Naples, Pompeii, Capri and Anacapri, 

Pousão produced a largest number of paintings, including, some of his best paintings. 

Despite every effort Pousão’s health still failed to improve and consequently, he requested 

permission to return to Portugal. Although the trip was fatiguing, he painted all the way home. 

Back in Portugal, he stayed in the house of a cousin, in Vila Viçosa that presented a more 

favourable weather than the village where his father lived in. His health kept deteriorating, to 

the extent that he spent most of his time in the bedroom, where he painted his last works, 

before dying on 25 March 1884, victim of tuberculosis (20,59-63). 

From the few references to his personality, it stands that Pousão was shy, modest, 

discrete, kind-hearted, with homely habits and devoted to work to the point of jeopardise his 

health (59,64). 

 

 

1.2 His work 

Despites is brief life, Pousão’s work is composed by a considerable number or easel 

painting, covering a variety of subjects, from female nudes to elderly women, from bouquets 

of flowers to flowing country landscapes, and a large number of facades, streets and stairs 

(see, Appendix B) (20). 

Pousão is now fully accepted as one exponent of Naturalism together with Columbano 

(1857-1929) and Malhoa (65), although the very particular expression found in his paintings 

had generated an open controversy between “impressionist Pousão” defended by Abel 

Salazar and Brás-Burity and “Mediterranean Pousão” defended by Diogo de Macedo (20,66). 

Naturalism is an important movement of the 19th century that represents the transition 

from Romanticism to Impressionism. Its main characteristic is the use of the natural world as 

a direct source of artistic inspiration, not meaning a simple copy (62). Landscapes, urban and 

rural scenes, habits, customs and portraits were some of the images captured by painters. 

Although some precursors can be referred, Naturalism arrived in Portugal in 1879 with Silva 

Porto (1850-1893) and Marques de Oliveira (1853-1927), the first scholars in Paris. The 

second generation of naturalism painters includes Artur Loureiro, Sousa Pinto and Henrique 

Pousão (62). 
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Unfortunately, if there is few art-historical literature devoted to Pousão, there is even less 

devoted to the materials he used in is paintings. His letters revealed nothing about the 

materials and technique (63) and, besides a report that part of his brushes and paints were left 

in Italy, where he was hoping to return after recovering is health (59), there is no other 

information source8. 

Often it is difficult to trace the history of a painting and even of its authenticity, as it passes 

from one collection to another over the years and even over the centuries. In fact, it is not 

uncommon to hear that a forgotten work by Picasso or Rembrandt was discovered, which 

sometimes is true, others not (11). In the case of Henrique Pousão, however, the scenario is 

different, since most of his work has a known history. Some of the paintings were sent by 

Pousão to the Academia Portuense de Belas-Artes as proof of his improvement (academic 

test-pieces for schorlarship) and others were bequeathed to the same academy by his family, 

following his father wish (20,59). The paintings were then transferred to Museu Nacional Soares 

dos Reis, in Porto, where they remain until nowadays. 

Other works can be found in private collections, such as Paço Ducal in Vila Viçosa, 

Câmara Municipal de Vila Viçosa, Museu Nacional de Arte Contemporânea, Lisboa, Casa-

Museu Anastácio Gonçalves and Escola Superior de Belas-Artes do Porto. 

 

Scientific analysis 

The only known scientific analysis of Pousão’s paintings was the study conducted at 

Laboratório de Conservação e Restauro José de Figueiredo, Lisbon, in 1984, when some of 

the paintings belonging to the collection of Museu Nacional Soares dos Reis, Porto, were 

transfered to that laboratory to undergo a conservation intervention. 

 

 

 

                                                
8 There is a personal information that the archive of the shop were Pousão probably bought his materials (in 
Porto) still exists, but unfortunately, has not been researched.  



 

 

 

 

 

 

2 Easel paintings: structure, materials 
and analysis 

 

To achieve a certain degree of 

‘interpenetration of disciplines’ some knowledge 

of each other’s ‘language’ is required. 

 

 

J. R. J. van Asperen de Boer 
 

 

 

 

 

 

 

 

 

 

A previous comprehensive understanding of the painting structure and 

technique of analysis is essential to obtain the maximum information. 

This chapter provides a brief introduction to the structure, materials and 

analysis procedures of easel paintings, as well as a survey of the most 

frequently employed analytical techniques for its analysis. 
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Paintings are a relevant part of our cultural and artistic heritage. Although nowadays 

paintings are seen as an ornamental/decorative work, a large number of them have been 

executed with a definite and different purpose. Among many others examples, the wall 

paintings of the pre-historic cultures seem not have been painted to decorate the cave walls, 

since it is thought that these cultures believed that those paintings had a special power; and 

the biblical paintings, besides other purposes, were also used by the Catholic Church to 

teach those who were analphabetic (67). 

Although visualised as a two dimension work (image), a painting is in fact a complex 

three-dimensional structure, created as the artist works up successive layers to develop 

subtle effects of tone, colour and surface structure. It may even involve a process of revision 

of the initial subject or a painting process over an unrelated image9 (12). Consequently, each 

painting is unique and a result of several factors, such as painter’s education, painter’s 

creativity and skill, painter’s choice of materials and method, availability of materials and 

influence of the environment that surrounds the artist (11). 

In the last decades the analytical studies of easel paintings has significantly increased. 

However, because easel paintings present an intricate multi-layered structure, colouring 

materials are presented in very small amounts and thoroughly mixed with many other 

compounds, their analysis represents a challenge for any analytical technique. 

 

 

2.1 Structure and materials of easel paintings 

When the paintings are not attached to an immovable object, being therefore portable, 

they are designed as easel paintings. Otherwise they are designed depending on of the type 

of support, such as for example, wall paintings, when painted on either walls from an 

architectural setting or natural cave walls, ceiling paintings when painted on ceilings10. 

Although there are several characteristics in common for all types of paintings, we will 

focuses on the structure and materials of easel paintings, since they are the ones under 

analysis in this study. 

An easel painting is generally a very complex system. However, it presents a broadly 

similar layered structure composed by four main parts: 1) support, 2) ground layer, 3) paint 

layer(s) and 4) varnish layer, which can be seen in Figure 2.1. Further layers, such as 

additional paint and varnish layers applied by the painter, other painters or restorers, or 

layers of dirt and pollution can also be found. 

                                                
9 Alteration and amendment of works according to the in style, vogue or religious constrictions were very 
common. 
10 Wall paintings and ceiling paintings are commonly designed as mural paintings. 
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2.1.1 Support 

The support, as its name indicates, is the structure over which the painting is produced. In 

the case of easel paintings, it can be a rigid material such as a wood panel, stone, metal, 

glass, ivory and plastic, or a flexible material like fabric - frequently canvas, leather or paper 

(11,12). Canvas refers to fabric supports (linen, hup, cotton) that are stretched, either in the old 

wood strainers or in the wood stretchers (68). 

In order to obtain a plain surface for the painting and ensure its preservation, the support 

is usually previously prepared applying a sealant, known as size and/or one to several 

ground layers, although exceptions are found.  

 

Size 

Because fabric support is very absorbent, it is normally impregnated with a sealant, known 

as size, whose function is to prevent the penetration of binder (and vehicles) from the ground 

and paint layers into it, as this can have a deleterious effect causing the weakening of the 

painting and shrinking the fabric to a taut, smooth membrane. Usually, size is diluted glue 

made from animal skin glue, but parchment glue, glue extracted from gloves and starch, 

were also used (11). 

 

Figure 2.1 (a) Cross section11 of a sample removed from blue of the sea, viewed under reflected light. 

5 paint layers and a white ground layer are visible; (b) cross section from a sample removed from the 

end of the canvas, viewed under reflected light. The white ground layer and the canvas support are 

visible; (c) Casas Brancas de Capri, 1882 (MNSR Invº 82). Oil on canvas, 70.5 x 141.0 cm. 

 

2.1.2 Ground layers 

Like the size, the ground layer also protects the support from the adverse effects of 

binders, blocking the absorption of the binder into the support. However, the ground layer 

has other main functions: i) to fulfil the irregularities of the support living its surface plain; ii) to 
                                                
11 See page 22. 

Ground layer

Support

Paint layers

(c)

(a)

(b)
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create an elastic base for the paint layers; iii) to assure the adherence between the paint 

layers and the support; iv) to act as a reflective surface beneath the paint film and v) 

determine the tonality of the whole painting. 

These layers were applied either by the artist himself, by a pupil, a collaborator or by an 

independent primer, but from the 15th century onwards, supports could be bought already 

grounded (11,12,68). Except for the paintings of 16th to 19th centuries, when coloured grounds 

(red, brown, yellow and green) were also used, the ground layer has generally a white 

colour, produced by gypsum or calcite with animal glue or lead white with oil.  

 

Imprimitura 

It is referred as imprimitura, a coloured isolation layer (pigments bound in oil medium), 

that covering the whole surface of the ground layer, reduces its absorbency and provides it 

with a colour (which can also be white). 

This term is used to refer to the layer applied over a calcite or gypsum ground that 

prevents the medium in the subsequent paint layers of being absorbed by the ground layer, 

or in the case of more than one layer of distinct colour, to refer to the upper layer, which is 

the one that generally determines the tone of the painting.  

The term ‘double ground’ can be used to referrer to the simultaneous presence of a 

ground layer and an imprimitura (69). 

 

Underdrawing 

To help in the paint execution, the painter might outline over the ground layer the design 

to be painted, using charcoal, black chalk, or using a pencil and an aqueous animal or 

vegetal black paint. As this drawing is covered by the paint layers, it is designated as 

underdrawing or preparatory drawing. 

 

2.1.3 Paint layers 

Paint layers are the coloured layers successively added in order to create the final image. 

Each paint layer is constituted by at least one colouring material (pigment or dye) dispersed 

into a binder, with or/without an extender, varying enormously, both in complexity and 

thickness. 

 

Pigments and dyes 

Pigments are known to have been used since prehistoric times, over 60,000 years ago, 

when natural ochre was used in the Ice Age as a colouring material. Although for a long time 

colouring materials were restricted to natural materials (minerals and plant or animal dyes), 
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synthesis of pigments started with about 2000 BC, with the burning of ochre, and from then 

to nowadays the number of the colouring materials has increased enormously (70). 

We must refer that, although the word “pigment” is usually used to denominate the 

components we perceive as colour, independently of their origin (mineral, vegetal, animal or 

synthetic) and properties, in this context and according to the accepted standards, this word 

must be used only to denominate a substance consisting of small particles that is practically 

insoluble in the applied medium (binder) and is used on account of its colouring, protective or 

magnetic properties. The colouring substances that are soluble in the solvents and binders 

must be referred to as dyes (12,70). 

Besides the “pure” pigments, which theoretically consist in a single compound, some 

pigments can consist in a mixture of compounds hence being referred to as mixed pigments. 

Mixed pigments, are pigments that have been mixed or ground with pigments or extenders in 

the dry state (70). 

The specific selection of colours/pigments by the painter is generally referred to as his 

palette, which names also the rigid and flat surface on which the painter arranges and mixes 

paints. 

 

Extender 

Extender or filler is a colourless or slightly coloured substance, in a granular or powdered 

form that is insoluble in the medium in which it is applied just like pigments. However, an 

extender is not considered a pigment because it is not used with the purpose of a colorant 

substance. Extenders are used: i) to provide or modify the properties of the overall 

composition, such as viscosity, gloss, resistance to abrasion, resistance to weather 

conditions; ii) to increase its bulk (volume), forming a cheaper grade, iii) as a support for a 

lake and iv) to form ground layers (12,70). 

 

Binder 

The binder or binding medium, as the name suggest acts as a binding medium, promoting 

the cohesion of the pigment and the extender grains in each paint layer and a good 

adherence of each paint layer to the previous layer, after solidifying. Another function of the 

binder, while still liquid, is to allow the pigment to spread out. 

It can be formed by animal glue, egg white, egg yolk, casein, linseed oil, walnut oil, poppy 

oil, plant gums, honey, starch, natural and animal resins, waxes and even a mixture of two of 

these, such as oil with resin or oil with egg (71). By far, the most common binder is oil (linseed, 

poppy seed and walnut oil, being the most typical), which has long been considered the most 

versatile, as it presents a relatively slow drying, allowing colour mixing and the creation of 
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surface textures, and once dried, it forms a very durable, flexible and water resistant film. 

Solvents and additives, such as turpentine, lavender or spike oil, varnish, marble dust, waxes 

and resins have also been added to the binder in order to achieve certain properties (11,72).  

Nowadays, a synthetic polymer, generally referred to as acrylic polymer emulsion, 

competes with the oil versatility, since the paints made with this binder, acrylic paints, have 

the ability to dry quickly producing a flexible film, and because water is used as solvent, there 

are no toxic fumes associated with the solvent and the cleanup of brushes and other 

equipment is much easier (11). 

According to the binder, the painting is referred to as, for example, oil painting (oil), 

tempera painting (egg white, egg yolk), gouache and watercolor painting (plant gums), 

encaustic painting (wax with resin) and acrylic painting (acrylic polymer emulsion) (11,12). 

 

2.1.4 Varnish layer(s) 

Finally, the painting surface can be coated with a thin layer of varnish, which serves two 

primary purposes: i) to protect the paint film from dirt, moisture, pollutants, abrasions and UV 

radiation (if a UV absorber is present) and ii) to improve the appearance of the paint in 

accordance with the desired final visual effect. Reducing the scattering of the light, the paint 

surface becomes shinier and with increased colour intensity, but adding matting agents a 

less shiny paint surface is produced12 (11,73). 

Different components have been used as varnish. The most traditional were mixtures of a 

natural resin (dammar, mastic, copal, amber) with oil, or mixtures of resins, but plant gum or 

wax were also used (71,74). Nowadays, varnishes are made of acrylic e vinyl resins that are 

easy to use. Unfortunately, varnishes can rarely be associated with a given artist since there 

is evidence that other artist or the restorer were often asked (by the purchaser) to varnish a 

painting for the first time (74) and, as it invariably discolour with time, it is often replaced by a 

new one to restore its original appearance. 

 

 

2.2 Painting analysis 

 

2.2.1 Introduction to conservation science 

Based in two complementary approaches, analysis of documental sources and analysis of 

the object itself, a large knowledge about art objects, archaeologic samples and others with 

                                                
12 Painting’s texture result of how light is reflected from the painting. A mirror like surface will reflect the light 
specularly, i.e. in the same direction and will appear shiny, while a rough surface will reflect the light diffusely, i.e. 
in a large number of directions and will appear matte. 
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significant historial value has been gained. Although analysis of documentary sources 

provides invaluable information, it is with the analysis of the object itself (and samples 

removed from it) or even related objects that a better understading is obtained. In fact, in the 

last decades, analytical techniques have been playing an increasing role on the 

conservation/restoration field. 

In the first approach an art historian makes an exhaustive review of all the documental 

sources of information that can shed light on the investigation. These include, contemporary 

written technical sources, ‘recipe books’, surviving literature on painting process and 

materials (literature provides an insight into what the artists could have known about the 

materials, had they cared to seek it out and the opportunity to choose13), archives of artist’s 

colourmen (buying notes), artist’s correspondence (as is the case of Millais), contracts, 

diaries (as is the case of Ford Madox Brown), inventories of the studio contents by them 

death, unpublished papers, exhibition catalogues, records of natural accidents, records of 

transformations either due to changes of tastes, natural accidents or intervention (74,75). 

The second approach, making use of the most diversified analytical techniques, from 

more traditional to more sophisticated ones, studies: the nature of the materials that were 

employed in the artwork or are a result of an alteration of the original materials, the 

methodology of application, possible alteration processes and most suitable intervention 

methods and materials. Besides the artwork itself, surviving materias, such as paintboxe(s) 

(as in the case of Columbano Bordalo Pinheiro) (76) or palette (as in the case of Turner) are 

also analysed. 

The overall objectives of the analysis are (12). 

1. determination of the materials and their application technique for dating, geographic 

localization, assigning to a painter, school, period, or region, and authentication; 

2. diagnostic degradations/alterations and the study of associated sources and processes 

(e.g. accidents, previous conservation interventions, pollution). Recognising degradation 

process is fundamental to understand if a particular effect that the object presents nowadays 

was sought by the artist or is the result of a degradation process; 

3. determination of the most correct preservation conditions; 

4. determination of the most suitable intervention method to avoid complications or 

damage resulting from the treatment itself. Stability, reversibility and secondary effects of the 

materials used for the treatments are evaluated.  

 

 
                                                
13 With tube paints, artists no longer controled what they were using; Altough theory treatises, manuals and 
handbooks dealing with painting process and materials discourage the use of fugitive pigments, analytical results 
often demonstrate its use (74). 
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2.2.2 Analytical analysis 

According to a published document (77), the earliest chemical analysis of paint samples 

seems to have occurred in 1781, when Johann Friedrich Gmelin, a pharmacist, identified the 

pigments of an Egyptian sarcophagus by the addition of various reagents, heat and flame. 

Although after 1800 the majority of published analysis of painting materials was performed 

by pharmacists or chemists, some of the most eminent, such as Louis Nicolas Vauquelin 

(1763-1829), Sir Humphry Davy (1778-1829), Michel Chevreul (1786-1889), Michael 

Faraday (1791-1867) and Jean-Baptiste Dumas (1800-1884), until 1880 the analysis 

consisted generally in the application of a series of reagents, reactions to heat and solubility 

tests, which required a considerable amount of sample14 (77). Nowadays, although normally 

not developed specifically for this filed, almost every technique from any branch of science 

can yield some kind of information when employed for the study of an art object. 

 

Ethic problems 

Due to the high value of most of the artworks, several ethical problems have been raised 

regarding their analytical analysis. Firstly, there is the idea that the analysis of an artwork is 

the scrutinizing of it in every physical aspect and presenting it as a sum of analytical results, 

what reduces its magic and mystery. Secondly, there is a serious concern about alteration of 

the works by the analytical method, especially, if sampling (sample removal) is necessary. 

Fortunately, the issues surrounding sampling, such as reasoning, methodology and ethic 

are formalised, from some years to now, into a code of ethics, as for example, the American 

Institute for Conservation (AIC) (78,79). According to this code, samples are only removed if 

some kind of information can only be obtained by removing and analysing samples; the 

owner/custodian was informed about the need and the impact of sampling; samples are 

retained to allow future testing, either to replicate the results, to utilize new techniques, or to 

obtain additional information; the size of the sample must be the minimum required for 

current testing purposes (78). Because samples are generally removed from edges or lacunae 

(areas of loss), and are characterized for having a microscopic size, much smaller than the 

detached flakes (detachment) often released from paintings, it has been recognized that the 

damage done by sampling is balanced with the information that their analysis can provide (78). 

In fact, sampling presents some advantages. Firstly, it is possible to conduct stratigraphic 

analysis, i.e. to analyse independently each layer that constitutes the art object, secondly, it 

is not necessary to take the art object out of the holding building, which involves extreme 

insurance values, or moving the analytical equipment from the laboratory to the holding 

                                                
14 Samples had to be washing, dissolved and filtrated. 
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building, which, in the very few possible cases, generally requires a careful calibration and 

handling, and thirdly, more than one analytical method can often be employed, providing a 

much more complete analysis. 

With the development of new techniques and analytical methodologies that are less and 

less invasive (producing less alteration), analytical analysis and consequent scientific studies 

is gradually gaining credibility and becoming commonplace. 

 

Sampling 

Sampling and sample preparation (if necessary) are integral and crucial parts of every 

analysis process, being tailored in accordance with the type of sample and the analytical 

technique to use. 

As in any other field, sampling is conducted with the expectation that it will be 

representative of the area sampled, if not of the object itself. However, as a result of several 

factors such as: i) the artist’s technique, ii) the artist’s habit of cleaning the brush on the edge 

of the painting, iii) past conservation interventions, and iv) sampling restrictions15, this does 

not always happens. To ensure representativeness of the results, sampling points should be 

carefully selected based on the results of non-invasive investigations, while a proper 

documentation of the points is also a critical factor for the correct interpretation of the 

analytical results (80). 

Care must be taken during removal, storage, preparation and analysis of sample to 

prevent contamination and loss. 

The amount of sample to be collected must, of course, be as small as possible, in order to 

avoid any visible damage to the artwork. This generally does not constitutes a problem for a 

large number of analytical techniques, such PLM, µ-R and µ-XRD, since a sample of ca. 0.1-

0.5 mm3, or 1 µg (dimensions of a typical layered paint sample mechanically removed using 

a scalpel) is more than enough and the gap left is almost invisible to the naked eye (75,81). 

However, the minimal sample size is not equal for all analytical techniques, hence a 

concession between the allowed sample size and the size requirements of the technique to 

be used must be established. 

Depending of the questions to be answered and of the analytical technique to be used, 

samples can be of three different types: cross sections, particles, and swabs. 

 

 

 

                                                
15 Due to the artwork value and conservation/deterioration state, number, size and localization of samples is 
normally very restricted. 
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Cross sections 

Cross sections (or cross-sectioned samples) are samples with multilayers. These are 

obtained cutting extremely reduced samples of the object from the top down to the bottom, 

under magnification, using a scalpel, and can contain some or all the layers of the object. 

These samples are used to study the number and sequence (stratigraphy), condition and 

interaction of layers, painting technique, and for solubility, melting point and composition 

determinations. 

Because cross sections, especially those removed from paintings, can present a 

heterogeneous and fragile consistency (besides the reduced size), whenever it is necessary 

to handle them for examination or sectioning, they must be previously mounted in a support 

material, most commonly, a resin16, that will hold it together. The choice of the embedding 

material is very important, and depends on the sample and the analytical technique (80). After 

the curing of the embedding resin, the surface is grounded down until the complete sample’s 

stratigraphy reaches the surface to allow its analysis and then polished to reduce the 

scratched finish and make the exposed layers to a fine shine to be observed under the 

microscope (80) (Figure 2.1 a and b). 

For transmission techniques, where the samples have to be thin enough to allow the 

passage of light, cross-sections are prepared as thin cross sections/thin sections (Figure 

3.5b), which are simply thin slices (0.1 to 30 µm thickness) of the cross-sections. After the 

curing of the embedding resin, these can be sectioned: i) by hand-cutting, which is useful for 

sampling large materials, ii) using a microtome, or iii) grinding and polishing, which is useful 

for hard and brittle materials that cannot be embedded and/or microtomed (80,82). Chapter 4 

presents additional information regarding cross-section and thin section preparation. 

 

Particle samples/isolated particles 

Particle samples are samples that are only a portion of a particular layer and are used 

mainly for solubility, melting point and composition determinations. They can be obtained 

scrapping the surface of an exposed layer using a scalpel or a probe, or they can also be 

removed from a layered sample (80,81,83). Unfortunately, this last procedure is time consuming 

and very difficult, if not impossible (unless the layers are very large), leading normally to the 

missing of small layers and seriously misunderstandings. 

Particle samples are often prepared as dispersions (dispersion samples) for individual 

crystal characterization by PLM. Samples are crushed and separated for the analysis of 

component particles, transferred into a microscope slide with a small amount of a mounting 

medium of appropriated index of refraction and cover with a cover glass (81,84,85). 
                                                
16 Other types of support can also be used, such as cork, plastic sheets, soft metals and even carrots (82).  
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Swabs 

Swabs are a particular case in which solvent-dipped swabs are used to rube the artwork 

surfaces and collect solvent-soluble coatings, such as patina or varnish (80). 

 

 

2.3 Analytical techniques 

 

2.3.1 Classification 

Based on the impact that they have on the object, sample, or on their representativeness, 

the analytical techniques used in conservation science can be grouped into the following 

classes: invasive/non-invasive analysis, destructive/non-destructive analysis and point/area 

analysis (12). 

Invasive/non-invasive are terms used to refer to the impact that the analytical method has 

in the object itself. Invasive stands for the analyses that require sampling, producing some 

alteration to the object, while non-invasive stands for analyses that do not require sampling. 

As easily understood, preservation of the artwork (minimum alteration as possible) is the 

ultimate goal in any scientific study in this field. Consequently, non-invasive techniques are 

preferred and used in first place, while sampling is performed only when absolutely 

necessary and allowed. 

Unfortunately, in general, non-invasive methods provide no discrimination between the 

layers that constitute the object and often restrict the analysis to the superficial layer(s). In 

cases, when specific answers will not be obtained by the non-invasive techniques, invasive 

techniques can be used right away, saving time and funds. 

Although initially destructive/non-destructive was a term used by curators/conservators 

with the same meaning that invasive/non-invasive have nowadays, causing confusing and 

misunderstandings, since for analysts it has a different meaning (75), these terms are used to 

refer the impact that the technique has on the samples. Destructive, presumes 

alteration/consume of a sample during its preparation and/or analysis. Non-destructive 

means that sample does not suffer any kind of preparation and that is not consumed or 

changed during analysis. 

Regarding its representativeness, an analytical technique can be classified as an area or 

point analysis. Area analysis is generally used to refer to the analyses that study the object 

as an all and are mainly photographic and surface mapping techniques, while point analysis 

is used to refer to analyses performed in a simple point or reduced area (12,86). Although, 

initially, point analysis was related to the analysis of samples, nowadays it is possible to 

perform point analysis without sample removal, for example, with µ-XRF and µ-R. 
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Analytical techniques can be further classified based on the type of interaction with the 

sample, such as spectroscopic, chromatographic and thermal, or in the type of information 

they provide, such as elemental, molecular and phase transitions. 

 

2.3.2 Methodologies and analytical techniques for painting analysis 

As we have seen before, a painting is composed by a variety of materials, including, 

support, pigments, extenders, binder and varnish. The analysis of these materials and the 

way they were combined to build up the painting can provide valueless information. Some of 

the most used analytical techniques for painting examination and analysis are presented 

below. 

Whatever the type of painting or questions to be answered, the first analysis of a painting 

is visual examination by an art historian, curator or conservator, which will detect alterations 

and/or interventions on the painting (12). The next stage is normal photography, a non-

invasive method, which is used to document the painting, the state of the painting and 

evaluation of the treatment processes and mark the sampling areas in the cases in which 

samples will be removed.  

The range of analytical techniques currently available for conservation science is broad. 

However, since each technique has gives own type of information, suitability, strengths and 

weaknesses, a previous assessment is essential to avoid a disorientated and useless 

examination. Moreover, since no single analytical technique can determine the full 

composition and/or structure of an object and provide valuable conclusions, a compliance of 

the results from several complementary techniques must be employed.  

A few works already presented an overview of different analytical techniques often used in 

conservation science (3,9,11-18,86), while other works presented a comparison among several 

analytical techniques (9,14,33,49,87). Some of the most frequently used analytical techniques for 

the analysis of paintings (conservation science in general) are succinctly presented bellow. 

 

Photographic techniques 

Using different types of illumination, such as ultraviolet, grazing light and infrared, certain 

details of the art object or painting, which most frequently are hidden to the naked eye, are 

pointed out, without actually touching the object, i.e. in a non-invasive way. 

For example, Ultraviolet Fluorescence Photography (UVF), which is based in the fact that 

an object subjected to ultraviolet light emits light in the visible region (fluoresce), is used in 

restoration interventions for varnish removal and for identification of the restoration areas. 

While an old varnish is strongly fluorescent (the resin that compose the varnishes develops 

fluorescence as they age), a recent restoration area and a varnish free surface will appear 
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dark against a fluorescent background. That technique is also of great help for identification 

of: i) the medium, as some natural materials such as drying oils, resins, waxes and proteins 

tend to develop distinct fluorescence, which increases with age and ii) the pigments 

employed in the upper paint layer, as a reduced number of pigments, such as zinc white, 

madder lake and Indian yellow, present a characteristic fluorescence (11,13,88,89). 

As another example, when Grazing Light (GL), obtained setting the light source at a 5-30º 

angle with the painting, is used, the produced photography reveals the roughness and the 

irregularities of the painting surface, allowing an evaluation of the state of conservation of the 

painting. Lifting cracks in the paint, deformations and lack of adhesion and, sometimes, 

changes that an artist has made in paint, can be identified (12,90,91). 

Other photographic techniques are: Ultraviolet reflected photography (UVR), less 

employed than UVF, this technique is useful for the identification of restoration interventions, 

pentimenti17, and to distinguish between white pigments, Infrared Photography (IR), which 

proved to be useful to reveal underdrawings, though not as efficient as Infrared 

Reflectography (see below), and Infrared False Colour Photography (IRFC), so called 

because the green areas appear as blue, the red areas appear as green and the near 

infrared information appears as red, which has been useful for distinguish between blue 

pigments (13,75,86,92). 

 

Infrared Reflectography (IRR) 

Because near-infrared photon are not completely absorbed by most pigments, and 

consequently the paint layers are relatively transparent to it, this radiation penetrates the 

upper paint layers until it is absorbed by the carbon-containing pigments used in the 

underdrawings (the remaining radiation is reflected by the ground layer). This non-invasive 

technique has been effective for observation and evaluation of underdrawings and 

consequently, to study the working method, retouchings, pentimenti and also, hidden 

signatures (11,13,93,94). 

 

X-Radiography (XRR) 

The process is similar to that of medical x-radiography. Because x-rays are so intense, 

they can pass through a painting (or other object), being more or less absorbed by the 

materials that constitute the painting, depending on their atomic weight (electron density). 

Dense materials, i.e. materials with a high electron density, such as those containing lead or 

mercury, absorb more strongly the x-rays. Consequently, the corresponding area on the 

                                                
17 Changes in the composition made during the process of painting, such as, for example, reconsidering a figure' 
s pose. 
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photographic film that is placed below the painting and that, when exposed to X-rays 

produces dark areas, will appear white. Low electron density materials, being more 

transparent to the X-rays, allow these to reach the film and produce grey or black areas. As 

the X-rays are scanned, an image of the painting is produced (Figure 2.2). 

 

 

Figure 2.2 Rapariga de Anacapri (MNSR 200), 1882, oil on canvas, 18.5 x 13.8 cm: (a) photography; 

(b) X-radiography, where it is possible to see the wooden stretcher frame, the metal staple securing 

the fabric to a wooden stretcher and restoration areas (black areas). Photo and radiography: LCRJF. 

 

X-radiography is a non-invasive area analysis technique that quickly and cost effective, 

enable to view the form and structure of the all painting and details of construction. It is 

possible to visualize the wooden stretcher frame, the nails securing a fabric to a wooden 

stretcher, alterations to size, and format of the support (e.g. union of panels or canvas), 

structural anomalies, lacks, insect attack, pentimenti, how the composition evolved, 

restoration areas and widen signatures (11-13,81). 

 

X-ray Fluorescence (XRF) and Particle-Induced X-Ray Emission (PIXE)  

Both X-ray fluorescence (XRF) and particle-induced X-ray emission (PIXE) are based in 

the induced emission of x-rays. Whenever atoms are bombarded with energetic photons or 

particles, such as X-rays or protons, characteristic x-ray energies are emitted from the 

atoms, allowing the identification of the elements present in the area of analysis. These two 

atomic spectroscopic techniques have the significant advantage of being non-invasive (11). 

For XRF analysis there are portable units that eliminate the problems related with moving 

the painting out to the laboratory. However, this technique is subject to some intrinsic 

limitations: i) owing to the low fluorescence yield and low energy (fluoresce is absorbed by 

the sample itself) of elements having atomic number <14 (silicon), they are very difficult to 

detect in air (fluoresce is absorbed by air), ii) only a semi-quantitative analysis can be made 

due to matrix, iii) information is gathered simultaneously from all the paint layers, not 

(a) 
(b) 
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discriminating the elements present in each layer due to the penetration of X-rays and iv) the 

diameter of the X-ray spot is about 1 cm, thus a large area is simultaneously analysed (19,95-

97). 

In recent years, the development of high performance µ-XRF techniques, such as, 

synchrotron radiation induced micro-X-ray fluorescence Spectrometry (SR-µXRF), have 

revolutionised the capabilities of this technique (43), which is also capable of providing clearer 

and more detailed image of the hidden composition than the images obtained with XRR and 

IRR (98). 

 

Unlike XRF, PIXE analysis requires the existence of a stationary particle accelerator (a 

highly expensive, massive installation) and the transport of the painting. However, it offers 

several advantages regarding XRF, such as a better spatial resolution (up to a few hundred 

of nanometres) (9,11), a greater sensitivity (up to 10 ppm for most elements) and, when 

differential measurements are conducted, elemental stratigraphic analysis (30,99). 

Unfortunately, the techniques based in the use of X-ray fluorescence and emission can 

induce damage in the organic components of the samples, hence low flux, low power and 

short exposure time are required to minimize the extension of the damage (9). Another 

drawback of these techniques is that they provide only information about the elements 

present in the samples, irrespectively of their state, chemical combination or the phases in 

which they might exist, thus, they are not able to distinguish among pigments with identical 

or, even, similar elemental composition. 

 

Optical Microscopy (OM) 

Optical Microscopy, also referred to as Light Microscopy, is probably the most used 

invasive technique in conservation science, since it provides valuable information regarding 

the paint technique and the materials that were used, in a relatively inexpensive way. 

Observing cross sectioned samples using a dark-field reflectance, information about the 

sequence (stratigraphy) and thickness of paint layers (detection of pentimenti and restoration 

layers), grain size and grain size distribution of the pigments is revealed. Regarding the 

compound identification, it requires a highly skilled operator and often fails to provide 

conclusive attribution (100). Additional information about this technique is presented in chapter 

4. 

Using polarized light - Polarized Light Microscopy (PLM) - the crystalline compounds 

present in sample dispersions are identified by their unique appearance under that type of 

illumination. Essentially, a bright-field microscope with a rotating stage and plane-polarizing 

elements placed below (polarizer) and above the specimen (analyzer) is employed. In this 
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way, a crystal may be rotated and its refractive indices and birefringence may be determined 

along with other optical, physical, chemical and crystallographic properties (11,81,85,101). 

Using ultraviolet light - Fluorescence Microscopy (FM) - interface of sample layers not 

visible under normal light, even those with similar composition, are visualised, helping in the 

identification of varnish, restoration and dirt layers. Based on the characteristic fluorescence 

that a small number of pigments exhibit, pigment tentative identification is also possible (as 

long as choices are limited) (32,78). For additional information about this technique see chapter 

7. 

Reactions to heat (Thermomicroscopy (102)), solubility tests and staining18 are other useful 

methods, conducted under a light microscope for identification of compounds, especially 

pigments. 

Besides characterizing the sample, OM is also very useful for the selection of the following 

analytical technique and the most appropriated sample’s area to use. 

 

Microchemical tests 

This invasive and somewhat destructive technique consists in the application of 

conventional ‘wet’ chemistry tests (chemical reactions that identify specific ions) in small 

clusters of particles or in layered samples, under a microscope. Using fine capillary, a liquid 

reagent is administered to the sample, that, by a specific chemical reaction (such as solubility 

tests, attack by acids and bases, calcination tests and reaction with specific compounds) 

produces a clear visible phenomena, such as colour change or fizzing, allowing the 

identification of particular elements or chemical groups (3,75). 

Although relatively inexpensive and fast, these tests present a low capability to 

discriminate among the different materials within the same group (18) and, because they are 

based in elemental identification, they are not very suitable to differentiate among pigments 

with similar chemical composition (78). 

 

Scanning Electron Microscopy (SEM) 

When there is the need for greater detail that the one obtained with light sources by 

optical microscope, a scanning electron microscope is used. This microscope uses a narrow 

beam of electrons as source and provides topographic and compositional images at 

extremely high magnification (up to 10,000 times (103)). However, unfortunately the SEM 

images are monochromatic and must be assisted by a coloured photography to help 

interpretation. 
                                                
18 The majority of stains that have been applied to binder analysis stains, usually applied as solution, when 
reacting with a specific compound (most commonly with proteins or lipids) produce a visual effect that allows the 
identification the binding media. Unfortunately, only an idea of the general class of binder is provided (11,78). 
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When SEM is associated with an X-ray spectrometer that detects the X-rays emitted when 

the electron bean interact with the sample (SEM/EDS), determination of the elemental 

composition of tiny details, such as pigment grains and X-rays maps of the elements is 

possible, making this technique a very powerful tool (103-105). 

Because this technique requires the removal of samples from the object, it is invasive, and 

because nonconducting samples have to be coated with a carbon or gold to avoid charging 

it, is also somewhat destructive. Additional information about this technique is presented in 

chapter 7. 

 

X-Ray Powder Diffraction (XRD) 

This is a highly specific technique for identification of solid compounds. However, since it 

is based on the diffraction of the x-rays by the crystalline structure of the compounds, it is 

limited to compounds with low crystallinity and not applicable to amorphous compounds. 

When a monochromatic X-ray beam impinges on a crystal whose lattice dimensions are in 

the same order of the wavelength of the X-rays, diffraction of the beam occurs and a 

diffraction pattern is produced. The pattern obtained is very characteristic and is compared 

with those of standard for identification purposes (95,106,107). 

In the traditional set-up, sampling is required and the sample (some grams) has to be 

reduced to a fine powder, eliminating any stratigraphy that it might have (invasive and 

destructive technique). In the microscopic set-ups, micro X-ray diffraction (µ-XRD) and 

synchrotron radiation induced X-ray diffraction (SR-XRD), objects can be analysed without 

sampling (non-invasive), as long as they fit the stage, and samples can be analysed without 

any preparation (non-destructive), as cross-sections or as thin sections (43,108-110). Additional 

information about µ-XRD is presented in chapter 7. 

 

Infrared Spectroscopy (IR) 

Infrared spectroscopy (IR), also referred to as Fourier Transform Infrared Spectroscopy 

(FT-IR), since nowadays almost every IR spectrometer employs Fourier Transform (FT)19 

assisted interferometers, is a powerful molecular technique used for the identification of both 

organic and inorganic compounds and one of the most widely used techniques in the field of 

conservation science (3,26,48,87). 

This technique is based in the fact that, when a beam of IR light, emitted as a range of 

frequencies (from a heated object) is incident on molecules/ions, absorption of discrete 

frequencies of the beam by molecules/ions takes place. This occurs because the chemical 

bonds present in molecules and ions are elastic, and the atoms they connect are constantly 

                                                
19 Fourier transforms is a mathematical process that transforms an interferogram into a spectrum. 
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vibrating (with a motion similar to that of a spring) around their equilibrium position with 

frequencies of the same order of magnitude of those of the IR radiation. When a frequency of 

the IR radiation is exactly the same of a particular vibration of the bond, it can be absorbed 

by the molecule/ion. 

The selective absorbed or transmitted frequencies are graphically represented on an 

infrared spectrum, which is a plot of the intensity of absorption or transmission as a function 

of the frequency or wavenumber. Each spectrum is a very unique and characteristic pattern, 

which, by comparison with spectra of known compounds (reference spectra), can be used for 

identification purposes. 

In a conventional set-up absorption/transmition mode, solid samples have to be reduced 

to a fine powder, which is then dispersed in a solid (commonly KBr) and compressed to form 

a pellet or dispersed in a liquid (commonly Nujol) to form a mull, or even dissolved into a 

solution, either way destroying the microstructure they present and requiring relatively large 

samples (1-3 mg) (111). Therefore, conventional IR spectroscopy is not suitable for a large 

number of objects, whenever large samples cannot be removed or sampling is not allowed 

(is invasive and destructive). 

However, the union of microscopy and IR spectroscopy - Infrared Microscopy (µ-IR) – 

originated a technique which allows the study of small and structured samples. In µ-IR, the 

samples are placed on the stage of a microscope that is coupled to the IR spectrometer, 

allowing the analysis of small samples (≈ 1 µg) without destroying their structure (since 

preparation of pellets is not necessary) and the analyse of specific areas of small samples 

(83,112). 

When non-invasive20 and/or non-destructive analyses are mandatory, instead of the 

transmission mode, a reflection mode is employed, which requires little or no sample 

preparation. The reflection modes can be of four types: specular reflection (SR), diffuse 

reflection (diffuse refection Fourier-transform infrared spectroscopy - DRIFT), reflection-

absorption (R-A), and attenuated total reflectance (ATR) also called internal reflection 

spectroscopy (IRS) (87). Specular reflection (SR), occurs when the incident radiation is 

reflected at the surface of the sample with an angle of reflection equal to the angle of 

incidence. Best spectra are achived for shiny surfaces, which requires the polishing of the 

sample if they do not have a lustrous surface (82,87). Diffuse reflection (DRIFT) is based on the 

collection of radiation diffusly reflected by the sample, i.e. radiation reflected in all directions. 

However, because a significant amount of the incident radiation is, either lost in the sample, 

or specularly reflected, the efficiency of this mode is low (4 to 10%) and the bands can 

present distortion. In order to improve the efficiency, sample must be ground into small 

                                                
20 As long as the object can be placed on the microscope stage. Otherwise this technique is always invasive. 



31 

particles and diluted in a nonabsorbing matrix (such as KBr), which destroys sample’s 

orientation and morphology (82,87). 

Reflection-absorption (R-A) is based on the reflection of the radation by a nonabsorbing, 

reflective substracte (bellow the sample), such as a polished metallic piece. Depending of the 

angle of incidence R-A is divided in near-normal spectroscopy (12 to 35º) and grazing angle 

spectroscopy (65 to 85º). Both methods are advantageous for the analysis of films, the 

grazing angle spectroscopy in particular, for the study of sub-µm-thick films. Until nowadays, 

these methods had no significant employement in conservation science. 

Attenuated total reflectance (ATR) is based on the phenomenon known as total internal 

reflection. When radiation passes from a high refractive index medium into a lower refractive 

index medium, part of the radiation is reflect and part is refracted. However, if the angle of 

the incident radiation at the interface of the two mediums exceeds a certain angle, referred to 

as the critical angle, the radiation is totally reflected from the interface. Yet, the electric field 

of the radiation (referred to as the evanescent wave) does penetrate the lower refractive 

index medium to a small distance and certain frequencies of the radiation can be partly 

absorbed. Therefore, the tottaly reflected radiation will be attenuated at the selectively 

absorbed frequencies, producing an infrared spectrum comparable to transmission specta. 

An important advantage of ATR is the fact that the ATR crystal, which is a high refractive 

index medium, transparent to IR radiation, (also referred to as internal-reflection element 

(IRE)) has a magnification factor, allowing the analysis of even smaller areas (112,113). Since it 

requires little or no sample preparation, and allows the analysis of small areas, ATR is 

probably the most used reflection method in conservation science. 

However, ATR technique requires a good and uniform interfacial contact between the 

ATR crystal and the sample. Therefore, the ATR crystal has to be pressed over the sample 

or art object, and if too much pressure is applied, there is a high risk of the analysis 

becoming destructive or invasive. Another disadvantage is the fact that the cleaning of the 

ATR crystal is very tricky, easily causing its damage, while an inappropriate cleaning can 

cause cross contamination between samples. 

A completely non-invasive, non-destructive approach, even in situ21 (if a portable 

spectrometer is used), is obtained employing Fibre Optics Reflectance Spectroscopy 

(FORS), which consists on the coupling of fibre-optic probes to FT-IR bench unit (114-115). This 

method allows the analysis of delicate and fragile objects (116). 

Because in all reflection modes, the objective works both as condenser and objective, i.e. 

half of the objective condenses the radiation on the sample and the other half collects the 

                                                
21 In situ, refers to analysis conducted at the location of the object, e.g. museum, church, tomb. The object is not 
moved, it is the equipment that is transported. 
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reflected radiation, reflection measurements are generally conducted with 50% less signal. 

As result, a reflectance spectrum will be more noisy and complicated than a transmission 

spectrum, requiring longer scan times and/or larger apertures (82,113). Shifts in band position, 

variations in the band intensity and changes in the band shape can frequently occur (87,116). 

 

µ-IR has been successfully used in painting analysis (conservation science, in general) 

(3,25,35,87,117), since: i) with a single equipment it can virtually simultaneously provide 

information about inorganic (e.g. pigments) and the organic (e.g. binder) compounds present 

in the sample. Virtually, because often pigments and other inorganic constituents partially 

mask information regarding the binder, sometimes to the point that the binder cannot even 

be generally identified, ii) small samples can be viewed and analysed and iii) a small area of 

a sample, such as a single layer of a multi-layered paint sample, can be selectively analysed. 

Unfortunately, because many organic compounds have similar chemical compositions 

and/or structures, they present similar spectra, not allowing discrimination. However, IR is 

useful for the quick identification of the general class of the binder (for example, oil, protein, 

gum), without the request of sample solubilization, volatilization or ionization, as other 

techniques, such as gas-chromatography (GC), does (118).  

More detailed information about µ-IR is presented in chapter 5. 

 

The development of synchrotron infrared microscopy (SR-µIR), whose source produces 

highly collimated and high-brightness IR radiation, is a new promising for the analysis of 

small and complex samples, which require apertures below ~20 µm (119,120). Coupling the IR 

microscope to a synchrotron source, a higher spatial resolution (down to a spot of 6 x 6 µm2) 

and signal-to-noise ratio are obtained, when compared with the conventional µ-IR (121,122). 

Unfortunately, the synchrotron sources (electron storage ring) are of limited availability due to 

their large size and high cost. 

 

Raman Spectroscopy (RS) 

Raman spectroscopy (RS) is an analytical technique that, like IR provides molecular 

information as a result of the interaction of light with vibrating molecules/ions that constitute 

the samples. However, because a light scattering phenomena is involved rather than an 

absorption phenomena as in IR, the information provided by Raman spectroscopy is 

complementary to that obtained by IR. For example, strong polar bonds, like carbonyls, 

produce intense bands in the IR spectra, but considerably weaker bands in the Raman 

spectra; in contrast, skeletal bonds, such as unsaturated hydrocarbons, show stronger bands 

in Raman spectra than in the IR spectra. 
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In RS, the sample is illuminated with a monochromatic light source (single frequency, ��), 

typically a laser. As result of the interaction of light with the induced dipole moment of the 

molecules/ions, a small fraction of the scattered radiation  can present (under certain 

conditions) a frequency different from the frequency of the incident source, � = �� ± ��, 

where �� corresponds to the frequency of a vibrational mode of the molecules/ions. A plot of 

the intensity of scattered radiation as function of the frequency shift (shift relative to the 

incident frequency) is the Raman spectrum. Like the IR spectrum, also the Raman spectrum 

is very characteristic of each molecule/ion, and can be used for identification purposes (123). 

 

It was not until the development of affordable Raman spectrometer equipped with 

microscopes that Raman spectroscopy, as Raman microscopy (µ-R), became an analytical 

technique employed to conservation science. Nevertheless, in the nearly two decades that 

have passed since then, this technique had become one of the most important in 

conservation science (10,33,34). 

With µ-R samples of all forms and sizes can be virtually analysed, and as long as the 

object dimensions allow it to be placed on the microscope stage, it can be employed as a 

non-invasive technique (32). In situ analyse of large or immovable art objects, using fibre 

optics, has also provided good sensitivity (52,124,125). 

Because visible laser wavelengths are routinely used as source (lower diffraction limit), 

really reduced areas, such as pigment grains, can be easily analysed. This advantage 

associated with the ability to go down to low-wavenumber regions, extremely important for 

the characterization of inorganic pigments, made this technique widely used (33,100,126). 

Identification of organic compounds, such as dyes, synthetic organic pigments, binders 

and varnishes, is also becoming an important area of application for µ-R (127,128). However, 

when analysing organic compounds or samples containing organic compounds, there is 

often associated fluorescence emission, which can completely mask the Raman signal. To 

overcome this drawback, near-IR laser sources, whose energy is too low to excite 

fluorescence transitions, associated to FT spectrometers (since the Raman scattering 

efficiency of these laser sources is also low) are normally used (100). For additional 

information about this technique see chapter 5. 

 

Gas Chromatography (GC)/Mass Spectrometry (MS) and High Performance Liquid 

Chromatography (HPLC) 

Chromatographic techniques are analytical techniques designed to separate a sample into 

its several components, which can then be identified and even quantified without 

interferences. The name of these widely used techniques comes from its first use, where the 
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separated compounds of various plant pigments appeared as different coloured bands when 

made to pass through a glass column packed with calcium carbonate (129). 

The techniques basically consist on a stationary phase, generally hold in a column 

(narrow tube), a mobile phase and a detector. The sample is injected onto the head of the 

column and made to move throughout it by the mobile phase flow. In Gas-chromatography 

(GC), the mobile phase is an inert gas, while in High performance liquid chromatography 

(HPLC), also referred to as high pressure liquid chromatography, the mobile phase is a 

liquid. As the sample moves inside the column, its components are separated as result of a 

higher or lower affinity toward the stationary phase (and also toward the mobile phase, for 

HPLC), arriving at the end of the column at different times (retention time). The mobile and 

the stationary phases are selected so as to provide the best separation of the components. 

Exiting the column, the components are identified (comparing them retention times with the 

retention times of a standard, which was analysed under exactly the same conditions) and 

quantified by a sensible detector. The components that have a higher affinity for the 

stationary phase will move slowly and present a higher retention time, the components with a 

higher affinity towards the mobile phase will move quickly and present a short retention time 
(129). 

Often, these chromatographic techniques are hyphened with another technique, Mass 

Spectrometry (MS), which is very specific for identification of molecules, ions and atoms, 

giving the GC/MS and HPLC/MS techniques. The components of the sample that are being 

separated by chromatography (each at a time) are ionized by a beam of electrons and 

electrically charged. The formed ions (either positive or negative ions) are then accelerated 

into the mass analyzer. There, the ions are deflected by a magnetic field, according to their 

mass-to-charge ratio (m/z). A mass spectrum, i.e. a graphical presentation of the relative 

abundances of the various ions, as a function of their m/z value is obtained. Comparing the 

mass spectrum with the masses of expected molecules or molecule fragments is possible to 

recognize or identify the separated components of the samples (130). 

 

Gas-chromatography (especially GC/MS) is a quite useful technique for the identification 

of nearly all types of organic binder used in paintings, since these are a mixture of several 

different compounds. In fact, this is one of the best techniques for identification of the binder 

and varnishes and by far the most useful technique for the identification of resins and waxes 
(11,71,73,75,131-133). 

Because the mobile phase in GC is a gas, the samples should be able to dissolve and the 

dissolved components of the sample should be able to be vaporized without disintegration or 

degradation, but unfortunately, some natural binder are not soluble and many of the 
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compounds of natural binder are not volatile. To overcome these difficulties, non soluble 

samples are placed in pyrolysis attachment that heats the sample rapidly to very high 

temperatures, causing its fragmentation in sizes small enough to pass through the gas 

chromatograph, while non-volatile compounds are often turned into a related compound that 

is volatile, by a process called derivatization (11,134,135). 

 

Because HPLC requires that the samples are soluble but not that these are volatile, 

makes it a little more straightforward to apply to non-volatile or thermally fragile compounds. 

Even though HPLC can also be used for the analysis of binder, it is less used for this 

propose than GC (11,71). HPLC has been instead, successfully used to identify and distinguish 

dyes and lake pigments (22,136-138). 

Unfortunately, unless the layers can be mechanically isolated and analysed one at a time, 

these techniques are not able to allocate the sample components to a specific layer. More, 

since these techniques require the samples to be dissolved, pyrolysed or derivatized, being 

completely destroyed, they are invasive and destructive. 
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3 Sampling and sample preparation 

 

Sample preparation is an integral part of the 

analysis process and is tailored in accordance 

with the sample itself and the analytical 

technique to use. 

 

 

J. S. Martin 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling and sample preparation are very important steps in any 

analytical technique. This chapter reproduces the paintings under 

analysis and describes the sampling procedures. 
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3.1 Sampling strategy 

In order to establish Pousão’s palette and to verify how his materials and working method 

evolved through his life, a group of 23 paintings by Pousão (Table 3.1, Figure 3.1 and 

Appendix B) distributed through four chronological periods, belonging to the collection of the 

Museu Nacional de Soares dos Reis, whose authenticity is not questioned, were selected22. 

The four chronological periods were denominated as Early, French, Italian and Final, where 

the Early period refers to paintings executed in Portugal as a student of the Academia 

Portuense de Belas-Artes, the French and Italian periods refer to paintings executed in 

France and Italy, respectively and the Final period refers to paintings executed on the return 

trip to Portugal and during the last year of his life. 

 

Table 3.1 Key information on the paintings under analysis 

 
a Museu Nacional Soares dos Reis - painting code; b height x width (cm x cm) 

                                                
22 Painting selection was done by agreement between Laboratório de Conservação e Restauro José de 
Figueiredo, Lisboa and Drª. Elisa Soares, Museu Nacional Soares dos Reis, Porto. 

Period Painting MNSRa Support Date Dimensionsb Fig.

A Casa rústica de Campanhã 109 wood 1880 20.2 x 12.8 4.1a

B O mendigo Lapita 101 wood 1880 23.5 x 14.2 4.1b

C Paisagem - Abertura da Rua Alexandre Herculano 183 canvas 1880 68.8 x 122.4 4.1c

D Jardim de Luxemburgo (estudo) 96/11 wood 1880 16.5 x 9.0 4.1d

E Aldeia de St. Sauves 167 wood 1881 46.0 x 37.8 4.1e

F Paisagem de St. Sauves 158 canvas 1881 46.0 x 65.5 4.1f

G Cansada (Cachopa de Capri) 94 canvas 1882 130.5 x 81.5 4.1g

H Casas brancas de Capri 82 canvas 1882 70.5 x 141.0 4.1h

I Cecília 106 canvas 1882 82.3 x 57.2 4.1i

J Escadas de um pardieiro - Roma 83 wood 1882 16.0 x 22.2 4.1j

K Esperando o sucesso 108 canvas 1882 131.5 x 83.5 4.1k

L Fachada de casa soterrada - Roma 107/36 wood 1882 9.9 x 16.5 4.1l

M Miragem de Nápoles 91/49 wood 1882 9.8 x 16.5 4.1m

N Portão 117/71 wood 1882 29.2 x 21.2 4.1n

O Rapariga de Anacapri 200 canvas 1882 18.5 x 13.8 4.1o

P Rua de Roma 96/24 wood 1882 16.5 x 9.9 4.1p

Q Senhora vestida de preto 114/39 wood 1882 28.3 x 18.4 4.1q

R Janela das persianas azuis 114/34 wood 1882-1883 28.5 x 25.0 4.1r

S Mulher da água 115 canvas 1883 144.0 x 135.5 4.1s

T Paisagem de Anacapri 432 canvas 1883 70.5 x 140.5 4.1t

U Rapariga deitada no tronco de uma árvore 86/88 canvas 1883 73.5 x 115.5 4.1u

V Cais de Barcelona 127/94 wood 1883 16.5 x 10.0 4.1v

W Flores campestres 117/96 canvas 1884 30.0 x 22.5 4.1w

Early

French

Final

Italian
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Figure 3.1 Pousão’s paintings analysed in this study: (a) Casa rústica de Campanhã, (b) O mendigo 

Lapita, (c) Paisagem - Abertura da Rua Alexandre Herculano, (d) Jardim de Luxemburgo 

(estudo), (e) Aldeia de St. Sauves, (f) Paisagem de St. Sauves, (g) Cansada (Cachopa de Capri), 

(h) Casas brancas de Capri, (i) Cecília, (j) Escadas de um pardieiro - Roma, (k) Esperando o 

sucesso, (l) Fachada de casa soterrada - Roma, (m) Miragem de Nápoles, (n) Portão, (o) 

Rapariga de Anacapri, (p) Rua de Roma, (q) Senhora vestida de preto, (r) Janela das persianas 

azuis, (s) Mulher da água, (t) Paisagem de Anacapri, (u) Rapariga deitada no tronco de uma 

árvore, (v) Cais de Barcelona and (w) Flores Campestres. The pictures (LCRJF) are not to scale. 

(u) (w) (t) 

(n) 

(m) 

(p) (o) (q) (s) 

(v) 

(j) 

(k) 

(l) 

(g) (h) (i) 

(d) (e) 

(f) 

(b) (c) (a) 

(r) 
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3.2 Sample collection 

Although, ideally, for palette studies, at least two samples from each visually 

distinguishable hue and/or from important composition elements should be collected (139), due 

to the value and the good condition of the paintings, sampling was seriously constrained to 

edges and some cracks (see Appendix B). 

 

To facility sample removal, the paintings were set out of their frames and lying flat over a 

table. Using a micro scalpel, a needle and a magnifying glass, cuts were executed in the 

edges and along the cracks of the paintings, and the microscopic samples removed. The 

objective is to remove a sample containing all the paint layers from the ground layer up to the 

surface coating one23 and leave the sampling localization as invisible as possible. Each 

sample was then storage between two glass slices (one a depression slide and the other a 

normal one, set together by tape-hinges)24, and properly identified by a tag where the 

process and the sample numbers were written. Since this process requires practice, samples 

were removed by a skilled technician from LCRJF. 

 

Samples were set in two groups, those removed and studied in 1984 and those removed 

in 2005 to undertake this study (Table 3.2). Sampling sites were marked in the photographs 

of the paintings (see Appendix B) using yellow (samples taken in 1984) and red points 

(samples taken in 2005) and described in an analysis sheet (see an example of an analysis 

sheet in Appendix C). 

In order to simplify the connection between sample and the painting from where they were 

collected, samples will be referred to by a code that consists in a letter, corresponding to the 

painting, and a number. For example, the blue sample removed from the sea in the Painting 

Casas Brancas de Capri (Figure 2.1a) has the code H5. 

 

 

3.3 Sample preparation 

Samples were prepared as cross sections and as thin sections, except for sample O3, 

due to its reduced size, which was prepared only as thin section. It was choosed to prepare 

sample O3 as thin section due to the possibility of identifying its components by µ-IR. 

 

 
                                                
23 Samples that include the support can be collected. However, in practice the support can be examined from the 
back of the painting, hence, can be omitted from the cross sections. 
24 This type of container avoids the contamination of the sample by the container, even in long-term storage. 
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Table 3.2 Number of samples taken from each painting 

 
a number of samples taken in 1984; b number of samples taken in 2005 

 

3.3.1 Cross sections 

Samples collected in 1984 were already prepared as cross section. Samples taken in 

2005 were prepared as follows. 

Using a micro scalpel and a needle under a stereomicroscope (Figure 3.2a) a small piece 

of the native sample, containing all the layers was deposited perpendicularly in a well of a 

PVC plastic mould, over a small glue drop to keep sample orientation. The well was then 

filled up with epoxy polymeric resin (EpoFix, from Struers) and let to curry to room 

temperature. After curing, the cross-sections/resin blocks were mechanically grounded down 

Period Painting Support Na Nb

A Casa rústica de Campanhã wood 5

B O mendigo Lapita wood 4

C Paisagem - Abertura da Rua Alexandre Herculano canvas 4

D Jardim de Luxemburgo (estudo) wood 6

E Aldeia de St. Sauves wood 7

F Paisagem de St. Sauves canvas 6

G Cansada (Cachopa de Capri) canvas 4

H Casas brancas de Capri canvas 9

I Cecília canvas 8

J Escadas de um pardieiro - Roma wood 4

K Esperando o sucesso canvas 6 8

L Fachada de casa soterrada - Roma wood 5

M Miragem de Nápoles wood 5

N Portão wood 5

O Rapariga de Anacapri canvas 3

P Rua de Roma wood 6

Q Senhora vestida de preto wood 3 5

R Janela das persianas azuis wood 8

S Mulher da água canvas 7

T Paisagem de Anacapri canvas 7

U Rapariga deitada no tronco de uma árvore canvas 7 6

V Cais de Barcelona wood 5

W Flores campestres canvas 3 4

Early

French

Final

Italian
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with silicon carbide (SiC) set in a rotary wheel with dripping water (Figure 3.3a), until the 

complete sample’s stratigraphy reached the surface. Then they were polished with an 

alumina-water slurry FF (alumina suspension) over a cloth wheel (Figure 3.3b), to reduce the 

scratched finish and make the exposed layers to a fine shine to be observed under the 

microscope (Figure 3.3c), and finally, washed in current water to remove any alumina 

particles. Labelling was done, writing with a permanent pen the sample number in one of its 

sides. 

 

     

Figure 3.2 a) Stereomicroscope, scalpel and needle, b) cross section’s mould and cross section and 

c) scheme of a cross-section. 

 

     

Figure 3.3 a) Rotary wheel for grinding and b) rotary wheel for polishing and c) cross section of 

sample W3 viewed by optical microscope under reflected light. 

 

3.3.2 Thin sections 

Using a micro scalpel and a needle under a stereomicroscope (Figure 3.2a) a small piece 

of the native sample, containing all the layers, was sectioned, placed (correctly oriented) in 

half-filled silicon rubber mould (Figure 3.4a) of polyester-styrene resin (SeriFix, from Struers) 

and topped up with new resin. The mold used for thin sections is much smaller than the mold 

used for cross sections, because excess of resin stresses the sample curing the slicing. 

SampleResin

(a) 

(b) 

(a) (b) 

(c) 

100 µm 

(c) 



43 

After curing, the resin blocks (Figure 3.4b) were set in a Leica RM2155 rotary microtome 

(Figure 3.5a), with a stainless steel blade and several thin-sections 15 µm thick (Figure 3.5b) 

were produced. 

 

.. ..  

Figure 3.4 a) Silicone mould for sample preparation with four resin blocks and b) scheme of a resin 

block with the sample (adapted from Andres MS. et al. (140)). 

 

… …... 

Figure 3.5 a) Leica RM2155 rotary microtome and b) thin section of sample W3 viewed by optical 

microscope under reflected light (LCRJF laboratory). 
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4 Optical microscopy analysis 
 

The best way to examine an ‘unknown 

unknown’ and decide how to examine it, is to 

use an optical microscope first. On occasion 

the sample remains mystifying, but generally 

microscopy will yield at least one point of 

useful information. 

 

 

J. H. Townsend and K. Keune 

 

 

 

 

 

 

 

 

 

Optical microscopy (OM) provides valuable information on the 

structure of the paintings (e.g. number and thickness of the paint 

layers). This chapter provides a brief introduction and presents the 

major results of the analysis of cross-sectioned samples obtained by 

this technique. 
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Although the human eye by itself can easily detect details only 0.2 mm in size (105), this 

ability is not enough to characterize painting’s samples, since most painting layers and 

pigment particles have smaller dimensions. In this case, it is necessary to use a system 

capable of obtain a magnified and contrasted image of the sample, such as optical 

microscope. 

 

 

4.1 The optical microscope 

Optical microscopes, also referred to as light microscopes, can be equipped with a wide 

variety of reflected or transmitted illumination sources, objectives and accessories (such as 

for example, vertical illuminators, DIC prisms, polarizers, retardation planes), but all of them 

share the same basic components: eyepieces, objective lens, sample stage, condenser 

system and light source (Figure 4.1). Nowadays, most models allow alternating between 

reflected and transmitted illumination. 

Examination of transparent samples is obtained using a transmission microscope (also 

referred to as diascopic illumination), Figure 4.1a. In this microscope, the condenser system 

(which consists in a number of lenses, diaphragms and accessories and is positioned bellow 

the sample stage) collects the light diverging from the source and focused it at the small area 

of the sample (set in the stage) to be analysed. The objective lens (positioned above the 

sample stage) then collects the light coming from the sample and combines it into a primary 

(imaginary) image. This image is then further magnified and inverted into the final image by 

the eyepieces and, detected directly by the eye, imagined in a photographic plate or captured 

digitally (and observed in a computer screen). 

