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ABSTRACT 
 

The bc1 complex is an attractive a validated drug target in the fight against malaria. The 

mitochondrial electron transport-chain, in which this complex is involved, is fundamental in 

Plasmodium sp.. The parasites do not possess the requested enzymatic machinery to salvage 

pyrimidines from their metabolism and, therefore, have to perform de novo pyrimidine biosynthesis 

to enable their survival. Blockage of this pathway leads to their death. The present work focused on 

the development of novel inhibitors with structural similarity to known bc1 complex antagonists. 

Also, this work aimed at delivering novel leads for drug development. 

4-Pyridonimines with extended lipophilic side chains showed potential as isosteric replacements 

for 4(1H)-pyridones. The structure of those compounds was derived from structure-based design 

and they were active in vitro against P. falciparum. The most active compound presented an IC50 of 

ca. 1 μM, and the mode of action was hypothesized through docking studies. 

A series of 4-quinolonimines was also prepared. Those presented enhanced antiplasmodial 

activity in comparison to the previous set of compounds, with IC50s ranging from 0.5 to 1 μM. 

These also showed outstanding activity against the liver stage of P. berghei. Despite the mechanism 

of action not being clear at the moment, the compounds demonstrated to bind to hematin. However, 

the docking studies in the Qo site of the bc1 complex also showed a good fit of the compounds. 

Flavones were also synthesized with the aim of optimizing the antiplasmodial activity of 

stigmatellin. All compounds showed modest activity against both blood and liver stages, with the 

most active compound presenting an IC50 of 6 μM against P. falciparum W2 strain. 

Finally, the virtual screening study that was performed allowed the discovery of novel scaffolds 

with antiplasmodial activity. A combination of ligand- and receptor-based approaches was 

successful in retrieving 7 active compounds out of the 23 that were purchased. One of them 

presented an IC50 of 2 μM in vitro. 

 

KEYWORDS: Cytochrome bc1; 4-pyridonimine; 4-quinolonimine; flavone; molecular docking; 

virtual screening. 
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RESUMO 
 

O complexo bc1 é um alvo terapêutico atractivo e validado na luta contra a malária. A cadeia 

transportadora de electrões, em que este complexo está envolvido, é fundamental em parasitas do 

género Plasmodium sp.. Os parasitas não possuem as enzimas necessárias para reciclar as 

pirimidinas vindas do metabolismo e, por isso, necessitam de sintetizá-las de novo, de forma a 

permitir a sobrevivência do parasita. O bloqueio desta via metabólica conduz à morte sua morte. O 

presente trabalho incidiu no desenvolvimento de novos inibidores com semelhança estrutural a 

antagonistas conhecidos do complexo bc1. De igual forma, este trabalho focou-se na descoberta de 

novos protótipos para o desenvolvimento de novos antimaláricos. 

As 4-piridoniminas com cadeias lipofílicas longas mostraram potencial como isósteros das 

4(1H)-piridonas. A estrutura dos primeiros foi derivada de estudos de docking molecular e 

apresentaram actividade in vitro contra P. falciparum. O composto mais activo possui um IC50 de 

aproximadamente 1 μM e o seu modo de acção foi posto em hipótese por docking molecular. 

Uma série de 4-quinolomininas foi também preparada. Estas mostraram ser mais activas que a 

série de compostos anteriores, com IC50 entre 0,5 e 1 μM, tendo mostrado também excelente 

actividade contra a fase hepática de P. berghei. Apesar do mecanismo de acção não ser claro neste 

momento, os compostos mostraram ligar-se à hematina. Contudo, os estudos de docking molecular 

no sítio Qo do complexo bc1 podem, igualmente, justificar as actividades obtidas. 

Foi sintetizada uma série de flavonas com o intuito de optimizar a actividade antiplasmódica da 

estigmatelina. Todos os compostos obtidos mostraram actividade modesta contra as fases sanguínea 

e hepática, com o composto mais activo a apresentar um IC50 de 6 μM contra a estirpe W2 de P. 

falciparum. 

Finalmente, o estudo de screening virtual que foi efectuado permitiu a descoberta de novos 

núcleos com actividade antiplasmódica. A combinação de um método aplicando, de forma faseada, 

a informação de ligandos e do receptor resultou na obtenção de 7 compostos activos, de um total de 

23 comprados. Um dos compostos apresentou um IC50 de 2 μM in vitro. 

 

PALAVRAS-CHAVE: Citocromo bc1; 4-piridonimina; 4-quinolonimina; flavona; docking 

molecular; screening virtual. 
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1. INTRODUCTION 
 

1.1 Overview of malaria and mitochondrial drug targets 
Malaria remains a major infectious disease. Approximately half of the world’s population is at 

risk of infection, with an estimated 300 million new cases annually, and 1 million deaths, mostly 

children under the age of five [1-3]. Malaria is most prevalent in tropical areas and 90% of all cases 

occur in Africa, where the death toll is the highest among endemic regions [4, 5]. Five species from 

the genus Plasmodium cause infection in humans, with Plasmodium falciparum being the most 

virulent, followed by P. vivax.  

The life cycle of malaria parasites is complex and multi-staged. It includes an asexual cycle in 

humans and a sexual cycle in the Anopheles mosquito. In humans, it can be further distinguished 

into a liver and an erythrocytic stage [6]. During the blood meal, the mosquito transfers sporozoites 

into the blood stream, which conceal from the host immune system by invading the hepatocytes. 

They convert to trophozoites, and divide into several schizonts. After rupture of the hepatocytes, the 

merozoites are released into the blood stream. These invade the erythrocytes and mature into a 

trophozoite. Then, the matured trophozoites divide into schizonts, and the merozoites are released 

into the blood stream to invade other red blood cells. With the rupture of the blood cells, parasitic 

waste and cell debris are released, causing the clinical symptoms of the disease. After a number of 

asexual life cycles, the merozoites eventually develop into sexual forms, which are transferred to 

the mosquito during another blood meal. These gametocytes undergo sexual reproduction within the 

mosquito mid-gut, producing sporozoites, which finally migrate to the salivary glands and are ready 

for a new infection [6]. 

The swift emergence of multi-drug resistant strains is currently impairing both prophylaxis and 

chemotherapy. Thus, there is an urgent need to find novel drugs, for both known and new drug 

targets, that might overcome the clinical resistance to marketed antimalarials [7-10].  

Pyrimidine biosynthesis has long been known as a potential target for antimalarial 

chemotherapy [11, 12] and presents a set of attractive drug targets. In higher organisms, the electron 

transport-chain is composed of four enzyme complexes, located in the inner mitochondrial 

membrane:  

a) NADH:ubiquinone oxidoreductase, complex I; 

b) Succinate:ubiquinone oxidoreductase, complex II, succinate dehydrogenase or SDH; 

c) Ubiquinol:cytochrome c oxidoreductase, complex III or cytochrome bc1; 

d) Cytochrome c oxidase, complex IV [13]. 
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Complexes II through IV are conserved in Plasmodia, but an alternative type II NADH 

dehydrogenase (PfNDH2) replaces complex I. Additionally, other oxidoreductases, such as 

dihydroorotate dehydrogenase (PfDHODH) are present in the mitochondria and display an 

important role in de novo pyrimidine biosynthesis.  

 

 

1.2 The electron transport-chain pathway  
Unlike many eukaryotic cells, malaria parasites obtain almost all their ATP via glycolysis rather 

than oxidative phosphorylation in the mitochondrion [14, 15]. Additionally, sequencing of the malarial 

genome has revealed that genes encoding enzymes from the pyrimidine biosynthetic pathway have 

been conserved, whereas those responsible for salvaging pyrimidines have not [16]. Thus, malaria 

parasites rely completely on the de novo pyrimidine biosynthesis, essential for the formation of 

nucleic acids, glycoproteins and phospholipids. Despite its low activity, the mitochondrial electron 

transport-chain (mtETC) is responsible for maintaining an electrochemical gradient (Δψm) across 

the mitochondrial membrane, as well as a constant pool of ubiquinone for pyrimidine biosynthesis 
[17]. Therefore, the shutdown of the mtETC completely arrests crucial metabolic pathways within 

the microorganism, rendering these enzymes valid and attractive drug targets. Furthermore, these 

enzymatic complexes have proven to be structurally different from the homologous human 

enzymes, which gave rise to the recent interest from both academia and pharma industry [18-20].  

Three drug targets have been exploited for the discovery of selective inhibitors: PfNDH2, SDH 

and cytochrome bc1. The biochemistry, including mechanistic details for these enzymes have been 

reviewed elsewhere [21, 22]. In short, PfNDH2 catalyses the electron transfer from NADH to 

ubiquinone in a ping-pong fashion, to maintain a constant pool of NAD+ for reductive metabolic 

pathways such as glycolysis and the tricarboxylic acid cycle [23]. On the other hand,  SDH feeds 

electrons to complex III, which are ultimately transferred to the final complex [24]. 

PfDHODH is the fourth enzyme in the de novo biosynthesis of pyrimidines and catalyses the 

oxidation of dihydroorotate to orotate at the outer side of the inner mitochondrial membrane. The 

pair of electrons abstracted from dihydroorotate in this oxidation step is transferred through the 

flavin mononucleotide co-factor to ubiquinone, that was generated at the bc1 complex [25-27]. 

Moreover, it is thought that the main metabolic function of the mtETC is to regenerate  the 

ubiquinone necessary for the final step of pyrimidine biosynthesis [28]. Figure 1.1 shows these 

pathways.  
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Figure 1.1 Mitochondrial electron transfer chain enzymes and the interplay with PfDHODH from pyrimidine 

biosynthesis. (Adapted from http://sites.huji.ac.il/malaria/). 

 

 

1.3 Cytochrome bc1 inhibitors 
Cytochrome bc1 represents the only enzyme complex common to almost all respiratory electron 

transfer-chains, from Archaea and Bacteria to Eukarya, and its structure has been extensively 

studied [29, 30]. Cytochrome bc1 consists of 11 different polypeptides, three of which display catalytic 

functions: cytochrome b, cytochrome c1 and the Rieske protein, or iron-sulfur protein (ISP), due to 

the iron-sulfur cluster present in it, Figure 1.2 [31]. The ISP is highly mobile and evidence suggests 

that this feature is crucial for the activity of the complex [32-35]. 

To date, the modified proton-motive Q cycle mechanism provides the most satisfactory model 

that accounts for electron transfer coupled to the proton translocation through cytochrome bc1. This 

is thoroughly reviewed elsewhere [21, 22, 34, 36-39]. Briefly, ubiquinol produced by dehydrogenases 

upstream to the bc1 complex binds to the oxidation site (Qo) where it is involved in the release of 

two protons, along with the loss of two electrons into the intermembrane space. Each electron 

follows a separate path, reducing two different acceptors: a) heme bL located in cytochrome b and 

b) iron-sulfur cluster in the head domain of the Rieske protein. Next, heme bL reduces heme bH, also 

located within cytochrome b, which further recycles the electron through the reduction of 

ubiquinone to ubiquinol at the reduction site (Qi). Meanwhile, the reduced ISP transfers an electron 

to the heme c group in cytochrome c1. This transfer is accomplished via a conformational shift, 

during which the histidine acceptor residue at the head group of the ISP rotates, allowing close 
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contact of the iron-sulfur cluster with heme c. This change is due to the shortening in length of the 

hinge segment of the ISP [21, 40]. 

The complex III from numerous organisms has been crystallized with several ligands bound to 

the oxidation and reduction sites, providing further insight into the complex function [31, 39, 41-45].  

 

 
Figure 1.2 Cytochrome bc1 complex. Image generated from PDB 1KYO, using PyMol [43, 46]. 

 

 

Cytochrome bc1 has been the major drug target in the mtETC, and its inhibitors can be classified 

into four groups according to their binding points. Group I, which includes β-methoxyacrylates, 

bind to the Qo site blocking electron transfer from ubiquinol to the ISP and electron transfer onto 

the bL centre. Group II, which include hydroxyquinone derivatives, also bind to the Qo site, 

inhibiting electron transfer from the ISP to cytochrome c1 as well as electron transfer onto the bL 

centre. Group III include Qi site inhibitors, responsible for blocking electron transfer from the bH 

centre to ubiquinone. Finally, a fourth group of chromone inhibitors also block the Qo site, but with 

different properties from those of groups I and II [47]. 
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1.3.1 1,4-Naphthoquinones 

Currently, atovaquone, 1.1, is the only drug targeting the bc1 complex in clinical use [48-50]. 

However, high levels of resistance, related with point mutations in cytochrome b, have been 

observed for this drug. Consequently, in an attempt to improve its efficiency and decrease the 

mutation rate, the drug is now used in combination with proguanil. Mutations are predominantly 

restricted to a highly conserved ‘PEWY’ region, that helps recognition of ubiquinol, and is implied 

in the electron transfer within the Qo site [13]. The most prevalent point mutations conferring clinical 

failure of atovaquone have been assigned to codon 268. A specific change of the in vivo wild-type 

tyrosine to asparagine or serine, Y268N/S, was found to increase the IC50 800-10,000 fold, as a 

consequence of an altered fit and binding [51-53]. However, despite being sufficient, the Y268 

mutation seems not to be necessary for treatment failure [51]. Mutation from methionine to 

isoleucine on residue 133, M133I, and from leucine to phenylalanine on residue 271, L271F, has 

generated resistance in vitro and can also be identified in several Plasmodia [54-56]. Other mutations 

in positions 258, 267, 272 and 280 have also resulted in a 1,000-fold increase of the drug’s IC50 

value [8, 57]. 

Due to the lack of a crystallized bc1 complex from malaria parasites, molecular modeling 

studies regarding atovaquone binding to the bc1 complex have been carried out with the 

homologous enzyme from Saccharomyces cerevisiae, because of the high sequence homology [58]. 

Atovaquone is a competitive inhibitor for ubiquinol that results in collapse of the parasitic 

mitochondrial membrane potential, but with no effect on the mammalian counterpart [17]. It binds 

when the soluble domain of the Rieske protein is proximal to cytochrome b and interacts directly 

with the ISP. This prevents mobilization to cytochrome c1 and, consequently, impairs the Δψm [14, 49, 

58, 59]. It has been predicted that this drug forms a hydrogen bond between the hydroxyl group on the 

naphthoquinone ring of the inhibitor and H181 at the ISP. A second water-mediated hydrogen bond 

between the carboxyl group of E272 and a carbonyl group from the quinone system is also 

expected, Figure 1.3 [58, 60, 61]. Other putative contact residues are I119, F123, Y126, M133, V140, 

I141, I144, I258, P260, F264, F267, Y268, L271, V284, L285 and L288 [59, 62, 63].  

Atovaquone displays broad antiprotozoal activity, in the low nanomolar range, on several 

development stages of plasmodia. Moreover, synergism of atovaquone and other naphthoquinones 

with tetracyclines, dihydrofolate reductase inhibitors, and 4(1H)-pyridones has been reported for the 

W2 and D6 strains [64-67]. 

1,4-Naphthoquinones have long been known to possess antiplasmodial activity. Hydrolapachol, 

1.2, for instance, was first reported in the 1940s, and in the same decade the antiplasmodial 

screening of over 300 naphthoquinone derivatives was carried out by Fieser’s group. Lengthening 
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the isoalkyl side chain of 1.2, by insertion of methylene groups, increased the antimalarial activity 

in ducks, to a maximum at C9. Longer side chains decreased activity. The same trend could be 

observed for the n-alkyl series and other related naphthoquinones. Compound 1.3 is almost twice as 

potent as its isoalkyl and n-alkyl counterparts. On the other hand, introduction of a ring into the side 

chain, e.g. 1.4, shifted the activity peak to compounds with a higher number of carbons in the side 

chain, C10 or C11. When two rings are present, as in 1.5-7, the maximum quinine equivalent, Q.E. - 

the ratio of dose of quinine, given in mg/kg, and that of the drug under assay which cause the first 

sharp drop in parasitemia in relation to untreated controls [68] - shifts to C12 or C13. All trans 

diastereomers are more potent than their cis isomers, and compound 1.7 with a Q.E. equal to 15.3 is 

the most potent molecule. Moreover, the 2-OH group seems indispensable for activity as loss of 

activity was observed with several other substituents: OMe, SH, Me, H, Cl and NHCOMe. The 

same trend was obtained when substitutions were made in the side chain, and in the naphthoquinone 

ring. Methyl groups reduced the activity of the compounds when introduced in the core scaffold [68-

73]. 

 

 
Figure 1.3 Atovaquone docked at the oxidation site of the yeast bc1 complex [58]. 

 

 

Metabolism studies of naphthoquinones 1.3 and 1.4 demonstrated the oxidation of the side 

chains, yielding metabolites with significantly reduced antimalarial activity. In fact, compound 1.4 

is rapidly metabolized, and any suppressive activity observed for this compound is due to its long-

lived metabolite 1.8. Thus, hydroxyl groups have been introduced in the following series, resulting 

in compounds metabolically more stable, despite having lower activity [70, 74]. 
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However, it was noted that an increase in the number of carbon atoms could compensate for any 

drop of activity, and the introduction of an aryl moiety afforded 1.9, which was stable and as active 

as 1.4. With these features in mind, a series of hydroxylated naphthoquinones were built, yielding 

lapinone 1.10 and other naphthoquinones alike, which displayed high activity and antirespiratory 

effect [70, 74-76]. 

Due to the emergence of chloroquine resistant strains in the 1960s, a renewed interest in 

naphthoquinones emerged. The synthesis of 3-cyclohexylalkyl and adamantyl 2-hydroxy-1,4-

naphthoquinone derivatives afforded compounds with good antimalarial activities against P. 

berghei. Using chloroquine as a control for suppression of malaria, over 28 days at 5 mg/kg, similar 

results were obtained for 25 mg/kg of 1.11, and menoctone, 1.12, derivatives, while decreased 

activity was observed for the 3-(ω-cyclohexylnonyl) homologue 1.13. For the adamantyl series, 

activities were lower, and compound 1.14 cured mice at 40 mg/kg for a week, but at half dose only 

two of five mice were cleared from parasitemia. Indeed, for 1.14 relapse was noted after 14 days [77, 

78]. 

 



Introduction 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

8 

 
 

In another study, a series of sixty four 1,4-naphthoquinone derivatives were assayed for curative 

activity on P. berghei. From these, compounds 1.15 and 1.16 displayed good antimalarial activity 
[79].  

 

 
 

In 1981, the ongoing effort to find efficient and metabolism-resistant molecules led to the 

discovery of parvaquone, 1.17, and its cis-dicyclohexyl analogue, 1.18; these were equipotent, and 

ten times more active than their template menoctone. Introduction of oxygen and nitrogen atoms 

into the cycloalkyl substituent reduced activity [80], while subsequent exploration of the cyclohexyl 

substituent afforded BW58C, 1.19, a broad spectrum antiprotozoal. This was over 5,600 times more 

potent than 1.12, over 1300 times more potent than 1.17, and approximately 650-fold more active 

than chloroquine in in vitro assays. However, in P. yoelii infected mice, BW58C was only four 

times as active as chloroquine, with and ED50 equal to 1.19 mg/kg, 7 x p.o. The diastereomer 

mixture of 1.19 also showed activity on P. cynonolgi and no apparent recrudescence was noted. 

Further studies revealed that it also had prophylactic activity against P. berghei. Nonetheless, in 

humans, the tert-butyl group is rapidly hydroxylated to a 1000-fold less active metabolite and 

further development was discontinued. Replacement of the tert-butyl by a 4-chlorophenyl group 

affords atovaquone, 1.1 [81, 82]. Several structural modifications on atovaquone have been examined, 

either to improve activity or the formulation properties of tablets / i.v. dosage forms. Thus, 

derivatization of the hydroxyl group in 1.1 as a phosphate or carbamate yielded compounds that 

were shown to be useful for both treatment and prophylaxis of malaria [83-85]. 
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More recently, a series of 2-hydroxy-1,4-naphthoquinones derived from rhinacanthin, 1.20, 

showed potent antiplasmodial activity. The optimum side chain length was found to have C13, 1.21, 

or C15, 1.22, with IC50 values of 32 and 30 nM, respectively, against the K1 multi-drug resistant 

strain. It was also noted that the α-methyl substituent in the ester moiety was beneficial for 

antiplasmodial activity, when compared to its β and α-ethyl counterparts. Furthermore, the geminal 

methyl groups in the propyl chain are pivotal for the activity in this series. Compound 1.21 

provided also specific Qo site inhibition, IC50 = 79.6 ± 3.41 nM, against the homologous yeast bc1 

complex, and poor inhibition of the rat enzyme, IC50 = 2,495 ± 820 nM [18]. 

 

 
 

Additionaly, a series of four unique naphthoquinones isolated from the rootbark of Kigelia 

pinnata demonstrated useful antiplasmodial activity. 2-(1-Hydroxyethyl)naphtho[2,3-b]furan-4,9-

dione, 1.23, was found to be the most active molecule, with IC50 values of 627 nM and 718 nM 

against the K1 and T9-96 P. falciparum strains, respectively, Table 1.1. Isopinnatal, 1.24, kigelinol, 

1.25, and isokigelinol, 1.26, exhibited lower activities, especially the latter two. Moreover, despite 

the cytotoxicity of these compounds, the antiplasmodial activity was not due to in vitro cytotoxicity, 

as the selectivity indexes were of at least 10. The study also suggested that furanonaphthoquinones 

possessed much less affinity to parasitic mitochondria when compared to naphthoquinones, and that 

minor changes in furanonaphthoquinones would favour accumulation in the parasitic mitochondrial 

membrane. This would eventually increase the activity [86]. 
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Table 1.1 In vitro activity of Kigelia pinnata compounds [86]. 

Antiplasmodial Activity  

IC50 (nM)  Compound 

K1 strain T9-96 strain 

1.23 627 718 

1.24 763 1,552 

1.25 16,660 15,200 

1.26 15,200 11,930 

 

 

Similarly, fully synthetic thiophenonaphthoquinones 1.27-32 displayed moderate to good in 

vitro activity against P. falciparum at 0.2 μM, but were not active in vivo, Table 1.2 [87]. 

 
Table 1.2 Antiplasmodial in vitro activity of thiophenonaphthoquinone compounds against the BHz 26/28 chloroquine-

resistant strain [87]. 

 

Compound R1 R2 
% infection 

reduction at 0.2 μM 

1.27 H H 55 

1.28 H 8-OMe 7 

1.29 H 5-OMe 78 

1.30 H 6-OMe 78 

1.31 H 7,8-di-OMe 51 

1.32 2-NO2 H 45 
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A series of amino-1,4-naphthoquinones was also tested for antiplasmodial activity and 2-amino-

3-chloro-1,4-naphthoquinone, 1.33, was the most potent compound with an IC50 of 180 nM against 

the W2 strain, Table 1.3. The presence of a primary amino group in R1 appeared to be essential for 

activity, since substitution of that group for a halogen, 1.34, decreased activity by 260-fold, while 

inclusion of other amino groups at R2, 1.35-37, rendered compounds with only modest 

antiplasmodial activity [88]. 

 

 
Table 1.3 In vitro activity of 1,4-naphtoquinone compounds [88]. 

 
Antiplasmodial activity 

IC50 (nM) Compound R1 R2 R3 R4 R5 R6 

W2 strain D6 strain 

1.33 NH2 Cl H H H H 180 920 

1.34 Cl Cl H H H H 43,260 43,980 

1.35 Cl N-pyrrolidino H H H H 9,630 36,650 

1.36 Cl N-morpholino H H H H 31,960 115,140 

1.37 H N-anilino H H H H 47,670 63,970 

 

 

Given that the use of metal complexes capable of enhancing the activity of biological 

compounds has become a relevant strategy, a small library of ferrocene derivatives of 1,4-

naphthoquinone was built, incorporating a modified side chain of 6-8 carbons. Those displayed 

moderate antiplasmodial activity. The IC50 of compounds 1.38-40 was 3 to 6-fold higher than that 

of atovaquone, hinting that the ferrocene unit is damaging to activity, Table 1.4. Thus, it was 

suggested that this series do not act at the bc1 complex level [89]. 
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Table 1.4 Antiplasmodial activity of ferrocenyl 1,4-naphthoquinone compounds [89]. 

 
IC50 (μM) 

Compound R1 
3D7 strain Dd2 strain 

1.38 (CH2)5CH3 5 ± 0.4 2.5 ± 0.3 

1.39 (CH2)6CH3 2.5 ± 0.3 5 ± 0.4 

1.40 (CH2)7CH3 6.25 ± 1.5 6 ± 1.25 

Atovaquone  0.6 ± 0.2 0.7 ± 0.35 

 

 

1.3.2 4(1H)-Quinolones 

4(1H)-Quinolones are also valuable antiprotozoal scaffolds, acting on the mitochondrial 

electron transport-chain [11, 90-92]. Much work, directed at improving both the antimalarial activity 

and the solubility of endochin, 1.41, in water has been carried out. Structural modifications include 

carbonates, N-oxides, Mannich-bases and esters. Introduction of the N-hydroxyl group in the 

endochin molecule (BD26235), 1.42, for example, resulted in increased water solubility and in 

improved antimalarial activity [90, 91, 93]. However, substitution of the alkyl side chain for a 

cyclopentyl group, or substitution of the methoxy group by a chlorine atom, results in appreciable 

loss of activity [94]. A separate study yielded more promising results, with some alkenylquinolones, 

1.43-45, displaying activity or curative properties on infected mice. Compound 1.45 had activity 

comparable to that of endochin, with an IC50 of 5.7-16.6 nM, and displayed no cross resistance with 

some marketed antimalarials [95]. Additionally, elimination of the double bond in conjugation with 

the quinolone ring destroyed activity [96]. Compound 1.42, on the other hand, proved to be non-toxic 

and was curative in infected chicks. BE11382, 1.46, increased the mean survival time in parasite 

infected mice, suggesting that a substituent at C7 of 3-carboethoxy-4(1H)-quinolones may be 

beneficial [97]. 

More recently, in a search for new scaffolds that comply with the structural features of the 

4(1H)-quinolones, an in silico pharmacophore model was employed to screen virtual libraries of 

compounds [98]. Also, based on the structures of WR 194,905, 1.47, and WR 197,236, 1.48, a small 

set of compounds was synthesised and important structure activity relationships were drawn. 
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Simple quinolones without a long alkyl side chain yielded IC50 values of 2.5 μM, 1.49, 2.3 μM, 

1.50, and 325 nM, 1.51, while compounds with longer side chains were active in the low nanomolar 

range, e.g. IC50 1.2 nM for 1.52. Moreover, evidence suggests a mechanism of action similar to that 

of atovaquone, as significant cross resistance was attained against the Tm90-C2B strain. A 3-

trifluorohexyl group also improved antimalarial activity by 70-fold over the corresponding 

unsubstituted counterpart, e.g. 1.53 vs. 1.50 and, more interestingly, no cross resistance to 

atovaquone was observed. Regarding the metabolism, this substituent may also be interesting since 

its terminal location is expected to block cytochrome P450 mediated oxidation. Other structure 

activity relationships that can be drawn are: substitution of 7-OMe for 7-OH reduces activity, and 

lengthening of the haloalkyl side chain increases it. This class of compounds also showed 

synergism with 4(1H)-pyridones and inhibition of oxygen consumption at the bc1 complex level [99]. 

A summary of antiplasmodial activities can be found in Table 1.5. 

 

 
Table 1.5 Antiplasmodial activities of 4(1H)-quinolones [99]. 

IC50 (nM) 
Compound 

D6 strain Dd2 strain Tm90-C2B strain 

1.49 > 2,500 > 2,500 > 2,500 

1.50 2,300 1,260 1,290 

1.51 325 303 750 

1.52 1.2 1.2 270 

1.53 32 30 66 

1.54 680 390 1,360 

1.55 1.25 1.44 4.7 

1.56 7.3 5.5 26.6 

Endochin 3.2 2.8 17.4 

Atovaquone 0.3 0.5 5,090 
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1.3.3 Acridones 

Related acridones have also demonstrated potent antiplasmodial activity, Table 1.6 [100, 101]. 

These reveal structure activity trends identical to the quinolones; those containing a longer side 

chain and terminal CF3 groups exhibit higher potencies, with IC50s as low as ~1 pM, 1.78. The ring 

nitrogen is also critical for activity, given the observed decrease in potency by over 50,000-fold 

when the nitrogen is replaced by oxygen; the xanthone 1.88 has an IC50 of 16 μM. It was also noted 

that alkylation of the nitrogen resulted in drop of activity, to a lesser extent, i.e. 1.85 [100]. 
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Table 1.6 Antiplasmodial activities of acridone series [100]. 

 

IC50 (nM) 
Compound R1 R2 R3 

D6 strain Dd2 strain 

1.57 H H H 2,000 2,500 

1.58 H 2-NH2 H 50,000 50,000 

1.59 H 2-OMe H 329 271 

1.60 H 3-OMe H 283 224 

1.61 H 2-OH H 9,000 4,400 

1.62 H 3-OH H 2,000 504 

1.63 6-Cl 2-OMe H 45 65 

1.64 6-Cl 2-OH H 190 260 

1.65 6-Cl 2-O(CH2)4CH2Br H 70 152 

1.66 6-Cl 2-O(CH2)4CH2Cl H 46 40 

1.67 6-Cl 2-O(CH2)5NMe2 H 67 95 

1.68 6-Cl 3-OMe H 76 192 

1.69 6-Cl 3-OH H 2,200 9,200 

1.70 6-Cl 3-O(CH2)4CH2Br H 27 54 

1.71 6-Cl 3-O(CH2)4CH2Cl H 12 13 

1.72 6-Cl 3-O(CH2)3CF3 H 1.0 1.2 

1.73 6-Cl 3-O(CH2)4CF3 H 0.3 0.5 

1.74 H 3-O(CH2)4CF3 H 0.5 0.3 

1.75 6-Cl 3-O(CH2)5CF3 H 0.06 0.07 

1.76 6-Cl 2-O(CH2)5CF3 H 10 15 

1.77 6-Cl 3-O(CH2)4CF2CF3 H 0.02 0.02 

1.78 6-Cl 3-O(CH2)4CF(CF3)2 H 0.0015 0.0008 

1.79 H 2-O(CH2)5CF3 H 36 49 

1.80 H 3-O(CH2)5CF3 H 0.43 0.015 

1.81 H 4-O(CH2)5CF3 H 446 515 

1.82 6-Cl 3-O(CH2)7CF3 H 0.16 0.17 

1.83 6-Cl 3-O(CH2)7CH2OH H 2.2 3.5 

1.84 6-Cl 3-O(CH2)10CF3 H 0.023 0.025 

1.85 6-Cl 3-O(CH2)4CF3 Me 4,000 3,500 

1.86 6-NO2 3-O(CH2)5CF3 H 3.2 5.8 

1.87 6-NH2 3-O(CH2)5CF3 H 0.018 0.025 
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1.3.4 Acridinediones 

Acridinediones are another class of known potent antimalarials [102-104], that have been reported 

to inhibit the parasite respiratory pathway, causing a reduction of oxygen consumption. 

Acridinediones are predicted to block the bc1 complex, but small changes into their structure affect 

not only their potency, but also their mechanism of action. While some inhibit the bc1 complex 

others inhibit hematin polymerization [20, 64, 105, 106]. (S)-WR 249685, 1.89, and racemic floxacrine, 

1.90, are two selective bc1 complex inhibitors for P. falciparum. Their IC50s for the enzyme are in 

the nanomolar range and consistent with whole cell growth inhibition. Additionally, data suggests 

mild cross resistance with atovaquone, associated to bc1 complex mutations. This results in an 

increase of the IC50s, which is an indication of Qo site blocking [20]. Compounds that lack the N-

hydroxyl present in 1.90 have reduced antiplasmodial activity in general; N-allyl derivatives display 

modest activity, while the N-alkyl acridinediones are inactive. Replacement of the ketone function 

at the 1-position by an imine, afforded derivatives with comparable activities, and longer side 

chains on the imine moiety improved activity. Compounds 1.91 and 1.92 were curative in doses as 

low as 5 mg/kg in mice. Commonly, an aryl moiety at C3 is required for high potency, as alkyl 

substituents either yield compounds that are devoid of antiplasmodial activity or are marginally 

active. Electron withdrawing groups in the C3-aryl moiety also enhance potency, whereas electron 

donating groups diminish it. Interestingly, a methyl group at C2′ of the aromatic ring is not 

deleterious, as opposed to bulkier substituents which decrease the potency. A chlorine located at C7 

is also important for activity, but the lack of any substituents in positions C5 and C8 affords 

molecules with lowered effectiveness [107]. 
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1.3.5 4(1H)-Pyridones 

The novel class of 4(1H)-pyridones is based on clopidol, 1.93. Clopidol is long known for its 

antiplasmodial (curative at 160 mg/kg) and anticoccidal activities through inhibition of 

mitochondrial respiration [108, 109]. However, its poor solubility in several solvents led to the 

synthesis of various derivatives [108, 110]. Currently, GlaxoSmithKline (GSK) is developing a series 

of clopidol analogues with more lipophilic side chains in an effort first disclosed in 1991 [111-113]. 

Compared to its lead, the n-octyl derivative 1.94 has enhanced activity in vitro, but is inactive in 

vivo due to metabolic degradation of the side chain, Table 1.7. Introduction of side chains less prone 

to metabolism, 1.95-99, improved not only  the in vitro, but also in vivo activities [19]. 

 

 
Table 1.7 Antiplasmodial activities of 4(1H)-pyridones: influence of side chain on activity [19]. 