 

..  

Figure 4.1 Simplified configuration of a: (a) transmission microscope and (b) reflection microscope. 

The yellow traces represent the light path (adapted from Davidson MW, et al. (141)). 

Eyepieces

Condenser
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Transmitted light
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Objective

Stage
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When opaque samples are to be examined, because light is unable to pass through them, 

another type of microscope, known as reflected light microscope, (but also as incident light, 

episcopic illumination, epi-illumination, vertical illumination or metallurgical microscope) is 

used, Figure 4.1b. In this setup, illumination is directed (from above) to the sample’s surface 

from the objective that acts also as a condenser. While the sample may absorb part of the 

incident illumination, other part can be reflect (specularly and/or diffusedly), being collected 

by the objective and combined it into a primary image. The rest of the image process is 

identical to that of transmitted microscopy (141). 

 

4.1.1 Resolution or resolving power 

The ability of a microscope to clearly separate small details of an object/sample is 

designated as resolution (Figure 4.2), or resolving power. This is not necessarily the same 

as the smallest point which can be seen with the microscope, which is often smaller than the 

resolution limit (105). 

 

 

Figure 4.2 (a) Two resolved points; (b) two unresolved points. 

 

Inevitably in any microscope, as light passes through restricted apertures, such as lenses, 

diffraction can occur, limiting the resolution of the microscope. When the width of the 

aperture is comparable to, or smaller than, the wavelength of the light passing through it, a 

diffraction pattern is produced. Instead of the expected point image, a series of alternating 

light and dark concentric circles (provide the aperture is circular) is formed (Figure 4.3). The 

central disk represents the direct light and is called the 0th order (diffracted order) or Airy disk, 

while the following fainter circles are called the 1st, 2nd, 3rd, etc., orders, respectively. Since 

the light from every small point in the sample suffers diffraction, even an infinitely small point 

becomes a small Airy disk in the image, reducing the capacity to differentiate between 

adjacent points. 

 

 

Figure 4.3 Diffraction pattern of a uniformly-illuminated circular aperture. 

 

Airy disk

1st order

2nd order
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Because the central disk is much more intense than the others, containing 84% of the 

radiation, it is generally assumed that all the light falls in the central disk, of diameter �, all 

the other disks being ignored. Being so, spatial resolution, i.e. the minimum distance by 

which two of such � diameter adjacent disks can be distinguished, can be defined as (142-144) 
25: 

 � ≈ 
.�� 

������������

 (4.1) 

where � is the wavelength of the incident radiation and ����� and ������ are the 

numerical aperture of the objective and condenser, respectively. Numeric aperture is a 

measure of the light collection, i.e. a measure of the gathering capabilities of the lens, and is 

defined as: 

 �� = �  !" # (4.2) 

where $ is the refractive index of the medium between the objective (condenser) and the 

sample, and α is the half-angle of the most oblique rays that came into the objective 

(condenser).  

From (4.2) it is possible to infer that the shorter the wavelength of the radiation and the 

higher the �� of the objective (and/or condenser), the better the resolution will be. High 

numerical aperture objectives capture more of the diffracted orders, produce smaller size 

disks, and consequently, the smaller the details of the sample that are clearly resolved. 

 

4.1.2 Depth of field and depth of focus 

When viewing a sample under a microscope, only the part of the sample that lies in the 

appropriated plane will be accurately in focus, while for the parts of the sample that lie above 

or below this plane, the equivalent part of the image will be out of focus. The range of 

positions of the sample for which no change in sharpness of the image is detected is known 

as depth of field or axial resolving power. In most microscopes depth of field is very short and 

therefore in order to produce sharp images the object must be very flat. Like horizontal 

resolution, the axial resolution is determined by the numerical aperture of the objective. 

With the development of confocal light microscopes is possible to have images that 

present in focus a range of depths. The principle of confocal microscopy is very simple. 

Small apertures ensure that only the light from the in-focus region reaches the imaging part 

of the system. Since only one point of the sample can be at focus at a time, each point of the 

sample was to be illuminated at a time - a scanning system being used. 

                                                
25 In reflection mode, because the objective acts also as condenser, the denominator of this formula is 2�����. 
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Depth of field is often confused and interchangeably used with depth of focus. However, 

this last term refers to the range of positions that at which the image can be viewed without 

appearing out of focus, for a fixed position of the object. 

 

 

Figure 4.4 Diffraction pattern of a uniformly-illuminated circular aperture and related intensity profile 

(point spread function). (a-c) Airy disk dimensions as related to the objective numerical aperture. As 

the numerical aperture increases from (a) to (c) the size of the Airy disk (and further diffraction orders) 

decreases; (d) Two Airy disks at the limit of resolution; (e) Two Airy disks so close together that their 

central spots overlap and are no longer resolved. (Reproduced with permission from Davidson MW, et 

al. (141)) 

 

4.1.3 Optical microscopy techniques 

Because there are several modes of illumination, and a wide variety of objectives, filters 

and accessories, reflected and transmission light microscopy leads to a large number of 

optical microscopy techniques, such as Brightfield microscopy, Darkfield microscopy, 

Polarized light microscopy, Differential interference contrast microscopy, Fluorescence 

microscopy, Phase contrast microscopy and Hoffman modulation contrast microscopy (141,145), 

each one presenting its one advantages and limitations. 

From all the existing optical microscopy techniques, three are fundamental to the 

microscopic analysis of painting’s samples, namely optical microscopy (OM), polarized light 

microscopy (PLM) and fluorescence microscopy (FM). 

(a) (b) (c) 

(d) (e) 



 

50 

Optical microscopy 

The most common and useful method for viewing samples in optical microscopy is 

darkfield illumination. This technique is based in the blocking out of the central light rays that 

normally pass through or around the sample, allowing only oblique rays to illuminate the 

sample (141). The samples will appear bright illuminated against a dark background.  

Darkfield microscopy is adequate for revealing outlines, edges and boundaries, thus serve 

for accurate identification of borders between various layers and differentiate various 

nuances within a given colour layer. 

 

Polarized light microscopy 

Polarized light microscopy permits the measurement of optical properties of transparent 

samples (e.g. thin sections, pigments and fibers) such as colour, opacity, pleochroism, 

birefringence, refractive index (RI)26, and consequently can be used for identification 

purposes (75). 

A polarizer is located in the light path below the sample stage and an analyser (a second 

polarizer), whose polarizing axis is perpendicular to the polarizer (cross polars) is located in 

the light path above the sample stage. If the incident light is unpolarized, the polarizer lets to 

pass only the light waves that vibrate perpendicularly to the polarizer transmission direction. 

If an isotropic27 material is being analysed no alteration occurs and no light will be transmitted 

by the analyser. However, if an anisotropic material is under study, light is transmitted by the 

analyser and coloured patterns against the dark background are observed. 

Particle samples are dispersed over a glass slide in a medium that reduces light scattering 

and has a known RI (generally 1.66), that works as a reference for measurement of the RI. 

Because inorganic materials have high refractive indices, they can be identified when 

visualized in a microscope under polarized light.  

 

Fluorescence microscopy 

Fluorescence microscopy is used to differentiate layers and particles that appear similar in 

visible light, but that fluoresce under ultraviolet light. Based on their primary fluorescence, or 

on the secondary fluorescence of fluorochromes used to mark them, materials can be 

identified (32,145,146). 

                                                
26 Refractive index refers to the ratio of the velocity of light in a vacuum to its velocity in the medium of interest. 
27 In an isotropic material, since all axes are equivalent, the optical properties are independent of the direction 
and orientation of the light to the crystal axes. In an anisotropic material, because these have crystallographically 
distinct axes, interaction with light is dependent of the material orientation respect to the incident light, thus, also 
the optical properties are dependent of the direction and orientation of the light to the crystal axes. 
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This technique is set adapting an ultraviolet source instead of the visible one and a filter 

that blocks the arrival of visible light to the detector. For additional information about this 

technique see chapter 7. 

 

 

4.2 Examination of painting’s samples by OM 

Since the early 1900s that optical microscopy has been used as primary tool for 

examination of painting’s samples and characterization of its components (78,146,147). Using this 

relatively cheap technique, present in almost every laboratory, it is possible to achieve 

important results and select the most appropriate technique to carry on the study. 

As referred before painting’s samples can be layered samples, namely, cross sections 

and thin sections, which present the all the layers that constitute the painting, or particle 

samples. Examination of layered samples (denominated stratigraphic analysis) is central to 

the technical understanding of the painting and their preparation. It allows: i) to determine the 

structure of the painting, i.e. the chronologic sequence of the paint layers and them 

thickness; ii) to characterise the materials and techniques of an artist, such as planned use of 

opaque and transparent layers; iii) reveal the presence of pentimenti (small composition 

alterations done by the painter); iv) determine shape and size of the pigment grains and them 

distribution on each layer; v) to distinguish between original and overpaintings, restoration or 

alteration. It is also very important for assessing conservators/restorators in: vi) determining 

layer condition and adhesion; vii) planning and implementing a restoration or maintenance 

treatment interventions (when surface tests are ambiguous or fail to account for the 

behaviour of subsurface layers); viii) evaluating the progress of surface-related treatments, 

such as the removal of degraded varnish or overpaint, helping to decide how much, and how 

to clean it; ix) studying and evaluate a degradation phenomena, such as for example, the 

lead protrusions identified in oil paintings. Although identification of the components 

(pigments, dyes, extenders and medium) in cross sections is also possible, there are several 

limitations (21) and complementary techniques are often required for definitive identification 

(146). 

Thin sections are examined under transmitted light, but because each layer is generally 

densely populated with absorbing particles (pigments) with a different refractive index from 

the binder, little light is transmitted through the cross sections and these are examined under 

(visible or ultraviolet) reflected light.  

Analysis of particle samples is used to pigment identification (most traditional pigments 

exhibit a unique set of optical properties, these can be used for identification purposes), 

determination of the particle size of the pigment, particle size distribution, presence of 
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mineral inclusions. Particle samples are prepared as dispersions and characterized based on 

physical properties, such as size and shape and/or on optical properties, such as refractive 

index and birefringence (Polarized light microscopy - PLM), or even made to react with a 

series of chemical reagents and heat (microchemical tests) (147). Unfortunately, identification 

requires a highly skilled operator, and even then fails to yield conclusive, or occasionally, 

accurate results. 

 

Due to the complexity of the samples under analysis, manual separation of each layer 

(required for Polarized light microscopy) was very difficult, if not impossible, and since other, 

more specific techniques for identification purposes were going to be used, Optical 

microscopy analysis was limited to Darkfield Microscopy28. 

 

 

4.3 Experimental conditions 

 

Samples 

Samples were analysed as cross sections (see section 3.2.1 for sample preparation 

description), except for the sample removed from the red from the neckerchief (O3) of the 

painting Rapariga de Anacapri (Figure 3.1o), which was analysed in the bulk form. 

 

Experimental set-up 

Examination of the cross sections by optical microscopy was carried out using a Leitz 

WETZLAR microscope (10x ocular) under reflected visible light produced by a halogen lamp 

(Figure 4.5). Image acquisition was carried out with a coupled Leica DC500 digital camera 

and IM1000 software, using 6.5x, 11x and 22x objectives (corresponding to total 

magnifications of 65x, 110x and 220x, respectively). Layer dimension was measured using 

Leica Qwin software. 

To ensure that the resin block surface (containing the sample) was completely horizontal 

to the microscope stage (perpendicularly to the objective axis), the block was pressed, using 

a parallel press, into a lump of plasticine on a metal plate. To reduce the amount of light 

scattered by the sample and rend its surface saturated, a thin glass cover slip was placed 

over the sample and held in place with a small drop of glycerol/water (50 % v/v). By this way, 

surface irregularities were remove and a better colour contrast and an easy differentiation 

between layers was obtained. 

                                                
28 During the study, it was found the necessity to use also Fluorescence microscopy to characterize a small 
number of the samples. The analysis and the results can be seen in chapter 8. 
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Figure 4.5 Leitz WETZLAR optical microscope used for the analysis of the samples. 

 

 

4.4 Results and discussion 

The results of the examination of the cross sections by OM, provided information 

regarding the structure of the paintings, such as characterization of the ground layer; 

existency of underdrawing; number29, thickness and technique of the paint layers, as 

presented below. No attempt to pigment’s identification was undertaken, since other more 

efficient techniques will be used for this purpose. 

Only a few of the cross sections are presented in this chapter in order to clarify and/or 

exemplify the results presented, all of them being presented in Appendix D. 

 

Since sample O3, was not mouted as a cross section, its stratigraphy was not determined. 

Nevertheless, since only two layers were visible on the thin section of this sample, one white 

and the other red, which were obseved by OM as the upper and lower layers (Figure D89), 

and the other samples removed from the same painting are also characterized by a white 

ground layer and a single paint layer, it likely probable that sample O3 is constituded by a 

white ground layer and a red paint layer. 

 

4.4.1 Ground layer 

Generally, the cross sections present a white ground layer (variable thickness), as 

presented in Figure 4.6a. One particularity was verified for the painting Paisagem - Abertura 

                                                
29 Numeration of the layers is done from inside to outside, i.e. by their application order. 
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da Rua Alexandre Herculano, where the ground layer seem to be composed by three white 

layers of slightly different opacity (Figure 4.6b). 

 

..  

Figure 4.6 Cross sections of the samples: (a) N5 - green foliage from Portão and (b) C4 - brown from 

the ground from Paisagem - Abertura da Rua Alexandre Herculano; viewed under reflected light. 

 

Exceptions were found in, Estátua do jardim de Luxemburgo, Senhora vestida de 

preto and Paisagem de St. Sauves. Cross sections from Estátua do jardim de 

Luxemburgo and Senhora vestida de preto, two wood panel paintings, present no ground 

layer (see for example, the cross section from Senhora vestida de preto presented in 

Figure 4.7a), while the cross sections from Paisagem de St. Sauves (canvas painting) 

present a brownish ground layer 1 and a white imprimitura (layer 2) (Figure 4.7b). 

 

..  

Figure 4.7 Cross sections of the samples: (a) Q4 - black of the dress from Senhora vestida de Preto, 

and (b) F4 - brownish of the ground from Paisagem de St. Sauves; viewed under reflected light. 

 

Generally, the ground layer is clearly separated from the paint layers, indicating that the 

paint layers were applied after the ground layer had dried. However, in the sample C2 of the 

green of the tree from Paisagem - Abertura da Rua Alexandre Herculano (Figure 4.8a) an 

infiltration of the ground layers 1 and 2 by the yellow paint layer 4 is clearly seen, and in the 

100 µm

2 3

100 µm 

1

2 

3 

4

100 µm 

1 2

(a) (b) 

1

4

1

3
2

6
5 

4

100 µm

(a) (b) 



55 

sample F6 of dark green of the ground from Paisagem de St. Sauves (Figure 4.8b), 

particles of the paint layer 2 are present in the ground layer. 

 

..  

Figure 4.8 Cross sections of the samples: (a) C2 - green of the tree from Paisagem - Abertura da 

Rua Alexandre Herculano and (b) F6 - dark green of the ground from Paisagem de St. Sauves; 

viewed under reflected light. 

 

4.4.2 Underdrawing 

In the sample H8 of the dark green of the cactus from Casas brancas de Capri (Figure 

4.9a) and the samples: S2 of the green from the bushes (Figure 4.9b), S5 the blue from the 

blouse and S7 the blue from the skirt from Mulher da água, it is possible to see a 

discontinuous and variable in thickness black layer 2 between the ground layer and the paint 

layers, which probably corresponds to a pencil/brush contour line. 

 

..  

Figure 4.9 Cross section of the samples: (a) H8 - dark green of the cactus from Casas brancas de 

Capri and S2 - green from the bushes from Mulher da água; viewed under reflected light. 

 

 

4.4.3 Paint layers 

As shown in Figure 4.6-4.9 paint layers were verified to vary significantly in number (1 to 

10), thickness (4 to 358 µm), pigment colour distribution and execution, even across the 

same painting. For example, while the sample removed from yellow from the brush from 
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Esperando o Sucesso (K3) has 9 paint layers (Figure 4.10a), the sample removed from the 

blue from the sky from Casas brancas de Capri (H4) (Figure 4.10b), has only one paint 

layer. In the same way, while layer 7 of sample K3 is only 19 µm thick (Figure 4.10c), layer 1 

of the sample removed from the brown of the wood box from Esperando o Sucesso (K9) is 

184 µm thick (Figure 4.10d). 

 

.  

. . 

Figure 4.10 Cross section of the samples: (a) K3 - yellow from the brush from Esperando o 

Sucesso, (b) H5 - blue from the sea from Casas brancas de Capri, (c) K9 - brown of the wood box 

from Esperando o Sucesso and (d) H4 - blue from the sky from Casas brancas de Capri; viewed 

under reflected light. 

 

Relatively to the execution method, paint layers were normally added after the previous 

one had dried, although paint layers applied wet in wet (producing blending or half blending 

of the colours) were also identified, especially in vegetation and ground areas (Figure 4.8a 

and b and Figure 4.10c); similar hues were often obtained using different compositions, as 

demonstrated by the cross sections of the two samples removed from blue areas of the 

painting Casas brancas de Capri (Figure 4.10b and d). While the sample removed from the 

sky (b), presents a single blue paint layer, the sample removed from the sea (d) presents 

four bluish layers. 

Regarding the pigment particles, these vary significantly both in colour and size, even 

across a single layer. The high variety of colours suggests that a large number of pigments is 

present, a result to be confirmed by infrared and Raman microscopy. The strongly 

heterogeneous size of some of the pigments, such as ochre pigments (see for example, 
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samples K9 (Figure 4.9c) and K14) and cobalt blue (see for example sample H4 (Figure 

4.9d)) strongly suggest that these were hand-ground, while the uniform and reduced size of 

other pigments, such as ultramarine blue (see for example, samples C2 (Figure 4.7) and T1), 

is indicative of a machine grounding30. Artists had known for centuries that some pigments 

give a more saturated (more intense) colour when they are not ground too finely and a more 

light colour is finely-ground, consequently is not odd to identify pigments sometimes 

coarsely-ground and others finely-ground (21). 

Because this technique cannot discriminate between grains with 0.1-0.5 µm, is not 

possible to determine the size of the smallest particles, but the largest pigment particles have 

a size of about 54 µm (red lake particles of the dark green of the ground from Paisagem de 

St. Sauves). 

The varnish coating layer appeared to be thin and discontinuous. 

 

4.4.4 Questionable samples 

Three of the samples, namely those removed from: the blue of the sea from Paisagem de 

Anacapri (T2), the grey from the back from Flores Campestres (W4) and the light grey from 

the back from Flores Campestres (W7) (Figure 4.11) seem to show a ground layer 1 

somehow different from that seen in the other samples, rising doubts regarding them origin, 

which will be address in the following chapters. 

 

   
Figure 4.11 Cross section of the samples: (a) T2 - blue from the sea from Paisagem de Anacapri, (b) 

W4 - grey from the back from Flores Campestres, and (c) W7 - light grey from the back from Flores 

Campestres, viewed under reflected light. 

 

Also strange is the brownish layer 4 (6 µm thick) between the two blue layers (layers 3 

and 5), in the sample removed from the sky from Paisagem de St. Sauves (F1) (Figure 

4.12). It seems as if the last blue layer was applied over a rest of the brownish layer, possibly 

                                                
30 Identification of pigments was achieved through other analytical techniques (see following chapters). 
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a varnish layer, being either a rework by Pousão or a result of a conservation intervention. 

Only after further analysis, will it be possible to confirm or to discharge these hypotheses. 

 

 
Figure 4.12 Cross section of the sample F1 - blue from the sky from Paisagem de St. Sauves, 

viewed under reflected light. 

 

4.4.5 Conservation state of the paintings 

No signal of alteration or degradation of the paint layers or pigments is visible, assessing 

a good conservation state of the paintings. 

 

4.5 Conclusions 

The analysis by OM of 149 cross sections out of the 150 samples31 removed from the 23 

paintings under study, allowed valuable information to be obtained relatively to the painter’s 

technique and the state of conservation of the paintings’. Preliminary examination of cross-

sectioned samples under reflected light is essential to show graphically what went on under 

the painting surface. 

In general, paintings are characterized by: i) the presence of one or more white ground 

layer(s). Exceptions are the paintings Estátua do jardim de Luxemburgo and Senhora 

vestida de Preto, which do not present any ground layer at all and painting Paisagem de 

St. Sauves, that has a browninsh ground layer and a white imprimitura; ii) well defined paint 

layers, indicating that these were applied after the ground layer or previous paint layers had 

been dried, iii) a variable number of paint layers (1 to 10) and respective thickness (4 to 358 

µm), iv) the presence of a wide range of pigments colours, v) the absence of reworks, vi) a 

good state of conservation, as no signal of alteration or degradation of the paint layers or 

pigments were detected. 

This technique also alerted to the possible existence of samples removed from restoration 

areas, as verified afterwards by other techniques. 

 
                                                
31 Excepted for sample O3, see page 40. 
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5 Introduction to vibrational 
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This chapter provides a brief introduction to Infrared and Raman 

microscopy (µ-IR and µ-R), the core of analytical techniques of this 

project. Only the necessary information to understand the analysis and 

interpretation of the results is provided. 
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Infrared and Raman microscopies are vibrational molecular spectroscopic techniques that 

have been extremely helpful to the analysis of various types of artworks and samples of 

archaeological interest, such as ceramics, painted pottery, frescos, wallpaper, illuminated 

manuscripts, glasses, paintings, etc. and to the identification of various materials: pigments, 

extenders, binder, degradation products, etc (16,48,148-159). 

Coupling an optical microscope to an IR or Raman spectrometer, it is possible the 

determination of the molecular composition of microscopic heterogeneous samples, i.e. 

analyse of a reduced amount of sample with a good signal, and at the same time, provides 

their spatial distribution at a resolution close to the diffraction limit. 

Although there are a large number of books about Infrared and Raman spectroscopies 
(160-163) and even some about Infrared and Raman microscopies (164-166), in order to understand 

these two analytical techniques and interpret the data they provide, we found it useful to 

present an introduction to the theoretical and practical background of these techniques. 

 

 

5.1 Principles of vibrational spectroscopy 

The atoms in molecules are represented at their equilibrium positions (ca. average 

positions). However, even in solids, atoms are constantly vibrating about their equilibrium 

positions, and consequently lengths and angles of all the chemical bonds in the molecule are 

constantly changing (167). 

The vibrational frequency of a given chemical bond depends of its stiffness (force 

constant), the masses of the connected atoms, the molecular geometry and, to a less extent, 

of the neighbouring parts of the molecule. So, vibrational frequencies are specific of each 

chemical bond and can be used for identification purposes or for determination of important 

structural parameters, such as force constants, lengths and angles of the bonds and 

geometry. 

The analytical techniques that provide this kind of information based on the vibrational 

frequencies are referred to as vibrational spectroscopy techniques. Although there are a new 

range of vibrational spectroscopic techniques32, Infrared and Raman spectroscopies are still 

the most common, due to their availability/cost, well established knowledge and high number 

of reference spectra libraries/books. 

 

 

 

                                                
32 High-resolution electron energy loss spectroscopy (EELS) (168), inelastic electron tunneling spectroscopy (IETS) 
(169), inelastic molecular beam scattering (170) and inelastic neutron scattering (INS) (171). 
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5.1.1 Classical mechanics (CM) approach: normal modes of vibration 

In space, every atom can move independently along the axes x, y and z of a cartesian 

coordinate system, i.e. each atom has 3 degrees of freedom. Therefore, a molecule with N 

atoms has 3N degrees of freedom. Any motion of the molecules can be considered as a 

linear combination of the 3N degrees of freedom.  

In every molecule, 3 degrees of freedom describe the translational motion, i.e. the 

movement of the molecule as a whole, another 3 (or 2, if the molecule is linear33) describe 

the rotational motion, i.e. rotation of the molecule as a whole about its center of mass and the 

remaining 3N-6 (or 3N-5, for linear molecules) degrees of freedom describe the normal 

modes of vibration. Figure 5.1 presents the degrees of freedom of an angular triatomic 

molecule (N=3). 

 

 

Figure 5.1 Degrees of freedom of an angular triatomic molecule (N=3). Tx,y,z and R x,y,z are the 

translations and rotations of the molecule as a whole, respectively. νa, νs and δ are the normal modes 

of vibration (see below the meaning of these symbols) (adapted from Schrader B. (123)). 

 

Because the bonds are elastic, molecules can be visualized, to a first approximation, as 

point masses connected by springs (Figure 5.2) and most of the characteristics of their 

vibrations can be understood in terms of classical harmonic motion (harmonic oscillator 

model). 

 

 

Figure 5.2 Two point masses connected by a weightless spring. 

                                                
33 Because rotation of a linear molecule about the axis of the bond does not involve the displacement 
of any of the atoms, one of the three coordinates is not necessary. 
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When by a force action &', a point mass attached to a spring is displaced from their 

equilibrium position, the spring itself inflicts a restoring force &(, in order to bring the mass to 

its initial position (Hooke’s law). This force, &( = − *+, where + is the displacement from the 

equilibrium position (in m) and * is the force constant of the spring (in N/m), causes the mass 

to vibrate, i.e. to produce an harmonic motion (periodic motion). 

Solving the Newton’s second law of motion, & = ,- (where , is the mass and - its 

acceleration), for this simple case of a single point mass conneted to a spring obeying 

Hooke’s law, or the equivalent Lagrange’s equation of motion, 
�
�. / �0

�1234 + �6
�13 = 0 (where 

8 = '
( ,+2 ( and 9 = '

( *+( are the kinetic and potential energies of a spring, respectively, the 

+: are any set of cartesian displacement coordinates and the dot denotes the derivate with 

respect to time): 

 ,- = −*+        or        , �;1
�.; + *+ = 0        or      ,+< + *+ = 0 (5.1) 

where +<  reperesents the second derivative of + with respect to time, it is determined that the 

displacement of the single point mass particle is given by 

 = = � ��>  ?�@AB + CD (5.2) 

which describes an harmonic movement of maximum displacement or amplitude �, phase 

constant, E, and frequency, �; F represents time, in seconds. The frequency, in s-1 (also 

known as Hz), is given by: 

 ν = '
(H I J

K (5.3) 

 

For a system with N point masses particles, such as a molecule with N atoms, calculation 

of the displacement of all the N masses is significantly more complicate. Lagrange equation 

is applied, which requires to find the expressions for 8 and 9. 

For a molecule with N atoms, the total kinetic energy is given by (a sum of the kinetic 

energy of all the atoms, in a three-dimensional space34): 

 28 = ∑ ,:+2:(MN:O'  (5.4) 

which can be simplified using mass-weighted cartesian coordinates P: = Q,:+:35 to: 

 28 = ∑ P2:(MN:O'  (5.5) 
                                                
34 The coordinates are labeled in such a way that +', +(, +M are the coordinates, +, T and U respectively, of the 
first atom, whereas +V, +W and +X are the coordinates for the second atom, and so forth. 
35 These coordinates are labeled in such a way that P' = √,'+', P( = √,'+(, PM = √,'+M, PV = √,(+V, PW =
√,(+W, and so forth (,: = ,' to Z = 1, 2, 3; ,: = ,( to Z = 4, 5, 6, and so on). 
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where P2: reperesents the first derivative of P: with respect to time. 

In addition, when using mass-weighted coordinates all the amplitudes are properly 

adjusted to the different masses of the point particles, as the amplitude is dependent of the 

mass. 

Regarding the potential energy, it is known that it is a complex function of the geometry of 

the system, i.e. that it changes continually with the mass-weighted cartesian coordinates (P:). 
For a molecule with N atoms, in which the atoms present small displacements from the 

equilibrium position, the total potential energy can be described by a Taylor series as: 

 9 = 9� + ∑ / �6
�_3

4
�

MN:O' P: + '
( ∑ ∑ ` �;6

�_3 �_a
b

�
MN�O' P:P� +MN:O' … (5.6) 

where the derivates are evaluated at P: = 0, i.e. at the equilibrium position. This expansion 

can be simplified to: 

 29 = ∑ ∑ ` �;6
�_3 �_a

b
�

MN�O' P:P�  MN:O'  = ∑ ∑ *:�MN�O' P:P�MN:O'  (5.7) 

with  *:� = ` �;6
�_3 �_ab

�
, since the constant 9�, the potential energy of the equilibrium position, 

can be taken as zero, the term with the first derivative can also be taken as zero because at 

equilibrium the potential energy corresponds to a minimum, hence / �6
�_34�

= 0, and the higher 

expansion terms are ignored as it is assumed that atoms present small displacements from 

the equilibrium position (172-175). 

 

From equations 5.5 and 5.7, and taking the required derivates (
�
�. / �0

�_2 34 and 
�6
�_3), 

Lagrange’s equation is written as: 

 P<: + ∑ *:�P� = 0MN�O'  (5.8) 

which is a short form of the 3� simultaneous differential equations, with index Z running from 

1 to 3�. P<: reperesents the second derivative of P: with respect to time. The solutions of 

these simultaneous differential equations are functions of the harmonic oscillator (173-175): 

 P: = �:  cos  ?2π�F + ED (5.9) 

The frequency ν is given by: 

 ν = '
(H IJ

h (5.10) 

where i is the reduced mass (
'
j = '

kl + '
k; + ⋯ + '

k3
). 
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Combining equations 6.8 and 6.9 it is obtained: 

 ∑ *:��� − ?2n�:D(�: = 0MN�O'  (5.11) 

which can be re-writen as: 

 ∑ o*:� − �p:�q�� = 0MN�O'  (5.12) 

where � = ?2n�D( and  p:� is the Kronecker symbol (p:� = 1 if Z = r; p:� = 0 if Z ≠ r). 
This equation is a short form of 3� simultaneous homogeneous linear equations of 

unknown ��, whose solutions will be different from the trivial solution (�� = 0 with r =
1,2, … ,3�, which has no interest since it implies that all atoms are at rest) when: 

 t*:� − �p:�t = 0 (5.13) 

which is known as the vibrational secular equation and has a 3� order. The solution of this 

equation gives, unambiguously, the values of the vibrational frequencies of the system, �:, 
since �: = ?2n�:D(. However, from these 3� values, only 3N-6 or 3N-5 present a frequency 

different from zero, which correspond to vibrational degrees of freedom. The 6 or 5 values 

which present a frequency equal to zero correspond to the translational and rotational 

degrees of freedom (173). 

Unfortunately, because the amplitude and the frequency of a vibrational system are 

unrelated, the amplitudes, �:, are not determined unequivocally. Nevertheless, for a 

particular solution �u: 

 P: = �:k  cos  ?2π�uF + EuD           Z = 1, 2, … . , 3� (5.14) 

that shows that in a given vibrational mode w, all the atoms involved are vibrating around the 

equilibrium position in phase (xk) and with the same frequency �k, but with different 

amplitudes, �:k. This type of vibrational mode is designed as normal mode of vibration and 

the frequency that is associated to it, is referred to as fundamental or normal frequency 
(123,174,175): 

 

However, because the 3� equations 6.8 are simultaneous differential, the sum of two or 

more of the solutions 6.14 are also a solution: 

 P: = ∑ �:k  cos  ?2π�uF + EuDMN:O'           Z = 1, 2, … . , 3� (5.15) 

This indicates that each mass-weighted coordinate, P:, is associated to more than one 

frequency �u, i.e. to more than one normal mode and therefore, it occurs overlapping 

between several modes. This occurs because the potential energy in mass-weighted 

coordinates (equation 6.7) presents cross terms. 
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It is therefore necessary to establish a new set of coordinates that allow each coordinate 

to be associated with only one of the 3� − 6 normal vibrational modes. These are the normal 

coordinates yu, defined from mass-weighted cartesian coordinates as: 

 yu = ∑ z{:uP:MN:O'  (5.16) 

Each normal coordinate yu is a linear combination of the coordinates P:, which represent 

the movements of the atoms within a molecule relative to the equilibrium position36. The 

coefficients z′:u ensures that each normal coordinate is associated with only one normal 

vibration mode, hence the number of degrees of freedom corresponds to the number of 

modes of motion (175). 

In a normal coordinate space, kinetic and potential energies can be written as: 

 28 = ∑ y2u(MN|XuO'  (5.17) 

 29 = ∑ �uyu(MN|XuO'  (5.18) 

which combined with Lagrange’s equation result in: 

 y<u + �uyu = 0 (5.19) 

The solutions to this equation are given by: 

 yu = y:k  cos  ?2π�uF + EuD           Z = 1, 2, … . , � (5.20) 

Each normal coordinate yu describes how each atom Z is displaced from the equilibrium 

position during the associated normal mode w, and consists in a displacement vector for 

each atom as shown in Figure 5.1 and Figure 5.3 Reversing the arrows, it is represented the 

opposite phase of the same vibration. 

Each normal mode acts as a harmonic oscillator, independent of any other normal mode. 

 

Classification of the normal vibrational modes 

In general the vibrational modes can be classified as stretching modes (ν), which involve 

change of the bond length and bending modes, which involve change of bond angle. 

Bending modes are further classified as in-plane bending (δ), also called deformation, when 

one or more angles are changed, or as out-of-plane bending (π), when one atom oscillates 

relatively to the plane made by three neighbour atoms. To some characteristic bending 

modes special descriptive names were given: scissoring - in-plane symmetric bending mode, 

wagging (ρw) - out-of-plane bending, twisting (ρt) - out-of-plane bending and rocking (ρr) - in-

                                                
36 With the mass-weighted coordinates, three displacement vectors are placed in each atom, with origin at the 
equilibrium position. 
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plane bending. Figure 5.3 shows the normal vibrational modes of a methylene group when 

attached to a molecule. The only bending in four-membered ring systems (Figure 5.4) is 

referred to as ring puckering mode, as it resembles ‘puckering’ of the ring framework (176). 

 

 
Figure 5.3 Approximate form of the normal modes of a methylene (CH2) group when attached to a 

molecule and respective frequencies. The + and - signals indicate upward and downward motion in 

the plane of the paper, respectively (adapted from Nakamoto K. (175), Schrader B. (177) and Shurvell HF. 

(178)). 

 

When any symmetry exists in a molecule (such as the plane of symmetry that passes, 

vertically, through the carbon atom in Figure 5.3) the vibrational modes will reflect that 

symmetry. If the symmetry properties are preserved during the vibration (which, for the 

referred symmetry plane, means that the bonds are still mirror like), the vibrations are 

classified as in-phase or symmetric (s). If, otherwise, the symmetry properties are not 

preserved during the vibration, the vibrations are classified as out-of-phase or 

antisymmetric37 modes (a) (123,175). The particular case of the symmetric expansions and 

contractions of the bonds in cyclic and tethaedrical compounds are referred to as breathing 

(176). 

Numbering of the normal modes is conventionally made by ordering the modes by 

descending symmetry, the totally symmetric modes at the top of the list. Modes of the same 

symmetry are ordered by decreasing energy. Generally, for vibrations involving the same 

atoms, stretching modes have higher energy than the bending modes and antisymmetric 

stretching modes have higher energy than the symmetric modes (180). 

                                                
37 Antisymmetric modes are often also referred as “asymmetric”. However, currently, this term is not considered 
correct (179). 
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Whenever two or more vibrational modes present approximately the same frequency, 

either as a result of symmetry of the molecule (the motion they describe is identical) or 

simply accidently, these are said to be degenerate. 

 

                 

Figure 5.4 (a) Puckering and (b) breating modes of a four-membered ring (adapted from 

Sathyanarayana DN. (176)). 

 

5.1.2 Quantum mechanics (QM) approach 

Although classical mechanics describes molecular vibrational frequencies, according to it, 

an harmonic oscillator (a bond) may vibrate with any amplitude, i.e. it can posses any 

amount of energy, even zero (at rest), what is not actually correct. Quantum mechanics, 

instead, predict that molecules have only definite energy states, i.e. they can only lose or 

gain restricted amounts of energy. Therefore, to fully understand vibrational spectroscopy 

both classical and quantum mechanics are necessary (123,181). 

 

In contrast to macroscopic particles for which the classical mechanics can determine 

exactly the position and velocity (or momenta), i.e. the state of the system, for microscopic 

scale particles (atoms, molecules, nuclei), due to their reduced mass, the act of the 

measurement itself perturbes their position or momentum in such a way, that these two 

quantities cannot be determined simultaneously (Heisenberg’s uncertainty principle). As 

direct consequence of this uncertainty, quantum mechanics expresses microscopic particles 

as if they are spreading through space like a wave, and gives their position as a probability 

density of finding the particle at a given location in space. 

The state of quantum-mechanical system is described by a state function (}1,.), called 

wavefunction, which is a function of time and space coordinates of the particles of the 

system, and contains all the information about the particles, such as position, momentum, 

energy, etc. The possible }1,. and the energy of the system are found solving the (time-

dependent) Schrödinger equation (174,180,181): 

 − ℏ
(k

�;}�,�
�1; + 91,.}1,. = − ℏ

�
�}�,�

�.  (5.21) 

(a) (b) 
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where ℏ = �
(� and � = √−1. The probability density is given by |}|(. 

 

To characterize a stationary system, such as an isolated atom or molecule, whose 

potential energy is independent of the time, we start assuming that wavefunction }1,. can be 

separated into two independent functions of position and time: 

 }1,. ≡  Ψ1 ⋅ �. (5.22) 

thus, a time-independent Schrödinger equation can be written, which for a one-particle, one-

dimensional system is (181): 

 − ℏ
(k

�;��
�1; + 91Ψ1 = �Ψ1 (5.23) 

This equation can be written in the more compact form, 

 ��Ψ1 = �Ψ1 (5.24) 

where �� is the Hamilton operator or Hamiltonian (�� = 8� + 9� , where 8� and 9�  are the 

operators of the kinetic and potential energy, respectively). Each function Ψ1 and the 

corresponding energy are called eigenfunctions and eigenvalues of the Hamilton operator, 

respectively (174,180,181). 

 

To solve Schrödinger equation, even for the simplest case of a diatomic molecule, several 

approximations are employed. To a first approximation, it is assumed that nuclei and 

electrons are pontual masses. Secondly, because an electron possesses a much smaller 

mass than the nuclei, hence, moves faster than the nuclei - appearing that the nuclei is 

stationary, the electronic and nuclear motion can be treated separately, i.e. the total 

wavefunction of a molecule can be separated into an electronic wavefunction and nuclear 

wavefunction (Born-Oppenheimer approximation). 

For such cases, the total nuclear wavefunction of a molecule can then be separated into 

electronic, vibrational and rotational wavefunctions (neglecting nuclear spin) (172,174): 

 Ψ = ����� ⋅ ��:� ⋅ ���. (5.25) 

and consequently, the corresponding energies are additive: 

 � = ����� + ��:� + ���. (5.26) 

Within the limits of the perturbation theory, these contributions can be calculated 

independently to a good degree of accuracy (181,182). Therefore, the vibrational Schrödinger 

equation can be expressed as: 
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 ���:�Ψ�:� = ��:�Ψ�:� (5.27) 

Using the expressions for T and V based in the normal coordinates yu (equations 6.17 

and 6.18), the vibrational Hamiltonian assumes the form (172): 

 �� = − ℏ
( ∑ �;

���;MN|XuO' + '
( ∑ �uyu(MN|XuO'  (5.28) 

and the total vibrational Schrödinger equation is: 

 − ℏ
( ∑ �;��3�

���;MN|XuO' + '
( ∑ �uyu( ��:� = ��:���:�MN|XuO'  (5.29) 

where ��:� is the total vibrational energy. Since the normal coordinates yu are independent 

of each other, the total vibrational wavefunction can be separated into 3� − 6 wavefunctions, 

each associated with a single normal coordinate: 

 ��:� = �'?y'D ⋅ �(?y(D ⋅ … ⋅ �MN|X?yMN|XD (5.30) 

and so, 3� − 6 equations of the form: 

 − ℏ
(

�;��
���; + '

( �uyu(�u?yuD = �u�u?yuD (5.31) 

are obtained. These are time-independent Schrödinger equations for the harmonic oscillator 

model, and their eigenvalues are: 

 �u = /�u  + 1

2
4 ℎ�u              u = 1, 2, …, 3N-6

�� = 0, 1, 2, …  (5.32) 

where, �u is vibrational quantum number associated to the normal vibrational mode w, ℎ is 

the Planck’s constant (6.626 x 10-34 J s) and �u is the classical vibrational frequency, 

described by equation 6.3. This means that the harmonic oscillator can possess only discrete 

energy values and vibrate only with discrete amplitude, contrary to the classical idea. Any 

molecule (or ion) can only exist in definite energy states, called stationary states, in which it 

will remain indefinitely, unless some external factor, such as exposition to electromagnetic 

radiation, intervenes. Then, a molecule (or ion) may absorb or emit a photon of frequency  � 

and make a transition to another stationary state, as long as ℎ� matches the difference in 

energy between the two states. 

Stationary states differ in energy and in the amplitude of the oscillation. The lowest energy 

state (�u = 0, � = 1

2
ℎ�u) is called fundamental or ground state and corresponds to the normal 

frequency of the classic mechanics. Stationary states of higher energy are called excited 



 

70 

states. Because, under normal conditions, most of the population is in the level �u  = 038 and 

according to the harmonic-oscillator selection rule only those transitions corresponding to 

∆�u  = ± 1 are allowed, the main transitions are �u  = 0 → 1, which are referred to as 

fundamental transitions (181). Transitions starting from excited states, which are observed as 

hot bands, can also occur as long as they obey the harmonic oscillator selection rule, such 

as the transition �u  = 1 → 2. However, as their name points out, these transitions only 

become more intense and observable, with the increasing of temperature, as the population 

of the excited states increases with the increase of temperature. 

 

Experimentally, one finds deviations from the harmonic oscillator model, since bands 

forbidden by the harmonic oscillator approximation are observed and oposite to the predicted 

series of equally spaced and never ending vibrational levels, a molecule actually presents a 

finite number of vibrational levels and once the vibrational energy exceeds the dissociation 

energy, ��, the molecule dissociates (176,181). This occurs because bonds in real molecules do 

not act as a harmonic oscillator, but rather as anharmonic vibrators, since the force needed 

to compress a bond by a definite distance is larger than the force required to stretch it (123). 

A correction term is then introduced in equation 6.32 to account for anharmonicity: 

 �u = /�u  + 1
24 ℎ�u − /�u + 1

24( ℎ�u�u         u = 1, 2, …, 3N-6
�� = 0, 1, 2, …  (5.33) 

where �u is the anharmonicity constant. 

 

Due to anharmonicity, the harmonic oscillator selection rule is relaxed and bands caused 

by transitions that involve the variation of a single vibrational quantum number by ∆�u > 1, 

named overtones and bands caused by transitions that involve the variation of two or more 

vibrational quantum numbers at the same time by ∆�u ≥ 1 and ∆�� ≥ 1 (where w and z 
represent two different modes), named combination, become allowed. Overtones bands 

occur when a single photon excites a single mode beyond  ∆�u = 1; the transition � = 0 → 2, 

referred to as the first overtone has a frequency of approximately twice that of the 

fundamental transition, 2�', the transition �= 0 → 3, referred to as the second overtone, has 

approximately three times the frequency of that of the fundamental transition, 3�1, and so on. 

Combination bands occur when a single photon excites more than one vibration, 

fundamental or overtone, producing bands with frequencies approximately to the sum or 

                                                
38 According to Boltzman distribution, at room temperature (and for relatively light molecules), the population of 
the higher energetic states is normally lower than that of the ground state (181). As the intensity of each transition is 
proportional to the population of the energy level from which the transition originates, the intensity of the 
transitions originated in the ground state are most intense. 
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difference of the involved vibrations, for example, 2�' + �(; �' + �M or 3�( + �'. Generally, 

overtones and combination bands are much weaker than the fundamental modes from which 

they derived (180,182,183). 

Because anharmonicity lowers the spacing between adjacent vibrational levels as � 

increases, hot bands, overtones and combinations present a frequency below the expected 

value (174). 

 

Although, infrared and Raman spectroscopy are both vibrational spectroscopic 

techniques, the mechanism of interaction of radiation with matter is different for each 

technique, thus complementary vibrational information may be acquired. A brief introduction 

to both techniques will be given. 

 

 

5.2 Infrared spectroscopy 

Infrared radiation is insufficient to cause electronic transitions, but it has enough energy to 

induce vibrational and rotational transitions in the ground electronic state. 

When a sample is illuminated with infrared radiation (which contains a continuous range of 

frequencies), those frequencies of the infrared radiation that coincide exactly with vibration 

frequencies of the sample are selectively absorbed, decreasing the intensity of the beam that 

passes through the sample (for each frequency) from ¢�?�D to ¢?�D (Figure 5.5 and 5.6a). 

 

 

Figure 5.5 Simplified scheme of the infrared absorption mechanism (adapted from Ferraro JR, et al. 
(163)). 

 

Two ways are commonly used to express how much light is absorbed by the sample. 

Either as the percentage of incident radiation that is transmitted by the sample, percentage 

transmittance, 8 ?%D: 
 8 ?%D =  ¤

¤¥  × 100 (5.34) 

or as the fraction of the incident radiation that is absorbed by the sample, absorbance, �: 

 � = log ¤¥
¤  (5.35) 

Sample
I0(ν) I(ν)
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Because according to Beer-Lambert law, absorbance is linearly related to the 

concentration, ©, of the sample: 

 � = Ez© (5.36) 

where E is the molecular absorption coefficient (L mol-1 cm-1), and z and © are the 

pathlenght (cm) and the concentration (mol L-1) of the sample, respectively, IR spectroscopy 

can be used for quantitative analysis (163). 

The graphic plot of the measured absorbance, A (or % transmittance, T) at each 

frequency, originates an Infrared spectrum (Figure 5.6b). However, because in vibrational 

spectroscopy the reciprocal of the wavelength, called wavenumber �ª (�ª = 1 �⁄ , in cm-1) rather 

than the frequency � (� = © �⁄ , in cycle/s) is used to characterize the electromagnetic 

radiation, IR spectra are generally a graphic representation of absorbance (or % 

transmittance) vs. wavenumbers. 

Because frequency and wavenumber only differ by ©, the velocity of light (�ª = � ©⁄ ), it is 

not unusual to refered to the wavenumber as the vibrational frequency. 

 

 

5.3 Normal Raman spectroscopy 

Raman spectroscopy differently from infrared spectroscopy does not observe light 

absorbed/transmitted by a sample, but rather the light that is inelasticly scattered by the 

sample. 

Scattering can be understood as an absorption-emission concerted process, i.e. the 

absorption of one photon of the incoming radiation is accompanied by simultaneous emission 

of one photon in a different direction, with no measurable time delay between the two 

events39. With absorption the molecule arises to a highly energetic non-stationary state (is 

not a solution of the Schrödinger equation), normally designed as virtual state, from which it 

will tend to move on to one of its stationary states, emitting a photon with a different direction 

from the exciting one (181). 

 

                                                
39 Although, in order to become clearer, it is normally referred that emission takes place after absorption, the 
opposite order, emission followed by the absorption can occur (184). 
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Figure 5.6 (a) Energy level diagram illustrating the energetic transitions induced by infrared 

absorption, and Raman and Rayleigh scattering in a diatomic molecule (single vibration mode). (b) 

Infrared spectrum and (c) Raman and Rayleigh scattering simplified spectrum (the red dash square 

represents the usual Raman spectra). Figure adapted from Nakamoto K. (175) and Keresztury G. (185) 

(not to scale). 

 

When monochromatic radiation of frequency �� is incident on a molecular system, most 

scattered photons will have the same energy of the incident photon (elastic scattering), the 

scattering process being known as Rayleigh scattering. However, during the interaction 

process, as observed and published by C.V. Raman in 192840, the excitation photon can lose 

                                                
40 C.V. Raman (with K.S. Krishnan) was the first one to observe and publish this inelastic scattering phenomenon 
in liquids, in 1928. These two Indian physicists observed that a small fraction of the radiation scattered by certain 
molecules presented a different wavelength from that of the incident beam, and that the shifts in wavelength were 
independent of the wavelength of excitation, but rather, depend upon the chemical structure of the molecules 
responsible for the scattering, more precisely on the vibrational (and/or rotational) motions, just like in infrared 
spectroscopy. 

Ground
electronic

state

Virtual 
states

Lowest
excited

electronic
state

IR absorption

(a)

Rayleigh
scatteringStokes

Anti-
Stokes

¬ = 0

¬ = 1
¬ = 2

E
ne

rg
y

(b)

Wavenumber /cm -1

A
bs

or
ba

nc
e

(c)

Frequency shift / cm -1

R
el

at
iv

e
sc

at
te

ri
ng

in
te

ns
ity

¬’ = 0
¬’ = 1 
¬’ = 2

�� − �u �u �� �� + �u 

ℎ�� 

ℎ�� 

ℎ?�� + �uD 

ℎ�� 

ℎ�u 

ℎ�� 

ℎ�� 

ℎ�� 

ℎ?�� − �uD 



 

74 

part of its energy to the molecule, or gain part of the energy of the molecule (inelastic 

scattering), the scattering process being known as Raman scattering (Figure 5.7). Although 

the Raman scattering is much weaker than the Rayleigh scattering (about 10-3) it is observed 

if a strong excitation source, such as a laser41 is used (186). 

 

 
Figure 5.7 Simplified scheme of the Raman scattering mechanism (adapted from Ferraro JR, et al. 

(163)). 

 

It is observed that the excitation photon, ��, losses part of its energy to the molecule, and 

creates a scattered photon with frequency � = �� − �u, where �u corresponds to the 

frequency associated to a vibrational transition, when the molecule is initially at its ground 

state (the most probable situation according Boltzman distribution). Otherwise, the excitation 

photon, ��, gains part of the energy of the molecule and creates a scattered photon with 

frequency � = �� + �u, when the molecule is initially in an excited state (Figure 5.6a). 

Consequently, for each scattering event three bands appear in the spectrum of the 

scattered light, a dominant band (Rayleigh line) with the same frequency of the exciting 

radiation (��) and two bands equally shifted from this dominant band, one to the negative 

frequency side (� = �� − �u) that for historical reasons is referred to as Stokes band and 

other to the positive frequency side (� = �� + �u) referred to as anti-Stokes band (181). 

In practice, because Raman frequencies are measured relatively to the excitation source, 

frequency shifts, the origin of the abscissa scale in the Raman spectrum can be placed at the 

position of the excitation frequency, ��, and instead of a frequency shift (�� ± �u) (Figure 

5.6b), a frequency (±�u) is used. Furthermore, as Stokes and anti-Stokes bands provide 

precisely the same molecular information, only the most intense part of the spectrum, 

Stoke’s, is generally recorded, with the dispense of the negative sign. The Raman spectrum 

is generally a plot of intensity of scattered light versus wavenumber (Figure 5.6c, red dash 

square). 

 

In normal Raman spectroscopy the frequency of the excitation radiation is chosen to be 

far apart from the frequency of any electronic absorption band, since when (intentionally or 

                                                
41 LASER is the acronym of “Light Amplification by Stimulated Emission of Radiation”. 
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not) the frequency of the excitation source is near or exactly the same of an electronic 

transition, resonance and/or fluorescence effects can occur. While Resonance (and pre-

resonance) Raman spectra can be very useful for identification (since special features are 

enhanced), fluorescence is a hazard to Raman analysis. Due to its strong intensity, 

fluorescence emission swamps the weaker Raman scattering (typically only about 10-6 of the 

intensity of the incident radiation (163,186)) making spectra acquisition seriously difficult.  

Because Raman scattering efficiency depends on the fourth power of the frequency of the 

light being scattered, �V, highly quality spectra are acquired when higher frequency light is 

used as excitation. Unfortunately, because the laser used in Raman spectroscopy is 

invariably focussed to a very bright spot, large transfers of energy can occur if the sample is 

capable of absorbing the laser radiation. This can causes sample heating and consequently, 

in severe cases, burning and/or decomposition (187). Nevertheless, several procedures, such 

as reduction of the laser power, changing of the laser wavelength, defocusing the laser beam 

on the samples, cooling the sample and rotating the sample, can be used to reduce laser 

absorption (163). 

 

 

5.4 Infrared and Raman activity 

Depending on the symmetry of the molecules, some vibrational transitions are only 

allowed or active in the IR spectra, only active in the Raman spectra or active in both 

spectra. Vibrational transitions which are not active are forbidden or inactive in one or in both 

spectra. 

A vibrational mode is theoretically infrared allowed or active, originating a band in the IR 

spectra, if the electric dipole moment of the molecule changes in the course of the vibration 

mode. Vibrations that produce the largest variation of electric dipole moment, i.e. vibrations 

involving polar bonds such as O–H, N–H, C=O, are the ones that exhibit the most intense 

infrared bands; the largest the electric dipole moment variation with the vibration mode, the 

strongest the correspondent IR band (188). 

A vibrational mode is theoretically Raman allowed or active, originating a band in the 

Raman spectra, if the polarizability of the molecule changes in the course of the vibration 

mode. When a molecule is exposed to an electric field it suffers distortion, as electrons and 

nuclei are forced to move in oppose directions and an induced electric dipole moment, ®, 

proportional to the molecular polarizability and to the electric field strength (® = ¯�) is 

developed. Generally, vibrations involving symmetrical bonds, such as C=C, C–C, and S–S 

exhibit the most intense Raman bands, since these involve the largest variation of the 
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polarizability; the largest the polarizability variation with the vibration mode, the strongest the 

correspondent Raman band. 

For centrosymmetric molecules, i.e. molecules which have a centre of symmetry, the rule 

of mutual exclusion applies - the vibrational modes which are symmetric with respect to an 

inversion through the center of symmetry are Raman active but IR inactive, while the 

vibrational modes which are antisymmetric with respect to an inversion through the center of 

symmetry are Raman inactive but IR active. This relationship is useful for discerning if the 

molecule under study has a center of symmetry and demonstrates the complementary nature 

of IR and Raman spectroscopies best of all (181,189). 

Because different selection rules are applied to IR and Raman spectroscopies, the IR and 

Raman spectra of the same sample may present significant differences. Figure 5.8 presents 

the IR and Raman spectra of the inorganic pigment malachite, [Cu2(CO3)2(OH)2], illustrating 

the similarities and differences that can occur between these two types of vibrational spectra. 

Because the vibrational modes of the three involved groups, OH, CO3
2- and CuO, are 

infrared and Raman active, the IR and Raman spectra for this pigment are very similar, both 

in number and position of the bands (due to the cut-off of the equipment, there is no IR 

information below 650 cm-1). However, some differences are seen, for example, the OH 

stretching modes 3405/3334 (IR) 3386/3317 (R) are much more intense in the IR spectrum 

(190,191), because as referred before, when allowed, vibrations involving polar bonds present 

more intense bands in the IR spectrum than in the Raman spectrum. 

 

 
Figure 5.8 Infrared (top) and Raman (bottom) spectra of malachite. 

 

Due to the complementary of IR and Raman spectroscopies, both techniques are needed 

to achieve complete structural information. 
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5.5 Interpretation of vibrational spectra 

Interpreting a vibrational spectrum consists in the assignment of each band of the 

spectrum to a vibrational mode (CM) or to the transition associated to that mode (QM), which 

is not straightforward even for simple molecules. According to the model of the harmonic 

oscillator, 3N-6 (3N-5) normal vibrational modes or fundamental transitions are expected. 

However, there are a high number of factors that can influency the number of bands and the 

vibrational frequencies, adding complexity to the interpretation. 

Normal Coordinate Analysis (NCA) is the most accurate method for the interpretation of a 

spectrum. This complex method calculates the normal coordinates (describe the type of 

vibrational motion) of molecules (or ions) and the respective bands in the vibrational spectra, 

both frequencies and intensities. However, an accurate a priori knowledge of force constants, 

equilibrium geometry and atomic masses and the existence of experimental frequencies is a 

prerequisite (175,182). 

For small molecules, because the number of normal modes is reduced and the force 

constants can be reliably calculated with (6.2), the interpretation of the spectra based in NCA 

is relatively simple, but for polyatomic molecules, as the number of atoms and the complexity 

of the normal vibrations increases, calculations become burdensome. Fortunately, a large 

number of computer programs have become available, making it possible to calculate normal 

modes for larger molecules, even those that are inactive or inaccessible with infrared and 

Raman spectra (176). The programs, starting from a trial set of force constants, generates 

frequencies, compares them with experimental ones and refine the force constant until the 

difference between the calculated and the experimental spectra is minimal as possible. It is 

important to refer that the calculated values are harmonic, while the experimental ones are 

essentially anharmonic (192). 

As already referred, depending on the symmetry of the molecules, some normal 

vibrational are allowed while others are forbidden, therefore, for molecules with some 

symmetry or part of molecules with symmetry, it is possible to predict theoretically which 

vibration modes will be allowed, i.e. the number of bands to expect, without the complex 

calculations of NCA. Combining Molecular Symmetry (symmetry properties), Group Theory 

(a branch of mathematics) and Quantum Mechanics, spectra are qualitatively determined. 

The symmetry of a molecule (or part of a molecule) is expressed by symmetry elements 

present in it, such as mirror planes or rotation axes, which relate equivalent part of the 

molecule to each other. Therefore, only under a certain set of symmetry operations, such as 

rotation, reflection, inversion, etc., directly related to the symmetry elements present in the 

molecule, will the molecule be invariant, i.e. will retain its original configuration or move into a 

new orientation equivalent to the original one (193). 
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Because each set of symmetry operations posses the properties of a mathematical group 

it is called point group42. Based on the symmetry elements present in the molecule, which 

can be found using systematic procedure, such as flow charts, it is possible to assign any 

molecule to a point group (163,180,193). 

Each point group can have different representations, which are listed under a character 

table available, most commonly as appendices in relevant books. Because normal 

coordinates form the basis for one of such representations43, they can be classified into 

symmetry species of a point group and their activity determinate by inspection of the 

respective character table: a vibration is Infrared active if it belongs to the same symmetry 

specie of at least one of the components of the electric dipole moment i: (+, T, U), while a 

vibration is Raman active if it belongs to the same symmetry specie of, at least, one of the 

components of the molecular polarizability tensor ¯:� (+T, +U, TU, +(, T(, U() - these are the 

General Vibrational Selection Rules (175,180). 

Because this approach does not determine frequency and intensity of the bands, the 

number of bands determined to be active may not correspond to the number observed in real 

spectra as described below (5.5.2). 

Although Normal Coordinate Analysis and Molecular Symmetry with Group Theory allow 

the interpretation of vibrational spectra, these two approaches are quite complex for most 

routine qualitative and quantitative purposes. A much simpler semi-empiric approach, 

Functional Group Analysis, is generally used, even though complete assignment is not 

possible. 

 

5.5.1 Functional Group Analysis 

From observation of the vibrational spectra of a large number of compounds, throughout 

the years, it was verified that, several groups of atoms, were relatively insensitive to the rest 

of the molecule, originating characteristic bands in a relatively narrow range of wavenumbers 

(frequencies), called group frequencies44 or characteristic frequencies.  

Although most or all the atoms in the molecule are vibrating in each normal mode, certain 

normal modes can be considered as involving mainly the motion of a small group of atoms - 

functional group (the other atoms vibrating only slightly), whose frequency is almost 

exclusively dependent on the magnitude of the force constant. The most known functional 

groups are those present in organic molecules, such as hydroxyl (O-H), carbonyl (C=O) and 

                                                
42 So named because at least one point, the center of mass, is invariant to all operations of the group. 
43 i: and ¯:� also form the basis for one of such representations. 
44 We recall that in vibrational spectroscopy, the term frequency is commonly used to refer to wavenumber (�ª), 
and that the two terms are used interchangeably. Therefore, although called a group frequency it is in fact a group 
wavenumber. 
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nitriles (C≡N). Table 5.1 presents the wavenumber range of the stretching vibrations of some 

organic functional groups. 

 

 

Table 5.1 Characteristic wavenumber ranges of the stretching vibrations of some organic functional 

groups. 

 
Adapted from Shrader B. (177) and Shurvell HF. (178) 

 

Although the group frequency occurs in a relatively narrow wavenumber range, because 

the value of the force constant depends on the electronic structure of the vibrating bond, 

which may be slightly perturbed by different side groups, the group frequencies wavenumber 

range for each specific class of compounds is even narrower. For example, all the molecules 

containing a carbonyl group (C=O) present a stretching band at about 1840-163045 cm-1, but 

the precise wavenumber region depends of whether the carbonyl group is included in an 

ester, aldehyde, ketone, carboxylic acid, etc. (Table 5.2). 

 

 

Table 5.2 Narrower wavenumber ranges of the stretching vibrations of carbonyl groups of some 

classes of compounds. 

 
Adapted from Shurvell HF. (178) 

 

                                                
45 If metal carbonyls and the salts of carboxylic acids are included, this region is extended to 2200-1350 cm-1 (178). 

O-H 3700-3000
N-H 3520-3280
C≡N 2260-2130
C=C 1900-1500
C=O 1840-1630
C=N 1690-1610
C-Cl 850-550
C-Br 700-500
C-I 600-465

Functional group Wavenumbers / cm-1

Class of 
compoud Wavenumber / cm-1

Ester 1750 - 1740
Aldehyde 1740 - 1720
Ketone 1720 - 1700

Carboxylic acid 1710 - 1690
2º Amide 1680 - 1630
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Because the binding forces within polyatomic ions (covalent bonds) that constitute the 

inorganic compounds are significantly stronger than the forces binding the ion to the rest of 

the structure, polyatomic ions, such as carbonates (CO3
2-), sulfates (SO4

2-) and phosphates 

(PO4
3-) can also be treated as functional groups. Table 5.3 presents the main infrared 

wavenumber ranges for some inorganic polyatomic ions. 

 

 

Table 5.3 Main IR wavenumber ranges of some common inorganic ions. 

 
Adapted from Bellamy LJ. (194)  

 

Based in the group frequencies values, which are well documented and can easily be 

found in the group frequency tables, charts and devoted books (175,177,178,188,194-196), the 

spectrum of the “unknown” is, in first place, visually examined in order to assign most 

characteristic bands and rapidly identify the class of compound (carbonate, acetate, sulfate, 

aldehyde, etc.). The same importance must be given to either the presence as to the 

absence of bands. Knowing the class of compound, the spectrum of the “unknown” is then 

compared with reference spectra of compounds belonging to that class, paying attention both 

to position, intensity and shape of the bands. 

Comparison is done against spectra of published Atlas (printed libraries) and reference 

papers and books, or using computer search programs, which selected from digital 

databases the spectra that most closely match that of the “unknown”. A perfect match 

between the “unknown” spectrum and a reference spectrum is a confident proof of its 

identity. 

Because spectra depend of the experimental set-up conditions and physical state of the 

sample, is highly recommended to compare spectra acquired under the same conditions. 

Therefore, often there is the need to acquire reference spectra of samples for each particular 

study.  

For complex samples, it might be necessary to use the complementarity of other analytical 

techniques. A previous knowledge of the compound’s origin, such as its elemental 

composition facilitates the vibrational analysis. 

 

Carbonate 1490-1410, 880-860
Sulfate 1130-1080, 680-610

Phosphate 1100-1000
Silicate 1100-900

Ion Wavenumber / cm-1
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5.5.2 Factors affecting the vibrational spectra 

There are a high number of factors that can increase or reduce the number of bands 

regarding the 3N-6 (3N-5) number predicted from the harmonic oscillator model, produce 

shifts in the vibrational frequency or change the appearance (shape and symmetry) of the 

bands, adding complexity to the interpretation of the spectra, but at the same time providing 

an unambiguous fingerprint for any particular molecule. 

Anharmonicity, Fermi resonance, vibronic coupling, splitting of degenerate frequencies by 

lowering of the symmetry, intermolecular interactions, factor group splitting (in crystals), 

physical state and temperature increase are some of the factors that can led to an increase 

of the number of bands (188). 

As referred before, because bonds in real molecules act as anharmonic vibrators, 

overtone and combination transitions become allowed (as long as they obey the selection 

rules) and the respective bands can be observed in the vibrational spectra. Nonetheless, 

overtone and combination bands are generally much weaker than the fundamental modes 

from which they derived, not being always observed. 

When two vibrational modes have approximately the same energy (accidental 

degeneracy) and the same symmetry, Fermi resonance can occur, producing two close 

bands, when only one was expected. The two bands, which are referred as Fermi doublet, 

present approximately the same intensity and a frequency slightly below and slightly above 

the expected value. Because often the energy of an overtone or combination is very close to 

that of a fundamental, this interaction is more commonly for these cases (178). 

When adjacent bonds, vibrating in the same plane are accidentally degenerate, there can 

be a mixture of the modes and no longer can the bands be assigned to a single mode. This 

interaction is called vibronic coupling and as result, in-phase and out-of-phase combinations 

of the vibrations will appear. 

When two or more vibrational modes are physically indistinguishable in space, such as 

the bending modes of a linear XY2molecule (like CO2), Figure 5.9, they are referred as 

degenerate by symmetry, in the presented case as doubly degenerated modes. Degenerated 

modes are characterized for present the same frequency, i.e. appear as a single band in the 

IR and Raman spectra. Whenever the symmetry of the group is lowered, the initially 

degenerated modes may become different and consequently, present different frequencies, 

increasing the number of bands. 

Due to intermolecular interactions, symmetry can be lowered causing splitting of 

degenerate modes and the formation of new species, such as dimmers, which involve the 

formation of new bonds, can originate new bands. As will be presented below, in the 

particular case of crystals, due to the lowering of symmetry, factor group splitting and lattice 
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vibrations, the number of bands can be larger than the number of bands of spectra of other 

physical states. 

Since the population of the excited states increases with temperature, raising the 

temperature, transitions starting from excited states become more intense and the respective 

hot bands can become observable. 

 

 

Figure 5.9 The normal modes of vibration of a linear XY2molecule (like CO2). The + and - signals 

indicate upward and downward motion in the plane of the paper, respectively. The upper symmetric 

bending occurs in the plane of the paper (just like the two stretching modes), while the bottom 

symmetric bending occurs at right angles to the plane of the paper. 

 

On the other way, vibrations forbidden by selection rules, weak intensity of the bands, 

accidental degeneracy, degeneracy by symmetry, cut-off of the equipment and poor quality 

of the spectra can cause a reduction of the number of bands relatively to the 3N-6 (3N-5) 

number predicted from the harmonic oscillator model. 

As already presented in 6.4, depending on the symmetry of the molecules, some 

vibrations are allowed, while others are forbidden. When the vibration is allowed, the 

respective band can be identified or not, depending on its intensity - weak bands may not be 

identified. However, if forbidden, no band will be identified. 

When accidentally or by symmetry two or more vibrational modes are degenerated, the 

respective bands cannot be resolved in the spectra of the liquid and solid phases. Instead, 

the spectra present broad bands, which are an overlap of the several not resolved bands. 

The cut-off that the equipment presents, especially in IR spectroscopy, where often the 

lower limit is 650 - 450 cm-1, does not allow the detection of bands occurring at lower 

wavenumbers, such as bonds involving heavy metals. In Raman spectroscopy, the cut-off is 

not a drawback, since it is normal to go down to wavenumbers such as 100 - 50 cm-1. 

Spectra quality is in fact a very important parameter in spectra interpretation, since poor 

quality: either very low or very high intensity, low signal-to-noise ratio, low resolution or 

sloping baseline, can produce not only a reduction of the number of bands, but also changes 

in the shape, frequency and relative intensity of some of the bands, making difficult the 

Symmetric stretching (νs)

Antisymmetric stretching (νa)

Symmetric bending (δ)
+ +-
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comparison with reference spectra. In Raman spectroscopy, fluorescence, which is several 

times more intense than the Raman scattering, is often responsible for a high sloping 

baseline that completely or almost swamps the Raman signal from the sample. 

Temperature, indutive/resonance effects, steric effects, intermolecular interactions and 

physical state of the sample (gas, liquid, solid) contribute to the form, intensity and position of 

the bands. 

Lowering of the temperature usually makes the bands sharper and at the same time shifts 

their frequencies to higher values; inductive and resonance effects, because they change the 

distribution of the electrons in the molecule, are responsible for the raise and decrease of the 

expected frequencies, respectively. Inductive effects raise the frequency as a result of the 

displacement of the electron cloud towards the adjacent more electronegative group, 

resonance effects decrease the frequency as delocalized structures are formed; when the 

functional group is part of a ring, due to steric effects, as the angle strain increases (i.e. the 

ring becomes smaller), the frequency also increases; Intermolecular interactions produce 

changes of the force constant, and therefore shifts in the frequency. In particular, polar 

solvents, through solvent-solute interactions, such as hydrogen bonding, can cause 

significant shifts of group frequencies and broadening of bands (178,188,196). 

 

5.5.3 Vibrations in crystals 

Interpretation of a spectrum of a solid state sample, specially crystals, where molecules 

(or ions) have well defined positions (sites in the lattice) and intermolecular interactions 

become important, is somewhat more complex that for isolated molecules (or ions). 

A crystal can be seen as a three-dimensional regularly repeating of a ‘structural motif’ the 

unit cell that is itself composed by a number of molecules (atoms, ions). By convenience, the 

pattern produced is generally expressed in terms of an array of imaginary points located at 

the position of the molecules (atoms, ions), called the crystal lattice, which may be regarded 

as a sort of framework or skeleton of the crystal. A crystal can then be considered to have a 

total of 3NZ degrees of freedom, which combine to form 3NZ vibrational modes, where Z is 

the number of unit cells and N the number of atoms in each unit cell (163,197). 

Because intramolecular bonds (covalent bonds) are normally stronger than the 

intermolecular ones (van der Walls forces, electrostatic interactions and hydrogen bonds), 

molecules (ions) in a crystal keep their individuality and can be approximately treated as 

isolated entities (Local Symmetry). In fact, their spectra are quite similar to the spectra of the 

same molecules in the gaseous, liquid or matriz-isolated state. 

However, due to the intermolecular interactions that exist, different restrictions are 

imposed to their vibrational modes and consequently, the symmetry of the molecule is 
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generally lower in the crystalline state (Site Symmetry) than in the gaseous (isolated) state. 

This reduction of symmetry (due to the disappearance of some symmetry elements) may 

cause splitting of the degenerate vibrations and band shifting, may activate inactive 

vibrations, etc, producing a spectrum with some unique features, very useful for identification 

purposes. 

Additional complexity to the spectra of crystals arises from the fact that when the unit cell 

contains more than one chemically equivalent molecule (ions), these can couple. As a result, 

the bands seen for the molecule in the free state can be splitted into as many components as 

the molecules in the unit cell and the frequency shifted. This intermolecular coupling is called 

factor group splitting or Davydov splitting (163,198). 

Site Group Analysis, which is based in the site symmetry, provides an adequate 

interpretation of the internal vibrational modes (depend only of the molecule/ion). However it 

neglects the coupling of vibrations between neighbouring molecules (ions). 

Since molecules (ions) are bonded to neighbouring molecules (ions) in each unit cell and, 

each unit cell is bonded to neighbouring unit cells, displacement of one or more atoms from 

their equilibrium site position, even by a small amount, causes the displacement of 

neighbouring atoms, giving rise to waveform vibrations that propagate through the entire 

lattice, called lattice vibrations or phonons46. 

The waveform vibrations are divided in two branches: acoustic and optical, depending of 

the motion. The acoustic branch represents the modes where the molecules (atoms) in each 

unit cell are vibrating in the same direction. This motion corresponds to an overall translation 

of the unit cell as a whole (acoustic vibrations), consequently, in a three-dimensional lattice 

there are three acoustic modes. The optic branch represents the modes where the molecules 

(atoms) in each unit cell are vibrating in opposite directions (the center of mass of the unit 

cell remaining unshifted). Depending on the direction of the displacement of the molecules 

(ions) relatively to their equilibrium site position, the lattice modes are further classified as 

longitudinal (LO and LA) if the vibration (displacement) is formed along the direction of 

propagation, or as transverse (TO and TA) if the vibration is formed at right angles to the 

direction of propagation (163,199). Figure 5.10 schematically represents the wave motion that 

can occur in an infinite unidimensional diatomic lattice. Various wave motions are associated 

to each of the branches presented, as result of the different phases of motion between 

consecutive cells47. 

                                                
46 In analogy with the photon of the electromagnetic wave, since the energy of the lattice vibrations is also 
quantized. 
47 An elucidative demo can be seen in internet (200). 
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Since Z is very large, a crystal has a huge number of vibrations. However, fortunately, the 

observed IR and Raman spectra are relatively simple because: (i) the radiation used in IR 

and Raman spectroscopy has much longer wavelengths than the dimensions of the unit cell 

(thousands of Ångströns vs. several Ångströns) hence, only the vibrational modes in which 

neighbouring unit cells vibrate in phase are observed, (ii) only the frequencies of the optical 

modes are detected in IR and Raman spectroscopy. The frequency of the acoustic modes 

are very low, occurring in sonic and ultrasonic region, and hence its name (123,163). 

As referred before, 3 out of the 3NZ modes are acoustic (translations of the unit cell as a 

whole) hence, do not appear in the IR and Raman spectra. This leaves 3NZ-3 optical modes, 

which are grouped in Z(3N-6) internal modes (depend only of the molecule/ion) and 6Z-3 

lattice modes48 or external modes. The lattice modes are further classified as 3Z rotatory 

lattice modes (also known librations) and 3Z-3 translatory lattice modes, which result of the 

‘frizzed’ rotational and translational degrees of freedom that a molecule presents when 

isolated, respectively (175,176,197). A complete interpretation of the spectra of samples in the 

solid state is obtained using the Factor Group Analysis. 

 

 

Figure 5.10 Wave motion for an infinite one-dimensional diatomic chain (adapted from Ferraro JR, et 

al. (163) and Franke K, et al. (199)). 

 

                                                
48 External vibrations only. 
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Rotatory and translatory lattice modes generally occur below 300 cm-1 (intermolecular 

forces are weaker than intramolecular), a region normally not used for most current IR 

analyses (which are in the mid-infrared region, MIR), but easily obtained by Raman. 

However, for molecules (ions) with flexible bonds and/or containing heavy atoms, internal 

vibrations can have such low frequencies that occur in the same region of the lattice modes, 

making difficult the band assignment. Assignment of the lattice modes is particularly 

important when interpreting the spectra of ionic crystals, semiconductors and metals (123). 

Spectra of crystals are also affected by the existence of imperfections in the crystal lattice. 

If imperfections, such as the presence of impurities and vacancies exist, an additional 

broadening of the Raman bands is verified. In particular, the Raman spectra of amorphous 

materials are characterized by very broad features (186). 

 

 

5.6 Infrared and Raman microscopies 

Infrared microscopy (µ-IR) is known since about late 1940s, early 1950s. In fact, the first 

IR microscope was commercialized in 1953: a Perkin-Elmer Model 85. However, it was not 

until mid-1980s, when the well established interferometric spectrometers were combined with 

the microscopes, that it had become widespread. During the 1908s and 1990s there were 

improvements in the development of micro-sampling accessories and more sensitive 

detectors, but the fundamental design features of current IR microscopes are still mainly 

those present in the Perkin-Elmer Model 85 (112,113). 

Ramam microscopy (µ-R) (also known as Raman microprobe) was developed in the mid-

1970s, but for many years was not widespread as a result of its high cost, low sensitivity and 

large sized equipment. Since the early-1990s, with the employment of charge-couple device 

detectors (CCD), which provide much higher sensitivity levels and holographic notch filters, 

which efficiently block the undesirable excitation light, Raman microscopes became low-cost, 

highly efficient, benchtop and therefore, more available (201-203). 

Nowadays, both techniques are routine techniques in a large number of laboratories, 

since they provide molecular information using a smaller amount of sample than the 

conventional IR and Raman spectroscopies, and also provide information not obtained by 

conventional techniques, such as stratigraphic analysis and depth profile. 

 

5.6.1 Instrumentation 

The design of an IR or Raman microscopy assembly is obtained introducing a compound 

microscope in the bulk vibrational instrumentation. It consists basically in an excitation 

source, a compound microscope, a spectrometer, a detector and a PC. This last, allows the 
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control of the measurements quality, the functions of the spectrometer and the digital 

acquisition of the spectra. Figure 5.11 shows an Infrared microscopy assembly 

(interferometer configuration), while Figure 5.12 shows a dispersive configuration of a 

Raman microscopy assembly (the equipments that have been used in this study). 

 

 
Figure 5.11 FT-IR microspectrometer (Nicolet, LCRJF laboratory). Modulated broad-band IR light from 

a Michelson interferometer is focused onto the sample with a Cassegrainian objective. Light 

transmitted by the sample is collected by a Cassegrainian condenser and subsequently focused onto 

a MCT-A detector. 

 

 

Figure 5.12 Raman microspectrograph (Renishaw, UCL laboratory). A laser source is focused onto 

the sample with an ordinary objective. Light reflected by the sample is collected by the same objective, 

passed through a holographic filter, following through a spectrograph and subsequently focused onto 

a CCD detector. 
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Exciting source 

For µ-IR, radiation is normally emitted by a broadband source, such as silicon-carbide rod 

(known as Globar) or quartz lamps (143), while different laser excitation lines raging from UV to 

NIR can be used as excitation source for µ-R. However, for dispersive µ-R the most common 

are the visible wavelengths 488 and 514 nm from the argon ion laser, 632.8 nm from the He-

Ne laser and about 780 nm from a diode laser, and the near-infrared wavelength 1064 nm 

from the Nd-YAG laser, the most common for FT-Ramam microscopy. Choice of the laser 

source is a very important parameter in µ-R since scattering efficiency (proportional to �V), 

spot size (and therefore resolution), fluorescence and sample damage, all depend of the 

excitation wavelength (204). 

In order to observe and align the sample or area of interest within the IR/laser beam, white 

radiation, parfocal and collinear with the IR/laser radiation is also present in both 

microscopes (113). 

 

Microscope lenses (condenser and objective) 

Because glass (used in optical microscopy) is opaque to mid-infrared radiation, reflecting 

optics and Cassegrain lens (or mirrors, of the proper configuration) have to be used as 

optical elements in µ-IR. Unfortunately, Cassegrain optics differ from conventional lenses in a 

way that equation (5.1) is no longer the most suitable. For these optics the diameter of the 

Airy disk is reduced from 1.22 � ��⁄  to 1.0 � ��⁄ , what reduces the energy on the focal plane 

of the Airy disk (from 84% to 49%) and increases greatly the energy in the first ring (from 7% 

to 44%) - information coming from the first disk has to be considered. Typically, Cassegrain 

optics present a numerical aperture (��) of 0.6, with magnifications of 6x and 15x, allowing 

the use of accessories that require a moderate working distance, such as diamond 

compression cells (the complete assembly), anvil cells and slide-on ATR (Attenuated Total 

Internal Reflection) attachment. Higher magnification, 32x (�� 0.65) can also be found, 

however, at the expense of working distance (8 mm vs. 15 mm) and with not such a 

significant gain in NA  (113). 

IR microscopes are mainly reflecting microscopes, in which the light from the source is 

focused on the sample by the objective (lens above the sample stage49) and the light 

transmitted by the sample is recollimated by the condenser (in reflection methods, such as 

ATR, light is collected by the objective) (205,206). There are also some models in which 

transmitted light is supplied from the condenser (82). 

                                                
49 According to OM, condenser is used to refer the lens that focus the light in the sample and objective is the lens 
that forms the primary magnified inverted image of the sample. However, in µ-IR, often, objective is used to refer 
the lens above the sample stage, while condenser is used to refer the lens below the sample stage. 
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Since µ-R routinely uses visible wavelengths lasers as excitation source, conventional 

glass optics, lenses and windows can be used, without any reduction in sensitivity (207). When 

near-infrared wavelengths are used, reflecting optics or similar must be employed. 

Microscope objectives used for µ-R generally have magnifications of 5x, 20x, 50x and 100x. 

Regarding the numerical aperture, for light absorbing samples, maximum Raman signal is 

obtained using the highest numerical aperture as possible, but for transparent or translucent 

samples the choice of the correct numerical aperture is more complex (208). 

 

Spectral analysers 

Spectral analysers can be of two types: dispersive (scanning monochromators, 

spectrographs) or nondispersive (where the interferometric are the most common).  

In a scanning monochromator or spectrograph, the beam of polychromatic radiation 

enters the device through a narrow slit and is separated into individual components by a 

prism (where light is dispersed due to the different index of refraction of the different 

wavelengths), a grating (where light is diffracted) or a combination of both. A series of 

images of the entrance slit is produced, each spatially dispersed as function of the 

wavenumber.  

Scanning monochromators then employ an exit slit positioned in the plane of the spectral 

images, to isolate a narrow portion of the images of the entrance slit. Rotating the prism or 

the grating, successive images passes through the exit slit into the detector. Because only a 

small fraction of wavelengths coming from the sample are analysed at any given time, the 

efficiency of scanning monochromators is inherently reduced. In a spectrograph, which only 

differs from scanning monochromator in the exit section, since there is no exit slit, when 

combined with a position-sensitive detector, a portion of the spectral images are directly 

focused onto the detector. In this way a spectrograph simultaneously measure the entire 

spectrum or a major section of it, being more efficient than the scanning monochromator (209-

211). 

The interferometric spectrometers, also referred to as Fourier transform (FT) 

spectrometers because this mathematical process is necessary to transform the 

interferograms into spectra, all the wavelengths of the polychromatic radiation are 

simultaneously processed and detected. Most commercial Fourier-transform spectrometers 

are based in the Michelson interferometer. The IR radiation from a broad band source is 

directed to a beamsplitter that divides the light between two beams with optical paths that 

can be changed. These two beams strike mirrors that reflect them back to the beamsplitter, 

where they are recombined and create interference. In a typical interferometer one mirror 

remains fixed, while the other retreats from the beamsplitter at constant speed. When the 
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paths of the two beams are equal, the two beams are in phase. At every other position of the 

moving mirror, the beams are out of phase and create a repeating interference pattern, which 

is a sum of cosine waves for all the wavelengths. This modulated beam passes then through 

the sample and hits the detector, producing an interferogram, which is a plot of the intensity 

vs. optical path difference. Through a FT, the interferogram can be converted into a single 

beam spectrum, whose resolution is determined by the distance that the moving mirror 

travelled. 

Because in an interferometer the device that controls the entrance of the size of the 

source and the angles of the light going through the spectrometer is a circular aperture 

(Jacquinot stop) instead of a slit, for a given resolution, the optical throughput can be 

significantly higher than that obtained with a dispersive spectrometer. This results in a 

substantial gain in energy at the detector, which translates to higher signals (better 

sensibility) and improved signal-to-noise ratio (S/N) or a faster recording speed 50. This is the 

Jacquinot (or throughput) advantage. A second advantage of interferometers over dispersive 

spectrometers is the fact that as all the wavelengths of light entering the device are 

simultaneously detected, there is an improvement in the S/N per unit time51. This is known as 

the Fellgett (or multiplex) advantage. The third advantage (Connes advantage) is the higher 

accuracy of the frequency scale, as a result of an internal He-Ne laser. This advantage 

allows spectra to be perfectly superimposed and co-added, not requiring the need for 

external calibration (209-211). 

µ-IR uses almost exclusively FT spectrometers, while in µ-R both dispersive as FT 

spectrometers are used. However, for the analysis of small samples and mapping 

applications, where high spatial resolution is required, dispersive Raman instruments are 

generally more sensitive and well-suited than FT-Raman (202,207,210). The Jacquinot advantage 

is reduced as the entrance aperture of the interferometer is reduced to a pinhole and, if the 

instrument is shot-noise limited (i.e. the noise level increases with the square root of the total 

light flux entering in the detector), the fact that all wavelengths are entering simultaneously at 

the device (Fellgett advantage) can become a disadvantage (210,212,213). 

 

Detectors 

When analysing micro samples there is the need for high sensitivity and speed. In µ-IR 

these two parameters are best met when using an IR sensitive mercury cadmium telluride 

                                                
50 In practice, however, the aperture size depends of the resolution, the wavelength range, the detector type and 
a few other factors and when its size is reduced, for example, for area isolation, the Jacquinot advantage is not so 
significative. 
51 This advantage applies only if the performance of the instrument is limited by detector noise, i.e. noise is 
independent of the power of the radiation incident on the detector, as is the case of Infrared spectroscopy. 
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(HgCdTe - MCT) detector. This is a photon detector (the electrons are excited directly by the 

absorption of radiation) that has to be cooled to the liquid nitrogen temperature (77 K) in 

order to avoid excitation of electrons by thermal motion. Unfortunately, this detector has two 

serious drawbacks, firstly it does not cover the entire IR range because there is a minimum 

energy to excite an electron and secondly, it has a wavelength-dependent response (211,214). 

Detector size is also an important parameter, since for FT-IR, the largest source of noise is 

the detector and the noise of the detector is directly proportional to its area. The area of the 

detector should be as reduced as possible, ensuring that is not smaller than the sample’s 

image. Sizes ranges from 25 x 25 µm to 4000 x 4000 µm, but as compromise between 

several factors, the standard size is 250 x 250 µm (112,113). 

For µ-R, a thermoelectrically cooled charge-coupled device (CCD) detector is generally 

used when employing visible excitation lasers. This is a two-dimensional silicon-based 

semiconductor arranged as an array of photosensitive elements that presents a high 

quantum efficiency and sensitivity in a wide wavelength range (163). For NIR measurements, 

liquid nitrogen cooled Ge and InGaAs photodiode-array detectors are generally employed, 

since CCD perform less adequately in the near infrared that in the visible (210). 

Because Raman signal is extremely low compared with the intensity of the excitation 

radiation, which is reflected and/or diffuse scattered by the sample, these have to be 

removed from the whole optical system using a narrow-band holographic notch filter specific 

to the laser photon energy (or using a series of monochromator and narrow slits). 

 

5.6.2 Spatial and spectral resolution 

 

Spatial resolution 

When the sample size is very small and/or only part of the sample is to be analysed, a 

confocal microscopic arrangement is desirable. Unlike a conventional widefield microscope, 

where the entire field of view is uniformly illuminated and observed, the confocal 

arrengement isolates the light originated from a small sample or a small area of the sample 

and efficiently eleminates information coming from outside the area of interest (201,205,215). 

In µ-IR, confocality is obtained using one or two variable size field stops, commonly 

referred to as apertures. Because IR sources are extended sources that overfill the aperture 

of the optic, when a single aperture is used, this should be placed before the sample. 

However, optimum spatial resolution52 is obtained if a dual aperturing (second aperture after 

                                                
52 In vibrational microscopy the spatial resolution, also referred to as least resolvable separation (LRS), is defined 
as the ability to measure the spectrum of a point or area of interest without significant contamination information 
from neighboring areas. 
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the sample) is employed. The aperture before the sample restricts the infrared beam to 

match the size of the aperture, while the aperture after the sample restricts radiation reaching 

the detector to that being transmitted from an area matching the size of the aperture (206,215). 

Although, in theory these masking apertures define the area of analysis, it is known that 

beyond a certain point the aperture itself will cause light to be distributed into neighbouring 

regions. If the aperture dimension are of the order of, or smaller than, the wavelength of the 

radiation, diffraction effects will occur; some of the radiation will bend around the defined 

masking area and impinge on the surrounding area. Consequently, light from outside the 

aperture will be also collected and the acquired spectrum will contain, not only information 

regarding the area of interest, but also information from neighbouring areas. 

According to Nishikida K. (216), the smallest area to be isolated in an IR microscope 

employing a dual confocal aperture and Cassegrainian optics is diffraction limit to  � ��⁄   x  

 � ��⁄  µm2. Which, for a mid-infrared range of 4000-650 cm-1 (2.5-15.4 µm) and employed 

0.58 �� objective/condenser, corresponds to the minimum area of 4 x 4 µm2 for 4000 cm-1 

and 27 x 27 µm2 for 650 cm-1. If the aperture is reduced in the attempt to analyse areas with 

a thickness smaller than 27 µm, information from adjacent areas will also be collected (206). 

However, the minimum area is not only diffraction-limited. In fact, due to the properties of 

conventional thermal source and sensitivity of the detector, generally the minimum area is 

larger than the diffraction limit. 

Conventional IR thermal source are extended sources and typically, the diameter of the 

image of the source that is formed at the sample plane by the objective is ~300-1000 µm, 

much larger than the area of interest. Therefore, in order to restrict the area of the sample to 

be illuminated, an aperture is employed. Unfortunately, because these sources are also not 

very bright, when the apertures are introduced and worst, when their size is reduced so as to 

analyse only the area of interest, the energy throughput that reaches the detector is 

significantly reduced. Since in FT-IR set-up the largest source of noise is the detector, with 

the noise being directly proportional to the square root of the active area of the detector, also 

the signal-to-noise ratio (S/N) is significantly reduced (113,206,217-220). If the sample’s image is 

less than the area of the detector, because the outer portions of the detector are not being 

utilized to collect IR energy, but still contribute to the noise, sensitivity decreases and the 

spectra will present a poor quality (112). 

The ultimate limit of area size is the result of a combination between the diffraction effects, 

source brightness and detector response, the typical value for a conventional IR thermal 

source ranging between 20-100 µm (83,87,206,216,218,219,221). 
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For most conventional Raman microscopes without futher modification, due to the zero 

dimensions of the laser source, the spatial resolution is diffraction-limited by the objective 

lens according to equation 4.1, and a 1 µm is commonly achievable with visible radiation 

(10,143,203,204,208). 

The choice of the wavelength of the laser excitation line and the �� of the objective has a 

high impact on the spot size and thererefore, on the spatial resolution, the highest the 

numerical aperture and the shortest the wavelength, the better the spatial resolution (208). 

However, a confocal arrangement is desirable when there is a need to minimize the depth 

resolution, allowing an excellent discrimination against a strong scatterer or a fluorescence 

matrix. For samples with some transparency, confocality also allows depth profiling, i.e. the 

selective analysis at different dephts of the sample. Using the confocal arrangement a 

sampling volume of ca. 2 µm3 is achievable (201). 

The confocal arrangement can be achived using, either a pinhole aperture that has often 

been installed at the back focal plane of the microscope, or combining the spectrograph 

entrance slit with the active area of the CCD detector (201,204). 

In the first approach, a pinhole is placed on the optical axis/ at the image back plane of the 

microscope, blocking the size of the sample image. The pinhole (that ranges in size from 

100-500 µm) has the effect of eliminating light originating from the out-of-focus regions of the 

sample, enancing spatial resolution, in the focal plane (xy directions) and especially, above 

and below the focal plane (the z direction). Performance is futher improved when another 

pinhole is incorporated in the incident laser beam optics, in order to remove speckle and 

diffracted light and achived a clean focus. Unfortunately, this set-up has some drabacks, 

since the use of pinholes rejects a significant amount of the Raman photons of interest, 

reducing dramatically the overall efficiency (measurement of the spectra more difficult) and 

unwanted diffraction effects may begin to occur (207,222). The use of small pinholes (< 100 µm) 

must then be balanced agains these disadvantages. 

If the µ-R system is equipped with a stigmatic monochromator and a CCD detector, 

another efficient and simpler (time-consuming optical aligment of small pinholes is not 

necessary) confocal arrangement is achivable, which combines the spectrograph entrance 

slit and the active area of the CCD detector. In this arrangement (the one existing in the 

equipment used in this work, Figure 5.12) the entrance slit of the spectrograph works as one 

physical aperture, restricting the light that enters in the spectrograph. Besides, because a 2D 

CCD detector collects spectral data in the direction perpendicular to the entrance slit of the 

spectrograph and spatial information in the direction parallel to the entrance slit, information 

from out of focus regions can be further eliminated restricting the active area of the CCD 
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detector in the dimension containing the spatial information, i.e. the image height dimension 

(201,202,204). 

 

Spectral resolution 

The ability to distinguish closely spaced peaks or bands in a spectrum is referred to as 

spectral resolution. The higher the spectral resolution, the higher the number of peaks or 

bands that are isolated, and consequently the easier it is to compare the spectrum with 

reference spectra. A high spectral resolution is particularly important when peaks/band of 

several compounds occur at near wavenumbers. 

Spectral resolution is a fairly complex function of the inherent linewidth of the vibrational 

transition being probed, the source linewidth and the spectrometer/detector resolution (223) 

and is expressed as the spacing between the wavenumbers being collected. The lower the 

spacing, the higher the resolution and vice versa (4 cm-1 is a better resolution that an 8 cm-1). 

For instance when a spectrum is acquired with 4 cm-1, bands with a spacing bellow this 

value will appear as a single broad band, i.e. they will not be resolved. 

Unfortunately, other conditions being constant, resolution and S/N are usually traded off 

parameters - when resolution is improved S/N is decreased. As resolution increases, more 

resolution elements are measured by scan, i.e. the measurement time per resolution element 

is reduced, and consequently, signal is deteriorated. In addition, the relationship between 

resolution and S/N is complicated by the fact that the optical throughput decreases as the 

spectral resolution improves. In order to achieve high spectral resolution, either the slit width 

of the grating in the dispersive spectrometer or the Jacquinot stop in the Fourier transform 

spectrometer must be set small. This reduction in the throughput results in an additional 

decrease in the S/N (224,225). 

Generally, µ-R studies present a higher spectral resolution than µ-IR studies, 1 cm-1 

against 4 cm-1, respectively  (10,183). 

 

 

 

 



 

 

 

 

 

 

6 Infrared and Raman microscopy 
analysis 

 

The vibrational spectrum of a molecule is 

considered to be a unique physical property 

and is characteristic of the molecule. 

 

 

J. Coates 
 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents and discusses the results of the analysis of the 

paintings’ samples obtained by Infrared and Raman microscopy (µ-IR 

and µ-R). Further, it compares the efficiency of both techniques for 

component identification in complex mixtures. 
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The results obtained by each technique are presented separately, µ-IR followed by µ-R, in 

accordance with chronological order of analysis, organized by functional group and 

presented by alphabetic order with reference to the samples (Table 3.1, Appendix D) from 

which the spectra were obtained. It should be noted that it is often very difficult, if not 

impossible, to distinguish between the mineral and synthetic forms of many compounds by 

µ-IR and µ-R. Hence, compounds will be normally identified by their chemical name if it not 

known whether they are synthetic or mineral.The main difficulties found in the identification of 

the compounds are also described. The relative intensities and shape of the bands are 

reported on the right side of their wavenumbers as vw (very weak), w (weak), m (medium), s 

(strong), vs (very strong), sh (shoulder) and br (broad). 

The identification of the compounds contained in the samples by µ-IR and µ-R was based 

on comparison of the spectrum of the unknown with spectra from reference samples 

obtained in-house employing the same equipment and conditions53, or culled from published 

scientific papers, books internet and spectral libraries. Whenever known, the assignment of 

the bands is also indicated. Search programs were not used because most libraries of 

reference spectra are mainly composed by spectra of pure materials, being ineffective in the 

analysis of spectra from complex samples as the ones under analysis. 

Since the assignment of broad bands is not straightforward, differences relatively to 

reference spectra can be found. 

 

The reference samples used were: Celadonite, Akaky River, Cyprus, obtained from Dr. R. 

Siddall, Geology Department, UCL, London; chrome orange, Winsor & Newton (~1880), 

obtained from Dr. L. Burgio, the Victoria & Albert Museum, London; Glauconite, Oystershell 

Hill, United Kingdom, from Mr. A. Hart and Mr. M. Rumsey, Natural History Museum, London; 

strontium yellow, AP. Fitzpatrick, London, Anatase, Alfa Aesar; manganese oxide (MnIVO2), 

Aldrich, Rutile, Sigma Aldrich; Quartz, Alfa; carmine, Sigma Chemical Co., lead (II) sulfate, 

Aldrich; Malachite (reference 1), lead antimonate yellow synthesized in the Department of 

Chemistry of the UCL; obtained from Dr. Robin J.H: Clark, Chemistry Department, ULC, 

London; chrome yellow, Fluka, zinc yellow, Ferrario Color, viridian, Winsor & Newton, vert 

Émeraude, Lefranc, ivory black, Winsor & Newton and noir d’ivory (ivory black), Lefranc, 

Malachite (reference 2), Zaire, Goethite, Cercal, Portugal, Hematite, Atlas Mountains, 

Morocco, Magnetite, Alvito, Portugal, cerussite, Tsumed, Namibia, lead white, synthesized in 

the Laboratório de Conservação e Restauro José de Figueiredo, obtained from Laboratório 

de Conservação e Restauro José de Figueiredo. 

                                                
53 In µ-R, the laser beam, the power and the number of scans can be different from sample to sample. The rest of 
the experimental conditions were kept. 
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6.1 Infrared microscopy 

 

6.1.1 Experimental conditions 

 

Samples 

150 samples, removed from the 23 paintings under analysis (Table 3.2, Appendix D), 

were prepared as thin sections as described in section 3.2.2 and analysed by µ-IR. 

Since the study of micro samples may cause some misinterpretations and the preparation 

and analysis of thin sections is a difficult task, more than one thin section was analysed for 

each sample. In total, 843 spectra were acquired and interpreted. Representative spectra of 

the compounds that were identified and major difficulties found in their identification will be 

presented. 

 

Experimental set-up 

Infrared analysis was carried out using a Nicolet NEXUS spectrometer coupled to a 

Nicolet CONTINUµM infrared microscope. The spectrometer has a Ge-on-KBr beamsplitter 

and an EverGlo infrared source. The IR microscope is equipped with an x15 (NA 0.58) 

Infinity corrected Reflachromat objective and condenser pair and is fitted with a 250 x 250 

µm2 Nicolet mercury-cadmium-telluride (MCT-A) detector, cooled with liquid nitrogen 

(working range of 4000-650 cm-1). 

Thin sections and reference samples (a few particles) were compressed in a Thermo 

Spectra-Tech µSample Plan micro compression diamond cell (which consists in two flat type 

IIA diamond windows of 2 mm diameter compress against each other, using a metallic 

support shown in Figure 6.1 and analysed in transmission mode, placing only one part of the 

cell on the stage of the microscope. The area of analysis of the sample was defined by the 

double aperture contained in the microscope. A total of 256 scans were acquired and 

averaged, with a spectral resolution of 4 cm-1, using a 1.8988 cm/s scanning mirror velocity. 

Happ-Genzel apodization and Mertz phase correction were implemented. Computer control, 

data acquisition, data processing and band assignment were achieved through Thermo 

Electron’s OMNIC software. No spectral processing, other than removal of the carbon 

dioxide bands, was performed. 

Spectra will be presented in the percentage transmittance format, which provides the best 

dynamic range for both weak and intense bands in qualitative analysis (226). 
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Figure 6.1 Representation of a transversal cut of the Thermo Spectra-Tech µSample Plan micro 

compression diamond cell set-up. 

 

6.1.2 Results and discussion 

µ-IR was able to identify a large number of compounds, summarized inTable 6.1, which 

also shows their distribution through the 23 paintings. However, several difficulties were 

found during the samples’ preparation, analysis and interpretation of the respective IR 

spectra. Since these difficulties somehow restrict the efficiency of µ-IR to accomplish the 

objective of this study, they will be described below. 

 

6.1.2.1 Difficulties in sample’s preparation and analysis 

The preparation of thin sections proved to be a serious drawback to µ-IR, especially for 

samples composed by more than 4 layers. Crumbing upon microtome cutting and loss of a 

large part of the sample, generally, the inner layers, were frequent. Moreover, since thin 

sections tend to curl, when trying to flatten them, the sample often skipped from the medium 

(Figure 6.2). Consequently and, although several thin slices were prepared for each sample, 

it was very difficult to have a thin section with the complete cross section sequence. 

 

 

Figure 6.2 Unsuccessful thin section of sample W3, viewed under reflected light. 

 

Regarding the difficulties of the analysis of the samples, the main difficulty consisted in the 

individual analysis of each layer, for which, four main factors contributed, namely depth 

colour reduction, irregular division of the sample by the two parts of the diamond cell and 

diffraction effects/infrared source size and brightness. 

 

Sample Diamond cell

Rubber o ring

100 µm
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Thin sections were compressed in a micro compression diamond cell in order to improve 

the quality of acquired spectra (avoid saturation of the most intense bands54) and, at the 

same time, increase the area of each layer by expansion. However, compression makes it 

very difficult, or even impossible, to distinguish adjacent layers. The compression of the 

sample causes the decrease of its thickness, particle size and the average depth to which 

radiation penetrates before being scattered. Consequently, an apparent loss of colour of 

some of the layers occurred (49,82,227) and differentiation between layers and/or determination 

of the sample orientation become very difficult. 

Often, an irregular division of the thin section between the two parts of the diamond cell 

was verified, making stratigraphic analysis more difficult. When after compression the two 

parts of the cell were separated, portions of the sample remained in one part of the cell, while 

the rest remained in the other part. This caused difficulties, both to establish the stratigraphic 

order and to provide enough area of each layer for analysis. 

Moreover, diffraction effects, which seriously limit the spatial resolution, together with the 

intrinsic characteristics of the IR radiation (poor brightness and finite source size) made the 

analysis of thin layers very difficult or even impossible. In order to analyse isolated layers 

with small thickness, the dual aperture size had to be reduced so as to analyse an area 

below 50 x 50 µm2. In these conditions, poor quality spectra (weak bands and S/N), with 

bands assigned to compounds from adjacent layers were acquired. 

Due to the described difficulties found in layer differentiation and analysis, more than one 

layer were often analysed simultaneously. 

 

6.1.2.2 Interpretation of the infrared spectra 

Except for the ground layers that proved to be composed by simple mixtures, the 

interpretation of most of the infrared spectra required a careful analysis. Due to the complex 

mixture of compounds present in each layer, the respective spectra exhibit a large number of 

bands, most of the times overlapped and even merged into broad envelopes. 

A detailed interpretation of the IR spectra of the compounds found in the samples 

analysed by µ-IR, organized by functional groups and presented by alphabetic order is 

presented below. As mentioned before, the main difficulties to IR spectra interpretation are 

also emphasized. 

 

 

 

 
                                                
54 Although this procedure was taken, saturation was observed for some samples. 
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Table 6.1 Compounds* identified by µ-IR in Pousão’s paintings 

 
A - Casa rústica de Campanhã, B - O mendigo Lapita, C - Paisagem - Abertura da Rua Alexandre Herculano, D - Jardim de 

Luxemburgo (estudo), E - Aldeia de St. Sauves, F - Paisagem de St. Sauves, G - Cansada (Cachopa de Capri), H - Casas 

brancas de Capri, I - Cecília, J - Escadas de um pardieiro - Roma, K - Esperando o sucesso, l - Fachada de casa soterrada - 

Roma, M - Miragem de Nápoles, N - Portão, O - Rapariga de Anacapri, P - Rua de Roma, Q - Senhora vestida de preto, R - 

Janela das persianas azuis, S - Mulher da água, T - Paisagem de Anacapri, U - Rapariga deitada no tronco de uma árvore, V 

- Cais de Barcelona and W - Flores Campestres. 

* Pigments are in blue, while extenders, associated compounds or impurities are in green 

? Probable identification 

 

 

 

 

Compounds A B C D E F G H I J K L M N O P Q R S T U V W

Arsenites
Emerald green • • • •

Carbonates
Calcium carbonate - calcite form • • • • • • • •

Lead white • • • • • • • • • • • • • • • • • • • • • • •

Lead carbonate • • • • • • • • • • • • • • • •

Chromates
Chrome orange •

Chrome yellow • • • • ?

Strontium yellow • • •

Zinc yellow • • • •

Cyanides
Chrome green • •

Prussian blue • • • • • • • • • • • •

Oxides and Oxyhydroxides
Viridian • • • •

Phosphates
Bone/ivory black ? • • • • ? •

Silicates
Celadonite • • •

Kaolin/Kaolinite • • • • • • • ? ? • • • • •

Quartz • • • • • • • • • • •

Sulfates
Barium sulfate • ? • • • ? • • • •

Brochantite •

Gypsum • • • • ? ? ? • • • ?

Paintings

Early French Italian Final
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Arsenites 

Emerald green, copper acetoarsenite, Cu(CH3COO)2.3Cu(AsO2), was generally easily 

identified by the simultaneous presence of the band at 1558-1557(vs) due the acetate 

antisymmetric stretching mode and a doublet at 820-818(s) and 771-769(s) cm-1, probably 

due to the As-O symmetric and antisymmetric stretching modes, respectively (Figure 6.3a 

andFigure 6.5Ab) (178,195,228,229). The acetate symmetric stretching mode occurring at 1455(m) 
(178,230) was also identified in some of the samples; however, since it has been often masked 

by the carbonate antisymmetric stretching band at ~1430-1400 cm-1 (Figure 6.3b) that mode 

was not very useful for identification purposes. 

 

 
Figure 6.3 Infrared spectra of: (a) layer 5 of sample H8, identified as a mixture of emerald green and 

lead white in oil, (b) layer 1 of sample V1, identified as a mixture of lead white and emerald green in 

oil, and (c) layers 3-5 of sample H8, identified as a mixture of emerald green, a chromate salt, a 

carbonate compound and a sulfate or silicate compound in oil. 

 

If a compound with bands occurring at similar wavenumbers to those of the emerald green 

doublet, such as a chromate pigment, is present in a large amount, as shown in the spectrum 

presented in Figure 6.3c, band masking occurs and the identification of emerald green 

becomes more dubious. In this spectrum, the simultaneous presence of bands at 1558 and 

1455 cm-1 clearly suggests the presence of a copper acetate; however since other copper 

acetate compounds, such as verdigris (Cu(CH3COO)2.H2O, [Cu(CH3COO)2].x[Cu(OH)2].yH2O 

and other compositions (231,232)) can also be found in paintings (233), it is not sure that emerald 

green is the copper acetate. Presence of emerald green was confirmed because the layers 

under analysis (3-5 of sample H8) include the layer whose spectrum is presented in Figure 

6.3a. 
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Carbonates 

Carbonates are very important constituents of Pousão samples, since almost every 

spectrum presents a very intense and broad band at about 1430-1400 cm-1, arising from the 

antisymmetric stretching vibration of the carbonate ion, CO3
2- (Figure 6.4) (175,234). 

In fact, these compounds are present in such a high concentration, that even though a 

diamond compression cell was used, the 1400 cm-1 band was very often saturated (Figure 

6.4a), preventing the determination of its true absorption wavenumber and consequently 

making difficult the identification of the carbonate compound. Nevertheless, thanks to 

diagnostic bands, calcium carbonate - calcite form (2515, 1794, 876 and 713 cm-1, Figure 

6.4b), lead carbonate (1052 and 838 cm-1, Figure 6.4c) and lead white (3538, 1045 and 682 

cm-1
, Figure 6.4d), were identified, even when mixed together, like in the spectrum presented 

in Figure 6.4a. 

 

 
Figure 6.4 Infrared spectra of: (a) ground layer of sample O2, identified as a mixture of lead white, 

lead carbonate and calcium carbonate - calcite form in oil, (b) layer 1 of sample F1, identified as 

calcium carbonate – calcite form in oil, (c) layer 1 of sample E6, identified as lead carbonate in oil and 

(c) layers 3 and 4 of sample J2, identified as a mixture of lead white and lead carboxylates in oil. 

 

Calcium carbonate - calcite form, CaCO3, characterized by an infrared spectrum with 

absorption bands occurring at 2515-2514(w), 1794(m), 1420(vs), 876(s) and 713(m) cm-1 

(Figure 6.4b) was identified in the paintings (235,236). Occurring at wavenumbers where no 

other compound, specially lead white, appears to absorb, the bands 2515 and 1794 cm-1 

assigned to combination modes of carbonate ion (2υ2+υ4 and υ1+υ4, respectively) (237) and 

the band at 876 cm-1 assigned to the out-of-plane bending mode of carbonate ion were the 
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most important bands to the identification of this compound (236,238). The bands at 1420 and 

713 cm-1 are assigned to the antisymmetric stretching and to the in-plane bending of the 

carbonate ion, respectively (175,234). 

When present in small amounts, identification of this compound was very difficult since the 

weak combination bands disappear and except for the band occurring at 875 cm-1, all the 

other bands are masked by those of lead white, a major component of the samples.  

 

Lead carbonate, PbCO3, geologically known as cerussite, was identified by its infrared 

bands occurring at 1398(vs) and 1052(s), due to the antisymmetric and symmetric stretching 

modes, respectively, and 838(s) and 678(s) cm-1, due to the out-of-plane and in-plane 

bending modes of the carbonate ion, respectively (Figure 6.4c) (175,239). 

Normally, present in a low concentration relatively to lead white (Figure 6.5Aa shows one 

of the few exceptions), lead carbonate was frequently difficult to identify with certainty 

because only the bending band at 838 cm-1 was visible, Figure 6.5Bb. 

Identification should never be based on the presence of a single band, since other 

compounds can produce similar bands. However, as few other compounds have strong 

absorptions in this region (an example is celadonite Figure 6.13 and Figure 6.14) (221) the 

existence of a band at 838 cm-1 in the spectra strongly suggests the presence of lead 

carbonate in the samples. 

 

 
Figure 6.5 Infrared spectra of: (A)(a) the layer 2 of sample E6, identified as a mixture of lead 

carbonate, lead white and lead carboxylates in oil, and (b) sample H2, identified as a mixture of 

emerald green and lead white in oil; (B)(a) the layer 1 of sample I2, identified as a mixture of lead 

white and lead carboxylates in oil, and (b) the ground layer of sample W1, identified as a mixture of 

lead white and lead carbonate in oil. 
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Lead white, basic lead carbonate, 2PbCO3.Pb(OH)2 is a very important synthesized 

pigment, and was identified in almost every sample layer thanks to its very intense and 

characteristic infrared spectrum with bands at about 3539-3537(w), 1420-1397(vs), 1045(s), 

854(vw), 777-770(m) and 682-681(s) cm-1 (Figure 6.4a,d and Figure 6.5). 

The band at 3539-3537 cm-1, due to the superposition of the symmetric and antisymmetric 

hydroxyl stretching modes, was extremely helpful for the identification of this pigment when 

present in small quantities and/or mixed with compounds with overlapping bands, such as 

lead carbonate (Figure 6.5Aa) and emerald green (Figure 6.5Ab). In the spectra presented in 

Figure 6.5A, only the band at 3538(6) cm-1 accounts for the existence of lead white, the rest 

of the bands being due to lead carbonate and lead carboxylates or emerald green. 

The bands at 1406 and 1045 cm-1 are due, to the antisymmetric and symmetric stretching 

modes of the carbonate ion, respectively, and the band at 683 cm-1 is due to the in-plane 

bending mode of the carbonate ion (175,239). The bands at 854 and 777 cm-1, attributed to the 

out-of-plane bending mode of the carbonate ion and to the in-plane bending mode of PbOH 

(tentative assignment) (175,239), respectively, are not normally referred, due to their weak 

intensity. However, whenever lead white spectrum is saturated (Figure 6.5Ba) the intensity of 

these two bands significantly increases, what can mislead to the suspicion of the presence of 

other compound. 

 

Chromates 

Among the yellow, orange and red pigments present in the samples, µ-IR was able to 

identify only the chromate pigments, which are characterized for presenting one to several 

intense bands between 960 and 700 cm-1, assigned to the antisymmetric and symmetric 

stretching modes of the chromate ion, CrO4
2- (Figure 6.6), as result of lift of degenerate 

vibrations in the crystalline host. Figure 6.6 presents, side by side, spectra of the chromate 

pigments identified in the samples and the spectra of reference pigments. 

Chrome orange, basic lead chromate, PbO.PbCrO4, isostructural with the mineral 

phoenicochroite (Figure 6.32) (51) exhibits a single, broad and poorly defined band at about 

852-847(vs) cm-1 due to the chromate antisymmetric stretching mode (240) (Figure 6.6Aa and 

Ba), while chrome yellow, lead chromate, PbCrO4, which occurs naturally as crocoite, 

presents a doublet at about 849-848(s) and 832-819(s) cm-1 (and sometimes two shoulders 

on both the low and high wavenumber sides (241)), due to the antisymmetric and symmetric 

stretching modes, respectively (Figure 6.6Ab and Bb) (242). 

Strontium yellow, strontium chromate, SrCrO4 presents three bands at about 913(s), 

876-874(m) and 845-844(s) cm-1 (Figure 6.6Ac and Bc), while zinc yellow (a complex zinc 
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potassium chromate, see below) presents four bands at 951-947(m), 878-877(vs), 808-

803(m) and 719-715(w) cm-1 (Figure 6.6Ad and Bd) (26,238,242,243). 

 

 
Figure 6.6 Infrared spectra of: (A)(a) layer 2 of sample O3, identified as chrome orange in oil, (b) layer 

5 of sample H8, identified as chrome yellow in oil, (c) the layer 1 of sample Q5, identified as strontium 

yellow in oil and (d) the layer 2 of sample N5, identified as zinc yellow in oil; (B) reference samples: (a) 

chrome orange, (b) chrome yellow, (c) strontium yellow, and (d) zinc yellow. 

 

Although zinc yellow is accepted to be a complex zinc potassium chromate of 

approximated composition K2O.4ZnCrO4.3H2O
 (242), different chemical compositions of zinc 

chromate have been sold under this name, such as anhydrous zinc chromate, which is used 

as a corrosion-inhibiting primer on aircraft parts made of aluminium or magnesium. This 

would not constitute a problem, if these different zinc chromate compounds did not exhibit 

similar mid-infrared spectra (Table 6.2) and consequently could not be distinguished by IR 

spectroscopy. 

Table 6.2 presents the wavenumbers of the IR bands of different zinc chromate 

compounds found in references, namely, anhydrous zinc chromate (ZnCrO4)
 (244), hydrated 

zinc chromate (ZnCrO4.7H2O) (241), basic potassium zinc chromate 

(K2CrO4.3ZnCrO4.Zn(OH)2)
 (245), K2O.4ZnCrO4.3H2O and the wavenumbers of our reference 

sample of zinc potassium chromate, whose composition was confirmed by µ-XRD (Figure 

7.34, K2Zn4O(CrO4)4.3H2O being equivalent to the empirical formula K2O.4ZnCrO4.3H2O
 (242)). 

The similarities in band number and position among these compounds are clearly visible.  
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Table 6.2 Overview of the IR band position of several zinc chromate compounds 

 
References are presented between parentheses; * Values obtained in this study 

 

Although in some cases these orange and yellow pigments were easily distinguished, as 

shown in Figure 6.6A, serious difficulties were often found for their identification or to 

distinguish one from another, like shown in Figure 6.7. 

Whenever the spectrum is saturated (Figure 6.7Aa), the identification of the chromate(s) is 

compromised, since the exact wavenumbers of the band(s) are uncertain. 

When two or more chromate pigments are mixed together, due to overlapping of the 

bands, only one of them was generally identified; in general, the one with more bands. That 

is the case of the layer 7 of sample C2 whose spectrum is shown in Figure 6.7Ab, where 

although a mixture of chrome yellow and strontium yellow is present (identified by µ-R), only 

strontium yellow was identified. Strontium yellow and zinc yellow were the most easily 

identified chromate pigments. 

When the chromate pigment is present as a minor component in the mixture, the 

coincidence of band position among some other compounds and the chromate pigments can 

originate some difficulties. That is the case of the band at 912 cm-1 present in the kaolin, the 

band at 875 cm-1 present in calcium carbonate - calcite form, the band at 855 cm-1 present in 

lead white (this band has a medium intensity when the spectrum is saturated), the band at 

838 cm-1 present in lead carbonate and the doublet at 820/771 cm-1, present in emerald 

green. Two examples of these difficulties are presented in the spectra shown in Figure 6.7Ac 

and Ba: in the spectrum (Ac) the band at 912 cm-1 from kaolin can be confused with a 

strontium yellow band, although only chrome yellow is present (confirmed by µ-R) and in the 

spectrum (Ba) the strong emerald green doublet at 820/773 cm-1 masks the zinc yellow 

bands at 815 and 715 cm-1 (zinc yellow presence was confirmed by µ-R). 

ZnCrO4 
(244) ZnCrO4.7H2O (241) K2CrO4.3ZnCrO4.Zn(OH)2 

(245) K2O.4ZnCrO4.3H2O
 (242) K2Zn4O(CrO4)4.3H2O *

3450(s, b) 3454(m)
3265(m)

2700(w, b)

1218-1185(m)
1090(s)

1055-1050(sh)
945(s, sh) 950(s, b) 955(s) 951(s, sh)

938(vs) 942-940(s, sh)
875(s) 875(s, b) 880(s) 878(vs)

850(m)
815(s)

818(s) 810-795(vs, b) 800(s, vb) 803(vs)
720-715(m, b) 718(w, vb) 715(w) 715(m)
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Because the spectra of chrome orange and chrome yellow are so similar, is very difficult, 

or even impossible, to distinguish one form another in a mixture were the pigment is present 

as a minor component. 

 

 
Figure 6.7 Infrared spectrum of: (A)(a) layers 3 and 4 of sample C2, identified as a mixture of a 

carbonate, a silicate or sulfate compound and a chromate compound in oil, (b) layer 7 of sample C2, 

identified as a mixture of a silicate or sulfate compound, strontium yellow and lead carbonate in oil, 

and (c) layer 3 of sample U1, identified as a mixture of lead white, kaolin, chrome green (Prussian blue 

with chrome yellow) in oil; (B)(a) layer 4 of sample H8, identified as a mixture of emerald green, 

brochantite and zinc yellow in oil, and (b) sample Q8, identified as a mixture of lead white, lead 

carboxylates, gypsum and strontium yellow in oil. 

 

It is worth noting that, although it has been reported that when mixed with a high content 

of sulfate compounds the identification of these yellow and orange pigments would be 

difficult (26), the high content of gypsum in some of the samples was not an impediment to 

strontium yellow identification, as shown in the spectrum presented in Figure 6.7Bb. 

 

Cyanides 

Chrome green, a pigment produced by the intimate mixture of very fine particles of 

chrome yellow and Prussian blue (see below) was identified by the simultaneous detection of 

its two constituents (Figure 6.8a). However, except for a very few cases, this pigment was 

normally difficult to identify by µ-IR. Firstly, because, the identification of chrome yellow in a 

mixture is very difficult (due to overlapping); secondly, because IR spectroscopy seems to 

present a relatively weaker sensitivity to chrome yellow (about 5 times weaker) than to 

Prussian blue (246), leading to the wrong supposition that the yellow pigment is absent. That is 

the case of the spectrum presented in the Figure 6.8b, the spectrum of the green layer 3 of 
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sample U9, where only the band due to Prussian blue is easily identified. The bands of 

chrome yellow (easily identified by µ-R) are so weak in this IR spectrum that they can be 

assigned to lead white, the major component of the layer. 

The fact that chrome green was often extended with kaolin (Figure 6.7Ac), barium sulfate 

or calcium sulfate dihydrate (26,246), difficulted even further the identification of this pigment. 

 

 
Figure 6.8 Infrared spectra of: (a) layer 3 of sample S2, identified as a mixture of chrome green, lead 

white, lead carboxylates and a sulfate/silicate compound in oil, and (b) the layer 3 of sample U9, 

identified as a mixture of Prussian blue, lead white, lead carboxylates and maybe chrome yellow in oil. 

 

Prussian blue, ironIII hexacyanoferrateII, Fe4[Fe(CN)6]3.14-16H2O was the only blue 

pigment identified by µ-IR. This pigment is characterized for producing a very intense band at 

2096-2090 cm-1 (Figure 6.9a and b), arising from the C≡N (more exactly, FeII–C≡N–FeIII (195)) 

stretching vibration of the ferrocyanide ion (Fe(CN)6
4-), a region where no other art material 

seems to absorb (245,247). 

Due to its great tinting strength, Prussian blue has normally been used by painters in 

relatively small quantities but apparently this would constitute a problem to its identification 

by IR spectroscopy, since it has been reported by Newman R. (26), this technique presents a 

high sensitivity for the identification of this blue pigment - down to about 5%. Unfortunately, 

we verified that referred high sensitivity is not always present, since for some of the samples 

with a concentration probably above 5% (as it was ofent identified by µ-R) this pigment could 

not be identified by µ-IR. For example, although the presence of Prussian blue in the layers 2 

and 3 of the sample K3 was easily confirmed by µ-R, its identification by µ-IR (Figure 6.9c) 

was very uncertain, and the pigment would probably be referred to as not present. 
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The painting samples under analysis are very complex pigment mixtures, constituted by a 

high content of highly absorbing components, such as lead white, for which, the limit of 5% is 

probably no longer valid. 

 

 
Figure 6.9 Infrared spectra of: (a) layer 2 of sample U4, identified as a mixture of lead white, lead 

carboxylates and Prussian blue in oil, (b) layer 3 of sample L2, identified as a mixture of lead white, 

lead carboxylates and Prussian blue in oil, and (c) layers 2 and 3 of sample K3, identified as a mixture 

of lead white, lead carboxylates, and maybe calcium sulfate dihydrate and Prussian blue in oil. 

 

Oxides and Oxyhydroxides 

Viridian (Guignet’s green/ Pannetier’s green/ Mittler’s green), a transparent green 

pigment first synthesized during the 19th century (85), was identified in the samples thanks to 

its characteristic bands occurring at about 1064 and 793 cm-1 (248,249), which have not yet 

been assigned. 

Known to be a hydrated chromiumIII oxide with composition Cr2O3.2H2O
 (26,85,90), this 

pigments was not expected to produce any mid-infrared bands except for water vibrations, 

since the characteristic bands of the Cr-O modes occur in the far infrared region (FIR), 

outside the wavenumber range of our detector. However, in the spectra acquired during the 

analysis of some green layers (Figure 6.10a and b) bending mode of water ca. 1635 cm-1 

was not observed (which can also result from overlapping of other bands) and instead, two 

unique mid-infrared bands at 1064 and 793 cm-1 are exhibited. The mid-IR reference spectra 

of this pigment (Figure 6.10c and d) are very similar to the spectra acquired during the 

analysis of the painting’s samples. 

 

4000 3600 3200 2800 2000 1600 1200 800

1620
3406

1530

1046
1109

2094?

(c)

682
1410

3540

1046

6811402

2096

3538

(b)

(a)

1736

1522

1406

3538 2854
2928

1526

2091

682

1069 1046

T
ra

n
sm

it
ta

n
ce

  
 →

 

 Wavenumber/cm
-1



 

110 

 
Figure 6.10 Infrared spectra of: (a) layers 3-5 of sample F6, identified as a mixture of Prussian blue, 

viridian and carboxylates in oil, (b) layer 3 of sample T3, identified as viridian in oil, (c) reference 

sample of viridian (viridian - W&N) and (d) reference sample of viridian (vert émeraude - Lefranc). 

 

In order to obtain a more complete spectrum and determine viridian’s composition, the 

reference sample of viridian from Windsor & Newton was analysed using a FT-IR equipment 

capable of reaching lower wavenumbers. The acquired spectrum is presented in Figure 6.11. 

It is known that both lattice water (water molecules trapped in the crystalline lattice) and 

coordinate water originate, besides strong hydroxyl stretching bands between 3550 and 3200 

cm-1, also exhibits a HOH bending mode (nondissociated water) at 1650-1580 cm-1 (195,250,251). 

As shown in Figure 6.11, the intensity of this band, which occurs at about 1635 cm-1, is very 

reduced when compared with other bands of the spectrum, suggesting that only a small 

amount of water is in fact present, probably a small amount of loosely adsorbed water. 

Hydroxo complexes, instead, although also producing the strong hydroxyl stretching 

bands between 3550 and 3200 cm-1, do not exhibit the HOH bending mode near 1600 cm-1, 

but rather a MOH bending mode below 1200 cm-1 (195). Since the synthesis of viridian 

generally consists in calcinating a dichromate compound (for example, K2Cr2O7) whit boric 

acid (H3BO3) and the subsequent hydrolysis during the washing for removal of residual 

reagents (85), it is possible that dissociated water, rather than nondissociated water, is bonded 

to the metal. 
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Figure 6.11 Infrared spectra of the reference sample of viridian (viridian - W&N) (Nicolet 6700 

spectrometer fitted with a DTGS detector, 4 cm-1 resolution, 128 scans). 

 

A search through the existing works about viridian and chromium oxides, hydroxides and 

oxyhydroxides was conducted and it was found that other compositions have been assigned 

to viridian, namely Cr2O(OH)4 
(248,252)

 (which is equivalent to Cr2O3.2H2O), Cr2O(OH) (253), 

Cr4O3(OH)6 
(254), Cr(OH)3.xH2O, α-CrOOH and γ-CrOOH (248,255), or even Cr2O3.(xH2O)-Cr3BO6

 

(256)
. Unfortunately, the number of published spectra of these compounds, especially of the 

three CrOOH polymorphic structures is very reduced and not always in agreement, what 

does not allow a comparison to be made (255,257,258). Nevertheless, it was noticed that the two 

bands of viridian at about 555 and 479 cm-1 and even the shoulder at 639 cm-1, are closely to 

those present in Cr(OH)3.xH2O compounds (255,258,259). 

In order to identify the form(s) present in viridian, XRD analysis was employed. However, 

due to its disordered structure, it was very difficult to obtain a good diffractogram and no 

conclusion was obtained. 

 

Phosphates, silicates and sulfates 

Phosphates, silicates and sulfates produce IR spectra showing a very intense band at 

about 1030-1000 cm-1, 1100-900 cm-1 and 1130-1080 cm-1 (194), respectively, with probable 

overlapping when they co-exist in a mixture. This fact not only restricts the usefulness of the 

IR spectra for differentiation of compounds inside each functional group, like previously 

showed for carbonates, but also for differentiation among compounds belonging to these 

three functional groups. We will present separately the phosphates, silicates and sulfates 

identified in the samples, preceded by the most representative difficulties in their 

differentiation. 
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Phosphates 

Bone/ivory black - Although bone and ivory have compositional and structural 

differences, which account for the different properties of these materials, their overall 

composition is very similar: an organic matrix mainly composed by cross-linked collagen 

protein (type I collagen) and a mineral phase, whose major component is biological apatite 

(anhydrous apatite in bone and a hydroxylapatite in ivory)55. When heated at high-

temperatures, to form bone and ivory black pigments, the differentiation between these 

materials becomes even more difficult (85,260-263). 