 

Compound R 
P. falciparum T9-96 

IC50 (nM) 

P. yoelii 

ED50 (mg/kg) 

1.93 Cl 20,000 40 

1.94 n-C8H17 4,000 > 60 

1.95 Ph 11,000 22 

1.96 
 

2,500 20 

1.97 
 

50 0.6 

1.98 
 

400 0.7 

1.99 
 

60 0.6 

Atovaquone  3 0.03 

 

 

Further structure-activity relationship (SAR) analysis on derivatives containing the 3(4’-

phenoxy)phenyl side chain was carried out. A halogen at C5, either chlorine or bromine, leads to 

more potent derivatives. Though, other electron withdrawing substituents at that position do not 

improve activity, and electron donating moieties result in a significant increase of the IC50, Table 

1.8. Variation within the terminal aryl moiety does not influence activity significantly, and the 

phenoxy side chain is best positioned at 3′ or 4′; a much reduced activity is observed for the 2′ 
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analogue, i.e. 1.120. The methyl groups at C2 and C6 also appear to be critical, and significant loss 

of activity is achieved upon their withdrawal or their replacement by a trifluoromethoxy group. The 

N-oxide derivatives are 10-fold less active than their pyridone counterparts, e.g. 1.125 vs. 1.104 and 

1.126 vs. 1.102 [19].  

In addition to potent activity against erythrocytic stages of malaria, these compounds showed in 

vitro and in vivo activity against liver stages, making them amenable to prophylaxis [19, 114]. 

ADME studies on compound GW844520, 1.113, revealed a half-life adequate for short duration 

of oral therapy, activity against resistant isolates, and no cross resistance with atovaquone, among 

other features. However, according to the MMV 2005 annual report its development was 

discontinued due to toxic properties [19, 115, 116].  GW308678, 1.110, was then selected for further 

development, but unfortunally showed recrudescence at any dose up to 32 mg/kg [117]. Since 2006, 

two further patents from GSK have disclosed structural modifications of the lead compound: 

compounds with biaryl or related side chains at C3, and those containing modified side chains 

instead of methyl groups at C2 or C6 display promising in vitro antiplasmodial activities for 

advanced development [118, 119]. The MMV portfolio for the second quarter of 2010 includes one of 

those compounds, GSK932121, 1.127, in phase I of clinical trials [120]. 
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Table 1.8 Antiplasmodial activities of phenoxyaryl-4(1H)-pyridones [19]. 

 
P. falciparum 

IC50 (nM) Compound R1 R2 R3 X Isomer R4 

T9-96 3D7A 

P. yoelii 

ED50 

(mg/kg) 

1.100 Me Me H Br 4-OAr H 150 N.A. 4 

1.101 Me Me H Br 4-OAr 4-F 40 N.A. 0.6 

1.102 Me Me H H 4-OAr 4-Cl 250 N.A. 2.5 

1.103 Me Me H Cl 4-OAr 4-Cl 60 N.A. 1.7 

1.104 Me Me H Br 4-OAr 4-Cl 40 N.A. 0.3 (5) 

1.105 Me Me H Cl 4-OAr 3-Cl 30 N.A. > 5 

1.106 Me Me H Br 4-OAr 3-Cl 30 N.A. 3.9 

1.107 Me Me H H 4-OAr 4-CF3 500 N.A. 1.3 

1.108 Me Me H Cl 4-OAr 4-CF3 60 N.A. 0.6 

1.109 Me Me H Br 4-OAr 4-CF3 30 N.A. 0.3 (1.1) 

1.110 Me Me H Cl 4-OAr 3-CF3 30 N.A. 0.2 (0.2-0.6) 

1.111 Me Me H Br 4-OAr 3-CF3 30 N.A. 0.6 (3.6) 

1.112 Me Me H H 4-OAr 4-OCF3 160 160 > 5 

1.113 Me Me H Cl 4-OAr 4-OCF3 30 5 0.2 (0.4-1.3) 

1.114 Me Me H Br 4-OAr 4-OCF3 30 8 0.3 (0.2-0.5) 

1.115 Me Me H CF3 4-OAr 4-OCF3 N.A. 30 N.A. 

1.116 Me Me H NO2 4-OAr 4-OCF3 N.A. 30 N.A. 

1.117 Me Me H OMe 4-OAr 3-CF3 N.A. 300 N.A. 

1.118 Me Me H 
 

4-OAr 4-OCF3 N.A. 1,290 N.A. 

1.119 Me Me H Br 3-OAr 4-OCF3 N.A. 7 N.A. 

1.120 Me Me H Br 2-OAr 4-OCF3 N.A. 400 N.A. 

1.121 H Me H Br 4-OAr 4-OCF3 N.A. 200 N.A. 

1.122 Me H H Br 4-OAr 4-OCF3 N.A. 110 N.A. 

1.123 Me CF3 H Br 4-OAr 4-OCF3 N.A. > 1,000 N.A. 

1.124 H CF3 H Br 4-OAr 4-OCF3 N.A. > 1,000 N.A. 

1.125 Me Me OH Br 4-OAr 4-Cl 450 N.A. ~ 1,000 

1.126 Me Me OH H 4-OAr 4-Cl 2,200 N.A. > 1,000 

N.A. - Not available 
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1.3.6 (E)-β-Methoxyacrylates 

(E)-β-Methoxyacrylate is a scaffold known to inhibit the bc1 complex. Compounds from this 

class have found applicability in tackling crop pathogens, and as tools for probing the function of 

the bc1 complex [121-127]. Unlike other classes of inhibitors, ubiquinol still binds in the Qo in 

presence of these inhibitors, but its electrons cannot be transferred to the ISP. A shift of the relative 

position of the natural ligand due to a conformational distortion of cytochrome b, induced by the 

binding of methoxyacrylates, appears to be the reason [128, 129]. In 1999, 252 compounds were first 

disclosed as having potent antimalarial activity on chloroquine sensitive and resistant strains, a step 

that led to some highly active compounds reported a year later [130, 131]. Compound 1.128 had shown 

useful antiplasmodial activity, but derivatives containing a longer linker, from two to four atoms, 

1.129-133, improved activity when compared to 1.128, Table 1.9. The (E,E)-butadiene linker 

conferred the better activity to the compounds [131]. 

 

 
Table 1.9 Antiplasmodial activities of β-methoxyacrylate against the K1 strain [131]. 

 
Compd. L R IC50 (nM) Compd. L R IC50 (nM) 

1.128  2-CF3 75.8 1.138 3-F 24.8 

1.129  2-CF3 21.5 1.139 3-CF3 43.0 

1.130  2-CF3 6.2 1.140 3-Br 48.6 

1.131 
 

2-CF3 1.6 1.141 4-Cl 5.6 

1.132  2-CF3 0.39 1.142 2,4-diCF3 0.3 

1.133  2-CF3 3.9 1.143 2,4-diCl 0.26 

1.134 
 

2-CF3 4.2 1.144 2,4-diMe 
0.14 

1.135  H 11.5 1.145 2-Cl, 4-F 0.51 

1.136  2-Cl 1.1 1.146 3-OMe, 2-NO2 1.47 

1.137  2-CN 4.6     

 

 

1.3.7 Chalcones 

SAR studies with chalcones show that the most important features for antiplasmodial activity 

are the properties of ring B. Hydrophobicity and the size of substituents are critical. Hydroxylated 
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chalcones showed to be at least 2-fold less active when compared to the corresponding alkoxylated 

analogues [132, 133]. Recently, naphthyl and quinolinyl chalcone derivatives were reported to display 

submicromolar antiplasmodial activities, 1.147-154, Table 1.10. Generally, quinolinyl and pyridinyl 

derivatives are preferred over naphthyl, and 2-quinolinyl over the remainder positional isomers in 

vitro. Quinolinyl derivatives presented activities in the low nanomolar range, whereas pyridinyl and 

naphthyl compounds displayed micromolar IC50s. Both methoxy and halogenated chalcones 

afforded compounds with good activity and no difference was observed between chloro and fluoro 

analogues [134, 135]. Several other reviews report structural modifications on this attractive scaffold 
[136-139].  

 
Table 1.10 Antiplasmodial activities of selected chalcones [134]. 

 
IC50 (nM) 

Compound R1 R2 
W2 strain D6 strain 

1.147 3,4-di-OMe 4-quinolinyl 0.50 0.88 

1.148 2,5-di-Cl 3-quinolinyl 1.70 0.62 

1.149 2,5-di-Cl 4-quinolinyl 0.23 0.19 

1.150 3,4-di-Cl 4-quinolinyl 0.80 1.70 

1.151 2-OMe, 5-F 2-quinolinyl 0.67 3.8 

1.152 2-OMe, 5-F 3-quinolinyl 1.10 0.46 

1.153 3-F, 4-OMe 4-quinolinyl 3.20 0.93 

1.154 2-OMe, 5-Cl 3-quinolinyl 0.59 0.95 

 

 

Licochalcone A, 1.155, is a natural product from Chinese liquorice roots known to inhibit 

cytochrome bc1, SDH and falcipain-2 [139-142]. No correlation between falcipain inhibition and 

antiplasmodial activity was found, but evidence of a strong inhibitory effect on the mtETC suggests 

that the main mechanism of action might involve the competitive blocking of multiple ubiquinone 

binding sites [143, 144]. Mi-Ichi and co-workers showed that complex II was sensitive to licochalcone 

A at an IC50 value of 1.30 μM, i.e. 10-fold more potent than against the mammalian counterpart. 

Moreover, DHODH-cytochrome c activity was sensitive to licochalcone A with an IC50 value of 

100 nM, but PfDHODH was not inhibited even at 100 μM, which means that the bc1 complex is the 

main drug target [144]. 
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1.3.8 8-Aminoquinolines 

8-Aminoquinolines have also been hypothesised to interact with the mtETC complex through 

inhibition of Qo / Qi sites, due to the structural similarities with the natural ligand [145-147]. 

Primaquine, 1.156 and other 8-aminoquinoline representatives are, like atovaquone, effective in 

both P. falciparum prophylaxis and leishmaniasis [148-150]. Many related compounds were 

synthesised with respectable activities against murine, primate and avian malaria. Although 

interspecies differences in activity profiles were often observed [151-156]. For example, 1.157 and 

1.158 showed causal prophylaxis and cured murine malaria at 20 mg/kg and 10 mg/kg, respectively 
[157, 158]. Presently, tafenoquine 1.159 and aablaquine 1.160 are in the final stages of clinical trials 

against P. falciparum and P. vivax. Further information on the subject can be found in a recent 

review of primaquine-based antimalarials [149]. 

 

 
 

 

1.3.9 Miscellaneous 

Myxothiazol, 1.161, is a group I antibiotic and a potent antimalarial bc1 complex inhibitor with 

an IC50 of 33 nM and 695 nM on the D6 and Tm90C2B (atovaquone resistant) strains, respectively 
[47, 159].  
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Stigmatellin A and B, 1.162 and 1.163, block the Qo site and present properties of both type I 

and II inhibitors [160]. They bind to the heme bL domain of cytochrome b as well as to the ISP, and 

contain a 5,7-dimethoxy-8-hydroxychromone system with an alkenyl side chain in position 2, 

responsible for the tight binding [44]. Modification of the 8-hydroxy, 5-methoxy or 4-keto groups 

leads to partial or complete loss of inhibitory activity. On the other hand, reduction of the chromone 

to a chromanone system does not alter the potency significantly, nor this can be achieved by an 

alteration of the side chain, as long as the overall lipophilicity is not decreased. Hence the partition 

coefficient of the inhibitor between the aqueous phase and the membrane is of decisive importance 
[47]. The IC50s of 79.2 nM and 147.5 nM for D6 and Tm90C2B showed only a 2-fold loss of activity 

to an atovaquone resistant strain, suggesting different binding of that of atovaquone [159]. 

MK-4815, 1.164, has been identified to have antiplasmodial activity in whole parasite screens 

by Merck & Co. Inc. It has also demonstrated potency against P. falciparum malaria. Its mechanism 

of action appears to involve the mtETC of the parasite [120]. 

 

 
 

 
 

Antimycin A, 1.165 Figure 1.4, is a dilactone salicylamide, and a potent inhibitor of the Qi site 

of cytochrome bc1 with an IC50 of 13 nM and 10.7 nM against D6 and Tm90C2B, respectively [159, 

161]. Crystal structures for bovine complex III inhibited by this molecule have been determined. A 

strong hydrogen bond network with the enzyme can be observed. The formamide oxygen hydrogen 

bonds with K227, through a water molecule, whereas the nitrogen acts as a hydrogen bond donor to 

D228, which also forms a hydrogen bond with the phenol group. A hydrogen bond between the 
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phenolic oxygen and the benzamide is responsible for the co-planarity of the system and the 

benzamide oxygen is involved in a water mediated hydrogen bond to H201 [162, 163].  

 

 
Figure 1.4 Structure of antimycin  A and cytochrome bc1 interactions [164]. 

 

SAR studies on antimycin A analogues suggest that the aromatic region is crucial for activity 

and the remainder of the molecule only contributes for proper solubility characteristics, as loss of 

activity is observed by varying the phenol acidity and withdrawal of the formamide group [165, 166]. 

Simpler analogues with the replacement of the dilactone moiety for biphenyl ethers, 1.166, were 

prepared and showed comparable in vitro inhibitory potency to antimycin A. Therefore, the overall 

hydrophobicity is important for proper interaction and fitting in the active site [167]. However, since 

the reactivity of formamide could result in lower in vivo activity, a series of azole-fused 

salicylamides were prepared to circumvent the drawbacks of the previous analogues. Benzotriazole 

and indole derivatives with a trifluoromethyl group, 1.167, showed to possess identical activity to 

that of antimycin against the bc1 complex, but low in vivo activity due to weak cell penetration [164]. 

 

 
 

Finally, funiculosin, 1.168, a N-methyl-4-hydroxy-2-pyridone antibiotic with a hydrophobic 

side chain also inihibits the respiratory chain at the Qi and Qo sites [42, 168-170]. 



Introduction 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

25 

 
 

 

1.4 Aims of the thesis 
The primary goal of this project was to contribute to the ongoing research of mitochondrial 

cytochrome bc1 inhibitors in malaria, providing information on what determinants are crucial for an 

effective blocking of the drug target. 

To achieve the goal, the (1H-pyridin-4-ylidene)-amine (or 4-pyridonimine) scaffold, 1.169, was 

chosen as a starting point for drug candidate optimization and development, based on the following 

observations: 

a) Compounds with general structure 1.169 may represent bioisosteres of clopidol, 1.93. 

Biososterism is an important tool in rational drug design and the imino group is considered 

to be a good replacement for the carbonyl group [171]; 

b) Compounds 1.169 derive from similar structures 1.170 that display good in vitro 

antiplasmodial activity, but poor chemical stability [172]. The target compounds 1.169 do not 

contain the N-amidomethyl moiety, which is responsible for the reported chemical 

reactivity; 

c) This molecular simplification strategy allows the use of simple starting materials for the 

synthesis, a major issue for obtaining drugs at an affordable cost. Moreover, the proposed 

synthetic pathway allows the introduction of a large number of structural motifs. 
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This would be conducted by combining theoretical and experimental procedures. A 

computational chemistry study was carried out to assess the suitability of this scaffold as a 4(1H)-

pyridone isostere. This study would also determine the major structural and electronic properties of 

the (1H-pyridin-4-ylidene)amine scaffold that might be relevant for the interaction with the 

molecular target in the parasite. The synthesis through simple building-blocks, in vitro evaluation 

against P. falciparum strains, and a biochemical model of the bc1 complex, would provide the 

proof-of-concept and complete this task, chapters 2 and 3.  
 

In a second phase, the SAR information withdrawn from the previous series and the literature 

would be used to design a new library of flavone and isoflavone derivatives. The scaffold was also 

chosen based on the following premises: 

a) Stigmatellin, 1.162-163, is a natural chromone-based antibiotic with potent antiplasmodial 

activity [159]; 

b) Being a natural product, the access to stigmallin is limited and its chemical synthesis time-

consuming and exquisitely difficult; 

c) The chromone ring in stigmatellin is responsible for binding to the Rieske protein and 

cytochrome b. The synthesis of the core scaffold can be achieved through appropriate 

starting materials in a straightforward manner, allowing at the same time the introduction of 

lipophilic, yet simpler side chains when compared to that of stigmatellin. 

The in vitro evaluation of the flavone derivatives against different P. falciparum strains would 

provide information on which substituents would be best to carry on in scaffold optimization and 

future chemical synthesis, chapter 4. 

 

Finally, with the aim of discovering novel scaffolds capable of inhibiting the bc1 complex for 

future optimization, a virtual screening study would be carried out, chapter 5. Virtual screening is 

widely regarded as a valuable technique for lead discovery and presents advantages compared to 

high-throughput screening (HTS). The celerity and its less expensive nature, compared to HTS, 

make this an ideal approach for retrieval of new leads from libraries comprising several thousands 

of chemotypes. The validation of the procedure would be achieved from in vitro testing of the 

chosen ligands. 

 



 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

 
PYRIDONIMINE SCAFFOLD 
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2. PYRIDONIMINE SCAFFOLD 
 

2.1 Quantum mechanical study 
 

2.1.1 Brief overview on electronic structure methods and its use in the development of 

antimalarial drug candidates 

Electronic structure methods use laws of quantum mechanics for its calculations, i.e. the energy 

and related properties of a given molecule are obtained by solving the Shrödinger equation. Since 

the exact solution is not pratical in most cases, several mathematical approximations are employed 

to its solution. Thus, according to the type of approximation, one can classify the electronic 

structure methods in:  

a) Semi-empirical methods, e.g. AM1, which use parameters derived from experimental 

data to simplify the equation; 

b) ab initio methods, which use no experimental data, and are based solely on the laws of 

quantum mechanics (first principles).  

Density functional methods, or DFT, are similar to ab initio methods, and include the effects of 

electron correlation. Besides the method that one has to choose, there is also a basis set. The basis 

set is a mathematical representation of the molecular orbitals within a given molecule. Thus, it is 

possible to constrain the calculation with a smaller basis set. On the other hand, a larger basis set 

will represent more accurately the molecular orbitals, but the time required to achieve a result will 

be longer. Therefore, it is necessary to balance the time available to perform a calculation and the 

desired accuracy of the outcome [173, 174]. In malaria these methods have been successfully employed 

to model inhibitors of the aggregation of hematin into hemozoin [175-179].  

This part of the work was developed in parallel with the synthesis of the Mannich-base 4-

pyridonimines (Section 2.3) and aimed to study the electronic and molecular structures of those 

compounds, in order to establish relationships between the quantum chemical descriptors and the 

antiplasmodial activity of the molecules. Hence, all the synthesized compounds were studied as 

well as other 4-pyridonimines that could be easily obtained from the same synthetic pathway. 

 

 

2.1.2 Molecular geometry of 4-pyridonimines 

Most of the 4-pyridonimines presented in Table 2.1 were studied in their (E) and (Z) 

configurations. Also, several conformations were studied for each diastereoisomer to determine 
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which one corresponded to the global minimum of energy. The optimized conformations were 

found to be local minima on their potential energy surfaces, following a frequency calculation 

(Appendix 1.1 for the energy-minimized structures). Since the structurally-related amodiaquine is 

reported to present an intramolecular hydrogen bond between the phenolic oxygen and the nitrogen 

atoms from the diethylamino group as a free base [180], this series of compounds was also optimized 

with this hydrogen bond. As expected, it was found that the conformers containing a hydrogen bond 

between the phenolic oxygen and the nitrogen from the diethylamino group provided lower 

energies, i.e. were more stable, when compared to the ones without such bond. Furthermore, the 

predicted pKa values for the basic nitrogens on 2.1 are 11.3 for N8’ and 12.5 for N8 [181]. 

Consequently, the protonated forms of this compound, 2.2 and 2.3, were also studied, as they would 

present a probable ionization state in aqueous media. For the compounds that were studied in both 

their (E) and (Z) configuration it was found that the (E) diastereoisomers were more stable than 

their counterparts, Table 2.2, i.e. when the substituent was on R3 rather than on R1. The only 

exception was compound 2.4, where the (Z) diastereomer was marginally more stable than the (E) 

isomer. In this case, the predicted lower steric constraint might justify the obtained result. In fact, 

the C3-C4-N8 angle in (Z)-2.4 was very similar to the one observed for (E)-2.24, Table 2.3. For a 

full analysis of the stereoelectronic properties, only the most stable diastereomer was chosen.  
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Table 2.1 Structures of compounds 2.1-17 (only the (E) conformer is explicitly included). 

 
Compd R1 R2 R3 R4 R5 

2.1 H H H H NEt2 

2.2 H H H H NHEt2
+ 

2.3a H H H H NHEt2
+ 

2.4 H Me H H NEt2 

2.5 H H NH2 H NEt2 

2.6 H H Me H NEt2 

2.7 H Me H H N(Me)Et2
+  

2.8 H H SO2NMe2 Me N(Me)Et2
+  

2.9 H H NO2 H NEt2 

2.10 H H F H NEt2 

2.11 H CN H H NEt2 

2.12 H H CO2H H NEt2 

2.13 Cl H Cl H NEt2 

2.14 H H CF3  H NEt2 

2.15 H H OH H NEt2 

2.16 H H Br H NEt2 
a Protonated on the imine nitrogen (atom N8). 
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Table 2.2 Selected electronic properties. 

Compound  E (Hartree) a EHOMO (Hartree) ELUMO (Hartree) HOMO-LUMO Gap 

Atovaquone 

Clopidol 

2.1 

2.2 

2.3 

(E)-2.4 

(Z)-2.4 

(E)-2.5 

(E)-2.6 

(Z)-2.6 

 (E)-2.7 

(Z)-2.7 

(E)-2.8 

(Z)-2.8 

 (E)-2.9 

(E)-2.10 

(E)-2.11 

(Z)-2.11 

(E)-2.12 

2.13 

(E)-2.14 

(E)-2.15 

(E)-2.16 

2.17 

-1535.312321 

-1321.198283 

-900.750151 

-901.146060 

-901.473062 

-940.036257 

-940.039605 

-956.092729 

-940.042220 

-940.033866 

-979.707670 

-979.706674 

-1662.139781 

-1662.133697 

-1105.233082 

-999.981523 

-992.983733 

-992.983458 

-1089.300945 

-1819.936762 

-1237.773631 

-975.953891 

-3471.857156 

-1631.586747 

-0.23889 

-0.22196 

-0.15961 

-0.26655 

-0.44142 

-0.15899 

-0.15859 

-0.15475 

-0.16024 

-0.15804 

-0.25999 

-0.15859 

-0.27044 

-0.27494 

-0.17632 

-0.16475 

-0.17469 

-0.17385 

-0.16713 

-0.16548 

-0.17023 

-0.15755 

-0.16691 

-0.19225 

-0.10860 

-0.02444 

-0.01103 

-0.11388 

-0.27026 

-0.00779 

-0.00776 

-0.00954 

-0.00966 

-0.00934 

-0.11470 

-0.00776 

-0.11761 

-0.11912 

-0.07052 

-0.01886 

-0.06170 

-0.06411 

-0.04130 

-0.03000 

-0.02608 

-0.01131 

-0.02077 

-0.02402 

-0.13029 

-0.19752 

-0.14858 

-0.15267 

-0.17116 

-0.15120 

-0.15083 

-0.14521 

-0.15058 

-0.14870 

-0.14529 

-0.15083 

-0.15283 

-0.15582 

-0.10580 

-0.14589 

-0.11299 

-0.10974 

-0.12583 

-0.13548 

-0.14415 

-0.14624 

-0.14614 

-0.16823 
a Energy corrected to 298 K. 

 

 

The Qo site in cytochrome bc1 adopts the shape of a curved tube [60]. As a consequence, both the 

substitution pattern, and the geometry of the molecule need to be addressed, and thus, the 

characterization of the molecules regarding their conformation and topology is of utmost 

importance, Table 2.3. These 4-pyridonimines displayed a positive C3-C4-N8 angle deviation from 

120º, ranging from ca. 123º to 134º, regardless of the diastereoisomer, e.g. 2.4, 2.6 and 2.8. The C3-

C4-N8 angle deviation from 120º was affected by the protonation state at N8 and N8’.  For 

example, the neutral 2.1 presented an angle of 128.2º, while protonation at N8’, e.g. 2.2, decreased 

the angle by almost 5º. Additional protonation at the imine nitrogen N8, e.g. 2.3, restored the C3-

C4-N8 angle to a value similar to that of the neutral molecule.  
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Table 2.3 Selected angle and dihedral angles 

 
Cpd Angle (º) Dihedral angle (º) Cpd Angle (º) Dihedral angle (º) 

ATVa 

2.1 

 

2.2 

 

2.3 

 

(Z)-2.4 

 

(E)-2.4 

 

2.5 

 

(Z)-2.6 

 

(E)-2.6 

 

(Z)-2.7 

 

(E)-2.7 

 

(Z)-2.8 

 

C2-C3-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1’ 

122.4 

128.2 

122.2 

123.5 

127.7 

127.9 

123.7 

127.9 

122.0 

128.1 

121.8 

129.5 

123.0 

130.1 

126.3 

127.6 

122.2 

128.2 

124.2 

128.2 

123.8 

128.1 

125.3 

C2-C3-C1’-C2’ 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1’-C2’ 

 

-116.7 

-133.3 

 

-138.1 

 

-128.2 

 

-129.3 

 

  -56.6 

 

  -50.3 

 

-125.6 

 

  -55.9 

 

  -44.0 

 

-143.2 

 

-117.5 

 

(E)-2.8 

 

(E)-2.9 

 

(E)-2.10 

 

(E)-2.11 

 

(E)-2.12 

 

2.13 

 

(E)-2.14 

 

(E)-2.15 

 

(E)-2.16 

 

2.17 

 

C3-C4-N8 

C4-N8-C1’ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

C3-C4-N8 

C4-N8-C1´ 

128.1 

125.3 

126.2 

122.2 

129.3 

121.7 

129.0 

122.5 

125.1 

122.1 

131.7 

127.8 

127.4 

122.2 

128.6 

122.0 

127.9 

122.5 

133.6 

127.4 

 

C4-N8-C1’-C2’ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

C4-N8-C1´-C2´ 

 

 -139.3 

 

   -57.7 

 

  -54.8 

 

  -50.5 

 

  -62.3  

 

-132.3 

 

  -56.8 

 

   -54.8 

 

  -54.6 

 

   -96.2 

a ATV - Atovaquone; Numbering in page 6. 

 

 

Inspection of Table 2.3 allows the following observations regarding the predicted molecular 

structure of the studied compounds:  

a) The C3-C4-N8 angle is affected by the nature of substituents at the 4-pyridonimine 

moiety. Strong electron-donating substituents at C5 such as NH2, 2.5, and OH, 2.15, 

result in an increase of the angle, when compared to the unsubstituted counterpart, 2.1; 

b) Electron-withdrawing substituents such as NO2, 2.9, CO2H, 2.12, or CF3, 2.14, have the 

opposite effect, decreasing the C3-C4-N8 angle relatively to 2.1; 
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c) The presence of halogens at C3 does not affect significantly the C3-C4-N8 angle, i.e. 

2.10 and 2.16, but the simultaneous subtitution to chlorine at C3 and C5, as in 2.13 and 

2.17, increases the C3-C4-N8 angle when compared to 2.1; 

d) The nature of substituents in the 4-pyridonimine has practically no impact on the C4-N8-

C1’ angle, which reflects the distance between the substituent and the phenolic moiety. 

The only exceptions were found in molecules 2.13 and 2.17, which presented a 

significant increase in the C4-N8-C1’ angle, relatively to 2.1. This reveals the impact of 

the steric hindrance imposed by the two chlorine atoms; 

e) The C4-N8-C1’ angle increases when the diethylaminomethyl group is protonated, e.g. 

2.2; 

f) The nature and position of the substituents are responsible for a significant rotation 

around the N8-C1’ bond, resulting in a wide range of dihedral angles. Compound 2.17 

presents a narrower C4-N8-C1’-C6’ dihedral angle, when compared to its aryl 

counterpart 2.13;  

g) The predicted dihedral angles were not significantly different from the one observed for 

atovaquone, C2-C3-C1’-C2’: -116.7º. Thus, it is expected that these compounds might fit 

in a highly convoluted Qo site.  

These geometry predictions are expected to be accurate as the crystals of 2.8 (Section 2.3.3) 

present bond lengths, angles and dihedral angles that are very similar to the in silico optimized (E)-

2.8, Figure 2.1. Superimposing both structures a root mean square deviation (RMSD) of 0.31 Å is 

obtained. The marginally narrower C4-N8-C1’ angle and the wider C4-N8-C1’-C6’ dihedral angle 

in the optimized structure leads to a minor displacement of the 4-pyridonimine scaffold, compared 

to the crystallized molecule.  

 

 
Figure 2.1 In silico optimized (E)-2.8 (green) superimposed with VMD 1.8.6 [182] to the crystallized atomic coordinates 

(red, RMSD = 0.31Å). 
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2.1.3 Frontier orbital energies and densities 

Frontier orbital electron densities on molecules provide a useful mean for the detailed 

characterization of donor-acceptor interactions. It has been shown that these orbitals play a major 

role in governing many chemical reactions. For example, they can account for the formation of 

many transfer complexes. The energy of the highest occupied molecular orbital (HOMO) is directly 

related to the ionization potential and characterizes the susceptibility of the molecule towards an 

attack by electrophiles. On the other hand, the lowest unoccupied molecular orbital (LUMO) is 

related with electron affinity, and gives an idea of the susceptibility of the molecule towards 

nucleophilic attack [183]. 

The energies associated with the studied compounds were small, ranging between -0.27 eV and 

-0.16 eV for HOMO, and between -0.12 eV and -0.01 eV for LUMO, with exception of compound 

2.3. This indicates the fragile nature of bound electrons. Also, the small HOMO-LUMO gap 

permits electron exchange and transfer, making these compounds very reactive. Further analysis of 

the LUMOs in Figure 2.2 and Table 2.2 result in the following observations: 

a) Compounds with higher antiplasmodial activity, Table 2.12,  are the ones with less 

negative HOMOs (~ -0.16 eV) and LUMOs (~ -0.01 eV), indicating that the substitutions 

that affect these energies could have a direct impact on the antiplasmodial activity; 

b) The LUMOs of clopidol and atovaquone show that the 4(1H)-pyridone and the quinone 

moieties are prone to nucleophilic attack, like all the 4-pyridonimine moieties within the 

most stable diastereomers studied. Interestingly, the LUMO of clopidol has a similar 

form to that of pyridinium salts [184], which are also related to the 4-pyridonimines; 

c) The quaternary ammonium salts, where the diethylamino group is either methylated, 2.7 

and 2.8, or protonated, 2.2, present the LUMOs located in the aryl moiety. The HOMOs 

show smaller energies, implying the susceptibility to nucleophilic attack in this region; 

d) The most pronounced similarities of the LUMO profile from 4-pyridonimines with 

clopidol occur when the scaffold presents no substituent, an electron-donor group or a 

halogen, as is the case of compounds 2.1, 2.3-6, 2.10, 2.15, and 2.16;  

e) Non-halogen electron-withdrawing groups, i.e. 2.9, 2.11, 2.12 and 2.14, appear to distort 

the symmetry observed for the remaining cases; 

f) Compounds 2.13 and 2.17 reveal a near-identical pattern, pinpointing that the side-chain 

may not be crucial for direct interaction with the active residues within cytochrome b. 

However, it might be essential to induce a correct docking pose within the Qo site, 

through hydrophobic interactions, as might occur with atovaquone. 
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Figure 2.2 LUMOs of atovaquone, clopidol and compounds 2.1-17. 

 

 

On the other hand, analyzing HOMOs from Figure 2.3 and Table 2.2 one can see that: 

(E)-2.5 (E)-2.6 
(Z)-2.4 

(E)-2.7 (E)-2.8 

(E)-2.9 (E)-2.10 
(E)-2.11 

(E)-2.12 
2.13 

2.17 
(E)-2.14 (E)-2.15 (E)-2.16 

Clopidol 

2.1 2.2 2.3

Atovaquone 
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a) The energies are considerably lower for known bc1 complex inhibitors than for the other 

molecules, except quaternary ammonium salt compounds which present higher values 

than atovaquone, i.e. 2.2, 2.3, (E)-2.7 and (E)-2.8; 

b) HOMOs are located mainly at the aryl moiety, whereas in the charged molecules a more 

scattered pattern is shown, i. e. 2.2, 2.7 and 2.8. Further trends are less clear, though the 

pattern observed for clopidol was reproduced by compound (E)-2.7; 

c) The introduction of electron-donors on the 4-pyridonimine moiety results in the increase 

of the HOMO and LUMO energies. 

The HOMO-LUMO gap, i. e., the difference in energy between these two orbitals, is an 

important kinetic stability index [185]. In this study, the energy gap was always higher for clopidol 

than for 4-pyridonimines, which suggests that these compounds are more reactive than clopidol. In 

contrast, the energy gap of 4-pyridonimines is higher than that of atovaquone, with the exception of 

compounds 2.9, 2.11 and 2.12. Those molecules contain electron withdrawing groups on the 4-

pyridonimine moiety. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 HOMOs of atovaquone, clopidol and compounds 2.1-17. 
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Figure 2.3 (cont.) HOMOs of atovaquone, clopidol and compounds 2.1-17. 

 

 

2.1.4 Molecular electrostatic potentials (MEP) 

Three-dimensional MEPs superimposed onto the total electron density provide useful 

information for the interpretation of long-range interactions between molecules, which helps to 

understand how a ligand binds to its receptor. Additionally, they provide useful information on the 

shape and size of the molecule [186, 187]. In these colour-coded maps, regions given as red or orange 

represent areas with high electron density, whereas the blue areas represent electron-poor sites. It is 

also noteworthy that these MEPs are not static, i.e. interaction of the ligand in the binding pocket 

might change electron densities of both ligand and protein.  

For atovaquone, Figure 2.4, one can observe that the naphthoquinone moiety is highly electron-

rich on the oxygen atom areas, which have been described as essential to establish a hydrogen-bond 

at the Qo site [58]. On the other hand, the most negative potential on clopidol and GW844520 is 

ascribed to the oxygen and nitrogen atoms and, since the electron's distribution is rather different 

from that of atovaquone, it is expected that these might either interact differently or display a 

different orientation from atovaquone in the binding pocket.  