As shown in Figure 6.12, bone/ivory black is identified by IR bands assigned to its 

inorganic content (the apatite), which occur at 3569-3567(w), due to the hydroxyl stretching 

modes, 1455(w) and 1416(w), due to the splitting of the antisymmetric stretching mode of the 

carbonate group, 1120-1089(w) and 1040-1035(vs), due to the splitting of the antisymmetric 

stretching mode of the phosphate group, 962 cm-1, due to the symmetric stretching mode of 

the phosphate group and 874 cm-1, due to the bending out-of-plane of the carbonate group 

(260,261,263,264). 

 

 
Figure 6.12 Infrared spectra of: (A)(a) layer 2 of sample B4, identified as a mixture of bone/ivory 

black, lead carbonate, lead carboxylates in oil, (b) reference sample of bone/ivory black (Lefranc), and 

(c) reference sample of bone/ivory black (Winsor & Newton); (B)(a) layer 2 of sample J3, identified as 

bone/ivory black with a fraction of a proteinaceous material, (b) layers 2 and 3 of sample G4, identified 

as a mixture of lead white, lead carboxylates, gypsum, kaolin and bone/ivory black in oil, and (c) layer 

2 of sample G3, identified as a mixture of lead white, lead carboxylates, kaolin and bone/ivory black in 

oil. 

 

                                                
55 The exact structure of the mineral apatite is not well defined because substitutions in the mineral apatite lattice 
can occur (262). 
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Bands assignable to the organic matrix (probably a residual collagen material), which 

occur at 1652 and 1548 cm-1, the amide I and amide II bands, respectively, were identified 

very rarely (Figure 6.12Ba) (260,262). The weak band at 2013 cm-1, which has not yet been 

assigned, seems to be very characteristic of this black pigment (265) and was extremely useful 

for its identification. 

Identification of bone/ivory black was compromised whenever present in a relatively low 

concentration, and/or when a significant amount of silicates and/or sulfates was present. 

That is the case of the two spectra presented in Figure 6.12Bb and c. In the first spectrum 

(Figure 6.12Bb) the band at 1036 cm-1 can be assigned both to bone/ivory black and to 

kaolin, a component identified in the layer (3968, 3622, 1113 and 915 cm-1), and the band at 

879 cm-1 can be assigned to bone/ivory black and to a carbonate compound in low amount, 

for example, calcium carbonate - calcite form. Identification of this black pigment was 

possibly due to the presence of the weak band at 2013 cm-1. In the second spectrum (Figure 

6.12Bc) no band besides the 2013 cm-1 can be assigned to bone/ivory black. 

 

Silicates 

Characterized for producing strong absorption band(s) within a relatively narrow 

wavenumber interval (1100-900 cm-1, due predominantly to the antisymmetric stretching 

vibration of the SiO4 units) the differentiation between silicate compounds, especially in a 

mixture, can be very difficult (175,266,267). Diagnostic bands, in particular those due to the 

hydroxyl stretching modes (3800-3500 cm-1), which are sensitive to the clay structure and 

crystallinity, are extremely helpful for their identification (267-269). 

 

Celadonite, one of the two main green colouring agents of green earth, the other being 

glauconite, was identified in three paintings. Because celadonite (approximate chemical 

composition K(Mg,Fe2+)(Fe3+,Al)[Si4O10](OH)2) and glauconite (approximate chemical 

composition (K,Na,Ca)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2) present similar chemical composition 

and crystal structure (270,271), their differentiation by some analytical techniques such as 

elemental and thermal analysis and X-ray diffraction, can be seriously difficult. However, IR 

spectroscopy is able to differentiate between these two minerals with relatively facility (Figure 

6.13) (250,272). 

Celadonite, a well crystallized mineral of volcanic origin produces an IR spectrum (Figure 

6.13a) with sharp and well-defined bands at 3601(w), 3578(w), 3557(m) and 3533(w) cm-1, 

due to hydroxyl stretching modes at 1113(m) cm-1, due to the stretching of apical Si-O, 

1076(m), 977(vs) and 960(vs) cm-1, due to antisymmetric stretching of equatorial Si-O, and at 

839(w) and 800(m) cm-1 (26,250,272-275). 
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Figure 6.13 Infrared spectra of reference samples of: (a) celadonite and (b) glauconite. 

 

Glauconite56, on the other hand, gradually formed from sedimentary minerals after 

deposition, shows a great composition variety, presenting an irregular structure and, 

consequently, an IR spectrum (Figure 6.13b) with broader and diffuser bands than celadonite 

(26,268,272,274). In contrast to the three sharp hydroxyl stretching bands of celadonite, glauconite 

exhibits three broad and week bands at 3603, 3560 and 3544 cm-1 and, due to the higher 

aluminium substitution in the silicate tetrahedra in glauconite (10-16 % vs. 2-6% (250)), the four 

medium to strong intensity bands in the celadonite spectrum, from the Si-O modes (1113-

960 cm-1), are broaden into just one band at about 992 cm-1 in the glauconite spectrum (272). 

An additional band is seen in the spectrum presented in Figure 6.13b, occurring at 1631(w) 

cm-1 due to the hydroxyl bending mode. 

 

In the presence of carbonates and carboxylates (see below), generally the major 

components of the painting samples under analysis, celadonite identification is easily done, 

provided it is present in a relatively significant amount (Figure 6.14A). As seen in Figure 

6.14Aa and Ab, except for the bands at 3533 cm-1 that can be assigned both to celadonite 

and lead white and at 838 cm-1 that can be assigned both to celadonite and lead carbonate, 

most of the celadonite bands (in blue) are easily identified. 

However, if celadonite is present in a relatively small amount, or if the sample contains a 

significant amount of compounds whose bands overlap with those of celadonite, as is the 

case of the spectra presented in Figure 6.14B, its identification is compromised. The 

spectrum shown in Figure 6.14Ba that was obtained from the same layer as the spectrum 

shown in Figure 6.14Ab, but from a different thin-section, demonstrates that, even if there is 

                                                
56 In fact glauconite is the name given to a series of minerals, although it is/can be used as a mineral name 
species too. 
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no significant band overlapping between carbonates (or carboxylates) and celadonite, if 

celadonite is present in a relatively small amount, its identification can be difficult. 

 

 
Figure 6.14 Infrared spectra of: (A)(a) sample E4 (all layers), identified as a mixture of lead white, 

celadonite and maybe lead carbonate and (b) the layer 3 of sample E7, identified as a mixture of lead 

white, lead carboxylates, celadonite and Prussian blue in oil; (B)(a) layer 3 of sample E7 (from a 

different thin section than spectrum Ab), identified as a mixture of lead white, lead carboxylates, lead 

carbonate, quartz and celadonite in oil, and (b) layer 2 of sample I4, identified as a mixture of lead 

white, lead carboxylates, quartz and maybe barium sulfate, calcium carbonate – calcite form, and 

gypsum and/or celadonite in oil. 

 

Due to band overlapping between celadonite and gypsum (see below), especially in 

complex mixtures, it can be very difficult to identify which of these two compounds is present 

or even, if both are present. For example, in the spectrum shown in Figure 6.14Bb, the 

hydroxyl stretching band at 3556 cm-1 can be assigned to both celadonite and gypsum, the 

hydroxyl stretching band at 3534 cm-1 can be assigned to both celadonite and lead white 

(whose presence is confirmed by other bands) and the band at 3246 cm-1 can be assigned to 

gypsum. As no further bands assignable to celadonite or gypsum are visible in the spectrum 

due to masking by the strong sulfate/silicate stretching modes (1164-982 cm-1), there is no 

certain if celadonite, gypsum, or both, are present. Other compounds present in this complex 

mixture are lead white, lead carboxylates, quartz, and maybe barium sulfate (982 cm-1) and 

calcium carbonate - calcite form (875 cm-1). 

 

Kaolin is the name given to the subgroup of dioctahedral 1:1 phyllosilicates, which 

includes kaolinite, dickite, nacrite and halloysite, clay minerals with identical chemical 

composition (Al2[Si2O5](OH)4) and identical structure of the individual layers, differing only in 
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layer stacking arrangement (267). Due to these similarities the IR spectra of these four clay 

minerals are quite similar and consequently, somewhat difficult to differentiate (267). 

Nevertheless, since different hydroxyl stretching patterns are produced, due to the different 

hydrogen bonding among the layers, differentiation among these four clay minerals is still 

possible. 

The hydroxyl stretching region of kaolinite is characterized by exhibiting four bands at 

about 3698, 3668, 3654 and 3621 cm-1 (Figure 6.15a), of dickite and nacrite are by three 

bands at about 3704, 3654 and 3621 cm-1, 3700, 3648 and 3629 cm-1, respectively, and of 

halloysite by only two bands at about 3695 and 3620 cm-1 (269,276,277). Although the hydroxyl 

stretching bands of these kaolin minerals differ both in number and position, whenever these 

bands are weak, like in the spectra shown in Figure 6.15b and c, or when a mixture of these 

minerals is present, their differentiation is very difficult. Nevertheless, as in dickite and nacrite 

the bands at ca. 3654 and 3648 cm-1, respectively, have a higher intensity than the band at 

3700 cm-1, whenever this band at 3700 cm-1 occurs, it is expected that the bands at 

3654(dickite) or 3648(nacrite) cm-1 also occur. Because this band was not identified in any of 

the acquired spectra, the presence of these two kaolin polytypes was excluded. 

 

 
Figure 6.15 Infrared spectra of: (a) layer 1 of sample T2, identified as kaolinite in a proteinaceous 

binder, (b) the layer 2 of sample G2, identified as a mixture of lead white, lead carboxylates, quartz 

and kaolin in oil, (c) the layers 2-4 of sample U13, identified as a mixture of lead white, lead 

carboxylates, Prussian blue and kaolin in oil, and (d) the layers 5-8 of sample K9, identified as a 

mixture of lead white, lead carboxylates, gypsum, quartz and maybe kaolin in oil. The inset presents 

the enlargement of the quartz’s doublet. 
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Unfortunately, the differentiation between kaolinite and halloysite is not so easy, since 

weak kaolinite spectra normally present only its two most intense bands that coincide with 

the two bands of halloysite (269,277). Consequently, in the spectra where only the two bands at 

about 3698 and 3621 cm-1 are visible, like in Figure 6.15b and c, it is not possible to know 

whether kaolinite or halloysite, or even a mixture of the two, since these minerals often occur 

together (269), is present. So, in these cases, the mineral compound is referred to as kaolin 57. 

 

It is important to refer that in a few spectra, although bands assignable to kaolin minerals, 

such as the intense Si-O stretching band at 1033 cm-1 and the hydroxyl bending (Al2OH) 

band at 911 cm-1 were present, the characteristic hydroxyl stretching bands were not visible 

(Figure 6.15d), probably due to masking by other compounds. In these cases, identification 

of kaolin was impossible, since there are other compounds (silicates, sulfates and 

phosphates) absorbing at similar wavenumbers. In the particular case of the spectrum 

presented in Figure 6.15d, the bands at 1033 and 911 cm-1 are in fact due to kaolin, whose 

presence was confirmed analysing another thin-section from the same sample. 

 

Kaolinite, a particular clay mineral of the kaolin group, also known as china clay, was 

identified with confidence in the samples where it was the major component. The spectrum 

presented in Figure 6.15a, showing the four hydroxyl bands of this mineral, 3698(m), 

3668(w), 3654(w) and 3621(m) cm-1 is representative of one of those samples. The first three 

bands arise from the stretching of the inner-surface (or outer) hydroxyl groups, while the last 

one arises from the stretching of the inner hydroxyl groups (OH groups located inside the 

layer, laying between the tetrahedral and octahedral sheets). Other bands of kaolinite occur 

at 1116(m) cm-1, arising from the stretching of apical Si-O (perpendicular to SiO4 tetrahedral 

sheet), at 1036-1031(vs) cm-1 and 1012(vs) cm-1, arising from the antisymmetric stretching of 

equatorial Si-O bonds (in-plane), at 936 and 914 cm-1, arising from the Al2OH bending modes 

of inner-surface and inner OH groups, respectively, and at 795 and 755 cm-1, arising from 

hydroxyl translational modes (due to the flexing of the O-Si-O framework) (250,266,267,279-281). 

 

α-Quartz, silicon dioxide (SiO2), the low temperature silica polymorph, was easily 

identified in a large number of paintings due to its characteristic doublet at ca. 798 and 779 

cm-1 (Figure 6.15b, insert), arising from the Si-O-Si bending mode, characteristic of the “ring” 

structure found in quartz, in which the silicate tetrahedra are joined together to form rings. 

                                                
57 Although intercalation methods have been developed to differentiate kaolinite and halloysite, even when mixed 
together (266,278), these methods are not suitable for the samples under analysis, which are very complex.  
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The most intense band of its spectrum, 1084-1079 cm-1, arising from the SiO4 antisymmetric 

stretching (Figure 6.19Bb) was normally masked by other compounds (250,268,282). 

Identification of quartz in the samples by this technique was expected, because quartz is 

the most abundant mineral in earth’s crust, hence frequently occurs associated with other 

minerals (250), and because infrared spectroscopy is capable of detect quartz even when 

present in almost trace amounts (268). However, in the presence of significant amounts of 

orange or yellow chromate pigments its identification is seriously compromised, as the major 

absorption bands of the chromate compounds can mask the quartz doublet. 

 

Sulfates 

Barium sulfate, BaSO4, which occurs naturally as barite, was identified by its infrared 

spectra with bands at about 1174(s), 1113(sh), 1083(s) and 984(m) cm-1 (Figure 6.16). The 

first three bands are due to the split of the triply degenerate antisymmetric stretching mode of 

the sulfate ion, while the last band is due to the symmetrical stretching mode (245,283,284). 

 

 
Figure 6.16 Infrared spectra of: (a) layers 1 and 2 of sample I1, identified as a mixture of barium 

sulfate, lead white, lead carboxylates and quartz in oil, (b) ground layer of sample G4, identified as a 

mixture of barium sulfate, lead white and lead carboxylates in oil, and (c) ground layer of sample H4, 

identified as a mixture of lead white, lead carboxylates and maybe barium sulfate in oil. 

 

Like expected, as the relatively concentration of barium sulfate decreases, Figure 6.16 (a 

trough c), its identification becomes more difficult. While in the first two spectra barium 

sulfate is easily identified, in spectrum (c) it is done with some doubt, since its more intense 

bands (between 1174-1083 cm-1) are masked or mislead with the bands resulting from the 

triglyceride ester linkage of the drying oil binder, which due to aging, lost their characteristic 
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maple leaf pattern (1239, 1170 and 1101 cm-1) and exhibit instead only two bands of almost 

the same intensity at about 1166 and 1092 cm-1 (285). Albeit very weak, the characteristic band 

at 984 cm-1 raised the suspicion of the presence of barium sulfate, which was confirmed by 

µ-R. 

 

Brochantite - The green basic copperII sulfate, Cu4(SO4)(OH)6, naturally occurring as 

brochantite, was identified in sample H8, thanks to its characteristic doublet at 3587(m) and 

3565(m) cm-1, arising from the hydroxyl stretching modes and to the bands at 1115(m) and 

1096(m) cm-1, due to the sulfate antisymmetric stretching mode (Figure 6.17). Other bands of 

this compound occur at 3400 cm-1, due to hydroxyl stretching mode at 986(sh) due to the 

sulfate symmetric stretching mode, and at 945(w) and 873(m), due to hydroxyl librations 
(175,250,283,286,287). 

Because the synthetic and the natural (brochantite) forms of basic copperII sulfate present 

identical vibrational spectra, they cannot be distinguished (287). Nevertheless, as brochantite is 

a common impurity of malachite, a basic copperII carbonate mineral with composition 

Cu2CO3(OH)2
 (288), the occurrence of the basic copperII sulfate associated with malachite 

indicates that its origin is natural. In this sample H8, malachite itself was not identified 

suggesting that basic copperII sulfate is present in the synthetic form. However, by µ-R 

(Figure 6.31Aa), malachite was, in fact, identified in this same sample, suggesting that it is 

brochantite that is present. 

 

 
Figure 6.17 Infrared spectrum of layers 4 and 5 of sample H8 identified as a mixture of brochantite 

(bands assigned in blue), emerald green and lead white in oil. 

 

Due to its intense and characteristic bands occurring at 3400(s) and 3320(s), due to 

hydroxyl stretching mode, 1500(vs) and 1400(vs), due to the carbonate antisymmetric 
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stretching mode, 1095(m), due to carbonate symmetric stretching mode, 1045(vs) and 

875(m), due to hydroxyl out-of-plane bending, 820(m) due to carbonate out-of-plane bending 

mode and 748(m) (190) malachite is generally easily identified by IR spectroscopy. However, 

because the other components of the sample, brochantite, emerald green and possibly lead 

white (as the band at 1418 cm-1 can account for the existence of lead white) present bands at 

similar wavenumbers to those of malachite, malachite’s bands were masked and its 

identification was not possible. 

We may question if the bands at 3322 and 1049 cm-1 (in red), not assignable to any other 

pigment, and the band at 1418 cm-1 (Figure 6.17), cannot be due to malachite (190,191), but still 

identification is very doubtfully. 

 

Gypsum, calcium sulfate dihydrated, CaSO4.2H2O, also known as terra alba was 

identified (Figure 6.18A) thanks to the its characteristic IR bands arising from the lattice water 

(hydrogen bonded) vibrational modes, namely four overlapped bands at about 3552-

3538(m), 3494-3484(vw), 3410-3408(s) and 3248-3244(w) cm-1 (forming a leaf pattern), 

where the the first three bands arise from the antisymmetric and symmetric stretching modes 

of water molecules and the last arises from the first overtone of the water bending mode, and 

two bands at 1687(w) and 1621-1618(m) cm-1, due to the O-H-O bending mode of water 

molecules. The reason for the existence of two bands due to antisymmetric stretching modes 

bending modes and two bands for beding modes is the existence of factor-group plitting, as a 

consequence of the presence of two water molecules in the spectroscopic unit cell of 

gypsum (250,289,290). 

Bands arising from the vibrational modes of the sulfate ion occur at 1137-1134(vs) and 

1117-1111(vs) cm-1 (antisymmetric stretching mode) and 670 cm-1 (antisymmetric bending 

mode). The symmetric stretching which is expected to occur at 1004 cm-1 was not visible 

(283,291). 

Although in the two spectra presented in Figure 6.18A, gypsum is easily identified, for 

most part of the spectra, since the concentration of gypsum in the layers is relative low, its 

identification was normally uncertain, as exemplified in the representative spectra shown in 

Figure 6.18B. In the first spectrum (Figure 6.18Ba), gypsum is still easily identified by the 

hydroxyl bands occurring at 3544, 3410 and 1620 cm-1 and to the sulfate antisymmetric 

stretching band at 1117 cm-1. In the other two spectra (Figure 6.18Bc and d), although the 

presence of gypsum is possible, it is very uncertain. Besides, the absence of the bands at 

3244 and 1687 cm-1 (also seen in the first spectrum), the band at 3552-3544 cm-1 is masked 

by the hydroxyl stretching band of lead white occurring at about 3538 cm-1 and the bands 

arising from the stretching of the sulfate ion are easily masked by (or confused with) bands 
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from other sulfate or silicate compounds. Only the existence of the bands at 3409 and 1620 -

1618 cm-1 suggests the presence of gypsum, but, as these bands can also be present in 

other compounds containing interlayer or loosely adsorbed water (for example, Copiapite 

(Fe2+,Mg)Fe4
3+[(OH)ǀ(SO4)3]2.20H2O

 (250)), they cannot be used to rule out gypsum presence. 

Nevertheless, although the bands at 3409, 1620 and 1112 cm-1 in the spectrum shown in 

Figure 6.18Bb have low intensity, because bands assigned to other sulfate or silicate 

compounds are not visible, gypsum is probably present in the sample. 

 

 
Figure 6.18 Infrared spectra of: (A) (a) layer 3 of sample F3, identified as a mixture of gypsum, lead 

carbonate, lead carboxylates in oil, and (b) layer 2 of sample A2, identified as a mixture of lead white, 

lead carboxylates and gypsum in oil; (B) (a) layer 1 of sample E6, identified as a mixture of lead 

carbonate, lead carboxylates and maybe lead white and gypsum in oil, and (b) layers 2-6 of sample 

A4, identified as a mixture of lead white and maybe gypsum in oil. 

 

 

Difficulties in distinguishing phosphates, silicates and sulfates 

Because the most intense band in the infrared spectrum of phosphates, silicates and 

sulfates occurs in the same wavenumbers, distinguishing these compounds one from 

another can be seriously compromised and in some cases it is only possible to conclude that 

a sulfate or a silicate is probably present (Figure 6.19A), or that a silicate or a phosphate is 

probably present (Figure 6.19B). 

Figure 6.19A presents three spectra showing the difficulties to distinguish sulfate from 

silicate compounds, while Figure 6.19B presents three spectra showing the difficulties to 

distinguish silicate from phosphate compounds.  
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Figure 6.19 Infrared spectra of: (A)(a) layer 1 of sample K3, identified as a mixture of lead white, lead 

carboxylates, quartz and a sulfate/silicate compound (probably gypsum) in oil, (b) layers 2 and 3 of 

sample I6, identified as a mixture of lead white, lead carboxylates, quartz, kaolin and maybe gypsum 

in oil, and (c) layer 4 of sample W4, identified as a mixture of lead white, lead carboxylates and a 

sulfate/silicate compound in oil; (B)(a) layer 2 of sample B2, identified as a mixture of lead white, lead 

carboxylates, quartz and a silicate/phosphate compound in oil, (b) layers 2 and 3 of sample K11, 

identified as a mixture of lead white, lead carboxylates, quartz, Prussian blue and a silicate/phosphate 

compound in oil, and (c) layer 4 of sample K12, identified as a mixture of lead white, lead 

carboxylates, quartz and a silicate/phosphate compound in oil. 

 

The three spectra of Figure 6.19A are characterized by intense and broad bands between 

1200 and 1000 cm-1, whose origin is difficult to assign with certain. Although a very similar 

pattern is present in the two first spectra (Figure 6.19Aa and Ab), they have the contribution 

from different compounds: quartz (796 and 781 cm-1) and probably gypsum (3406, 3247 and 

1620 cm-1) in the first spectrum (Figure 6.19Aa) and kaolin (3699, 3620 and 913 cm-1), quartz 

(797 and 779 cm-1) and probably gypsum (3409, 3247 and 1621 cm-1) in second spectrum 

(Figure 6.19Ab). Due to the broad envelope these bands, the existence of other(s) silicate(s) 

or sulfate(s) must not be excluded. In the third spectrum (Figure 6.19Ac) as there are no 

diagnostic bands, the origin of the band at 1100 cm-1 is not ruled out, the possible conclusion 

being that a silicate or/and a sulfate compound(s) may be present.  

 

In a similar way, the three spectra of Figure 6.19B are characterized by the presence of 

an intense band at 1036-1031 cm-1, difficult to assign due to lack of diagnostic bands. In the 

first two spectra (Figure 6.19Ba and Bb) the small band at 912-908 cm-1 suggest the 

presence of kaolin, but as there is no signal of the hydroxyl stretching bands of this 

compound, the assignment of the band at 1030 cm-1 to kaolin is not sure. 
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As showed in Figure 6.12, also bone/ivory black presents a very intense band at 1040-

1035 cm-1, but again, no diagnostic band of this compound, such as the characteristic band 

at 2014 cm-1 is present in any of the three spectra. Consequently, the origin of the band at 

1036-1031 cm-1 is not identified, and the only possible conclusion is that a silicate or/and a 

phosphate compound(s) may be present. 

 

Figure 6.20 demonstrates another difficulty found in the identification of the bands 

occurring in the silicate wavenumbers. As can be seen in Figure 6.20A, the spectra (a) and 

(b) presented a weak to medium band at 1026 and 1009 cm-1, respectively, while the 

spectrum (c) a very intense band at 1010 cm-1. The position of the band seems very low for 

sulfates and even for phosphates, being probably due to a silicate. In fact, there is a silicate 

blue pigment, ultramarine blue or lazurite (the former is the synthetic phase and the last is 

the naturally occurring phase), Na8[Al6Si6O24]Sn, whose IR spectrum presents a strong and 

broad band between 1150-950 cm-1 (Figure 6.20Ba), assigned to the stretching modes in the 

tetrahedral Si-O units that make-up the skeleton (25,268,292), whose presence in the samples 

would explain the existence of the above referred band. 

 
Figure 6.20 Infrared spectra of: (A)(a) layers 2-5 of sample H1, identified as a mixture of lead white, 

lead carboxylates and a silicate compound in oil, (b) sample J4, identified as a mixture of lead white, 

lead carboxylates and a silicate compound in oil, and (c) sample M1, identified as a mixture of lead 

white, lead carboxylates and a silicate compound in oil; (B)(a) reference sample of ultramarine blue 

(Winsor & Newton), (b) sample T1, identified as a mixture of lead white, lead carboxylates and a 

silicate compound in oil, and (c) layer 2 of sample S1, identified as a mixture of lead white and lead 

carboxylates in oil. 

 

However, as shown in the IR spectra of two layers with a significant amount of ultramarine 

blue (µ-R results indicate this as the only/major blue pigment of the layers), Figure 6.20Bb 
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and Bc, the identification of this blue pigment by µ-IR in the samples under analysis is not 

straightforward. While in the spectrum of sample T1, a silicate band is visible, even if not 

allowing the identification the silicate compound, in the spectrum of the layer 2 of sample S1, 

the silicate band occurs only as a shorder. Therefore, although we can suspect that the 

bands marked in red in the spectra of Figure 6.20A are due to ultramarine blue, other silicate 

compounds can be responsible for these bands. 

 

Other compounds 

Binder 

Detection and identification of the binder by IR spectroscopy is not a simple task, since a 

binder is itself a complex mixture of closely related compounds normally not resolved by IR. 

Furthermore, the presence of pigments and extenders, generally in a larger percentage than 

the binder, significantly masks its IR spectrum below 1500 cm-1 (221,293). Notwithstanding, in 

general the spectra exhibit well resolved spectral features that allow the identification of the 

binder class (285), as an oil, wax, resin, gum or proteinaceous material (293). 

The presence, in most of the spectra, of bands at about 2929(m) and 2854(m) cm-1, 

assigned to the asymmetric and symmetric stretching modes of CH2 groups, respectively, at 

1729(w) cm-1, assigned to the carbonyl stretching mode and at about 1166 and 1092 cm-1, 

due to the triglyceride ester linkage, indicated that the binder was a drying oil (285). The 

existence of lead soaps originated from the saponification of fatty esters of the oil medium 

with lead containing pigments, corroborated this identification (294). 

Exceptions to the drying oil were found in i) the ground layer of the samples T2, W4 and 

W7, which proved to be from restoration areas (see next chapter) and ii) in the ground layer 

of the painting F. 

The existence of a band at 1658-1652 cm-1, assigned to the amide I band and the bands 

at 2927, 2855 and 1728 cm-1, due to unsaturated fatty esters, in the spectra of the ground 

layer of the samples T2 (Figure 6.15a), W4 and W7, suggest that the binder is either egg 

yolk (egg yolk contains these two groups) or a mixture of a proteinaceous material with a 

drying oil, such as egg-oil or animal glue-oil emulsion (285,294,295). However, in accordance with 

the restoration record, the binder used in the masses to fill the lacunae, was animal glue, 

hence the presence of bands due to unsaturated fatty esters in the spectrum of the ground 

layer of the restoration samples is probably due to infiltration of the drying oil used as binder 

in the above layers. 

As shown in Figure 6.21a, in some of the spectra of the ground layer of painting F which is 

composed by calcium carbonate - calcite form (2513, 1795, 1417(saturated), 876 and 713 

cm-1), the existence of the two bands at 3363 and 1652 cm-1, assignable to a proteinaceous 
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material, and of three bands at 2919, 2850 and 1716 cm-1, assignable to unsaturated fatty 

esters suggest that the binder is either egg yolk, egg-oil emulsion or animal glue-oil 

emulsion. 

However, since on other spectra of the same ground layer (in another samples), there is 

no signal of the existence of proteinaceous material, only bands assigned to an oil medium 

being visible (Figure 6.21b), it is concluded that, either i) the binder is a mixture of an drying 

oil with a proteinaceous material (egg or animal glue) – painting layers in which the binder is 

glue the amount of binder is generally relatively very low (71), what would explain the low 

content in proteinaceous material, or ii) the proteinaceous material comes from the sizing of 

the canvas, being this the most probable explanation. 
 

 
Figure 6.21 Infrared spectra of: (a) ground layer 1 of sample F1, identified as calcium carbonate- 

-calcite form and proteinaceous material, (b) ground layer 1 of sample F5, identified as calcium 

carbonate-calcite form in oil. 

 

Metal carboxylate salts (soaps) 

Most of the spectra exhibiting the characteristic bands of lead white (and lead carbonate) 

also presented a broad, medium to weak band at ~1545-1510 cm-1, probably due to the 

antisymmetric stretching mode of the carboxylate ion (COO-) of the lead carboxylate salts 

(lead fatty acid soaps), produced by the reaction of the free fatty acids of the drying oil with 

lead pigments (178,285,296-298). The symmetric stretching mode of the lead carboxylate which 

occurs at ~1419 cm-1 is masked by the intense and broad band due to the carbonate 

antisymmetric stretching mode of lead white (and lead carbonate). 

Similar to lead, also copper, potassium, zinc and cobalt-containing compounds are known 

to form metal carboxylates, whose carboxylate antisymmetric stretching band occurs at about 

1585 cm-1, 1566-1560 cm-1, 1548-1540 cm-1, and 1542 cm-1, respectively (298-299). As band 
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position is very similar for some of these carboxylates, it is very difficult to determine by IR 

analysis only which metal carboxylate have been formed, even more, when mixtures of metal 

carboxylates are likely to be present. 

Although in most of the spectra the antisymmetric stretching band of the carboxylate ion, 

is probably mainly due to lead carboxylates, the existence of other metal carboxylates cannot 

be excluded. In fact, in a few spectra, a significant position’s shift or a difference in the band 

intensity of the COO- antisymmetric stretching band relatively to the CO3
2- antisymmetric 

stretching/COO- symmetric stretching bands was observed, suggesting the presence of 

different metal carboxylates as shown in the cases referred below: 

The wavenumbers of the broad band at about 1586-1583 cm-1 identified in the spectra of 

the green layer of samples F6 (Figure 6.10a), T3 (Figure 6.10b) and T7 (Figure 6.22a) 

suggest the presence of a copper carboxylate. However, while in sample F6 the presence a 

copper compound (emerald green) could be the reason for the formation of copper 

carboxylates, sample T7 does not contain copper (SEM/EDS analysis, Figure 7.30) hence, 

does not presents copper carboxylates. The presence of copper carboxylates in sample T3 

was not evaluated. 

 

 
Figure 6.22 Infrared spectra of: (a) layer 2 of sample T7 identified as a mixture of viridian and metal 

carboxylate(s) in oil and (b) layer 2 of sample N2, identified as a mixture of zinc yellow, a carbonate 

compound and metal carboxylate(s) in oil. 

 

b) The spectra of the paint layers of samples N2, N3 and N5 present an unusual highly 

intense carboxylate antisymmetric stretching band, occurring at 1541 cm-1, suggesting a 

particularly high amount of carboxylates relatively to the rest of the samples (Figure 6.22b is 

a representative spectra of the three samples). The band’s wavenumber suggest either lead 

carboxylates, zinc carboxylates, cobalt carboxylates, or a mixture of these. Since lead white 
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is present in the layer, lead carboxylates are also probably present, but due to the high 

relatively intensity of the band, zinc or cobalt carboxylates are likely present. Because zinc 

yellow is present in the layers under analysis (956, 876 and 802 cm-1) in the samples N2 and 

N5 (result confirmed by µ-R), while zinc and cobalt were identified by SEM/EDS in the 

sample N3 (Figure 7.21b), it appears that the unusual high intensity of the antisymmetric 

stretching band of the carboxylate is probably due to the presence of both lead and zinc 

carboxylates58. 

c) The spectrum of sample E4 presents a high intense carboxylate band at about 1517 

cm-1 (Figure 6.14Aa). Because lead white is present in the sample, lead carboxylates 

probably contribute to this band, but the reason for such a high intensity is not known. 

 

Polysaccharide material 

Although the presence of red to pink semi-transparent pigments similar to lake pigments 

was easily visualized by OM in several samples, their identification by µ-IR was somewhat 

impossible. Figure 6.23 presents the µ-IR spectra of four red layers mainly composed by 

such pigments. 

Unexpectedly, the overall spectra pattern is quite similar for spectra (a), (b) and (c): a very 

intense and broad band in the hydroxyl stretching region (3393-3370 cm-1) and three bands 

at about 1153, 1081 and 1024 cm-1, with a distinct pattern resembling the one of a natural 

polysaccharide material, such as starch, suggesting that starch is a major component of the 

layers mainly composed by red lake pigments. The two weak bands at 930 and 859 cm-1 

(Figure 6.23b) are characteristic of starch and the bands at 1635 and 1412 cm-1 can also 

account for the existence of the polysaccharide material (the reffered bands are marked at 

pink) (87,300). 

 

Lake pigments are chelate complexes of dyes and metal cations (301), prepared by co-

precipitation/adsorption of the organic dyestuff with/onto an inorganic substrate. Although the 

organic dyestuff is rich in infrared absorption bands, lake pigments normally present a very 

low dyestuff content (302) (as expected as already expected) thus, the bands due to the 

dyestuff were not visible, making the identification of the lake pigment difficult. 

Regarding the inorganic substrate, which was normally an amorphous and highly variable 

inert compound formed by the reaction between potash alum (potassium aluminium sulfate, 

KAl(SO4)2.12H2O) and an alkali (a solution of potassium or sodium carbonate), but also 

calcium carbonate - calcite form, barium sulfate, kaolin, zinc oxide and tin salts (303-305), there 

                                                
58 Due to its basic character, zinc is known for reacting with oil in a more pronounced manner than lead, thus, 
zinc pigments readily react with fatty acids to form zinc soaps  (296). 
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is also no indication about is composition. In the spectrum presented in Figure 6.23d, lead 

white is easily identified, in but it is probably from an adjacent layer (as result of diffraction 

effects). 

 

 
Figure 6.23 Infrared spectra of: (a) layers 3 and 4 of sample E5, identified as a mixture of lead 

carbonate, lead carboxylates and a polysaccharide material (probably starch), (b) layer 3 of sample 

F4, identified as a polysaccharide material (probably starch) and maybe wax, (c) layer 2 of sample Q5, 

identified as a polysaccharide material (probably starch) and strontium yellow, and (d) layers 2 and 3 

of sample W4, identified as lead white and a sulfate/silicate compound or polysaccharide material. 

 

By the 19th century the most important sources of red dyestuff for artists’ pigments were 

madder root and cochineal insects (85,90,136). Because cochineal lake pigments were found to 

often contain polysaccharide material (starch in some cases) (293,303-305) we can suspect that 

the lake pigment with a polysaccharide material content (Figure 6.23a-c) is cochineal lake, 

but further characterization is required, even because oftenly two lake pigments were mixed 

to obtain the desired colour (136). 

 

The fact that no resin bands were identified suggests that resin, often added in a little 

amount to enhance the translucency of the lake pigments, does not seem to have been 
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added to these lake pigments. Instead, the presence of bands assignable to wax (Figure 

6.23b): very strong C-H stretching bands at 2919 and 2850 cm-1, arising from the large 

number of CH2 groups and a band at 1463 cm-1, arising from the CH2 bending mode (87,177), 

suggest that wax was added to this red lake layer. 

 

Resin 

Bands assignable to the inclusion resin were identified in some of the spectra (Figure 

6.24a). Because the overall resin spectrum is very characteristic, it is easily identifiable. 

Although, inclusion resin has a very intense infrared spectrum (Figure 6.24b), there were no 

significant cases where overlapping of the sample bands by those of the resin made the 

sample components identification impossible. 

 

 
Figure 6.24 Infrared spectra of: (a) sample R4, identified as lead white and the embedding resin, and 

(b) the embedding resin. 

 

Size 

Size, diluted glue, used to prepare the support, was identified when analysing the samples 

T3, U1, U7 and U8 (Figure 6.25). Besides identification of bands assignable to the glue 

(Figure 6.25a) (295) in some cases, also the bands assignable to the cellulose (306) of the 

canvas fibbers, 1376, 1159, 1087,1061, 1037 and 898 cm-1, were identified (Figure 6.25b 

and c). 

 

Unknown compound 1 

As presented in Figure 6.26, an unknown pattern with bands occurring at 1002 - 994m, 

957w, 899 - 896m, 878m and 835 cm-1, was identified in the spectra of the blue layers of 

samples I3, R1, and R8. Unfortunately, no assignment of these bands to a specific 

compound was possible, since no reference spectra exhibited these bands. Still, as cerulean 
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blue, a cobalt stannate pigment (CoO.nSnO2) was identified by µ-XRD in sample I3, and by 

SEM/EDS in the samples R1 and R8, it is possible that there is a connection between the 

existence of these bands and the presence of this pigment. Although not presented, the 

spectra of the blue layers of sample R4 presented the same unknown pattern. 

 

 
Figure 6.25 Infrared spectra of size layers: (a) layer 1 of sample U7, identified as animal glue, (b) 

layers 1 and 2 of sample T3, identified as animal glue and a polysaccharide material (probably 

cellulose, wavenumbers in purple), and (c) layer 1 of sample U1, identified as cellulose (wavenumbers 

in purple) and animal glue. 

 

 
Figure 6.26 Infrared spectra of: (a) layer 2 of the sample I3, identified as a carbonate, lead 

carboxylates and unknown compound 1 in oil, (b) layers 2 -3 of sample R1, identified as lead white, 

lead carboxylates and unknown compound 1 in oil, (c) sample R8, identified as lead white, lead 

carboxylates, inclusion resin (R) and unknown compound 1 in oil. 
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6.2 Raman microscopy analysis  

 

6.2.1 Experimental conditions 

 

Samples 

Having three different types of samples available, namely bulk samples (without any 

preparation), cross sections (used for OM) and thin sections (prepared for µ-IR), an initial test 

was made in order to determine which sample preparation method was the most suitable to 

conduct the Raman stratigraphic analysis. The results indicated that cross-sectioned 

samples were the most suitable. While bulk samples and thin sections, being very fragile, 

had to be handled with care and correctly positioned using a needle or a scalpel, cross 

sections, presenting a high mechanic resistance and a reasonable size, were easily handled. 

Moreover, while curling of thin sections made their analysis almost impossible, and the 

irregular shape of bulk samples made the analysis of their internal layers extremely difficult, 

cross sections, presenting all layers of the sample at the same focal plane and at a high 

contrast of colour (due to the polished surface), made the focusing of the laser over each 

pigment grain really easy. 

Based on these results, the µ-R analysis of the 150 samples was conducted using the 

cross sections prepared for OM (see section 3.2.1. for sample preparation), the only 

exception being sample O3. In fact, the small size of sample O3 did not allow the preparation 

of a cross section. The analysis of this sample was limited to the top and bottom surfaces 

(Figure D89). 

Since when studding micro samples, homogeneity becomes an important consideration, 

because an impurity can be erroneously identified as sampling material, several similar 

coloured grains in each layer were analysed. In total, more than 2000 Raman spectra were 

acquired and analysed. 

 

Experimental set-up 

Raman spectra were recorded with a spectral resolution of 1 cm-1 using a Renishaw 

System 1000 Raman spectrometer coupled to a Leica MDLM optical microscope (x10 

ocular), bands being reported to within an uncertainty of ± 1 cm-1. The spectrometer is 

equipped with a holographic notch filter, a dispersive grating of 1800 grooves mm-1, a 20 µm 

slit width and a thermoelectrically cooled charge-coupled device (CCD) detector operating at 

-70 °C. The excitation source was a He-Ne (632.8 nm) Renishaw laser, an argon-ion (514.5 

nm) Spectra-Physics (Model 263C/Model 165) for analysis of reference sample of celadonite 

and glauconite, which was daily aligned through the several optical components; the intensity 
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of the signal adjust (using the 520.5 cm-1 line of a silicon wafer); and the diffraction grating of 

the spectrograph calibrated by reference to the emission lines of an absolute standard, a 

Neon lamp. 

Laser beam was focused onto each pigment grain (with the help of cross-wires) using an 

x100 Olympus objective (NA 0.95), or an x50 Leica objective (NA 0.75) for some of the 

reference samples. Power at the sample’s surface was controlled using neutral density filters 

with optical throughputs of 1, 10, 25, 50 and 100%, leading to a power at the sample surface 

between 0.02 and 2 mW (Table 6.3), measured with an Ando AQ 2150 Optical Multimeter. 

The number of scans accumulated and averaged to produce each presented spectrum is 

indicated in their caption. 

Computer control and data acquisition were performed using the GRAMS/32 software 

package (Galactic Industries Corporation, USA) operating on a standard PC. Band 

assignment and graphic construction were performed using ORIGIN 6.0 software. No 

spectral processing other than removal of sharp spikes (attributed to cosmic rays - low level 

events, hitting the detector59), was performed. 

 

Table 6.3 He-Ne laser (632.8 nm) power at the sample surface. 

 

 

 

6.2.2 Results and discussion 

In order to avoid degradation during analysis, the laser line 632.8 nm was employed. We 

verified that this laser line, besides being the most suitable for the analysis of yellow to red 

coloured pigments, since laser induced alteration of these pigments was minimized, it was 

also quite suitable for the analysis of blue to green and black coloured pigments. In fact, no 

improvement was verified when analysing blue to green and black coloured pigment particles 

using the 514 nm laser line, thus the entire analysis was undertaken using the 632.8 nm 

laser line. 

                                                
59 Sharp spikes can also be a result of “hot pixels”. Sometimes the response of a certain pixel or row of pixel in a 
CCD detector can be significantly higher that its neighbours, such pixels are known as “hot pixels”. However, 
while cosmic rays are manifested randomly, “hot pixels” appear continuously at the same wavenumbers. 

x 50 x 100

100% 2.00 mW 0.63 mW
50% 1.00 mW 0.32 mW
25% 0.41 mW 0.13 mW
10% 0.25 mW 0.10 mW
1% 0.03 mW 0.02 mW

Objective
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Initially, we were using a 50x objective, the higher magnification objective available in the 

microscope, which proved to be very insufficient for the analysis of the samples. Although the 

spatial resolution is 1.0 and the approximate depth resolution is 1.6, using this objective only 

a very small number of pigments were identified and their spectra were dominated by 

fluorescence. By changing to a 100x objective (NA 0.95), for which the spatial resolution is 

0.8 and the approximate depth resolution is 1.0, visualisation of individual pigment grains and 

focusing of the laser beam on each grain was possible, and its identification was easily 

conducted. 

 

 

Table 6.4 summarizes the compounds identified in the samples and their distribution 

through the 23 paintings. As done for µ-IR, a detailed interpretation of the Raman spectra of 

the compounds found in the samples, organized by functional group, presented by alphabetic 

order and referred to the samples from which the spectra were obtained (Appendix D) is 

outlined. In particular, due to the high number of oxides and oxyhidroxides, these compounds 

were further grouped my metal. The main difficulties found in the interpretation of the Raman 

spectra are also emphatized. 

 

 

Table 6.4 Compounds* identified by µ-R in Pousão’s paintings 

 
(continued overleaf) 

 

 

Compounds A B C D E F G H I J K L M N O P Q R S T U V W

Arsenites
Emerald green • • • • • •

Scheele's green • •

Carbonates
Calcium carbonate - calcite form • • • • • • • • • • ? •

Lead carbonate • • • • • • • • • • • • • • • • • •

Lead white • • • • • • • • • • • • • • • • • • • • • • •

Malachite •

Chromates
Chrome orange • • • • • • • • • • • • • • • ? •

Chrome yellow • • • • • • • • • • • • • • • • •

Strontium yellow • • • • • •

Zinc yellow • • • • • • • • •

Cyanides
Chrome green • • • •

Prussian blue • • • • • • • • • • • • •

Paintings
Earlier French Italian Final
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Table 6.4 (continued) 

 
A - Casa rústica de Campanhã, B - O mendigo Lapita, C - Paisagem - Abertura da Rua Alexandre Herculano, D - Jardim de 

Luxemburgo (estudo), E - Aldeia de St. Sauves, F - Paisagem de St. Sauves, G - Cansada (Cachopa de Capri), H - Casas 

brancas de Capri, I - Cecília, J - Escadas de um pardieiro - Roma, K - Esperando o sucesso, l - Fachada de casa soterrada - 

Roma, M - Miragem de Nápoles, N - Portão, O - Rapariga de Anacapri, P - Rua de Roma, Q - Senhora vestida de preto, R - 

Janela das persianas azuis, S - Mulher da água, T - Paisagem de Anacapri, U - Rapariga deitada no tronco de uma árvore, V - 

Cais de Barcelona and W - Flores Campestres. 

* Pigments are in blue, while extenders, associated compounds or impurities are in green 
? Propable identification 
a By identification of the laser induced formed orthorhombic leadII oxide 
b Pigments that do not belong to a specific functional group 

 

 

 

Compounds A B C D E F G H I J K L M N O P Q R S T U V W

Oxides and Oxyhydroxides
Anatase • • • •

Brookite •

Cobalt blue • • ? ? • • • • ? ? ? ? ? ?

Cobalt oxide •

IronIII oxide • • • • • • • • • • • • • • • • • • • •

IronIII oxyhydroxide • • • • • • • • • • • • • •

LeadII,IV oxide • •

Lead antimonate yellow • • • ? • • • • •

Rosiaite • • • • •

Rutile • • •

Tetragonal leadIV oxide a • • •

Viridian • • • • • • • •

Zinc white •

Silicates
Celadonite • •

Kaolinite • •

Quartz • • • •

Ultramarine blue • • • • • • • • • • • • • • • • • •

Sulfates
Barium sulfate • • • • • • • • • • • • •

Basic lead sulfate • ? • • •

Brochantite •

Lead sulfate ? • ? • ? • ? • ? • ? ?

Sulfides
Cadmium red • • •

Cadmium yellow ? ? ? • • • ?

CopperII sulfide • •

MercuryII sulfide • • • • • • • • • • • • • • • • • • • • • •

Realgar/parealgar • • • •

Other pigments b

Carbon-based black • • • • • • • • • • • • • • • • • • • • • • •

Cochineal lake • • • • • • • • • • • • • • • • • • •

Madder lake • •

Paintings
Earlier French Italian Final
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Arsenites 

Emerald green, Schweinfurt green60, copper acetoarsenite, Cu(CH3COO)2.3Cu(AsO2)2 

was identified by its characteristic Raman bands at 2926(m) and 2853(w), due to C-H 

antisymmetric and symmetric stretching modes, respectively, 1556(w) and 1439(m), due to 

COO- antisymmetric and symmetric stretching modes, respectively, 1354(w), due to methyl 

symmetric bending mode, 949(s), due to C-C symmetric stretching, 684(m), due to COO- in-

plane bending mode, 489(s), due to in-plane COO- rocking mode and 833(m), 758(m), 

537(s), 430(s), 368(s), 323(s), 292(s), 241(vs), 215(s), 173(s), 152(s), 119(w) and 106(vw) 

cm-1 (Figure 6.27) (230,307-310). As shown in the three representative spectra of Figure 6.27A, 

although a common pattern is observed in the spectra, the relative intensity of some of the 

bands, especially those below 300 cm-1, can be quite different. 

When emerald green is present in a low amount and mixed with other pigments (Figure 

6.27B), only four bands, namely 950, 240, 215 and 174 cm-1 (in green), were observed. 

 

 
Figure 6.27 Raman spectra of: (A) green pigment grains from: (a) layer 4 of sample H8 (40 scans, 

0.63 mW) (b) layer 5 of sample H2 (12 scans, 0.63 mW) and (c) layer 2 of sample H7 (5 scans, 0.63 

mW), all identified as emerald green; (B)(a) ground of layer 5 of sample H2, identified as a mixture of 

emerald green with chrome yellow (8 scans, 0.63 mW), (b) ground of layer 1 of sample L3, identified 

as a mixture of emerald green emerald green with chrome yellow and vermilion (4 scans, 0.63 mW), 

and (c) ground of layer 2 of sample H7, identified as a mixture of emerald green emerald green with 

lead white (5 scans, 0.63 mW). 

                                                
60 Emerald green is both copper acetate and copper arsenite, but will be present together with the other arsenite 
compounds, rather than in the acetate group. 
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Scheele’s green was identified by its Raman bands at 950(w), 780(m), 659(w), 540(w), 

497(m), 446(w), 424(vw), 370(vs), 275(m), 238(w), 215(vw), 204(vw), 192(vw), 183(vw), 

152(vw-sh) and 135(s) cm-1 (Figure 6.28a) (252,308).  

This green pigment is known to be a copperII arsenite, but its composition is not known 

with certainty. Although CuHAsO3
 (90,311) and Cu(AsO2)2 

(228,252,308) are the most referred 

compositions, other compounds, like CuO.As2O3, 2CuO.As2O3.2H2O, 3CuO.As2O3.2H2O, 

Cu3(AsO3)2.3H2O, CuAsO2 and CuAs2O4, seem to make also part of this pigment 

composition (85). 

Comparing the Raman spectrum of Scheele’s green with the one of emerald green 

(Cu(CH3COO)2.3Cu(AsO2)2) (Figure 6.27A), it is observed that there are no bands in 

common between these two pigments, raising doubts about Cu(AsO2)2 being the composition 

of Scheele’s green. Instead, when compared with the Raman spectrum of a reference 

sample of arsenolite, As2O3 (cubic phase) downloaded from RRUFFTM Project library (Figure 

6.28b), which exhibits bands at 780(m), 560(s), 470(m), 370(vs), 268(vs) and 183(m) cm-1 

(312-313), several similarities are observed, suggesting that the composition of the Scheele’s 

green under analysis is probably one (or more than one) of the three referred compositions 

that contain As2O3 (CuO.As2O3, 2CuO.As2O3.2H2O and 3CuO.As2O3.2H2O). 

 

 
Figure 6.28 Raman spectrum of: (a) green-grey pigment grain of layer 3 from sample H2, identified 

the as Scheele’s green (40 scans, 0.63 mW) and (b) arsenolite (ID R050383) downloaded from 

RRUFFTM Project library (314) (532 nm excitation line). 

 

Carbonates 

Calcium carbonate-calcite form, CaCO3, the thermodynamically most stable polymorph 

of calcium carbonate, was identified by the characteristic Raman bands occurring at 1086(s), 

713(w), 282(m) and 156(vw) cm-1 (Figure 6.29). The first band arises from the symmetric 
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stretching mode of the carbonate ion, the second from the in-plane bending mode of the 

carbonate ion and the last two from lattice modes (126,237). 

 

 
Figure 6.29 Raman spectrum of a brownish particle of layer 1 of sample K13 (5 scans, 0.63 mW), 

identified as calcium carbonate - calcite form. 

 

Lead carbonate, PbCO3, and lead white or basic lead carbonate, Pb3(OH)2(CO3)2 two 

white lead carbonates, were identified by the strongest feature of their Raman spectrum, a 

single band at 1053(s) cm-1 and a doublet of bands at 1051(m) and 1048(s) cm-1, 

respectively, arising from the symmetric stretching mode of the CO3
2- ion (Figure 6.30). The 

factor-group splitting of the symmetric stretching mode in lead white arises from the 

existence of carbonate ions in, at least, two different sites (126,239). 

Although, like found by µ-IR analysis, lead white and lead carbonate are common 

components of the samples and both are good Raman scatterers (239), producing intense 

Raman spectra, their identification in the samples by µ-R was somehow compromised. 

Normally, their spectra presented very high fluorescence and low quality, when compared 

with the spectra acquired from other compounds, probably due to the oil medium and/or to 

the presence of lead carboxylates61 (315). This difficulty has also been verified by Aibéo CL, et 

al. (56) during the analysis of ground layers of 19th and 20th century paintings. 

Besides, visualization and consequent focusing of the laser line on the small white grains 

in coloured layers is not easy and differentiation between lead white and lead carbonate is 

equally not easy, as the band at 1053-1051 cm-1 exists for the two compounds. So, lead 

white and a mixture of lead white with lead carbonate can be easily confused. 

 

                                                
61 Its is known that in oil paintings, the particles of lead white are completely enveloped by the organic binding 
medium (315) and since lead carboxylates (which have an organic content ) were identified by µ-IR as being 
present in the samples, probably both can be responsible for the fluorescence background. 
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Figure 6.30 Raman spectra of: (a) white ground of layer 2 of sample P1, identified as lead carbonate 

(20 scans, 0.63 mW), (b) lead carbonate reference sample (10 scans, 2.00 mW), (c) a big white 

pigment grain of layer 2 of sample H7, identified as lead white (6 scans, 0.63 mW) and (d) lead white 

reference sample, the inset presents the hydroxyl band (12 scans, 2.00 mW). 

 

Malachite, the naturally occurring form of basic copperII carbonate, Cu2CO3(OH)2, was 

identified by its Raman bands occurring at 1492(vs) and 1365(w) cm-1, due to the carbonate 

antisymmetric stretching mode, 1096(m) and 1057(m) cm-1, due to the carbonate symmetric 

stretching mode, 749(w) and 717(w) cm-1, due to the carbonate in-plane bending mode and 

596(w), 533(m), 508(m), 431(vs), 350(m), 267(vs), 217(m), 177(vs), 167(vs), 152(s), 142(m), 

130(w) 119(w) cm-1, due to the lattice modes (Figure 6.31Aa) (191,308). 

In Figure 6.31, the spectra of two reference samples of malachite are also presented (in 

green). Both spectra show significant differences in the region of the lattice modes (different 

number of bands and different relative intensities). Nevertheless, as the rest of the spectra of 

both reference samples is identical, identification of this pigment is generally easy. 

It is worth noting that the two bands occurring at 3386-3380 and 3321-3316 cm-1 (hydroxyl 

stretching region) in the two reference samples of malachite present a significantly different 

position regarding those acquired by Frost RL., et al. (191), which occurred at 3468 and 3386 

cm-1 (633 nm). The reason for this difference is not known. 

Basic copperII carbonate exists both in a natural, malachite, and a synthetic form, green 

verditer or green bice, which cannot be distinguished by vibrational spectroscopy. However, 

because: i) the synthetic form, although relatively inexpensive, seems to have been rejected 

as an artists’ pigment since the 18th century, apparently due to its pale colour (316), ii) the 

mineral form is very abundant and iii) brochantite (Figure 6.57), an associated mineral of 

malachite, was identified in the same samples were basic copperII carbonate was identified, it 

can be concluded that the mineral form was probably the one used by Pousão. 
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Figure 6.31 Raman spectra of: (A)(a) dark green pigment grain of layer 4 of sample H8 (15 scans, 

0.63 mW), identified as malachite, (b) malachite reference sample 1 (80 scans, 2.00 mW) and (c) 

malachite reference sample 2 (20 scans, 1.00 mW); (B) hydroxyl stretching region of: (a) spectrum 

(Ab) and (b) spectrum (Ac). 

 

Chromates 

Chrome orange, lead chromateVI oxide also known as basic lead chromate, (Pb2OCrO4 

or most commonly PbCrO4. PbO) is the most abundant orange pigment in the samples. This 

pigment was identified by its intense Raman bands occurring at 846(s), 836(s), 824(vs), 

380(m), 354(vw), 341(m), 322(w) and 145(m) cm-1 (Figure 6.32a). 

Initially, some difficulties and doubts regarding the identification of this pigment were 

raised because: i) two different formulae (PbCrO4.PbO and PbCrO4.Pb(OH)2) have been 

given for it; ii) there were discrepancies among the published data and iii) none of the 

published reference spectra of chrome orange entirely match the spectra acquired in our 

analyse. A Raman spectrum with a very intense band at 828-824 cm-1 in the CrO4
2- stretching 

region, a doublet in the CrO4
2- bending region at 359/341 and a band at 151-149 cm-1 either 

due to lattice modes or to P-O modes, was attributed to the PbCrO4.PbO composition (126,308), 

while a Raman spectrum with three bands at 849-845, 838 and 826-824 in the CrO4
2- 

stretching region, four bands in the CrO4
2-

 bending region at 382-379, 356-355, 343-341 and 

324-323, with no report of a band in the 150 cm-1 region was attributed both to the 

PbCrO4.PbO (240) and to the PbCrO4.Pb(OH)2 compositions (156). 

Except for the band occurring at 150 cm-1, not present in the published spectra probably 

due to the cut-off, our spectra are very similar to the spectra presented in the references 
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Roncaglia DI, et al. (240) and Castro K, et al. (156). But still remains the doubt about the right 

chemical composition of the orange pigments present in the Pousão samples. Since some 

yellow-red pigments, such as lead antimonate yellow (Pb2Sb2O7) and litharge (PbO) also 

exhibit a strong Raman band in the 150 cm-1 region, remains also the doubt that the orange 

pigment under analyse is a mixture of chrome orange with one of these pigments or chrome 

orange. 

 

 
Figure 6.32 Raman spectra of: (a) orange pigment grains of the white ground layer 3 of sample C5, 

identified as chrome orange (2 scans, 0.10 mW), (b) chrome orange reference sample (Winsor and 

Newton) (10 scans, 0.13 mW), (c) phoenicochroite reference sample (10 scans, 0.41 mW) and (d) 

orange pigment grain of sample K10, identified as chrome orange maybe mixed with chrome yellow (5 

scans, 0.13 mW). 

 

In order to clarify this matter, a reference sample of chrome orange and another of the 

mineral phoenicochroite (Pb2OCrO4)
 (317-318), whose composition had been confirmed by µ-

XRD, were analysed by µ-R, the spectra being presented in Figure 6.32b and c, respectively. 

As clearly demonstrated in Figure 6.32a-c, identical Raman spectra are produced by the 

orange pigment under analysis, the chrome orange reference sample and the phoenicrocoite 

reference sample, indicating that the orange pigment under analysis is chrome orange only, 

an isostructural with the mineral phoenicochroite. This result confirms the analysis of Pollack 

and Feller that in 1976 referred that there was no structurally bound hydroxyl group present 

in this pigment (85). The relative intensities of the bands in the stretching region do often differ, 

probably as a result of different grain orientations. The reason(s) why reference spectra 

presented in the references Bell IM, et al. (308) and Burgio L, et al. (126), which are identical 

between them (probably deriving from the same bulck sample), is different from the spectra 

by us acquired is(are) not known. 
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There is no evidence that this orange pigment contains lead sulfate, considered to be 

commonly present in the purest grades of chrome orange (85). 

Because the only stretching band62 of chrome yellow at 837 cm-1 occurs at about the same 

wavenumber than one of the three stretching bands of chrome orange, a mixture of these 

two pigments is difficult to identify, and when the amount of chrome yellow is relatively low, 

most probably, only chrome orange will be identified. In the spectrum presented in Figure 

6.32d, where chrome orange is immediately identified, the relative high intensity of the 837 

cm-1 band, which in chrome orange is normally lower than the other two stretching bands 

(Figure 6.32a-c), leads to the suspicion that chrome yellow is also present. 

 

Chrome yellow, PbCrO4 was identified by its Raman bands at 838(vs), 357(s), 399(w), 

375(m), 336(w), 324(vw) and 135(w) cm-1 (Figure 6.33a), strontium yellow, SrCrO4 by its 

Raman bands at 929(vw), 926(vw), 915(m), 893(vs), 865(vs), 859(sh), 430(vw), 425(vw), 

402(m), 374(m), 348(m) and 338(m) cm-1 (Figure 6.33b), and zinc yellow, a complex zinc 

(potassium) chromate with the approximate composition K2O.4ZnCrO4.3H2O (242) by its 

Raman bands at 941(s), 893(m), 872(vs), 773(m), 409(m), 376(w), 358(m), 343(m), 170(vw), 

143(vw) and 113(vw) cm-1 (Figure 6.33c) (126,308).  

 

 
Figure 6.33 Raman spectra of: (a) yellow pigment grains of layer 3 of sample E4, identified as chrome 

yellow (3 scans, 0.63 mW), (b) brownish pigment grain of layer 2 of sample D1, identified as strontium 

yellow (15 scans, 0.63 mW), (c) green ground of layer 6 of sample H2, identified as zinc yellow (5 

scans, 0.63 mW) and (d) a yellow-white pigment grain of layer 2 of sample Q2, identified as a mixture 

of chrome yellow (wavenumbers in orange) and strontium yellow (wavenumbers in blue) (4 scans, 

0.32 mW). 

 

                                                
62 The antisymmetric stretching band is weaker than the symmetric band and is not resolved from the last one. 
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The bands at high wavenumbers are due to the CrO4
2- ion antisymmetric and symmetric 

stretching modes, while the bands between 500 and 300 cm-1 are due to the bending modes 

of the same ion and the band at 135 cm-1 to lattice modes (175,319,320). 

Unlike in the µ-IR analysis, mixtures of these pigments (either true mixtures or the 

proximity between pigment grains) were also easily identified, as shown in the spectrum 

presented in Figure 6.33d, which corresponds to a mixture of strontium yellow with chrome 

yellow. 

 

Cyanides 

Chrome green - One of the most known mixed pigments, which consists in a mixture of 

chrome yellow (Figure 6.33) with Prussian blue (see below), was identified in some of the 

samples, since the green colour that seemed to be due to a single pigment yield both chrome 

yellow and Prussian blue characteristic bands (Figure 6.34a). 

 

 
Figure 6.34 Raman spectra of the green ground of layer 2 of sample S2, identified as chrome green 

(25 scans, 0.32 mW). Prussian blue bands are in blue, while chrome yellow bands are in orange. 

 

Prussian blue, ironIII hexacyanoferrateII, Fe4[Fe(CN)6]3.14-16H2O was identified by its 

Raman bands at 2153(vs), 2092(m), 949(vw), 532(m) and 280(m) cm-1 (Figure 6.35a) (126,321). 

The two bands at higher wavenumbers are due to the C≡N stretching modes in the 

hexacyanoferrate ion (Fe(CN)6
4-), and the bands at 532 and 280 cm-1 are probably due to the 

Fe–C stretching and Fe–CN deformation modes, respectively (195). 

Whenever the noise and the background are high or the pigment concentration is low, 

only the two C≡N stretching bands at 2153 and 2092 cm-1 are observed (Figure 6.35b and c). 