Regarding the 4-pyridonimines the following observations can be made: 
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a) Display either a straight or curled shape, and a very similar electrostatic potential pattern 

to the one observed for clopidol; 

b) The charge distribution pattern for these compounds suggests that the imine nitrogen 

atoms may participate in electrostatic interactions or hydrogen bonds; 

c) Every molecule presents two distinct regions: the 4-pyridonimine, which accounts for 

most of the slight differences observed between the molecules, due to the substitution 

pattern, and the aryl moiety that displays a very identical electrostatic potential 

distribution for every case, as long as it is not a quaternary ammonium salt, i.e. 2.2, 2.3, 

2.7 and 2.8; 

d) Generally, within the 4-pyridonimine moiety, the most negative potential is on the imine 

nitrogen, followed by the N1 nitrogen and, as expected, the heterocycle presents a neutral 

or positive electrostatic potential. This trend is most pronounced for those compounds 

that have strong electron-withdrawing substituents, i.e. 2.9, 2.11, 2.12, and 2.14; 

e) Regarding the aryl moiety, the most negative electrostatic potentials are ascribed to the 

phenolic oxygen and the nitrogen from the diethylamino group, while the aromatic 

system is mostly given as neutral, except for quaternary ammonium salts. In the latter 

case, the nitrogen from the diethylamino group presents a less negative or positive 

potential when compared to neutral molecules, which was expected, as a result of 

nitrogen quaternization, i.e. 2.2, 2.3, 2.7 and 2.8. 

Since all compounds showed the same electrostatic potential range, the 4-pyridonimines have, 

theoretically, the capability to interact in the active site in a similar way to clopidol and GW844520, 

as a consequence of their MEP profile identity. A good qualitative correlation between the activity 

of compounds 2.1, 2.4, 2.6-2.8, Table 2.12, and the MEP profile was found. Charged molecules did 

not show antiplasmodial activity and displayed a very distinct potential distribution to that of 

clopidol. Neutral molecules, on the other hand, displayed better activity, probably as a consequence 

of the better identity of all electron-derived parameters studied here. 

 

 

 

 

 

 

 
Figure 2.4 MEPs of atovaquone, clopidol, GW844520 and compounds 2.1-17. 
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Figure 2.4 (cont.) MEPs of atovaquone, clopidol, GW844520 and compounds 2.1-17. 

 

 

Finally, clopidol has a dipole moment of 8.48 D, whereas the 4-pyridonimines displayed a 
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having a value in the same range as clopidol, between 7.4 and 8.6 D, no correlation with the 

biological activity of the synthesized Mannich-base 4-pyridonimines was found.  

 

 

2.2 Molecular docking  
 

2.2.1 Brief overview on molecular docking 

Molecular docking of ligands into proteins is playing an increasingly important role in lead 

discovery and design, regardless of still being far from the goal of accurately predicting complex 

ligand-receptor interactions. This poses the greatest challenge in modern structure-based drug 

design, and is mainly due to the difficulty to model, in a reliable way, the protein flexibility, rather 

than ligand’s flexibility  [188-190]. A number of docking programs are available, as well as search 

algorithms which assess and rationalize the ligand-protein interactions [191]. 

GOLD (Genetic Optimisation for Ligand Docking) is a docking program that uses a genetic 

algorithm to dock flexible ligands into binding sites [192]. Generally, it applies the concepts of 

genetic evolution, with each docking solution being encoded as a chromosome. The chromosomes 

of a population, with all the information about hydrogen bonds, hydrophobic points, etc., are given 

a score from the fitness to the binding site. These chromosomes are then ranked, in regard to their 

scores, and the fitter are iteratively optimized, through point mutations and cross-overs [191]. GOLD 

offers several scoring functions: GoldScore, ChemScore, ASP and an user defined score. GoldScore 
[193] is especially useful in predicting binding poses, and is composited by five components: protein-

ligand hydrogen bond energy, protein-ligand van der Waals energy, ligand internal van der Waals 

energy, ligand torsional strain energy and ligand intramolecular hydrogen bond energy. ChemScore 
[194] is derived empirically from measured binding affinities and is best suited to estimate the total 

free energy changes that occur from ligand binding. It has also been reported that GOLD, despite its 

good prediction of binding poses, is binding site-dependent and is not as good when the binding is 

predominantly driven by hydrophobic interactions [195]. 

With the aim of optimizing the Mannich-base compounds, a structure-based approach was 

followed to identify which substituents would better fit the binding pocket. This was carried out in a 

stepwise trial-error procedure. 
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2.2.2 In silico cytochrome bc1 model validation 

Currently there is no available crystal structure of the bc1 complex from P. falciparum, but a 

homology model has been reported [20]. To circumvent the lack of crystallized structures of the bc1 

complex from Plasmodium species, Saccharomyces cerevisiae has been used as surrogate, due to 

the high sequence identity between its cytochrome b and that of Plasmodium [58]. As a result, it has 

been successfully used to model in silico the binding mode of atovaquone to the Qo site, and to 

study cytochrome b mutations that confer resistance to atovaquone in Plasmodium and 

Pneumocystis [58, 60].  

The bc1 complex co-crystallized with stigmatellin (PDB code: 1KYO [43]) was used for the 

molecular docking studies. It contains the functional homodimer with the Rieske iron-sulfur protein 

in close contact with cytochrome b, that is, correctly oriented for electron transport. However, the 

relatively low resolution of 2.97 Å makes it impossible to predict the position of crystallized waters. 

More recently, the new structure 3C5X with a resolution of 1.90 Å [44] was published by the same 

group as 1KYO, and those waters were allocated. However, due to the total superimposition of the 

two PDB files and the added computational demand to perform docking runs with water molecules, 

a simpler method without water molecules was kept, despite being reported that their presence 

results in better predictions [196-198]. 

The GoldScore and ChemScore algorithms were used in order to validate the docking model. 

Both performed well, and the pose from the crystallized stigmatellin was reproduced with a RMSD 

bellow 1.5 Å, Figure 2.5. This prediction was considered satisfactory as a RMSD of 2.0 Å is 

commonly considered the cut-off for a good prediction [199]. Moreover, the major differences 

between the two molecules came from the weakly interacting side chain at the periphery of the 

binding site. 

 

 

 

 

 

 
 

 

 

Figure 2.5 Binding poses of stigmatellin. In blue the crystallized structure and in green the docking prediction: (A) 

ChemScore; (B) GoldScore. 
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Since the two scoring algorithms performed well, the GoldScore was chosen to carry on with 

the docking studies due to the better superimposition in the chromone moiety, which is the 

pharmacophore. 

 

 

2.2.3 Docking of atovaquone, clopidol, and 2.1 into the active site. 

Atovaquone, clopidol and 2.1 were docked into the molecular electrostatic potential of 

cytochrome bc1 Qo binding site to identify important binding features, and correlate this information 

with the one obtained for 4-pyridonimines, Figure 2.6. The figure shows a highly negative binding 

pocket which becomes less negative or neutral in the hydrophobic channel leading to the Qo centre. 

Moreover, a complementarity of the electrostatic potential between cytochrome bc1 and the ligands 

is highlighted with this study. The positive ring of the naphthoquinone moiety, binds deep into the 

Qo site, where the electrostatic potential is most negative, Figure 2.6 A. Also, the hydroxyl group 

interacts with the positive nitrogen of H181. Conversely, the hydrophobic side chain in atovaquone 

binds to a near-neutral part of the active site, which might be important to generate an ideal docking 

pose of the naphthoquinone moiety within the binding pocket. Thus, in addition to crucial hydrogen 

bonds with the E272 / H181 residues and hydrophobic contact [58], the electrostatic interactions 

might be fundamental for a stabilized Qo-ligand complex. It is also possible to see that the hydroxyl 

group is within the distance for a hydrogen bond with H181, and the carbonyl oxygen atom at C4 of 

the quinone system, is at 3.97 Å of the oxygen atoms of E272, which can accommodate a water-

mediated hydrogen bond. These interactions are consistent with another model of the yeast bc1 

complex with atovaquone bound in the Qo binding site and provide further support to the model [58]. 

The docking results for compound 2.1, Figure 2.6 C (Appendix 1.2 for other compounds), 

suggest a similar binding mode, with this scaffold complementing the most electronegative vicinity 

of the Qo site and the aminophenol side chain, described previously as having a close to neutral 

electrostatic potential, stabilizing the protein-ligand complex through an hydrophobic interaction in 

the pocket channel. 

Modeling the interaction of clopidol with bc1 complex showed that the highest ranked binding 

pose presented the carbonyl oxygen atom at 2.41 Å of E272, which is also consistent with a water-

mediated hydrogen bond, Figure 2.6 B. In addition, there are only weak van der Waals interactions 

between the methyl and chlorine groups of clopidol with the active site residues. 
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Figure 2.6 Docking poses of (A) atovaquone; (B) clopidol (two possibilities); and (C) 2.1. The molecular electrostatic 

potential of the Qo pocket calculated through the APBS formalism is also displayed: in red the negative potential (dark 

red is -15 kT/e) and in blue the neutral potential. 

 

 

2.2.4 De novo structure-based design of 4-pyridonimines 

With these results in hand it was intended to design a new series of pyridonimines that would 

better fit in the binding pocket, and present better antiplasmodial activity, consequently. Since it had 

been shown that the 4-pyridonimines displayed similar electronic properties to GW844520, a potent 

bc1 complex inhibitor, this compound was first docked into the Qo site, to understand the key 

binding interactions that the new series of 4-pyridonimines would have to mimic, Figure 2.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7 Binding mode of GW844520. 
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Docking in the bc1 complex revealed that the top ranking solution presented the 4(1H)-pyridone 

moiety within the binding site, and the side chain at C5 filling the hydrophobic channel. Enhanced 

van der Waals contacts between the side chain and P271, Y279, L150, F151, L275, M295 and I299 

were observed, indicating that the bulk of the intermolecular interactions are essentially 

hydrophobic. Also, this compound occupied the whole extension of the binding site, maximizing 

the hydrophobic contact with the bc1 complex. Despite the importance of the hydrophobic 

interactions, it is likely that hydrogen bonds in GW844520 play a role in inhibition. For 2.1 it is not 

predicted a full interaction in the binding pocket, and the aryl moiety appears not to display an 

optimal orientation, Figure 2.6 C. Presumably those factors have affected the inhibitory potency of 

this compound.  

Compounds 2.18 and 2.19 were docked to understand if the pose of a quinoline-based 

compound would improve the hydrophobic contact within the Qo site, Figure 2.8. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8 Docking pose of (A) 2.18 and (B) 2.19. 
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Compound 2.18 displays a hydroxyl group on C5 to maximize binding interactions via 

hydrogen-bond to E272 residue (2.01 Å) and is also within interaction distance of M295 (1.77 Å). 

Though, the high torsional strain of the quinoline ring (GoldScore Sint = -16.43 for the best fit 

solution) is responsible for the low fitness value, GoldScore = 44.47. On the other hand, the 

amodiaquine derivative 2.19 does not display an ideal orientation in the binding pocket, and has an 

even lower GoldScore (42.43). Thus, quinoline molecules were discarded in this structure-base 

design approach, since their score was lower than that obtained for 2.1 (46.44). 

In a second step of this approach, compounds 2.20-28 were tested, Table 2.4. 

 

 
Table 2.4 Structures and GoldScores of compounds 2.20-28. 

 
Compound R1 R2 R3 GoldScore 

2.20 H OH OPh-4-Cl 53.73 

2.21 H OH SPh-4-Cl 60.87 

2.22 H OH NHPh-4-Cl 49.74 

2.23 H OH CH2Ph-4-Cl 57.06 

2.24 H OH (CH2)2Ph-4-Cl 57.59 

2.25 H OPh-4-Cl OH 49.39 

2.26 H H (CH2)2Ph-4-Cl 61.59 

2.27 2-NH2 OH (CH2)2Ph-4-Cl 54.88 

2.28 2-NH2 H (CH2)2Ph-4-Cl 60.98 

 

 

To optimize the hydrophobic interaction, a second aromatic ring was introduced and several 

spacers were tested, i.e. 2.20-24. Moreover, chlorine was introduced at C4 of the terminal aryl to 

resemble atovaquone. From those compounds, 2.21 presented a better score, but the awkward pose 

inside the binding pocked, Figure 2.9 C, in addition to the possibility of metabolization into a 

sulfoxide, led to the rejection of that spacer in further optimizations. Compounds 2.20 and 2.22 

displayed low GoldScore fitnesses (53.73 and 49.74, respectively) comparing to 2.23 and 2.24 

(57.06 and 57.59, respectively) and were thus not optimized. However, as compound 2.23 is also 
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expected to be labile, and readily metabolized into a ketone, 2.24 was chosen for further 

optimization. Therefore, for this type of compounds it was found that the double methylene spacer 

was the most appropriate, as it led the inhibitor candidate to full occupancy of the active site, Figure 

2.9 E. Interestingly, GSK has recently released the structure of bc1 complex inhibitors displaying 

the same side chain [200]. Furthermore, the hydroxyl group appeared to be important in establishing 

interactions with the binding pocket, either with methionine or histidine residues. However, as the 

4-aminophenol moiety may metabolize into a quinoneimine, this set of compounds were also prone 

to such metabolization, and deplete the human host from glutathione. Thus, compound 2.25 was 

docked in an isoquine-like approach, but without a good result. Next, compound 2.26 was docked 

and provided a very good score (61.59). This compound also allowed to conclude that the 4-

hydroxyl group would not be essential for a good ligand-protein binding, as the score was higher 

than for 2.24 (57.59). That was also observed when an amino group was introduced at C2 in the 4-

pyridonimine moiety, i.e. 2.27 vs. 2.28. That substituent was introduced to optimize the ligand 

interaction with E272, but the best fit result predicted a better interaction with a methionine residue, 

Figure 2.9 H and I. Thus, as it could also compromise the synthesis of the target compounds, the 

introduction of a hydrogen donor / acceptor at C2 was abandoned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.9 Docking poses of (A) 2.20; (B) 2.21; (C) 2.22; (D) 2.23; (E) 2.24; (F) 2.25; (G) 2.26; (H) 2.27; (I) 2.28. 
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Figure 2.9 (cont.) Docking poses of (A) 2.20; (B) 2.21; (C) 2.22; (D) 2.23; (E) 2.24; (F) 2.25; (G) 2.26; (H) 2.27; (I) 

2.28. 

 

 

As the skeleton for the potentially active compounds had been established, a series of minor 

changes were made to improve binding to the active pocket. A halogen was introduced at C3 to fit a 

small pocket in the active site and improved markedly the GoldScores, Table 2.5. In order to 

increase the possibility of a hydrogen bond with critical aminoacid residues, hydroxymethyl and 

hydroxyl groups were tested. It was noted that a hydroxyl group at R5 could establish a hydrogen 

bond with H181, Figure 2.10 A-C, whereas a hydroxymethyl group could interact with E272, 

Figure 2.10 C and D, but the score did not increase, i.e. 2.31 vs. 2.32. Compound 2.33, with a 3-Br 

substituent, gave the best score (68.78). Moreover, two stilbene derivatives were tested, as they 

would be intermediates in the synthetic pathway, but the rotation constraint given by the double 

bond did not favour fitting into the active site, i.e. 2.35 and 2.36, Figure 2.10 G and H. 2.37 

displayed a very good GoldScore, but the introduction of a second halogen decreased the score, i.e. 

2.37 vs. 2.39. That should be ascribed to the different orientation of the molecules in the active site 

and a poorer hydrophobic interaction, Figure 2.10 K and L. The simple substitution of N-methyl for 

N-ethyl, i.e. 2.37 vs. 2.38, also benefited the fitness, as the resulting atom coordinates left the 

chlorine better accommodated. For 3,5-diCl compounds, 2.39 and 2.40, this trend was not observed 

as a result of a different binding pose. 
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Table 2.5 Structures and GoldScores of compounds 2.29-40. 

 

Compound R1 R2 R3 R4 R5 GoldScore 

2.29 Cl H CH2OH 3-(CH2)2Ph-4-Cl OH 64.62 

2.30 Cl H OH 3-(CH2)2Ph-4-Cl OH 61.30 

2.31 Cl 6-CH2OH Et 4-(CH2)2Ph-4-Cl OH 62.59 

2.32 Cl 6-CH2OH Et 3-(CH2)2Ph-4-Cl H 62.72 

2.33 Br H Et 3-(CH2)2Ph-4-Cl H 68.78 

2.34 Cl H Et 3-OPh-4-Cl H 61.71 

2.35 Cl H Et 3-CHCHPh-4-Cl (Z) H 38.91 

2.36 Cl H Et 3-CHCHPh-4-Cl (E) H 42.98 

2.37 Cl H Me 3-(CH2)2Ph-4-Cl H 64.83 

2.38 Cl H Et 3-(CH2)2Ph-4-Cl H 66.46 

2.39 Cl 5-Cl Me 3-(CH2)2Ph-4-Cl H 62.65 

2.40 Cl 5-Cl Et 3-(CH2)2Ph-4-Cl H 61.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10 Docking poses of (A) 2.29; (B) 2.30; (C) 2.31; (D) 2.32; (E) 2.33; (F) 2.34; (G) 2.35; (H) 2.36; (I) 2.37; (J) 

2.38; (K) 2.39; (L) 2.40. 
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Figure 2.10 (cont.) Docking poses of (A) 2.29; (B) 2.30; (C) 2.31; (D) 2.32; (E) 2.33; (F) 2.34; (G) 2.35; (H) 2.36; (I) 

2.37; (J) 2.38; (K) 2.39; (L) 2.40. 

 

 

Finally, a subset of biphenyl compounds was tested, and the lower GoldScores showed the 

importance of a spacer between the two aryl moieties, e.g. 2.33 vs. 2.45, Table 2.6. The best-fit 

poses are superimposed in Figure 2.11. The GoldScores can be explained on the basis of a lower 

hydrophobic contact with the binding site, and the higher steric clash with the protein that results 

from the lack of flexibility in the absence of a spacer. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.11 Docking poses for compounds 2.41-45. 
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Table 2.6 Structures and GoldScores of compounds 2.41-45. 

 
Compound R1 R2 R3 GoldScore 

2.41 H H Me 52.31 

2.42 H H Et 53.17 

2.43 Cl H Et 57.98 

2.44 Cl Cl Et 49.37 

2.45 Br H Et 59.39 

 

 

2.3 Synthesis 
 

2.3.1 Rationale for Mannich-base 4-pyridonimines 

As hypothesized in chapter 1, compounds of substructure 1.169 would present antiplasmodial 

activity. The inception of such compounds derived from a previous study on amodiaquine-like 

molecules with potent antiplasmodial activity [172]. Therefore, in a first approach, the synthesized 

compounds would also include the diethylaminophenol side chain. By conserving this side chain it 

would be possible to assess the applicability of the 4-pyridonimine scaffold as antimalarial leads. It 

would also allow concluding which substituents on the core scaffold would suit best against P. 

falciparum. The retrosynthetic analysis for Mannich-base derivatives is given in Scheme 2.1. 

 
Scheme 2.1 Retrosynthetic analysis for Mannich-base derivatives. 
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2.3.2 4-Pyridinamines 

The synthetic pathway used for the obtention of the first series of compounds was already 

described in the literature [201]. First, the Mannich-base formation was achieved from reaction of 

paracetamol, 2.46, with excess N,N-diethylamine and aqueous formaldehyde in ethanol, to give 

acetanilides 2.47 and 2.48, Scheme 2.2. The desired product 2.47 was isolated in higher yield when 

the mixture was refluxed for 48 hours. Though, extending the reaction time from 24 to 48 hours 

resulted in the formation of small amounts of the bis-Mannich side-product, 2.48. Moreover, the 

yield of 2.47 decreased as the reaction was further extended from 48 to 72 hours. In contrast, the 

bis-Mannich product 2.48 was the only product isolated with a reaction time of 72 hours.  

The acid hydrolysis of 2.47 and 2.48 afforded the corresponding anilines 2.49 and 2.50 in near 

quantitative yields, which were used for the synthesis of compounds 2.51-58, Table 2.7 and Scheme 

2.2. Compounds 2.51-58 were obtained with yields, ranging from 11-89%. Compound 2.56 was 

obtained with 89% of theoretical mass, which can be explained with the electron withdrawing 

nature of the sulfonamide, favouring the aromatic nucleophilic substitution (SNAr).  

 

 
Scheme 2.2 Synthesis of pyridin-4-amines 2.51-58. Reagents and conditions: (i) DEA, CH2O, EtOH, reflux 24h (ii) 

DEA, CH2O, EtOH, reflux 48-72h (iii) HCl 6N, reflux overnight (iv) 4-chloropyridine, EtOH, reflux. 
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Table 2.7 Synthesis of key intermediates 2.51-58. 

 
Compound R1 R2 R3 Yield (%) 

2.51 H H H 41 

2.52 Me H H 54 

2.53 NH2 H H 76 

2.54 NO2 H H 0 

2.55 H Me H 77 

2.56 SO2NH2 H H 89 

2.57 H H CH2NEt2 16 

2.58 Me H CH2NEt2 11 

 

 

With the aim of optimizing the SNAr step, several reactions were carried out between 4-

chloropyridine and 4-aminophenol, at different molar ratios, to synthesize 2.59. This resulted in an 

increase of yield from 41% to 80%, Scheme 2.2 and Table 2.8. As can be seen from Table 2.8, 

increasing the aminophenol / chloropyridine molar ration from 1 to 3 led to a significant increase in 

yield and reduction in the reaction time. 

 

 
Table 2.8 Reaction conditions for the SNAr reactions and synthesis of 2.59. 

Method 
Aminophenol 

mol. eq. 

Pyridine 

mol. eq. 
Reaction time 

Flash 

Chromatography 
Yield (%) 

A 

B 

C 

1.4 

3 

3 

1 

1 

1 

reflux/16 h 

reflux/2 h 

reflux/4.5 h 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH (9:1) 

41 

54 

80 

 

 

Compound 2.59 was also subjected to Mannich reaction and 2.51 was obtained in 65% yield. 

Despite the better overall yield and a shorter synthetic pathway, this was not the general approach 

followed because 2.47 and 2.49 could be synthesized in a very large scale, reducing the overall time 

consumed. 
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All 4-pyridinamines were characterized through common spectroscopic methods, including 1D 

and 2D NMR techniques, mass spectrometry and infra-red spectroscopy (IR). From inspection of 

the 1H-NMR spectrum of 2.51, it is possible to see that protons at C2 are the most deshielded 

protons, δ = 8.23 ppm, and appear as a doublet, 3J = 4.8 Hz. This is a common coupling constant 

between C2-H and C3-H for pyridines, and results from the sp2 hybridization of the nitrogen atom. 

On the other hand, the proton at C3 is comparatively less deshielded, δ = 6.63 ppm. The remaining 

three protons, from the aromatic moiety, can be found between δ 6.81 and δ 7.03 ppm, whereas the 

amine proton is located at δ 5.83 ppm, as a broad singlet. Further inspection of the spectrum reveals 

the aliphatic protons at higher field. Regarding the 13C-NMR spectrum, nine aromatic carbons were 

found, five of which are CH, from DEPT analysis. HMQC was also performed and the CH carbons 

assigned on the basis of this spectrum. 

 

 

2.3.3 4-Pyridonimines 

For the synthesis of compounds 2.1 and 2.4-8, distinct pathways were followed, taking into 

account methods already described in the literature by Lopes et al. and Schock [172, 202]. These are 

schematized in Scheme 2.3. 

One of the pathways consisted of synthesizing a quaternary ammonium salt, 2.62-69, from the 

starting material, and proceed afterwards to the aromatic nucleophilic substitution reaction with 4-

amino-2-(diethylaminomethyl)phenol. This is a logical pathway, since the C4 at the pyridinium salt 

is activated towards nucleophilic substitution. Several methods to synthesize compounds 2.62-69 

were attempted, but the chloro atom at C4 appears to deactivate N-alkylation because of its electron 

withdrawing nature. Hence, the poor nucleophilic pyridinic nitrogen made the methylation of both 

4-chloro-3-pyridinesulfonamide and 4-chloro-3-nitropyridine impossible, which were further 

deactivated by their C3 substituents. Another reason for the low reactivity was the poor solubility of 

the stating materials. The only two pyridines that were efficiently alkylated through this pathway 

were the ones that gave 2.62, 2.64 and 2.67, Table 2.9. The structural identification of pyridinium 

salts was based on 1H-NMR, which showed a characteristic singlet at δ 4.2 ppm, assigned to N-CH3. 

Given the difficulty of N-alkylation for this set of 4-chloropyridines, and the unanticipated failed 

reaction of 2.62, 2.64, 2.67 with 2.49, to give any of compounds 2.1 and 2.4-8, only the N-

alkylation of 4-pyridinamines 2.51-56 was pursued, Scheme 2.3. 
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Scheme 2.3 Synthetic pathway to compounds 2.1 and 2.4-8. Reagents and conditions: (i) a) dry THF or DMF, NaH, rt 

b) MeI; (ii) dry THF, alkyl iodide, rt or reflux; (iii) EtOH, 2.49, reflux; (iv) DMF, MeI; (v) NaOH, rt. 

 

 
Table 2.9 Synthesis of compounds 2.62-69. 

 
Compound R1 R2 R5 Yield (%) 

2.62 H H Me 59 

2.63 SO2NMe2 H Me 0 

2.64 NH2 H Me 68 

2.65 H Me Me 0 

2.66 NO2 H Me 0 

2.67 NH2 H Et 44 

2.68 H H Et 0 

2.69 H Me Et 0 
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This pathway was a successful route to the required 4-pyridonimines, which were obtained with 

moderate to good yields, Table 2.10. This had already been described by Lopes et al. [172], who had 

made use of a strong base to deprotonate the substrate and increase the nucleophilicity of the 

pyridinic nitrogen. In the present case, the resulting anion was then reacted with methyl iodide at 

room temperature in a SN2 type reaction. The pKa values of the relevant functional groups within 

2.51-56 range between 18.7 and 20.2 for the aniline and is ca. 10.5 for the phenol [181, 203-208] which 

made it difficult to predict the anion that formed first, while using NaH as a base. However, the 

absence of reaction at the phenol reflects either (i) the steric hindrance exerted by the 

diethylaminomethyl neighbouring group or, (ii) the preservation of an intramolecular hydrogen 

bond between the phenol and the dimethoxyaminomethyl moiety. The only exception was 2.56, 

which might be the result of a competing hydrogen bond between the phenol and the sulfonamide 

with the nitrogen from the diethylaminomethyl group. It was also noted that changing the solvent 

from THF to DMF was crucial to obtain the required compounds in acceptable yields (Experimental 

Section for a full list of method variations). 

 

 
Table 2.10 Synthesis of compounds 2.1 and 2.4-8. 

 
Compound R1 R2 R3 R4 R5 Yield (%) 

2.1 H H H CH2NEt2 Me 59 

2.4 H Me H CH2NEt2 Me 66 

2.5 NH2 H H CH2NEt2 Me 0 

2.6 Me H H CH2NEt2 Me 73 

2.7 H Me H CH2N(Me)Et2
+ I- Me 25 

2.8 SO2NMe2 H Me CH2N(Me)Et2
+ I- Me 36 

 

 

 In an attempt to make a sole methylation of 2.56 and understand its reactivity, the synthesis was 

repeated varying the molar equivalents of both sodium hydride and methyl iodide. Given the high 

pKa value of the NaH, and the inexistence of regioselectivity in the methylation reaction, several 

products were formed and an untractable mixture resulted, in reactions with less than three molar 
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equivalents of both reagents, Table 2.11. The most acidic hydrogen appeared to be either the 

phenolic or the sulfonamide’s, since 2.70 and 2.71 were isolated, depending on the reaction 

conditions. This observation reinforced the possibility of a hydrogen bond competition, and is also 

in agreement with the predicted pKa values for the ionizable functions within 2.56 [181].  

As the molar equivalents were increased, more of compound 2.8 formed, and this was the only 

compound isolated, from these starting materials, with the required 4-pyridonimine scaffold, Table 

2.11. It was also possible to observe that DMF is the solvent best suited for this reaction, due to a 

better dissolution of the 2.56 starting material. This set of reactions also showed that compound 2.8 

can be obtained in a clean reaction, when the base and alkylating agent are employed in great 

excess. Also, a significant difference can be observed between the methods that use 6 and 6.7 molar 

equivalents of the reagents. Whereas in the first case 2.8 can only be obtained in 6% yield, in the 

second, its value is 6-fold higher. 

 

 
Table 2.11 Yields of the several species isolated from the alkylation of 2.56. 

 
Reaction Conditions 2.8 2.70 2.71 

(i) NaH, THF (1.2 mol eq.) 

(ii) MeI (2 mol eq.) 
N.I. N.I. N.I. 

(i) NaH, DMF (3 mol eq.) 

(ii) MeI (3 mol eq.) 
N.I. N.I. 2% 

(i) NaH, THF (3 mol eq.) 

    (ii) MeI (6 mol eq.) 
N.I. N.I. N.I. 

(i) NaH, DMF (4 mol eq.) 

    (ii) MeI (4 mol eq.) 
4% 10% N.I. 

(i) NaH, DMF (6 mol eq.) 

    (ii) MeI (6 mol eq.) 
6% 4% N.I. 

(i) NaH, DMF (6.7 mol eq.) 

    (ii) MeI (6.7 mol eq.) 
36% N.I. N.I. 

N.I. – Not isolated 
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Compounds 2.1 and 2.4-8 were identified on the basis of spectroscopic data, including 1D and 

2D NMR techniques, mass spectrometry, IR and elemental analysis. Compound 2.8 was also 

characterized through X-Ray crystallography. 

 The 1H-NMR spectra of these compounds feature a common singlet at ca δ 3.9-4.1 ppm 

assigned to N-CH3. Further confirmation comes from the different coupling constants seen for the 

4-pyridinamine and the 4-pyridonimine moieties. In these compounds, the coupling constant 

increases dramatically; 3J = 7.2 Hz for Ar-H2 in 2.1, whereas the 2.51 precursor has 3J = 4.8 Hz for 

Ar-H2. This was already observed by Lopes et al [172] and reflects the change in the nitrogen 

hybridation [209]. Also, 2D NOESY confirmed the correlation between the Ar-H2 and the methyl 

group at the pyridyl nitrogen.  

For the quaternary ammonium salts 2.7 and 2.8, structural confirmation arrived from both 

COSY and NOESY spectra. Coupling of the δ 1.45 ppm signal to the multiplet at δ 3.34-3.56 ppm, 

and the presence of a singlet at δ 3.00 ppm for 2.8 confirmed the existence of a pro-chiral centre. 

Therefore, the protons from the diethylamino methylene group are non-equivalent. Each of these 

protons presents a doublet of quadruplets, due to geminal coupling (2J = 14.2 Hz) and vicinal 

coupling (3J = 7.2 Hz). The singlet at δ 3.04 ppm corresponds to the two methyl groups of the 

sulfonamide, whereas the singlet at δ 4.59 ppm is assigned to the methylene between the aromatic 

ring and the quaternary ammonium salt. These two protons are highly deshielded, because of the 

positive charge of the neighbouring amine, and the anisotropic effect exerted by the anisole ring. On 

the other hand, 2D NOESY confirmed the correlation between the Ar-H2 and the methyl group at 

the pyridyl nitrogen (δ 4.10 ppm).  

This series of compounds underwent very extensive fragmentation when electronic impact (EI) 

was used to obtain the spectra. Thus, fast atom bombardment (FAB) was preferred, as it is a 

“softer” ionization technique. Typically, the molecular ion itself is usually not seen, but an adduct 

ion, such as [M+H]+, is prominent. The fragmentation pattern for the 4-pyridonimines is identical to 

the one that was observed for the 4-pyridinamines. The fragment that results from breaking the 

bond between the isolated methylene group and the nitrogen from the diethylamino moiety yields 

the most abundant ion, after the base peak, which is observed at m/z = [M+H]+. 

As for the IR spectrum, a broad stretching vibration at ca. 3300 cm-1 is informative of the 

presence of a phenol group, just like in its precursors. In addition, the C=N linkage results in 

absorption at ca. 1650 cm-1, as a consequence of stretching vibrations. 

Up to this point, there was spectroscopy data revealing the linkage of the methyl group to the 

pyridinic nitrogen. However, since there was a step in the reaction that involved the formation of an 
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anion, it was not known whether the final reaction product consisted of a sole isomer, i.e. (Z) or (E), 

or a mixture of diastereomers. To assess the outcome of the reactions, compound 2.8 was slowly 

crystallized from a mixture of water and acetone, affording crystals suitable for X-Ray analysis, 

which were analysed at the University of Santiago Compostela. 

From this study it was possible to see that only the (E) isomer of 2.8 was obtained, Appendix 

1.3. The same observation had been made in a study with amodiaquine analogues by Lopes et al. 
[172]. Also, there were two symmetry independent molecules, in the asymmetric unit, with no 

significant differences in bond lengths and angles. The observed imine bond distances C4-N14 and 

C44-N54 were longer than expected by ca. 0.035 Å, as a consequence of the imine group being 

protonated. This is consistant with imminium salts described elsewhere [210, 211]. The aromatic rings 

were also not coplanar with the 4-pyridonimine groups, as was indicated by the C4-N14-C15-C16 

and C44-N54-C55-C56 dihedral angles of 47.7(7)º and 132.6(5)º respectively. The molecules were 

hydrogen-bonded through the imine nitrogen atoms at N14 and N54, acting as donors towards the 

sulfonyl oxygen atoms O9 and O19 of their respective sulfonamide moieties. Furthermore, the 4-

pyridonimine scaffold was nearly planar, and the C5-C4-N14-C15 dihedral angle was 7.9(7)º for 

one of the molecules, whereas the C43-C44-N54-C55 dihedral angle on the other molecule was -

14.1(7)º, Figure 2.12. 

 

 
Figure 2.12 ORTEP view of the molecular structure of 2.8, showing the labelling of all non-hydrogen atoms. 

Displacement ellipsoids for non-hydrogen atoms are shown at the 50% probability level. Hydrogen atoms have been 

omitted for clarity. 
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Antiplasmodial activity  

All compounds 2.1, 2.4 and 2.6-8 were tested in vitro against the chloroquine-resistant W2 and 

atovaquone-resistant FCR3 P. falciparum strains. These studies were carried out at the University 

of California, San Francisco. All figures are the mean of at least three measurements, and the 

experiments were carried out as described by Semenov et al. [212]. For this series, all compounds 

were in its hydroiodide salt form, and were tested as such, Table 2.12. The following trends on the 

SAR were observed: 

a) Derivative 2.1 presented IC50 values of 8.6 and 7.9 μM against the W2 and FCR3 strains, 

respectively, that are close to those of clopidol, 9.7 and 3.4 μM, respectively;  

b) Incorporation of a methyl group at C3 of the 4-pyridonimine moiety, i.e. 2.6, led to a 

significant decrease in antiplasmodial activity when compared to the parent 2.1. 

However, a methyl group at C2, i.e. 2.4, led to a decrease in activity against the W2 

strain, but not against the FCR3 strain; 

c) Compounds with cationic side chains, i.e. 2.7 and 2.8, were inactive against the W2 

strain, but were more active against the FCR3 strain. 

 

 
Table 2.12 Antiplasmodial activity of 4-pyridonimines containing a Mannich-base side chain, 2.1, 2.4 and 2.6-8. 

 

IC50 (μM) 
Compd R1 R2 R3 R4 

W2  FCR3  

2.1 H H H CH2NEt2 8.61 ± 0.41 7.90 ± 0.24 

2.4 H Me H CH2NEt2 20.7 ± 1.7 8.09 ± 0.44 

2.6 Me H H CH2NEt2 33.0 ± 0.7 > 10 

2.7 H Me H CH2N(Me)Et2
+ I- > 50 9.86 ± 0.28 

2.8 SO2NMe2 H Me CH2N(Me)Et2
+ I- > 50 > 10 

Clopidol     9.73 ± 0.07 3.37 ± 0.19 

Atovaquone     0.0012 1.89 ± 0.10 

Cloroquine     0.052 0.051 

GW844520     0.030 a  
aT9-96 strain [19]. 
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It is also noteworthy that the antiplasmodial activity might be related, at least in part, to the 

inhibition of heme polymerization, since these compounds are associated to amodiaquine [213]. 

These compounds were also tested against the PfNDH2 complex at the Liverpool School of 

Tropical Medicine, but showed no inhibitory activity. 

 

 

2.3.4 Rationale for structure-based 4-pyridonimines 

The docking studies that were presented revealed that the best potential antiplasmodial 

compounds would feature two aryl moieties spaced by two methylene groups, with the terminal 

phenyl harbouring an electron-withdrawing group. In Scheme 2.4 the retrosynthetic analysis of 

those 4-pyridonimines is presented. These compounds can be obtained through alkylation of the 

corresponding 4-pyridinamines, as was presented for the Mannich-base series (A). Alternatively, N-

alkylation of 4-chloropyridines can precede and activate SNAr (B). In both cases anilines can be 

obtained from the reduction of nitrostilbenes, which are in turn synthesized through Wittig 

chemistry.  

 

 
Scheme 2.4 Retrosynthetic analysis of target 4-pyridonimines. 

 

 

2.3.5 Intermediates for structure-base 4-pyridonimines 

 
Nitrostilbenes 

Nitrostilbenes were synthesized via Wittig chemistry, using appropriate aldehydes and 

phosphonium salts. Phosphonium salts were obtained as referred in the literature [214] from several 
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benzyl halides, Scheme 2.5. The yields ranged from moderate to excellent, when chlorine and 

bromine were the leaving groups, respectively, after reacting for the same period of time, Table 

2.13. These intermediates were easily identified by 1H-NMR spectroscopy as a characteristic 

doublet at ca. δ 5.5-6.0 ppm with a high coupling constant, ca. 2J = 14-15 Hz was identified. This 

shows the presence of a C-P bond. The 31P-NMR spectrum showed a singlet at ca. δ 20 ppm. 

 

 
Scheme 2.5 Synthetic pathway to compounds 2.72-80. Reagents and conditions: (i) dry benzene or toluene, PPh3, 

reflux. 

 

 
Table 2.13 Phosphonium salts synthesized. 

Compound R1 X Yield (%) 

2.72 3-NO2 Br 99 

2.73 H Cl 54 

2.74 4-Cl Cl 55 

2.75 4-CF3 Br 96 

2.76 4-OCF3 Br 100 

2.77 4-OMe Br 91 

2.78 3,5-NO2 Cl 58 

2.79 2,4-NO2 Cl 60 

2.80 2-NO2 Br 99 

 

 

The Wittig reactions were carried out under standard anhydrous conditions, using n-BuLi as a 

base (method A), and under phase transfer catalysis (PTC) at room temperature or with microwaves 

(MW), Scheme 2.6.  

First, it was studied whether method A would be efficient for the desired synthesis, but it only 

provided compound 2.81 in good yield after refluxing for 7 hours, Table 2.14 entry 3. Additionally, 

a mixture of (E) and (Z) isomers was formed with predominance on the (E) isomer, which is 

consistent with what had already been described [215, 216]. In fact, as the reaction time increased, 

from 3 to 7 refluxing hours, more (E) isomer was formed, entry 5 vs. 3. Moreover, no influence on 

the yield was observed when 1.0 molar equivalents of benzaldehyde was used instead of 1.25, entry 
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3 vs. 4, respectively. The synthesis of 2.82 through method A yielded a higher percentage of the (Z) 

isomer, entry 9, which was not expected [214], whereas 2.83 was only obtained using milder 

conditions but with a Z/E ratio of 0.5, entry 14. 

 

 
Scheme 2.6 Synthetic pathway of compounds 2.81-104. Reagents and conditions: (i) a) dry benzene, n-BuLi, N2, b) 

aldehyde, rt or reflux; (ii) NaOH, CH2Cl2, aldehyde, rt; (iii) NaOH, CH2Cl2, aldehyde, MW. 

 

 

As method A was not an efficient pathway to synthesize all the required stilbenes, the efforts 

were turned onto the phase transfer catalysis procedure, which made use of NaOH and CH2Cl2 as 

solvents, and the phosphonium salt as a ‘catalyst’ (methods B and B’). PTC Wittig reactions proved 

to be more efficient, given that higher yields were achieved in all cases, under milder conditions and 

lower reaction times.  

Using 2.72 as a starting material (method B), compound 2.81 was synthesized in excellent yield, 

and a high Z/E ratio was observed, entry 6. For compounds 2.82 and 2.83, this procedure yielded 

them in 98%, entry 11, and 93%, entry 15, respectively, underpinning that the reaction is equally 

efficient with electron-withdrawing and donating groups on the aldehyde starting material. The Z/E 

ratios were also over 2.30 in both cases and showed no dependence on the substitution pattern of 

the aldehyde moiety. Though, when the benzyltriphenylphosphonium salt was left reacting with 3-

nitrobenzaldehyde (method B’) for approximately 2 hours, not only 2.81 was obtained in a lower 

yield, but the Z/E ratio increased, entry 8 vs. 6. This was expected, as the interchange of substituents 

between the phosphonium salt and the aldehyde, especially nitro groups, has been connected with 

somewhat drastic changes in both the yield and Z/E ratio of the reaction [217]. For 2.83, this 

phosphonium salt inversion gave nearly the same outcome when allowed to react for 2 hours, both 

in terms of yield and product ratio, entry 15 vs. 17. 
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Table 2.14 Comparison of Wittig reaction methods, to acquire 2.81-83. 

 
Entry Compd R2 Methoda Time (h) Yield (%) Z:E (ratio)b 

1 2.81 H A 4, rt 0 - 

2 2.81 H A 25, rt 31 42:58 (0.72) 

3 2.81 H A 7, reflux 67 34:66 (0.52) 

4 2.81 H A 7, reflux 68 40:60 (0.67) 

5 2.81 H A 3, reflux 56 42:58 (0.72) 

6 2.81 H B 2, rt 92 84:16 (5.25) 

7 2.81 H B’ 0.7, rt 74 75:25 (3.00) 

8 2.81 H B’ 2, rt 89 85:15 (5.67) 

9 2.82 OMe A 6, reflux 20 62:38 (1.63) 

10 2.82 OMe B 0.5, rt 89 71:29 (2.45) 

11 2.82 OMe B 2, rt 98 77:23 (3.35) 

12 2.82 OMe B’ 2, rt 92 67:33 (2.00) 

13 2.83 Cl A 7, reflux 0 - 

14 2.83 Cl A 7, rt 24 33:67 (0.50) 

15 2.83 Cl B 2, rt 93 70:30 (2.33) 

16 2.83 Cl B’ 0.5, rt 92 69:31 (2.22) 

17 2.83 Cl B’ 2, rt 94 71:29 (2.45) 
a Method A uses anhydrous conditions. Methods B and B’ use PTC: B with nitrophosphonium 

salt, and B’ with nitrobenzaldehyde; b Based on 1H-NMR. 

 

 

To assess the effect of the nitro group of the phosphonium salt in the reaction stereocontrol, and 

the scope of this reaction, compounds 2.84-94 were prepared. It can be seen that the 

stereoselectivity depends significantly on the position of the nitro group in the phosphonium halide, 

Table 2.15. A high (Z) stereoselectivity was observed for the reaction of 3- and 3,5-

dinitrobenzylphosphonium salts with benzaldehyde, entries 1 and 7.  In contrast, placement of the 

nitro group in the ortho or para positions of the phosphonium salt led to a significant increase in the 

proportion of the (E) alkene and loss of stereoselectivity, entries 4, 5 and 6. The diastereomeric ratio 

obtained for 2.85 is identical to the one reported for the synthesis of 2-nitro-2’,5’-dimethylstilbene, 

Z:E = 1.4 [217], which was obtained through the same benzyltriphenyl phosphonium salt and 

identical conditions. Finally, the reaction of 2,4-dinitrobenzylphosphonium chloride with 

benzaldehyde shifted the stereoselectivity towards the formation of the (E)-2.84, entry 4. 
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Table 2.15 Reaction of nitro-substituted benzyltriphenyl phosphonium salts with aldehydes under standard PTC 

conditions at room temperature (Method B) and microwave-assisted synthesis (Method C). 

 
Method B Method C 

Cpd R1 R2 
Entry 

Yield 

(%)a 
Z:E (ratio)b Entry 

Yield 

(%)a 
Z:E (ratio)b 

2.81 3-NO2 H 1 92 84:16 (5.25) 1’ 84 73:27 (2.70) 

2.82 3-NO2 4-OMe 2 98 77:23 (3.35) 2’ 79 77:23 (3.33) 

2.83 3-NO2 4-Cl 3 93 70:30 (2.33) 3’ 96 70:30 (2.38) 

2.84 2,4-diNO2 H 4 34 17:83 (0.20) 4’ N.D.c N.D.c 

2.85 2-NO2 H 5 95 57:43 (1.33) 5’ 24 69:31 (2.22) 

2.86 4-NO2 H 6 88 58:42 (1.38) 6’ 93 34:66 (0.52) 

2.87 3,5-diNO2 H 7 76 88:12 (7.33) 7’ 67 71:29 (2.45) 

2.88 3-NO2 2-F 8 96 91:9 (10.11) 8’ 49 86:14 (6.14) 

2.89 3-NO2 2-Cl 9 100 85:15 (5.67) 9’ 46 83:17 (4.88) 

2.90 2-NO2 2-F 10 90 83:17 (4.88) 10’ 88 76:24 (3.17) 

2.91d 2-NO2 2-CO2Me 11 47 78:22 (3.54) 11’ 39 63:37 (1.70) 

2.92 4-NO2 2-F 12 100 58:42 (1.37) 12’ 77 74:26 (2.85) 

2.93 4-NO2 2-Cl 13 92 67:33 (2.00) 13’ 96 80:20 (4.00) 

2.94 3-NO2 4-NO2 14 61 100:0 14’ N.D. N.D. 
a Yield is given for the isolated isomer mixture. b Z/E ratios were determined by 1H NMR. c Untractable 

mixture. N.D. - Not Determined. d Aldehyde 2.95 obtained from the corresponding acid with methyl iodide. 

 

 

The observed shift from (Z) to (E) stereoselectivity can be ascribed, at least in part, to the direct 

conjugation of the negative charge of the phosphonium ylide with the nitro groups in ortho or para 

positions and is consistent with the suggestion that the dominant structure of phosphonium ylides is 

the dipolar P+-C- zwitterion rather than the P=C double bond [218].  Indeed, the equilibrium acidities, 

pKHA in DMSO, of 4-substituted ArCH2PPh3
+ cations correlate with the Hammett σ- constants of 

the substituents in the aryl moiety with a slope of -4.78, reflecting the direct conjugation of the 

negative in the conjugate base, the ylide, with electron withdrawing groups such as NO2 [218]. The 

similar Z:E ratios for 2.85 and 2.86, Table 2.15 entries 5 and 6, suggest that stereoselectivity is not 

affected by sterical hindrance in the ylide moiety.  

Stilbenes 2.88-94 were obtained in good yields, entries 8-14. Although diastereoselection was 

variable, the (Z) isomer was predominant in all cases. Interestingly the reaction diasterioselectivity 
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decreased with the introduction of both moderate electron withdrawing and donating groups in the 

aldehyde, i.e. 2.82 and 2.83, in comparison to the non-substituted counterpart, but the introduction 

of 4-NO2 resulted in the (Z) isomer, exclusively, under these reaction conditions, entry 14. For 

reactions with 2-halobenzaldehydes, the expected (Z) diastereoselectivity was observed even for the 

stabilized 2-nitro ylide. The cooperative ortho halo effect [219, 220] may be responsible for these 

results and overrides the stabilizing effect of resonance to the nitro group.  

With these results in hand, it was studied the effect of the microwaves in the synthesis of 2.81, 

at different temperatures, Table 2.16. Interestingly, the conversion rate decreased with higher 

temperatures, methods C-F. Also, the stereocontrol was poorer when compared to the reaction 

without microwaves. Since the microwave-assisted protocol was most successful at 30 ºC, the 

reactions to acquire the remaining stilbenes were carried out at this temperature.  

 

 
Table 2.16 Comparative study, rt vs. MW, for the synthesis of 2.81. 

Method Temperature Time Yield (%) Z:E (ratio) 

B:  PTC rt 2 h 92 84:16 (5.25) 

C:  PTC/MW/100W 30 3 min 84 73:27 (2.70) 

D:  PTC/MW/100W 50 3 min 88 71:29 (2.45) 

E:  PTC/MW/100W 70 3 min 70 69:31 (2.23) 

F:  PTC/MW/100W 90 3 min 64 68:32 (2.13) 

 

 

As for the microwave-assisted reactions, the yields were less consistent and resulted in a 

decrease of the (Z) stereoselectivity, e.g. Table 2.15 entries 7 vs. 7’. With the stabilized 4-

nitrophosphorane the reaction rate increased and inversion on the stereoselectivity was observed, 

entries 6 vs. 6’, whereas with 2,4-dinitrophosphorane an untractable mixture was obtained, entry 4’.   

Variation of the substitution pattern in the aldehyde did not affect significantly the PTC reaction 

yield, except for 2.85, 2.88 and 2.89, entries 5/5’, 8/8’ and 9/9’, and although diastereoselection was 

variable, the (Z) isomer was generally predominant. For reactions with 2-halobenzaldehydes, the 

expected (Z) diastereoselectivity was observed, but the co-operative ortho halo effect was not as 

pronounced when compared to method A of PTC reactions. Interestingly, reactions under 

microwaves with 4-nitrophosphorane afforded a greater (Z) selectivity than the standard PTC 

procedure, entries 12/12’ and 13/13’. However, despite the lower yields and poorer 

diastereoselection, this procedure greatly reduces the reaction time. 
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Table 2.17 Synthesis of alkenes 2.96-99 through Wittig chemistry. 

 
Method B Method C 

Cpd Z 
Entry 

Yield 

(%)a 
Z:E (ratio)b Entry 

Yield 

(%)a 
Z:E (ratio)b 

2.96 
 

1 45 80:20 (4.00) 1’ 55 79:21 (3.76) 

2.97  
2 N.D.c N.D.c 2’ N.D.c N.D.c 

2.98  3 N.D.c N.D.c 3’ N.D.c N.D.c 

2.99 d 
 

4 84 17:83 (0.20) 4’ N.D. N.D. 

a Yield is given for the isolated isomer mixture. b Z/E ratios were determined by 1H NMR. c 

Untractable mixture. N.D. - Not Determined. d Phosphonate 2.100 obtained from oxidation of 

the thioether. 

 

 

The PTC and MW-assisted reactions carried out with phenylacetaldehyde gave only a moderate 

yield of the corresponding stilbene, Table 2.17 entries 1 and 1’, and an increased rate of hydrolysis 

of the phosphorane into the 3-nitrotoluene was observed. Moreover, 3-nitrotoluene was the main 

product when the reactions were carried out with aliphatic aldehydes, and the main cause of lower 

yields for MW-assisted reactions. Instability of stabilized phosphoranes has already been reported 

whilst using microwave assisted synthesis [221] and the hydrolysis of phosphonium salts correlates 

with the Hammet σ values of 3-NO2 and 4-NO2. The rate limiting step in the mechanism is variable, 

but involves the attack of a hydroxide to the phosphorous, and formation of phosphine oxide. This 

step also results in expulsion of the benzylic carbanion, which in aqueous solution affords the 

corresponding toluene [222]. Finally, compounds 2.101 and 2.102 were obtained via method B’, 

Table 2.18. 

These intermediates were isolated in Z:E mixtures and identified by 1H-NMR spectroscopy. The 

two CH doublets for the (Z) diastereomers usually appear at higher field. For 2.82 those protons can 

be found at δ 6.52 and 6.72 ppm, while the protons from its (E) counterpart are found at δ 7.01 and 

7.21 ppm. Those protons in (Z) isomers also present a coupling constant of ca. 3J = 12 Hz, whereas 

their counterparts display a constant of ca. 3J =16 Hz. 
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Table 2.18 Structure of compounds 2.101 and 2.102. 

 
Compound R1 R2 Yield (%)a Z:E (ratio)b 

2.101 3-NO2 4-CF3 98 75:25 (3.00) 

2.102 3-NO2 4-OCF3 100 72:28 (2.57) 
a Yield is given for the isolated isomer mixture. b Z/E ratios were determined by 1H NMR. 

 

 

Anilines 

The nitrostilbenes were reduced to the corresponding anilines through a method described by 

Mandal et al. [223].  Catalytic transfer of hydrogen (CTH) is a widely accepted alternative method 

that does not require the use of potentially dangerous hydrogen gas, and Et3SiH (or TES)/Pd-C is a 

very convenient reagent that generates H2 in situ, Scheme 2.7. The reactions were carried out using 

excess TES with 10-20% Pd-C (by weight) in MeOH, and simultaneous reduction at the C=C and 

nitro group was observed, Scheme 2.8. Generally, very good yields were obtained, Table 2.19. 

 

 

 
Scheme 2.7 Mechanism for in situ generation of H2. 

 

 

 
Scheme 2.8 Synthetic pathway to compounds 2.103-110. Reagents and conditions: (i) CH2Cl2, MeOH, TES, Pd-C 10%, 

rt. 
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Table 2.19 Structure of compounds 2.103-110. 

 
Compound R1 R2 n Yield (%) 

2.103 3-NH2 H 1 95 

2.104 3-NH2 OMe 1 99 

2.105 3-NH2 Cl 1 78 

2.106 2-NH2 H 1 94 

2.107 4-NH2 H 1 87 

2.108 3-NH2 H 2 95 

2.109 3-NH2 CF3 1 100 

2.110 3-NH2 OCF3 1 98 

 

 

All reactions were carried out swiftly at room temperature, and strong bubbling and heating was 

noted in all cases. Typically, the reactions were completed after 15-30 minutes (TLC). The 

reduction of 2.83 at room temperature afforded only ca. 1/3 of 2.105 and ca. 2/3 of 2.103. This was 

already expected as there is halogen removal reported when using TES as an in situ H2 generator 
[224]. Thus, the synthesis of 2.105 was attempted below room temperature. At -10 ºC an equal 

amount of 2.105 and 2.103 was obtained, but at -65 ºC only the desired product was formed. In this 

case, the reaction was allowed to develop for 3 hours before quenching, to avoid halogen 

substitution; hence the lower yield, comparing to other reactions. 

These intermediates were identified by 1D and 2D NMR spectroscopy. These series of 

intermediates is readily identified from the characteristic simetric multiplet at ca. δ 2.7-3.0 ppm that 

corresponds to the two methylene groups spacing the aryl moieties. A simple triplet pattern for each 

methylene would be expected, but a closer inspection of the signal allows one to see seven peaks, 

which is only consistent with ddd coupling, i.e. all protons are non-equivalent. This would yield 

eight distinct peaks, but the rather low resolution of the spectrum does not permit the determination 

of the coupling constants. 

 

 

Pyridinamines 

With the synthesized anilines, SNAr was carried out with 3,4-dichloropyridine in order to afford 

4-pyridinamines, Scheme 2.4 A. Only two compounds were synthesized, 2.111 and 2.112, from 
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reflux of the two starting materials in ethanol, as was done for the series of Mannich-base 4-

pyridinamines, Table 2.20.  

 
Table 2.20 Structure of compounds 2.111 and 2.112. 

 
Compound R1 Yield (%) 

2.111 H 20 

2.112 OMe 80 

 

 

Both compounds were characterized by 1H and 13C-NMR, and were used in the next step. 

Interestingly, the two methylene groups which appeared as a simetric multiplet in the 

phenethylamines precursors now showed as a completely superimposed multiplet. 

 

 

Pyridinium salts 

The pyridinium salts were obtained through a SN2 reaction, according to the procedure 

described by Bierer et al. [225]. N-alkylation with methyl and ethyl iodide upon deactivated pyridines 

had previously failed, and thus, a stronger alkylating agent was employed, i.e. methyl or ethyl 

triflate, Scheme 2.9. All compounds precipitated from the reaction mixture, and were obtained in 

excellent yields. The exception was observed for the 3-nitropyridine which did not react in these 

conditions, Table 2.21. The compounds were identified by 1H-NMR spectroscopy and presented a 

characteristic peak at ca. δ 4.5 ppm, assigned to the methyl or methylene protons linked to pyridine. 

 

 
 Scheme 2.9 Synthetic pathway to compounds 2.113-118. Reagents and conditions: (i) dry toluene, TfOMe or TfOEt, 

rt. 
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Table 2.21 Structure and obtained yields for compounds 2.113-118. 

 
Compound R1 R2 R3 Yield (%) 

2.113 Cl H Me 95 

2.114 NO2 H Me 0 

2.115 Cl H Et 100 

2.116 Cl Cl Et 97 

2.117 NO2 H Et 0 

2.118 NH2 H Et 95 

 

 

Since the synthesis of the unsubstituted and 3-nitro pyridinium salts was not successful, a 

different approach was taken. The 4-chloropyridines were transformed into the corresponding 

4(1H)-pyridones, before undertaking the alkylation step. 3-Nitropyridone was prepared from a 

simple reaction with NaOH, under reflux, affording 2.119 in quantitative yield, Scheme 2.10. 

However, the attempted synthesis of the N-ethyl derivative of 2.119, i.e. 2.120, was also not 

successful. 

 

 
Scheme 2.10 Synthetic pathway to compound 2.119. Reagents and conditions: (i) NaOH, reflux; (ii) toluene, EtOTf, 

TEA, rt. 

 

 

On the other hand, compound 2.121 was obtained in quantitative yield from deprotection of 4-

methoxypyridine with trimethylsilyl iodide (TMSI), Scheme 2.11 [226]. This pyridone gave access to 

the introduction of bromine at C3, 2.122, from reaction with NBS, which would be a key 

intermediate to synthesize the compounds with the highest docking scores. Though, the low yield of 

the bromination step (19%) made it unsuitable to progress further with the synthesis of its 4-chloro 
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derivative with POCl3. The synthesis of 2.122 has been reported as troublesome. The 3,5-dibromo 

compound is often formed in higher yields [227]. 

 

 
Scheme 2.11 Synthetic pathway for compound 2.121 and 2.122. Reagents and conditions: (i) CH3CN, TMSI, N2, 

reflux; (ii) CH2Cl2, MeOH, NBS, rt, light 

 

 

2.3.6 4-Pyridonimines 

 

Via 4-pyridinamines 

The synthesis of the second series of 4-pyridonimines was first carried out as described for the 

Mannich-base series of compounds, i.e. addition of sodium hydride in anhydrous DMF, followed by 

reaction with an alkyl iodide. It was noted that for the Mannich-base derivatives, alkylation 

occurred only at the pyridinic nitrogen, but for this series, alkylation occurred, remarkably, only at 

the amine nitrogen, Scheme 2.12. 

 

 
Scheme 2.12 Synthetic pathway for compound 2.123. Reagents and conditions: (i) a) DMF, NaH b) EtI. 

 

 

The structure of 2.123 was confirmed by NMR techniques and the signal given by CH2CH3 was 

significantly different from what had been observed for the first series. Whereas the N-CH3 protons 

of 2.1, 2.4 and 2.6-8 appear at ca. δ 4.0 ppm, for this synthesis the N-CH2 protons were obtained at 

a higher field, δ 3.83 ppm. Furthermore, the coupling constant of Ar-H2 and Ar-H3 remained at ca. 
3J = 4.5 Hz, which is not consistent with the 4-pyridonimine core. The final confirmation came 
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from 2D NOESY spectrum, in which no correlation of the methylene with Ar-H2 was seen, Figure 

2.13. For this reason, this pathway was abandoned for the remaining synthesis. 

 

 
Figure 2.13 2D NOESY spectrum of 2.123. 

 

 

Via pyridinium salts 

The SNAr was carried out for 20-24 hours under reflux in the presence of triethylamine and in 

ethanol. The 4-pyridonimine derivatives 2.124-137 were obtained through an addition-elimination 

mechanism [228], in good yields, and isolated as trifluoromethanesulfonates or hydroiodides, 

depending on the counterion of the pyridinium starting material, Scheme 2.13 and Table 2.22. 

 

 
Scheme 2.13 Synthetic pathway to compound 2.124-137. Reagents and conditions: (i) EtOH, TEA, aniline, reflux. 
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Table 2.22 Structure of 4-pyridonimines and yields. 

 
Compound R1 R2 R3 R4 Isomer n Yield (%) 

2.124 Cl H Et OMe 3’ 1 57 

2.125 Cl H Me OMe 3’ 1 87 

2.126 Cl H Et H 3’ 1 82 

2.127 Cl H Me H 3’ 1 59 

2.128 Cl H Et Cl 3’ 1 11 

2.129 Cl H Et CF3 3’ 1 76 

2.130 Cl H Et OCF3 3’ 1 76 

2.131 Cl Cl Et OCF3 3’ 1 74 

2.132 NH2 H Et H 3’ 1 97 

2.133 NH2 H Me H 3’ 1 50 

2.134 NH2 H Et OCF3 3’ 1 70 

2.135 Cl H Et H 2’ 1 59 

2.136 Cl H Et H 4’ 1 53 

2.137 Cl H Et H 3’ 2 33 

 

 

Since N-hydroxides reduce the antiplasmodial activity of 4(1H)-pyridones [19], the N-hydroxide 

pyridonimine 2.138 was also synthesized, in order to confirm if the same trend was observed. Two 

different pathways were experimented, Scheme 2.14. First, N-oxidation of pyridine was carried out 

with mCPBA affording the desired N-oxide 2.139 in good yield (73%). An attempted SNAr with the 

N-oxide followed, but no reaction was observed, probably due to the higher electron density at C4, 

as a consequence of the electron-donor effect from N-O-. This was also confirmed from the 1H-

NMR spectrum of 2.139. The C2 protons are more shielded than in the starting material as a result 

of the resonance of the oxygen atom with the aromatic moiety. Greater difficulty to perform SNAr 

reactions with N-oxides than with N-alkyl salts had been reported [228]. 

Alternatively, N-oxidation of the previously synthesized 4-pyridinamine 2.111 was carried out 

with success, affording 2.138 in 31% yield. 
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Scheme 2.14 Synthetic pathway to compound 2.138. Reagents and conditions: (i) CHCl3, mCPBA, reflux (ii) EtOH, 

TEA, aniline, reflux. 

 

 

The compounds were characterized with several spectroscopic techniques, including 1D and 2D 

NMR and only the (E) isomer was formed. A characteristic feature of these compounds is the 

resonance of the N-CHx group at ca. δ 4.0-4.3 ppm, presenting an upfield shift compared to the salt 

precursor. Additionally, the Ar-H2 and Ar-H3 resonances and their vicinal coupling constants 

provide further evidence of contrasting electronic features to those of the starting material: (i) Ar-

H2 resonance appears dramatically more shielded, ca. δ 8.0-8.8 ppm (3J of 7.2 to 7.6 Hz), than the 

piridinium salt which appears at ca. δ 9.0-9.5 ppm (3J = 6.8 Hz); (ii) higher coupling constants 

indicate the shift in nitrogen hybridation from sp2 to sp3 as was also observed for the first series. As 

an example, the 1H-NMR spectrum of 2.129 presents Ar-H2 at δ = 8.74 ppm, and Ar-H6 at δ = 8.18 

ppm, whereas Ar-H5 is found at δ = 6.88 ppm, the most shielded proton in the aromatic region. The 

spectrum also shows an AA’ BB’ system, δ = 7.38 and 7.56 ppm, corresponding to the terminal aryl 

moiety. At higher fields, one finds the chemical shifts of the ethyl group, and the methylene spacer 

as a broad singlet-like multiplet, δ 3.07 ppm. 

Mass spectroscopy was carried out on electrospray ionization, positive mode. The base peak 

was obtained for [M+H]+, for this series of compounds. Furthermore, the peak with m/z = 246 at a 

relative abundance of ca. 80% results from the fragmentation at the methylene linker. This was the 
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most common breaking point among the synthesized compounds, and was identical to the Mannich-

base series, Figure 2.14. 

 

 
Figure 2.14 Fragmentation pattern for 4-pyridonimines, exemplified by 2.129. 

 

 

Antiplasmodial activity and cytotoxicity 

With the introduction of a second aryl moiety, a lipophilic spacer in the structure-base designed 

4-pyridonimines, and a chlorine atom at C3, it was expected that the antiplasmodial activities would 

improve, compared to the Mannich-base series. In fact, the IC50s against the W2 strain dropped, at 

least, 1.5-fold, pinpointing the successful use of the docking model to design new inhibitors. 

Analysis of Table 2.23 allows the following observations on SAR: 

a) Introduction of a lipophilic side chain improved the antiplasmodial activity to a maximum 

of 9-fold, i.e. 2.1 vs. 2.131; 

b) Exchange of the N-methyl for a N-ethyl group at R3 generally resulted in little effect on 

the antiplasmodial activity against the W2 and FCR3 strains, i.e. 2.126 vs. 2.127, and 

2.132 vs. 2.133; 

c) For the 3-Cl series, the 4-OCF3 substituent at the terminal aromatic ring increased activity 

against the W2 and FCR3 strains, when compared to the unsubstituted counterpart, i.e. 

2.126 vs. 2.130; 

d) The substituent effect on both strains was 4-OCF3 (2.130) > 4-CF3 (2.129) > 4-Cl (2.128) 

> H (2.126) ∼ 4-OMe (2.124), which is similar to what had been reported for 4(1H)-

pyridones [19]; 

e) For the 3-NH2 subset, the 4-OCF4 substituent at R4 had a detrimental effect on the 

antiplasmodial activity, for the W2 strain, which is also consistent with the drop of 

activity for 4(1H)-pyridones with electron-donating groups at C3 [19]; 
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f) Introduction of a second chlorine atom at C5 does not have a significant impact on 

activity, against the W2 strain, i.e. 2.130 vs. 2.131; 

g) The N-hydroxy derivative 2.138 was inactive against both tested strains, in line with the 

SAR described for clopidol analogues [19]; 

h) The position of the phenethyl side chain also had effect on the antiplasmodial activity, 

with the 2’ and 4’ isomers being less active than their 3’ counterpart, against the W2 

strain, i.e. 2.135 and 2.136 vs. 2.126; 

i) The 3-phenylpropyl side chain resulted in increased activity, which is indicative of the 

importance of a lipophilic side chain, i.e. 2.126 vs. 2.137; 

j) The antiplasmodial activities against the W2 and FCR3 strains are comparable, given the 

same point mutation on the gene that confers chloroquine resistance. The compound 

2.136 is at least 3-fold more active against the FCR3 strain. 
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Table 2.23 Antiplasmodial activity against P. falciparum W2 and FCR3 strains. 