Nevertheless, as no other compound seems to present bands at these wavenumbers, these 

two bands allow the identification of this pigment in a mixture, like for example, in the 

background of layer 2 of sample I5, whose spectrum is presented in Figure 6.35c, where a 

mixture of Prussian blue and ultramarine blue (Figure 6.54) was identified. 
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Figure 6.35 Raman spectra of: (a) a dark blue particle of layer 2 of sample S7, identified as Prussian 

blue (16 scans, 0.32 mW), (b) a blue particle of layer 1 of sample I5, identified as Prussian blue (1 

scan, 0.32 mW) and (c) the blue background of layer 2 of sample I5, identified as a mixture of 

Prussian blue and ultramarine blue (band wavenumbers in blue) (2 scans, 0.63 mW). 

 

 

Oxides and Oxyhydroxides 

Chromium oxide 

Viridian, a green pigment firstly synthesized during the 19th century (85), also known as 

Guignet's green, was identified by its Raman spectrum with bands occurring at 781(vw), 

487(m) and 265(m) cm-1 (Figure 6.36) (248,308). Whenever the intensity of the referred bands is 

weak, either due to high fluorescence background or due to a low amount of this pigment, its 

identification becomes more difficult, as can be seen in the Figure 6.36a. 

 

 
Figure 6.36 Raman spectra of: (a) green-bluish pigment grain of the green layer 4 of sample H8, 

identified as viridian (20 scans, 0.63 mW), (b) green pigment grain of the green layer 2 from sample I7, 

identified as viridian (50 scans, 0.63 mW) and (c) reference sample of viridian (Winsor & Newton) (10 

scans, 0.10 mW). 
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As referred before (µ-IR analysis), although the composition of this pigment is normally 

described as hydrated chromiumIII oxide, Cr2O3.2H2O, we think it is more porbably an 

hydroxide or oxyhydroxide. 

 

Cobalt oxides 

Cobalt blue, cobalt aluminate, CoAl2O4 or commonly CoO.Al2O3
 (322), was identified by its 

two Raman bands at 517(w) and 200(w) cm-1 (Figure 6.37Aa) (308,321). However, as the 

Raman spectrum of this pigment was at best very weak and in some cases impossible to 

acquire, its identification was often difficult and ambiguous (Figure 6.37Ab), and its presence 

had to be confirmed by SEM/EDS (Figure 7.9a). 

 

 

Figure 6.37 Raman spectra of: (A)(a) blue pigment grains of layer 3 of sample H5, identified as cobalt 

blue (13 scans, 0.63 mW) and (b) blue ground of layer 2 of sample A3, probably cobalt blue (7 scans, 

0.63 mW); (B) black particle of layer 2 of sample H7, identified as cobalt oxide (10 scans, 0.13 mW). 

 

Cobalt oxide, Co3O4, a cobalt oxide with cubic spinel structure was identified, in sample 

H7, by its characteristic Raman spectrum (Figure 6.37B) that exhibits five bands at 688(w), 

617(w), 521(m), 481(m), 200(sh) and 193(s) cm-1 (323,324). This grey/black compound that 

seems to have never been used as an artistic pigment, except for one report (324), is probably 

present as an impurity. 

 

Iron oxides and oxyhydroxides 

IronIII oxyhydroxide, α-FeOOH, also known by the name of the mineral with the same 

composition, goethite, or by the name of its synthetic form, Mars yellow, was identified by its 

Raman spectrum (Figure 6.38) revealing bands at 549(w), 478(w), 389(m), 298(m), 244(w) 

and 203(vw) cm-1 (126,308,325). 
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Although the background of the spectra for the iron oxyhydroxide grains present in the 

samples was normally very intense, identification against the spectrum of a reference sample 

(Figure 6.38b) was still possible. 

 

 
Figure 6.38 Raman spectra of: (a) yellow-brownish pigment grains of layer 3 of sample E5, identified 

as ironIII oxyhydroxide (23 scans, 0.63 mW) and (b) goethite reference sample (10 scans, 0.13 mW). 

 

IronIII oxide, α-Fe2O3, commonly known as, the equivalent mineral hematite, or the 

synthetic equivalent Mars red, was identified by its Raman bands occurring at 1320(s), 

612(s), 496(m), 411(s), 296(sh), 291(vs), 244(m) and 225(vs) cm-1 (Figure 6.39a and b) 

(126,325,326). 

As shown in Figure 6.39b, some pigment grains presented, associated with the ironIII 

oxide spectrum, a relative intense band at ca. 660 cm-1 (sometimes more intense than the 

adjacent 610 cm-1 ironIII oxide band). Unfortunately there has been no consensus in the 

assignment of these band, which has been assigned to ironIII oxide/hematite (327-329) magnetite 

(Fe3O4) 
(158,325,330-332), or even, wrongly, to kaolinite (333). 

Because magnetite can be transformed into hematite naturally or under the laser line 

(325,334), the band at 660 cm-1 has often been assigned to trace residual magnetite in hematite 

(158,325,330-332). However, the assignment of this band to the Raman forbidden longitudinal-

optical phonon (LO) of ironIII oxide, which is observed in samples with some amount of 

disorder (327-329), such iron oxide produced by dehydration of goethite below 900ºC or 

whetered hematite (85,329), seems more correct. Raman scattering of hematite is much larger 

that Raman scattering of magnetite, so, a very small amount of hematite produces intense 

hematite bands in the Raman spectrum of magnetite, while, the existence of bands of 

residual magnetite in the hematite spectrum seems improbable (328,329,334,335). Furthermore, the 

Raman spectrum of magnetite is characterized by an intense band at 670 cm-1 rather than at 

660 cm-1 (326,336). 
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Figure 6.39 Raman spectra of: (a) red pigments grains of the reddish layer 4 of sample K7, identified 

as hematite (10 scans, 0.13 mW), (b) big brown particle of the brown layer 7 of sample K9, identified 

as hematite (17 scans, 0.32 mW) and (c) hematite reference sample (3 scans, 0.63 mW). 

 

Another possibility, for the presence of the 660 cm-1 band, not referred before, is the 

existence of manganese oxides/oxyhydroxides, since these compounds, especially the black 

MnO2 minerals, were added (at 6-15 wt%) to iron oxide/oxyhydroxide in order to produce 

Umber pigments (333,337,338). 

Due to their opacity and thermal absorption, manganese oxides/oxyhydroxides are greatly 

unstable under the laser line, leading to the formation of new phases or amorphous material 

(339,340) and although they are generally known by their low Raman activity (339) a very good 

Raman spectrum was aquired for a synthetic sample of MnO2 with the 632.8 nm laser line, 

Figure 6.40 (339,340). 

Reference sample of Umber and Sienna pigments should be studied in order to check this 

hypothesis, and also to determine if the pigments containing manganese oxides can be 

distinguished from those pigments not containing manganese oxides by Raman 

spectroscopy. 

 

Although the band at ~1320 cm-1 has been most of the times ascribed to two-magnon 

scattering (magnetic scattering)  (325,326), it seems that this band is not due to magnetic 

scattering, but rather to an overtone of a Raman-forbidden LO near 660 cm-1, while the two-

magnon scattering appears to occur as a weak and broad band at ca. 1525 cm-1 (327,341).  

 

We call the attention to the fact that significant differences can be found between Raman 

spectra of iron oxide, such as different relative intensity, broadening and shift of the bands, 

as a result of crystal orientation, Fe/Al substitution and doping (326). We also want to refer that, 
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although goethite and hematite were often identified in the same layer, there was no signal 

that hematite was produced by laser-induced transformation of goethite; no intermediate 

structures between hematite and goethite have been identified (340). 

 

 
Figure 6.40 Raman spectrum of the reference sample of manganese oxide (30 scans, 2.00 mW). 

 

Lead oxides 

Lead antimonate yellow, also wrongly referred to as Naples yellow, since this name has 

been used to describe a shade of colour rather that the lead antimonate yellow itself (342), was 

identified in a large number of samples, although in some cases with difficulty. This synthetic 

yellow pigment (one of the oldest), is prepared calcinating mixtures of lead and antimony 

oxides or salts, at high temperatures (342,343) 63. 

Ideally, its chemical composition is Pb2Sb2O7, isostructural with the anhydrous analogue 

of the mineral bindheimite. However, depending on the nature of the reagents, the ratios of 

the reagents, the time and temperature of the calcination and the presence of flux agents, 

more than one phase PbII
ySbV

2-xO7 (where 2≤y≤3 and 0≤x≤1) and/or by-products, such as 

PbSb2O6, Pb3+xSb2O8+x and lead sulfates, can be formed (342-349). As a consequence, its 

identification by Raman spectroscopy and by other techniques has involved several doubts. 

Owing to the existence of different phases of lead antimonate yellow, the strongest band 

of its Raman spectrum, which is due to the lattice Pb-O stretching mode, can occur in the 

range 147-124 cm-1, rather that at 146 cm-1 as expected (Table 6.5 and Figure 6.41a-d) and 

with different intensities64, making difficult its distinction from other lead-oxide-based yellow 

pigments (litharge, massicot, lead-tin yellow type I, lead-tin yellow type II, lead-tin-antimony) 

whose spectra exhibit a similar band (between 150 and 120 cm-1). Other characteristic 

                                                
63 There is a large number of recipes to produce lead antimonate yellow, most of which are uncertain to the 
nature of the reagents (their historical names are unclear) and vague with respect to the temperature and time of 
the reaction. In fact, some will not yield lead antimonate at all (342,343). 
64 We found that the exposition of a standard sample to the 632.8 nm laser line did not produce any shift or 
changed the relative intensity of this band, hence, cannot be the cause for this change. 
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Raman bands of lead antimonate yellow occur at 511(m), 343(w), 320(w) and 293(w) cm-1 

(Figure 6.41a-d and Table 6.5) (350-354). 

 

 
Figure 6.41 Raman spectra of: (a) yellow pigment grain of the sample Q6 (5 scans, 0.63 mW), (b) 

yellow-green pigment grain of layer 2 of sample S7 (15 scans, 0.63 mW), (c) yellow pigment grain of 

layer 2 of sample S7 (10 scans, 0.63 mW), identified as lead antimonate yellow, and (d) reference 

sample of lead antimonate yellow (4 scans, 0.41 mW) (identity confirmed by µ-XRD and SEM/EDS). * 

marks the 253 cm-1 vermilion band in spectrum (a), and the 532 and 280 cm-1 bands of Prussian blue 

in the spectra (b) and (c). 

 

 

Table 6.5 Raman band positions of lead antimonate yellow 

 
References are presented between parentheses 
a not all the bands are always present (varying with the reagent stoichiometry) 
b wavenumbers deduced from the publised spectrum 
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Because lead-tin yellow type I has a characteristic band of medium-to-strong intensity at 

about 196 cm-1, not present in the spectrum of lead antimonate yellow and litharge, massicot 

and lead-tin yellow type II do not have a band at ca. 510 cm-1, present in the spectrum of 

lead antimonate yellow, it is possible to distinguish between lead antimonate yellow and 

these four lead-oxide-based pigments. However, as the Raman spectra of lead-tin-antimony 

oxide (Pb2SnxSb2-xO7-x/2)
 (347,355,356) is essentially the same as that of lead antimonate yellow, 

the use of a complementary technique becomes mandatory, thus, SEM/EDS and µ-XRD 

analysis were carried out on six and four of the cross-sections, respectively, for which the 

yellow pigment was previously identified by µ-R. No tin was identified by the SEM/EDS 

analysis (in any of the six samples), only antimony and lead (Figure 7.14b), suggesting the 

presence of lead antimonate yellow, which was confirmed by µ-XRD analysis. 

 

As shown in the spectra presented in the Figure 6.42, lead sulfate (Figure 6.42A) and, 

more rarely, basic lead sulfate (Figure 6.42B), were found associated with lead antimonate 

yellow (a result confirmed by µ-XRD analysis). As the Raman spectrum of lead antimonate 

yellow and basic lead sulfate (see below) have the 147 cm-1 band in common, distinction 

between a mixture of lead antimonate yellow with lead sulfate and a mixture of lead 

antimonate yellow with basic lead was often very difficult (Figure 6.59). It is known that lead 

antimonate yellow was often sold containing considerable amounts of basic lead sulfate (and 

also of silica, rutile, barium sulfate and carbonates), but there is no report for the existence of 

lead sulfate (342). 

An hypothesis to the existence of the lead sulfates associated with lead antimonate yellow 

(that needs to be confirmed) is the use of Sb2S3 as the antimony containing reagent instead 

of an antimony oxide, since it was verified that when Sb2S3 was used as a starting material in 

the synthesis of lead tin-antimony yellow, lead sulfate and/or basic lead sulfate (and rosiaite) 

were produced (347). 

 

As presented in Figure 6.43a, PbSb2O6, also known as rosiaite, the analogous pale 

yellow/colourless mineral (357), was identified in some of the samples where lead antimonate 

was present, always associated with lead sulfate. This compound is characterized by a 

Raman spectrum presenting a very strong band at 656 cm-1, with other less intense bands at 

729, 526, 506, 451, 314, 296, 255, 211, 191 cm-1 (Figure 6.43b). 

The presence of PbSb2O6 on sample S5 was confirmed by µ-XRD analysis, together with 

lead sulfate, lead carbonate, lead white and Sb2O4. This last compound, Sb2O4 (SbIIISbVO4) 
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also known as cervantite, the analogous mineral, is also a by-product of lead antimonate 

synthesis (343); however, it has not been identified by µ-R65. 

 

 
Figure 6.42 (A) Raman spectra identified as a mixture of lead antimonate yellow with lead sulfate 

(wavenumbers in blue): (a) yellow pigment grain of layer 5 of sample K4 (12 scans, 0.63 mW), (b) 

yellow-greenish pigment grain of layer 6 of sample K7 (10 scans, 0.63 mW), (c) yellow pigment grain 

of layer 2 of sample S5 (16 scans, 0.63 mW), and (d) yellow pigment grain of layer 3 of sample T1 (6 

scans, 0.63 mW); * marks the 253 cm-1 vermilion band; (B) Raman spectra identified as a mixture of 

lead antimonate yellow with basic lead sulfate (wavenumbers in purple): (a) yellow-greenish pigment 

grain of layer 6 of sample K7 (4 scans, 0.10 mW), (b) yellow-greenish pigment grain of layer 6 of 

sample K7 (10 scans, 0.63 mW) and (c) yellow pigment grain of layer 5 of sample K4 (10 scans, 0.13 

mW); * marks ultramarine blue. 

 

 

Figure 6.43 Raman spectrum of: (a) yellow-greenish pigment grain of layer 4 from the sample I1, 

identified as a mixture of PbSb2O6 and lead sulfate (10 scans, 0.63 mW) and (b) rosiaite (ID R070384) 

downloaded from RRUFFTM Project library (314) (532 nm excitation line). 

                                                
65 Sb2O4 Raman bands occur at 453(m), 398(m), 263(m) and 193(vs) cm-1 (358). 
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It is worth noting that, when PbSb2O6 is present in the samples (band at 655 cm-1), the 

identification of lead antimonate yellow is more difficult, as can be seen in Figure 6.44Ab and 

Bb. The background in these spectra is more sloping, and consequently, the P-O band 127 

cm-1 is weaker or, even not observed. 

 

 
Figure 6.44 Raman spectra of: (A)(a) white pigment grain of layer 3 of sample E4 (10 scans, 0.63 

mW) and (b) yellow pigment grain of layer 4 of sample E4 (10 scans, 0.63 mW); (B)(a) yellow pigment 

grain of layer 3 of sample K14 (5 scans, 0.63 mW) and (b) yellow pigment grain of layer 2 of sample 

K14 (4 scans, 0.63 mW). 

 

LeadII,IV oxide, Pb3O4 (PbII
2PbIVO4), known as minium, its mineral equivalent, and as red 

lead (synthetic form), was identified by its Raman spectrum with bands at 549(vs), 481(w), 

391(m), 314(w), 225(m), 151(m) and 121(vs) cm-1 (Figure 6.45) (308,359). 

 

 
Figure 6.45 Raman spectra of: (a) yellow-orange pigment of layer 3 of sample T4 (8 scans, 0.13 mW) 

and (b) orange-red pigment grain of layer 2 of sample C5 (2 scans, 0.13 mW), both identified as 

leadII,IV oxide. 
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Although the spectrum is normally characterized by two very intense bands at 549 and 

121 cm-1, assigned to a stretching of the PbIV-O bond and to the coupling of the angular 

deformations of the O-PbIV-O and O-PbII-O bonds, respectively, with the other five bands 

having a lower intensity (359) (Figure 6.45a), it was also found that the band at 121 cm-1, can 

present a very low intensity (Figure 6.45b) (360,361), probably due to some amount of the high 

sloping and curved background. This feature associated with a high noise and a low amount 

of the pigment, can make very difficult the distinction between leadII, IV oxide and ultramarine 

blue, which also has an intense band at 550 cm-1 (Figure 6.54). 

 

Tetragonal leadIV oxide, PbO2, also known as plattnerite, the analogous mineral, was 

identified based in the presupposition that it was laser degradated during analysis, producing 

orthorhombic leadII oxide. 

Orthorhombic leadII oxide, also known as massicot, the analogous mineral, was identified 

in the samples when analysing black grains, rather than when analysing yellow grain as it 

would be expected. Figure 6.46A presents two of the spectra acquired during the analysis of 

the small black pigment grains66 of layer 2 of sample K4 (Figure 6.47). The upper spectrum 

(Figure 6.46Aa) is characteristic of orthorhombic leadII oxide, with bands observed at 383(w), 

287(m) and 142(s) cm-1, but the bottom spectrum (Figure 6.46Ab) presents broader red-shift 

bands, occurring at 279(w) and 138(s) cm-1 characteristic of the spectrum acquired when 

orthorhombic leadII oxide is formed during laser-induced degradation of other lead oxides, 

namely PbO2 (black), Pb3O4 (red) and tetragonal PbO (red) (126,362). 

 

 
Figure 6.46 Raman spectra of: (A) black pigment grains of layer 2 of sample K4: (a) (16 scans, 0.13 

mW) and (b) (4 scans, 0.63 mW), identified as orthorhombic leadII oxide; and (B) black pigment grain of 

layer 3 of sample E7 (2 scans, 0.63 mW) identified as carbon-based blak and orthorhombic leadII oxide. 

                                                
66 Carbon-based black pigments where also present in this layer, but having a significantly larger size. 
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As can be seen in the images of the black pigment grains (Figure 6.47) before and after 

the acquisition of the spectrum exhibited in Figure 6.46Ab, alteration of the black pigment is 

clear, which lead us to suppose that orthorhombic leadII oxide is probably present as a result 

of the transformation of back PbO2 (tetragonal leadIV oxide) under the laser line, even 

though, the maximum power used (0.63 mW), was not expected to be enough to induce this 

transformation (362). 

Tetragonal leadIV oxide also is a brown-black compound that absorbs most of the incident 

and scattered radiation, being very unstable under the laser line (362,363). 

 

  
Figure 6.47 The black pigments of the brown layer 2 from sample K4 visualised under the microscope 

of the Raman equipment (x1000): (a) before and (b) after acquisition of the spectrum of Figure 

6.46Ab. 

 

The spectrum in Figure 6.46B was acquired during the analysis of a black pigment grain 

of the blue layer 2 of sample E7. Besides exhibiting the two bands characteristic of a carbon-

based black material, 1584(vs) and 1326(vs) cm-1 (Figure 6.64), the spectrum also presents 

the orthorhombic leadII oxide shifted bands, 278(w) and 136(s) cm-1. In this case, these 

bands can be both due to transformation of black PbO2 under the laser line or to the 

presence of orthorhombic leadII oxide that, when exposed to high laser light power, does 

present a shift of its characteristic Raman bands (362). A similar spectrum was also identified in 

the sample J2. 

 

Titanium oxides 

TitaniumIV dioxide - Anatase, brookite and rutile, the three most commonly encountered 

crystalline polymorphs of titaniumIV dioxide, TiO2, were identified in the samples. 

Rutile yields the less intense Raman spectrum of the three (one order of magnitude 

weaker than the other two polymorphs) with bands at 608(m), 447(m), 236(m) and 141(w) 

cm-1 (Figure 6.48a), anatase exhibits characteristic Raman bands at 638(m), 513(m), 395(m) 

195(vw) and 141(vs) cm-1 (Figure 6.48b), while brookite is characterized by a relatively 

complex spectrum, in accordance with its lower crystal symmetry, displaying Raman bands 

(a) (b) 
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at 637(m), 583(w), 544(w), 500(w), 462(w), 412(w), 366(m), 319(s), 285(w), 246(m), 213(m), 

193(w), 152(vs), 148(sh) and 124(sh) cm-1 (Figure 6.48c) (126,364-366). 

Although these compounds occur naturally, there is no firm evidence that they have ever 

been used as an artists’ pigment before the 20th century (336) when their industrial 

manufacture processes were developed (367). Because brookite is very difficult to produce, it 

has had no value in the TiO2 pigment industry (70). 

Except for layer 2 of sample L3, which has a high rutile content, the TiO2 polymorphs 

occurred in the samples simply as trace components, probably due to the presence of an 

earth pigment (ex., ironIII oxide, ironIII oxyhydroxide), since these compounds are common 

accessory minerals in many sedimentary and metamorphic rock types (158,326,336,340,368,369). 

These compounds are known by their extremely intense Raman response, even when 

present in trace amounts, as a result of the high polarizability of the Ti atom (336,370). 

 

 
Figure 6.48 Raman spectra of: (a) white pigment grains of layer 2 of sample L3, identified as rutile (5 

scans, 0.63 mW), (b) the yellowish pigments grains of layer 4 of sample K7, identified as anatase (5 

scans, 0.13 mW), and (c) white pigment grain of layer 3 of sample K3, identified as brookite (5 scans, 

0.32 mW). 

 

Zinc oxides 

Zinc white, zincII oxide, ZnO, a white pigment also known as Chinese white was identified 

by µ-R only on two samples of the painting Flores Campestres (W5 and W8), which proved 

to have been removed from restorations areas (see chapter 7). However, as presented in 

Appendix A and chapter 7, this pigment was identified in other samples by means of 

microchemical tests (1984) and µ-XRD and SEM/EDS. 

The difficulty of µ-R for the identification of this pigment, a poor Raman scatterer, is easily 

illustrated by the weak intensity of the spectrum presented in Figure 6.49a which, despite the 

collection of 272 scans, exhibits only the 438 cm-1 band (Figure 6.49b) (126,371). Even the 
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ultramarine blue band (549 cm-1), which is present in a relatively lower amount, is more 

intense than the zinc oxide band. 

 

 
Figure 6.49 Raman spectrum of: (a) the ground of layer 2 from the sample W5, identified as a mixture 

of zinc white and ultramarine blue (wavenumbers in blue) (272 scans, 0.63 mW) and (b) synthetic zinc 

oxide (ID R060027) downloaded from RRUFFTM Project library (314) (532 nm excitation line, 150 mW). 

 

Silicates 

Celadonite, a green clay mineral of approximate chemical composition 

K(Mg,Fe2+)(Fe3+,Al)[Si4O10](OH)2
 (270), was identified, in two paintings, by comparison with a 

Raman spectrum of a reference sample, Figure 6.50A. 

 

 
Figure 6.50 Raman spectra of: (A) (a) green pigment grain of the green layer 3 of sample E4 (50 

scans, 0.63 mW), (b) celadonite reference sample (100 scans, 0.63 mW) and (c) hydroxyl stretching 

region of spectrum (b); (B) glauconite reference sample (80 scans, 0.63 mW). 
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Celadonite together with glauconite, a clay mineral with approximate chemical 

composition (K,Na,Ca)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2
 (270,271), are the two main green colouring 

agents of “green earth”- a green mineral pigment used since antiquity - others being 

cronstedtite and chlorite. Celadonite is a well crystallized mineral of volcanic origin, while 

glauconite (series name) is formed gradually from sedimentary minerals after deposition and 

consequently can vary widely in composition (272,372). Although these two mica group minerals 

are formed under different geological conditions (celadonite in vesicular cavities or fractures 

in volcanic rocks and glauconite in sandstones and marls deposited as marine sediments)67 

(274), they are very similar chemically and structurally, what leads to difficulties to their 

distinction, even by XDR analysis (272,250). 

 

As shown before, IR spectroscopy was able to differentiate these two minerals with 

relatively facility, but at the time this study was made68, there were some discrepancies 

between the published data regarding the ability of Raman spectroscopy to distinguish these 

two minerals, not allowing a conclusion to be drawn. While the Raman spectra attributed to 

celadonite were generally very similar (the differences they presented are now known to be 

due to different laser excitations) (306,372,373), the Raman spectrum attributed to glauconite was 

either reported as identical to that of celadonite (374,375), suggesting that differentiation 

between the two was impossible, or as having an intense band at c. 590 cm-1 (372). 

To clarify this matter, a reference sample of celadonite (Akaki River, Cyprus) and a 

reference sample of glauconite (Oystershell Hill, UK), whose identification was confirmed by 

µ-IR analysis (Figure 6.13) (250,274), were analysed by µ-R. As shown in Figure 6.50A, the 

spectra acquired for the celadonite reference sample and for the green pigment particles of 

the painting samples are very similar, and match those reported elsewhere (360,372,373), while 

the spectrum of the glauconite reference sample (Figure 6.50B) is very different from the one 

of celadonite. Characteristic bands of celadonite occur at 3604(m), 3561(s), 3538(w), 

1132(w), 1086(w), 1055(w), 1016(sh), 961(w), 796(vw), 769(vw), 701(m), 552(s), 460(w), 

444(w), 392(m), 379(m), 318(w), 272(m) and 174(s) cm-1, while glauconite exhibits a very 

weak Raman spectrum with bands occurring at 698(w), 589(vw), 556(vw) and 266(vw) cm-1. 

The bands above 3500 cm-1 are due to hydroxyl stretching modes, the bands between 1140 

and 360 cm-1 are mainly due to Si-O and Al-O stretching modes and Si-O-Si, Si-O-Al, Al-O-Al 

bending modes, the specific attribution is not known for certain, and the bands below 360 cm-

1 are mainly due to lattice modes (376,377). 

                                                
67 Mixtures of these two minerals can only be artificial as they do not occur naturally. 
68 Recently an important study, using several reference samples of celadonite and glauconite and three different 
excitation sources, has been published (275).  



157 

The reference samples of celadonite and glauconite were also analysed using the 514.5 

nm excitation laser line, the most suitable to the study green pigments. As can be seen in 

Figure 6.51, celadonite spectrum presents some differences relatively to the spectrum 

acquired with the 632.8 nm excitation line (Figure 6.50), both in relative band intensity and in 

band position, with bands occurring at 3604(m), 3582(w), 3566(s) and 3538(w), 1135(w), 

1072(w), 963(w), 800(vw), 770(vw), 703(s), 552(s), 459(w), 397(m), 360(m), 320(w), 274(m), 

241(vw) and 218(w) cm-1. Glauconite spectrum is  better defined spectrum that the one 

acquired with the 632.8 nm laser line, bands being detected at 3611(vw), 3568(vw), 701(w), 

592(m) and 266(vw) cm-1. Again, the spectra of celadonite and glauconite are quite distinct, 

allowing the distinction from one another. 

It is worth mentioning that, as reported by Ospitali F, et al. (275), small differences can occur 

between reference samples of celadonite or glauconite under the same laser excitation, 

probably due to the presence of associated minerals. 

 

 
Figure 6.51 Raman spectra of: (a) glauconite reference sample (300 scans, 0.9 mW) and (b) 

celadonite reference sample (100 scans, 0.9 mW) obtained using the argon-ion excitation line. The 

insets (c) and (d) are the hydroxyl stretching region of the spectra presented in (a) and (b), 

respectively. 

 

Kaolinite, Al2[Si2O5](OH)4 a naturally occurring inorganic polymer from the kaolin group 

was identified by a very weak Raman spectrum (100 scans were necessary) presenting only 

three, out of the four hydroxyl stretching bands characteristics of this compound, 3695(w) 

and 3652(vw) cm-1, due to the stretching modes of the inner-surface hydroxyl groups and 

3620(w) cm-1, due to the stretching mode of the inner hydroxyl group (Figure 6.52). The 

fourth band, not observed, occurs at 3678-3668 cm-1 and is also due to stretching modes of 

the inner-surface hydroxyl groups (267,276,280). 
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Like referred in µ-IR analysis, kaolinite is one of the kaolin polytypes, others being dickite, 

nacrite and halloysite. Although the kaolin polytypes differ only in the layer stacking 

arrangement, different hydrogen bonds are formed in each one, and consequently different 

hydroxyl stretching patterns are presented in each spectrum, allowing their differentiation. 

Kaolinite is characterized for exhibiting four bands, while dickite and nacrite exhibit three 

bands (ca. 3707, 3641 and 3623 cm-1, and 3708, 3644 and 3624 cm-1, respectively) and 

halloysite only two bands (ca. 3702 and 3627-3624 cm-1) (276,278,279). Dickite and nacrite are 

easily distinguished from kaolinite because both present a moderate band at 3641 and 3644 

cm-1, respectively, while kaolinite only has weak bands at these wavenumbers. Because no 

band was identified at 3644-3641 cm-1, the presence of dickite and nacrite was excluded. 

However, because in the weak kaolinite spectrum the two weak bands at 3654-3650 and 

3692-3684 cm-1 may not be observed, and a similar spectrum to that of halloysite is 

produced (two bands only), the distinction between kaolinite and halloysite is not so easy, 

even though, kaolinite bands seem to occur at lower wavenumbers than those of halloysite. 

 

 
Figure 6.52 Raman spectrum of the white of layer 1 of sample T2, identified as kaolinite (100 scans, 

0.63 mW). 

 

Unlike to the µ-IR results, where kaolin was identified in a large number of samples, only 

kaolinite was identified by µ-R analysis and, only in the samples where it was the main 

compound. Kaolin compounds, like other clay minerals, are usually weak Raman scatterers 

due to the high ionic character of the Si-O bonding (about 50%), so the lack of Raman signal 

arising from kaolin (kaolinite) in the samples under analysis, which present an admixture with 

other compounds, is not surprising (268,280,336,370). The fact that a proteinaceous material (high 

fluorescent material in Raman spectroscopy) is mixed with kaolinite (µ-IR result) probably 

contributed to the acquisition of poor quality spectra. 

Another important fact is that no TiO2 polymorph, normally associated with specific natural 

sources of kaolinite was detected associated with kaolinite (366,370,379). 
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α-quartz, trigonal SiO2, a natural silica polymorph very abundant in Earth’s continental 

crust, was detected on four paintings by way of its characteristic Raman band at 464(m) cm-1,

arising from the symmetric bending mode of the Si-O-Si (SiO4 tetrahedra). In only a few 

cases was the band at 209(w) cm-1 also visible (Figure 6.53) (282,336,380). 

 

 
Figure 6.53 Raman spectrum of a whitish pigment grain of sample V1, identified as α-quartz (10 

scans, 0.63 mW). 

 

Ultramarine blue (lazurite), an aluminosilicate with composition Na8[Al6Si6O24]Sn, was 

identified by its characteristic resonance Raman spectrum of the S3
- (and S2

-) ions entrapped 

in the aluminosilicate matrix (Figure 6.54).  

 

 
Figure 6.54 Raman spectrum of the blue pigment grains of layer 2 of sample S1, identified as 

ultramarine blue (5 scans, 0.63 mW). 

 

As the exciting line 632.8 nm lies within the envelope of the lowest electronic band of 

ultramarine blue (a very broad band with a maximum at ca. 610 nm) a resonance Raman 

spectrum is obtained (381). This spectrum is characterized by; i) the enhancement of the 

intensity of the totally symmetric fundamental vibration band (ν1) of the S3
- ions at 548 cm-1; 

ii) the occurrence of high-intensity overtone progression bands of this fundamental (nν1), 

respectively, 2188(w) (4ν1), 1648(m) (3ν1) and 1096(s) (2ν1) cm-1 and iii) the occurrence of a 
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progression of combination bands (ν2+nν1) of the stretching mode (ν1) with the bending mode 

(ν2) that occurs at 257(m) cm-1, respectively, 1908(w) (ν2+3ν1), 1361(m) (ν2+2ν1) and 807(m) 

(ν2+ν1) cm-1 (381,382). 

The entrapped S2
- ions in ultramarine blue are also known for producing a resonance 

Raman spectrum; however, as the used laser line falls outside of the envelope of its 

electronic band, only the totally symmetric fundamental band of this ion, which occurs at 

585(w-sh) cm-1 is detected (381). 

 

Sulfates 

Barium sulfate, BaSO4, also known as barium white and barite was identified by its 

characteristic Raman bands at 988(vs) cm-1, due to the symmetric stretching mode of the 

SO4
2-

 ion, 617(w) cm-1, due to the antisymmetric bending mode and a doublet at 463(w) and 

453(w) cm-1, due to the symmetric bending mode (Figure 6.55) in a large number of samples 
(126,175,283,308). 

 

 
Figure 6.55 Raman spectra of: (a) a white particle of layer 1 of sample K13, identified as barium 

sulfate (5 scans, 0.63 mW) and (b) a brownish particle of layer 1 of the sample K12, identified as a 

mixture of barium sulfate and calcium carbonate - calcite form (band wavenumbers in blue) (5 scans, 

0.63 mW). 

 

Basic lead sulfate, PbSO4.PbO (Pb2OSO4), which occurs naturally as lanarkite, was 

identified by its characteristic Raman bands occurring at 1070(m), 1055(m), 976(vs), 619(w), 

601(w), 439(m), 426(m), 334(m), 284(m) and 147(vs) cm-1 (Figure 6.56a) (383-385). The doublet 

at 1070 and 1055 cm-1 is due to the antisymmetric stretching mode of the SO4
2-

 ion, the band 

at 976 cm-1 is due to the symmetric stretching mode of the SO4
2-

 ion, the doublet at 619 and 

601 cm-1 is due to the antisymmetric bending mode of the SO4
2-

 ion, the doublet at 439 and 
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426 cm-1 is due to the symmetric bending mode of the SO4
2-

 ion and the bands at 334, 284 

and 147 are due to PbO modes. Unfortunately, due to spectrometric cut-off limitations, the 

band at 147 cm-1 has not always been reported (383-385) and doubts were raised about the 

nature of this band. In order to confirm the presence of an intense band in those 

wavenumbers in lanarkite spectrum, a reference sample of that mineral was analysed by µ-R 

(Figure 6.56b). 

 

 
Figure 6.56 Raman spectra of: (a) a grey particle of layer 5 of sample K12, identified as basic lead 

sulfate (10 scans, 0.63 mW) and (b) lanarkite reference sample (35 scans, 2.00 mW). 

 

Brochantite, the natural form of basic copperII sulfate Cu4(OH)6(SO4), was identified in 

sample H8 by its Raman bands at 3586(m), 3562(m) and 3393(m) cm-1, due to the hydroxyl 

stretching modes, 973(s) cm-1, due to the sulfate symmetric stretching, 623(w), 611(w) and 

595(w) cm-1, due to the sulfate antisymmetric bending mode and 482(w), 452(vw) and 393(w) 

cm-1, due to the sulfate symmetric bending mode and to Cu-O stretching modes (assignment 

is difficult due to overlapping), and 195(vw) and 154(vw) cm-1 probably due to lattice modes 

Figure 6.57 (154,287). This compound was identified associated with malachite. 

 

Lead sulfate, PbSO4, which occurs naturally as anglesite, was identified by its Raman 

bands occurring at 978(m), 449(w) and 438(w) (a doublet) cm-1 (Figure 6.59a and b). The first 

band is due to the symmetric stretching mode of the SO4
2-

 ion, while the doublet is due to the 

symmetric bending mode of the SO4
2-

 ion (383,385). 
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Figure 6.57 Raman spectrum of the green-whitish background of layer 4 of sample H8, identified as 

brochantite (25 scans, 0.63 mW), the inset shows the hydroxyl region. 

 

 
Figure 6.58 Raman spectra of: (a) a grey particle of layer 5 of sample I7, identified as lead sulfate (5 

scans, 0.63 mW), the * marks a vermilion band and (b) lead sulfate reference sample (3 scans, 0.63 

mW). 

 

The fact that lead sulfate and basic lead sulfate have some bands in common, can 

constitute a problem for their identification, especially when mixed with lead antimonate 

yellow (see Figure 6.41), which has the band at 147 cm-1 in common with the basic 

compound. It is possible to distinguish one from another through the shift of the doublet 

produced by symmetric bending mode of the SO4
2-

 ion, which occurs at 438/449 for lead 

sulfate and 426/439 for basic lead sulfate, and also through the existence of the doublet 

1055/1070 in the basic compound, due to the antisymmetric stretching mode of the SO4
2-

 ion. 

However, when the spectrum has weak bands, the doublet(s) is(are) not observed, as shown 

in Figure 6.59, and it is not possible to distinguish these two lead sulfates by µ-R. 
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Figure 6.59 Raman spectra of: (a) yellow-greenish ground of the green layer 6 of sample K7, 

identified as a mixture of lead antimonate yellow (wavenumbers at orange) with probably lead sulfate 

(6 scans, 0.13 mW), and (b) green ground of the green layer 2 of sample I4, identified as a mixture of 

lead antimonate yellow (wavenumber at orange) with lead sulfate or basic lead sulfate and vermilion 

(wavenumber at red) (15 scans, 0.63 mW). 

 

Sulfides 

Cadmium red, cadmium sulfide-selenide (CdSxSe1-x), was identified by its characteristic 

Raman spectrum, which simultaneously presents two optical fundamental phonons (LO), 

CdS-type and CdSe-type and their overtones and combination modes. Bands occur at 

590(m) (2LOCdS), 489(w) (LOCdSe+LOCdS), 295(s) (LOCdS) and 195(m) (LOCdSe) cm-1, Figure 

6.60a (386,387). 

 

 
Figure 6.60 Raman spectra of: (a) red pigment grain of layer 2 of sample W5, identified as cadmium 

red (10 scans, 0.63 mW) and (b) pigment of layer 2 of sample U10, identified as cadmium yellow (18 

scans, 0.63 mW); * marks a band probably due to ultramarine. 
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Being a mixing system (and not CdS and CdSe separate particles) the Raman bands of 

this compound present a composition-dependence shift (386,388), what accounts for the 

existence of different published reference spectra (578(m), 283(s), 210(w) cm-1) (389) 69. 

 

Cadmium yellow, cadmium sulfide, CdS, was identified as being the palest yellow 

pigment present on the paintings. Its Raman spectrum is characterized by two weak bands70 

at 303 and 596 cm-1, corresponding to the longitudinal optical phonon mode (LO) and its first 

overtone (2LO), respectively (Figure 6.60b) (308,390,391). Unfortunately, the spectra acquired in 

the analysis of pigment were at best very weak and SEM/EDS analysis had to be used for 

confirmation (Figure 7.7). One of the reasons for such a weak Raman spectrum can be the 

fact that an amorphous form seems to occur together with the crystalline form of cadmium 

sulfide, since reduction of the ordered structure of a compound results into the broadening of 

the bands and consequent reduction of their intensity (85). 

 

CopperII sulfide - Black-brownish particles present in the samples S1 and T1 were 

identified as copperII sulfide, CuS, by way of the Raman bands at 473(s), 264(m) and 140(w) 

cm-1 (Figure 6.61a) (314,392). 

 

 
Figure 6.61 Raman spectrum of: (a) brown grain of layer 2 from the sample T1, identified as copper 

sulfide (10 scans, 0.32 mW); the band at 548 cm-1 is due to ultramarine blue and (b) covellite (ID 

R060306) downloaded from RRUFFTM Project library (314) (532 nm excitation line, 150 mW). 

 

Although the analogue mineral, covellite, has been known since 1832 (393), there is only, 

very recent, report of its use as a pigment (394). Instead, the presence of this compound in the 

samples is probably due to a reaction between a sulfur-containing pigment, ultramarine blue 

                                                
69 In nanocrystal this compound does also have a size-dependence shift (387). 
70 In fact, this pigment exhibits a characteristic resonance Raman spectrum; however, because the energy of the 
excitation laser line that was used (632.8 nm - 1.96 eV) is lower than its band gap (~2.5 eV in bulk material at 
room temperature), no resonance effect is produced (308,390,391). 

400 200

115

548

138

140

264

263

473

115

(b)

 R
am

an
 I

n
te

n
si

ty
  

 →
 

 Wavenumber/cm
-1

473

(a)



165 

(present in the two samples) and a copper-containing one, emerald green (a few grains still 

remain in the first sample) (228). The fact that some emerald green grains did not react, has 

been reported previously (395). 

 

MercuryII sulfide - The highly intense orange/red pigments seen all over the cross 

sections were identified as mercuryII sulfide, HgS, commonly known as vermilion (synthetic 

form) or cinnabar (mineral form). These two forms, indistinguishable by Raman 

spectroscopy, exhibit a characteristic intense Raman spectrum with bands occurring at 

342(m), 283(w) and 252(vs) cm-1 (Figure 6.62) (126,308). 

This pigment has such a good response to Raman analysis that, even when present in a 

small concentration, it was easily identified. Although this was an advantage for its 

identification, it makes it difficult the identification of other pigments with worse response, 

such as goethite, whose bands are masked by those of mercuryII sulfide. 

 

 
Figure 6.62 Raman spectrum of a red pigment of layer 3 of the sample K7, identified as mercuryII 

sulfide (1 scan, 0.13 mW). 

 

Realgar and χ-phase/pararealgar 

The mineral realgar, tetra-arsenicII tetrasulfide (α-As4S4), was identified in sample G4 by 

its Raman spectrum (Figure 6.63Aa) with bands occurring at 367(vw), 353(vs), 342(s) and 

326(w), due to As-S stretching modes, 220(s), due to As-As-S bending mode, 192(s) and 

182(vs), due to As-As stretching and As-S-As bending mode, respectively, 171(vw), due to 

As-As stretching mode and 166(vw) and 143(w) cm-1, due to As-As-S bending mode. The 

weak band at 235 cm-1 suggests that some alteration into pararealgar is already occurring as 

this band is not present in the reference sample of realgar (Figure 6.63Ba), but a doublet at 

these wavenumbers is present in the reference sample of pararealgar (Figure 6.63Bb) (396-

398). 
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Figure 6.63 (A) Raman spectra of: (a) orange/coral pigment grain of layer 2 of sample G4, identified 

as realgar (4 scans, 0.10 mW), and (b) coral pigment grain of layer 2 of sample G4 (2 scans, 0.13 

mW) and (c) coral pigment grain of layer 1 of sample H1 (18 scans, 0.10 mW), identified as χ-phase 

and/or mixture of χ-phase and pararealgar; (B) Raman spectra of: (a) realgar reference sample and 

(d) pararealgar reference sample, both provided by Burgio L. (398). 

 

In the other samples, the pigment grains with an orange-coral colour were identified as χ-

phase (397) or a mixture of χ-phase and pararealgar (399), the spectra being characterized for 

exhibiting bands at 361(s)-359(sh), 343-340(vs), 273(vw), 233-231(s), 222(s)-221(sh), 188-

186(w), 166(vw) and 143(vw) cm-1 (Figure 6.63Ab and c). These spectra are identical to the 

spectra presented by Chaplin et al. (400) and similar to the spectra of χ-phase (397) and mixture 

of χ-phase and pararealgar (399), although presenting broader bands. 

Pararealgar is a low symmetry, light-induced polymorph of both the As4S4 α-phase 

(realgar) and the β-phase (low-temperature and high-temperature phases, respectively), 

while the χ-phase, also a light-induced phase, seems to be a precursor to pararealgar (399,401). 

According to Bonazzi et al. (397), the χ-phase can be considered as an expanded, less-

ordered β-phase, leading to broader Raman bands than the β-phase. 

 

It is known that the realgar when exposed to light, either sunlight or laser light, transforms 

into pararealgar and/or χ-phase, with different rates of the transformation, depending of the 

wavelength of the light to which realgar is exposed (396,399,401,402). To determine if the 

transformation of realgar into the mixture of χ-phase and pararealgar, identified in the 

samples, occurred due to exposure to sunlight (either before or after use by Pousão) or to 

laser light is very difficult. 
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We must refer that pararealgar is not the final degradation product of realgar, but only an 

intermediate, as the continuous photo-degradation of realgar leads to the formation of 

arsenolite (As4O6), a colourless/white compound (399,402). 

 

Other pigments 

Since carbon-base black pigments and lake pigments do not belong to any functional 

group, they will be presented under the group other pigments. 

 

Carbon-based black 

The majority of the brown/black pigments gave rise to a Raman spectrum (Figure 6.64) 

with two distinct broad bands at ca. 1590(vs) and 1340(vs) cm-1, characteristic of poorly 

organized carbonaceous material. The first band is commonly known as the G band, while 

the second band is called the D1 band (the defect band). Both bands are assigned to lattice 

vibrations in the plane of graphite-like rings. However, while the G band is always active, the 

D1 band, resulting from disordered allowed zone-edge mode, becomes active only with the 

decrease in symmetry at the edges of the planes (403-406). Both bands broaden with increasing 

disorder, while the D1 band grows in intensity with increasing disorder (404). Figure 6.64 

shows how both position and relative intensity of the G and D1 bands are highly variable. 

Poorly organized or amorphous carbon is the characteristic component of the carbon-

based black pigments, i.e. pigments produced by the combustion of hydrocarbons, often 

referred to as carbon black, lamp black, charcoal, bone black and ivory black, depending of 

the starting material (85). 

 

 
Figure 6.64 Raman spectra of carbon-based black pigments from: (a) the grey layer 3 of sample J1 

(15 scans, 0.63 mW), (b) the brown layer 2 of sample G4 (3 scans, 0.13 mW), and (c) the blue layer 2 

of sample D1 (6 scans, 0.32 mW); (d) Raman spectrum of a reference sample of ivory black from 

Windsor & Newton (40 scans, 1.00 mW). 
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Different parameters of the Raman spectrum, such as band position, intensity ratio and 

area ratio have been used to estimate the carbonaceous materials degree of organization 

(405,407). However, no tentative assignment to any of the several disordered carbon-based 

black pigments was done since; i) analysis was conducted in polished cross sections and 

polishing can induce the formation of new defects; ii) as a result of its opacity, carbonaceous 

material can suffer laser-induced heating, causing the shift of the G band position and iii) 

there is different baseline definition between the spectra, that consequently cannot be 

compared (405). 

 

The inexistence of a band at ca. 960 cm-1 assignable to the symmetric stretching mode of 

phosphate ion, present in the reference spectrum of bone/ivory black (Figure 6.64d), seems 

to indicate that neither bone nor ivory black pigments were used in the paintings. However, 

bone/ivory black pigment was identified by µ-IR (Figure 6.12A) and confirmed by SEM/EDS 

(Figure 7.8) in some of the samples, indicating that µ-R presents some difficulties in the 

identification of the phosphate band when the black pigment is present in a mixture.  

Although bone black and ivory black have a different starting material, bone and ivory, 

respectively, they have an identical composition and consequently are practically 

indistinguishable. The band at ca. 960 cm-1 accounts for the present of the inorganic 

component of bones and ivory, apatite and hydroxylapatite, respectively (260,261,263). 

These results clearly show that the identification of the black pigments by µ-R is not 

always feasible. Although distinction between organized carbon-based black materials (e.g. 

graphite), disordered carbon-based materials (e.g. charcoal) and inks is easily accomplished, 

the distinction between different types of disordered carbon-based materials can be very 

difficult, especially when the carbonaceous material is present in a complex pigment mixture. 

Whenever, differentiation is necessary, a complementary technique such as IR, PIXE (407) or 

LIBS (28,408) should be employed. 

 

Cochineal and mader lake pigments 

High fluorescence of these compounds is normally a problem for Raman analysis (136,409). 

However, reasonable intensities and signal/noise ratios were obtained, allowing the 

identification of cochineal and madder lake pigments. Lake pigments are chelate 

complexes of dyes and metal cations, made by (co-)precipitation of a coloured dyestuff onto 

the substrate (an inorganic base material) (301,303). 

 

Cochineal lake, a lake pigment based in the red dyestuff removed from the body of the 

female insect Dactylopius coccus, whose main colouring component is carminic acid, 
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C22O13H20
 (85,303), was identified by its Raman spectrum with bands occurring at 1525(vw), 

1483(m), 1418(m), 1315(s), 1303(s), 1185(w), 1253(w), 1222(w) and 1105(m) cm-1 (Figure 

6.65Aa). 

As can be seen in Figure 6.65A, the spectrum of cochineal lake present in the samples is 

very similar to the one exhibited by a reference sample of cochineal carmine (C.I. 75470), 

which consists in a calcium-aluminium lake of carminic acid (Figure 6.65Ab) (126,410). However, 

no bands possibly assignable to inorganic compounds often used as substrate and/or 

additives, such as alum (potassium aluminium sulfate), sodium/potassium carbonate, chalk, 

barium sulfate, kaolin and zinc oxide were identified (303). Starch, which was identified by µ-IR 

in the samples mainly composed by red lake pigments (Figure 6.23), was not identified by µ-

R. 

 

Madder lake, alizarin dye, was identified by its Raman bands at 1648(w), 1521(vw-sh), 

1480(s), 1356(vw-sh), 1327(s), 1291(m), 1218(vw), 1185(vw), 1164(vw), 903(vw), 843(w), 

655(w) and 484(w) cm-1 (Figure 6.65B) (126,344,409). Madder is a dyestuff derived from the roots 

of various plants of the Rubiaceae family and is characterized by the presence of a series of 

active anthraquinone components, the mainly being alizarin, C14H8O4, and purpurin, C14H8O5, 

others are, for example, pseudopurpurin, quinizarin, morindone, xanthopurpurin and rubiadin 
(85,409).  

 
Figure 6.65 Raman spectra of: (A)(a) red lake pigments of layer 2 of sample Q5, identified as 

cochineal lake (47 scans, 0.13 mW) and (b) carmine reference sample (372 scans, 0.02 mW); (B) 

purple pigment grain of layer 2 of sample W6, identified as madder lake (20 scans, 0.63 mW). 
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Other compounds 

Aluminium oxide/ water-slurry Alumina - Very often, a very intense doublet at 1403 and 

1374 cm-1 (Figure 6.66), was observed associated with the Raman spectrum of the pigment 

under analysis. This doublet occurs at approximately the same wavenumbers of the ruby’s 

main fluorescence lines, the R-lines71, which at atmospheric pressure occur at 1398 and 

1367 cm-1 (wavelength 692.7 and 694.2 nm, respectively) (411-413). Ruby is a gemstone with 

corundum form (corundum is the naturally occurring crystalline form of aluminium oxide (α-

Al2O3)) in which a small fraction of the Al3+ ions were replaced by Cr3+ ions. Clearly, the 

detection of this doublet in the samples is not due to the presence of ruby, but rather, to the 

presence of particles of the α-Al2O3, (which must have Cr3+ ions, of unknown origin), used for 

polishing the samples, as confirmed by the analysis of the slurry used for polishing. 

 

 
Figure 6.66 Raman spectra of a greenish grain of layer 4 of sample H8, identified as alumina water-

slurry used for polishing (1 scans, 0.63 mW). 

 

Black ink - Often, when analysing black and purple points in the samples, a spectrum 

with bands occurring at 1540(s), 1450(m), 1400(w), 1337(s), 1267(m), 1188(w), 1156(vw), 

959(w) and 749(s) cm-1 (Figure 6.67a), which proved to be identical to the spectrum of a 

reference sample of a black permanent pen’s ink used to label the samples (Figure 6.67b), 

was acquired. Apparently, the ink used to labelled the samples did not fix well to the resin, 

and was transferred during storage (samples were stored all together in a bag) and/or during 

handling.  

 

Silicon carbide - Residue of silicon carbide, SiC, used as abrasive for grinding the 

surface of the samples, was identified in one sample. Its Raman spectrum exhibits bands at 

965 cm-1, 795, 786 and 766 cm-1 (Figure 6.68) (414). 

 

                                                
71 The ruby R lines have been used for many years to pressure calibration in high-pressure diamond-anvil cells. 
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Figure 6.67 Raman spectra of: (a) black particle of layer 1 of sample P1 (2 scans, 0.13 mW) and (b) 

black ink reference sample (5 scans, 0.32 mW). 

 

 
Figure 6.68 Raman spectra of a white grain of layer 2 of sample E6, identified as silicon carbide used 

for the grinding (7 scans, 0.32 mW). 

 

Unknown compound 2 

Sporadically, when analysing brown and black pigment grains a weak spectrum with one 

single band occurring between 682 and 610 cm-1, as represented in the spectra of Figure 

6.69, was acquired. The band position and its morphology strongly suggest the presence of a 

manganese, iron or mixed oxide/oxyhydroxide; however, the assignment to a particular 

compound is very difficult. Firstly, because iron, but specially manganese, can constitute a 

large number of oxides whose structure can be very complex, involving solid solutions, 

stacking faults and intergrowth sequences of structural variants (334,336,415). Secondly, since 

both iron and manganese oxides are good absorbers of the laser radiation, band position 

shift or alteration of the sample composition can occur during the analysis (334,339,340), what 

leads to, the fact that there is a significant discrepancy among the published Raman spectra 

of these compounds (339,340,416). 
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The weak intensity of the spectra can be due to the presence of the compound in only 

trace amounts or to a weak Raman response. In fact, the Raman spectra of manganese 

oxides are generally very weak, even for well-crystallized compounds (416). 

 

 

Figure 6.69 Raman spectra of: (a) brown pigment of layer 2 of sample U13 (15 scans, 0.32 mW), (b) 

black pigment of layer 2 of sample P1 (3 scans, 0.32 mW), (c) black pigment of layer 2 of sample P2 

(13 scans, 0.32 mW) and (d) brown pigment of layer 2 of sample H1 (10 scans, 0.63 mW). 

 

Unknown compound 3 

In samples F6, K3, S5 and S7 it was identified the presence of a compound whose 

Raman spectrum exhibits two strong bands at 460 and 640 cm-1 (Figure 6.70). This unknown 

compounds seems to be related to the presence of lead antimonate yellow as it was also be 

detected by Rosi et al. (349) in the ancient ceramics containing antimonite pigments. 

 

 
Figure 6.70 Raman spectra of: (a) white pigment of layer 2 of sample K3 (4 scans, 0.32 mW), (b) 

white pigment of layer 4 of sample F3 (8 scans, 0.32 mW) (wavenumbers in black are due to chrome 

yellow), (c) grey pigment of layer 2 of sample S7 (20 scans, 0.63 mW) (wavenumbers: in orange is 

due to lead sulfate; in black are due to Prussian blue; in red is an unknown compound) and (d) white 

pigment of layer 2 of sample S5 (22 scans, 0.63 mW) (wavenumber in pink are from rosiaite and the 

wavenumbers in black are from Prussian blue). 
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6.3 Infrared microscopy vs. Raman microscopy 

Based on different interaction mechanisms between light and matter, µ-IR and µ-R 

present different advantages and limitations for the characterization of the oil paintings’ 

samples under analysis. 

Due to the high complexity of these samples, which are made up of several layers with a 

widely-range width, each composed by a complex pigment mixture, the current study offers 

an opportunity to assess the advantages and difficulties of these two vibrational techniques 

for the analysis of oil paintings. 

In what follows, major advantages and difficulties of µ-IR and µ-R concerning sample 

preparation, spectra acquisition and spectra interpretation detected along this study will be 

addressed. 

 

6.3.1 Sample preparation 

As mentioned in section 2.2.2, sample preparation is a decisive step in any type of 

analysis, since it is tailored to the sample, the analytical technique and the purpose of 

analysis. Especially when dealing with micro samples, sample preparation can be a limiting 

factor, since it will strongly affect the quality of the results. 

One of the main objectives of this study is to identify the pigments and dyes present in 

each layer of the samples of Pousão’s oil paintings. However, the reduced size, complexity 

and heterogeneity of the samples hampered or made the removal and individual analysis of 

small fractions (particle samples) of each layer very difficult. Instead, samples had to be 

prepared and analysed as layered samples: thin sections (µ-IR) and cross sections (µ-R). 

In the case of µ-IR, the samples had to be prepared as thin sections, so as to let the light 

be transmitted through them in the more convenient transmission mode. Although at the 

price of more sample preparation time, since the thin section require the microtoming of the 

cross sections, transmitted µ-IR is the method of choice in most cases, and the primary 

method for layered samples. In fact, the transmission method provides good quality spectra 

without artefacts, allows a reduction of the area of analysis, and the possible presence of 

surface imperfections or topography difference does not cause any constrain, as it was 

verified for the reflection methods (82,118). 

Unfortunately, for the samples under analysis the preparation of thin sections proved to be 

very demanding, time-consuming and was not always successful, since during microtoming a 

large part of the samples was lost. Thus, it is considered that the sample preparation turned 

out to be quite a handicap for the µ-IR analysis. 
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In the case of µ-R the cross sections previously prepared for the OM analysis proved to 

be rather suitable. In order to determine the number, thickness, sequence and interaction of 

the layers that constitute the samples, the OM analysis is always performed at the beginning 

of any study in this field. Therefore, the fact that the µ-R analysis could be performed in the 

same samples prepared for OM constitutes a major advantage. No more sample and sample 

preparation time were required. 

Although some published studies (293,417) refer that the polishing of the resin during the 

cross sections preparation leaves an irregular layer of resin over the sample, thus causing 

fluorescence, most pigment particles in the samples under study produced a good Raman 

signal and no fluorescence. 

 

6.3.2 Spectra acquisition 

Both µ-IR and µ-R are able to produce a spectrum in just a few seconds. However, in the 

cases where signal to noise is low, the compound has a low signal, or fluorescence is high, 

increased acquisition times might be necessary for both techniques. In this study acquisition 

times were 1 minute for µ-IR and up to 5 hours for µ-R. 

 

Although a confocal system, making used of restringing apertures, was employed in the µ-

IR analysis, the spatial resolution obtained with this technique was always much lower than 

the one achieved with µ-R. Employing a globar IR source, a common 250 µm x 250 µm 

MCT-A detector and a 0.58 NA objective/condenser, the spatial resolution was set to 50 µm. 

Below this value, poor-quality spectra, which in addition contain information from the 

neighbouring layers or embedding resin72, were collected. Consequently, often µ-IR involved 

the analysis of an area larger than the area of paint layers, not allowing the individual 

analysis of each layer. 

µ-R proved to have a good spatial resolution. For a 632.8 nm laser source and a NA 0.95 

objective, the spot diameter of the source on an opaque sample is diffraction limited to 0.8 

µm and the approximate depth resolution is about 1 µm (202,203,418). This good spatial 

resolution allowed to focus the laser line on each pigment/compound grain and analyse each 

one individually, excluding the interference from nearby compounds. 

 

In the µ-IR analysis, it was often difficult to attribute a certain pigment/compound to a 

particular layer, by comparison with the OM images, since samples were analysed as thin 

sections. Firstly, because the thin sections are prepared using a fragment of the bulk sample 

                                                
72 Although the embedding resin exhibit strong absorptions of their own, no significant problems with the 
embedding resin were found. 
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different from the one used for the preparation of the cross sections for OM, the stratigraphy 

of the thin section can be somewhat different from the one of the cross section. Secondly, 

since thin sections are very thin, a diminution of the depth of colour relatively to the one of 

the cross sections occurs; and, as their surface is not polished, the image under the IR 

microscope was not sharp, making the differentiation among layers difficult. Thirdly, because 

in order to produce good quality IR spectra and increase the layer area to improve the spatial 

resolution, thin sections were squeezed between diamond cells. This compression procedure 

led to an odd distribution of the sample through the two diamond cells and even to the 

alteration of the well-defined structure of the stratigraphy. 

Unlike µ-IR, in the case of µ-R it was very easy to attribute a pigment/compound particle 

to a particular layer by comparison with the OM images, since the samples were the same 

cross sections analysed by OM. 

 

Due to the fact that the high sensitive MCT-A detector used for µ-IR analysis presents a 

lower cut-off at 650 cm-1, the identification of a large number of pigments/compounds 

exhibiting mainly/only infrared bands bellow that wavenumber73 was very difficult/impossible. 

Unlike µ-IR, µ-R allowed the identification of most of the inorganic pigments/compounds, 

since it is possible to acquire the entire vibrational spectrum with a single instrument, 

accessing wavenumbers even below 200 cm-174. For example, while cobalt blue and iron(III) 

oxide were identified by µ-R, they were not identified by µ-IR because the IR bands of these 

pigments, 665, 558 and 512 cm-1 (cobalt blue) (238,420) and 579 and 483 cm-1 (iron(III) oxide) 

(249,421) occur below 650 cm-1. This constitutes another major advantage of µ-R over µ-IR for 

pigment identification. 

 

Obviously, µ-R also has some limitations, namely the occurrence of fluorescence and 

chemical alteration/degradation of the samples under the laser line, although they were 

almost successfully avoided in the current study. 

Fluorescence, which can be caused by impurities, binder, organic compounds, etc., 

constitutes a serious drawback of µ-R, as its emission is often several orders of magnitude 

more intense than the Raman signal, partially or totally masking the Raman spectrum and 

                                                
73 Some pigments absorb even bellow the wavenumber range accesssible to the common mid-infrared DTGS 
detector (cutt off 350 cm-1); for those, far-infrared setups are required. 
74 Raman spectrometers are able to range from 4000 to about 100 cm-1 .The lower limit depends of the notch 
filter, since the cut-off edge of the filter is often not sharp enough to prevent rejection of Raman photons very near 
the excitation line, within 75-100 cm-1 (419). 
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hampering identification75. However, in the current study, fluorescence did not constitute a 

significant problem in general, as the use of the 100x objective allowed for the distinction 

between most of the pigment grains and the binder fluorescence matrix. Nevertheless, red 

lake pigments (cochineal lake and madder lake), cobalt pigments (cobalt blue and cerulean 

blue) and cadmium pigments (yellow and red) were normally accompanied by fluorescence, 

which often did not permitt their identification. A case in point was cerulean blue, whose 

Raman spectrum was always completely masked by an intense fluorescence background 

which hampered its identification by  

µ-R. At any rate this pigment was identified by SEM/EDS and µ-XRD (see chapter 7). 

The chemical alteration/degradation caused by absortion of the incident laser line by 

some of the samples was avoided by employing the 632.8 nm line. With this line only some 

irrelevant dark particles suffered alteration during the Raman analysis. Therefore, as long as 

there is no laser induced alteration/degradation of the samples’ components, µ-R is 

considered a non-destructive technique, as poved by the fact that cross sections were further 

analysed by SEM/EDS and FM. 

Due to the lower energy values of the IR radiation, fluorescence or degradation during the 

µ-IR analysis did not constitute a problem. However, as it is very dififcult to recover the 

squezeed thin sections from the compression cell and use them for further analysis, µ-IR is 

considered a destructive technique, even if it has been classified as non-destructive  (118). 

 

Another disadvantage of µ-R which cannot be avoided is the requirement of calibration of 

the spectrometer/spectrograph in the dispersive set-ups on a daily or even an hourly basis. 

An unskilled user may induce calibration errors that will make spectra matching difficult. It is 

worth recalling that the dispersive set-ups are more suitable for microscopic analysis than the 

FT set-ups (see page 90). Unlike µ-R, in µ-IR no such errors are likely to occur, since FT 

spectrometers are always employed and the calibration is performed by the instrument itself. 