 
IC50 (μM) ± SD 

Compound R1 R2 R3 R4 Isomer n 
W2 FCR3 

2.1       8.61 ± 0.41 7.90 ± 0.24 

2.124 Cl H Et OMe 3’ 1 3.44 ± 0.08 3.95 ± 0.93 

2.125 Cl H Me OMe 3’ 1 5.24 ± 0.68 5.12 ± 1.61 

2.126 Cl H Et H 3’ 1 3.46 ± 0.28 3.53 ± 0.29 

2.127 Cl H Me H 3’ 1 4.75 ± 0.78 2.89 ± 0.89 

2.128 Cl H Et Cl 3’ 1 3.24 ± 0.24 2.17 ± 0.33 

2.129 Cl H Et CF3 3’ 1 1.60 ± 0.15 1.87 ± 0.33 

2.130 Cl H Et OCF3 3’ 1 1.07 ± 0.07 1.70 ± 0.20 

2.131 Cl Cl Et OCF3 3’ 1 0.94 ± 0.12 2.80 ± 0.03 

2.132 NH2 H Et H 3’ 1 1.67 ± 0.15 2.08 ± 0.95 

2.133 NH2 H Me H 3’ 1 1.47 ± 0.10 2.21 ± 0.22 

2.134 NH2 H Et OCF3 3’ 1 3.91 ± 0.03 1.83 ± 1.27 

2.135 Cl H Et H 2’ 1 6.67 ± 0.38 3.19 ± 0.90 

2.136 Cl H Et H 4’ 1 > 10 3.74 ± 0.12 

2.137 Cl H Et H 3’ 2 2.43 ± 0.10 2.25 ± 1.12 

2.138a Cl H OH H 3’ 1 > 8.9 > 8.9 

Clopidol       9.73 ± 0.07 3.37 ± 0.19 

Atovaquone       0.0012 1.89 ± 0.10 

Chloroquine       0.052 0.051 

a Compound 2.138 was obtained in the neutral form. 
 

 

Molecular docking 

Finally, to understand how the two most active compounds would interact with the predicted 

binding site, a docking study was carried out in their iminium form, since they had been tested as 

triflates.  Compound 2.130, Figure 2.15 B, presents the side chain occupying the hydrophobic 

channel leading to the Qo centre, and interacts with aliphatic and aromatic side chains of L150, 

F151, L275, F278, M295, I299 which is similar to GW844520, Figure 2.15 A. Interestingly, the 

iminium hydrogen atom of 2.130 is close to the nitrogen atom of H181 (2.8 Å) which is compatible 
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with a hydrogen bond. On the other hand, 2.131 presents an identical docking pose to 2.130, where 

the side chain is occupying the hydrophobic channel. The iminium hydrogen atom of 2.131 is 4.2 Å 

away from the oxygen atom of E272, which is compatible with a water-mediated hydrogen bond. 

These results support the hypothesis that 4-pyridonimines can bind to the Qo site in cytochrome b, 

promoting interactions with the residues that define the hydrophobic channel in a similar way to 

GW844520. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.15 Docking poses of (A) clopidol (purple), and GW844520 (blue); (B) 2.130 (purple), and 2.131 (blue). 

 

 

Anti-liver activity and cytotoxicity 

Compounds 2.124-138 were also tested for their activity against the liver stages of P. berghei in 

human hepatoma cells. Primaquine and atovaquone are known to act at this point of the life cycle. 

However, it is an under-exploited target, and the dormant hypnozoites are responsible for malaria 

relapses [229, 230]. In short, the method is based on the measurement of luminescence of Huh-7 cells, 

a human hepatoma cell line, following infection with PbGFP-Luccon-expressing P. berghei 

sporozoites. At a given time after infection, the percentage of parasitized cells is given by the 

percentage of luminescence. Because this gene is under the control of the constitutive eef1aα 

promoter, the extent of intracellular development is proportional to the number of luciferase copies 

in the cell, measured as the intensity of luminescence. 
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The compounds were assayed three times at 10 μM and 2 μM, and compared with primaquine 

at 5 μM, Figure 2.16. 

 

Figure 2.16 Antiplasmodial activity of compounds 2.124-138 at 10 μM (black bars) and 2 μM (grey bars) against liver 

stage P. berghei. The luminescence (bars) is given as percentage of control (MeOH) inhibition. The cytotoxicity was 

measured in fluorescence (dots) from the Alamar Blue test and is also given as percentage of control. Primaquine was 

tested at 5 μM. All concentrations were tested and missing bars account for the total suppression of parasite load. 

 

 

From observation of the plot, it is possible to conclude that: 

a) The antiplasmodial activity is dose-dependent, i.e. the compounds are more active at 10 

μM than at 2 μM; 

b) At 10 μM compounds 2.132, 3.133, 2.135 and 2.138 are the least potent; the remaining 

compounds are considerably more potent, i.e. at least over 2-fold; 

c) Similar SAR to that of the blood stage can be found: electron-withdrawing groups on the 

terminal aryl moiety still afford more potent compounds, e.g. 2.128 vs. 2.126 and 2.124; 

the introduction of a second chlorine atom does not improve activity, i.e. 2.130 vs. 2.131; 

compounds 2.135 and 2.138 are among the least active, as against the W2 strain; 

d) In this case, N-ethyl substitution appears to be detrimental when compared to N-methyl, 

i.e. 2.124 vs. 2.125 and 2.126 vs. 2.127, in opposition to what whas observed against the 

W2 strain; 

e) In the 3-NH2 subset, the terminal OCF3 group also appears to be favourable for activity; 

f) At 2 μM, compound 2.128 is as active as primaquine at 5 μM. 
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The toxicity of those compounds was then assayed using the Alamar Blue test. The active 

ingredient, resazurin, is a non-toxic, cell permeable compound that is blue in colour and virtually 

non-fluorescent. Upon entering cells, it is reduced to resorufin, which produces red fluorescence. 

Viable cells continuously produce the fluorescent compound, thereby measuring viability / 

cytotoxicity. 

The following observations can be made: 

a) The compounds that are most active against the liver stage, are also the most toxic; 

b) At 10 μM, compound 2.126 shows comparable toxicity to primaquine; 

c) All compounds present similar toxicity at 2 μM; which in turn is similar to primaquine at 

5 μM and the control. 

 

 

2.4 Conclusions 
The 4-pyridonimines present similar electronic properties to the 4(1H)-pyridones. The structure-

based approach to optimize the scaffold was successful, i.e. while the most active Mannich-base 

compound 2.1 displayed an IC50 of ca. 8.5 μM, the most active pyridonimine from the second series 

was 2.131, with an IC50 of 0.94 μM. The introduction of an extended and lipophilic side chain was 

probably key, and the docking poses of the compounds also give a possible explanation for the 

IC50s, on a molecular basis. These compounds also displayed interesting anti-liver activity and can 

be used as leads for further optimizations. 
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3. QUINOLONIMINE SCAFFOLD 
 

3.1 Rationale 
After studying the 4-pyridonimine scaffold the attention was drawn to 4-quinolonimines. Since 

that all synthesized compounds from the previous series were obtained as triflate or iodide salts, it 

was hypothesized that the positive charge would be detrimental for the molecule to reach the drug 

target. Moreover, since those molecules had been designed to inhibit a highly hydrophobic binding 

site, this charge could be responsible for less efficient interactions with the binding pocket. Thus, in 

order to eliminate this problem, it was decided to include an extra aromatic ring into the 4-

pyridonimine scaffold to decrease the basicity of the imine nitrogen and, consequently, increase the 

lipophilicity of the molecules. In fact, the inclusion of a second aryl increases the predicted logP in 

1.30 units in test scaffolds, Figure 3.1 [231]. 

 

 
Figure 3.1 Predicted LogP for the 4-pyridonimine and 4-quinolonimine scaffolds. 

 

 

In this series, quinolines that are used to obtain known antimalarials were employed as starting 

materials, to enhance the eventual antiplasmodial activity of 4-quinolonimines. Since the 7-

chloroquinoline core would be used, it was expected that the resulting compounds could also 

present a mechanism of action similar to chloroquine. Additionaly, the side chains described by 

Yeates et al. [19] and those derived from the 4-pyridonimine study were used, to obtain some insight 

into the SAR. Furthermore, it was desired to introduce a methyl group at C2, since it had been 

reported the importance of this group for the activity of 4(1H)-pyridones, i.e. its withdrawal results 

in significant loss of antiplasmodial activity [19].  

The retrosynthetic analysis for the target molecules is shown in Scheme 3.1. Most of the 

chemical reactions were identical to ones that had been used for the 4-pyridonimines, and the 

required quinoline could be obtained via a Conrad-Limpach cyclization.  
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Scheme 3.1 Retrosynthetic analysis of target 4-quinolonimines. 

 

 

3.2 Synthesis 
The synthetic pathway was identical to the one employed for the structure-based design series 

of 4-pyridonimines, i.e. N-alkylation of a given quinoline, followed by SNAr reaction with a 

commercial or synthesized primary amine in ethanol, and TEA as a base.  

 

 

3.2.1 4,7-Dichloro-2-methylquinoline 

In order to study the effect of the substitution pattern of the quinoline moiety on the 

antiplasmodial activity, the synthesis of 4,7-dichloro-2-methylquinoline, 3.1, was tried. This would 

present a key intermediate for a quinolonimine with a methyl group inserted at C2. The synthetic 

route for this intermediate included the synthesis of the required 4(1H)-quinolone, 3.2, from the 

corresponding aniline and ketoester in a Conrad-Limpach procedure, i.e. formation of an imine in 

the first step, followed by an intra-molecular Friedel-Crafts acylation, Scheme 3.2.  

 

 
Scheme 3.2 Synthetic pathway for compound 3.2. Reagents and conditions: (i) PPA, 3-chloroaniline, 110 ºC (ii) 150 

ºC. 
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However the cyclization step afforded two distinct isomers in equal amounts, 3.2 and 3.3. Those 

were isolated in 87% yield and were not separated at this point. It is also noteworthy that this 

procedure can afford the respective 2(1H)-quinolones, but being the thermodynamic product, higher 

temperatures would be needed, since the imine formation is faster than the formation of the required 

amide. The two isomers were identified by a characteristic singlet at ca. δ 6.15 ppm in the 1H-NMR 

spectrum, which accounts for the proton at C3. Moreover, the protons of the ethyl group were not 

present, which gave evidence of the cyclization step. 

Once 3.2 and 3.3 were obtained the synthesis of 3.1 was attempted with POCl3 under reflux, but 

a complex mixture was obtained, Scheme 3.3. It appeared that the starting material had 

decomposed, from TLC analysis, and no further attempts were made. 

 

 
Scheme 3.3 Synthetic pathway to compound 3.1. Reagents and conditions: (i) POCl3, reflux. 

 

 

3.2.2 Quinolinium salt intermediates 

The quinolinium salts 3.4-6 were obtained in good yields from an identical procedure to the 

pyridinium salts, Table 3.1. Compound 3.6 was obtained in lower yield due to the methanosulfonate 

starting material being already partially hydrolyzed. All three compounds were easily identified by 
1H-NMR spectroscopy, with the key peak at δ 4.5-5.2 ppm corresponding to the N-CHx protons. 

 

 
Table 3.1 Structure and yields of 3.4-6. 

 
Compound R2 R3 Yield (%) 

3.4 Cl Et 92 

3.5 CF3 Et 95 

3.6 Cl Me 65 
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In regard to the reports of potent antiplasmodial activity of acridone derivatives [100] it was also 

intended to obtain an acridonimine, but the N-alkylation of 6,9-dichloro-2-methoxyacridine with 

ethyl triflate was not successful due to the very poor dissolution of the starting material in toluene, 

even at reflux temperature, Scheme 3.4.  

 

 
Scheme 3.4 Attempted synthesis of 3.7. 

 

 

3.2.3 1-Nitro-4-phenoxybenzene intermediates  

Anilines were selected from previous studies on SAR for cytochrome bc1 inhibitors, either 

4(1H)-pyridones [19] or the 4-pyridonimines described in chapter 2. The selection was made in order 

to incorporate a suitable and extended lipophilic side chain, which has been shown to improve the 

bc1 complex blocking [100]. The retrosynthetic analysis for the desired side chains is presented in 

Scheme 3.5. These can be derived from simple starting materials as phenols and 

fluoronitrobenzenes. Because the side chains require an aromatic C-O coupling, care had to be 

taken with the needs of a SNAr reaction. A nitro group, as a precursor of the amino group, had to be 

present. The electron withdrawing nature of the nitro function facilitates the nucleophilic attack. 

Additionally, a fluoro atom, instead of another halogen, had also to be present. Fluoride is a very 

poor leaving group for SN2 reactions, but the best leaving group for SNAr, due to the small size and 

high electronegativity, which favours the characteristic ipso attach by the nucleophile, in this type 

of reactions.  

 

 
Scheme 3.5 Retrosynthetic analysis for the phenoxyanilines 
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The conversion of nitro intermediates to their aniline counterparts could then be attained in 

identical fashion to the reduction of the nitrostilbenes, which was reported in the previous chapter. 

Compounds 3.8-12 were synthesized in good yields from the reaction of the corresponding 

starting materials in presence of a base (Na2CO3) and a coupling catalyst (CuI), i.e. an Ullmann 

condensation, Table 3.2 and Scheme 3.6.  

 

 
Scheme 3.6 Synthetic pathway to compounds 3.8-13. Reagents and conditions: (i) DMF, Na2CO3, CuI, reflux. 

 

 
Table 3.2 Structure and yileds of 3.8-13. 

 
Compound Isomer R4 Yield (%) 

3.8 4 4-OCF3 73 

3.9 4 H 65 

3.10 4 3-OCF3 81 

3.11 4 4-CF3 71 

3.12 4 4-Cl 75 

3.13 3 4-OCF3 30 

 

 

As for compound 3.13, a lower yield was observed, probably due to the meta substitution of the 

fluorine atom, where no conjugated resonance with NO2 is possible after the ipso attack. Therefore, 

the electron withdrawing nature of the nitro group is not enough to drive the reaction in this case. 

The compounds were identified by 1H-NMR spectroscopy. 3.8, 3.11 and 3.12 present AA’ BB’ 

or AA’ XX’ systems in the spectrum, as a result of the para substitution pattern in both aromatic 

rings, whereas 3.10 and 3.13 present a more complex spectrum due to the non-equivalence of 

several protons. 
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3.2.4 4-Phenoxyanilines intermediates 

Reduction of the nitro group in 3.8-11 and 3.13 to their respective amines 3.14-17 and 3.19 was 

obtained, in good yields, through CTH reaction with TES, as described for the phenetylamines 

intermediates. Alternatively, for the 4-Cl intermediate, i.e. 3.12, the nitro reduction was achieved 

via Sn, HCl reaction, to circumvent dehalogenation of the aromatic ring that took place under 

catalytic hydrogenation, Scheme 3.7. The yields can be found in Table 3.3. 

 

 
Scheme 3.7 Synthetic pathway to compounds 3.14-19. Reagents and conditions: (i) CH2Cl2, MeOH, TES, Pd-C 10%, 

rt; (ii) Sn, HCl, reflux. 

 

 
Table 3.3 Structure and yields for compounds 3.14-19. 

 
Compound Isomer R3 Yield (%) 

3.14 4 4-OCF3 68 

3.15 4 H 75 

3.16 4 3-OCF3 85 

3.17 4 4-CF3 93 

3.18 4 4-Cl 85 

3.19 3 4-OCF3 85 

 

 

This set of anilines was identified from 1H-NMR spectroscopy, by comparison with the 

spectrum of its precursors. Despite presenting an identical coupling pattern and the same integration 

for each set of peaks, the chemical shifts are significantly different. Compounds 3.8-13 present a 

peak at ca. δ 8.5 ppm which is assigned to the the protons nearer to the nitro group, whereas for 

compounds 3.14-19 the most deshieled protons are seen at ca. δ 7.5 ppm. The NH2 protons could 

also be found at ca. δ 3.5 ppm. 
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3.2.5 4-Quinolonimines 

The synthesis of 4-quinolonimines was carried out via their quinolinium triflates in an identical 

procedure to what was described for 4-pyridonimines, Scheme 3.8. Besides the synthesized 

anilines, two other commercial building blocks, 4-benzylaniline and 4-biphenylamine, were used to 

add further variation to the SAR analysis that would follow. These compounds were obtained in 

excellent yields and their structures are given in Table 3.4. Compound 3.32 was not isolated. In this 

case, only degradation products from the aniline side chain were recovered. All other compounds 

were isolated as triflate salts. 

 

 
Scheme 3.8 Synthetic pathway to compounds 3.20-32. Reagents and conditions: (i) EtOH, TEA, aniline, reflux. 

 

 

The compounds were characterized with several spectroscopic techniques, including 1D and 2D 

NMR, IR and mass spectrometry. X-Ray crystallography studies were also performed for 3.22. 

Considering all spectral data it was possible to conclude that only the (E) isomer of each compound 

was formed. 

The 1H-NMR spectra of 3.20-31 presented the same general features as the ones exhibited by 

the 4-pyridonimine series. For example, the Ar-H3 resonance in 3.22 appears as a doublet at ca. δ 

6.95 ppm (3J = 7.6 Hz), which represents a dramatic upfield shift compared to the value of δ 8.33 

ppm for the Ar-H3 in 3.4 (3J = 6.4 Hz). Furthermore, the Ar-H2 doublet can be idenfied at δ 8.47 

ppm, whilst protons Ar-H6 (δ 7.87 ppm), and Ar-H8 (δ 8.31 ppm), are given as doublets. From the 
1H-1H COSY experiment it was also possible to see association between Ar-H6 and Ar-H5 (δ 8.64 

ppm). The Ar-H5 proton is superimposed to two protons from the AA’ XX’ system, and the other 

two are found at δ 7.55 ppm. The remaining five protons in the spectrum correspond to the terminal 

aryl moiety. The N-CH2 peak is found at ca. δ 4.6 ppm which is a common feature for all 4-

quinolonimines. For the remaining compounds, the 1H-NMR spectrum differed mainly at the 

chemical shifts and couplings from the terminal aryl, due to the substitution pattern. 
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Table 3.4 Structure and yields of compounds 3.20-32. 

 
Compound R2 R3 Isomer X R4 Yield (%) 

3.20 Cl Et 3’ CH2CH2 4-OCF3 76 

3.21 CF3 Et 3’ CH2CH2 4-OCF3 81 

3.22 Cl Et 4’ - H 100 

3.23 CF3 Et 4’ - H 98 

3.24 Cl Et 4’ CH2 H 86 

3.25 Cl Et 4’ O H 92 

3.26 Cl Et 4’ O 4-Cl 83 

3.27 Cl Et 4’ O 4-OCF3 75 

3.28 Cl Et 4’ O 4-CF3 99 

3.29 Cl Me 4’ O   4-CF3 73 

3.30 Cl Et 4’ O 3-OCF3 85 

3.31 CF3 Et 4’ O 3-OCF3 97 

3.32 Cl Et 3’ O 4-OCF3 - 

 

 

The fragmentation of compounds 3.20 and 3.21 presents similar features to the 4-pyridonimines, 

i. e. break at CH2-CH2 bond. For the remaining compounds, the base peak is accounted to the 

[M+H]+ adduct, or a peak resulting from loss of the ethyl group. In opposition to the 4-

pyridonimine series, the N-C bond is the most labile. Analysis of daughter fragments, allowed to 

see that fragmentation at the linker between the two aryl moieties occurs subsequently, as in 3.28. 

However, in opposition to its N-ethyl counterpart, compound 3.29 breaks in the linker connection 

prior to other fragmentations. This presented the only exception among the studied compounds. The 

fragmentation patterns are shown in Figure 3.2. 

In the infra-red spectrum, the imine linkage resulted in absorption at ca. 1600 cm-1, as a 

consequence of stretching vibrations. This is a marginally lower wave number than that of the 4-

pyridonimines, as a consequence of the additional aromatic ring, i. e. conjugation. 
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Figure 3.2 Fragmentation pattern for 4-quinolonimines, exemplified by 3.28 and 3.29. 

 

 

In order to confirm also the (E) configuration for this series of 4-quinolonimines, compound 

3.22 was slowly crystallized from water and acetone, affording colourless prisms suitable for 

analysis. As opposed to 2.8, only one geometry independent molecule was obtained, and the 

crystals corresponded to the neutral form of 3.22, Figure 3.3. 

The obtained imine bond distance of 1.2999(18) Å in 3.22 differed significantly (∼0.04 Å) from 

what had been observed for 2.8. This was expected and consistant with previous reports, since the 

imine is not protonated in this case. The aromatic rings of the biphenyl side chain were also not 

coplanar, as given by the C19-C18-C21-C26 dihedral angle of -26.7(2)º. These were also not 
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coplanar with the 4-quinolinimine group, with a C5-C4-N14-C15 dihedral angle of -178.98(12)º, 

i.e. the rings are almost perpendicular to one another. Finally, the 4-quinolonimine ring is almost 

planar, as shown by the C2-C3-C4-C5 dihedral angle of 4.4(2)º. Further details of the crystal 

structure can be found in Appendix 2.1. 

 
Figure 3.3 ORTEP view of the molecular structure of 3.22, showing the labelling of all non-hydrogen atoms. 

Displacement ellipsoids for non-hydrogen atoms are shown at the 50% probability level.  

 

 
Antiplasmodial activity and toxicity 

Polycyclic compounds with the same substructure have been reported to present 

antiproliferative activity, namely by selective quadruplex DNA binding. Those have shown to 

efficiently target telomere ends, blocking telomerases [232, 233]. Some 4-quinolonimines have also 

been described for the treatment of memory disfunctions [234], Src kinase inhibitors [235], potassium 

ion channel inhibitors [236] and topoisomerase II inhibitors [237], but no antiplasmodial activity has 

been reported. The synthesized compounds were tested against the P. falciparum W2 strain, Table 

3.5. They showed improved activity when compared to their 4-pyridonimine counterparts and 

clopidol. The additional aromatic ring should be responsible for an increased lipophilicity, and the 

consequent drop in the IC50 values, as was initially hypothesized. Inspection of the data in Table 3.5 

allows the following observations regarding the SAR of 3.20-31: 

a) Biaryl compounds, i.e. 3.22 and 3.23, were the most active against the W2 strain of P. 

falciparum, presenting activities of ca. 0.55 μM; 

b) Introduction of spacers between aromatic systems is detrimental for the antiplasmodial 

activity, i.e. no spacer (3.22, 0.54 μM) > O (3.25, 0.89 μM) > CH2 (3.24, 1.69 μM); 

c) Regarding the 4-phenoxy derivatives, the substituent effect on the antiplasmodial activity 

against the W2 strain was 4-CF3 (3.28, 1.26 μM) < 4-Cl (3.26, 1.09 μM) < 4-OCF3 (3.27, 
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0.96 μM) < H (3.25, 0.89 μM) in opposition to what had been reported for 4(1H)-

pyridones and 4-pyridonimines. Isomerization of 4-OCF3, 3.27, to 3-OCF3, 3.30, led to a 

small drop of activity; 

d) Substitution of N-ethyl, 3.28, to N-methyl, 3.29, led to the increase of antiplasmodial 

activity, again in opposition to what had been observed in the previous studies; 

e) Substitution of Cl for CF3 at C7 resulted in a 2-fold increase of antiplasmodial activity for 

the phenylethyl derivatives, 3.20 vs. 3.21. However, the trend was not observed for the 4-

phenoxy compounds, resulting in an increase of IC50 from 1.18 μM for the 7-Cl 

compound, 3.30, to 1.56 μM for the 7-CF3 counterpart, 3.31. For the biaryl compounds, 

no significant change of IC50 was observed, 3.22 vs. 3.23. 

 

 
Table 3.5 Effect of R2-R4 and X substitutions in compounds 3.20-31 on the antiplasmodial activity against P. 

falciparum W2 strain and association constants (binding to FPIX in 1:1 stoichiometry). 

 

Compound R2 R3 Isomer X R4 IC50 ± SD (μM) log(Kass / μM-1) Kass / M-1 

3.20 Cl Et 3’ CH2CH2 4-OCF3 3.11 ± 0.18 5.2 1.7 × 10-7 

3.21 CF3 Et 3’ CH2CH2 4-OCF3 1.67 ± 0.03 4.9 7.5 × 10-8 

3.22 Cl Et 4’ - H 0.54 ± 0.02 5.6 3.6 × 10-7 

3.23 CF3 Et 4’ - H 0.59 ± 0.01 5.7 5.3 × 10-7 

3.24 Cl Et 4’ CH2 H 1.69 ± 0.11 5.0 9.7 × 10-8 

3.25 Cl Et 4’ O H 0.89 ± 0.08 5.4 2.6 × 10-7 

3.26 Cl Et 4’ O 4-Cl 1.09 ± 0.15 5.1 1.4 × 10-7 

3.27 Cl Et 4’ O 4-OCF3 0.96 ± 0.01 4.9 8.2 × 10-8 

3.28 Cl Et 4’ O 4-CF3 1.26 ± 0.07 4.7 4.9 × 10-8 

3.29 Cl Me 4’ O 4-CF3 1.08 ± 0.04 4.9 7.6 × 10-8 

3.30 Cl Et 4’ O 3-OCF3 1.18 ± 0.01 5.1 1.2 × 10-7 

3.31 CF3 Et 4’ O 3-OCF3 1.56 ± 0.08 3.9 7.2 × 10-9 

Clopidol      9.73 ± 0.07 4.7 4.8 × 10-8 

Atovaquone      0.0012 N.D. N.D. 

Chloroquine       4.8 5.9 × 10-8 

N.D. - Not Determined 
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Given the presence of an α,β-unsaturated imine for these compounds, it was investigated 

whether they were prone to Michael additions. If so, this would present a major problem, because of 

the potential depletion of host’s glutathione, resulting in acute toxicity. Therefore, the glutathione 

attack was mimicked by reaction of 3.23 with excess TEA and benzylthiol in methanol, for 24 

hours at room temperature, Scheme 3.9. After flash chromatography, 97% of the starting material 

was recovered and thus, no toxicity from addition of sulfur-containing proteins is expected. 

 

 
Scheme 3.9 Simulated glutathione attack to afford 3.33. Reagents and conditions: (i) TEA, MeOH, rt. 

 

 

Molecular docking 

To clarify the possible binding mode of 3.20, 3.22 and 3.27, a docking study was carried out at 

the bc1 complex. At first glance, it is possible to see that 3.20, Figure 3.4 A, binds in a complete 

different pose, and presents a different shape to that of 3.22, Figure 3.4 B, and 3.27, Figure 3.4 C. 

Although no hydrogen bonds with glutamate 272 and histidine 181 can be formed, it appears that 

the side chain is better located in the binding channel, i.e. 3.22 and 3.27, instead of the 4-

quinolonimine moiety, i.e 3.20, as the conjunction of activity and docking results suggest. Thus, 

this side chain interacts through strong hydrophobic interactions with the active site residues. 
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Figure 3.4 Docking poses of 3.20, 3.22 and 3.27, with mesh highlighting the volume and shape of the ligands inside the 

Qo binding site of cytochrome bc1. 

 

 

Anti-liver activity and cytotoxicity 

Regarding the liver stage, all compounds showed excellent activity, Figure 3.5, and the 

following observations can be made: 

a) The anti-liver activity is dose-dependent for most cases; 
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b) All compounds at 10 μM present comparable or better activity than primaquine at 5 μM; 

c) The nature of the linker does not have a significant effect on the activity, but all other 

SAR that are seen for the blood stage apply in a qualitative manner at 10 μM; 

d) At 2 μM most of the compounds still display a comparable or better activity than 

primaquine. Compounds 3.21-23 and 3.25 are the exceptions; 

e) Compounds 3.26 and 3.27 are the most active at 2 μM, and are, approximately, 2-fold 

more active than primaquine at 5 μM; 

f) Compounds 3.22, 3.23 and 3.25 are among the least active compounds, in opposition to 

the activity against P. falciparum W2 strain. Therefore, the mechanism of action of these 

compounds in each stage can be different, i.e. the main target in the blood stage may not 

be present or accessible in the liver stage of the life cycle. 
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Figure 3.5 Antiplasmodial activity of compounds 3.20-31 at 10 μM (black bars) and 2 μM (grey bars) against liver 

stage P. berghei. The luminescence (bars) is given as percentage of control (MeOH) inhibition. The cytotoxicity was 

measured in fluorescence (dots) from the Alamar Blue test and is also given as percentage of control. Primaquine was 

tested at 5 μM. All concentrations were tested and missing bars account for the total suppression of parasite load. 
 

 

Also, despite the high toxicity that the compounds presented at 10 μM, at 2 μM these were, in 

the worst case, as toxic as primaquine at 5 μM. As a result, this series of compounds represent good 

leads for further studies, in particular, against the liver stages of P. falciparum and P. vivax. 
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Hematin binding 

Since compounds 3.20-31 presented the quinoline scaffold, it was also investigated whether 

they would bind to hematin, in resemblance to other antimalarial drugs. Clopidol was also 

incorporated in the study and chloroquine was used as a positive control. 

Degradation of the host’s hemoglobin takes place in the food vacuole and results in free heme, 

containing Fe3+, which is very toxic because it can generate reactive oxygen species. To overcome 

its toxicity, the parasite polymerizes free heme into hemozoin, β-hematin. Thus, by corrupting this 

pathway, accumulation of toxic by-products occur, leading to the parasite death. It is known that 

several compounds presenting structurally diverse scaffolds exert antiplasmodial activity by 

enhancing the toxicity of free heme. Aminoquinolines are one of the most relevant classes that are 

known to inhibit hemozoin formation, but azoles, isonitriles, xanthones, methylene blue and 

derivatives, among others can be also counted in [238, 239]. Despite the distinct mode of binding and 

stoichiometry of the complexes with hematin, the inhibition results from intercalation, i.e. non-

covalent association between drugs and ferriprotoporphyrin IX (FPIX). Therefore, the electrostatic 

interactions of ionizable chemical functions and π-π stacking of aromatic moieties are responsible 

for the tight binding [240-243]. 

To study the interaction of all compounds with FPIX, an UV-visible spectroscopic method was 

applied to determine accurately the binding or dissociation equilibrium constant, Kass or Kd, 

respectively. The titrations were carried out in a mixed aqueous-organic solvent to minimize the 

porphyrin aggregation effect, which results in a sizeable hypochromic effect at the Soret band. 

Therefore, a buffered 40% (v/v) DMSO was used to provide a strictly monomeric heme species in 

solution, in accordance with Egan et al. [244, 245]. Additionally, all experiments were carried out at 20 

ºC and at apparent pH 5.5, to mimic the pH inside the food vacuole of the parasite.  

The Soret band of FPIX at 400 nm is the net effect of several closely spaced bands, which also 

overlaps with the porphyrin N-band [244]. Upon titration with the query compound it was possible to 

see a considerable hypochromic effect, dependent on the concentration of the added ligand. Hence, 

this quenching was used to determine the association constants. The absorbances were corrected for 

dilution and a blank titration of the compounds was performed when those exhibited strong 

absorbance at 400 nm. Alternatively, the reference cell, containing only the buffer, was supplied 

with an equal amount of compound as the one added to the titration cell. The experimental data 

curves were fitted into common models to describe ligand binding, and were statistically analyzed 

with χ2 parameters. Model 1, Scheme 3.10, consists of a 1:1 complexation of drug to FPIX, as a 

function of free ligand concentration. In model 2 there is a stepwise bonding of two equivalents of 
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the ligand to one equivalent of heme, whereas in model 3 the inverse of model 2 is considered. 

Models 4 and 5 consist of a simultaneous binding of two equivalents of ligand or heme to one 

equivalent of heme or ligand, respectively. The mathematical equations of the models were 

described in detail by Wang et al. [246] and Egan et al. [245]. 

 

 

 
 

Scheme 3.10 Models fitted to the experimental curves. 

 

 

Chloroquine fitted best to model 1, i.e. 1:1 binding stoichiometry. It presented a logKass of 4.8, 

under these experimental conditions, a value in accordance with what is reported in the literature 
[245]. Despite the different experimental conditions, it has been shown that the logKass value is not 

affected significantly by either pH or ionic strength [247]. However, it is also noteworthy that 

literature regarding the chloroquine association constant and stoichiometry of binding is very 

diverse. While Egan et al. report a 1:1 stoichiometry with logKass 5.52 [245], O’Neill et al. report a 

stepwise addition of 2 equivalents of chloroquine and logKass1 5.30, logKass2 6.20 [248]. Furthermore, 

Surolia and co-workers reported a two-site model with logKass 8.1 and 5.1 for high and low affinity 

sites, respectively, and impressive pH-dependent stoichiometries [249]. The attempt to 

mathematically fit the chloroquine data, into more complex models was unsuccessful. Since model 

3 afforded a poor fit, it is excluded the possibility of FPIX dimerization upon chloroquine 
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complexation or simultaneous bonding of a second FPIX to the opposite face of the drug, after 

bonding of the first FPIX. The spectroscopic changes in the Soret band when hematin is titrated 

with increasing concentrations of chloroquine can bee seen in Figure 3.6 A. Also, chloroquine 

showed no absorbance at 400 nm, Figure 3.6 B, and the decay of absorbance of FPIX at 400 nm, for 

chloroquine, can be found in Figure 3.6 C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 (A) Spectroscopic changes in the Soret band (400 nm) when hematin is titrated with increasing 

concentrations of chloroquine (20 ºC, apparent pH 5.5, HEPES buffer with 40% DMSO); (B) Absorbance of 

chloroquine under the same experimental conditions as (A). 
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Figure 3.7 (cont.) (C) Variation of absorbance of hematin at 400 nm as a function of chloroquine concentration. The 

solid line represents the best fit curve for the 1:1 stoichiometry model. The curve was corrected for dilution and 

absorbance of the ligand.  

 

 

Clopidol is a known bc1 complex inhibitor and was tested in order to predict the binding affinity 

of 4(1H)-pyridones to hematin. Interestingly, in this incubation assay, the logKass was identical to 

chloroquine with a value of 4.7 and the 1:1 stoichiometry was the best fit model (r2 = 0.9906). This 

was not an expected result, and binding of clopidol to hematin must be governed by different 

determinants to those of chloroquine. However, it is important to stress that, despite the strong 

association, care must be taken in concluding that this might be a secondary mechanism of action, 

from off-target binding. Clopidol does not present the requested features to accumulate in the acidic 

food vacuole, i.e. it has no ionizable functions and, therefore, it is not expected to accumulate up to 

values equivalent to the IC50. The same observation had been made for 9-epiquinine. At a logKa of 

4.04, it binds to heme but it is known that it does not inhibit hematin polimerization into hemozoin 
[245]. Therefore, binding to hematin appears to be necessary, but not sufficient to safely conclude the 

mechanism of action of a given molecule. On a similar note to clopidol, floxacrine binds to 

hematin, despite being a potent bc1 complex inhibitor. Also, its WR 243251 imino analogue, 3.34, 

showed identical heme binding to chloroquine, despite being more active against the chloroquine 

sensitive (NF54), and chloroquine resistant (K1) strains, which underlies the existence of another 

mechanism of action [106, 250]. 
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Finally, primaquine which is thought to wield antimalarial activity from inhibition of the 

mitochondrial function is reported to not show detectable binding to heme [245]. 