 

6.3.3 Interpretation of the spectra 

For both techniques, the interpretation of the spectra was in general based on the 

comparison of the acquired spectra with those kept in databases or reference works. 

However, the interpretation of the IR spectra was more complex and time-consuming. 

This was due to the fact that in µ-IR a larger number of compounds are simultaneously 

analysed, since what is under analysis is an area rather than isolated grains. Each 

                                                
75 As fluorescence is laser wavelength dependent this problem can be overcome in many cases by using near-
infrared (NIR) excitation wavelengths (e.g Nd/YAG - yttrium aluminium garnet), with the cost of significant loss in 
spatial resolution and scattering intensity (33). 
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compound may produce a large number of bands, usually quite broad and tending to overlap 

and merge into broad envelops, obviously making the spectra interpretation quite complex. 

As another consequence of being an area analysis, the compounds in minor or trace 

amounts were generally overshadowed by the main components (26,118,422). In this study, since 

lead white (a major component of the samples) shows a high response to IR analysis, the 

identification of other compounds contained in the samples was made very difficult, if not 

impossible, depending on their concentrations and respective band positions. 

Unlike the µ-IR spectra, the µ-R spectra were much simpler and easy to interpret, since 

they exhibited a smaller number and narrower bands (10). This was due to the fact that, as the 

laser line is focused on individual particles, in general a single compound is analysed each 

time. Moreover, under the normal Raman spectroscopy conditions, overtone and 

combination bands are generally not observed. 

 

 

6.4 Conclusions 

To establish Pousão’s palette, 153 samples prepared from 23 paintings by Pousão were 

analysed by the vibrational spectroscopic techniques µ-IR and µ-R. In total, more than 800 IR 

spectra and 2000 Raman spectra were acquired and interpreted. 

Although providing the same type of information, those techniques have different selection 

rules, since they are based on different mechanisms of interaction of light with matter, and 

offer different advantages and limitations for the analysis of oil paintings’ samples. 

 

Table 6.6 summarizes the compounds (pigments, extenders and/or associated 

compounds) identified by µ-IR and µ-R in Pousão’s paintings and clearly shows that both 

techniques were successful for this purpose. 

 

µ-IR proved to be more suitable for the identification of extenders and/or associated 

compounds (associated with the mineral form of the pigment or a result of the synthesis 

process), such as gypsum, calcite, kaolin and quartz, than for the identification of pigments. 

The only exceptions were lead white, the main white pigment in the samples, and bone/ivory 

black. Frequently, lead white was more easily identified by µ-IR than by µ-R and bone/ivory 

black was always only identified by µ-IR, as both pigments have several characteristic and 

intense, mid-infrared bands above 650 cm-1. Within the 18 compounds76 identified by µ-IR, 

11 were pigments.  

                                                
76 Excluding compounds presented under the section named other compounds. 



 

178 

 

 

 

Table 6.6 Compounds* identified by µ-IR and µ-R in Pousão’s paintings 

 
* Pigments are in blue, while extenders, associated compounds or impurities are in green 
a By identification of the laser induced formed orthorhombic leadII oxide 
a Its presence is due to a conservation intervention 

 

 

 

 

Compound µ-IR µ-R Compound µ-IR µ-R

Arsenites Phosphates
Emerald green • • Bone/ivory black •

Scheele's green •

Silicates
Carbonates Celadonite • •

Calcium carbonate - calcite form • • Kaolin • •

Lead carbonate • • Quartz • •

Lead white • • Ultramarine blue •

Malachite •

Sulfates
Chromates Barium sulfate • •

Chrome orange • • Basic lead sulfate •

Chrome yellow • • Brochantite • •

Strontium yellow • • Gypsum •

Zinc yellow • • Lead sulfate •

Cyanides Sulfides
Chrome green • • Cadmium red b •

Prussian blue • • Cadmium yellow •

CopperII sulfide •

Oxides and Oxyhydroxides Realgar/pararealgar •

Anatase • MercuryII sulfide •

Brookite •

Cobalt blue • Red lake pigments
Cobalt oxide •

IronIII oxide • Other  pigments
IronIII oxyhydroxide • Carbon-based black •

LeadII,IV oxide • Cochineal lake •

Lead antimonate yellow • Madder lake •

Tetragonal leadIV oxide a •

Rosiaite •

Rutile •

Viridian • •

Zinc white •
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In general, µ-IR is more suitable for the identification of organic compounds, since their 

analysis by µ-R is often hindered by fluorescence. In particular, µ-IR allowed for a quick 

identification of the type of binding medium, without requiring sample solubilisation, 

volatilization or ionization, as other techniques do (118,135). 

The major limitations of µ-IR were: i) the demanding preparation of the thin sections, not 

always well succeeded; ii) the poor quality and the complexity of the IR spectra containing 

information from neighbouring layers or embedding resin, when areas smaller than 50 x 50 

µm2 were isolated and analysed and iii) the cut-off of the MCT-A detector, which hampered 

the detection of a large number of pigments with IR bands below 650 cm-1. 

 

Unlike µ-IR, µ-R proved to be more suitable for the identification of pigments – which in 

fact, constitute one of the main objectives of this study – than for the identification of 

extenders and/or associated compounds. Within the 41 compounds76 identified by µ-R, 25 

were pigments. 

The accessibility to the low-wavenumber region of the vibrational spectrum (<500 cm-1), 

the high spatial and spectral resolutions and its non-destructiveness made µ-R more suitable 

than µ-IR for pigment identification in the samples under study  

Since the extenders and/or associated compounds contained in the samples are mainly 

silicates, aluminosilicates or clay minerals (for example, kaolin) and the Si-O bonding exhibits 

a high ionic character (about 50%) (268,280,370), µ-R showed some difficulties for their 

identification. As consequence of the virtually zero polarizability change occurring during  the 

vibrational modes of ionic bonds, the corresponding Raman bands were very weak (336,370). 

Moreover, probably due to an iron-rich content (379,414), their Raman spectra were frequently 

accompanied by an intense fluorescence background, hampering their identification. At any 

rate, the identification of those compounds does not constitute an objective of this study.  

The major limitation of µ-R was the high fluorescence presented by some of the particles 

under analysis, which hampered their identification. Although laser induced alteration during 

analysis was also observed, this occurred only for a few irrelevant black particles, whose 

identification was possible, through the identification of the degradation product (33). 

 

Finally, one might question whether it is worth performing µ-IR analysis of thin sections 

when performing µ-R analysis of the cross sections and whether the results provided by the 

conventional FT-IR analysis using KBr pellets (much more simple to prepare than the thin 

sections) combined with the results from µ-R, would not provide the same level of information 

than the µ-IR results combined with µ-R results. 
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In spite of the above mentioned limitations of µ-IR, the amount of information obtained by 

this technique is always greater than the one obtained by conventional IR analysis. Firstly, 

because, when using conventional IR, unless each layer can be sampled and individually 

analysed, the stratigraphy of the sample is completely destroyed and it is no longer possible 

to attribute each compound to a specific layer. Secondly, since several compounds would be 

simultaneously analysed, those compounds with lower concentration would probably be 

overshadowed by others with higher concentration. 

 

In the current study the usefulness of µ-IR was relatively small, since one of the main aims 

is to establish Pousão’s palette and the paintings under analysis contain lead white as major 

white pigment, both in ground and paint layers, which could also be identified by µ-R. 

However, it is important to stress that the use of µ-IR will surely be very useful (122,157,423) for 

studies in which ground layer(s) and/or paint layers are mainly composed by gypsum, kaolin, 

etc., such as polychrome sculptures and altarpieces, wall paintings and panel paintings. 

 

 

 

 

  



 

 

 

 

 

 

7 SEM/EDS, µ-XRD and FM analysis 
 

Led by a new paradigm, scientists adopt 

new instruments and look in new places. 

 

 

T. S. Kuhn 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the results of the analysis of some of Pousão 

paintings’ samples obtained by scanning electron microscopy with 

energy-dispersive X-ray spectrometry (SEM/EDS), X-ray 

microdiffraction (µ-XRD) and fluorescence microscopy (FM). 

Additionaly, it discusses their limitations and compares the results with 

those previously obtained by the microchemical tests. 
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7.1 Introduction 

As reported before in chapter 6, µ-IR and µ-R proved to be able to identify a large number 

of pigments, extenders, associated compounds and even impurities, but, some questions still 

remain, essentialy due to the experimental cut-off of the infrared detector at 650 cm-1 and to 

the weak Raman response and /or fluorescence of some compounds. 

Since characterization of Pousão’s palette is one of the major objectives of this study, the 

auxiliary techniques, scanning electron microscopy with energy-dispersive X-ray 

spectrometry (SEM/EDS), micro X-ray diffraction (µ-XRD) and fluorescence microscopy (FM) 

were employed in order to answer the questions and provide a more complete study. µ-XRD 

and SEM/EDS were used to confirm the presence of compounds whose vibrational spectrum 

was weak or inexistent (for example, cadmium yellow) or to verify the presence of pigments 

that were supposed to exist but provided no vibrational answer (for example, zinc white). FM, 

not as rigorous as the two previous techniques, was used to easily and quickly confirm or 

exclude the presence of madder lake and zinc white, pigments with significant auto-

fluorescence. 

To provide quicker and more accurate results, the analysis by these three auxiliary 

techniques was undertaken with the support of specialised technicians. 

A brief introduction to these three techniques is provided bellow. Additional information 

can be found in specialized publications (95,103-107,110,145). 

 

7.1.1 Scanning electron microscopy with energy-dispersive X-ray spectrometry 

(SEM/EDS) 

Optical microscopy is generally capable of resolving the pigment particles found in 

historical paintings, because these were hand-ground and normally vary in size between 1-

10 µm. However, with the industrialisation in the 19th century, a large number of pigments 

were no longer hand-grounded but, instead, machine-grinded, producing much smaller 

pigments particles (0.1-0.5 µm), so small and scattering light so efficiently, that can barely be 

resolved by the optical microscope (21,89). In such cases, where high resolution is required, a 

microscopic technique using radiation with lower wavelength than the visible light must be 

employed, since the lower the wavelength of the incident radiation, the highest the resolution. 

The most commonly used technique is electron microscopy, either scanning electron 

microscopy (SEM) or transmission electron microscopy (TEM), that employs as incident 

radiation a beam of highly energetic electrons, with wavelengths that can go down to 0.01 

nm. 

The excellent resolution and high magnifications obtained with electron microscopy, in 

particular SEM, which is regularly applied for the examination of cross-sections, allows not 
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only the analysis of these smaller pigment grains, but also the study of the deterioration 

processes never considered by the painter (21). Although SEM is also used for morphology 

examination of pigments and samples, the main used of SEM is the identification of the 

elemental composition of pigments in samples (3), because nowadays most scanning electron 

microscopes are coupled to one (or more) x-ray spectrometer that detects the X-rays emitted 

when the electron beam interacts with the sample’s surface (SEM/EDS). 

 

Setup 

By heating a tungsten filament, electrons are produced and accelerating them across a 

huge potential difference, an electron beam is produced, which is usually focused on the 

sample using electromagnetic fields (lenses cannot focus electrons). 

When the electron beam hits the sample, a large number of interactions can occur 

between the incident electrons and the atoms of the sample. Among these interactions, the 

production of secondary and backscattered electrons is used to produce electronic images of 

the sample surface, while the production of X-rays is used for the elemental/chemical 

analysis of the sample (105). 

 

An important requisite of electron microscope is the fact that the sample’s surface must be 

electrically conducting. When the sample surface is not electrically conducting, it will tend to 

become negatively charged during analysis, causing repletion with deviation of the beam 

electrons from its normal path and consequent distortion of the image and artifacts. Besides, 

degradation caused by beam heating or radiation damage of a sample can also occur. To 

make the sample surface electrically conducting, a thin coat layer of a conducting material, 

such as gold or carbon is usually deposited over its surface. Since the coating will absorb the 

X-rays emitted from the sample and will also emit its own characteristic X-rays, the coating 

should be as thin as possible, be of as low atomic weight as possible and must not contain 

any element which might be of interest, i.e. carbon coatings should not be used if we are 

interest in detected carbon in the sample (105,110). 

 

Electronic images 

As the name of the technique indicates (SEM), the produced images are scanning 

images, sequentially built up, pixel by pixel and line by line. The electron beam is scanned 

across the surface of the specimen in a motion similar to a television camera, while the 

detector counts the number of electrons (secondary or backscattered) given off from each 

point on the surface. The resultant image, an enlarged monochromatic image of specimen, is 
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displayed on a computer screen and can be stored as a digital image, which can easily be 

operated in any image software. 

There are two types of electronic images, secondary electron and backscattered electrons 

images. 

Secondary electron images are images produced by the secondary electrons, i.e. 

electrons that escape from the specimen with less than 100 eV (low energetic electrons). 

Because these electrons present a small sampling volume, Figure 7.1, (the detected 

secondary electrons signal are originated in a region that is little larger than the incident 

beam’s diameter) they can originate a better spatial resolution than other signals and 

produce images where the contrast is associated to the topography of the sample. 

 

 
Figure 7.1 The interaction volume and the regions from which secondary electrons, backscattered 

electrons and X-rays can be detected (adapted from Goodhew PJ, et al. (105) and Leng Y. (110)). 

 

Backscattered electrons images are images produced by the backscattered electrons, i.e. 

incident electrons that after a few collisions inside the sample emerge at its surface. Although 

their penetration in the sample is generally limited to a fraction of a micrometer, it is larger 

than the penetration of the secondary electrons, Figure 7.1, hence they yield information at a 

worse spatial resolution. However, as the backscattered electron coefficient, i.e. the number 

of backscattered electrons emitted from the specimen is strongly dependent of the atomic 

number, backscattered electrons produce atomic number contrast image. The different 

chemical elements are represented by various shades of grey, the heaviest elements appear 

with a bright colour while the lightest with a dark one. Care must be taken as the contrast 

from adjacent elements is quite small, and consequently the resolution between phases with 

similar atomic number may be very poor. 

Backscattered electrons are usually not as numerous as the secondary electrons, but the 

improvement in backscattered detectors during the past few years, greatly increased the use 

of this image mode, particularly when used in conjunction with energy dispersive X-ray 

analysis. 

 

Electron beam

Secondary electrons (SE)
Backscattered electrons (BSE)

X-rays

Sample surface

BSE spatial resolution

5~300 nm

5~50 nm
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Elemental analysis 

During the interaction of the electron beam with the sample, X-rays characteristic of the 

atoms present in the sample are produced, allowing the qualitative and/or quantitative 

elemental analyse of the sample. 

Whenever atoms are hit by energetic photons or particles, such as the electrons of the 

electron beam, an electron is ejected from an inner shell (K, L or M) of the atom, living a 

vacancy and the atom in an excited state, highly energetic and unstable. In order to relax to 

its fundamental energy state, an electron from an outer shell immediately fills the electron 

vacancy and the excess of energy is released as a photon. Because the energy of the 

photon corresponds to the difference between the two electronic states, it is highly 

characteristic of that atom. 

Although in a large atom there is a large number of possible electron transitions, each one 

leading to an X-ray of a unique wavelength; the K series lines are the most frequently used 

for analysis, followed by the L series lines, which are used to identify high atomic number 

atoms, since the energy necessary to excite the K series of lines of these atoms is extremely 

high and not always achievable. 

Because X-rays energies (or wavelengths) of almost all known elements have been 

precisely measured and can be easily found in any book dealing with X-ray spectrometry, 

coupling an X-ray detector to the electron microscope is possible to perform an elemental 

analysis. However, light elements are particularly difficult to detect, since the X-rays that they 

produced are easily absorbed by the sample and by the detector’s window (105). 

There are two types of systems for elemental analysis, the wavelength dispersive 

spectrometer and the energy dispersive spectrometer. The wavelength dispersive 

spectrometer (WDS) can determine very accurately the position of a single X-ray line 

(resolving closely spaced lines), thus identifying a wider range of elements that the energy 

dispersive spectrometer (EDS). Although presenting some loss of precision and resolution 

relatively to WSD, EDS system quickly gained importance due to the fact that it much less 

expensive than WSD and can collected X-rays of all energies simultaneously, allowing a 

qualitative analysis in just a few seconds to minutes (105,110). 

 

Environmental scanning electron microscopy 

Because electrons are strongly scattered off by anything that gets on the way and the 

electron source is easily contaminated, a moderately high vacuum is used in conventional 

SEM in order to allow electrons to travel unhindered (105,424). This imposed several restrictions 

to the sample under analysis. The samples had to be clean, dry and electrically conductive. 

Conductivity is obtained by coating the sample surface with a conductive coating as above 
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described; while wet and/or oily samples are dehydrated or cleaned previous to analyse to 

avoid sample destruction and image artifacts (103,110). 

Over the past years, scanning electron microscope which can operate in a range of 

pressures (from high vacuum to pressures capable to avoid dehydration), temperatures (up 

to 1500 ºC, since the environmental secondary detector is insensitive to heat) and gas 

composition, i.e. environmental scanning electron microscope (ESEM), have been developed 

overcoming the problems found for the conventional SEM (424). 

Working at poor vacuum, conductive coating is not a requirement as any possible charge 

accumulation is dissipated by the gas inside the sample compartment, which is a good 

conductor; drying out of water or the volatilization of oily films does not occurs immediately, 

not affecting image quality, thus, wet, dirty, oily samples can be analysed without any 

previous cleaning or preparation/modification as occurs for conventional SEM (103,105,110,424,425). 

Besides sample imaging, X-ray microanalysis is also possible with ESEM. However, at 

high pressures there is generally a loss of spatial resolution, due to the scattering of the 

primary electron beam in the presence of the gas molecules, named “beam skirting”. Due to 

the presence of the gas, the electrons are scattered out from the primary beam, forming a 

low profile skirt around the primary beam, hence, significant contributions from areas outside 

the focus of the primary beam do occur, imposing several limitations to X-ray microanalysis 

(424-426). 

 

7.1.2 Micro X-ray diffraction (µ-XRD) 

X-ray diffraction is a classic, accurate technique of molecular structure determination, 

which has been extensively applied in conservation/restoration, to identify pigments, 

corrosion products, metallic alloys, ceramic materials, pollution slats, and minerals. This 

technique is based in the diffraction of an incident X-ray beam by the reticular plans of a 

crystalline material and identification is performed comparing the results with reference files. 

 

Whenever a wave finds an obstacle or a hole of dimensions comparable to its wavelength, 

diffraction occurs: sound waves (λ of the order of 1 m) are diffracted by macroscopic objects, 

light waves (λ of the order of 500 nm) are diffracted by narrow slits (427) and X-rays (λ of the 

order of 0.01-10 nm) are diffracted by crystals (428). 

 

A crystal can be defined as a solid composed by atoms, molecules, groups of atoms, 

group of molecules or ions arranged in a three-dimensional periodic pattern, i.e. the regularly 

repeating of a ‘structural motif’. The pattern adopted is generally expressed in terms of an 
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array of imaginary points, which have a fixed relation in space to the atoms, called the lattice, 

which may be regarded as a sort of framework or skeleton of the crystal. 

 

When a monochromatic X-ray beam77 of wavelength λ falls on a crystal, a small fraction of 

it will collide with electrons in the atoms that constitute the crystal and will be elastically 

scattered (has the same wavelength/frequency of the incident beam) in all directions (106). For 

some directions, the scattered rays will be out of phase and they will interfere destructively, 

giving a smaller amplitude, or even cancel, but for other directions the scattered rays will be 

in phase and they will interfere constructively, giving greater amplitude. Consequently, a 

pattern of varying intensity, called diffraction pattern, is produced. 

Since a crystal presents a regular array of obstacles (the atoms) we can think of each 

plane of obstacles as a slit-type diffraction grating (for the X-rays), i.e. the waves scattered 

from that given plane will only add constructively if the ‘reflection’ angle equals the incident 

angle (°) (428). However, as the crystal is a three-dimensional structure and the X-ray will 

penetrate the crystal, we must consider the scattering from many sets of planes (Figure 7.2). 

 

 
Figure 7.2 X-ray diffraction between adjacent Bragg planes (adapted from FishbanePM, et al. (428)). 

 

From geometric calculations it is possible to determine that constructive interference of 

the waves scattered by two adjacent � spaced planes occurs only when the path difference 

between the two waves (AB + BC = 2� ±Z²°) is an integral multiple of the X-ray’s wavelength 

(²�) (106,428), that is, constructive interfere will occur only when the incident angle satisfies the 

equation known as Bragg’s law: 

 2� ±Z²° =  ²� (7.1) 

                                                
77 As referred for SEM/EDS, X-rays can be produced by the interaction of accelerated electrons with matter. 
Monochromatic X-ray beams are produced by X-ray tubes, where accelerated electrons hit a target surface, 
producing X-rays characteristics of that surface. A filter system is them employed to filter in the most intense line 
(Kα, for the copper target surface) and filter out continuous X-rays and other less intense characteristic lines. 
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where � is the interplanar spacing (the distance between the crystallographic planes), θ the 

incidence angle, ² an integer number (n=1, 2, 3, …) and � the wavelength of the incidence 

radiation. 

Because the position and intensity of the diffracted beams will depend of the 

arrangements of the atoms (molecules or ions) in space and of some other atomic properties 

(in the case of X-rays, especially of the atomic number of the atoms), each diffraction pattern 

is unique and characteristic of a specific compound and can be used for identification 

purposes. 

 

The most widely used X-ray diffraction method for artwork compounds identification is still 

the powder method (3), which requires the reduction of the sample to a homogeneous 

powder. This preparation ensures that there are many crystallites randomly oriented and 

consequently, that some of them will always be oriented so as to satisfy the Bragg condition. 

However, this procedure, besides destroying the sample’s stratigraphy also, requires a 

significant amount of sample, being non-viable for the study of most artworks. 

Thanks to technologic developments, nowadays it is possible to perform X-ray diffraction 

analysis of a small area of a sample or object in a non-destructive or even in-situ mode, 

using a conventional laboratory X-ray source78. It is the so called micro X-ray diffraction 

analysis (µ-XRD) and this method basically consists in the use of a collimating capillary that 

reduces and focus the diverging X-ray beam to a small spot beam at the sample surface with 

diameter as small as tens of micrometers. The sample fragments without any preparation, 

cross sections, thin sections (108,429,430) and even art objects of reduced size are placed over 

the equipment stage, the X-ray beam is focused in a small area of interest and the respective 

diffractogram is collect. 

 

7.1.3 Fluorescence microscopy (FM) 

When observed under ultraviolet (UV) light, some materials/compounds exhibit very 

characteristic auto-fluorescence (3) than can be used to support identification purposes. The 

examination of artists' materials using ultraviolet fluorescence microscopy has been used to 

help in pigment identification (for example, zinc white and madder exhibit unique visible 

fluorescence), to provide clues regarding the binder (oil, protein or modern synthetic resin), 

to help the distinction of layers and particles that appear similar under visible light and to 

identify retouchings and overpaints (for example, traditional drying oils fluoresce more 

                                                
78 The high brilliant synchrotron radiation sources used in the Synchrotron X-ray microdiffraction (SR µ-XRD) are 
known for allowing the analysis of smaller areas in reasonable time, with a high precision and accuracy. However, 
due to their huge size, synchrotron sources are of limited availability. 
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strongly as they age, consequently, retouch/restoration/overpaint layers appear darker than 

old paint layers when viewed under ultraviolet light) (78,145,431). 

Nonfluorescent compounds can also be visible and therefore detectable under UV light if 

previously tagged with a fluorescent dye or fluorochrome. 

Fluorescence is a type of luminescence process in which electronic excited-state atoms, 

ions, or molecules (promoted by absorb a photon) spontaneous and rapidly drop to a lower 

electronic state, releasing a photon with a lower energy (longer wavelength) than the 

absorbed one; being the exceeding energy released in the form of molecular vibrations or 

heat. Because the absorption and the following emission events occur almost 

simultaneously, fluorescence stops when the exciting source is turned off. 

A fluorescence microscope, in reflection mode (Figure 7.3), which provides a high-

contrast efficient imaging that the transmission mode, consists basically in: an UV, violet or 

blue bright light source; an objective that acts both as condenser, converging the excitation 

light on the sample, and as objective, collecting the light reflected by the sample and forming 

an image of the sample in the image plane; and a fluorescence filter set also referred to as 

fluorescence filter cube (due to its shape), composed by three essential filters – excitation 

filter, dichroic mirror and emission filter. The excitation filter acts as a barrier to wavelengths 

from the source, selectively transmitting a band of short wavelengths. The dichroic mirror (or 

beam splitter) reflects the selected wavelengths towards the objective (which focused them 

on the sample) and transmits the fluorescent light emitted by the sample towards the 

eyepieces or digital camera. It also directs any excitation light reflected by the sample back 

toward the source. Finally, the emission filter transmits the visible light wavelengths emitted 

by fluorescence, while blocking any residual excitation light (110-145). 

 

 
Figure 7.3 Schematic diagram of the configuration of a reflected light fluorescence microscope, in 

which the filters are arranged in a fluorescence filter cube (adapted from Murphy DB. (145)). 
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7.2 Experimental Conditions 

 

7.2.1 SEM/EDS 

 

Sample preparation 

The SEM/EDS analysis was conducted using the cross-sectioned samples prepared for 

OM and used for µ-R. Table 7.1 indicates the samples (32) analysed by this technique in two 

different equipments (see below). Due to the low conductivity of the samples, the surface of 

all the cross sections had to be covered with a thin film of carbon. In the case of the cross 

sections analyzed in the Hitachi S-2400, in order to place several samples into the sample 

chamber at the same time, bulk of the excess resin block was removed with a cutting saw, 

causing some crakes. 

 

Table 7.1 Samples analysed by SEM/EDS 

 
 

Experimental set-up 

The SEM/EDS analysis was carried out using two different equipments in two different 

laboratories. The first apparatus, owned by the Archaeology Department of ULC, London, 

was a Philips XL30 environment scanning electron microscope (ESEM) operating at high 

Painting
Philips XL30 Hitachi S-2400 

A Casa Rústica de Campanhã - A3
B O mendigo Lapita - B3
C Paisagem - Abertura da Rua Alexandre Herculano - C4
D Jardim de Luxemburgo (estudo) - D2
E Aldeia de St. Sauves - E1
F Paisagem de St. Sauves F1, F5 F6
G Cansada (Cachopa de Capri) - -
H Casas brancas de Capri H1, H5 -
I Cecília I1 I7
J Escadas de um pardieiro - Roma J2 -
K Esperando o sucesso K7 -
L Fachada de casa soterrada - Roma L3 -
M Mirágem de Nápoles M1 -
N Portão - N3
O Rapariga de Anacapri - O1
P Rua de Roma - P1
Q Senhora vestida de preto Q5, Q6 Q4
R Janela das persianas azuis R8 R1
S Mulher da água S5, S7 S2
T Paisagem de Anacapri T2 T4, T7
U Rapariga deitada no tronco de uma árvore - -
V Cais de Barcelona - V3
W Flores campestres W4 -

Samples
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vacuum, coupled to an Oxford INCA energy dispersive X-ray spectrometer (EDS). The 

electron source is a tungsten filament and the accelerated voltage was set to 20 kV. The 

second apparatus, owned by the Departamento de Materiais of UTL-IST, Lisbon, was a 

Hitachi S-2400 scanning electron microscope (SEM), coupled to a Rontec energy dispersive 

X-ray spectrometer (EDS). The electron source is a tungsten filament and the accelerated 

voltage was set to 25 kV. 

 

7.2.2 µ-XRD 

 

Sample preparation 

The µ-XRD analysis was conducted using the bulk samples (samples without any 

preparation). Table 7.2 indicates the samples analysed by this technique (24). Among them, 

9 were also analysed by SEM/EDS. 

 

Table 7.2 Samples analysed by µ-XRD 

 

 

Experimental set-up 

The µ-XRD analysis was carried out using a Bruker D8 DISCOVER diffractometer 

equipped with Cu Kα radiation, a Göbel mirror assembly and a GADDS detector, owned by 

the LCRJF, Instituto dos Museus, Lisbon. The angular range (2θ) was scanned from 6.2 to 

Painting Samples
A Casa Rústica de Campanhã A1, A4
B O mendigo Lapita B1, B3
C Paisagem - Abertura da Rua Alexandre Herculano -
D Jardim de Luxemburgo (estudo) -
E Aldeia de St. Sauves -
F Paisagem de St. Sauves -
G Cansada (Cachopa de Capri) -
H Casas brancas de Capri H4, H8
I Cecília I1, I3
J Escadas de um pardieiro - Roma J2
K Esperando o sucesso K5, K7
L Fachada de casa soterrada - Roma L3
M Mirágem de Nápoles -
N Portão N5
O Rapariga de Anacapri -
P Rua de Roma -
Q Senhora vestida de preto Q5
R Janela das persianas azuis -
S Mulher da água S1, S2, S5, S7
T Paisagem de Anacapri T2
U Rapariga deitada no tronco de uma árvore -
V Cais de Barcelona V3
W Flores campestres W1, W2, W4, W7
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71.6° at a step size of 0.02° and the working voltage and current were, respectively, 40 kV 

and 40 mA. To allow the analysis of relatively small areas of interest in the samples, a 1-mm-

diameter pinhole collimator was used. Different acquisition times were used, depending of 

the sample. The diffractograms were background subtracted and analysed using Bruker EVA 

software. Phases were identified by comparison with the Joint Committee on Powder 

Diffraction Standards – International Centre for Diffraction Data (JCPDS-ICDD) database 

files. 

 

7.2.3 FM 

 

Sample preparation 

The FM analysis was conducted using the cross-sectioned samples prepared for OM and 

used for µ-R and SEM/EDS. Table 7.3 indicates the samples (9) analysed by this technique. 

Among these, 4 were also analysed by SEM/EDS and another 4 by µ-XRD. 

 

Table 7.3 Samples analysed by FM 

 

 

Experimental set-up 

The FM analysis was carried out using a Leitz Laborlux 12 ME microscope fitted with a 

filter system A cube (UV excitation range, exciting filter BP 340-380) or a filter system I 2/3 

cube (excitation filter BP 450-480), at Victoria and Albert Museum, London. 

Painting Samples
A Casa Rústica de Campanhã -
B O mendigo Lapita -
C Paisagem - Abertura da Rua Alexandre Herculano C2
D Jardim de Luxemburgo (estudo) -
E Aldeia de St. Sauves -
F Paisagem de St. Sauves F1, F4
G Cansada (Cachopa de Capri) G3
H Casas brancas de Capri -
I Cecília -
J Escadas de um pardieiro - Roma J2
K Esperando o sucesso K7
L Fachada de casa soterrada - Roma -
M Mirágem de Nápoles -
N Portão N5
O Rapariga de Anacapri -
P Rua de Roma -
Q Senhora vestida de preto Q5
R Janela das persianas azuis -
S Mulher da água -
T Paisagem de Anacapri -
U Rapariga deitada no tronco de uma árvore -
V Cais de Barcelona -
W Flores campestres W3
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7.3 Results and discussion 

As previously referred, SEM/EDS, µ-XRD and FM were employed in order to, either 

confirm, or clarify the results of the vibrational analysis. Depending on the doubts, one, two 

or even the three auxiliary techniques were employed. Results will be presented and 

discussed by pigment and/or question. 

Whenever the auxiliary techniques were used to corroborate results obtained µ-IR and/or 

µ-R these are described as “comfirmed”, while whenever the auxiliary techniques allow the 

identification of a compound not identified by the vibrational techniques, the results are 

described as “identified”. However, since SEM/EDS only provides elemental composition, not 

allowing to the distinction between compounds with similar elemental composition, the 

identification based on this technique must be done cautiously. 

Photomicrographs of the samples to which reference is made, but are not presented, can 

be found in Appendix D. Backscattered images of all the samples analysed by SEM/EDS can 

be found in Appendix E. JCPDS-ICDD files of the main phases identified by µ-XRD are 

presented in figure’s caption. 

 

Restoration samples 

During the analysis by OM, µ-IR and µ-R, three samples showed a different behaviour 

from all the others: samples T2 (Figure 7.4a) from Paisagem de Anacapri, W4 (Figure 7.4b) 

and W7 from Flores Campestres (Figure D150). Unexpectedly, only kaolinite was detected 

in the ground layer of these three samples, whereas in all other samples the ground layer is 

mainly composed by lead white. This raised some questions about their origin, and the 

suspicion that they migh have been removed from restoration areas. Both SEM/EDS and µ-

XRD were employed to confirm the origin of the samples. 

The backscattered images of samples T2 and W4 (Figure 7.4c and d) clearly shows kaolin 

sharps particles in the layer 1, while its SEM/EDS elemental analysis detects aluminium, 

silicium, oxygen and potassium, elements present in kaolin and no lead at all was detected 

(Figure 7.5a). 

The analysis of the upper layer(s) of these samples by SEM/EDS and µ-XRD is in 

accordance with the results of µ-IR and µ-R: no lead white, only zinc white (Figure 7.5b-c 

andFigure 7.6). 
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...  

..  

Figure 7.4 Cross section of the samples: (a) T2 and (b) W4 under reflected light. Backscattered 

images of the samples: (c) T2 and (d) W4. 

 

 

 

   

Figure 7.5 SEM/EDS spectra of: (a) white layer 1 of sample W4, (b) blue layer 2 of sample T2 and (c) 

grey layer 3 of the sample W4. 
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Figure 7.6 X-ray diffraction pattern of: (a) the blue layer 2 of sample T2, (b) the grey layer 3 of sample 

W4 and (c) the grey layer 3 of sample W7. Phase abbreviations: K- kaolinite (JCPDS 080-0885), L-

Lazurite-C (JCPDS 046-0103), M-muscovite ((a) JCPDS 006-0263; (b) 082-0576) and ZW-zinc white 

((a) JCPDS 036-1451; (b) 005-0664). 

 

The records of the intervention carried out in 1984 (at LCRJF), referred that, both 

Paisagem de Anacapri as Flores Campestres were retouched, and that a mixture of 

kaolinite with animal glue was normally used to fill lacunae. Moreover, by then, due to its 

toxicity, lead white had been fully replaced by other white pigments, hence would not have 

been used by restorators. 

Based on these records and the above presented results, it can be conclude that samples 

T2, W4 and W7 are from restorations areas, rather than from the original painting. Therefore, 

these samples will not be considered for further analysis. 
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Cadmium yellow 

As illustrated in Figure 6.60b, the identification of cadmium yellow (cadmium sulfide), CdS, 

by µ-R was normally very difficult, since, at best, a very weak spectrum was acquired and 

most of the times it was not possible to acquire a spectrum at all. Besides, since its IR bands 

occur bellow 650 cm-1 (432), its identification by µ-IR was not possible. 

SEM/EDS was purposely used to confirm the presence of this yellow pigment in some of 

the samples 79. In other samples, this pigment was identified by chance, when the presence 

of other compounds was being confirmed. This was the case of sample F6, which was 

analysed by SEM/EDS to confirm the existence of emerald green and viridian. 

In sample F6, two yellow pigments, namely chrome yellow and zinc yellow, had been 

identified by µ-R and apparently no other yellow pigment was present. However, the 

acquisition of a SEM/EDS spectrum for the yellow pigment grains of green layer 2 exhibiting 

only the peaks of cadmium and sulfur (Figure 7.7) allowed the identification of this pigment 

with quite certainty.  

Because cadmium yellow was mixed with two yellow and a blue pigment (Prussian blue), 

the three with very good Raman responses, its weak Raman signal was masked. 

 

 
Figure 7.7 SEM/EDS spectrum of the yellow pigments of green layer 2 from sample F6, identifying 

cadmium yellow. 

 

Cadmium yellow was confirmed by SEM/EDS in the paintings: Miragem de Nápoles (M3) 

and Cais de Barcelona (V3), and identified in the paintings: Paisagem de St. Sauves (F6), 

Fachada de casa soterrada - Roma (L3), Portão (N3), Mulher da água (S2) and 

Paisagem Anacapri (T7). 

 

 

                                                
79 µ-XRD was not employed due to the reduced size of the cadmium yellow pigment grains present in the 
samples and to their apparently low amount. 
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Carbon-based black pigments 

As referred in the previous chapter, µ-R analysis of the carbon-based black pigments 

provided different results from those obtained by µ-IR. While µ-R identified only a carbon-

based black material, µ-IR was able to go further and identify, in the samples where the 

pigment was present in a large amount, the carbon-based black material as the bone/ivory 

black pigment. 

The differentiation between carbon-based black pigments by SEM/EDS elemental 

analysis is normally very difficult because these pigments are mainly composed by carbon if 

not only composed by carbon. However, because bone and ivory black pigments, prepared 

by charring waste ivory or bone, respectively, contain also phosphorous, calcium, oxygen 

and even magnesium, and black pigments with an argillaceous content, such as graphite and 

black chalk, contain also silicon and aluminium (potassium, iron and titanium can also be 

present) (407), differentiation can be possible. For example, SEM/EDS elemental analysis of 

the black layer of sample Q4 (Figure 7.8) indicates a high phosphorus and calcium content, 

characteristic of bone/ivory black pigments, in agreement with the µ-IR result. 

A relatively high amount of silicon is also visible (Figure 7.8b), suggesting that another 

black pigment, possibly one with an argillaceous content, is also present. The existence of an 

argillaceous (may produced high fluorescence) carbon-based black pigment in sample Q4 

could explain why µ-R was able to identify the phosphate band in the reference sample of 

bone/ivory black (Figure 6.64d) but was not able to do it in this and other painting’s samples. 

The identification of cobalt and tin, suggest that the blue pigment particles, not identified 

neither by µ-R nor be µ-IR are cerulean blue, while the identification of lead, suggest that 

lead white not identified either by µ-R or by µ-IR, is probably also present. 

 

 
Figure 7.8 (a) Cross section of sample Q4 under reflected light and (b) SEM/EDS spectrum of the 

black layer of sample Q4. 
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Cobalt blue and cerulean blue 

Similarly to what happened with cadmium yellow, also the identification of cobalt blue 

(cobalt aluminate), CoAl2O4 was very difficult by µ-R, since the Raman spectra of this 

pigment were, at best, very weak (Figure 6.37). In those worst cases, Prussian and 

ultramarine blue, which exhibits a good Raman response, were excluded, but the presence 

of other blue pigments, such as smalt and cerulean blue had to be questioned. Because 

cobalt blue IR bands occur at 665, 558 and 512 cm-1 (238,420), near and below the detector’s 

cut-off (650 cm-1), this pigment was not identified by µ-IR in any of the samples. 

Due to the general amorphous nature of cobalt blue, µ-XRD analysis is unfruitful to its 

identification. Consequently, only SEM/EDS analysis was used to confirm, and even, identify 

the presence of this pigment. Cobalt blue was confirmed/identified by the simultaneous 

detection of aluminium and cobalt, when these elements could not be attributed to any other 

compound, as illustrated in the spectrum of the blue pigments of the upper layer of the 

sample R1 (Figure 7.9b). The high content of lead is probably due to lead white which was 

identified in this sample by the vibrational techniques. 

 

 

 

Figure 7.9 (a) Cross section of sample R1 under reflected light; SEM/EDS spectra of the blue 

pigments of: (b) blue layer 3 of sample R1 and (c) layer 2 of sample R1. 

 

Cobalt blue was confirmed by SEM/EDS in the paintings: Casas brancas de Capri (H5), 

Cecília (I1, I7), Rua de Roma (P1), Paisagem de Anacapri (T4), and identified by 

SEM/EDS in the paintings: Casa Rústica de Campanhã (A3), Estátua do jardim de 
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Luxemburgo (estudo) (D2), Aldeia de St. Sauves (E1), Paisagem de St. Sauves (F5), 

Portão (N3), Rapariga de Anacapri (O1), Senhora vestida de Preto (Q6) and Janela das 

persianas azuis (R1). 

 

Unexpectedly, during the analysis of some of the samples by SEM/EDS and µ-XRD, in 

order to confirm the presence of suspicious pigments, another cobalt pigment, cerulean blue 

(cobalt stannate), CoO.nSnO2, was identified. For example, the SEM/EDS spectrum of the 

blue pigments of the blue layer 2 of the sample R1, (Figure 7.9c) allowed the identification of 

cerulean blue by the simultaneous detection of tin and cobalt which could not be attributed to 

any other compound. And because cerulean blue is a crystalline phase (unlike cobalt blue) it 

was identified also by µ-XRD, as shown in the diffractogram of the blue layer 2 from the 

sample I3, Figure 7.10 (peaks CB). 

Because the IR bands of this pigment occur below the detector’s cut-off (249), its detection 

by µ-IR was not possible. However, the fact that no Raman signal from this pigment, known 

to produce a relative intense Raman spectrum (56,308), was acquired in any of the studied 

samples was very surprising and inexplicable. 

Cerulean blue was identified by SEM/EDS in the paintings: Rapariga de Anacapri (O1), 

Senhora vestida de preto (Q4, Q5) and Janela das persianas azuis (R1, R8) and 

identified by µ-XRD in the painting Cecília (I3). 

 

 

Figure 7.10 X-ray diffraction pattern of the blue layer 2 from the sample I3. Phase abbreviations: CB-

cerulean blue (JCPDS 029-0514), LW-lead white (JCPDS 010-0401, 013-0131) and M-mercuryII 

sulfide (JCPDS 006-0256). 
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Copper pigment 

As we can see in Figure 7.11a, the green layer of the sample V3 is relatively thick and 

apparently contains a few green and yellow grain particles; neither µ-R nor µ-IR were able to 

identify the existing pigment(s). A high fluorescence background was obtained in the µ-R 

analysis, probably due to a high organic content, and, the IR acquired spectrum only 

exhibited bands of lead white, the major compound of the two lower layers, because it was 

not possible to analyse this green layer independently. 

Both SEM/EDS and µ-XRD analysis were used specially in order to identify the green 

pigment(s) of the layer, since this(these) is(are) the responsible for the colour of the layer. 

Unfortunately, µ-XRD analysis only identified lead white, lead carbonate and quartz, giving 

no information regarding the coloured pigments. The SEM/EDS analysis, although producing 

a low intensity spectrum (Figure 7.11b) probably due to a high organic content, was able to 

provide elemental information about the green layer. Several elements were identified: 

aluminium, silicon, lead, potassium, calcium, barium, iron, zinc and especially copper, 

suggesting that a copper pigment is present. 

Since no arsenic was identified, emerald green (Cu(CH3COO)2.3Cu(AsO2)2) and 

Scheele’s green (CuHAsO3) are excluded hypotheses. Possible copper-based pigments are 

still, malachite (Cu2CO3(OH)2), brochantite (Cu4(OH)6(SO4)), azurite (Cu3(OH)2(CO3)2) (mixed 

with a yellow pigment to produce green), and most probably, verdigris or copper resinate, 

two copper pigments that have a high organic content. 

 

 
 
Figure 7.11 (a) Cross section of sample V3 under reflected light and (b) SEM/EDS spectrum of the 

green layer 3 of this sample. 
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Lead antimonate yellow and associated compounds 

As referred in chapter 6, the identification of lead antimonate yellow (PbII
ySbV

2-xO7, where 

2≤y≤3 and 0≤x≤1) by µ-R showed several difficulties, especially, concerning its differentiation 

from lead-tin-antimony yellow (Pb2SnxSb2-xO7-x/2), that seems to have a very similar Raman 

spectrum. IR spectrum of this pigment is characterized by an intense band at about 670 cm-1 

and other weaker bands bellow the detector’s cut-off (650 cm-1) (249,351,432). However, probably 

due to a relative reduced amount, this pigment was not identified by µ-IR in any of the 

samples. 

Therefore, µ-XRD and SEM/EDS were employed to corroborate the identity of the lead 

antimonate yellow reference sample (Figure 7.12) and to confirm the presence of this yellow 

pigment in the samples I1, I3, S5, S7 by µ-XRD and in the samples I1, I7, K7, Q6, S5, S7 by 

SEM/EDS. 

Although, both lead antimony yellow and lead-tin-antimony yellow (even lead-tin yellow 

type II) have a cubic pyrochlore-type crystal structure, their different cell size (lead 

antimonate yellow < lead tin-antimony yellow < lead-tin yellow type II) allows their distinction 

by XRD (347). As shown in Figure 7.12, the identity of the reference sample of lead antimonate 

yellow was confirmed.  

 

 
Figure 7.12 X-ray diffraction pattern of the reference sample of lead antimonate yellow. Phase 

abbreviations: LY-lead antimonate yellow (JCPDS 074-1354, 042-1355) and R-titanium oxide-rutile 

form (JCPDS 021-1276). 

 

Lead antimonate yellow was also easily identified by µ-XRD in the four samples, matching 

the bindheimite synthetic phase (JCPDS: 18-0687) with a cell size a = 10.47 Å, while lead-

tin-antimony yellow has a cell size of ca. 10.56 Å or a bimodal size 10.55-10.57 Å and 10.46-
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10.51 (347,348). Figure 7.13 presents the diffractograms of two of the samples where lead 

antimonate yellow was identified (lines are marked with LY). 

 

 
Figure 7.13 X-ray diffraction pattern of: (a) layers 4 and 5 of sample I1, and (b) layer (2) of sample S5. 

Phase abbreviations: LW- lead white (JCPDS 013-0131, 010-0401), LS-lead sulfate (JCPDS 036-

1461), M-mercuryII sulfide (JCPDS 080-2192), BS-basic lead sulfate (JCPDS 018-0702), LY-lead 

antimonate yellow (JCPDS 018-0687), LC-lead carbonate (JCPDS 047-1734), R-rosiaite (JCPDS 049-

1867), and C-cervantite (JCPDS 011-0694). 

 

The SEM/EDS spectra of the yellow pigment grains under question only exhibit peaks due 

to lead and antimony, as shown in the spectrum in Figure 7.14b, obtained during the analysis 
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of sample I7 (Figure 7.14a), confirming the presence of lead antimonate yellow and 

excluding the presence of other lead pigments. 

 

    

Figure 7.14 (a) Cross section of sample I7 viewed under reflected light and (b) SEM/EDS spectrum of 

the yellow pigment marked with a red cross in (a). 

 

The presence of lead antimonate yellow was confirmed by µ-XRD in the paintings: Cecília 

(I1, I3) and Mulher da água (S5, S7) and by SEM/EDS in the paintings: Cecília (I1, I7), 

Esperando o sucesso (K7), Senhora vestida de preto (Q6) and Mulher da água (S5, S7). 

 

Also referred, in chapter 6 was the fact that lead sulfate, basic lead sulfate and rosiaite 

seem to have been found associated with lead antimonate yellow. Unfortunately, because 

the Mα line of lead (2.34 keV) and Kα line of sulfur (2.31 keV) overlap, it is very difficult to 

identify sulfur when lead is present, and consequently impossible to confirm the presence of 

lead sulfate (PbSO4) and basic lead sulfate (PbSO4.PbO) by SEM/EDS. Because rosiaite 

composition (PbSb2O6) has the same elements as lead antimonate yellow (Pb, Sb and O), its 

identification by SEM/EDS was also impossible. 

Although, a significant number of lines overlaped making the assignement of the 

diffractograms very complex, still, it was possible to confirme by µ-XRD, the presence of lead 

sulfate (in samples I1, S5 and S7), lines marked with BS, and basic lead sulfate (in sample 

I1), lines marked with LS, associated with lead antimonate yellow. 

As can be seen in Figure 7.13b, rosiaite (PbSb2O6) and cervantite (Sb2O4), marked with R 

and C, respectively (343,346,347), were identified in the blue layer 2 of sample S5, together with 

lead antimonate yellow, lead sulfate and lead white, confirming the µ-R results and 

suggesting that these phases are probably associated with the synthesis method of lead 

antimonate yellow80. 

                                                
80 There is a large number of recipes, most of which are uncertain to the nature of the reagents and vague with 
respect to the temperature and time of the reaction. Depending on these factors, more than one phase PbII

ySbV
2-

xO7 (where 2≤y≤3 and 0≤x≤1) and/or by-products can be formed (342-347). 

+ 
(a) (b) 
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Red lake pigments 

The identification of the red glazing pigments by vibrational microscopic techniques 

proved to be very difficult, as only a polysaccharide material (starch), probably used as 

extender, was identified by µ-IR and the µ-R spectra of these red particles were 

characterized by a very intense fluorescence background that sometimes hampered their 

identification. Still, µ-R was able to identify cochineal lake pigment in nineteen paintings and 

madder lake pigment in two paintings. 

Examination of the cross section of sample W3 under visible light (Figure 7.15a) strongly 

suggest the presence of madder; however, only lead white and mercuryII sulfide were 

identified by µ-R and lead white and a silicate or sulfate compound by µ-IR. In order to easily 

and quickly confirm the presence of madder lake pigment, which is characterized for 

producing an intense and very unique bright orange colour (295,431), FM was employed. As 

shown in Figure 7.15b, madder lake pigment is present in the sample. 

 

 

 
Figure 7.15 Cross section of the sample W3 viewed under: (a) reflected light and (b) ultraviolet light (I 

2/3 cube). 

 

The red colour of the large red layer of samples F4 (Figure 7.16a) and Q5 (Figure 7.16b) 

was identified by µ-R to be mainly due to cochineal lake. However, because cochineal lake 

was often mixed with madder lake (136), these two samples were examined by FM to check for 

the presence of madder lake pigment. By looking at the cross sections of these two samples 

under UV light (Figure 7.16c andFigure 7.16d, respectively), no orange fluorescence 

characteristic of madder lake was observed, excluding its presence. 

 

100 µm

100 µm

(a) 

(b) 
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Figure 7.16 Cross-section of the sample (a) F4 and (b) Q5 viewed under reflected light; cross-section 

of the sample (c) F4 and (d) R5 viewed under ultraviolet light (I 2/3 cube). 

 

Lake pigments are synthesized by co-precipitation/adsorption of a coloured dyestuff 

with/onto a substrate, which is an inorganic material (301,303) that influences the properties of 

the pigment, such as its colour and permanence (304). However, neither of the two vibrational 

techniques was able to provide information regarding this inorganic material. 

Therefore, in order to obtain information regarding the substrate and how the pigment was 

prepared, the elemental composition of the red lake pigments of samples F6 and Q5 was 

determined by SEM/EDS (304). 

The analysis of the red lake pigment grains (marked with a red circle) of sample F6 

(Figure 7.17, indicates that these are mainly composed by aluminium, sulfur and potassium 

(Figure 7.17b-d), suggesting that potash alum, potassium aluminium sulfate, 

AlK(SO4)2.12H2O, the most common ingredient to form the substrate, was used. The 

relatively high sulfur content (the contribution from cadmium yellow is very small) suggests 

that the substrate was done following a common 19th method in which the dyestuff and the 

alum are mixed first and the alkali added after, generally leading to incorporation of sulfate 

ions in the pigment (304). The other identified elements are due to other pigments present in 

the sample; cadmium (spectrum a) from cadmium yellow, strontium and lead (spectrum c) 

from strontium yellow, and lead (spectrum d) from lead white. 

The elemental analysis of the red layer 2 of sample Q5 indicates a different composition 

(Figure 7.18). Besides aluminium and sulfur, silicon (in a high amount), tin, cobalt and 

mercury were also identified. Mercury is probably due to mercuryII sulfide (HgS) identified by 

100 µm

100 µm 

100 µm 

100 µm 

(a) 

(b) 

(c) (d) 
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µ-R, while cobalt can be associated to cobalt blue (CoAl2O4) and/or to cerulean blue 

(CoO.nSnO2). 

Although a polysaccharide material was identified by µ-IR in the two samples, apparently 

no tin is present in the red lake pigments of sample F6, and the tin identified in sample R5 

can be due to the presence of cerulean blue. Consequently, the presence of the tin-

containing cochineal variety that is known to have been extended with starch (305) cannot be 

ruled out. 

 

 

Figure 7.17 (a) Cross section of sample F6 under reflected light; SEM/EDS spectra of the marked red 

pigments: (b) point 1, (c) point 2 and (d) point 3. 

 

 
Figure 7.18 SEM/EDS spectrum of the red layer of sample Q5 (Figure 7.16b). 
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The identification of the red lake pigment grains, by µ-R, as cochineal lake, was obtained 

by comparison with the spectra of a cochineal carmine reference sample, known to have 

calcium in its composition. However, no calcium was identified by SEM/EDS81 for the 

cochineal lake particles present in the samples F6 and Q5. This result suggests that µ-R is 

not able to differentiate between lake pigments of the same dyestuff with slightly different 

substrates. 

 

 

Rutile 

The identification of rutile, anatase and brookite in the samples by µ-R, was not 

unexpected, since these titanium oxide polymorphs are excellent scatterers and usually are 

easily identified by this technique, even when present in trace quantities. However, the 

identification by µ-R of only rutile in the white layer of sample L3 marked with a red cross 

(Figure 7.19A), and no other compound such as aluminosilicates, with which rutile occurs 

naturally, was odd. Even more, because this compound has only been used as a white 

pigment since 1920s82. Contradictorily, µ-IR results point to a high lead white content in this 

layer. Both µ-XRD and SEM/EDS were used to clarify this issue. 

The SEM/EDS analysis (Figure 7.19Ba-c) of the white layer of sample L3 supported the 

µ-R results. Although, other elements, mainly aluminium and silicium, probably due to the 

existence of an aluminosilicate, were identified, the presence of titanium, in a large amount 

relatively to the other elements (Figure 7.19Ba) and not only as a trace compound, was 

confirmed. On the other side µ-XRD analysis does not support the µ-R results, but rather the 

µ-IR results. The diffractogram of the white layer (Figure 7.20) only identifies lead white and 

lead carbonate, with no signal of rutile or of any aluminosilicate compound. 

Since µ-R and SEM/EDS analysis were performed in the cross sections prepared for OM, 

while µ-IR and µ-XRD analysis were performed in different sample fragments, the most 

plausible conclusion to this inconsistency is that sample L3 has three layers, a white ground 

layer 1 composed by lead white and lead carbonate (similar to the other samples of the same 

painting), a green layer 2 composed by emerald green, viridian, mercuryII sulfide, ironIII oxide, 

ironIII oxyhydroxide, chrome yellow, zinc yellow and lead white, and a post Pousão white 

layer 3 composed by rutile and aluminosilicate compound.  

                                                
81 If calcium is present, it is in a very low concentration, not allowing it to be discernible from the background. 
82 It was not until 1920s that an economical method of purifying the metal oxide was established, and 
consequently, only since then was titanium white been commercialized. Due to the non hazardous, strong and 
opaque white, rutile form quickly became the most popular white pigment amongst artists (433,434). 
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The fact that in the sample prepared for OM (also used for µ-R and SEM/EDS) the white 

ground layer 1 is below the resin surface, made its analysis by µ-R and SEM/EDS 

impossible. 

 

 

   

Figure 7.19 (A) Cross section of sample L3 under reflected light; (B) SEM/EDS spectra of the white 

layer 2 of sample L3: (a) area analysis83, (b) point analysis and (c) point analysis. 

 

 
Figure 7.20 X-ray diffraction pattern of the white layer 1 from the sample L3. Phase abbreviations: 

LW-lead white (JCPDS 010-0401, 013-0131) and LC-lead carbonate (JCPDS 047-1734). 

 

 

 

 

                                                
83 In an area analysis, the spectrum presented is the average of the elements identified in that area. 
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Zinc white 

While the results of the study performed in 1984 (Appendix A) indicated the presence of 

zinc white in four of the paintings under analysis in this study (Paisagem - Abertura da Rua 

Alexandre Herculano, Cansada (Cachopa de Capri), Esperando o Sucesso and Portão), 

this white pigment was identified by µ-R only in the samples that proved to have been 

removed from restoration areas. 

Since the characteristic IR bands of this pigment occur at wavenumbers below the cut-off 

of the equipment (249,432), its identification by µ-IR was impossible. However, becuase µ-R 

apparently has no limitation for the identification of zinc white, its detection by this technique 

in the referrered paintings should have occurred, but it was not the case.  

SEM/EDS, µ-XRD and FM were employed to verify the existence of the zinc white in the 

referred paintings and a few others. The main results are presented below, organized in two 

groups: the first group is formed by the samples having both lead white and zinc white (a zinc 

content, for the samples that were analysed by SEM/EDS) and the second group is formed 

by the samples having a paint layer with high zinc content and no lead white. 

 

First group 

To this first group belong the samples B3, I7, N3, N5, S1 and V3, characterized by having 

lead white in conjunction with a significant zinc content, which seems to be due to zinc white 

in the samples analysed by µ-XRD.  

As an example, SEM/EDS analysis of the blue layer 2 of sample N3 (Figure 7.21) clearly 

identifies the simultaneous presence of zinc and lead, and the µ-XRD analysis of layers 2 

and 3 of the sample B3 (Figure 7.22) identifies simultaneously zinc white, lead white and 

lead carbonate. 

 

 

Figure 7.21 a) Cross section of sample N3 viewed under reflected light and (b) SEM/EDS spectrum of 

the blue layer 2 from sample N3. 

 

(b) (a) 

100 µm



 

210 

   

Figure 7.22 (a) Cross section of sample B3 viewed under reflected light and (b) X-ray diffraction 

pattern of the layers 2 and 3 from the sample B3. Phase abbreviations: LW-lead white (JCPDS 010-

0401, 013-0131), LC-lead carbonate (JCPDS 047-1734) and ZW-zinc white (JCPDS 036-1451). 

 

Although, in general, the results of SEM/EDS and µ-XRD were in agreement, this was not 

the case for sample B3 (Figure 7.22 and Figure 7.23). While the µ-XRD analysis of the 

yellow layer 2 and the grey layer 3 of this sample, as above referred, allowed the 

identification of zinc white, lead white and lead carbonate, zinc (and therefore, zinc white) 

was not identified in any of those layers by SEM/EDS (Figure 7.23, SEM/EDS spectrum of 

the yellow layer 2 is identical to this spectrum). This divergence between results not clearly 

understood. 

 

 
Figure 7.23 SEM/EDS spectrum of the grey layer 3 from the sample B3. 

 

The results of the study carried out in 1984 indicated, in particular, the presence of zinc 

white in the ground layer of three paintings by Pousão, two of them now under study: 

Esperando o Sucesso and Portão, suggesting that these two paintings are somewhat 

different from the remaining. 

The µ-XRD analysis of sample K5 and the SEM/EDS, µ-XRD and FM analysis of sample 

K7, both from Esperando o Sucesso confirmed the µ-IR and µ-R results, which showed that 
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the ground layer of these two samples is mainly composed by lead white, barium sulfate and 

calcium carbonate - calcite form, with no zinc white (see e.g. Figure 7.24). No signal of the 

strong yellow-green fluorescence of zinc white when observed under UV light (431) is seen in 

Figure 7.24b, zinc was not detected by SEM/EDS analysis (Figure 7.24c) and µ-XRD did not 

identify zinc white (Figure 7.24d). 

 

     

    
Figure 7.24 Cross-section of the sample K7 viewed under: (a) reflected light and (b) ultraviolet light (A 

cube); (c) SEM/EDS spectrum and (b) XRD pattern of the ground layer from sample K7. Phase 

abbreviations: LW-lead white (JCPDS 010-0401, 013-0131), B-barium sulfate (JCPDS 024-1035) and 

C-calcium carbonate - calcite form (JCPDS 005-0586). 

 

The case of the painting Portão, was not so simple. While the SEM/EDS analysis of the 

ground layer of the sample N3 (Figure 7.21a) was in agreement with the results obtained by 

µ-IR and µ-R, which only identified, lead white, lead carbonate and calcium carbonate-calcite 

form (Figure 7.25a), the µ-XRD analysis of the ground layer of the sample N584 clearly 

indicates also the presence of zinc white (Figure 7.25b). 

In order to easily and quickly confirm the presence of zinc white, FM was employed. As 

shown in Figure 7.26, zinc white is, in fact, present in the sample, since the ‘sparky’ yellow-

green fluorescence that characterises zinc white when observed under UV light (431) is clearly 

observed; however, zinc white is present only on the paint layers and not on the ground 

layer. 

                                                
84 The size of the sample N3 was not enough for the µ-XRD analysis. 
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Figure 7.25 (a) SEM/EDS spectrum of the ground layer of sample N3 and (b) X-ray diffraction pattern 

of the ground layer of the sample N5. Phase abbreviations: LW-lead white (JCPDS 013-0131), LC-

lead carbonate (JCPDS 047-1734), C-calcium carbonate-calcite form (JCPDS 005-0586) and ZW-Zinc 

white (JCPDS 036-1451). 

 

 
Figure 7.26 Cross-section of the sample N5 viewed under ultraviolet light (A cube). 

 

Since due to the large X-ray beam diameter and to the X-ray penetration, when analysing 

the ground layer of sample N5, the paint layer, which has zinc white, might also have been 

analysed, leading to an erroneous result that zinc white is in the ground layer, the ground 

layer of a another sample from the same painting, sample N2, was also analysed by µ-XRD. 

As shown in Figure 7.27, only lead white was identified by µ-XRD in the ground layer of 

sample N2, being in agreement with the results obtained by µ-IR and µ-R, SEM/EDS and 

FM. 

 

These results show that zinc white is not present on the ground layer of the paintings 

Esperando o Sucesso and Portão. 
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Figure 7.27 X-ray diffraction pattern of the ground layer of the sample N2. Phase abbreviations: LW-

lead white (JCPDS 013-0131, 010-0401). 

 

The nonexistence of zinc white in the ground layer was confirmed by µ-XRD for the 

samples K5 and K7 (Esperando o Sucesso), H4 (Casas Brancas de Capri), S2 (Mulher 

da água) and W1 and W2 (Flores campestres), and by FM for the samples C2 (Paisagem - 

Abertura da Rua Alexandre Herculano) and G3 (Cansada (Cachopa de Capri)). 

 

The fact that neither µ-R85 nor SEM/EDS allowed the identification of zinc white when µ-

XRD and FM clearly showed its presence, illustrates the importance of the use of these last 

two techniques for the identification of this pigment. 

 

Second group 

To this group belong the samples F1, J2 and T7 (Figure 7.28a-c), characterized by having 

a paint layer (marked with a red cross) with a high zinc content (possibly zinc white) and no 

lead white. 

Unexpectedly, when analysing these three samples by µ-IR and µ-R, one paint layer of 

each sample (blue layer 5, grey layer 4 and green layer 2, respectively) provided no signal of 

lead white, a very common pigment in Pousão’s layers, raising questions about the layers’ 

origin. In their backscattered images (Figure 7.28d-f), the suspicious layers are easily 

distinguished from the others, since they present a darker colour, the rest of the layers 

appearing much lighter coloured86. The elemental analysis indicated that while the light 

layers are mainly composed by lead (probably from lead white) and do not have zinc, the 

                                                
85 As already referred, the IR bands of zinc white occur below the cut-off of the detector employed in µ-IR. 
86 The lower layer of sample F1 is only composed by calcium carbonate-calcite form, what explains its different 
colour from the right above layers. 
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layers marked with a red cross are characterized by a high zinc content and the apparent 

absence of lead87, Figure 7.29 and Figure 7.30. 