Clopidol did not absorb in the 300-500 nm range and the decay of absorbance of FPIX at 400 

nm can be seen in Figure 3.7 A, as well as the spectroscopic changes in the Soret band, Figure 3.7 

B. The data was untractable to other models, except model 2 (2 ligands : 1 heme) which also gave a 

satisfactory compliance to the experimental data (logKass = 3.4, r2 = 0.9813). No Fisher’s test was 

needed in this case as the degrees of freedom are the same for both models, i.e. the model with 

higher r2 applies. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Figure 3.8 A) Spectroscopic changes in the Soret band (400 nm) when hematin is titrated with increasing 

concentrations of clopidol (20 ºC, apparent pH 5.5, HEPES buffer with 40% DMSO). 
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Figure 3.9 (cont.) (B) Variation of absorbance of hematin at 400 nm as a function of clopidol concentration. The solid 

line represents the best fit curve for the 1:1 stoichiometry model. The curve was corrected for dilution and absorbance 

of the ligand. 

 

 

All the other studied compounds, 3.20-31, showed an excellent agreement to the 1:1 binding 

stoichiometry with no plausible fitting to other models, and needed correction for their absorbance 

at 400 nm. Compound 3.28 is given as an example for the curves obtained for this series, Figure 3.8 

(Appendix 2.2 for the remaining compounds).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.10 (A) Spectroscopic changes in the Soret band (400 nm) when hematin is titrated with increasing 

concentrations of 3.28 (20 ºC, apparent pH 5.5, HEPES buffer with 40% DMSO). 
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Figure 3.11 (cont.) (B) Absorbance of 3.28 under the same experimental conditions as (A); (C) Variation of absorbance 

of hematin at 400 nm as a function of 3.28 concentration. The solid line represents the best fit curve for the 1:1 

stoichiometry model. The curve was corrected for dilution and absorbance of the ligand.  

 

 

Inspection of Table 3.5 allows the following observations, regarding FPIX binding: 

a) All compounds bound to hematin at least as tightly as chloroquine, with exception of 

3.31, whose logKass is 3.9. The CF3 group at C7 must be responsible for the weaker 

binding as its 7-Cl counterpart, 3.30, displayed a logKass of 5.1. Interestingly, such 

variation on C7 did not have the same effect on the biphenyl compounds 3.22 and 3.23. 

Both presented the same logKass, which was the highest among the studied compounds. 

Given that those two compounds were the most active against the W2 strain, it is 

possible that blocking of hematin polimerization plays a role in the mode of action; 
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b) The oxygen linker favours binding to FPIX compared to the methylene group, i. e. 3.25 

vs. 3.24, again in line with their antiplasmodial activities; 

c) Introduction of an electron withdrawing group in the terminal aryl moiety reduces 

binding to FPIX in the order, H (3.25) > 4-Cl (3.26) = 3-OCF3 (3.30) > 4-OCF3 (3.27) > 

4-CF3 (3.28), in similar trend as the antiplasmodial activity; 

d) Substitution of N-methyl to N-ethyl, 3.29 vs. 3.28, did not result in significant changes 

regarding FPIX binding. 

 

 

3.3 Conclusions 
These 4-quinolonimines showed improved antiplasmodial and anti-liver activity in comparison 

with the 4-pyridonimines. Furthermore, they are likely unreactive towards the 1,4-addition of 

proteins containing sulfur, such as glutathione, and displayed low toxicity at 2 μM. Given the 

compliance with the rule of 5, with the exception of the predicted logP (ranging from 6 to 8 for the 

neutral form), these compounds can find an interesting application in the development of new 

antimalarial agents. The studies regarding the inhibition of the bc1 complex are ongoing for the 

most active compounds. 
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4. CHROMONE SCAFFOLD 
 

4.1 Rationale 
Chromones are a class of structurally diverse compounds. Applications of compounds from this 

class, and from the closely related flavones and isoflavones, can be found in the literature, in a vast 

number of fields. Some have shown potent antipicornavirus activity [251], anticholinesterase activity 
[252], antiproliferative activity [253-257], anti-inflammatory [258], human steroid sulfatase inhibitory 

activity [259], and have even been used as radioligands for imaging [260-262], among others [263-266]. 

Additionally, there have been recent reports of modest to potent antiplasmodial activity related to 

flavones [200, 267-270].  

Stigmatellin is a natural, chromone-based compound with potent anti-bc1 complex activity and 

an IC50 of 2 μM in whole cell cultures [62, 159]. With the results from the previous series of 

compounds it was, therefore, necessary to insert the side chains that resulted in better 

antiplasmodial activity for the 4-quinolonimine series, into diverse chromone rings, in order to 

improve the activity against P. falciparum. Since the antiplasmodial mode of action for stigmatellin 

is through the inhibition of cytochrome bc1, all synthesized compounds would be expected to block 

this vital pathway. Also, isoflavones have shown to possess an interesting antiplasmodial activity, 

which might also be related to inhibition of the mitochondrial function, at the bc1 complex level [271, 

272]. 

 

 

4.2 Synthesis 
 

4.2.1 Retrosynthetic analysis of flavones 

A quick search in the literature revealed a wide range of synthetic procedures to obtain flavones 

from simple starting materials. The Sonogashira carbonylative annulation is a common procedure, 

where an iodophenol is reacted with an alkyne in presence of carbon monoxide [273-275]. Flavones 

can also be obtained following the Baker-Venkataraman reaction at room temperature, conventional 

heating or MW [276-281]. In short, a 2-hydroxyacetophenone is esterified with a suitable acylating 

agent, which rearranges to the 1,3-diketone compound under basic conditions. This key 

intermediate is then cyclized into the corresponding flavone. Alternativelly, flavones can be 

obtained from cyclization of the corresponding chalcones [282-285]. 
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The retrosynthetic analysis in Scheme 4.1 shows the general strategy that was employed to 

obtain the target compounds. Whereas the 2-hydroxyacetophenones were commercially available, 

most of the required acid chlorides or anhydrides (represented as a synthon) had to be synthesized. 

These chemical entities can be easily derived from carboxylic acids and those can be obtained from 

nitriles, which are sufficiently strong electron withdrawing groups to favour SNAr reactions. Some 

of these reactions can be carried out as a one-pot procedure or in multi-stage synthesis.  

 

 
Scheme 4.1 Retrosynthetic analysis of target flavones. 

 

 

4.2.2 4-Phenoxybenzonitrile and 4-phenoxybenzoic acid intermediates 

The synthesis of 4-phenoxybenzonitrile intermediates was initially carried out using the same 

Ullmann condensation procedure (method A) described in chapter 3. As an alternative, the reactions 

were conducted under identical conditions, but without the copper catalyst (method B), Scheme 4.2. 

These afforded matching yields over a full day of reflux, when compared to the 5 hours that were 

needed in method A, Table 4.1. However, in method B the purification was simpler, i.e. without the 

need to handle copper salts, which resulted in a less demanding work-up. 
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Scheme 4.2 Synthetic pathway to compounds 4.1-4. Reagents and conditions: (i) DMF, Na2CO3, CuI, nuclophile, 

reflux; (ii) DMF, Na2CO3, nucleophile, reflux. 

 

 
Table 4.1 Structure and yields of compounds 4.1-4. 

 
Compound Method R3 Yield (%) 

4.1 A 4-OPh-4-Cl 95 

4.1 B 4-OPh-4-Cl 100 

4.2 B 4-OPh-4-OCF3 100 

4.3 B 4-O(CH2)3CF3 94 

4.4 B 4-OPh-3-OCF3 100 

 

 

All compounds were identified by NMR spectroscopy. Compound 4.3 presented the most 

complex spectrum. While the OCH2 protons are given as a simple triplet at δ 4.09 ppm, the other 

methylenes display very complex patterns, given the coupling with fluorine. Proton-fluorine 

coupling constants are typically large, and long distance coupling is also possible, resulting in 

multiplets. 

The hydrolysis of compound 4.1 was tested under various conditions. Initially, an acid 

hydrolysis with HCl 6N was attempted. This had been the procedure used for the acetamides in 

chapter 1, but in this case no reaction was seen over 24 hours of reflux. A more drastic method was 

tried, employing concentrated H2SO4 under reflux. Although the reaction occurred, only ca. 1/3 of 

the starting material was consumed to the respective amide. In a third attempt, basic hydrolysis with 

NaOH 10% was assayed with a similar result to the hydrolysis with H2SO4. Finally, the reaction 

was achieved by using the basic hydrolysis method described by Sawyer et al. [286]. This involves 

the hydroperoxide anion generated through the abstraction of a proton from H2O2. The nucleophilic 

attack to the nitrile, described as the rate-limiting step, is followed by a swift reaction of the 

peroxyimidic acid with hydrogen peroxide to originate the corresponding amide. The attack of the 

hydroperoxide ion to benzonitrile was shown to be over four orders of magnitude faster than that of 
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the hydroxyl ion [287]. These hydrolysis reactions were usually complete in 4 hours. The isolation of 

the required products consisted only in acidifying the reaction mixture and extracting with 

dichloromethane, to afford 4.5-8 in excellent yields, Table 4.2. 

 

 
Table 4.2 Structure and yields of compounds 4.5-8. 

 
Compound R3 Yield (%) 

4.5 4-OPh-4-Cl 100 

4.6 4-OPh-4-OCF3 98 

4.7 4-O(CH2)3CF3 95 

4.8 4-OPh-3-OCF3 96 

 

 

The benzoic acids were identified by NMR. The spectra are identical to their precursors, except 

the protons nearer to the acid function which are more deshielded than in the nitriles. For example, 

in 4.5 the most deshielded protons are located at δ 8.11 ppm, while in its nitrile precursor 4.1 the 

corresponding protons are at δ 7.64 ppm. 

Regarding the IR spectrum, a strong band at 1675 cm-1 can be found, and is characteristic of the 

C=O stretching vibrations for aromatic carboxylic acids. Furthermore, the 3400 cm-1 band provides 

evidence of the O-H stretch, whereas those in the 1400 cm-1 area result from C-O-H in-plane 

bending. 

 

 

4.2.3 Flavones 

 

Via Baker-Venkataraman-like synthesis 

In parallel with the benzoic acid intermediates, the method for the synthesis of flavones was 

optimized. Initially the reaction of 2-hydroxyacetophenone with 4-chlorobenzoic acid was 

attempted as described by Furuta et al. [258]. The reaction consists of a DMAP-catalyzed acylation at 

the hydroxyl group of 2-hydroxyacetophenone, with a DCC-activated carboxylic acid which is the 

source of the acyl moiety. DMAP plays an important function as it prevents the 1,3-rearrangement 

of the intermediate ester to the N-acylurea, which would halt further reactions. Also, the 
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introduction of a 4-Cl in the terminal aryl would give access to the desired compounds through 

reaction with different phenols. However, no reaction was observed. 

In the second attempt it was decided to transform the 4-chlorobenzoic acid to the corresponding 

acid chloride with thionyl chloride. This would provide an intermediate with a better leaving group 

for the subsequent reaction, but likewise, no reaction was observed. 

In the third method, the esterification was attempted via a carbonic anhydride. This was 

synthesized from reaction of 4-chlorobenzoic acid with ethylchloroformate, followed by coupling 

with 2-hydroxyacetophenone. Once again, no ester was formed, Scheme 4.3. 

 

 
Scheme 4.3 Synthetic pathway to compounds 4.9. Reagents and conditions: (i) 2-hydroxyacetophenone, DCC, CH2Cl2, 

DMAP, rt (ii) a) SOCl2, reflux; b) 2-hydroxyacetophenone, CH2Cl2, DMAP, rt; (iii) a) CH2Cl2, TEA, rt; b) ClCO2Et, rt; 

c) 2-hydroxyacetophenone, DMAP, rt; (iv) 2-hydroxyacetophenone, dry pyridine, rt. 

 

 

Analyzing the procedures that had been tried, it was noted that a base in excess could be 

missing in the esterification process. Furthermore, there is the possibility of an intra-molecular 

hydrogen bond in 2-hydroxyacetophenones, which can make the reaction more difficult without the 

use of a base in greater amount. Taking these points into consideration it was attempted the 

procedure described by Ono et al., consisting of an acylation in pyridine medium [261]. Despite 

acquiring compound 4.10 from this pathway, Scheme 4.3, it was obtained in only 30% yield, and 

with two more steps left to reach the flavone, this pathway was deemed unsuitable. Next, the 

synthesis was performed as described by Riva et al. [288]. In this study, a one-pot cyclization was 

achieved using DBU and benzoyl halides, in a simple and mild procedure. Compound 4.11 was 

obtained in good yield, 32% for a combined of 3 steps, over 6 hours of reflux, and after adequate 

work-up and flash chromatography, Scheme 4.4. 
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Scheme 4.4 Synthetic pathway for compounds 4.11. Reagents and conditions: (i) Dry pyridine, 3-

(trifluoromethyl)benzoyl chloride, DBU, reflux. 

 

 

Therefore, the synthesis of the remaining compounds was pursued with minor changes to this 

procedure. Compound 4.12 was initially synthesized as described for 4.11, but remarkably, a 

mixture of 4.12 and its C3-acylated analogue was obtained in 1:0.7 ratio, which was not separable 

due to the same Rf. Although such side product had not been reported by Riva et al., C3 acylation 

has been accounted elsewhere, but while using a greater excess of benzoyl chloride [277, 289]. This 

side product likely forms from acylation of the ester or the diketone intermediates, rather than from 

the flavone, as proposed in the literature [277].  

To circumvent this side product, the acetophenone was used in excess (1.5 molar equivalents) 

instead of the acid chloride (1 molar equivalent), but despite obtaining a much higher percentage of 

4.12, the C3-acyl side product still formed. The synthesis of flavones without the formation of the 

C3-acyl side product was only achieved when an excess of two molar equivalents of acetophenone 

was employed. The structures and yields of the synthesized compounds can be found in Table 4.3. 

In the attempt to obtain 4.19 several other variations were performed in the procedure. Reflux 

under 22 hours still afforded no reaction. In the next variation, microwaves were introduced as the 

heating source. When the reaction was carried out for 40 minutes at 150W, up to a maximum of 200 

ºC, no reaction was observed, but remarkably, 4.19 was synthesized under milder conditions, i.e. 40 

minutes at 100W and 150 ºC. Even though, it was not possible to isolate the compound as a result 

of a superimposed Rf with that of the exceeding reagent. Nevertheless, the reaction yield, based on 
1H-NMR spectroscopy, was 27%. Compound 4.18 was also prepared under the same conditions, as 

a standard to compare with the procedure employing reflux. This compound was obtained in a 

higher yield, 37%, showing the effectiveness of the microwave-assisted synthesis of flavones.  

Also, in accordance with what was found with the reactions under reflux, the C3-acyl side 

product of 4.18 was obtained in 9% and 10% yield, when the MW-assisted reaction was carried out 

with 1 and 1.2 molar eq. of acid chloride, respectively. In both cases the yield of 4.18 was ca. 35%. 
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Table 4.3 Structure and yields (over 4 steps) of compounds 4.12-21 under standard heating conditions and MW-assisted 

synthesis. 

 
Yield (%) 

Compound R1 R2 R3 
refluxa MWb 

4.12 H H 4-OPh-4-Cl 30 N.D. 

4.13 H 6-Cl 4-OPh-4-Cl 15 N.D. 

4.14 7-Cl H 4-OPh-4-Cl 32 N.D. 

4.15 7-Me H 4-OPh-4-Cl 11 N.D. 

4.16 7-Me 6-Cl 4-OPh-4-Cl 21 N.D. 

4.17c 7-Me 6-Cl 4-OPh-4-OCF3 40 N.D. 

4.18c 7-Me 6-Cl 4-Ph 27 37 

4.19 8-NO2 6-Cl 4-Ph -  27 

4.20 7-Me 6-Cl 4-O(CH2)2CF3 15 N.D. 

4.21 H H 4-OPh-3-OCF3 37 N.D. 
a Conditions: 2 molar eq. of acetophenone, reflux 6-8h. b Conditions: 2 molar eq. of 

acetophenone, 100W, 40 min., 150 ºC. c Three steps. N.D. - Not Done. 
 

 

The scope of this procedure towards the synthesis of 8-nitroflavones was studied from the 

reaction of nitroacetophenone with a range of acid chlorides containing both electron withdrawing 

and donating groups. Though, the synthesis of compounds 4.22-25 was not achieved, underlining 

the lack of reactivity of the nitroacetophenone. 
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Due to the lack of reactivity of the nitroacetophenone it was investigated if the 

aminoacetophenone derivative 4.27 would cyclize to the required flavone. The synthetic procedure 

is shown in Scheme 4.5. Reduction of the nitro group was achieved in excellent yield, 94%. 

 

 
Scheme 4.5 Synthetic pathway to compound 4.28. Reagents and conditions: (i) Sn, HCl, EtOH, reflux; (ii) dry pyridine, 

acetic anhydride, reflux; (iii) dry pyridine, DBU, [1,1’-biphenyl]-4-carbonyl chloride, reflux (iv) Similar to (iii), MW. 

 

 

However, no cyclization was seen in both thermal heating and microwaves. As a result, no 

further attempts from this pathway were made, to synthesize the nitro and aminoflavone derivatives, 

despite the great interest that these compounds would present for the antiplasmodial activity. 

Stigmatellin makes a hydrogen bond with H181 from the ISP, through the carbonyl group of the 

chromone, and participates in hydrogen bonding with E272 from cytochrome b, through a methoxy 

group located at C8. Therefore, the 8-NO2, 8-NH2 and 8-NHCOCH3 groups would represent 

replacements of the 8-OMe in stigmatellin, and would likely contribute to the antiplasmodial 

activity of such derivatives. 

The introduction of a hydrogen bond acceptor or donor, in this series of compounds, was then 

attempted from the benzyl bromination of 4-methylacetophenone, Scheme 4.6. 

 

 
Scheme 4.6 Synthetic pathway to compounds 4.29 and 4.30. Reagents and conditions: (i) NBS, AIBN, benzene, reflux 

2 h; (ii) NBS, AIBN, benzene, reflux 24 h; (iii) MeOH, MeONa, reflux. 

 

 

The synthesis of 4.29 was not effective in both methods. When a small excess of NBS was used, 

as in (i), only 50% of conversion was seen through 1H-NMR, but when the bromine source was 
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used in greater excess, and the reflux prolonged for 24 hours, (ii), several side products were 

formed. Therefore the synthesis of 4.30 was not pursued. Alternatively, direct bromination of 4.18 

was assayed with interesting resuts, Scheme 4.7. When the bromination procedure was attempted 

with NBS (1.2 molar eq.), using benzoyl peroxide as an initiator, only 4.31 was isolated, 27%. This 

reaction had been designed for a sole bromination, which might explain the modest yield. Probably 

if NBS had been used in a larger amount the yield would have been higher. Since only a small 

amount of 4.31 was isolated, the synthesis of 4.33 was also not attempted. 

 

 
 Scheme 4.7 Synthetic pathway to compounds 4.31-33. Reagents and conditions: (i) NBS, benzoyl peroxide, CCl4, 

reflux; (ii) NBS, ZrCl4, CCl4, rt; (iii) MeOH, MeONa, reflux. 

 

 

As this method proved to be inefficient for the benzylic bromination of flavones, the procedure 

described by Shibatomi et al. [290] was tested. In that paper, the authors report that the ZrCl4 / NBS 

system promotes benzylic bromintation of toluene derivatives without bromination on the aromatic 

ring. Interestingly, in this case, only bromination at C3 was achieved, resulting in 4.32, which was 

isolated in 10% yield. 

The compounds were characterized with several spectroscopic techniques, including 1D and 2D 

NMR, IR and mass spectrometry. The NMR spectra of 3.12-21 presented the same general features 

among them. Flavones were promptly identified for the success of the reaction by the characteristic 

singlet at δ 6.7-6.9 ppm. This peak corresponds to the proton at C3 and, therefore, no correspondent 

signal is present in the starting materials. The AA’ XX’ systems of the side chain can be found with 
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their typical symmetric doublet-like pattern, while the proton at C5 is the most deshielded at δ 8.21 

ppm. The proton at C8 is also given as a doublet at δ 7.54 ppm (3J = 8.8 Hz). The remaining proton 

at C7 is given as a skewed doublet of doublets, as a result of coupling with the protons at C8 and 

C5. 

The compounds were also identified by their mass spectra, and the base peak results from the 

[M+H]+ adduct. Further investigation into the fragmentation patterns led to the identification of a 

peak corresponding to the flavone core, i.e. loss of the phenol group. In turn, this prominent peak 

gives rise to another that originates from retro Diels-Alder fission of the heterocyclic ring, the 

quinonoid ion. These have already been reported by Itagaki et al. [291] and in Scheme 4.8 an 

example of the fragmentation is given. For compound 4.20, however, only fragmentation of the O-

CH2 bond was seen. 

 

 
Scheme 4.8 Fragmentation pattern of 4.12 and 4.20 as examples for the flavone series. 
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The IR spectrum for the flavone series of compounds is characterized by the existence of few 

bands. Stretching vibrations for the C=O bond are found at ca. 1650 cm-1 which is coherent with the 

expected wave number for six-membered cyclic ketones.  

 

 

Via chalcones 

Chalcones are structuraly similar to flavones and also display antiplasmodial activity, possibly 

from bc1 complex inhibition [139, 144]. These are readily accessible chemical entities from a crossed 

aldol condensation between acetophenones and aldehydes. Furthermore, if 2-hydroxyacetophenones 

are used, the resulting chalcone can be employed as an intermediate for the synthesis of flavones, as 

supported by a broad spectrum of literature [251, 284, 285, 292, 293].  

To tune up the synthetic procedures, an aldol condensation between nitroacetophenone, and 

freshly distilled benzaldehyde was performed, Scheme 4.9. When refluxing the mixture, no 

evolution through TLC was seen after 40 minutes. In this case the 4.34 was isolated in 51% yield. 

However, when the reactants were left at room temperature with a greater excess of base, for 24 

hours, the chalcone was isolated in quantitative yield.  

 

 
Scheme 4.9 Synthetic pathway to compounds 4.34. Reagents and conditions: (i) Benzaldehyde, NaOH, reflux; (ii) 

Benzaldehyde, NaOH, rt. 

 

 

After acquiring the chalcone, four cyclization methods were tested from procedures described in 

the literature, Scheme 4.10 [284, 285, 294]. Methods (i)-(iii) would result in 4.35, from a iodine-

catalyzed reaction, or from a Pd(II) catalyst. In method (iv), 4.36 would result from a H2O2 

promoted reaction. However, no cyclization was observed in any case, and only degradation 

products were recovered. 
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Scheme 4.10 Synthetic pathway to compounds 4.35 and 4.36. Reagents and conditions: (i) DMSO, I2, MW; (ii) DMSO, 

I2, reflux; (iii) PdCl2, AcONa, AcOH, AIBN; (iv) H2O2 30%, NaOH, EtOH. 

 

 

Since it was not possible, again, to obtain an 8-nitroflavone derivative, it was decided to assess 

the influence of the nitro substituent in the chalcone that would serve as a precursor to the desired 

flavone, in order to gain some insight on the substituent effect. Chalcones are typically more active 

than their flavone counterparts in IC50 assays against P. falciparum strains. Therefore, the IC50 

value of 4.37 would serve as an indicator on whether to invest further or not in the synthesis of the 

flavone derivative. 

Compound 4.38 was obtained in quantitative yield from its 4.6 precursor, using TBTU as a 

coupling reagent. TBTU is a widely known reagent and the mechanism of the reaction has been 

depicted by Movassagh et al. [295]. Compound 4.39 was acquired afterwards, from simple LiAlH4 

reduction under anhydrous conditions, and subjected to an aldol condensation, to afford 4.37 in 

excellent yield, Scheme 4.11. 

 

 
Scheme 4.11 Synthetic pathway to compound 4.37. Reagents and conditions: (i) TEA, TBTU, NH(Me)OMe, rt; (ii) dry 

THF, LiAlH4, -5 ºC; (iii) EtOH, NaOH, acetophenone, rt. 
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Chalcone 4.37 was identified by NMR spectroscopy, with the most characteristic protons being 

located at δ 7.46 and 7.97 ppm. Those correspond to the alkene function, and a 3J = 15.4 Hz allows 

to conclude that only the (E) isomer was formed from the aldol condensation. Further inspection of 

the spectrum permits the identification of the AA’ XX’ systems as well as the proton from the 

hydroxyl function at δ 13.33 ppm. 

 

 

4.2.4 Retrosynthetic analysis of isoflavones 

A search in the available literature revealed that isoflavones are commonly accessible through 

Suzuki-Miyaura cross coupling. Bearing in mind the side chains that were intended to be introduced 

into the scaffold, it was deduced that the required boronic acids would have to be synthesized. 

These can be obtained from Grignard chemistry. Alternatively, the cross coupling could be 

achieved with a commercial boronic acid, prior to executing the needed SNAr, Scheme 4.12. 

 

 
 

Scheme 4.12 Retrosynthetic analysis of isoflavones. 
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4.2.5 Attempted synthesis of isoflavones 

As a first step towards the synthesis of isoflavones, compound 4.40 was synthesized as 

described by Felpin et al. [296]. In short, reaction of the acetophenone with DMF-DMA results in a 

propenone which is cyclized into 3-iodochromone 4.40 in the following step, Scheme 4.13. 

 

 
Scheme 4.13 Synthetic procedure for 4.40. Reagents and conditions: (i) DMF-DMA, 95 ºC; (ii) CHCl3, pyridine, I2,  rt. 

 

 

With this key intermediate in hand, it was possible to attempt the synthesis of several 

isoflavones from a Pd-C mediated cross coupling with boronic acids. As a first approach, synthesis 

of 4.41 was tested, for this would provide directly the boronic acid of the planned side chain. 

However, the SNAr did not occur with either 4-(fluorophenyl)boronic acid or 4-

(hydroxyphenyl)boronic acid, despite prolonging reflux for 24 hours, Scheme 4.14. 

 

 
Scheme 4.14 Synthetic procedure for 4.41. Reagents and conditions: (i) DMF, CuI, 4-chlorophenol or 4-fluorophenol, 

Na2CO3, reflux. 

 

 
Consequently, the Suzuki-Miyaura coupling was first performed with 4-(fluorophenyl)boronic 

acid and 4.40, resulting 4.42 in excellent yield, 93%. Unfortunately, this was also not reactive 

towards the formation of 4.43, Scheme 4.15. 

The synthesis of 4.43 was also attempted via intermediate 4.44, but the cross coupling reaction 

in this case gave an untractable mixture, Scheme 4.16. 
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Scheme 4.15 Synthetic procedure for compounds 4.42 and 4.43. Reagents and conditions: (i) 4-(fluorophenyl)boronic 

acid, DME, H2O, Na2CO3, Pd-C, 45 ºC; (ii) 4-chlorophenol, CuI, Na2CO3, DMF, reflux. 

 

 
Scheme 4.16 Alternative pathway to 4.43, using the same reactions as in Scheme 4.15. 

 

 

In a final attempt, the boronic acid was synthesized from small building blocks. Compound 4.45 

was obtained in moderate yield, 38%, from two days of reflux, Scheme 4.17. This reaction was 

expectedly more demanding than the others that had been performed, containing a nitro or cyano 

groups in the para position, because of the much poorer electron withdrawing nature of bromine. 

However, since the reaction was carried out in a large scale, enough compound was obtained to 

proceed with the following reactions. The synthesis of the boronic acid 4.46 was attempted via the 

organolithium species, as described by Yeates et al. [19], and through in situ generated Grignard 

reagent, adapting the procedure from Wong et al. [297]. Triisopropyl borate was used as a boron 

source because, being sterically hindered, it would avoid bisalkylation to the corresponding borinic 

acid. Moreover, a catalytic amount of iodine was added to the mixture, and it was also sonicated in 

order to initiate the Grignard reaction. Though, no reaction was observed in either reaction 

conditions. 

 

 
Scheme 4.17 Synthetic procedure for compounds 4.45 and 4.46. Reagents and conditions: (i) DMF, Na2CO3, CuI, 3-

(trifluromethoxy)phenol, reflux; (ii) a) dry THF, n-BuLi, borate trisiopropyl, -78 ºC b) HCl 6N, rt; (iii) a) dry THF, Mg, 

N2, I2, reflux b) triisopropyl borate, -78 ºC c) HCl 6N, rt. 
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4.2.6 Antiplasmodial activity and molecular docking 

The antiplasmodial activity of compounds 4.12-21, 4.31, 4.32 and 4.37 was tested against the 

W2 strain. All available data show that this series of compounds present only modest activity, Table 

4.4. Nevertheless, those values are in line with analogous flavones reported by Lim et al. and 

Auffret et al. [267, 268], displaying IC50s around 10 μM. Since most of the compounds were tested 

only up to 10 μM it is not possible to withdraw the SAR for this series. However, the presence of 

the bromomethyl group at C7 appears to be important for the antiplasmodial activity, i.e. 4.31 vs. 

4.32. 

 

 
Table 4.4 Substituent effect on the antiplasmodial activity, against the W2 strain, of compounds 4.12-21, 4.31, 4.32. 

 
Compound R1 R2 R3 R4 IC50 ± SD (μM) GoldScore 

4.12 H H 4-OPh-4-Cl H 21.0 ± 0.37 57.15 

4.13 H 6-Cl 4-OPh-4-Cl H > 25.0 58.69 

4.14 7-Cl H 4-OPh-4-Cl H > 10.0 58.57 

4.15 7-Me H 4-OPh-4-Cl H 19.7 ± 2.98 58.27 

4.16 7-Me 6-Cl 4-OPh-4-Cl H > 10.0 61.43 

4.17 7-Me 6-Cl 4-OPh-4-OCF3 H > 10.0 61.60 

4.18 7-Me 6-Cl 4-Ph H > 10.0 53.12 

4.20 7-Me 6-Cl 4-O(CH2)2CF3 H > 10.0 55.18 

4.21 H H 4-OPh-3-OCF3 H > 10.0 58.53 

4.31 7-CH2Br 6-Cl 4-Ph Br 5.96 ± 0.07 63.27 

4.32 7-Me 6-Cl 4-Ph Br > 10.0 52.42 

 

 

The synthesized compounds were also docked into the Qo site of the bc1 complex and compared 

with the docking pose of stigmatellin. Two different poses were obtained within this set, Figure 4.1. 

For compounds 4.12, 4.13, 4.15, 4.16 and 4.31 the chromone is located inside the binding pocket 

and the side chain in the channel, as in stigmatellin, Figure 4.1 A and B. Stigmatellin interacts 

through hydrogen bonds with both cytochrome b and the ISP. For the synthesized compounds, the 

carbonyl group is at ca. 2.0 Å from H181, and the sp3 oxygen of the cromone ring at ca. 5.5 Å of 
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E272, which is consistent with a possible water-mediated hydrogen bond. The longer distances, i.e. 

weaker interactions, compared to stigmatellin might justify the modest IC50 values for the 

synthesized compounds. However, in these molecules, the chlorine and bromine atoms at the 

chromone ring are at ca. 3.0 Å from a carbonyl of the protein backbone. These halogen bonds are 

strong interactions and have been described by Bissantz et al. and Lu et al. [298, 299]. Taking these 

interactions in consideration, compound 4.31 was predicted to be the best binder, which was 

confirmed from in vitro studies. For the remaining compounds, the docking pose is inverted, i.e. 

with the side chain inside the binding pocket and the chromone ring in the channel, Figure 4. C. 

Interestingly, all compounds containing the trifluoromethoxy group in the terminal aryl display this 

pose, probably as a consequence of multipolar interactions with the active residues. Furthermore, 

the shift of 6-Cl in 4.13, to 7-Cl in 4.14 also resulted in an inverted pose. Also, a bromomethyl 

group at C7 appears to be beneficial for the desired docking pose, 4.31 vs. 4.32. 

The chalcone 4.37 was tested against the W2 strain, but no antiplasmodial activity was seen up 

to 10 μM, probably making the 8-nitroflavone not a very good lead for further drug development. 

 

 

 

 
Figure 4.1 Docking poses of (A) stigmatellin; (B) 4.12, 4.13, 4.15, 4.16 and 4.31. 
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Figure 4.1 (cont.) Docking poses of  (C) 4.14, 4.17, 4.18, 4.20, 4.21 and 4.32. 

 

 

4.2.7 Anti-liver activity and cytotoxicity 

Given the tissue-schizonticidal activity of the isoflavone genistein (IC50 ~ 20 μM) [300] and the 

structural similarities, it was predicted that this series of flavones would be similarly active against 

the liver forms of Plasmodia. The synthesized compounds are able to decrease the infection load of 

Huh-7 cells to different extents, when compared to the control, and displayed a dose-dependent 

effect on the development of the parasite, Figure 4.2. At 10 μM, compounds 4.12 and 4.21 were 

able to decrease infection in the same order of magnitude of primaquine at 5 μM, albeit being less 

active than the latter (ca. 3.5- and 3-fold less active, respectively). Also, 4.12 and 4.15 displayed 

moderate antiplasmodial activity in the blood stage, but were more active in the liver-stage. 4.32 

was essentially non-active against the liver stage, while displaying the lowest IC50 in P. falciparum 

W2 strain. 