 

   

   
Figure 7.28 Cross section of the samples: (a) F1, (b) J2, and (c) T7, under reflected light. SEM 

backscattered image of the samples: (d) F1, (e) J2, and (f) T7. 

 

In the sample T7 from Paisagem Anacapri, the SEM/EDS elemental analysis of the 

green layer 2 shows that besides the large amount of Zn (Figure 7.30), there is also a 

significant amount of Cr, what could suggest the presence of zinc yellow (approximate 

composition K2O.4ZnCrO4.3H2O). However, this yellow pigment, which normally is a very 

good Raman scatterer, was not identified by µ-R. Instead, the chromium content was 

identified by µ-R to be due to green pigment viridian. The simultaneous presence of cadmium 

and sulfur suggested that the yellow pigment present in the layer, which was not able to be 

identified neither by µ-R or µ-IR, is cadmium yellow (CdS). 

Although the absence of lead white in this layer is unusual for samples under analysis88, 

there is no pigment in this layer that suggests that it was not applied by Pousão. In fact, the 

other green sample of this painting, sample T3, looks very similar to T7 when observed by 

OM, and when analysed by µ-R and µ-IR indicated more or less the same composition. Zinc 

is present in this sample either due to zinc white or to another zinc compound, such as zinc 

sulfide (present in lithopone – zinc sulfide + barium sulfate), zinc sulfate (present in sulfopone 

– zinc sulfate + calcium sulfide) and zinc carbonate (85,435). 

                                                
87 If lead exits it must be in a very low concentration that did not allowed it to be discernible from the background. 
88 Because sulfur and lead lines overlap, it is difficult to detect low amounts of lead in the presence of high sulfur 
content. Consequently, it is hard to assure that lead is really absent from this layer. 
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…  

Figure 7.29 SEM/EDS spectra of: (a) an area of the blue layer 5 of sample F1 and (b) an area of the 

grey layer 4 of sample J2. 

 

 
Figure 7.30 SEM/EDS spectrum of an area of the green layer 2 of sample T7. 

 

A different scenario occurs for samples F1 and J2, since no other element common to 

Pousão’s pigments was identified in the blue layer 5 of sample F1 and the grey layer 4 of 

sample J2. In order to check for the presence of zinc white in these two samples, FM was 

employed (Figure 7.31 and Figure 7.32). The cross section of sample J2 presented in Figure 

7.32 is different from the one presented in Figure 7.28b because it was acquired after the 

SEM/EDS analysis, hence, the sample had to be polished to remove the carbon deposit, 

what caused the loss of some of the layers. 

When viewed under UV light, the blue layer 5 of sample F1 from Paisagem St. Sauves 

appears to have a different morphology (less compact) relatively to the other layers (Figure 

7.31b), suggesting that this layer belongs to a later intervention; the brownish layer 4 (only 

seen under visible reflected light) probably being remain dirty varnish or simply dirty. 

However, apparently no zinc white is present in this layer, as the “sparkle” look that zinc 

white presents under UV light (see Figure 7.26) was not observed. 
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Figure 7.31 Cross section of the sample F1 viewed under: (a) reflected light and (b) ultraviolet light (A 

cube). 

 

 
Figure 7.32 Cross section of the sample J2 viewed under: (a) reflected light and (b) ultraviolet light (A 

cube). 

 

The same was verified for sample J2 from Escadas de um pardieiro. Although the grey 

layer 4 proved to have a high zinc content, apparently it is not due to zinc white, since no 

fluorescence is observed (Figure 7.32b). A result corroborated by µ-XRD, which identified 

only lead white and lead carbonate when analysing this layer (Figure 7.33). However, these 

compounds are probably from the underneath layers, since none of them was identified by  

µ-IR and µ-R in the layer in question. 

 

 
Figure 7.33 X-ray diffraction pattern of the grey layer 4 from the sample J2. Phase abbreviations: LW-

lead white (JCPDS 010-0401, 013-0131) and LC-lead carbonate (JCPDS 076-2056). 
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The fact that the pigment cadmium red, only commercialized since 1910 (85), was 

identified, by µ-R, in the grey layer 4 indicates that it could not have been applied by Pousão, 

who died in 1884. Therefore, this layer can be a result of the conservation intervention 

carried out in 1984 or due to paint transference from a frame. 

In both samples F1 and J2 zinc is probably due to the presence another zinc compound, 

rather than zinc white, such as zinc sulfide (present in lithopone – zinc sulfide + barium 

sulfate), zinc sulfate (present in sulfopone – zinc sulfate + calcium sulfide) and zinc 

carbonate (85,435). 

 

Zinc white was identified in the paint layers of the paintings O mendigo Lapita (B3), 

Portão (N3) and Mulher da água (S1), by µ-XRD, and Portão (N3) by FM. Besides, 

SEM/EDS also suggest its presence in the paint layers of the paintings Cecília (I7), 

Paisagem de Anacapri (T7) and Cais de Barcelona (V3). 

 

 

Zinc yellow 

Zinc yellow is known to have been sold under different chemical compositions, but it is the 

approximated complex zinc potassium chromate composition, K2O.4ZnCrO4.3H2O
 (242) the 

one generally accepted as correct.  

µ-XRD analysis of the reference sample of zinc yellow (Figure 7.34) indicated that it was 

mainly composed by K2Zn4O(CrO4)4.3H2O/ 4ZnCrO4.K2O.3H2O (JCPDS 08-0202), identical 

to the formula above, and SEM/EDS analysis of the zinc yellow pigment grains of samples 

K7 and L3 (Figure 7.35) which identified zinc, chromium, potassium and oxygen, seem to 

corroborate this hypothesis. 

 

 
Figure 7.34 X-ray diffraction pattern of the reference sample of zinc yellow. Phase abbreviations: ZY-

zinc yellow (JCPDS 08-0202) and ZW-zinc white (JCPDS 036-1451). 
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Figure 7.35 (a) SEM backscattered image of sample K7 and (b) the SEM/EDS spectrum of the 

marked yellow pigment; (c) SEM backscattered image of L3 and (d) the SEM/EDS spectrum of the 

marked yellow pigment. 

 

However, when analysing the green layer 4 of sample H8 by µ-XRD (Figure 7.36) a 

different zinc yellow phase, 4ZnO.CrO3.3H2O (JCPDS 011-0275), with no potassium was 

identified. 

 

 

Figure 7.36 X-ray diffraction pattern of the green layer 4 from the sample H8. Phase abbreviations: 

LW-lead white (JCPDS 013-0131, 010-0401), LC-lead carbonate (JCPDS 047-1734), EG-emerald 
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green (JCPDS 031-0448), M-mercuryII sulfide (JCPDS 080-2192) and ZY-zinc yellow (JCPDS 011-

0275). 

As referred before, the distinction of the different possible compositions of zinc yellow by 

IR seemed to be very difficult, if not impossible. The same is now verified for RS, since the 

Raman spectrum of the yellow grains of sample H8 (and on all other painting samples) is 

identical to that of the reference sample of zinc yellow (Figure 7.37). 

 

 
Figure 7.37 Raman spectra of: (a) yellow pigment grains of the green layer 4 of sample H8, identified 

as zinc yellow (5 scans, 0.63 mW) and (b) zinc yellow reference sample (Ferrario Colours) (1 scans, 

0.13 mW). See experimental conditions on the previous chapter. 

 

 

7.4 SEM/EDS, µ-XRD and FM advantages and limitations 

Over the past decades, the use of analytical techniques for research in conservation 

science has expanded notably and nowadays an extensive range of analytical techniques 

are made available for this purpose. However, when carrying out a scientific study of an 

artwork it can be difficult to select the best analytical approach, since the risk to produce poor 

quality or to duplicate results, to waste time, funds and even to destroy the priceless samples 

is high. Therefore, particularly in this field, where no test analyses are allowed, a prior 

knowledge of the strengths and weaknesses of each analytical technique is very important.  

In what follows, the major advantages and difficulties of SEM/EDS, µ-XRD and FM found 

along this study for the analysis of oil paintings are presented. 

 

SEM/EDS 

The elemental analysis provided by SEM/EDS was very helpful to clarify some questions 

which remained after the µ-IR and µ-R analysis, since this technique provides the elemental 

composition of the pigment grains and of small areas of the samples. 

900 600 300

168

893

942 358 343

410

165
140

111

341
772

357

(b)

892

773

940

872
 R

am
an

 I
n
te

n
si

ty
  

 →
 

 Wavenumber/cm
-1

408 (a)



 

220 

In the current study, SEM/EDS allowed to: i) confirm and/or identify the presence of cobalt 

blue and cadmium yellow, two pigments that could not be identified either by µ-R or by µ -IR 

(IR bands occur below 650 cm-1), ii) confirm that lead antimonite yellow and not lead-tin-

antimony yellow was present in the samples and iii) identify zinc white and cerulean blue, two 

pigments that could not be identified either by µ-R or by µ -IR (IR bands below 650 cm-1). 

Unfortunately, SEM/EDS does not provide information regarding how the elements are 

linked, and so, does not allow for the distinction between: i) polymorphs89, such as anatase 

and rutile (TiO2) or calcite and aragonite (CaCO3), ii) compounds with identical elemental 

composition, such as malachite (Cu2CO3(OH)2) and azurite (Cu3CO2(OH)2) or red lead 

(Pb3O4) and massicot (PbO) and iii) mixtures of compounds that led to the presence of the 

same elements, such as  CaSO4 + PbCO3 and CaCO3 + PbSO4. Therefore, for identification 

purposes, especially, when analysing complex samples, such as those under study, 

SEM/EDS must be used in conjunction with more specific techniques, since a wrong 

interpretation may be easily performed. 

Since an energy dispersive spectrometer was employed, it was possible to acquire a full 

elemental spectrum, i.e. to identify all the elements90 of the sampling point/area in just a few 

seconds. However, the use of this type of spectrometer can also constitute a drawback to 

this technique. Using this spectrometer it was very difficult to distinguish close together lines, 

such as the lead and sulfur lines, which make it very difficult or even impossible to identify 

lead sulfate (PbSO4) in a mixture with lead antimonate yellow (approximately Pb2Sb2O7), as 

identified by µ-R and µ-XRD. In such cases, a wavelength dispersive spectrometer is more 

suitable.  

The SEM/EDS analysis required samples to be covered with a thin film of carbon, thus 

samples have to be polished previously to any other analysis. Since the removal of the 

carbon layer for further uses of the sample may change its stratigraphy, causing layers to 

disappear and/or new layers to appear, this technique is considered to be destructive. 

 

µ-XRD 

Based on the distinct diffraction pattern that each particular crystal structure gives rise to, 

µ-XRD allows for an exact determination of the composition of samples with only a few 

micrograms and in a non-destructive way, since the grounding procedure, normally 

associated with powder XRD, is not performed. 

                                                
89 Compounds with identical chemical compositions but different crystalline forms. 
90 Lower abundance elements might not be detected and elements with atomic number below the atomic number 
of Na are not detected. 
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In the current study, µ-XRD was important for: i) identification of zinc white, which proved 

to be a poor Raman scatterer, but has a high X-ray absorption coefficient (436), ii) identification 

of cerulean blue, a light blue pigment that produced an intense fluorescence background 

hampering its identification by µ-R, iii) confirmation of the presence of lead sulphate, basic 

lead sulphate and rosiaite and iv) identification of cervantite as associated phase of lead 

antimonate yellow. 

However, µ-XRD presents several limitations and some of them very restringing. The first 

one is that amorphous or poorly crystalline phases are very difficult or impossible to identify, 

since µ-XRD is based on the crystalline structure. For instance, the amorphous pigments 

viridian and cobalt blue were identified by µ-R, but could not be identified by µ-XRD. A 

second limitation is its low immunity to interference. For instance, the co-existence of a 

significant content of an amorphous phase can seriously difficult the identification of the 

crystalline phases, since the background is swamped, peaks are less visible; and 

compounds with low X-ray absorption coefficients may be difficult to identify in the presence 

of others with higher X-ray absorption coefficients (436,437). Since lead white, the main 

component of almost all the samples, has a high X-ray absorption coefficient, the 

diffractograms were generally dominated by the peaks of this pigment, seriously constraining 

the identification of other existing compounds, especially those present in lower 

concentrations. A third limitation of µ-XRD is the requirement of larger acquisition periods, 

since, as samples were not grounded and no sample stage rotator was used, preferential 

orientation of the crystals in the sample can occur,  making identification more difficult. 

The fourth limitation of this technique is the fact that the analysis of the samples was not 

always straightforward, since a suitable area for analysis should be, preferably, large 

(minimum 1 mm, which is the diameter of the collimator) and flat. Samples were adjusted in 

order to find a suitable area for analysis, but most of the times the analysis was confined to 

the top and bottom layers. In some cases, due to the low spatial resolution of the technique 

(ca. 1000 µm) more than one layer was simultaneously analysed. 

Finally, the high fluorescence of the iron-containing compounds under Cu Kα radiation, 

such as ironIII oxides and oxyhydroxides and Prussian blue, inhibited the identification of 

these pigments. 

Since, the µ-XRD analysis was conducted using the bulk samples, without any 

preparation, this technique is considered to be non-destructive. 
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FM 

The characteristic auto-fluorescence that some materials/compounds exhibit when 

observed under ultraviolet light can be used to easily, quickly and relatively inexpensively, 

support identification purposes and access the samples’ characterization. 

In the current study, FM was valuable to: i) identify madder lake in a sample where, 

neither µ-IR, nor µ-R provided any information about this red lake pigment, ii) confirm the 

absence of madder lake in samples with layers mainly composed by cochineal lake pigment, 

since often these two pigment were mixed together, iii) identify or confirm the absence of zinc 

white. 

However, some misinterpretations can occur (304,431). Especially in complex mixtures, a 

different fluorescence behaviour from the one expected may be observed. This is due to the 

fact the characteristic fluorescence of a specific compound can be changed by the response 

of other compounds or by photobleaching (loss of the ability to fluoresce as result of 

continuously exposure to excitation radiation). Therefore, the results of this technique should 

always be carefully interpreted and, preferably, in conjunction with those obtained by other 

techniques. 

Although not detected in the current study, another drawback of this technique is the 

possible fading of some organic pigments and dyes, due to the release of energy in the form 

of heat and not in the form of fluorescence. Thus, minimisation of the time under UV light is 

recommended. 

Since, no degradation/alteration in the samples was observed, this technique is 

considered to be non-destructive. 

 

Comparison among µ-IR, µ-R, SEM/EDS, µ-XRD and FM 

A comprehensive evaluation of µ-IR and µ-R and of the auxiliary techniques for the 

analysis of the samples of Pousão’s oil paintings was separately carried out in sections 6.3 

and above, respectively. Therefore, only a brief comparison among all these techniques 

together will be outlined in this section. 

 

µ-R, FM and SEM/EDS did not require sample preparation, since the analysis by these 

techniques was performed over the cross sections previously prepared for OM. This not only 

saved sample and time, but also simplified the comparison of the results obtained by those 

techniques with the OM results. Nevertheless, as SEM/EDS samples’ images are in black 

and white, the results obtained by this technique were more difficult to compare with the OM 

results than the ones obtained by µ-R and FM. 
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Although, like the above techniques, µ-XRD did not require sample preparation, as the 

analysis was conducted over the bulk samples, the comparison of the results obtained by 

this technique with the ones obtained by the other techniques was not always easy, since in 

general only the upper and lower layers of the samples were analysed 

Similar to µ-XRD, the µ-IR results were often difficult to compare with the ones obtained 

by the other techniques, since the procedures used for the preparation and analyse of the 

thin sections can cause alterations of its stratigraphy relatively to the one of the cross 

sections analysed by OM, µ-R, SEM/EDS and FM. Those procedures are time- and sample-

consuming and constitute a serious handicap of the µ-IR technique. 

 

As to the analysis time, except for µ-XRD, which required several hours, if not days of 

data acquisition, SEM/EDS required a few minutes for vacuum establisment inside the 

sample’s chamber, µ-R required from a few minutes to five hours, depending on the 

samples, µ-IR always required one minute and FM was able to produce results in a few 

seconds. 

 

µ-IR, µ-R and µ-XRD are highly specific techniques, allowing for the exact determination 

of the compounds present in the samples. However, µ-XRD is limited to the analysis of 

crystalline ordered compounds and µ-IR only permits the identification of compounds 

exhibiting IR bands above 650 cm-1. Unlike these techniques, FM has low specificity and 

must be used with caution, since only a few compounds fluoresce and fluorescence emission 

can be altered by the presence of other compounds or by the observation conditions. 

Although SEM/EDS is highly specific for chemical elements, it has no specificity for the 

identification of compounds. 

 

SEM/EDS is the technique with the highest spatial resolution, approximately 0.002 µm, 

allowing for the individual analysis of each particle in the samples. µ-R and FM also have 

good spatial resolutions, approximately 1 µm and 0.2-0.5 µm, respectively, which allow for 

the individual analysis of most pigments grains in the samples. However when the pigments 

were machine grounded and the dimensions of the grains were lower than the spatial 

resolution, such as was the case of cadmium yellow, the pigments particles could not be 

resolved. 

µ-IR and µ-XRD were the analytical techniques with the lowest spatial resolution, 

approximately 50 µm and 1000 µm, respectively. These low spatial resolutions not only did 

not permit the analysis of individual grains but also sometimes did not even allow for the 

individual analysis of each layer of the samples. 
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Among these five techniques, µ-IR was considered to be the most destructive, because 

after compression of the thin sections in the diamond cells, the recovery of the thin sections 

for further analysis was impossible. 

Liwewise µ-IR, SEM/EDS was considered a destructive technique since the removal of 

the carbon layer required for further analyses, may cause alterations in the samples’ 

stratigraphy. 

µ-R, µ-XRD and FM were considered to be non-destructive techniques. In fact, the 

chemical alteration/degradation of some samples during the µ-R analysis as result of the 

laser being focused on a very bright spot, only occurred for a few and irrelevant black 

particles. 

 

Although each technique proved to be useful at different stages of the current study, and 

the combination of all the results offered a significant insight into the composition of Pousão’s 

paintings, µ-R demonstrated to be the best effective technique for pigment identification in 

the studied samples. 

 

 

7.5 Comphreensive identification 

SEM/EDS, µ-XRD and FM were used as auxiliary techniques to the µ-IR and µ-R 

analysis, confirming uncertain identifications and identifying unidentified compounds. 

Combining the results of these five analytical techniques it is possible to summarize the 

composition of the samples under analysis as presented in Table 7.4. 
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Table 7.4 Compounds* identified by µ-IR, µ-R, SEM/EDS, µ-XRD and FM in Pousão’s paintings 

 
(continued overleaf) 

 

 

Compounds A B C D E F G H I J K L M N O P Q R S T U V W

Arsenites
Emerald green • • • • • •

Scheele's green • •

Carbonates
Calcium carbonate - calcite form • • • • • • • • • • ? •

Lead carbonate • • • • • • • • • • • • • • • • • • • • • •

Lead white • • • • • • • • • • • • • • • • • • • • • • •

Malachite •

Chromates
Chrome orange • • • • • • • • • • • • • • • ? •

Chrome yellow • • • • • • • • • • • • • • • • ? •

Strontium yellow • • • • • •

Zinc yellow • • • • • • • • • •

Cyanides
Chrome green • • • •

Prussian blue • • • • • • • • • • • • • •

Oxides and Oxyhydroxides
Anatase • • • •

Brookite •

Cerulean blue • • • •

Cervantite •

Cobalt blue • • • • • • • • • ? • • • • • • ?

Cobalt oxide •

IronIII oxide • • • • • • • • • • • • • • • • • • • •

IronIII oxyhydroxide • • • • • • • • • • • • • •

LeadII,IV oxide • •

Lead antimonate yellow • • • ? • • • • •

Rosiaite • • • • •

Rutile • • •

Tetragonal leadIV oxide a • • •

Viridian • • • • • • • •

Zinc white • ? • • ? ?

Phosphates
Bone/ivory black ? • • • • ? •

Silicates
Celadonite • • •

Kaolin • • • • • • • ? ? • • • • •

Quartz • • • • • • • • • • • • •

Ultramarine blue • • • • • • • • • • • • • • • • • •

Paintings
Earlier French Italian Final
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Table 7.4 (continued) 

 
A - Casa rústica de Campanhã, B - O mendigo Lapita, C - Paisagem - Abertura da Rua Alexandre Herculano, D - Jardim de 

Luxemburgo (estudo), E - Aldeia de St. Sauves, F - Paisagem de St. Sauves, G - Cansada (Cachopa de Capri), H - Casas 

brancas de Capri, I - Cecília, J - Escadas de um pardieiro - Roma, K - Esperando o sucesso, l - Fachada de casa soterrada - 

Roma, M - Miragem de Nápoles, N - Portão, O - Rapariga de Anacapri, P - Rua de Roma, Q - Senhora vestida de preto, R - 

Janela das persianas azuis, S - Mulher da água, T - Paisagem de Anacapri, U - Rapariga deitada no tronco de uma árvore, V - 

Cais de Barcelona and W - Flores Campestres. 

* Pigments are in blue, while extenders, associated compounds or impurities are in green 
? Propable identification 
a by identification of the laser induced formed orthorhombic leadII oxide 
b This pigments is due to a conservation intervention. Therefore, will not be used for futher considerations. 
c pigments that do not belong to a specific functional group 

 

 

7.6 Microchemical results vs. current study results 

As already mentioned, in 1984 some of the paintings were sampled and their pigments 

identified by microchemical analysis. Since this former study was conducted almost thirty 

years ago, when examination and analytical techniques had not yet reached today’s level of 

development/information, it was expected that the current study would provide additional 

information. Table 7.5 summarizes the results of the 1984 study and the results of the current 

study, only for the paintings analysed in 1984. 

The comparison of the results allows for three major conclusions to. First, as expected, a 

much larger number of pigments were identified in the current study (19 vs. 26), especially 

the yellow and orange pigments. While chrome orange, lead antimonate yellow, strontium 

Compounds A B C D E F G H I J K L M N O P Q R S T U V W

Sulfates
Barium sulfate • • • • • • • • • • • • •

Basic lead sulfate • ? • • •

Brochantite •

Gypsum • • • • ? ? ? • • • ?

Lead sulfate ? • ? • ? • ? • ? • ? ?

Sulfides

Cadmium red b • • •

Cadmium yellow ? • ? ? • • • • • • • •

CopperII sulfide • •

MercuryII sulfide • • • • • • • • • • • • • • • • • • • • • •

Realgar/parealgar • • • •

Other pigments c

Carbon-based black • • • • • • • • • • • • • • • • • • • • • • •

Cochineal lake • • • • • • • • • • • • • • • • • • •

Madder lake • •

Paintings
Earlier French Italian Final
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yellow and zinc yellow had not been identified in 1984, they were easily identified in the 

current study. Importantly, cochineal lake, easily identified in almost all the paintings by µ-R, 

had not been identified by the microchemical analysis. 

Second, according to the results presented in Table 7.5, microchemical analysis seems to 

present a higher selectivity for the identification of zinc white than the multi-technique 

approach used in this study. While in 1984 zinc white was identified in the ground layer of 

two paintings (K and N) and in the paint layers of three paintings (C, G and N), in the current 

study, zinc white was only identified in the paint layer of painting N. 

However neither µ-XRD, which had a high and accurate response to zinc white nor FM, 

which easily identified this pigment even in low amounts (Figure 7.26) were able to identify 

zinc white91 in the ground layer of paintings K and N. This raises some questions regarding 

the microchemical results. 

The microchemical analysis is basically an elemental analysis, in which by chemical 

reaction with an added reagent a visible phenomenon is produced. Therefore, tests 

employed for the zinc white identification were able to identify only the presence of the zinc, 

and not the presence of zinc compounds. Additional tests were necessary to eliminate other 

possibilities, such as zinc sulfide (present in lithopone – zinc sulfide + barium sulfate), zinc 

sulfate (present in sulfopone - zinc sulfate + calcium sulfide), zinc carbonate and zinc yellow  

(85,435). 

Due to the complex nature of the samples under study and to the low specificity of this 

technique, the microchemical analysis was probably very complex and fraught with 

uncertainty and their results must be used carefully. 

 

Finally, copper resinate and cobalt green, two green pigments identified by the 

microchemical tests in sample C2 and samples N2 and U1, respectively, were not identified 

by µ-IR or by µ-R. FM was used to analyse sample C2, but no insight into the existence of 

copper resinate was possible. No other auxiliary techniques were employed in the analysis of 

these three samples. 

 

 

 

 

 

 
                                                
91 Identification of zinc white by µ-IR was impossible due to the detector’s cut-off; identification by µ-R, except for 
the restoration samples, was not possible as well; SEM/EDS presented some not understand difficulties in 
identifying zinc in some of the samples. 
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Table 7.5 Pigments identified in Pousão’s paintings*: 1984 study and current study 

 
(continued overleaf) 

 

 

 

 

 

 

 

Early Final Early Final

Pigments C G K N O Q U W C G K N O Q U W

Ground
Lead white • • • • • • • • • • • • • • • •

Zinc white • •

Bone/ivory black •

Carbon-based black • • • • • •

IronIII oxide • • •

IronIII oxyhydroxide •

MercuryII sulfide • •

Ultramarine blue •

White
Lead white • • • • • • • • • • • • • • • •

Zinc white • • • •

Yellow and orange
Cadmium yellow • • • • ? ? • • •

Chrome orange • • • • • •

Chrome yellow • • • • • • • ? •

IronIII oxyhydroxide • • • • • • • • • •

Lead antimonate yellow • •

Strontium yellow • • •

Zinc yellow • • •

Red
Cochineal lake • • • • • •

IronIII oxide • • • • • • • • • • •

Madder lake • •

MercuryII sulfide • • • • • • • • • • • • • • •

Realgar/parealgar • •

Green
Celadonite • •

Chrome green • • • • • • •

Cobalt green • •

Copper resinate •

Emerald green • • •

Scheele's green •

Viridian • • •

1984 Now
Italian Italian
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Table 7.5 (continued) 

 
C - Paisagem - Abertura da Rua Alexandre Herculano, G - Cansada (Cachopa de Capri), K - Esperando o sucesso, N – Portão, 

O - Rapariga de Anacapri, Q - Senhora vestida de preto, U - Rapariga deitada no tronco de uma árvore, W - Flores campestres 

* Only the paintings analised in 1984 
?
 Probable identification 

 

 

7.7 Conclusions 

Since the identification of all the compounds present in the samples of Pousão’s paintings 

by µ-IR and µ-R was not always possible or conclusive, SEM/EDS, µ-XRD and FM were 

used as auxiliary analytical tools. 

The results of the analysis by these techniques proved to be valuable and a good 

contribution to increasing the knowledge about Pousão’s samples. In particular, the presence 

of lead antimonate yellow was confirmed by SEM/EDS and µ-XRD, while by µ-R its 

identification was often somewhat uncertain. Further, the pigments cadmium yellow, cobalt 

blue, zinc white, cerulean blue and madder lake were identified by SEM/EDS, µ-XRD and FM 

in all the samples where the vibrational techniques failed their identification. 

In spite of having chosen these auxiliary techniques to solve specific problems to which it 

was supposed they would provide the answers, some questions remained and even new 

ones arose, since , like µ-IR and µ-R, they also have their own limitations. 

However, this study clearly highlighted the importance of a multi-technique approach 

when analysing complex samples and clearly demonstrated the superiority of µ-R for 

pigment identification over the other analytical techniques. 

 

Early Final Early Final

Pigments C G K N O Q U W C G K N O Q U W

Blue
Cerulean blue • • •

Cobalt blue • • • • • • • • • • • •

Prussian blue • • • • • • • •

Ultramarine blue • • • • • • •

Black
Bone/ivory black • • • • •

Vegetable carbon-based black • • •

Carbon-based black • • • • • • • •

1984 Now
Italian Italian
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8 Pousão’s palette and painting 
technique 

 

There are many ways of enjoying paintings; 

each aspect of a work has its own individual 

appeal. […] A close study of an artist’s 

technique – the particular diversity and order 

which he or she has employed to achieve a 

given image – will enhance the appreciation of 

both painter and painting. 

 

 

A. Bowness 
 

 

 

 

 

 

 

 

This chapter reports the most important findings on Pousão's palette 

and technique. An overall discussion of the analytical results presented 

in the previous chapters is undertaken. Additionally, a comparison of 

the final results with art history information about easel paintings and 

data culled from studies on other painters is sketched out. 
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Some questions always crop up as to a painter’s work: what materials and technique(s) 

did the painter use? Was he influenced by any specific painter or movement? Although in 

some cases, significant answers can be obtained from existing ordering notes, diaries, 

painter’s letters, reviews and comments by the artists, etc. Only a scientific research of the 

artist’s work allows an exactly insight into the technique and the materials he used. 

In the case of Pousão, as no other source of information seems to exist, the scientific 

analysis of the paintings was the only way of achieving an insight into its work. As described 

before by employing a multi-technique approach, which included, OM, µ-IR, µ-R, µ-XRD, 

SEM/EDS and FM, 150 samples removed from 23 paintings by Pousão, belonging to the 

Museu Nacional Soares do Reis (Appendix B), were analysed. 

The examination of the paintings and the analysis of their samples, by the various 

techniques, besides the characterization of Pousão’s palette, revealed special features 

related to the painting technique, such as the paint layer structure, the way in which the 

composition evolved and other materials that were employed, major conclusions being 

presented below. 

However, because the paintings under analysis generally were in a good state of 

preservation, samples were removed mainly from the edges concealed by the frames and, in 

a few cases, from the surface cracks (Appendix B), not being possible to collect, either 

samples from all the existing pictorial elements, or as many samples as it would be desirable 

to fully understand the construction of each different pictorial element. 

 

 

8.1 Support and ground layer 

 

8.1.1 Support 

Approximately, the same number of wood panel and canvas supported paintings were 

studied (Table 8.1) and, in general, the wood panel support presented smaller dimensions 

that the canvas. 

Comparing the dimensions of the wood panels, it is visible that five of the paintings, 

Jardim de Luxemburgo (estudo), Fachada de casa soterrada - Roma, Miragem de 

Nápoles, Rua de Roma and Cais de Barcelona, have approximately the same dimensions 

(16.5 x 10 cm), corresponding to approximately half of the painting Escadas de um 

pardieiro - Roma (16.0 x 22.2 cm). It seems that Pousão bought wood panels having the 

dimensions of the painting Escadas de um pardieiro - Roma that he divided in two. The 

slightly different dimensions are due to the paring of the panels. 
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Regarding the other wood panels, it is difficult to say if they were bought or were made 

from reused wood. 

 

Table 8.1 Supports and dimensions of the paintings 

 
a height x width; b canvas on an auxiliary paper support 

 

When comparing canvas paintings dimensions, two sets of paintings present approximate 

dimensions: two landscape paintings - Casas brancas de Capri and Paisagem de 

Anacapri - and two portrait paintings - Cansada (Cachopa de Capri) and Esperando o 

sucesso, suggesting that they have the same origin. 

Comparing the dimensions of the canvas paintings with those presented by ready-

stretched canvas standard 19th century formats from Lefranc & Company and Bourgeois (90), 

while no exact matches occurred, very good approximations were found for four paintings 

and the ‘marine’ format from Bourgeois, namely Paisagem de St. Sauves with the No. 15 

(65 x 46 cm2), Rapariga deitada no tronco de uma árvore with the No. 50 (116 x 73 cm), 

and Cansada (Cachopa de Capri) and Esperando o sucesso with the No. 60 (130 x 81). 

 

 

Painting Period Dimensionsa /cm

D Jardim de Luxemburgo (estudo) French 16.5 x 9.0
L Fachada de casa soterrada - Roma Italian 9.9 x 16.5
M Miragem de Nápoles Italian 9.7 x 16.3
P Rua de Roma Italian 16.5 x 9.9
V Cais de Barcelona Final 16.5 x 10.0
J Escadas de um pardieiro - Roma Italian 16.0 x 22.2

A Casa rústica de Campanhã Early 20.2 x 12.8
B O mendigo Lapita Early 23.5 x 14.2
Q Senhora vestida de preto Italian 28.3 x 18.4
R Janela das persianas azuis Italian 28.5 x 25.0
E Aldeia de St. Sauves French 46.0 x 37.8

O Rapariga de Anacapri Italian 18.5 x 13.8
N Portão b Italian 29.2 x 21.2
W Flores campestres Final 30.0 x 22.5
F Paisagem de St. Sauves French 46.0 x 65.5
I Cecília Italian 82.3 x 57.2
C Paisagem - Abertura da Rua Alexandre Herculano Early 68.8 x 122.4
U Rapariga deitada no tronco de uma árvore Italian 73.5 x 115.5

H Casas brancas de Capri Italian 70.5 x 141.0
T Paisagem de Anacapri Italian 70.5 x 140.5

G Cansada (Cachopa de Capri) Italian 130.5 x 81.5
K Esperando o sucesso Italian 131.5 x 83.5

S Mulher da água Italian 144.0 x 135.5
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8.1.2 Ground layer 

The examination of the paintings and the visualization of the cross sections under the 

optical microscope indicated that an opaque white ground layer was generally used. 

Exceptions were found in Jardim do Luxemburgo and Senhora vestida de preto (Figure 

8.1), both wood panel paintings, where no ground layer is present and Paisagem de St. 

Sauves where there is a calcium carbonate - calcite form in oil ground layer and a white lead 

in oil imprimitura. 

The opaque white ground is generally a single white ground layer of variable thickness, but 

in the painting Paisagem - Abertura da Rua Alexandre Herculano, three ground layers of 

slightly different opacity were used. 

 

…  

Figure 8.1 Detail of the paintings: (a) Jardim de Luxemburgo (estudo) and (b) Senhora vestida de 

preto, showing the wood panel support. Photo: LCRJF. 

 

The analysis of the ground layer(s) indicate that it is mainly constituted by lead white in oil 

medium. In the canvas paintings lead white is, most of the times, extended with barium 

sulfate, calcium carbonate - calcite form, or both, while in the wood panel paintings (marked 

with pink in Table 8.2) a purest grade of lead white seems to have been used. Although the 

wood panels seem to have been bought, the ground layer they present was probably applied 

by Pousão since commercially prepared grounds of lead white were normally extended with 

other white pigments/extenders, such as kaolin, barium sulfate, calcium carbonate - calcite 

form and so on (90,315), which were not identified. 

No stamps or labels from the supplier exist in the back of the canvases, making difficult to 

ascertain if the canvases were bought ready-primed or unprimed. This absence can be due 

to the conservation intervention of 1984, since some of the canvases were relined at that 

time. 

Commercially primed canvases were generally pre-primed and then stretched, leaving the 

tacking margins/edges covered with the ground layer. However, the painting Mulher da 

Água (Figure 8.2) exhibits a canvas not entirely primed, indicating that it was prepared after 

being stretched, probably by Pousão. The painting Cecília was also not entirely primed. 

(a) (b) 
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Table 8.2 Pigments and extenders identified in the ground layers of the paintings 

 
A - Casa rústica de Campanhã, B - O mendigo Lapita, C - Paisagem - Abertura da Rua Alexandre Herculano, D - Jardim de 

Luxemburgo (estudo), E - Aldeia de St. Sauves, F - Paisagem de St. Sauves, G - Cansada (Cachopa de Capri), H - Casas 

brancas de Capri, I - Cecília, J - Escadas de um pardieiro - Roma, K - Esperando o sucesso, l - Fachada de casa soterrada - 

Roma, M - Miragem de Nápoles, N - Portão, O - Rapariga de Anacapri, P - Rua de Roma, Q - Senhora vestida de preto, R - 

Janela das persianas azuis, S - Mulher da água, T - Paisagem de Anacapri, U - Rapariga deitada no tronco de uma árvore, V 

- Cais de Barcelona and W - Flores Campestres. 
a Lead carbonate is also present 
b The only component of ground layer. The others compounds are present in the imprimitura. 

 

 

 
Figure 8.2 Back-side of the painting Mulher da água, showing the canvas stretched over the wooden 

frame (stretcher). Photo: LCRJF. 

 

The painting Paisagem de St. Sauves has a rather unusual preparation: a brownish 

ground layer constituted by calcium carbonate - calcite form and a proteinaceous binder, 

over which a white imprimitura (or a second ground layer) constituted by lead white, barium 

sulfate and an oil binder was applied. Looking at the cross section of the sample F2 (Figure 

8.3), it seems that the imprimitura was applied while the ground layer was not completely dry, 

suggesting that both were applied by the same person (Pousão, the merchants or a 

Compounds A B C D E F G H I J K L M N O P Q R S T U V W

White pigments and extenders

Lead white • • •
a

• •
a

• • • • • • • •
a

•
a

• • •
a

• • • •
a

Barium sulfate • • • • • • •

Calcium carbonate - calcite form • •
b

• • • ?

Coloured pigments
Carbon-based black • • • • • • • • • • • • • • • •

IronIII oxyhydroxide • •

IronIII oxide • • • • •

Ultramarine blue ? •

MercuryII sulfide • •

Zinc yellow •

Paintings
Early French Italian Final
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craftsman). The use of a ground layer of calcium carbonate or gypsum with animal glue for 

panel paintings in Europe, is very common since early medieval times; however, the use of 

ready-primed canvas with this ground was less common (69,235,438). 

 

 
Figure 8.3 Cross section of sample F2, viewed under reflected light. 

 

There seems to be no alteration on the ground layer’s colour throughout the four periods 

under study. Carbon-based black and ochres were added in a low amount to tone the white 

and/or to accelerate the drying (69) , being not characteristic of a single period. Ultramarine 

blue, mercuryII sulfide and zinc yellow particles were also identified in four paintings (Aldeia 

de St. Sauves, Rua de Roma, Mulher da água and Flores Campestres), apparently not 

due to transference from the upper paint layer. The ultramarine blue, for example, can have 

been added to counteract the yellowing of the oil medium (89). 

 

 

8.2 Painting technique 

 

8.2.1 Underdrawing 

The examination of the painting’s surface reveals that in some of them, major areas and 

elements of the composition, such as sky, landscape, architecture and principal figures were 

outlined with a black line, before painting. Sometimes it appears a pencil line, such as for 

example, the black lines used to define the tree logs, in the upper right corner of Rapariga 

deitada no tronco de uma árvore (Figure 8.4a), while other times it seems more like a 

carbon-based black stroke, such as the lines used to define the woman in Mulher da água 

(Figure 8.4b). The underdrawing seems to have served only as a rough indication of 

composition. 
 

 

 

 

 

 

100 µm
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..  

Figure 8.4 Detail of the painting: (a) Rapariga deitada no tronco de uma árvore, showing the black 

underdrawing pencil line used to define the tree logs and (b) Mulher da água, showing the carbon-

based black strokes used to define the hand and jug. Photo: LCRJF. 

 

8.2.2 Outlining 

Long continuous strokes of blue, black and brown were used to outline some elements 

during the paint construction. For example, there is a blue stroke defining the cactus in the 

lower right corner of Casas brancas de Capri (Figure 8.5a), the cloths of the woman in 

Mulher da água and the roof of Janela das persianas azuis, while there is brownish stroke 

defining the tree log of Rapariga deitada no tronco de uma árvore (Figure 8.5b). 

 

..  

..  
Figure 8.5 Detail of the painting: (a) Casas brancas de Capri, showing the blue outline of the cactus; 

(b) Mulher da água, showing the blue outline of the woman’s cloth; Janela das persianas azuis, 

showing the blue outline of the roof; and (c) Rapariga deitada no tronco de uma árvore, showing 

the brown outline to adjust the tree log dimensions. Photo: LCRJF. 

 

The unfinished state of Mulher da água makes it possible to see that a grey-black wash 

(water-based of carbon black) was applied to the reserve areas, as is the case of the earthen 

pot seen in detail in Figure 8.6. 

(b) 
(a) 

(a) (b) 

(c) (d) 

(b) 
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Figure 8.6 Detail of the painting Mulher da água, showing the reserve for the earthen pot done with a 

grey-black wash. Photo: LCRJF. 

 

Another particular detail is the existence of a black pencil line dividing the areas of the sky 

and the sea in Paisagem de Anacapri (Figure 8.7), which was drawn after the tree 

vegetation was painted. 

 

 
Figure 8.7 Detail of the painting Paisagem de Anacapri, showing the black pencil line drawn over the 

paint layer. Photo: LCRJF. 

 

8.2.3 Paint structure 

In general, paint layers were applied after the ground layer had dried. However, in a few 

cases, the ground layer was not completely dry and some pigment particles appeared 

dispersed through the ground layer. In the same way, an organized and clear division 

between the paint layers is normally present, indicating that the complex colour blending of 

each layer was done on the palette before being applied in the painting, and that subsequent 

adjustments to the composition were done after the lower layer had dried. However, wet-in-

wet work, blending or half blending the colours on the canvas was also identified, especially 

in the vegetation and ground areas, such as in foreground - left side of Casas brancas de 

Capri (Figure 8.8) and in the small figures. 

Regarding the number of layers, it varies significantly, even across a single painting (1 to 

10). For example, in the painting Cecília, while the blue of the skirt is made of a single blue 

layer (I5, Figure D50), the black of the pedestal is made of six layers with very different hues 

(Figure 8.9). This sample exhibits one of the cases where an underpaint with a contrasting 

colour, is used in order to modify the precise hue of the final layer. Other examples of sample 

presenting an underpaint with a contrasting colour are samples I7 and K6 (Figures D52 and 
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D63). As what concerns the paint layer thickness, layers ranging from 4 to 358 µm were 

identified. 

 

 
Figure 8.8 Cross section of sample H2 viewed under reflected light: the dark green layers 1, 3 and 5 

are composed by emerald green, Scheele’s green, lead white, chrome yellow, mercuryII sulfide and 

carbon-based black, the light green layers 2, 4 and 7 are composed by chrome green, emerald green, 

zinc yellow, lead white and mercuryII sulfide, and the brown layer 6 is composed by chrome yellow, 

emerald green and maybe cadmium yellow. 

 

 
Figure 8.9 Cross section of sample I1 viewed under reflected light: the white ground layer 1 is 

composed by lead white (extended with barium sulfate), the pink layer 2 is composed by lead white 

(with lead carbonate), mercuryII sulfide, ironIII oxide, cochineal lake, ultramarine blue and carbon-

based black, the brown layer 3 is composed by ironIII oxide, mercuryII sulfide, chrome orange, 

ultramarine and viridian, the green layer 4 is composed by celadonite, mercuryII sulfide, lead 

antimonate yellow (with basic lead sufate) and carbon-based black, the pink layer 5 is composed by 

mercuryII sulfide, cochineal lake, lead white, ironIII oxyhydroxide, ultramarine blue and carbon-based 

black; the black layer 6 is composed by ultramarine blue, chrome yellow, vermilion, ironIII oxyhydroxide 

and carbon-based black. 

 

8.2.4 Palette 

In accordance with the results of the sample’s analysis presented in the previous 

chapters, 26 pigments were identified in the paint layers, distributed by painting as shown in 

Table 8.3. As summarized in this table, it seems that Pousão’s selection of pigments is more 

or less fixed, not varying with of the type support (wood panel or canvas) or the painting 

period. Generally, each painting has a large number of yellows and orange pigments, three 

reds and two/three blues pigments. 

Also important is the fact that Pousão made a great use of the 19th century pigments, 

especially of the yellow chromates, the cobalt-based blue pigments, ultramarine blue and 

100 µm 

100 µm
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viridian. The use of individual pigments, including some very brief remarks on their historical 

background is described in more detail below. 

 

Often, pigments exist both in natural as in a synthetic form. Some natural forms were and 

still are economical viable, such as ochres, green earths, etc., while others were replaced by 

cheapest synthetic forms, such as ultramarine blue that replaced lazurite.  

Unfortunately, due to the enormous complexity of the samples under analysis and to the 

fact that Infrared and Raman spectroscopies and X-ray diffraction exhibit the same 

spectrum/diffractogram for both the natural and the synthetic forms, it is almost impossible to 

ascertain which form was used. Being so, compounds will be referred to by some of their 

most common/commercial names. 

 

White pigments 

Clearly lead white/basic lead carbonate (2PbCO3.Pb(OH)2) is the most important 

pigment of Pousão’s palette, being present in every painting and in almost every layer. In 

some paintings it was identified associated with lead carbonate/cerussite (PbCO3), which is 

probably due to the synthesis process of lead white, which basically consists in the corrosion 

of a sheet of metallic lead to exposition to acetic acid (vinegar) vapour in the presence of 

carbon dioxide, where it can be a product (315,439-441). Hydrocerussite, the natural form of lead 

white is a relatively rare mineral, while cerussite, the natural form of lead carbonate is very 

abundant. However, there is no record of their use as white pigments (315). 

Zinc white/zinc oxide (ZnO) has been used as a white pigment since its introduction in 

the 18th century, when considerable concern about lead poisoning arose, and a substitute 

for lead white was looked for (90). However, due to its relatively poor hiding power, poor dry 

ability and high cost, was not extensively used as an artist’ pigment, prior to the second 

quarter of the nineteenth century, when improvements were made (85,442). Zinc white was 

identified in conjunction with a great concentration of lead white in two paintings. Apparently 

there is no reason for Pousão to have mixed these two white pigments, but it is known that 

manufacturer used zinc white as lightening agent of various pigments (85,90). 
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Table 8.3 Pousão’s palette 

 
A - Casa rústica de Campanhã, B - O mendigo Lapita, C - Paisagem - Abertura da Rua Alexandre Herculano, D - Jardim de 

Luxemburgo (estudo), E - Aldeia de St. Sauves, F - Paisagem de St. Sauves, G - Cansada (Cachopa de Capri), H - Casas 

brancas de Capri, I - Cecília, J - Escadas de um pardieiro - Roma, K - Esperando o sucesso, l - Fachada de casa soterrada - 

Roma, M - Miragem de Nápoles, N - Portão, O - Rapariga de Anacapri, P - Rua de Roma, Q - Senhora vestida de preto,  

R - Janela das persianas azuis, S - Mulher da água, T - Paisagem de Anacapri, U - Rapariga deitada no tronco de uma árvore, 

V - Cais de Barcelona and W - Flores Campestres. 

? Propable identification 

 

 

Compounds A B C D E F G H I J K L M N O P Q R S T U V W

White
Lead white • • • • • • • • • • • • • • • • • • • • • • •

Zinc white • ? • • ? ?

Yellow and orange
Cadmium yellow ? • ? ? • • • • • • • •

Chrome orange • • • • • • • • • • • • • • • ? •

Chrome yellow • • • • • • • • • • • • • • • • ? •

IronIII oxyhydroxide • • • • • • • • • • • • • •

Lead antimonate yellow • • • ? • • • • •

Strontium yellow • • • • • •

Zinc yellow • • • • • • • • • •

Red and brown
Cochineal lake • • • • • • • • • • • • • • • • • • •

IronIII oxide • • • • • • • • • • • • • • • • • • • •

Madder lake • •

MercuryII sulfide • • • • • • • • • • • • • • • • • • • • • •

Realgar/parealgar • • • •

Green
Celadonite • • •

Chrome green • • • •

Emerald green • • • • • •

Malachite •

Scheele's green • •

Viridian • • • • • • • •

Blue
Cerulean blue • • • •

Cobalt blue • • • • • • • • • ? • • • • • • ?

Prussian blue • • • • • • • • • • • • • •

Ultramarine blue • • • • • • • • • • • • • • • • • •

Black
Bone/ivory black ? • • • • ? •

Carbon-based black • • • • • • • • • • • • • • • • • • • • • • •

Paintings
Earlier French Italian Final
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Yellow and orange pigments 

Seven yellow to orange pigments were identified: chrome yellow, chrome orange, 

strontium yellow, zinc yellow, cadmium yellow, ironIII oxyhydroxide and lead antimonate 

yellow. The existence of a relatively large number of yellows in a palette is not unusual, since 

it is very difficult to modify its colour by mixing it with other pigments (except for lightening 

with the addition of a white pigment) (438). 

Strontium yellow (SrCrO4), zinc yellow (approximately K2O.4ZnCrO4.3H2O), and 

especially, chrome yellow (PbCrO4) and chrome orange (PbCrO4. PbO) are presented in a 

large number of samples. Although chromate pigments were known for their tendency to 

darken, because they presented a good covering power and an economical price, they were 

popular pigments until the 1990’s (434). Chrome orange, the first pure, intense and opaque 

orange pigment to become available to painters (90)was significantly used by Pousão, like, for 

example, in Casa rústica de Campanhã (Figure 8.10). 

Cadmium yellow/cadmium sulfide (CdS), a rarely available and highly cost pigment 

(four times the price of the chromes (438)), was identified in green, brown and even blue 

layers, but not in the yellow ones. Although cadmium yellow has two mineral equivalents, the 

commoner greenockite and hawleyite, there is no evidence that they were ever used as a 

pigment (85). The commercialization of this pigment in large scale started in 1840-1850 and 

two principal types of the pigment did exist: the pure form and the lithopone variety that 

consists in the precipitation of CdS with barium sulfate. There is no signal of the existence of 

the lithopone variety in the paintings. 

 

 
Figure 8.10 Cross section of sample A3 viewed under reflected light: the white ground layer 1 is 

composed by lead white with carbon-based black and ultramarine blue; the brown layer 2 is composed 

by lead white, mercuryII sulfide and chrome yellow, the blue layer 3 is composed by lead white, cobalt 

blue, ironIII oxide and cochineal lake, and the orange layer 4 is composed by chrome orange, chrome 

yellow, ironIII oxide, lead white and carbon-based black. 

 

IronIII oxyhydroxide/goethite/Mars yellow (α-FeOOH), ranging in colour from yellow to 

brownish, was identified in layers of all hues, but it seems that it was in the samples removed 

from the brown areas that it was more important. In the 19th century, both the natural and the 
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synthetic forms of iron oxides, designed as Mars colours, were available, but the 

simultaneous identification of natural compounds such as kaolin, quartz and calcium 

carbonate - calcite form in the same layers, suggest that the natural form was used. 

 

Lead antimonate yellow (approximately Pb2Sb2O7), a pigment that had been lost and 

rediscovered several times (342) was identified on nine paintings. Associated with this pigment 

were identified basic lead sulfate/lanarkite (PbO.PbSO4), lead sulfate/anglesite (PbSO4), 

rosiaite (PbSb2O6) and cervantite (Sb2O4). Although basic lead sulfate has been used as a 

white pigment since 187092 (12,85,337) and lead sulfate was sold in bottles until 1830, under the 

name Flemish white (85,315,443), it seems that these compounds were not used intently to be 

white pigments, but are rather present as extenders, or as by-products of the synthesis of 

lead antimonate yellow (441), rosiaite and cervantite (rarely identified) are known by-products 

of the synthesis of lead antimonate yellow (343). There is no evidence that bindheimite, the 

natural form of this pigment was ever used as an artists’ pigment (342). 

 

Red and brownish pigments 

Six red and brownish pigments were identified: mercuryII sulfide, ironIII oxide, cochineal 

lake, madder lake, realgar and χ-phase/pararealgar. 

MercuryII sufide/vermilion/cinnabar (HgS), ironIII oxide/hematite/Mars red (α-Fe2O3) 

and cochineal lake are very common pigments in the samples, either to warm layers of any 

colour or to produce orange, pink, red and brown layers. 

During the 19th century, both cinnabar (the natural form of mercuryII sulfide), used as a 

pigment since ancient times, and vermilion (the synthetic form of mercuryII sulfide), known 

since the 8th century (444), were available from French colour suppliers at about the same price 

(90) so, either one or both forms could have been used by Pousão. In the same way, both the 

natural (hematite) and the synthetic forms (Mars red) of ironIII oxide were available, and could 

have been used. However, as also referred for ironIII oxyhydroxide/goethite, the simultaneous 

identification of natural compounds such as kaolin, quartz, gypsum and calcium carbonate - 

calcite form, which normally occur associated with the mineral form, suggest that the natural 

form, hematite, was the used. 

Cochineal lake is largely the most important of the lake pigments used by Pousão, while 

madder lake was identified only in two paintings. Due to their intensity of hue and colour 

saturation, traditional lake pigments were an important part of the painters’ palette (438). And 

by the 19th century, cochineal and madder pigments became the preferred artists’ lake 

                                                
92 Under different names, e.g. white lead (basic sulfate), white lead (sulfate, sublimed white lead and Maxwell Lyte 
lead white). 
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pigment, while lac and kermes are barely mentioned (136,445), so its preference in detriment of 

the other lake pigments is understandable. 

Realgar (α-As4S4) and χ-phase/pararealgar were identified in five samples (D2, G4, H1, 

H8, W5), but only in the sample H1 (Figure 8.11), removed from the brown ground in the 

bottom of the painting Casas brancas de Capri, it was a major pigment. 

 

 

Figure 8.11 Cross section of sample H1 viewed under reflected light: the white layer 1 is composed by 

lead white, realgar, ironIII oxide, cadmium yellow and carbon based black; the brown layer 2 is 

composed by ironIII oxide, mercuryII sulfide and carbon-based black and the brown layer 3 is 

composed by lead white, mercuryII sulfide, ironIII oxide, cadmium yellow and carbon-based black. 

 

Blue pigments 

Four blue pigments are present in the samples: cerulean blue, cobalt blue, Prussian blue 

and ultramarine blue. 

Cobalt blue (CoAl2O4), characterized for a pure blue hue, a highly stability and the ability 

of accelerating the drying of the oil medium, can be considered a very important pigment in 

Pousão’s palette, as it was chosen to provide colour to the sky (Figure 8.12) and sea in most 

of the paintings. 

Cerulean blue (CoO.nSnO2), whose hue is slightly greenish that cobalt blue was 

identified in four paintings, most of the times together with cobalt blue (90). These two cobalt-

based pigments are the most expensive of the four blue pigments (90,321). 

Although Prussian blue (Fe4[Fe(CN)6]3.14-16H2O), a synthetic pigment introduced in the 

early 1700s (85), is present in a large number of paintings, only in a few of the samples under 

analysis was it the pigment providing the blue hue to the layers. It was generally used to 

warm some beige and brown layers, or mixed with yellow pigments to provide a green hue. 

In a similar way, there were only few where Ultramarine blue (Na8[Al6Si6O24]Sn), the 

synthetic equivalent of the mineral lazurite, was responsible for the colour of the blue layers. 

Two of these samples were removed from sky, and a third from the sea.  

The current study does not allow the distinction between the natural form of this pigment, 

lazurite and its synthetic equivalent, ultramarine blue, synthesised on a large scale since 

1828 (381,446). Nevertheless, since lazurite was and still is, much more expensive than 
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ultramarine blue, and this pigment was used most of the times, to warm other hues, the 

synthetic form is probably the one that is present. 

 

 
Figure 8.12 Cross section of sample M2 viewed under reflected light: the white ground layer 1 is 

composed by lead white and carbon-based black and the blue layer 2 is composed by cobalt blue and 

lead white. 

 

Purple pigments 

None of the purple pigments introduced during the 19th century, such as cobalt violet 

(either Mg2Co(AsO4)2 or Co3(PO4)2) or manganese violet ((NH4)2Mn2(P2O7)2)
 (85), were 

identified in any painting. Instead, mixtures of inorganic blue pigments with organic reds were 

identified in the purple coloured layers. For example, in the sample T4 from Paisagem de 

Anacapri (Figure 8.13), the purple layer 2 was obtained mixing cobalt blue with cochineal 

lake, while the purple layer 3 was obtained mixing cochineal lake with ultramarine blue. In 

sample W5 (Figure D148) from Flores campestres, the purple particles present in the green 

layer 2 were identified as a mixture of Prussian blue with madder lake. 

 

 
Figure 8.13 Cross section of sample T4 viewed under reflected light: the white ground layer 1 is 

composed by lead white (extended with barium sulfate), ironIII oxide and carbon-based black; the 

purple layer 2 is composed by lead white, cobalt blue, cochineal lake, mercuryII sulfide and carbon-

based black, the brown layer 3 is composed by ultramarine blue, cochineal lake, zinc yellow, lead 

white and carbon-based black and the blue layer 4 is composed by ultramarine blue, lead white, zinc 

yellow, mercuryII sulfide and carbon-based black. 
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Green pigments 

Six green pigments were identified: celadonite, chrome green, emerald green, malaquite 

and viridian. Green paint mixtures, such as ultramarine blue with chrome yellow and 

Prussian blue with cadmium yellow seems to also exist. 

Viridian and emerald green are apparently the most common single green pigments 

used for the green areas, viridian for deep shades and emerald green for light shades, being 

the simultaneous presence of both also very common. Viridian, a bluish-green transparent 

pigment, firstly manufactured in 1838 by Pannetier and patented by Guignet in 1859, was 

almost twice as expensive as emerald green what apparently did not constitute a problem for 

Pousão (447). Emerald green (Cu(CH3COO)2.3Cu(AsO2)2), a blue-green shining colour, was 

firstly synthesized in 1814 when trying to improve Scheele’s green (CuHAsO3), a very 

popular green pigment at the time (85,447). Scheele’s green was identified in two of the 

paintings, in a low amount and associated with emerald green, being probably an impurity of 

emerald green. Due to their high toxicity, emerald green and Scheele’s green were removed 

from the artists’ palette in the 1960’s (228). 

Celadonite (approximately K(Mg,Fe2+)(Fe3+,Al)[Si4O10](OH)2), a less abundant and 

relatively expensive mineral used for green earth pigments was identified in the paintings 

Aldeia de St. Sauves, Cecília e Flores Campestres, normally mixed with other green 

pigments. Figure 8.14 shows the cross section of the sample E7 removed from the tree leafs 

of Aldeia de St. Sauves, whose green shade is provided by celadonite and viridian. 

 

 
Figure 8.14 Cross section of sample E7 viewed under reflected light: the white ground layer 1 by lead 

white and zinc yellow, the blue layer 2 is composed by cobalt blue, zinc yellow, cochineal lake and 

carbon-based black and the green layer 3 is composed by celadonite, viridian, lead white (with lead 

carbonate), chrome yellow, chrome orange and Prussian blue. 

 

Malachite (Cu2CO3(OH)2) was identified in a single sample, H8, which was removed from 

the dark green hue of the cactus in the lower left corner of the painting Casas brancas de 

Capri. Associated with malachite was identified brochantite (Cu4(OH)6(SO4)). 

Chrome green, a mixture of Prussian blue with chrome yellow that could have been 

bought already prepared under the name Brunswick was identified in the paintings Casas 

100 µm 

1

2 

3 



247 

Brancas de Capri, Mulher da água, Rapariga deitada no tronco de uma árvore and 

Flores Campestres. 

Other green paint mixtures were also identified; namely ultramarine blue with chrome 

yellow, which provided the green hue of the green layers of sample C2 (Figure D11) (no 

green pigment was identified), and Prussian blue with cadmium yellow, which was used to 

achieve the light green hue of the green layers 2 and 4 of sample F6 (Figure D32) and the 

green hue of the green layers of sample U13 (Figure D138). 

 

Black pigments 

Carbon-based black pigments are common in Pousão paintings and in very dark layers. 

For example, in layer 2 of sample G4 from Cansada (Cachopa de Capri) (Figure 8.15) the 

carbon-based black pigment was identified as bone/ivory black, a pigment produced by 

calcination of bones and/or ivory. Unfortunately, in layers with a reduced number of carbon-

based black particles, it was not possible to distinguish between bone/ivory black and 

vegetable carbon-based black. 

 

 
Figure 8.15 Cross section of sample G4 viewed under reflected light: the white ground layer 1 is 

composed by lead white (extended with barium sulfate) and the brown layer 2 is composed by 

bone/ivory black, ironIII oxide, mercuryII sulfide, realgar and χ-phase/pararealgar, cadmium yellow, 

cobalt blue and lead white. 

 

8.2.5 Main painting elements 

Based on the pigment identification (Table 8.3) it is possible to systematize the build-up 

method of each particular element of the composition as presented bellow: 

 

Sky 

Sky was generally executed applying over the ground layer, a single blue layer, as in Casa 

Rústica, Paisagem - Abertura da Rua Alexandre Herculano, Casas Brancas de Capri, 

Portão, Mulher da água, Paisagem de Anacapri and Cais de Barcelona, or two blue 

layers, as in Aldeia St. Sauves, Paisagem St. Sauves, Rua de Roma. Except for the 

paintings Mulher da água and Paisagem de Anacapri, where ultramarine blue and lead 
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white are the main components, a mixture mainly composed by cobalt blue and lead white is 

responsible for the layer colour. Figure 8.16 shows the cross section of the sample C1, 

removed from the sky of Paisagem - Abertura da Rua Alexandre Herculano. 

 

 
Figure 8.16 Cross section of sample C1 viewed under reflected light: the white ground layers 1 and 2 

are composed by lead white (with lead carbonate and extended with calcium carbonate - calcite form, 

ironIII oxide and carbon-based black and the blue layer 3 is composed by lead white (with lead 

carbonate), cobalt blue and carbon-based black. 

 

Sea (water) 

Only three93 samples from sea (water) areas were analysed, namely H5 from Casas 

brancas de Capri, M2 from Miragem de Nápoles and V1 from Cais de Barcelona. In the 

two wood panel paintings (Miragem de Nápoles and Cais de Barcelona) a single blue layer 

is present, mainly composed by lead white and cobalt blue in M2 and lead white, ultramarine 

blue and emerald green in V1. In the sample from the canvas painting, H5 (Figure 8.17), a 

more complex structure, consisting of five well defined blue layers, mainly composed by lead 

white and cobalt blue, is present. 

 

 
Figure 8.17 Cross section of sample H5 viewed under reflected light: the white ground layer is 

composed by lead white (extended with barium sulfate) and carbon-based black, the blue layer 2 is 

composed by lead white and cobalt blue, the blue layer 3 is composed by lead white, cobalt blue and 

mercuryII sulfide, the blue layer 4 is composed by lead white and cobalt blue and the white layer 5 is 

composed by lead white. 

 

 

                                                
93 The sample removed from the sea of Paisagem de Anacapri proved to come from a restoration area. 

100 µm

100 µm 

1

2 

3

1

2

3

4
5



249 

Other blue elements/areas 

The blue of the wall in Estátua do Jardim de Luxemburgo (sample D2) and Janela das 

persianas azuis (samples R2 and R3) are mainly composed by cobalt blue and lead white. 

The bluish-green of the chair in Cecília (sample I3) and the background of Rapariga de 

Anacapri (sample O1) is mainly composed by cerulean blue with lead white and the bluish-

grey background of Senhora vestida de preto (sample Q6) is a mixture of lead white, cobalt 

blue, mercuryII sulfide, ironIII oxyhydroxide, lead antimonate yellow and carbon-based black. 

 

Vegetation 

Foliage of the trees, cactus and ground vegetation are very complex and composed by 

variable pigment mixtures in which the green hue is normally obtained by the simultaneous 

use of more than one type of green pigment and/or green mixture. 

Of particular interest is the fact that, in contrast to what would be expect, the dark hue of 

the cactus, in the lower left corner of Casas brancas de Capri (layers 4 and 5 of sample 

H8), was not merely built with a darker shade (obtained adding dark pigments) of the 

adjacent light colour (layer 2 of sample H7), nor applying a dark layer over the lightest one. 

Instead, the dark hue was built up in a applying two darker green layers with a more complex 

pigment mixture suggesting that, for Pousão, different shades meant different colours (Figure 

8.18a and b). 

 

..  

Figure 8.18 (a) Cross section of the sample H7 viewed under reflected light: the white ground layer 1 

is composed by lead white (extended with barium sulfate) and carbon-based black and the green layer 

2 is composed by lead white, emerald green, chrome yellow, zinc yellow and cochineal lake; (b) Cross 

section of the sample H8 viewed under reflected light: the white ground layer 1 is composed by lead 

white (extended with barium white) and carbon-based black, the brown layer 2 is composed by 

carbon-based black, the light green layer 3 is composed by ultramarine blue, chrome yellow, zinc 

yellow and carbon-based black, the green layer 4 is composed by malachite (with brochantite), 

emerald green, viridian, realgar, mercuryII sulfide and zinc yellow and the green layer 5 is composed 

by emerald green, viridian, malachite, lead white, chrome yellow, zinc yellow, realgar, vermilion, cobalt 

blue and carbon-based black. 
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Flesh areas 

Because only two samples from flesh areas were analysed, namely sample I6, from the 

hand of Cecília and sample S6, from the hand of Mulher da água, and further, Mulher da 

água is an unfinished painting, is very difficult to draw any conclusion regarding the flesh 

tone. 

 

8.2.6 Binder 

Due to the high complexity of the samples and to the intrinsic limitations of the analytical 

technique, µ-IR, although the binder was identified as a drying oil, it was not possible to 

specify which drying oil(s) was/were used. However, thanks to a parallel study carried out at 

LCRJF, in which the samples were analysed by gas chromatography combined with mass 

spectrometry (GC/MS)94, it was possible to conclude that linseed oil is present in the dark 

areas and ground layers, while walnut oil, which yellows less (72,448), is present in the lighter 

areas such as in the sky. 

These results might suggest a careful selection of the drying oil by Pousão and his 

concern regarding the discoloration of the painting. However, since from 1860 on, nearly all 

the artists used tube paint (which already contain oil and even driers) due to their 

convenience and easy acquisition, painters were no longer to absolutely choose the oil to 

paint with95 (74), hence, it was difficult to attribute the choice of the oil medium to Pousão. 

 

8.2.7 Extenders, associated compounds/impurities and degradation 

compounds 

Extenders and associated compounds/impurities are not generally included in the 

painter’s palette, since they were not intentionally used as colouring materials. However, 

these compounds may indicate unique manufacturers or particular geographic areas of 

mineral compounds, being in fact closely linked to the palette. Therefore, it was decided to 

include in this chapter the extenders, the associated compounds/impurities and even the 

degradation compounds identified in the samples under analysis (Table 7.4) and some brief 

remarks on their origin and historical background. 

Unfortunately, due to the high complexity of the samples, it was very difficult to relate any 

of such compounds to a specific pigment, except for degradation compounds. 

 

 

                                                
94 Unpublished. 
95 Oil and/or diluents were added to paints during painting. 
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Extenders 

Calcium carbonate – calcite form (CaCO3), the most common mineral form of calcium 

carbonate96, has been used as an extender since early medieval times (235), while barium 

sulfate (BaSO4) came into significant use as an extender only in the beginning of the 19th 

century (both in the synthetic as in the natural forms) (284). 

 

Associated compounds/impurities 

Kaolin (Al2[Si2O5](OH)4), gypsum (CaSO4.2H2O) and quartz (SiO2) are compounds 

commonly associated with earth pigments such as iron oxides, which can contain a relatively 

low percentage of the colouring compound and a high percentage of clay silica and feldspar 

minerals. Quartz is very abundant in Earth’s surface while kaolin commonly occurs with 

goethite (338). However, kaolin was also extensively employed as an extender, for example, of 

chrome green and chrome yellow (90). 

Anatase, rutile and brookite, the three polymorphic forms of titaniumIV dioxide (TiO2), 

which were identified only as trace compounds, are most probably also associated to the 

presence of mineral compounds. 

Brochantite (Cu4(OH)6SO4) was identified in the same sample were basic copperII 

carbonate was identified, indicating that malachite is the form that is present. 

Lead carbonate (PbCO3), known geologically as cerussite, was identified in most part of 

the paintings. Although this white compound, both in the synthetic and mineral form, has 

been used as a pigment (85), it is probably present in the painting’s samples as a by-product 

of the lead white, since it is known that it is formed during the process of converting metallic 

lead into lead white (315,449). 

Tetragonal leadIV oxide, also known as plattnerite was identified in three paintings. 

However, its identification is uncertain since it was based in the supposition that it was laser 

degradated during analysis, producing leadII oxide (known as massicot) a yellow pigment. 

This compound occurs naturally in lead ores and is formed by alteration of other lead based 

compounds (85). Its presence might be associated to lead white. 

LeadII,IV oxide (Pb3O4) was identified as a single grain in only two samples (C4 and T4), 

suggesting that it is present as an impurity. In fact, although its mineral form, minium, has 

been used since antiquity, this pigment was not very popular during the 19th century (450). 

Lead sulfate (PbSO4), basic lead sulfate (PbSO4.PbO), rosiaite (PbSb2O6) and 

cervantite (Sb2O4) are most probably present in the painting’s samples as by-products of the 

                                                
96 Aragonite and vaterite are two less common polymorphic forms of calcium carbonate.
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synthesis of lead antimonate yellow. In fact, most of the times, they were identified in 

association with that yellow pigment. 

Cobalt oxide (Co3O4) was identified in only one sample H7. This grey/black compound 

that except for one report (324), seems to have never been used as an artistic pigment, is 

probably present as an impurity. 

 

Degradation compounds 

CopperII sulfide (CuS), which was identified in samples S1 and T1 seems to result from 

the reaction between ultramarine blue (sulfur-containing pigment) and emerald green 

(copper-containing pigment) (228,395). Although the analogue mineral of this compound, 

covellite, has been known since 1832 (393), there is only one recent report of its use as a 

pigment  (394). 

 

8.2.8 Surface texture 

In terms of brushwork, generally the wood panel paintings present a larger use of texture 

than the canvas. Wood panels were worked mainly with thick impastoed brushstrokes, 

painted sketchily, with the end of the brush (to draw in the wet paint), a spatula and even 

fingers. An example is shown in a detail of O mendigo Lapita (B) presented in Figure 8.19a. 

 

..  

Figure 8.19 Detail of the painting: (a) O mendigo lapita and (b) Cansada (Cachopa de Capri). 

Photo: LCRJF. 

 

Canvas paintings texture shows a correlation with the type of work. Portraits, such as 

Cecília (I), Esperando o sucesso (K) and Cansada (cachopa de Capri) (G) (Figure 8.19b) 

were executed with almost invisible brushstrokes and with such a minute rendering that they 

are almost photographic in appearance, while landscape paintings present, both smooth and 

(a) (b) 
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textured areas. Smooth surfaces are present in the sky, sea, architectural elements and even 

some vegetation elements, while more or less impastoed brushstrokes are present in the 

large ground and vegetation areas, such as the foreground of Aldeia de St. Sauves, 

Paisagem de St. Sauves and Casas brancas de Capri (left side). Small personages were 

generally also sketched in impastoed brushstrokes (Figure 8.20). 

 

 
Figure 8.20 Detail of the painting Casas brancas de Capri. Photo: LCRJF. 

 

8.2.9 Alterations to the original composition 

The examination of the paintings and cross sections suggests that no significant alteration 

to the original composition were made. This was confirmed by the X-radiography analysis 

done in some of the paintings. However, an intriguing area is seen in the painting Paisagem 

- Abertura da Rua Alexandre Herculano (Figure 8.21) below the muzzle of the ox (inside 

the red box), where there are apparently visible reserved areas for the eyes and mouth of the 

ox. Although the observed pattern inside the red box can be simply a coincidence, it can also 

be a result of a change in the ox position, since with the aging of the binding medium, 

transparency of the paint layers increases and often alterations to composition become 

visible. Unfortunately, there are no X-radiographies of this painting, hence it is not possible to 

check if the position of the ox was ever changed. 

 

 
Figure 8.21 Detail of the painting Paisagem - Abertura da Rua Alexandre Herculano. Photo: 

LCRJF. 
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In the painting Aldeia de St. Sauves, a drying crack pattern, not seen in any other 

painting, is present in the green of the tree leaves (Figure 8.22). This usually occurs when 

the underlying paint is still wet while the surface paint had dried, or when a large amount of 

binding medium and a low concentration of pigments are used. Looking at the cross section 

of the sample E7 (Figure 8.14), which was removed from this area, it seems that the blue 

layer was already dried when the green was applied (well defined layers) indicating that the 

drying crack pattern was produced by a relatively large amount of binding medium. 

 

 
Figure 8.22 Detail of the painting Aldeia de St. Sauves, showing the cracking pattern of the tree 

foliage. Photo: LCRJF. 

 

 

8.3 Conservation state assessment of the paintings 

A work is only capable of expressing its message when its physical existence is assured. 

Consequently, paintings were checked for signs of deterioration and the results of the 

analysis of the paintings’ materials discussed in terms of their potential impact on the 

condition and appearance of the paintings. 

 

Lead carboxylate (soaps) and protrusions 

Metal carboxylates (or metals soaps) were identified in most of the samples (chapter 6), 

mainly as a result of the reaction between the oil binding medium and lead white. Even 

though, metal carboxylate salts can contribute to durability of the oil paints, it is known that 

they can agglomerate into lumps (or inclusions) and, in a further stage, form protrusions in 

the paint surface (73,285,296). 

A careful visual examination of the painting surface and the examination of the cross-

sections by OM and SEM did not show any signal of the formation of inclusions and/or 

protrusions. Instead, metal carboxylates seem to be uniformly distributed through the layers, 

as normally found for mature aged oil medium (36,285). 
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It has been proved that the formation of the agglomerates is normally associated not to 

lead white but to other lead-based pigments such as lead-tin yellows or red lead, which were 

not identified97. However, as the film ages, the formation of inclusions in samples where lead 

soaps are uniformly distributed can be favourable (296). Variable relative humidity conditions or 

introduction of water during restoration treatments can be enough for inclusion formation 

since moisture is thought to play an important role in this process (449,451). 

Another fact of concern is the presence of lead antimonate yellow in some of the samples, 

a lead-based pigment for which, up to date, there is no study regarding the possible 

formation of protrusions. A continuous observation of the painting surface in all the paintings 

is desirable in order to detect and control this process. 

 

Darkening/fading of the pigments and incompatibilities  

Darkening/fading of the pigments and incompatibilities among them were verified to assess 

possible contributions to past and future change in appearance of the paintings. Significant 

changes in colour in the past, due to pigment alteration are not noticeable and future 

alterations are not likely since incompatibilities were not identified. For example, although 

lead compounds are known to be unstable in proximity to sulfide pigments, such as mercuryII 

sulfide or realgar, forming leadII sulfide/galena (PbS) and to atmospheric pollutants, forming 

by oxidation leadIV oxide/plattnerite (PbO2)
 (362,363,452), no signal of such alterations of lead 

white was observed; significant change in colour of the yellow chromate pigments, known by 

their instability to light, was not evident; cadmium yellow (CdS), known to be incompatible 

with lead and copper based pigments (especially with emerald green), leading to 

discoloration by the formation of copper and lead sulfides (85), has apparently suffered no 

alteration. Copper sulfide was, in fact, identified in two samples, not of as an alteration of 

cadmium yellow, but rather, as result of an alteration of emerald green by reaction with 

ultramarine blue. Nevertheless, because copper sulfide is present in such a low amount, no 

colour change was produced due to its formation. 

The impact of the increased transparency of the paint with time, apparently, is not a 

significant issue, since paint layers contain a little amount of medium and are often applied 

thickly. 

 

 

 

 

                                                
97 At least lead-tin yellow was not identified and red lead was identified only as an impurity. 
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8.4 Conclusions 

The examination of the paintings under study and the analysis of their samples by six 

analytical techniques allowed a closer insight into Pousão’s palette and technique. Special 

features, such as the materials and the way the paintings evolved, were identified. 

As regards the support, the wood panel paintings (half of the number of the paintings 

under study) are, generally, smaller than the canvas paintings. The fact that some of the 

paintings have similar dimensions suggests that they share the same source. For instance, 

the paintings Jardim de Luxemburgo (estudo), Fachada de casa soterrada - Roma, 

Miragem de Nápoles, Rua de Roma and Cais de Barcelona, all of them with similar 

dimensions (about 16.5 x 10 cm), seem to have been prepared cutting in half a wood panel 

with similar dimensions to the painting Escadas de um pardieiro - Roma (16.0 x 22.2 cm). 

The ground layer(s) are, in general, composed by lead white in oil medium. A pure white 

lead grade in wood panel paintings and a grade extended with barium sulfate, calcium 

carbonate-calcite form, or both in the case of canvas paintings, are present. Exceptions are 

the paintings Jardim de Luxemburgo (estudo) and Senhora vestida de preto, two wood 

panel paintings with no ground layer, and Paisagem de St. Sauves, a canvas painting with a 

ground layer constituted by calcium carbonate-calcite form in oil medium and an imprimitura 

constituted by lead white in oil medium. 

The fact that no stamps or marks from the supplier were visible in any of the paintings, 

made it difficult to establish whether these were bought ready-primed or were primed by 

Pousão. However, the fact that wood panels present a pure grade of lead white in the ground 

layer suggests that these were primed by Pousão. Commercial ready-primed supports 

normally presented ground layers of lead white extended with other white 

pigments/extenders, such as kaolin, barium sulfate and calcium carbonate - calcite form. 

 

As far as the paint layers and the artist’s technique are concerned the following 

conclusions can be drawn: i) the existence of underdrawing and outlining was detected, ii) 

the paint layers were executed in different ways, even across the same painting; while some 

were added after the previous one had already dried (major areas of sky and architecture of 

canvas paintings), others were painted wet-in-wet, blending, or half blending the colours 

(vegetation areas and small figures), iii) the paint layers vary significantly, both in number (1 

to 10) and thickness (4 to 358 µm), iv) each paint layer is generally composed by a very 

complex mixture of pigments. 

 

Pousão’s palette is composed by 26 pigments, distributed by painting as shown in Table 

8.3. Pousão was very fortunate to live through a period of great discovery and technical 
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development in artists’ pigments and he made fully use of it, using new pigments such as 

cobalt blue, chrome yellow and viridian. However, more traditional pigments, such as ochre 

pigments or bone/ivory black, were also used. 

Comparing the palette and technique used in the different periods of his life and in the 

canvas and wood panel supports, it appears that both of them did not differ significantly, 

making it difficult to define Pousão’s practices. However, comparing the dimensions and 

surface texture of the paintings, it seems that the paintings can be divided in two groups: i) 

refined paintings or refined paintings to be, all of them painted on canvas (except Aldeia de 

St. Sauves, which was painted on wood panel) and ii) sketches, all of them painted on wood 

panels (with the above mentioned exception). 

On observing all the paintings, it is clear that the canvas paintings were painted with a 

highest degree of care and finalization relatively to the wood panel paintings, which seem to 

have been painted more freely. It is worth noting that, being a student on a scholarship, 

Pousão had regularly to present paintings at the Academia Portuense de Belas Artes and 

that canvas paintings with a relatively smooth surface and high degree of ‘finish’ were 

favoured in the academic circles and exhibitions. In fact, some of these finished paintings, 

such as Cansada (Cachopa de Capri) and Casas brancas de Capri, have preparatory 

drawings and/or painted studies (20), indicating that a meticulous academic planning was 

present in the refined paintings. The canvas paintings Mulher da água, Portão, Rapariga 

de Anacapri, Paisagem de Anacapri, Rapariga deitada no tronco da árvore and Flores 

campestres are unfinished paintings, whose conclusion would most probably lead to the 

clear and finished degree of the other canvas paintings. The wood panel paintings generally 

present a sense of immediacy and spontaneity commonly associated with sketches or 

certain types of Impressionist works. 

 

Although the current study is so far the most complete one about Pousão’s palette, results 

cannot be generalized to the entire Pousão’s oeuvre, since, due to the good conservation 

state of the paintings, sampling was normally limited to the edges, hence it is uncertain 

whether the entire range of pigments has been identified. Furthermore, other important 

paintings by this painter have not been studied. 
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9 Final conclusions and suggestions 
for future work  

 

The beauty, mystery, joy, and inspired 

observation of the human spirit that paintings 

evoke result from a complex of intuitive and 

cognitive choices made by the artist. 

 

 

W. S. Taft and J. W. Mayer 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter summarizes the major conclusions of the current work, 

concerning either the samples or the employed analytical techniques 

and lines up some suggestions and guidelines for future work. 
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9.1 Final conclusions 

The research work described in this thesis has two main objectives: i) to establish 

Pousão’s palette – constructing a database for future comparison – and to access the 

conservation state of the paintings; ii) to evaluate the Raman microscopy (µ-R) efficiency for 

pigment identification in oil paintings’ cross sections and to compare it with the infrared 

microscopy (µ-R) efficiency for the same purpose. 

 

As to the first main objective, the following conclusions can be drawn. The examination 

and detailed analysis of 23 paintings by Henrique Pousão allowed to conclude that his 

palette (only taking the analysed paintings into account) is comprised by 26 pigments; no 

dyes were identified. Some of the pigments are more traditional pigments, namely ironIII 

oxide, ironIII oxyhydroxide, celadonite, malachite, lead antimonate yellow, bone/ivory black, 

carbon-based black, realgar/pararealgar, mercuryII sulfide, cochineal and madder lakes, lead 

white and Prussian blue, while others are 19th century pigments, namely cobalt blue, 

cerulean blue, ultramarine blue, chrome yellow, chrome orange, strontium yellow, zinc 

yellow, cadmium yellow, viridian, emerald green, Scheele’s green, chrome green and zinc 

white. 

The characterization of the paintings’ structure was also achieved. In general, paintings 

are characterized by presenting a lead white ground layer (with 3 exceptions), over which 

one paint layer, such as in sky areas and up to 10 paint layers, such as vegetation areas, 

were applied. Paint layers, with thickness ranging from 4 to 358 µm, were normally 

constituted by a complex mixture of pigments and were normally applied after the ground 

layer or previous paint layers had dried. 

Apparently, the paintings are in good state of conservation. They do not show ruptures, 

detachments or protrusions or any signal of pigment fading. However, as the painting Portão 

presents a relatively high amount of metal carboxylates (metal soaps) in some areas, 

continuous observation of this painting is recommended in order to control the possible 

formation of metal protrusions. 

 

As regards the second main objective of this thesis, µ-R proved to be, among the six used 

techniques (OM, µ-IR, µ-R, SEM/EDS, µ-XRD and FM), the most suitable technique for 

pigment identification on micro, complex, multi-layered samples. Attributes, such as high 

specificity and reproducibility, good sensitivity, high spectral (ca. 1 cm-1) and spatial (ca. 1 

µm) resolutions, relatively low cost, short acquisition time, and non-destructiveness, made µ-

R very successful for the referred purpose. 
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Like µ-R, µ-IR is highly specific and reproducible, offers good sensitivity, relatively low 

cost and short acquisition time. However, its lower spectral resolution (ca. 4 cm-1) makes the 

interpretation of spectra difficult and its lower spatial resolution (ca. 50 µm) makes it difficult 

to individual analyse each layer. Moreover, µ-IR has some other severe limitations: i) 

demanding and time-consuming preparation of thin sections, ii) the need of their 

compression in a diamond cell, which makes this technique destructive and iii) the cut-off of 

the detector (650 cm-1), which hampers the identification of most inorganic pigments, making 

it less suitable than µ-R for the above referred purpose. 

Nevertheless, for studies with different purposes, µ-IR can be very useful in identifying 

compounds for which µ-R presents difficulties, such as binding medium, varnish, 

aluminosilicates and clay materials. 

Optical microscopy (OM) is the basic and mandatory first approach for the 

characterization of cross sections, since a reasonable comprenhensive understanding of the 

painting structure is essential in order to derive the maximum information from the other 

analytical techniques that will be applied. By examinating the cross-sectioned samples under 

reflected visible light, it was possible to: i) identify the painting technique, ii) determine the 

number and thickness of layers, iii) determine the colour of the pigments, iv) reveal the 

existence of reworks (pentimenti), v) provide support to the evaluation of the conservation 

state of the paintings and vi) identify possible unrepresentative samples, such as those 

removed from restoration areas. 

Fluorescence microscopy (FM), like OM, is valuable for the characterization of the 

sample structure. Because varnishes layers are fluorescent under UV, this technique can be 

use to reveal reworks and conservation interventions. Moreover, since some pigments are 

also fluorescent under UV light, this technique can may be used as a first, fast and 

inexpensive approach for pigment identification, in particular of zinc white and lake pigments. 

The elemental analytical technique, SEM-EDS, is valuable for clarifying particular 

questions relative to elemental composition such as the distinction between cobalt blue 

(CoAl2O4) and cerulean blue (CoO.nSnO2) and the identification of pigments whose 

fluorescence inhibited the analysis by µ-R. However, it is worth noting that this technique 

should not be used by itself, especially for the analysis of complex samples, as there is a 

high risk of producing misleading interpretations. 

µ-XRD is valuable for the identification of sample components, as it determines the exact 

phase composition. In particular, this technique is priceless for the identification of zinc white, 

which presents a high X-ray absorption coefficient, but proved to be difficult to be detected by 

SEM/EDS and µ-R. Unfortunately, this technique is not suitable for the identification of 

amorphous or less ordered compounds, leaving some pigments unidentified, such as cobalt 
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blue. Moreover, the µ-XRD analysis is commonly restricted to upper and lower layers and 

very time-consuming, since often several hours, if not days are required for data acquisition. 

 

Only by employing a multi-technique approach was it possible to obtain the maximum 

information about the complex mixtures elaborated by Pousão. Each used analytical 

technique proved to be useful at different stages of the current study giving additional 

information and complementing the one previously obtained. However, although complete 

identification was laboriously sought for some compounds remained unidentified. 

 

This research was intended to provide art historians, conservators/restorators and art 

scientists with a comprehensive database of Pousão’s materials and technique, which can 

be used for future reference purposes, such as authentication, understanding of the context 

in which the paintings were created and assessment of future preservation/conservation 

interventions. 

In addition, due to the complex nature of the samples, the current research constitutes a 

source of information regarding the advantages and disadvantages of some of the most used 

analytical techniques for pigment analysis, assessing the selection of the most appropriate 

technique(s) for future studies. 

 

 

9.2 Sugestions for future work 

The following questions and hypotheses were raised during this study. They certainly 

deserve further investigation and provide topics for future research.  

 

1) To complete Pousão’s palette  

In the current study, 23 paintings by Pousão were analysed and the respective palette 

was established. However, although being a study of considerable scope, it represents only 

part of Pousão’s work, and therefore should be further pursued. 

In order to fully establish Pousão’s palette, other paintings should be analysed, whenever 

possible, for example, during intervention conservations. Then, it will be more accurate to 

determine if a pigment is or is not consistent with Pousão’s palette. 

 

2) Comparison with other 19th century painters 

The extent to which Pousão’s technique evolved as a result of his own experimentation or 

of the influence of the contemporary painting manuals, painters and teachers is not clear. A 

comparative study of the Pousão's materials and technique with those used by his teachers, 
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such as António Costa, Yvon and Cabanel, and Portuguese, French, Italian and even 

Spanish 19th century painters, such as Marques de Oliveira, Silva Porto, Corot, Cabanel, 

Cabianca, Sernes and Pradilla would be interesting and perhaps could indicate to what 

extent Pousão’s technique was a product of his training or the influence from other painters.  

 

3) Sulfate compounds associated to lead antimonate yellow  

Results of the current study suggested that lead sulfate, and more rarely basic lead 

sulfate, rosiaite, cervantite and others unknown are present in the sample associated with 

lead antimonate yellow. It is known that lead antimonate yellow was often sold containing 

considerable amounts of basic lead sulfate (and also silica, rutile, barium sulfate and 

carbonates), but there is no report for the existence of lead sulfate (342). 

The presence of these lead sulfates and oxides in lead antimonate yellow may be caused 

by the use of Sb2S3 instead of an antimony oxide, in the synthesis method of the yellow 

pigments. It has been found that, when using Sb2S3 as starting material in the synthesis of 

lead tin-antimony yellow, a pigment closely related to lead antimonate yellow, lead sulfate 

rosiaite and/or basic lead sulfate was produced (347,348). 

Studies must be conducted to confirm this hypothesis and clarify the origin of the two 

sulfate compounds. 

 

4) Umber and Sienna pigments 

During analysis by µ-R some pigment grains presented a relative intense band at ca. 660 

cm-1, associated with the ironIII oxide spectrum,. Although this band has been assigned to 

either ironIII oxide or magnetite (Fe3O4) it can also be due to the presence of manganese 

oxides/oxyhydroxides, since these compounds, especially the black MnO2 minerals, were 

added (at 5-20 wt%) to iron oxide/oxyhydroxide in order to produce Umber pigments (85,338). 

It would be interesting to analyse reference samples of Umber and even Sienna pigments 

(manganese oxides/oxyhydroxides < 5%) by Raman spectroscopy, in order to confirm the 

hypothesis of the 660 cm-1 band being due to the existence of manganese 

oxides/oxyhydroxides and verify if Umber and Sienna pigments can be distinguished from 

the ochre pigments not having manganese oxides. 

 

5) Viridian 

Known to be a hydrated chromiumIII oxide with composition Cr2O3.2H2O
 (85,248), viridian’s IR 

spectra seems to point instead to a hydroxo compound. While the bending mode of water at 

ca. 1635 cm-1 is not present, the strong hydroxyl stretching bands between 3550 and 3200 
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cm-1 were observed. Further investigation should be carried out in order to clarify this 

pigment’s composition. 

 

6) Zinc yellow 

During the current study it was found that apparently neither µ-IR nor µ-R, wre able to 

distinguish among  different zinc chromate compounds (zinc yellow). It would be interesting 

to analyse different chemical compositions of zinc chromate (whose identity had been 

previously determined by XRD) by IR and Raman and assess if it possible to distinguish 

among zinc chromate compounds based on their vibrational spectra. 

 

7) Zinc white identification by µ-XRD 

The main analytical techniques of this study, µ-IR and µ-R, proved to be unable to identify 

zinc white in the samples of Pousão’s paintings. It would be worth analysing a representative 

number of samples by XRD, which has a high and accurate response to zinc white, and 

evaluate the importance of this white pigment in Pousão’s palette. 
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Results of the microchemical tests undertaken in 1984 
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C - Paisagem - Abertura da Rua Alexandre Herculano (MNSR Invº183), G - Cansada 

(Cachopa de Capri) (MNSR Invº 94), K - Esperando o sucesso (MNSR Invº 108), N - 

Portão (MNSR 117/71), O - Rapariga de Anacapri (MNSR 200), Q - Senhora vestida 

de preto (MNSR 114/39), U - Rapariga deitada num tronco de árvore (MNSR 86/88), 

W - Flores campestres (MNSR 117/96). 

There are present only the results for the paintings currently under study. 

Earlier Final

Pigments C G K N O Q U W

Ground

Bone/ivory black
•

Lead white • • • • • • • •

MercuryII sulfide •

Zinc white • •

White

Lead white • • • • • • • •

Zinc white • • •

Yellow

Cadmium yellow • • • •

Chrome yellow • •

IronIII oxyhydroxide • • • •

Red

IronIII oxide • • • •

Madder lake •

MercuryII sulfide • • • • • • •

Brown

Ochre • • • •

Umber •

Green

Chrome green • • • • •

Cobalt green • •

Copper resinate •

Emerald green • •

Viridian •

Blue

Cobalt blue • • • • •

Prussian blue • • • •

Black

Bone/ivory black • • •

Vegetable carbon-based black • • •

Italian



 

 

 

 

 

 

 

Appendix B 
 

Pousão paintings under analysis and sampling 
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Figure B1. Casa rústica de Campanhã (A), 1880 (MNSR Invº 109). Oil on wood, 20.2 x 12.8 cm. 

Samples: A1 - blue from the sky, A2 - red from the balcony rail, A3 - orange from the roof, A4 - brown 

from the ground and A5 - beige from the wall. Photo: LCRJF.   
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Figure B2. O mendigo Lapita (B), 1880 (MNSR Invº 101). Oil on wood, 23.5 x 14.2 cm. Samples:  

B1 - white from the wall, B2 - brown-reddish from the ground, B3 - light brown from the window frame 

and B4 - black from the window. Photo: LCRJF.  
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Figure B3. Paisagem – Abertura da Rua Alexandre Herculano (C), 1880 (MNSR Invº 183). Oil on canvas, 68.8 x 122.4 cm. Samples: C1 - blue from the 

sky, C2 - green from the trees, C3 - light blue from the sky and C4 - brown from the ground. Photo: LCRJF. 
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Figure B4. Jardim de Luxemburgo (estudo) (D), 1880 (MNSR Invº 96/11). Oil on wood, 

16.5 x 9.0 cm. Samples: D1 - dark green from the grass, D2 - blue from the wall, D3 - blue 

from the sky, D4 - yellow from the window, D5 - beige from the wall and D6 - brown from the 

tree bench. Photo: LCRJF.   
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Figure B5. Aldeia de St. Sauves (E), 1881 (MNSR Invº 167). Oil on wood, 46.0 x 37.8 cm. Samples: 

E1 - blue from the sky, E2 - white from the cloud, E3 - grey from the cloud, E4 - green from the roof, 

E5 - dark grey from the shadow, E6 - brown from the ground and E7 -dark green from the three 

foliage. Photo: LCRJF. 
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Figure B6. Paisagem de St. Sauves (F), 1881 (MNSR Invº 158). Oil on canvas, 46.0 x 65.5 cm. Samples: F1 - blue from the sky, F2 - orange from the sky, 

F3 - light green from the ground, F4 - green from the ground, F5 - dark blue from the sky and F6 - dark green of the ground. Photo: LCRJF. 
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Figure B7. Cansada (Cachopa de Capri) (G), 1882 (MNSR Invº 94). Oil on canvas, 130.5 x 81.5 cm. 

Samples: G1 - white from the wall, G2 - brown from the ground, G3 - grey from the leaf and G4 - green 

from the leaf. Photo: LCRJF. 
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Figure B8. Casas brancas de Capri (H), 1882 (MNSR Invº 82). Oil on canvas, 70.5 x 141.0 cm. Samples: H1 - brown from the ground, H2 - green from the 

bushes, H3 - grey from the house wall, H4 - blue from the sky, H5 - blue from the sea, H6 - white from the wall, H7 - light green from the cactus, H8 - dark 

green from the cactus and H9 - ground layer. Photo: LCRJF.  
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Figure B9. Cecília (I), 1882 (MNSR Invº 106). Oil on canvas, 82.3 x 57.2 cm. Samples: I1 - black from 

the pedestal, I2 - white from the kerchief, I3 - blue from the chair, I4 - green from the stripe, I5 - dark 

blue from the skirt, I6 - carnation from the finger, I7 - grey from the pedestal and I8 - yellow from the 

shroud. Photo: LCRJF. 
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Figure B10. Escadas de um pardieiro - Roma (J), 1882 (MNSR Invº 83). Oil on wood, 16.0 x 22.2 cm. Samples: J1 - grey from the wall, J2 - beige from the 

ground, J3 - dark brown from the door entrance and J4 - brownish from the stone wall. Photo: LCRJF. 
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Figure B11. Esperando o Sucesso (K), 1882 (MNSR Invº 108). Oil on canvas, 131.5 x 83.5 cm. 

Samples: K1 - beige from the ground, K2 - brown from the wood box, K3 - yellow from the brush, K4 - 

dark grey from the ground, K5 - grey from canvas, K6 - grey from the canvas, K7 - green from the 

ground, K8 - grey from the palette, K9 - brown from the wood box, K10 - beige from the ground, K11 - 

dark green from the blanket, K12 - white from the handkerchief, K13 - grey from the canvas and K14 - 

dark grey from the ground. Photo: LCRJF. 
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Figure B12. Fachada de casa soterrada - Roma (L), 1882 (MNSR Invº 107/36). Oil on wood, 9.9 x 16.5 cm. Samples: L1 - pink from the ground, L2 - white 

from the wall, L3 - green from the wall, L4 - orange from the wall and L5 - brown from the wall. Photo: LCRJF. 
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Figure B13. Miragem de Nápoles (M), 1882 (MNSR Invº 91/49). Oil on wood, 9.8 x 16.5 cm. Samples: M1 - brown from the ground, M2 - blue from the 

water, M3 - white, M4 - beige from the wall and M5 - orange from the wall. Photo: LCRJF. 
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Figure B14. Portão (N), 1882 (MNSR Invº 117/71). Oil on canvas, 29.2 x 21.2 cm. Samples: N1 - 

beige from the ground, N2 - green from the trees, N3 - blue from the sky, N4 - beige from the wall and 

N5 - green from the ground. Photo: LCRJF.   
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Figure B15. Rapariga de Anacapri (O), 1882 (MNSR Invº 200). Oil on canvas, 18.5 x 13.8 cm. 

Samples: O1 - blue from the background and O2 - pink from the neckerchief and O3 - red from the 

neckerchief. Photo: LCRJF.   
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Figure B16. Rua de Roma (P), 1882 (MNSR Invº 96/24). Oil on wood, 16.5 x 9.9 cm. Samples: P1 - 

blue from the sky, P2 - brown from the roof, P3 - grey from the ground, P4 - white from the ground, P5 

- beige from the wall and P6 - grey from the wall. Photo: LCRJF.   
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Figure B17. Senhora vestida de preto (Q), 1882 (MNSR Invº 114/39). Oil on wood, 28.3 x 18.4 cm. 

Samples: Q1 - black from the dress, Q2 - yellow from the chair, Q3 - yellow from the back, Q4 - black 

from the dress, Q5 - brown from the chair, Q6 - grey from the back, Q7 - red from the background and  

Q8 - yellow from the back. Photo: LCRJF.   
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Figure B18. Janela das persianas azuis (R), 1882-1883 (MNSR Invº 114/34). Oil on wood, 28.5 x 

25.0 cm. Samples: R1 - blue from the wall, R2 - light blue from the wall, R3 - dark blue from the wall, 

R4 - greenish from the wall, R5 - orange from the roof, R6 - grey from the shadow of the clothes, R7 - 

white from the clothes and R8 - blue from the wall. Photo: LCRJF. 
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Figure B19. Mulher da água (S), 1883 (MNSR Invº 115). Oil on canvas, 144.0 x 135.5 cm. Samples:  

S1 - blue from the sky, S2 - green from the bushes, S3 - beige from the wall, S4 - white from the 

kerchief, S5 - blue from the blouse, S6 - carnation from the hand and S7 - blue from the skirt. Photo: 

LCRJF. 
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Figure B20. Paisagem de Anacapri (T), 1883 (MNSR Invº 432). Oil on canvas, 70.5 x 140.5 cm. Samples: T1 - blue from the sky, T2 - blue from the sea,  

T3 - green from the trees, T4 - grey from the shadow on the ground, T5 - beige from the ground, T6 - grey from the stone wall and T7 - green from the tree. 

Photo: LCRJF.   
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Figure B21. Rapariga deitada no tronco de uma árvore (U), 1883 (MNSR Invº 86/88). Oil on canvas, 73.5 x 115.5 cm. Samples: U1 - dark green from 

leafs, U2 - light blue, U3 - light green from leafs, U4 - green from leafs, U5 - grey, U6 - background grey, U7 - light grey from the back, U8 - ground layer, U9 - 

green from leafs, U10 - bluish from the tree bench, U11 - grey from the tree bench, U12 - light blue and U13 - light green from leafs. Photo: LCRJF. 
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Figure B22. Cais de Barcelona (V), 1883 (MNSR Invº 127/94). Oil on wood, 16.5 x 10.0 cm. 

Samples: V1 - blue from the sea, V2 - blue from the sky, V3 - black from the boat, V4 - beige from the 

ground and V5 - brown from the crane. Photo: LCRJF.   
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Figure B23. Flores Campestres (W), 1884 (MNSR Invº 117/96). Oil on canvas, 30.0 x 22.5 cm. 

Samples: W1 - grey from the back, W2 - green from the flowers, W3 - red from the flower, W4 - grey 

from the back, W5 - green from the flowers, W6 - red from the flower, and W7 - light grey from the 

back. Photo: LCRJF.  
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Appendix C 
 

Example of a sheet used for description of the sampling points 
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Appendix D 
 

Samples viewed under reflected light 
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- Casa Rústica de Campanhã 

 

 

Figure D1. Cross section of sample A1 - blue from the sky of Casa rústica de Campanhã, viewed 

under reflected light. 

 

 

Figure D2. Cross section of sample A2 - red from the balcony rail of Casa rústica de Campanhã, 

viewed under reflected light. 

 

 

Figure D3. Cross section of sample A3 - orange from the roof of Casa rústica de Campanhã, viewed 

under reflected light. 
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Figure D4. Cross section of sample A4 - brown from the ground of Casa rústica de Campanhã, 

viewed under reflected light. 

 

 

Figure D5. Cross section of sample A5 - beige from the wall of Casa rústica de Campanhã, viewed 

under reflected light. 

 

- O Mendigo Lapita 

 

 

Figure D6. Cross section of sample B1 - white from the wall of O mendigo Lapita, viewed under 

reflected light. 
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Figure D7. Cross section of sample B2 - brown-reddish from the ground of O mendigo Lapita, 

viewed under reflected light. 

 

 

Figure D8. Cross section of sample B3 - light brown from the window frame O mendigo Lapita, 

viewed under reflected light. 

 

 

Figure D9. Cross section of sample B4 - black from the window of O mendigo Lapita, viewed under 

reflected light. 
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- Paisagem – Abertura da Rua Alexandre Herculano 

 

 

Figure D10. Cross section of sample C1 - blue from the sky of Paisagem – Abertura da Rua 

Alexandre Herculano, viewed under reflected light. 

 

 

Figure D11. Cross section of sample C2- green from the trees of Paisagem – Abertura da Rua 

Alexandre Herculano, viewed under reflected light. 

 

 

Figure D12. Cross section of sample C3 - light blue from the sky of Paisagem – Abertura da Rua 

Alexandre Herculano, viewed under reflected light. 
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1

3

2

4

1

2 3

6

5

4

7 

8

9

1

2

4 

5 

5 - varnish layer 
4 - blue paint layer (max. thickness 173 µm) 
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Figure D13. Cross section of sample C4 - brown from the ground of Paisagem – Abertura da Rua 

Alexandre Herculano, viewed under reflected light. 

 

- Estátua do Jardim de Luxemburgo (estudo) 

 

 

Figure D14. Cross section of sample D1 - dark green from the grass of Estátua do Jardim de 

Luxemburgo (estudo), viewed under reflected light. 

 

 

Figure D15. Cross section of sample D2 - blue from the wall of Estátua do Jardim de Luxemburgo 

(estudo), viewed under reflected light. 
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1 

3

2

6
5

4 

10 - yellow paint layer (max. thickness 17 µm) 
9 - blue paint layer (max. thickness 25 µm) 
8 - yellow paint layer (max. thickness 9 µm) 
7 - white paint layer (max. thickness 16 µm) 
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Figure D16. Cross section of sample D3 - blue from the sky of Estátua do Jardim de Luxemburgo 

(estudo), viewed under reflected light. 

 

 

Figure D17. Cross section of sample D4 - yellow from the window of Estátua do Jardim de 

Luxemburgo (estudo), viewed under reflected light. 

 

 

Figure D18. Cross section of sample D5 - beige from the wall of Estátua do Jardim de Luxemburgo 

(estudo), viewed under reflected light. 
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Figure D19. Cross section of sample D6 - brown from the tree bench of Estátua do Jardim de 

Luxemburgo (estudo), viewed under reflected light. 

 

- Aldeia de St. Sauves 

 

 

Figure D20. Cross section of sample E1 - blue from the sky of Aldeia de St. Sauves, viewed under 

reflected light. 

 

 

Figure D21. Cross section of sample E2 - white from the cloud of Aldeia de St. Sauves, viewed 

under reflected light. 
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2 - blue paint layer (max. thickness 35 µm) 
1 - white ground layer (max. thickness 23 µm) 
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Figure D22. Cross section of sample E3 - grey from the cloud of Aldeia de St. Sauves, viewed under 

reflected light. 

 

 

Figure D23. Cross section of sample E4 - green from the roof of Aldeia de St. Sauves, viewed under 

reflected light. 

 

 

Figure D24. Cross section of sample E5 - dark grey from the shadow of Aldeia de St. Sauves, 

viewed under reflected light. 
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Figure D25. Cross section of sample E6 - brown from the ground of Aldeia de St. Sauves, viewed 

under reflected light. 

 

 

Figure D26. Cross section of sample E7 -dark green from the tree foliage of Aldeia de St. Sauves, 

viewed under reflected light. 

 

- Paisagem de St. Sauves 

 

 

Figure D27. Cross section of sample F1 - blue from the sky of Paisagem de St. Sauves, viewed 

under reflected light. 

1

100 µm 

100 µm 

100 µm 

4 - varnish layer 
3 - pinkish paint layer (max. thickness 68 µm) 
2 - white paint layer (max. thickness 41 µm) 

1 - brownish paint layer (max. thickness 51 µm) 

4 - varnish 
3 - green paint layer (max. thickness 60 µm) 
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Figure D28. Cross section of sample F2 - orange from the sky of Paisagem de St. Sauves, viewed 

under reflected light. 

 

 

Figure D29. Cross section of sample F3 - light green from the ground of Paisagem de St. Sauves, 

viewed under reflected light. 

 

 

Figure D30. Cross section of sample F4 - green from the ground of Paisagem de St. Sauves, viewed 

under reflected light. 
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Figure D31. Cross section of sample F5 - dark blue from the sky of Paisagem de St. Sauves), 

viewed under reflected light. 

 

 

Figure D32. Cross section of sample F6 - dark green of the ground of Paisagem de St. Sauves, 

viewed under reflected light. 

 

- Cansada (Cachopa de Capri) 

 

 

Figure D33. Cross section of sample G1 - white from the wall of Cansada (cachopa de Capri), 

viewed under reflected light. 
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Figure D34. Cross section of sample G2 - brown from the ground of Cansada (cachopa de Capri), 

viewed under reflected light. 

 

 

Figure D35. Cross section of sample G3 - grey from the leaf of Cansada (cachopa de Capri), viewed 

under reflected light. 

 

 

Figure D36. Cross section of sample G4 - green from the leaf of Cansada (cachopa de Capri), 

viewed under reflected light. 
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- Casas brancas de Capri 

 

 

Figure D37. Cross section of sample H1 - brown from the ground of Casas brancas de Capri, viewed 

under reflected light. 

 

 

Figure D38. Cross section of sample H2 - green from the bushes of Casas brancas de Capri, viewed 

under reflected light. 

 

 

Figure D39. Cross section of sample H3 - grey from the house wall of Casas brancas de Capri, 

viewed under reflected light. 
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Figure D40. Cross section of sample H4 - blue from the sky of Casas brancas de Capri, viewed 

under reflected light. 

 

 

Figure D41. Cross section of sample H5 - blue from the sea of Casas brancas de Capri, viewed 

under reflected light. 

 

 

Figure D42. Cross section of sample H6 - white from the wall of Casas brancas de Capri, viewed 

under reflected light. 
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Figure D43. Cross section of sample H7 - light green from the cactus of Casas brancas de Capri, 

viewed under reflected light. 

 

 

Figure D44. Cross section of sample H8 - dark green from the cactus of Casas brancas de Capri, 

viewed under reflected light. 

 

 

Figure D45. Cross section of sample H9 - ground layer of Casas brancas de Capri, viewed under 

reflected light. 
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- Cecília 

 

 

Figure D46. Cross section of sample I1 - black from the pedestal of Cecília, viewed under reflected 

light. 

 

 

Figure D47. Cross section of sample I2 - white from the kerchief of Cecília, viewed under reflected 

light. 

 

 

Figure D48. Cross section of sample I3 - blue from the chair of Cecília, viewed under reflected light. 
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2 - pink paint layer (max. thickness 24 µm) 
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Figure D49. Cross section of sample I4 - green from the stripe of Cecília, viewed under reflected light. 

 

 

Figure D50. Cross section of sample I5 - dark blue from the skirt of Cecília, viewed under reflected 

light. 

 

 

Figure D51. Cross section of sample I6 - carnation from the finger of Cecília, viewed under reflected 

light. 
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Figure D52. Cross section of sample I7 - grey from the pedestal of Cecília, viewed under reflected 

light. 

 

 

Figure D53. Cross section of sample I8 - yellow from the shroud of Cecília, viewed under reflected 

light. 

 

- Escadas de um pardieiro - Roma 

 

 

Figure D54. Cross section of sample J1 - grey from the wall of Escadas de um pardieiro - Roma, 

viewed under reflected light. 
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Figure D55. Cross section of sample J2 - beige from the ground of Escadas de um pardieiro - 

Roma, viewed under reflected light. 

 

 

Figure D56. Cross section of sample J3 - dark brown from the door entrance of Escadas de um pardieiro - 

Roma, viewed under reflected light. 

 

 

Figure D57. Cross section of sample J4 - brownish from the stone wall of Escadas de um pardieiro - 

Roma, viewed under reflected light. 
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- Esperando o sucesso 

 

 

Figure D58. Cross section of the sample K1 - beige from the ground of Esperando o sucesso, 

viewed under reflected light. 

 

 

Figure D59. Cross section of the sample K2 - brown from the wood box of Esperando o sucesso, 

viewed under reflected light. 

 

 

Figure D60. Cross section of the sample K3 - yellow from the brush of Esperando o sucesso, 

viewed under reflected light. 
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6 - yellow paint layer (max. thickness 114 µm) 
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Figure D61. Cross section of the sample K4 - dark grey from the ground of Esperando o sucesso, 

viewed under reflected light. 

 

 

Figure D62. Cross section of the sample K5 - grey from canvas of Esperando o sucesso, viewed 

under reflected light. 

 

 

Figure D63. Cross section of the sample K6 - grey from the canvas of Esperando o sucesso, viewed 

under reflected light. 
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Figure D64. Cross section of the sample K7 - green from the ground of Esperando o sucesso, 

viewed under reflected light. 

 

 

Figure D65. Cross section of the sample K8 - grey from the palette of Esperando o sucesso, viewed 

under reflected light. 

 

 

Figure D66. Cross section of the sample K9 - brown from the wood box of Esperando o sucesso, 

viewed under reflected light. 
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Figure D67. Cross section of the sample K10 - beige from the ground of Esperando o sucesso, 

viewed under reflected light. 

 

 

Figure D68. Cross section of the sample K11 - dark green from the blanket of Esperando o sucesso, 

viewed under reflected light. 

 

 

Figure D69. Cross section of the sample K12 - white from the handkerchief of Esperando o 

sucesso, viewed under reflected light. 
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Figure D70. Cross section of the sample K13 - grey from the canvas of Esperando o sucesso, 

viewed under reflected light. 

 

 

Figure D71. Cross section of the sample K14 - dark grey from the ground of Esperando o sucesso, 

viewed under reflected light. 

 

- Fachada de porta soterrada - Roma 

 

 

Figure D72. Cross section of the sample L1 - pink from the ground of Fachada de porta soterrada - 

Roma, viewed under reflected light. 
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Figure D73. Cross section of the sample L2 - white from the wall of Fachada de porta soterrada - 

Roma, viewed under reflected light. 

 

 

Figure D74. Cross section of the sample L3 - green from the wall of Fachada de porta soterrada - 

Roma, viewed under reflected light. 

 

 

Figure D75. Cross section of the sample L4 - orange from the wall Fachada de porta soterrada - 

Roma, viewed under reflected light. 
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1 - white ground layer (max. thickness 46 µm) 
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Figure D76. Cross section of the sample L5 - brown from the wall of Fachada de porta soterrada - 

Roma, viewed under reflected light. 

 

- Miragem de Nápoles 

 

 

Figure D77. Cross section of the sample M1 - brown from the ground of Miragem de Nápoles, 

viewed under reflected light. 

 

 

Figure D78. Cross section of the sample M2 - blue from the water of Miragem de Nápoles, viewed 

under reflected light. 
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Figure D79. Cross section of the sample M3 - white of Miragem de Nápoles, viewed under reflected 

light. 

 

 

Figure D80. Cross section of the sample M4 - beige from the wall of Miragem de Nápoles, viewed 

under reflected light. 

 

 

Figure D81. Cross section of the sample M5 - orange from the wall of Miragem de Nápoles, viewed 

under reflected light. 
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- Portão 

 

 

Figure D82. Cross section of the sample N1 - beige from the ground of Portão, viewed under 

reflected light. 

 

 

Figure D83. Cross section of the sample N2 - green from the trees of Portão, viewed under reflected 

light. 

 

 

Figure D84. Cross section of the sample N3 - blue from the sky of Portão, viewed under reflected 

light. 
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Figure D85. Cross section of the sample N4 - beige from the wall of Portão, viewed under reflected 

light. 

 

 

Figure D86. Cross section of the sample N5 - green from the ground of Portão, viewed under 

reflected light. 

 

- Rapariga de Anacapri 

 

 

Figure D87. Cross section of the sample O1 - blue from the background of Rapariga de Anacapri, 

viewed under reflected light. 
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Figure D88. Cross section of the sample O2 - pink from the neckerchief of Rapariga de Anacapri, 

viewed under reflected light. 

 

…  

Figure D89. Unmounted sample O3 - red from the neckerchief of Rapariga de Anacapri, under 

reflected light. (a) top surface, (b) bottom surface. 

 

- Rua de Roma 

 

 

Figure D90. Cross section of the sample P1 - blue from the sky of Rua de Roma, viewed under 

reflected light. 
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Figure D91. Cross section of the sample P2 - brown from the roof of Rua de Roma, viewed under 

reflected light. 

 

 

Figure D92. Cross section of the sample P3 - grey from the ground of Rua de Roma, viewed under 

reflected light. 

 

 

Figure D93. Cross section of the sample P4 - white from the ground of Rua de Roma, viewed under 

reflected light. 
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Figure D94. Cross section of the sample P5 - beige from the wall of Rua de Roma, viewed under 

reflected light. 

 

 

Figure D95. Cross section of the sample P6 - grey from the wall of Rua de Roma, viewed under 

reflected light. 

 

- Senhora vestida de preto 

 

 

Figure D96. Cross section of the sample Q1 - black from the dress of Senhora vestida de preto, 

viewed under reflected light. 
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Figure D97. Cross section of the sample Q2 - yellow from the chair of Senhora vestida de preto, 

viewed under reflected light. 

 

 

Figure D98. Cross section of the sample Q3 - yellow from the back of Senhora vestida de preto, 

viewed under reflected light. 

 

 

Figure D99. Cross section of the sample Q4 - black from the dress of Senhora vestida de preto, 

viewed under reflected light. 
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Figure D100. Cross section of the sample Q5 - brown from the chair of Senhora vestida de preto, 

viewed under reflected light. 

 

 

Figure D101. Cross section of the sample Q6 - grey from the back of Senhora vestida de preto, 

viewed under reflected light. 

 

 

Figure D102. Cross section of the sample Q7 - red from the background of Senhora vestida de 

preto, viewed under reflected light. 
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Figure D103. Cross section of the sample Q8 - yellow from the back of Senhora vestida de preto, 

viewed under reflected light. 

 

- Janela das persianas azuis 

 

 

Figure D104. Cross section of the sample R1 - blue from the wall of Janela das persianas azuis, 

viewed under reflected light. 

 

 

Figure D105. Cross section of the sample R2 - light blue from the wall of Janela das persianas 

azuis, viewed under reflected light. 
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Figure D106. Cross section of the sample R3 - dark blue from the wall of Janela das persianas 

azuis, viewed under reflected light. 

 

 

Figure D107. Cross section of the sample R4 - greenish from the wall of Janela das persianas 

azuis, viewed under reflected light. 

 

 

Figure D108. Cross section of the sample R5 - orange from the roof of Janela das persianas azuis, 

viewed under reflected light. 
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Figure D109. Cross section of the sample R6 - grey from the shadow of the clothes of Janela das 

persianas azuis, viewed under reflected light. 

 

 

Figure D110. Cross section of the sample R7 - white from the clothes of Janela das persianas azuis, 

viewed under reflected light. 

 

 

Figure D111. Cross section of the sample R8 - blue from the wall of Janela das persianas azuis, 

viewed under reflected light. 
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- Mulher da água 

 

 

Figure D112. Cross section of the sample S1 - blue from the sky of Mulher da água, viewed under 

reflected light. 

 

 

Figure D113. Cross section of the sample S2 - green from the bushes of Mulher da água, viewed 

under reflected light. 

 

 

Figure D114. Cross section of the sample S3 - beige from the wall of Mulher da água, viewed under 

reflected light. 

1 

2

3

2 - beige paint layer (max. thickness 69 µm) 

1 - white ground layer (max. thickness 48 µm) 

100 µm 

1

2 - blue paint layer (max. thickness 100 µm) 
1 - white ground layer (max. thickness 39 µm) 

3 - green paint layer (max. thickness 182 µm) 
2 - black paint layer (max. thickness 19 µm) 
1 - white ground layer (max. thickness 35 µm) 

2

1

2

100 µm 

100 µm 



370 

 

Figure D115. Cross section of the sample S4 - white from the kerchief of Mulher da água, viewed 

under reflected light. 

 

 

Figure D116. Cross section of the sample S5 - blue from the blouse of Mulher da água, viewed under 

reflected light. 

 

 

Figure D117. Cross section of the sample S6 - carnation from the hand of Mulher da água, viewed 

under reflected light. 
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Figure D118. Cross section of the sample S7 - blue from the skirt of Mulher da água, viewed under 

reflected light. 

 

- Paisagem de Anacapri 

 

 

Figure D119. Cross section of the sample T1 - blue from the sky of Paisagem de Anacapri, viewed 

under reflected light. 

 

 

Figure D120. Cross section of the sample T2 - blue from the sea of Paisagem de Anacapri, viewed 

under reflected light. 
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Figure D121. Cross section of the sample T3 - green from the trees of Paisagem de Anacapri, 

viewed under reflected light. 

 

 

Figure D122. Cross section of the sample T4 - grey from the shadow on the ground of Paisagem de 

Anacapri, viewed under reflected light. 

 

 

Figure D123. Cross section of the sample T5 - beige from the ground of Paisagem de Anacapri, 

viewed under reflected light. 
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Figure D124. Cross section of the sample T6 - grey from the stone wall of Paisagem de Anacapri, 

viewed under reflected light. 

 

 

Figure D125. Cross section of the sample T7 - green from the tree of Paisagem de Anacapri, viewed 

under reflected light. 

 

- Rapariga deitada no tronco de uma árvore 

 

 

Figure D126. Cross section of the sample U1 - dark green from leafs of Rapariga deitada no tronco 

de uma árvore, viewed under reflected light. 
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Figure D127. Cross section of the sample U2 - light blue of Rapariga deitada no tronco de uma 

árvore, viewed under reflected light. 

 

 

Figure D128. Cross section of the sample U3 - light green from leafs of Rapariga deitada no tronco 

de uma árvore, viewed under reflected light. 

 

 

Figure D129. Cross section of the sample U4 - green from leafs of Rapariga deitada no tronco de 

uma árvore, viewed under reflected light. 
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Figure D130. Cross section of the sample U5 - background grey of Rapariga deitada no tronco de 

uma árvore, viewed under reflected light. 

 

 

Figure D131. Cross section of the sample U6 - background grey of Rapariga deitada no tronco de 

uma árvore, viewed under reflected light. 

 

 

Figure D132. Cross section of the sample U7 - ground from the back of Rapariga deitada no tronco 

de uma árvore, viewed under reflected light. 
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Figure D133. Cross section of the sample U8 - ground layer from the back of Rapariga deitada no 

tronco de uma árvore, viewed under reflected light. 

 

 

Figure D134. Cross section of the sample U9 - green from leafs of Rapariga deitada no tronco de 

uma árvore, viewed under reflected light. 

 

 

Figure D135. Cross section of the sample U10 - bluish from the tree bench of Rapariga deitada no 

tronco de uma árvore, viewed under reflected light. 
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Figure D136. Cross section of the sample U11 - grey from the tree bench of Rapariga deitada no 

tronco de uma árvore, viewed under reflected light. 

 

 

Figure D137. Cross section of the sample U12 - light blue of Rapariga deitada no tronco de uma 

árvore, viewed under reflected light. 

 

 

Figure D138. Cross section of the sample U13 - light green from leafs of Rapariga deitada no tronco 

de uma árvore, viewed under reflected light. 
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- Cais de Barcelona 

 

 

Figure D139. Cross section of the sample V1 - blue from the sea of Cais de Barcelona, viewed under 

reflected light. 

 

 

Figure D140. Cross section of the sample V2 - blue from the sky of Cais de Barcelona, viewed under 

reflected light. 

 

 

Figure D141. Cross section of the sample V3 - black from the boat of Cais de Barcelona, viewed 

under reflected light. 
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Figure D142. Cross section of the sample V4 - beige from the ground of Cais de Barcelona, viewed 

under reflected light. 

 

 

Figure D143. Cross section of the sample V5 - brown from the crane of Cais de Barcelona, viewed 

under reflected light. 

 

- Flores Campestres 

 

 

Figure D144. Cross section of the sample W1 - grey from the back of Flores Campestres, viewed 

under reflected light. 
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Figure D145. Cross section of the sample W2 - green from the flowers of Flores Campestres, viewed 

under reflected light. 

 

 

Figure D146. Cross section of the sample W3 - red from the flower of Flores Campestres, viewed 

under reflected light. 

 

 

Figure D147. Cross section of the sample W4 - grey from the back of Flores Campestres, viewed 

under reflected light. 
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Figure D148. Cross section of the sample W5 - green from the flowers of Flores Campestres, viewed 

under reflected light. 

 

 

Figure D149. Cross section of the sample W6 - red from the flower of Flores Campestres, viewed 

under reflected light. 

 

 

Figure B150. Cross section of the sample W7 - light grey from the back of Flores Campestres, 

viewed under reflected light. 
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Appendix E 
 

Backscattered-electron image of the samples 
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Figure E1. Backscattered-electron image of 

sample A3 (Casa rústica de Campanhã). 

 

 

 

Figure E3. Backscattered-electron image of 

sample C4 (Paisagem - Abertura da Rua 

Alexandre Herculano). 

 

 

 

Figure E5. Backscattered-electron image of 

sample E1 (Aldeia St. Sauves). 

 

 

 

Figure E2. Backscattered-electron image of 

sample B3 (O mendigo Lapita). 

 

 

 

Figure E4. Backscattered-electron image of 

sample D2 (Jardim de Luxemburgo 

(estudo)). 

 

 

 

Figure E6. Backscattered-electron image of 

sample F1 (Paisagem St. Sauves). 
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Figure E7. Backscattered-electron image of 

sample F5 (Paisagem St. Sauves). 

 

 

 

Figure E9. Backscattered-electron image of 

sample H1 (Casas brancas de Capri). 

 

 

 

Figure E11. Backscattered-electron image 

of sample I1 (Cecília) 

 

 

 

 

Figure E8. Backscattered-electron image of 

sample F6 (Paisagem St. Sauves). 

 

 

 

Figure E10. Backscattered-electron image 

of sample H5 (Casas brancas de Capri). 

 

 

 

Figure E12. Backscattered-electron image 

of sample I7 (Cecília) 
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Figure E13. Backscattered-electron image 

of sample J2 (Escadas de um pardieiro - 

Roma). 

 

 

 

Figure E15. Backscattered-electron image 

of sample L3 (Fachada de casa soterrada 

- Roma). 

 

 

 

Figure E17. Backscattered-electron image 

of sample N3 (Portão). 

 

 

Figure E14. Backscattered-electron image 

of sample K7 (Esperando o Sucesso). 

 

 

 

 

Figure E16. Backscattered-electron image 

of sample M1 (Miragem de Nápoles) 

 

 

 

 

Figure E18. Backscattered-electron image 

of sample O1 (Rapariga de Anacapri). 
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Figure E19. Backscattered-electron image 

of sample P1 (Rua de Roma). 

 

 

 

Figure E21. Backscattered-electron image 

of sample Q5 (Senhora vestida de preto). 

 

 

 

Figure E23. Backscattered-electron image 

of sample R1 (Janela das persianas 

azuis). 

 

 

 

Figure E20. Backscattered-electron image 

of sample Q4 (Senhora vestida de preto). 

 

 

 

Figure E22. Backscattered-electron image 

of sample Q6 (Senhora vestida de preto). 

 

 

 

Figure E24. Backscattered-electron image 

of sample R8 (Janela das persianas 

azuis). 
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Figure E25. Backscattered-electron image 

of sample S2 (Mulher da água). 

 

 

 

Figure E27. Backscattered-electron image 

of sample S7 (Mulher da água). 

 

 

 

Figure E29. Backscattered-electron image 

of sample T4 (Paisagem de Anacapri). 

 

 

 

 

Figure E26. Backscattered-electron image 

of sample S5 (Mulher da água). 

 

 

 

Figure E28. Backscattered-electron image 

of sample T2 (Paisagem de Anacapri). 

 

 

 

Figure E30. Backscattered-electron image 

of sample T7 (Paisagem de Anacapri). 
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Figure E31. Backscattered-electron image 

of sample V3 (Cais de Barcelona). 
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Appendix F 
 

Samples viewed under ultraviolet light 
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Figure F1. Cross section of the sample C2 - green from the trees of Paisagem - Abertura da Rua 

Alexandre Herculano, viewed under UV light (A cube). 

 

 

 

Figure F2. Cross section of the sample F1 - blue from the sky of Paisagem St. Sauves, viewed under 

UV light (A cube). 

 

 

 

Figure F3. Cross section of the sample F4 - green from the ground of Paisagem St. Sauves, viewed 

under UV light (I 2/3 cube). 

 

 

100 µm

100 µm

100 µm



393 

 

 

 

Figure F4. Cross section of the sample G3 - grey from the leaf of Cansada (Cachopa de Capri), 

viewed under UV light (A cube). 

 

 

 

Figure F5. Cross section of the sample J2 - beige from the ground of Escadas de um pardieiro - 

Roma, viewed under UV light (A cube). 

 

 

 

Figure F6. Cross section of the sample K7 - green from the ground of Esperando o Sucesso, viewed 

under UV light (A cube). 
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Figure F7. Cross section of the sample N5 - green from the ground of Portão, viewed under UV light 

(A cube). 

 

 

 

Figure F8. Cross section of the sample Q5 - brown from the chair of Senhora vestida de preto, 

viewed under UV light (I 2/3 cube). 

 

 

 

Figure F9. Cross section of the sample W3 - red from the flower of Flores Campetres, viewed under 

UV light (I 2/3 cube). 
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