The IC50 values were determined for compounds 4.12, 4.15 and 4.21, since they showed a 

stronger drop in infection between 10 and 2 μM. While flavone 4.21 presented an IC50 of 8.5 μM, 

compounds 4.12 and 4.15 showed more potent inhibition with IC50s of 6.2 μM and 4.1 μM, 

respectively, Figure 4.3. These results highlight the higher potency of this series against liver 

stages, rather than against blood stages of Plasmodia. Also, these molecules are over 2-fold more 

potent than the related isoflavone genistein. Therefore, it is hypothesized that the introduction of an 

extended side chain into the chromone moiety is responsible for the observed results, and the 

following SAR observations can be drawn: 
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a) Introduction of 6-Cl or 7-Cl in the chromone ring is detrimental for anti-liver activity, 

i.e. 4.12 vs. 4.13 and 4.14; 

b) Simple substitution of 7-Me in the chromone ring is desirable, among the assayed 

compounds, i.e. 4.15; 

c) Introduction of 7-Me does not restore significantly the anti-liver activity of compounds 

containing a chlorine in the core scaffold, i.e. 4.13 vs. 4.16; 

d) 4-Cl substitution in the terminal aryl moiety is preferred over 4-OCF3, i.e. 4.16 vs. 4.17; 

e) Introduction of a spacer between the aryl moieties that confers flexibility to the side 

chain also appears to be critical, as compounds 4.18, 4.31 and 4.32 are amongst the least 

active flavones. 

Also, none of the molecules presented significant cytotoxicity at any concentration in the 

Alamar Blue test. 
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Figure 4.2 Antiplasmodial activity of compounds 4.12-21 and 4.31-32 against the liver stage of P. berghei. The 

luminescence (bars) is given as percentage of control (DMSO) inhibition. The cytotoxicity was measured in 

fluorescence (dots) from the Alamar Blue test and is also given as percentage of control. The compounds were tested in 

two concentrations: 10 μM (black bars), 2 μM (grey bars) and primaquine was tested at 5 μM. Compound 4.34 was 

only tested at 10 μM. 
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Figure 4.3 Dose-response curve of luminescence intensity, as a function of the logarithm of compound concentration. 

The red markers refer to logIC50. 

 

 

4.3 Conclusions 
The flavone derivatives showed only modest antiplasmodial activity. However, these 

compounds were interestingly more potent against the liver stage and may find further applicability 

after the optimization of the substitution pattern around the chromone core. These have also shown 

to be considerably more active than genistein and are the most potent flavones reported thus far, for 

this stage of the life cycle. 
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5. VIRTUAL SCREENING STUDIES 
 

5.1 Brief overview on Virtual Screening 
Virtual screening (VS) of chemically available ligand databases has become an useful tool to 

search the chemical space in recent years, given it accelerates the initial stages of drug 

development. It takes only a few hours or days to screen in silico a library of around one million 

compounds, while a few months are required to screen in vitro (high-throughput screening) the 

same number of chemical entities [301]. Furthermore, it has proven to be effective in several projects, 

by applying a good set of filters. As primary constraints to the search, common approaches include: 

a) Receptor-based, also known as docking- or structure-based strategy, where all the 

characteristics of the binding site are determined; 

b) Ligand-based, or pharmacophore-based strategy, where due to the lack of knowledge of 

the binding site features, known ligands are taken into account.  

Other constraints include, for example, ADMET properties [302, 303].  

However, receptor-based VS strategies generally face the problem of protein flexibility, because 

it is usually kept rigid to speed up the screening process. In this case, the docking program attempts 

to find complementarity between the receptor and the ligand, which is quantified by the search 

algorithm. In ligand-based VS, the program recognizes compounds from the library with the 

required features to bind to the target. To execute it, a pharmacophore model is built by defining the 

pharmacophoric features, and the user-defined tolerance zone. Its major advantage over the 

docking-based protocol stands in the throughputness which is considerably higher, making it 

adequate for filtering overly large databases [301].  

VS strategies are becoming increasingly popular and have been reasonably successful in the 

search of new antimalarial leads. While some studies have focused on finding novel leads for a 

known drug target such as hematin and dihydrofolate reductase [304-306], others have delivered leads 

for the design of drug candidates for novel targets. Those include plasmodial kinases [307], falcipains 
[308-310] and enoyl-acyl carrier protein reductase [311]. Despite some successful cases, VS is still not a 

fully matured technology. Few foundations of ligand-protein recognition are understood well 

enough to be deployed in large scale efforts. The role of water molecules, solvation, electrostatics 

and entropic changes are problems yet to be solved, which increase the tendency to detect false-

positives [312, 313]. 
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5.2 3D-Pharmacophore model generation and screening 
With the intention of filtering out the two chemical databases in an expedite way, a 3D 

pharmacophore model was generated using the MOE software, which is a highly regarded software 

for this purpose [314, 315].  

This was modeled from the bioactive pose of GW844520, 1.113, at the Qo site of the bc1 

complex described in chapter 2, Figure 2.7 and Figure 5.1. Traditionally, several molecules with 

significant scaffold diversity are used for the generation of a 3D pharmacophore model, i.e. a 

consensus query. In the present case only GW844520 was used for the model generation, given 

that: 

a) Currently there is a lack of chemical diversity, regarding the inhibitors of cytochrome 

bc1; 

b) The inhibitors of the bc1 complex may present different binding modes, making it 

inappropriate for aligning features, i.e. the pharmacophores of the different classes of 

inhibitors bind distinctively to the active site;  

c) The aim of the study was to find novel leads with the binding characteristics of the 

4(1H)-pyridones. By using only one molecule to generate the model redundancy was 

avoided, since the training set consisted of a different set of molecules. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 5.1 The ligand-receptor interactions for GW844520, 1.113; strong hydrophobic interactions can be seen between 

the side chain and hydrophobic aminoacid residues. Water molecules have not been included in docking calculations, 

but are likely to intervene as hydrogen-bond mediators. 
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GW844520 is one of the most potent cytochrome bc1 inhibitors known to date (IC50 = 30 nM) 
[19] and to validate the generated model a training set of 14 4(1H)-pyridones with structurally 

different substituents at either C3 and / or C5 was assembled. These were then subjected to a 

conformational sampling with MOE, with a determined energy cut-off to avoid redundancy. Chen 

et al. had shown that the MOE performs at least as well as Catalyst in high-throughput library 

generation and conformational modeling [316]. Finally, the generated conformers were treated as 

rigid entities for the validation screening. The chemical structures and their IC50 values against the 

P. falciparum T9-96 strain [19] are given in Figure 5.2.  

In MOE, a pharmacophore model consists of spheres depicting the tolerance of location allowed 

for each feature. The phamacophore model used for the ZINC drug-like database [317] consisted of 

seven features, Figure 5.3 A. Features F1 through F5 represent alternate hydrophobic and aromatic 

regions, with hydrophobic represented in green, i.e. F1, F3 and F5, and aromatic regions given in 

orange, i.e. F2 and F4. The spheres radius was manually adjusted in order to optimize the model. 

Hence, F1 had a sphere of radius equal to 1.5 Å, F3 a radius of 1.6 Å and F5 with 1.9 Å. The 

aromatic region F2 had a radius of 1.9 Å and F4 a radius of 1.5 Å. Both hydrogen bond acceptor, 

F6, and donor, F7, had a radius of 1.0 Å. 

The pharmacophore models proved to be efficient in excluding compounds with an IC50 higher 

than 2,200 nM and compound 1.126, with an IC50 of 2,200 nM, presented the highest RMSD value 

amongst the 4(1H)-pyridones, Appendix 3.1. Atovaquone, despite the low IC50 against the T9-96 

strain, presented the highest RMSD value of all hit molecules within the training set. Thus, the 

model is expected to be restrictive towards compounds presenting features other than those of the 

4(1H)-pyridones, regardless of their bc1 complex inhibitory potency.  

Prior to executing the pharmacophore-based VS, the ZINC database was filtered with the 

Lipinski’s rule of five [318, 319]. This predicts that the poor oral absorption and / or distribution are 

more likely to occur when a molecule has two of the following features:  

a) Five hydrogen bond donors; 

b) Ten hydrogen bond acceptors; 

c) A molecular weight over 500 Da; 

d) The calculated logP greater than 5.  
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Figure 5.2 Chemical structures of the training set selected for the pharmacophore modeling. 

 

 

 

 

 

 

 

 
 

 

Figure 5.3 (A) shows the pharmacophore model used to screen the ZINC database; (B) shows the model used for the 

MOE database. Green spheres represent hydrophobic regions, orange represents aromatic regions, blue is a hydrogen-

bond acceptor and its projection and purple represents hydrogen-bond donor and its projection. 
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Therefore, from roughly 8.5 million molecules, the database was reduced to ca. 0.5 million 

drug-like compounds. However, given that this was still a huge number of compounds to perform a 

conformational search in an acceptable timing, a second filter was applied. Database clustering was 

achieved by analyzing similarities between the compounds, and was carried out with the algorithm 

of Bienfait, which incrementally selects compounds that differ from all previous. The downloaded 

database consisted of a 136,996 compound set for which the conformational search was performed. 

For the MOE drug-like database, over 600,000 compounds were supplied with the 

conformational library already constructed. Therefore, no other filters were applied before the VS. 

In the in silico screen of the ZINC database with the pharmacophore model, F1-F5 were deemed 

essential for a compound to be considered a hit and a partial match of six out of the seven features 

was allowed, by marking that option in the software window. This permitted to drastically reduce 

the database size, without being excessively restrictive. Around 1000 positive hits were obtained, 

according to this methodology, as indicated in Figure 5.4. 

For the MOE database screen, projections of both hydrogen bond acceptors and donors with a 

1.4 Å radius were added, Figure 5.3 B, and retrieved only those compounds that matched every 

feature. This was due to the high number of hits for the MOE database when the first model was 

used (over 7,000), which would be unsuitable for the second stage of VS, i.e. receptor-based VS. 

Thus, employing this methodology the size of the database was reduced to approximately 700 

compounds which were selected for further refinement, Figure 5.4. 
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Figure 5.4 Virtual screening protocol breakdown. 

 

 

 

5.3 Receptor-based virtual screening 
The hits were docked with GOLD [192] into the cytochrome bc1 model that had been validated in 

previous studies. VS involving docking of large databases can be computationally very expensive. 

Therefore it is needed to find an approach that optimizes the balance between the precision of 

docking and the time required for the process. The initial stages of receptor-based virtual screening 

are generally executed to discard many compounds quickly, retaining only those which fit the 

receptor. Exhaustive docking for the retained compounds can subsequently be carried out to 

estimate their binding pose, and interactions with the target receptor. Thus, in the present study, the 

docking processes were performed in three consecutive stages, employing different settings in 

GOLD. 

 At first, VS was performed with 7-8 times speed-up settings. This is an optimized setting for 

VS protocols, since a lower number of genetic operations are done. As a result, a higher throughput 

is obtained with acceptable accuracy rates in the prediction [192]. The best 100 ligands of each 
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database, Appendices 3.2 and 3.3, were subjected to further docking refinement, this time with 

standard settings, i.e. a higher number of genetic operations, but a relatively low number of runs. 

The final GoldScores were ordered, and each ligand was visually inspected for hydrogen bonding 

with histidine 181 and glutamate 272, since these two residues are involved in physiological 

electron transfer across the bc1 complex [58]. Favourable hydrophobic interactions were also sought, 

as well as plausible docking poses, based on my experience.  

 

 

5.3 Antiplasmodial activity 
From the 200 molecules visually inspected, 23 compounds were purchased, Figure 5.5, and 

shifted to in vitro antiplasmodial testing against the P. falciparum W2 and 3D7 (chloroquine-

sensitive) strains. Out of the 23 compounds submitted for in vitro assays, 7 of them were found to 

present antiplasmodial activity in the micromolar range against the W2 strain, Table 5.1. While one 

of the compounds, 5.10, exhibited activity with an IC50 value of 12 μM against the W2 strain, and 

10 μM against the 3D7 strain, most of the other active compounds presented IC50 values around 30 

μM, i.e. compounds 5.6, 5.11 and 5.12. Compound 5.7 showed an IC50 of around 50 μM for P. 

falciparum W2. Finally, compounds 5.21 and 5.23 demonstrated activity below 10 μM, with the 

former displaying an IC50 of 2 μM. All other compounds did not present noticeable activity up to 

the tested concentrations. 

These results are very encouraging and partly validate the virtual screening protocol, as it 

proved to be efficient in identifying active compounds. The expected success rate for a good 

pharmacophore ranges from 0.5 to 20%, according to Soichet et al. [320]. In this case, the overall 

success rate was at least 30% (7 out of 23), since some of the compounds were tested only up to 10 

μM. From those, 6 of the active compounds were from MOE (44% success rate), and only 1 was 

from ZINC (14% success rate). 
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Figure 5.5 Structures of compounds selected from the virtual screening protocol. 

 

 
 
 



Virtual Screening Studies 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

 

139 

Table 5.1 Biological data for compounds selected from virtual screening. 

IC50 ± SD (μM) 
Compound 

W2 strain 3D7 strain 

5.1 N.D. > 10 

5.2 N.D. > 10 

5.3 > 25 > 10 

5.4 > 50 > 10 

5.5 > 50 > 10 

5.6 27.1 ± 2.0 > 10 

5.7 49.8 ± 1.9 > 10 

5.8 > 50 > 10 

5.9 > 50 > 10 

5.10 12.1 ± 0.2 10.2 

5.11 28.5 ± 0.3 > 10 

5.12 29.5 ± 2.7 > 10 

5.13 > 50 > 10 

5.14 > 50 > 10 

5.15 > 50 > 10 

5.16 > 10 N.A. 

5.17 N.D. N.A. 

5.18 > 10 N.A. 

5.19 > 10 N.A. 

5.20 > 10 N.A. 

5.21 1.97 ± 0.9 N.A. 

5.22 > 10 N.A. 

5.23 6.69 ± 2.1 N.A. 

N.D. - Not Determined; N.A. - Not Available 

 

 

The third round of docking studies was performed to better predict the binding pose of the 

active compounds in the Qo site. Taken the antiplasmodial activities and the docking poses together 

one can observe the following: 

a) All compounds fit well in the active site and show mainly hydrophobic interactions with 

the aminoacid residues, which may be insufficient for an effective blocking of 

cytochrome bc1, Figure 5.6. Compound 5.6, is one exception, presenting an interaction 

with the critical histidine 181; the nitrogen of the triazino group distances 2.42 Å from 

the protonated imidazole group of the protein. The sulfur atom is also at 1.77 Å from the 

same proton. Despite all compounds complying with the Lipinski’s rule of five, deficient 
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cell permeability is still possible, which might be one possible factor for the modest 

antiplasmodial activity [318], namely for compound 5.6; 

b) The presence of a dimethoxyphenyl group in 5.10 is responsible for a 2-fold increase in 

activity when compared to its thiophene counterpart, i.e. compound 5.12. Moreover, the 

docking study reveals a different docking pose for 5.10, Figure 5.6 C, when compared to 

its related indole compounds 5.11-12, Figure 5.6 D and E. This may help explain the 

different IC50 values, based on a stronger van der Waals interaction with the receptor. 

While in 5.10 the side chain is docked deep into protein, for 5.11 and 5.12 it is directed 

to the outer side of the binding pocket; 

c) The insertion of an ethyl or methyl groups in the triazole moiety appears to be 

insignificant for the antiplasmodial activity, i.e. 5.11 vs. 5.12; 

d) Compound 5.23 displays an analogous docking pose to 5.10 which is consistent with the 

higher activity, for the triazolylindole subset of compounds. In this case, it appears that 

the oxadiazole ring present in 5.10-12 is also detrimental for the antiplasmodial activity, 

as a shorter linker to the terminal aryl moiety, e.g. 5.23, leaves this better accommodated 

in the binding pocket; 

e) Compound 5.21 displays excellent antiplasmodial activity and a docking pose consistent 

with the in vitro tests. The carbonyl group from the 2-thioxoquinazolinone scaffold is 

placed at 5.00 Å of E272 and possibly lodges a water molecule between to mediate a 

hydrogen bond. The thioxo group is also at 3.83 Å of H181, which is a documented 

distance for interaction with aromatic moieties [298]. Taken together, these strong 

interactions possibly account for the low IC50 against the W2 strain; 

f) Compound 5.20, which differs only in the terminal aryl moiety from 5.21, does not 

present antiplasmodial activity up to 10 μM. Also, 5.20 exhibits a very similar docking 

pose to the one seen by 5.21 and, as a consequence, an IC50 in the same order of 

magnitude would be expected. Compound 5.20 has a logSw of -5.06, whereas its 5.21 

analogue is considerably more soluble in water, logSw = -3.36 (data from the supplier). 

Therefore, the observed difference in activity can be related to the better solubility of the 

compound in the assay; 

g) For the 2-thioxoquinazolinone subset of compounds it is possible to see that a cyclohexyl 

group in the side chain is probably important for the antiplasmodial potency, 5.21 vs. 

5.18. 

In summary, this VS study allowed the identification of new scaffolds with potential for lead 

optimization. β-Carbolines are known to present antiplasmodial activity in the low micromolar or 
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nanomolar range [321, 322]. For the related [1,2,4]triazino[5,6b]indole scaffold, only one study by 

Kgokong et al. can be found, and all compounds presented antiplasmodial activities around 20 μM 
[323], which is very similar to 5.6. However, compounds with this scaffold have shown great value in 

inhibiting human papiloma virus infections [324]. Regarding the 3-(1,2,4-triazol-3-yl)indole and 2-

thioxo-2,3-dihydroquinazolin-4(1H)-one scaffolds, no reports on antiplasmodial activity can be 

found. Still, a vast number of papers have been published on the related alkaloid febrifugine, 5.24, 

and analogues, reporting antiplasmodial activities in the low nanomolar range [325-328]. 

 

 

 
Figure 5.6 Docking poses for selected compounds: (A) 5.6; (B) 5.7; (C) 5.10; (D) 5.11. 

A 

H181 

M139 

Y132 
G252 

G143 
G146 

M295 

F278 

Y279 
E272 

W273 
L275 

I147 

B 

H181 

M139 

Y132 
G252 

G143 
G146 

M295 

F278 

Y279 
E272 

W273 
L275 

I147 

C 

H181 

M139 

Y132 
G252 

G143 
G146 

M295 

F278 

Y279 

E272 

W273 
L275 

I147 

D 

H181 

M139 

Y132 
G252 

G143 
G146 

M295 

F278 

Y279 E272 

W273 
L275 

I147 



Virtual Screening Studies 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
   

 

142 

 
Figure 5.7 (cont.) Docking poses for selected compounds: (E) 5.12; (F) 5.20; (G) 5.21; (H) 5.23. 

 

 

 

5.4 Conclusions 
Scaffold hopping is one of the major goals in VS studies, particularly in ligand-based 

approaches. This strategy allowed the discovery of novel scaffolds with potential for optimization, 

which partly validates the protocol. The in vitro screening of the active compounds in whole cell 

assays is now ongoing against the bc1 complex. 
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6. CONCLUSIONS AND PERSPECTIVES 
 

This doctoral work set out to identify novel inhibitors of the bc1 complex, supported on the 

bioisosteric replacement of the carbonyl group of 4(1H)-pyridones and quinolones by an imine 

bond. This would allow probing unexplored chemical space, while seeking the obtention of 

compounds with useful antiplasmodial activity. 

Regarding the 4-pyridonimine scaffold, the quantum mechanical studies allowed to validate 

such compounds as isosteres of the related 4(1H)-pyridones. The similarity of their frontier orbitals 

and the MEPs pattern, with those of 4(1H)-pyridones provided proof-of-concept on a theoretical 

basis. Also, for the Mannich-base compounds that were selected for this study, the antiplasmodial 

activity correlated well with the complementarity of the electrostatic potential between the binding 

site and the ligands. 

The structure-based design approach that was taken for the scaffold optimization was also very 

successful. Starting from lead compounds with an IC50 of ca. 10 μM, it was possible to design 

inhibitors with IC50s around 1 μM against the W2 strain of P. falciparum. Concerning the blood 

stage of the plasmodial infection, the SAR that was found is similar to that of the GSK’s 4(1H)-

pyridones. For the liver stage, some of the compounds showed very potent activity at 10 μM, but 

were also cytotoxic. 

For the 4-quinolonimines, the antiplasmodial activity improved further, possibly from the 

introduction of a second aromatic ring. The most active compounds presented a biphenyl side chain, 

i. e. 3.22 and 3.23, and IC50s of ca. 0.5 μM. Against the liver stage, most of the compounds at 2 μM 

were at least as active as primaquine at 5 μM, and were not significantly cytotoxic. Also, these have 

shown not to suffer Michael additions at C2. Therefore, these 4-quinolonimines are interesting 

compounds for further studies. Structures to be studied include different subtituents at 

quinolonimine core and eventually other aromatic rings in the side chain, 6.1.   

In relation to their mechanism of action it is necessary to stress that it might be composited by 

inhibition of more than one target: 

a) The docking studies into the bc1 complex provided a rationale for its inhibition; 

b) The compounds present a 7-chloro or 7-(trifluoromethyl)quinoline moiety which is similar 

to known inhibitors of hemozoin polymerization; 

c) The compounds bind to hematin as tightly as chloroquine, and the logKass follows the 

same trend as the antiplasmodial activity; 
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d) The compounds are very active against the liver stage, where no haemoglobin degradation 

occurs. Thereby the mechanism of action must be other than the inhibition of hemozoin 

polymerization; 

e) The SAR for these compounds in both blood and liver stages is different. Bearing in mind 

that the tests were carried out in different species, it is difficult to draw conclusions. The 

most active compounds against the W2 strain, i.e. 3.22 and 3.23, were also the ones that 

bound more tightly to hematin. However, 3.22 and 3.23 were among the least active 

compounds at 2 μM in the liver stage studies. It is possible that, for at least these two 

compounds, more than one mechanism of action exists. 

Hence, further studies on the mechanism of action are required in the future, namely the 

inhibition of the cytochrome bc1 complex. This will also provide the proof-of-concept for the 

rationale behind the development of these compounds. 

For the flavone series, only modest antiplasmodial activity against the blood and liver stages 

was obtained, but there are still some chemical modifications in the chromone moiety that may 

improve the IC50. Among those, compounds with the scaffold 6.2 deserve some attention. The 

substituent at R1 would interact with E272, whereas the substituent at R2 would interact with H181. 

Also, the resemblance to ubiquinol can improve the antiplasmodial activity. 

 

 
 

Regarding the virtual screening studies a 3D-pharmacophore model was built and successfully 

sieved two databases into a workable number of compounds for the structure-based VS. From 23 

compounds tested in vitro, 7 displayed antiplasmodial activity. From those, 3 had an IC50 of 10 μM 

or better, with the most active at an IC50 of 2 μM, 5.21. More importantly, three novel scaffolds for 

drug development were discovered: triazolylindoles, triazinoindoles and 2-thioxoquinazolinones. 

Besides, this is the first VS study targeting the bc1 complex, to the best of my knowledge. 
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Finally, this work has enabled the understanding of the required features that an effective bc1 

complex inhibitor must have. It also contributed to the discovery of interesting leads for further 

drug development in the context of malaria. 
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7. EXPERIMENTAL SECTION 

 
7.1 Reagents and solvents 

Reagent grade chemicals were bought from Sigma-Aldrich, Alfa-Aesar or Matrix Scientific. 

MeOH and CHCl3 were dried from calcium chloride and distilled at atmospheric pressure. THF was 

distilled from sodium-benzophenone as a humidity indicator and stored with molecular sieves 4A. 

Pyridine was distilled from NaOH at room pressure while liquid aldehydes were distilled under 

reduced pressure. Toluene was dried with sodium and distilled at room pressure. The remaining 

solvents and reagents were used without further purification. 

 

 

7.2 Chromatography 
Column chromatography was performed with silica gel (Merck, 230-400 mesh ASTM). TLC 

was performed on pre-coated silica gel 60 F254 (Merck) and visualized under UV light or by 

exposure to iodine vapour. All the reactions were monitored by TLC unless otherwise stated. 

 

 

7.3 Equipment 
Melting points were determined using a Kofler camera Bock Monoscope M and are 

uncorrected. The IR spectra were determined using thin films between NaCl plates on a Nicolet 

Impact 400 FTIR spectrophotometer, and only the most significant absorption bands are reported. 

Low-resolution mass spectra were recorded using a VG Quattro LCMS instruments. Elemental 

analyses were performed using an EA 1110 CE Instruments automatic analyser. HR-ESI-MS were 

recorded on an ESI-TOF spectrometer (Biotof II Model, Bruker). NMR spectra were recorded on a 

Bruker Avance 400 NMR spectrometer (1H 400 MHz; 13C 100.61 MHz; 31P 161.98 MHz) and a 

Jeol JNM-60 (1H 60 MHz). 1H and 13C chemical shifts (δ) are expressed in ppm (parts per million) 

and are relative to the corresponding resonance of tetramethylsilane. Coupling constants (J) are 

reported in hertz (Hz). X-ray crystallography was carried out on a Bruker Kappa APEX II. 

Microwave-assisted synthesis was performed in a CEM Corporation Discover® Labmate™, and 

hematin titrations were carried out at a Shimadzu UV-visible spectrophotometer. 
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7.4 Synthesis 
 

7.4.1 Mannich-base side chain 

 

2-(Diethylaminomethyl)paracetamol, 2.47 

The compound was obtained from a previously described method [201]. Generally the Mannich 

reaction was performed with paracetamol (1 molar eq.), N,N-diethylamine (2 molar eq.) and liquid 

formaldehyde 37% (2 molar eq.) in absolute ethanol (3.3 mL/mmol). The mixture was refluxed for 

variable periods of time, after which the solvent was removed under reduced pressure and the 

residue dissolved in dichloromethane (10 mL). The organic solution was extracted with 

hydrochloric acid. This solution was then basified (pH 9-10) and extracted with dichloromethane 

(3×50 mL). The combined extracts were washed with water (20 mL) and dried over MgSO4. 

Recrystallization was achieved using toluene / petroleum ether (40-60 ºC) (20:80 v/v). 

 

 
Table 7.1 Conditions for the synthesis of 2-(diethylaminomethyl)paracetamol. 

Method Reaction time [HCl] (M) Yield (%) 

A 

B 

reflux/48 h 

reflux/24 h 

0.1 

1.5 

76 

70 

 

 

Pale yellow solid; mp 128-130 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 1.07 (6H, t, J = 7.2 Hz; 

CH3); 2.11 (3H, s, CH3); 2.58 (4H, q, J = 7.2 Hz, CH2); 3.75 (2H, s, CH2); 6.71 (1H, d, J = 9.0 Hz, 

Ar-H); 7.01 (1H, dd, J = 2.7 and 8.7 Hz, Ar-H); 7.09 (1H, br.s, NH); 7.29 (1H, d, J = 2.4 Hz, Ar-H); 
13C-NMR (CDCl3, 100.61 MHz) δ 11.21; 24.36; 46.31; 56.91; 116.09; 120.77; 121.17; 122.34; 

129.28; 155.28; 168.14; IR (film): νmax 3267; 1651; 1561; 1491; 1255 cm-1. 

 

Bis[2,6-(diethylaminomethyl)]paracetamol, 2.48 

Paracetamol (1 molar eq.), diethylamine (2 molar eq.), liquid formaldehyde 37% (2 molar eq.) 

and absolute ethanol (3.3 mL/mmol) was refluxed for 48-72 hours and the mixture treated as 

described for 2.47. A white solid was obtained; 18%; mp 33-35 ºC; 1H-NMR (CD3OD, 400.13 

MHz) δ 1.13 (12H, t, J = 7.2 Hz, CH3); 2.10 (3H, s, CH3); 2.64 (8H, q, J = 7.2 Hz, CH2); 3.73 (4H, 

s, CH2); 7.25 (2H, s, Ar-H). 
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4-Amino-2-(diethylaminomethyl)phenol, 2.49 

2.47 (1 molar eq.) was heated overnight in hydrochloric acid 6N (5 mL/mmol) at reflux 

temperature. This solution was concentrated under reduced pressure and then coevaporated with 

ethanol. Flash chromatography of the crude product on sílica gel with CH2Cl2 : MeOH (8:2) gave 

2.49 as an amorphous brown gum; 100%; 1H-NMR (DMSO-d6, 400.13 MHz) δ 1.24 (6H, t, J = 7.2 

Hz, CH3); 3.05 (4H, q, J = 7.2 Hz, CH2); 4.20 (2H, s, CH2); 7.09 (1H, d, J = 8.4 Hz, Ar-H); 7.27 

(1H, dd, J = 2.4 and 8.7 Hz, Ar-H); 7.47 (1H, d, J = 2.4 Hz, Ar-H); 9.85 (1H, br.s, OH). 

 

4-Amino-2,6-bis((diethylamino)methyl)phenol, 2.50 

Amorphous brown gum; 100%; 1H-NMR (DMSO-d6, 400.13 MHz) δ 1.16 (12H, t, J = 7.2 Hz, 

CH3); 3.11 (8H, q, J = 7.2 Hz, CH2); 4.24 (4H, s, CH2); 7.34 (2H, s, Ar-H); 10.10 (1H, br.s, OH). 

 

 

7.4.2 4-(Pyridin-4-ylamino)phenols 

2.49 or 2.50 was added to 4-chloropyridine in absolute ethanol (5 mL/mmol). The mixture was 

heated under reflux temperature and the reaction followed by TLC. Several methods were employed 

and are summarized in Table 7.2. 

 

 
Table 7.2 Conditions for the synthesis of 4-(pyridin-4-ylamino)phenols. 

Method 2.49 mol eq. Py mol eq. Work-up Purification Eluent 

A [201] 

B 

C 

D 

1 

2 

1 

3 

1 

1 

1 

1 

NH4OH, CH2Cl2 

NH4OH, CH2Cl2 

- 

- 

Column chromatograph. 

Column chromatograph. 

Column chromatograph. 

Flash chromatography 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH:TEA 1% 

CH2Cl2:MeOH (4:1) 

 

 

2-Diethylaminomethyl-4-(pyridin-4-ylamino)phenol, 2.51 

Method B - 2.49 and 4-chloropyridine hydrochloride were dissolved in absolute ethanol. The 

mixture was heated under reflux temperature for 4 hours and a dark brown solid was obtained; 

41%; mp 120-123 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ  1.13 (6H, t, J = 7.2 Hz, CH3); 2.66 (4H, q, 

J = 7.2 Hz, CH2); 3.77 (2H, s, CH2); 5.83 (1H, s, NH); 6.63 (2H, d, J = 4.8 Hz, Ar-H3); 6.82 (1H, d, 

J = 8.8 Hz, Ar-H); 6.85 (1H, d, J = 1.6 Hz, Ar-H); 7.02 (1H, dd, J = 2.0 and 8.4 Hz, Ar-H); 8.23 

(2H, d, J = 4.8 Hz, Ar-H2); 13C-NMR (CDCl3, 100.61 MHz) δ 11.22; 46.38; 56.83; 108.51; 116.91; 



Experimental Section 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

154 

123.07; 124.53; 124.76; 130.14; 150.09; 152.32; 156.14; IE-MS m/z (abund.): 271.15 [M]+ (45); 

198.00 (100); Anal. Calcd. (C16H21N3O • 0.15 CH2Cl2 • 0.3 H2O): C, 67.00; H, 7.42; N, 14.51. 

Found: C, 68.18; H, 7.49; N, 14.43. 
Method E - 2.59 (1 molar eq.) was added to liquid formaldehyde 37% (2 molar eq.), 

diethylamine (2 molar eq.) and absolute ethanol (3.3 mL/mmol). The mixture was heated under 

reflux temperature for 18 hours, the solvent evaporated under reduced pressure and the resulting 

crude product purified by flash chromatography CH2Cl2 : MeOH : TEA (4:1:0.01). A dark brown 

oil was obtained (65%) and identified as 2.51.  

 

2-Diethylaminomethyl-4-(3-methylpyridin-4-ylamino)phenol, 2.52 

Method A - The mixture was heated under reflux temperature for 27 hours and a brown solid 

was obtained; 17%; mp 96-98 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 1.15 (6H, t, J = 7.2 Hz, CH3); 

2.21 (3H, s, CH3); 2.66 (4H, q, J = 7.2 Hz, CH2); 3.78 (2H, s, CH2); 5.58 (1H, s, NH); 6.65 (1H, d, J 

= 5.6 Hz, Ar-H5); 6.84 (1H, d, J = 8.4 Hz, Ar-H); 6.86 (1H, d, J = 2.0 Hz, Ar-H); 7.02 (1H, dd, J = 

2.0 and 8.6 Hz, Ar-H); 8.11 (1H, d, J = 5.2 Hz, Ar-H6); 8.16 (1H, s, Ar-H2); 13C-NMR (CDCl3, 

100.61 MHz) δ 11.22; 14.28; 46.37; 56.81; 105.92; 116.93; 123.10; 125.03; 125.24; 126.99; 

130.35; 148.47; 150.17; 150.77; 156.15; IR (film): νmax 3164; 1593; 1498 cm-1; IE-MS m/z 

(abund.): 285.15 [M]+ (78); 212.10 (100); Anal. Calcd. (C17H23N3O • 0.15 CH2Cl2 • 0.45 H2O): C, 

67.26; H, 7.97; N, 13.72. Found: C, 67.29; H, 7.98; N, 13.66. 

On the other hand, method D was used and afforded a brown solid (54%), identified as 2.52. 

 

2-Diethylaminomethyl-4-(3-aminopyridin-4-ylamino)phenol, 2.53 

Several methods were used for the synthesis of 2.53, as summarized in Table 7.3. 

 

 
Table 7.3 Conditions for the synthesis of 2.53. 

Method 2.49 mol eq. Py mol eq. Reaction time Flash Chromatograph Yield (%) 

C 

D 

F 

G 

1 

3 

2.5 

2.5 

1 

1 

1 

1 

reflux/24 h 

reflux/24 h 

reflux/2 h 

reflux/20 h 

- 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH (4:1) 

17 

76 

43 

65 
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A dark brown solid was obtained; 76%; mp 130-132 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 

1.41 (6H, t, J = 7.2 Hz, CH3); 3.28 (4H, q, J = 7.2 Hz, CH2); 3.37 (2H, s, NH2); 4.38 (2H, s, CH2); 

5.71 (1H, s, NH); 6.92 (1H, d, J = 6.6 Hz, Ar-H5); 7.09 (1H, d, J = 8.6 Hz, Ar-H); 7.35 (1H, dd, J = 

2.6 and 8.6 Hz, Ar-H); 7.46 (1H, d, J = 2.8 Hz, Ar-H); 7.75 (1H, d, J = 6.6 Hz, Ar-H6); 7.79 (1H, s, 

Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 7.78; 46.66; 50.95; 104.70; 116.41; 117.77; 121.90; 

128.37; 129.11; 129.46; 131.62; 133.25; 146.95; 155.39; IE-MS m/z (abund.): 286.15 [M]+ (62); 

184.05 (100); Anal. Calcd. (C16H22N4O • 0.5 CH2Cl2 • 0.40 H2O): C, 58.97; H, 7.14; N, 16.67. 

Found: C, 59.16; H, 7.11; N, 16.76. 

 

2-Dietilaminometil-4-(2-methylpyridin-4-ylamino)phenol, 2.55 

Method C - The mixture was heated under reflux temperature for 28 hours. A brown solid was 

obtained; 17%; mp 202-204 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 1.38 (6H, t, J = 7.2 Hz, CH3); 

2.51 (3H, s, CH3); 3.20 (4H, q, J = 7.2 Hz, CH2); 4.31 (2H, s, CH2); 6.84 (1H, br.s, Ar-H3); 6.90 

(1H, dd, J = 7.2 and 2.2 Hz, Ar-H5); 7.05 (1H, d, J = 8.8 Hz, Ar-H); 7.28 (1H, dd, J = 8.8 and 2.8 

Hz, Ar-H); 7.37 (1H, d, J = 2.8 Hz, Ar-H); 8.03 (1H, d, J = 7.2 Hz, Ar-H6); 13C-NMR (CD3OD, 

100.61 MHz) δ 7.87; 17.09; 47.44; 50.48; 108.00; 109.72; 116.42; 117.66; 122.99; 127.72; 128.55; 

128.92; 139.90; 156.63; 157.68; IE-MS m/z (abund.): 285.15 [M]+ (35); 212.10 (100); Anal. Calcd. 

(C17H23N3O • 1.1 CH2Cl2 • 1.7 H2O): C, 53.10; H, 7.04; N, 10.26. Found: C, 52.89; H, 7.01; N, 

10.33. 

Method G - The mixture was heated under reflux temperature for 4 hours and the crude product 

purified by flash chromatography CH2Cl2 : MeOH : TEA in several proportions. A black solid was 

obtained (53%), corresponding to 2.55.  

Method D - The mixture heated under reflux temperature for 21 hours. The crude product was 

purified by flash chromatography CH2Cl2 : MeOH : TEA in several proportions. A black solid was 

obtained (77%), also corresponding to 2.55. 

 

4-(3-((Diethylamino)methyl)-4-hydroxyphenylamino)pyridine-3-sulfonamide, 2.56 

Method C - The mixture was heated under reflux temperature for 30 hours. A pale yellow solid 

was obtained after purification; 15%; mp 72-75 ºC (EtOH/CH2Cl2); 1H-NMR (CD3OD, 400.13 

MHz) δ 1.38 (6H, t, J = 7.2 Hz, CH3); 3.22 (4H, q, J = 7.2 Hz, CH2); 4.32 (2H, s, CH2); 6.82 (1H, d, 

J = 5.6 Hz, Ar-H5); 7.05 (1H, d, J = 8.4 Hz, Ar-H); 7.29 (1H, d, J = 8.4 Hz, Ar-H); 7.37 (1H, s, Ar-

H); 8.16 (1H, d, J = 5.6 Hz, Ar-H6); 8.68 (1H, s, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 7.95; 

47.28; 51.44; 107.77; 116.32; 118.14; 122.52; 128.71; 129.28; 129.70; 148.48; 149.88; 151.29; 
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155.38; IR (film): νmax 3370; 3125; 1587; 1498; 1415; 1262; 1146 cm-1; IE-MS m/z (abund.): 

350.15 [M]+ (38); 58.00 (100); Anal. Calcd. (C16H22N4O3S • 2.7 CH2Cl2): C, 38.74; H, 4.76; N, 

9.66; S, 5.53. Found: C, 37.51; H, 4.68; N, 9.68; S, 5.49. 

Method D - The mixture heated under reflux temperature for 20 hours. The crude product was 

purified by flash chromatography CH2Cl2 : MeOH (4:1) and TEA (500 μL/200 mL) after 

evaporating the solvent. The product was recrystallized from EtOH/CH2Cl2, yielding a pale yellow 

solid (89%) corresponding to 2.56. 

 

2,6-Bis[diethylaminomethyl]-4-(pyridin-4-ylamino)phenol, 2.57 

After acidic hydrolysis of 2.50, the corresponding aniline (1 molar eq.) was added to 4-

chloropyridine hydrochloride (1.5 molar eq.) and absolute ethanol (3.3 mL/mmol). The mixture was 

heated under reflux temperature for 23 hours, after which the solvent was evaporated and the crude 

product subjected to column chromatography CH2Cl2 : MeOH : TEA (2:7.9:0.1). A light brown 

solid was obtained; 16%; mp 108-110 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 1.09 (12H, t, J = 7.0 

Hz, CH3); 2.61 (8H, q, J = 7.0 Hz, CH2); 3.68 (4H, s, CH2); 6.40 (1H, s, NH); 6.63 (2H, d, J = 5.0 

Hz, Ar-H3); 6.98 (2H, s, Ar-H); 8.17 (2H, d, J = 5.0 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) 

δ 10.10; 46.21; 53.10; 108.08; 123.81; 123.99; 130.42; 148.45; 153.39; 154.04; IE-MS m/z 

(abund.): 356.25 [M]+ (7); 212.05 (100); Anal. Calcd. (C22H33N3O • 0.5 H2O): C, 69.01; H, 9.10; N, 

15.33. Found: C, 69.06; H, 8.97; N, 15.22. 

 

2,6-Bis[diethylaminomethyl]-4-(3-methylpyridin-4-ylamino)phenol, 2.58 

After acidic hydrolysis of 2.50, the corresponding aniline (1 molar eq.) was added to 4-chloro-3-

methylpyridine hydrochloride (1.5 molar eq.) and absolute ethanol (3.3 mL/mmol). The mixture 

was heated under reflux temperature for 41 hours. The solvent was evaporated and the crude 

product purified by column chromatography CH2Cl2 : MeOH : TEA (2:7.9:0.1). A greyish-brown 

solid was obtained; 11%; mp 104-105 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 1.15 (12H, t, J = 7.2 

Hz, CH3); 2.23 (3H, s, CH3); 2.68 (8H, q, J = 7.2 Hz, CH2); 3.77 (4H, s, CH2); 6.66 (1H, d, J = 5.6 

Hz, Ar-H5); 7.01 (2H, s, Ar-H); 7.90 (1H, d, J = 5.6 Hz, Ar-H6); 7.98 (1H, s, Ar-H2); 13C-NMR 

(CD3OD, 100.61 MHz) δ 10.05; 13.36; 46.21; 53.07; 105.57; 118.01; 123.70; 125.57; 130.50; 

146.47; 148.14; 152.23; 154.49; IE-MS m/z (abund.): 37.25 [M]+ (10); 226.05 (100); Anal. Calcd. 

(C23H5N3O • 0.5 CH2Cl2): C, 65.43; H, 8.54; N, 13.57. Found: C, 65.79; H, 8.60; N, 13.63. 
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4-(Pyridin-4-ylamino)phenol, 2.59 

Several methods were used for the synthesis of 2.59, as summarized in Table 7.4. 

 

 
Table 7.4 Conditions for the synthesis of 2.59. 

Method 
Aminophenol 

mol eq. 

Pyridine 

mol eq. 
Reaction time 

Flash 

Chromatography 
Yield (%) 

A 

B 

C 

1.4 

3 

3 

1 

1 

1 

reflux/16 h 

reflux/2 h 

reflux/4.5 h 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH (4:1) 

CH2Cl2:MeOH (9:1) 

41 

54 

80 

 

 

A light purple solid was obtained; mp 185-187 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 6.91 (2H, 

d, J = 8.8 Hz, Ar-H); 6.94 (2H, d, J = 7.2 Hz, Ar-H3); 7.14 (2H, d, J = 8.8 Hz, Ar-H); 8.09 (2H, d, J 

= 7.2 Hz, Ar-H2). 

 

N-(4-Methoxyphenyl)pyridin-4-amine, 2.60 

4-Chloropyridine hydrochloride (1 molar eq.) was added to p-anisidine (3 molar eq.) and 

absolute ethanol (5 mL/mmol). The mixture was heated under reflux temperature for 3.5 hours, 

after which it was completed. The solvent was evaporated under reduced pressure and the crude 

product purified by flash chromatography CH2Cl2 : MeOH (8.5:1.5). An amorphous light blue gum 

was obtained; 95%; 1H-NMR (CD3OD, 400.13 MHz) δ 3.37 (1H, br.s, NH); 3.84 (3H, s, CH3); 7.00 

(2H, d, J = 6.8 Hz, Ar-H3); 7.04 (2H, d, J = 10.0 Hz, Ar-H); 7.25 (2H, d, J = 10.0 Hz, Ar-H); 8.13 

(2H, d, J = 6.8 Hz, Ar-H2). 

 

 

7.4.3 4-Chloro-N-alkylpyridinium iodides 

 

4-Chloro-N-methylpyridinium iodide, 2.62 

Method A - NaH oil dispersion 80% (2 molar eq.) and 4-chloropyridine hydrochloride (1 molar 

eq. neutral 4-chloropyridine) were kept stirring in anhydrous DMF (20 mL/mmol) at room 

temperature for approximately 1 hour. Methyl iodide (2.5 molar eq.) was added and the mixture 

stirred for another 17 hours. The reaction was followed by TLC, CH2Cl2 : MeOH : TEA (2:7.9:0.1). 

The precipitate was filtered off and the filtrate evaporated under reduced pressure. The resulting 
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crude product from the filtrate was washed with dichloromethane and a light brown solid was 

recovered, which did not correspond to the desired product. 

Method B - 4-Chloropyridine hydrochloride (1 molar eq. of neutral 4-chloropyridine) was 

neutralized in aqueous solution with Na2CO3 until pH 10. The neutral 4-chloropyridine was 

extracted with diethyl ether (5 and 10 mL) and methyl iodide (4 molar eq.) was added to the 

ethereal solution. This was left stirring at room temperature for 24 hours, after which the solvent 

was evaporated, yielding a brown solid; 3%; mp 150-153 ºC; 1H-RMN (CD3OD, 400.13 MHz) δ 

4.40 (3H, s, CH3); 8.23 (2H, d, J = 6.4 Hz, Ar-H3); 8.92 (2H, d, J = 6.8 Hz, Ar-H2). 

Method C - 4-Chloropyridine hydrochloride (1 molar eq.) and distilled TEA (6 molar eq.) were 

added to dry THF (30 mL/mmol). The mixture was left stirring at room temperature for 15 hours 

and methyl iodide (8 molar eq.) was added afterwards. The solution was stirred for 3 hours and the 

precipitate was filtered. Only methylated and protonated TEA was recovered.  

Method D - 4-Chloropyridine hydrochloride (1 molar eq. of neutral 4-chloropyridine) was 

neutralized in aqueous solution with Na2CO3 until pH 10. The neutral 4-chloropyridine was 

extracted with dichloromethane (3×10 mL) and the solvent evaporated under reduced pressure. The 

residue was dissolved in dry THF (1 mL) and methyl iodide (5 molar eq.) was added to the organic 

solution, which was stirred for 5 days. The precipitate was filtered off as a dark green solid, 

corresponding to 2.62 (59%). 

 

3-Amino-4-chloro-N-methylpyridinium iodide, 2.64 

3-Amino-4-chloropyridine (1 molar eq.) was dissolved in dry THF (5 mL/mmol) and methyl 

iodide (1.5 molar eq.) was added. The solution was left stirring at room temperature for 14 hours. 

The reaction was then recharged with methyl iodide (1 molar eq.) and left under agitation for 10.5 

hours. The precipitate was filtered off and a light brown solid was recovered; 68%; mp 137-139 ºC; 
1H-NMR (DMSO-d6, 400.13 MHz) δ 4.18 (3H, s, CH3); 6.94 (2H, s, NH2); 8.02 (1H, d, J = 6.4 Hz, 

Ar-H5); 8.09 (1H, d, J = 6.4 Hz, Ar-H6); 8.14 (1H, s, Ar-H2). 

 

3-Amino-4-chloro-N-ethylpyridinium iodide, 2.67 

3-Amino-4-chloropyridine (1 molar eq.) was dissolved in THF (16 mL/mmol) and ethyl iodide 

(1 molar eq.) was added. The mixture was heated under reflux temperature for 2 hours. The 

precipitate was filtered and a dark brown solid was recovered; 44%; mp > 320 ºC; 1H-NMR 

(CD3OD, 400.13 MHz) δ 1.63 (3H, t, J = 7.6 Hz, CH3); 4.50 (2H, q., CH2); 7.79 (1H, d, J = 6.0 Hz, 

Ar-H5); 7.91 (1H, d, J = 6.0 Hz, Ar-H6); 8.15 (1H, s, Ar-H2). 
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7.4.4 Mannich-base 4(1H)-pyridonimines 

 

2-(Diethylaminomethyl)-4-(1-methylpiridin-4(1H)-ylideneamino)phenol dihydro iodide, 2.1 

Method A - 2.49 (1.1 molar eq.) was added to 2.62 (1 molar eq.) and absolute ethanol (22 

mL/mmol). The mixture was heated under reflux temperature for 27 hours and followed by TLC, 

CH2Cl2 : MeOH : TEA (7.9:2:0.1). The solvent was evaporated under reduced pressure, and the 

crude product purified by column chromatography. No 2.1 was isolated. 

Method B - 2.51 (1 molar eq.) was suspended in dry THF (27 mL/mmol) and NaH oil 

dispersion 80% (1.3 molar eq.) was added. The mixture was stirred at room temperature for 1 hour 

and methyl iodide (1.8 molar eq.) was added. The suspension was recharged with methyl iodide 

(1.8 molar eq.) after 5 hours of reaction and then it was left stirring at room temperature for another 

20 hours. The precipitate was filtered off, and the filtrate was purified by flash chromatography 

CH2Cl2 : MeOH (4:1). A dark yellow gum was obtained; 59%; 1H-NMR (CD3OD, 400.13 MHz) δ  

1.34 (6H, t, J = 7.2 Hz, CH3); 3.12 (4H, q, J = 7.2 Hz, CH2); 4.01 (3H, s, CH3); 4.27 (2H, s, CH2); 

7.02 (1H, d, J = 8.8 Hz, Ar-H); 7.04 (2H, d, J = 7.2 Hz, Ar-H3); 7.26 (1H, d, J = 8.8 Hz, Ar-H); 

7.36 (1H, s, Ar-H); 8.16 (2H, d, J = 7.2 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 8.56 

(CH2CH3); 44.18 (CH2); 47.17 (CH2CH3); 52.48 (NCH3); 106.66 (CH); 116.53 (CH); 119.52 (Cq); 

121.50 (Cq); 126.90 (CH); 127.43 (CH); 128.38 (Cq); 143.50 (CH); 156.33 (Cq); IR (film): νmax 

3368; 1641; 1402; 1034 cm-1; FAB-MS m/z (abund.): 286.25 [M+H]+ (100); 285.24 [M]+ (10); 

213.16 (49); Anal. Calcd. (C17H23N3O • 2 HI • 1.6 CH2Cl2): C, 32.99; H, 4.20; N, 6.21%. Found: C, 

32.84; H, 4.15; N, 6.55%. 

 

2-(Diethylaminomethyl)-4-(3-amino-1-methylpyridin-4(1H)-ylideneamino) phenol, 2.5 

Method A - 2.49 (1.2 molar eq.) was added to 2.64 (1 molar eq.) and absolute ethanol (20 

mL/mmol). The mixture was heated under reflux temperature for 18 hours and followed by TLC, 

CH2Cl2 : MeOH : TEA (7.9:2:0.1). The solvent was evaporated under reduced pressure, and the 

crude product purified by column chromatography using the same eluent as in the TLC. 2.5 was not 

recovered. 

Method B - 2.53 (1 molar eq.) was added to dry THF (35 mL/mmol) and NaH oil dispersion 

80% (2 molar eq.). The mixture stirred at room temperature for 1 hour and methyl iodide (2 molar 

eq.) was added. The mixture stirred for an additional 3.5 hours. The precipitate was filtered off and 

the filtrate was purified by flash chromatography CH2Cl2 : MeOH (9:1). No product was recovered. 
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Method C - 2.53 (1 molar eq.) and NaH oil dispersion 80% (3 molar eq.) were suspended in dry 

DMF (6 mL/mmol). The suspension was stirred at room temperature for 2 hours. Methyl iodide (3.5 

molar eq.) was added and recharged (3 molar eq.) 30 minutes after the first addition. The mixture 

stirred at room temperature for 23 hours, the solvent was evaporated under reduced pressure, and 

the crude product purified by flash chromatography CH2Cl2 : MeOH (9.25:0.75). 2.5 was not 

isolated. 

 

2-(Diethylaminomethyl)-4-(1,3-dimethylpyridin-4(1H)-ylideneamino)phenol dihydroiodide, 

2.6 

Method C - 2.52 (1 molar eq.) was dissolved in anhydrous DMF (5 mL/mmol) and NaH oil 

dispersion 80% (1.5 molar eq.) added. The solution stirred at room temperature for 2 hour and then 

methyl iodide (1.6 molar eq.) added to the mixture. The mixture was stirred for 23 hours, the 

solvent evaporated under reduced pressure. The crude product was purified by flash 

chromatography, CH2Cl2 : MeOH (9:1). A yellow oil was obtained; 73%; 1H-NMR (CD3OD, 

400.13 MHz) δ 1.24 (6H, t, J = 7.2 Hz, CH3); 2.35 (3H, s, CH3); 2.87 (4H, q, J = 7.2 Hz, CH2); 3.99 

(3H, s, CH3); 4.02 (2H, s; CH2); 6.81 (1H, d, J = 7.2 Hz, Ar-H5); 6.91 (1H, d, J = 8.4 Hz, Ar-H); 

7.18 (2H, m, Ar-H); 8.04 (1H, d, J = 7.2 Hz, Ar-H6); 8.16 (1H, s, Ar-H2); 13C-NMR (CD3OD, 

100.61 MHz) δ 9.53 (CH2CH3); 13.61 (CH3); 44.02 (CH2); 46.58 (CH2CH3); 54.47 (NCH3); 106.07 

(CH); 116.66 (CH); 120.16 (Cq); 122.07 (Cq); 126.92 (CH); 127.31 (CH); 128.06 (Cq); 141.86 

(Cq); 142.32 (CH); 156.00 (CH); 157.54 (Cq); IR (film): νmax 3437; 2915; 1641; 1467; 1368; 1218 

cm-1; FAB+-MS m/z (abund.): 300.17 [M+H]+ (100); Anal. Calcd. (C18H25N3O • 2 HI): C, 38.94; H, 

4.90; N, 7.57%. Found: C, 39.29; H, 4.41; N, 7.59%. 

 

2-(Diethylaminomethyl)-4-(1,2-dimethylpyridin-4(1H)-ylideneamino)phenol, 2.4 

Method D - 2.55 (1 molar eq.) was dissolved in anhydrous DMF (5 mL/mmol) and NaH oil 

dispersion 80% (1.5 molar eq.) was added. The solution stirred at room temperature for 2 hours 

after which methyl iodide (1.5 molar eq.) was added. The reaction was recharged with methyl 

iodide (1.5 molar eq.) after stirring for 5 hours and then left reacting for another 18 hours. The 

solvent was evaporated and the crude product purified by flash chromatography, CH2Cl2 : MeOH 

(4:1). A green-brown very hygroscopic gum was obtained, corresponding to 2.4 (66%). Another 

green solid was obtained, and identified as 2.7 (25%). 
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2-(Diethylaminomethyl)-4-(1,2-dimethylpyridin-4(1H)-ylideneamino)phenol dihydroiodide, 2.4 
1H-NMR (CD3OD, 400.13 MHz) δ 1.37 (6H, t, J = 7.2 Hz, CH3); 2.59 (3H, s, CH3); 3.20 (4H, 

q, J = 7.2 Hz, CH2); 3.93 (3H, s, CH3); 4.34 (2H, s, CH2); 6.93 (2H, m, Ar-H3 and Ar-H5); 7.03 

(1H, d, J = 8.8 Hz, Ar-H); 7.28 (1H, dd, J = 2.6 and 8.8 Hz, Ar-H); 7.42 (1H, d, J = 2.6 Hz, Ar-H); 

8.16 (1H, d, J = 7.6 Hz, Ar-H6); 13C-NMR (CD3OD, 100.61 MHz) δ 8.10 (CH2CH3); 19.33 (CH3); 

41.91 (CH2); 51.39 (CH2CH3); 55.78 (NCH3); 105.44 (CH); 109.03 (CH); 116.45 (CH); 117.99 

(Cq); 127.70 (CH); 128.35 (CH); 128.89 (Cq); 128.92 (Cq); 155.58 (Cq); 156.53 (Cq); 164.81 

(CH); IR (film): νmax 3354; 1641; 1395; 1047 cm-1; FAB+-MS m/z (abund.): 300.24 [M+H]+ (100); 

Anal. Calcd. (C18H25N3O • 2 HI): C, 38.94; H, 4.90; N, 7.57%. Found: C, 39.29; H, 4.41; N, 7.59%. 

 

 (E)-N-[5-(1,2-Dimethylpyridin-4(1H)-ylideneamino]-2-hydroxybenzyl)-N-ethyl-N-methyl-

ethanaminium iodide hydroiodide, 2.7 

Mp 204-206 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 1.45 (6H, m, CH3); 2.59 (3H, s, CH3); 3.02 

(3H, s, CH3); 3.43 (2H, dq, J = 7.4 and 14.8 Hz, CH2); 3.52 (2H, dq, J = 7.4 and 14.8 Hz, CH2); 

3.92 (3H, s, CH3); 4.57 (2H, s, CH2); 6.94 (2H, m, Ar-H3 and Ar-H5); 7.10 (1H, d, J = 8.8 Hz, Ar-

H); 7.35 (1H, dd, J = 2.6 and 8.8 Hz, Ar-H); 7.48 (1H, d, J = 2.6 Hz, Ar-H); 8.15 (1H, d, J = 7.6 

Hz, Ar-H6); 13C-NMR (CD3OD, 100.61 MHz) δ 7.40 (CH2CH3); 19.31 (CH3); 42.00 (CH2CH3); 

46.23 (CH2); 55.97 (NCH3); 59.31 (CH3); 109.56 (CH); 113.38 (Cq); 115.29 (Cq); 116.49 (CH); 

117.18 (CH); 128.64 (CH); 128.90 (CH); 130.67 (Cq); 142.61 (CH); 156.52 (Cq); 156.58 (Cq); IR 

(film): νmax 3409; 2928; 1647; 1402; 1109 cm-1; FAB+-MS m/z (abund.): 442.23 [M+H]+ (5); 

176.10 (100); Anal. Calcd. (C19H28N3OI • HI): C, 40.09; H, 5.13; N, 7.38%. Found: C, 40.12; H, 

5.24; N, 7.37%. 

 

(E)-N-[5-(3-(N,N-Dimethylsulfamoyl)-1-methylpyridin-4(1H)-ylideneamino)-2-methoxy-

benzyl]-N-ethyl-N-methylethanaminium iodide hydroiodide, 2.8 

Several synthetic methods were used with variation of reagent equivalents between them. The 

general procedure was as follows: 2.56 was either suspended or dissolved in dry THF or anhydrous 

DMF, respectively, and NaH oil dispersion 80% was added. The mixture was left stirring at room 

temperature for approximately 1 hour and then methyl iodide poured into the solution. The solution 

stirred for 1 day at room temperature and the crude product purified by flash chromatography, 

unless stated on the text. 

Method A - 2.56 (1 molar eq.) was suspended in dry THF (60 mL/mmol) and NaH 80% (1.2 

molar eq.) added. The suspension stirred for 1 hour. Methyl iodide (2 molar eq.) was added and the 
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mixture stirred for 22 hours. The crude product was purified by flash chromatography, CH2Cl2 : 

MeOH (9:1). No pure product was isolated in any fraction. 

Method B - 2.56 (1 molar eq.) was suspended in dry THF (15 mL/mmol) and NaH 80% (3 

molar eq.) was added. The suspension was stirred for 1 hour. Methyl iodide (3 molar eq.) was added 

and after 5 hours the mixture was recharged with methyl iodide (3 molar eq.). The suspension was 

stirred for 20 hours and crude product was purified by flash chromatography, CH2Cl2 : MeOH (9:1). 

No pure product was isolated in any fraction. 

Method C -  2.56 (1 molar eq.) was dissolved in anhydrous DMF (5 mL/mmol) and NaH 80% 

(4 molar eq.) added. The solution was stirred for 1 hour. Methyl iodide (4 molar eq.) was added and 

the mixture stirred for 25,5 hours. The precipitate was filtered off, and the filtrate purified by flash 

chromatography, CH2Cl2 : MeOH (9.5:0.5) and (9:1), sequentially. Two products were isolated, 

corresponding to 2.70 and 2.8. The compound with Rf  0.40, on CH2Cl2 : MeOH (4:1) eluent, was 

isolated as an orange-brown oil (10%) and identified as 2.70. The compound with Rf  0.24 in the 

same eluent was isolated as a reddish solid upon crystallization from EtOH  (4%, mp 177-180 ºC),  

and identified as 2.8. 

 

4-((3-((Diethylamino)methyl)-4-methoxyphenyl)amino)-N,N-dimethylpyridine-3-sulfonamide, 2.70 
1H-NMR (CD3OD, 400.13 MHz) δ  1.31 (6H, t, J = 7.2 Hz, CH3); 2.87 (6H, s, SO2NMe2); 3.07 

(4H, q, CH2); 3.98 (3H, s, OCH3); 4.17 (2H, s, CH2); 6.83 (1H, d, J = 6.0 Hz, Ar-H5); 7.21 (1H, d, J 

= 8.4 Hz, Ar-H); 7.37-7.41 (2H, m, Ar-H); 8.20 (1H, d, J = 6.0 Hz, Ar-H6); 8.55 (1H, s, Ar-H2); 
13C-NMR (CD3OD, 100.61 MHz) δ 8.44; 36.27; 36.72; 50.67; 55.20; 108.35; 112.03; 115.00; 

123.73; 128.05; 129.27; 130.36; 150.34; 151.28; 152.13; 156.85. 

 

(E)-N-[5-(3-(N,N-Dimethylsulfamoyl)-1-methylpyridin-4(1H)-ylideneamino)-2-methoxy-benzyl]-N-

ethyl-N-methylethanaminium hydroiodide, 2.8 
1H-NMR (CD3OD, 400.13 MHz) δ 1.45 (6H, m, CH3); 3.00 (3H, s, CH3); 3.04 (6H, s, 

SO2NMe2); 3.40 (2H, dq, J = 7.2 and 14.2 Hz, CH2); 3.51 (2H, dq, J = 7.2 and 14.2 Hz, CH2); 4.02 

(3H, s, OCH3); 4.10 (3H, s, CH3); 4.59 (2H, s, CH2); 7.17 (1H, d, J = 7.2 Hz, Ar-H5); 7.36 (1H, d, J 

= 9.0 Hz, Ar-H); 7.58 (1H, dd, J = 9.0 and 2.4 Hz, Ar-H); 7.75 (1H, d, J = 2.4 Hz, Ar-H); 8.26 (1H, 

d, J = 7.2 Hz, Ar-H6); 8.83 (1H, s, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 7.51 (CH2CH3); 

37.34 (CH3); 45.38 (CH2CH3); 46.49 (CH2); 55.73 (SO2N(CH3)CH3); 56.20 (SO2N(CH3)CH3); 

58.94 (NCH3); 111.63 (CH); 113.51 (Cq); 117.46 (CH); 117.70 (Cq); 128.61 (CH); 130.84 (Cq); 

133.06 (CH); 146.15 (CH); 146.22 (CH); 154.01 (Cq); 159.18 (Cq); IR (film): νmax 3422; 2914; 
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1627; 1457; 1361; 1266; 1130; 1013 cm-1.; FAB+-MS m/z (abund.): 549.25 [M+H]+ (4); 176.10 

(100); Anal. Calcd. (C21H33N4O3SI • 1.2 HI): C, 35.93; H, 4.91; N, 7.98; S, 4.57. Found: C, 36.24; 

H, 4.60; N, 7.87; S, 4.71. 

Method D - 2.56 (1 molar eq.) was dissolved in anhydrous DMF (7 mL/mmol) and NaH 80% (6 

molar eq.) added. The solution was stirred for 1 hour. Methyl iodide (6 molar eq.) was added, and 

the mixture kept stirring for 23 hours. The crude product was purified by flash chromatography, 

CH2Cl2 : MeOH (9.5:0.5) and (9:1). 2.70 (4%) and 2.8 (6%, mp 214-215 ºC) were isolated. 

Method E - 2.56 (1 molar eq.) was dissolved in anhydrous DMF (7 mL/mmol) and NaH 80% 

(6.7 molar eq.) added. The solution was stirred for 2 hours. Methyl iodide (6.7 molar eq.) was added 

and the mixture stirred for another 24 hours. The precipitate was filtered off, and the filtrate purified 

by flash chromatography CH2Cl2 : MeOH (9.5:0.5) and (9:1). Only 2.8 was recovered (36%). 

Method F - 2.56 (1 molar eq.) was dissolved in anhydrous DMF (6 mL/mmol) and NaH 80% (3 

molar eq.) added. The solution was stirred for 1 hour. Methyl iodide (3 molar eq.) was added and 

the mixture stirred for another 23 hours. The crude product was purified by flash chromatography, 

CH2Cl2 : MeOH (9.5:0.5) and (9:1). Further purification was achieved from preparative layer 

chromatography on silicagel 60. Only a translucid oil was recovered pure, corresponding to 2.71 

(2%). 

 

4-((3-((Diethylamino)methyl)-4-hydroxyphenyl)amino)-N-methylpyridine-3-sulfonamide, 2.71 
1H-NMR (CD3OD, 400.13 MHz) δ 1.17 (6H, t, J = 7.2 Hz, CH3); 2.63 (3H, s, CH3); 2.71 (4H, 

q, J = 7.2 Hz, CH2); 3.87 (2H, s, CH2); 6.79 (1H, d, J = 6.0 Hz, Ar-H5); 6.83 (1H, d, J = 8.4 Hz, Ar-

H); 7.01 (1H, d, J = 2.4 Hz, Ar-H); 7.08 (1H, dd, J = 8.4 and 2.4 Hz, Ar-H); 8.14 (1H, d, J = 6.0 

Hz, Ar-H6); 8.58 (1H, s, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 10.06; 27.42; 46.18; 55.57; 

107.63; 116.57; 117.40; 123.45; 125.92; 126.17; 128.43; 149.74; 150.78; 151.61; 157.18. 

 

 

Procedure for the synthesis of 4-(4-methoxyaniline)-N-methylpyridinium iodide, 2.61 

2.60 (1 molar eq.) was added to anhydrous DMF (1 mL/mmol) and methyl iodide (2 molar eq.). 

The mixture stirred at room temperature for 8.5 days and a yellow solid was recrystallized from 

DMF; 15%; mp 228-230 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 3.86 (3H, s, OCH3); 3.98 (3H, s, 

CH3); 6.97 (2H, d, J = 7.0 Hz, Ar-H3); 7.07 (2H, d, J = 8.6 Hz, Ar-H); 7.26 (2H, d, J = 8.6 Hz, Ar-

H); 8.12 (2H, d, J = 7.0 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 44.02; 54.67; 98.93; 
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114.91; 125.60; 129.36; 156.54; 158.98; 163.46; FAB+-MS m/z (abund.): 216.10 [M]+ (16); 215.09 

[M-H]+ (100). 

 

 

7.4.5 Intermediates of structure-base designed 4(1H)-pyridonimines 

 

General procedure for phosphonium salts [214] 

Triphenylphosphine (1 molar eq.) and substituted benzylhalide (1 molar eq.) were dissolved in 

benzene (0.5 mL/mmol) and refluxed for 2-9 hours. After cooling, the white precipitate was filtered 

off and washed with benzene. If needed the solid was crystallized from chloroform-petroleum ether. 

 

(3-Nitrobenzyl)triphenylphosphonium bromide, 2.72 

White powder; 99%; mp > 300 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 5.74 (2H, d, J = 14.8 Hz, 

CH2); 7.43 (1H, t, J = 8.0 Hz, Ar-H); 7.53 (1H, br.s., Ar-H); 7.71 (6H, m, Ar-H); 7.84 (9H, m, Ar-

H); 8.10 (2H, m, Ar-H); 31P-NMR (CDCl3, 161.98 MHz) δ 23.85. 

 

Benzyltriphenylphosphonium chloride, 2.73 

White powder; 54%; mp > 270 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 5.49 (2H, d, J = 14.4 Hz, 

CH2); 7.12 (4H, m, Ar-H); 7.23 (1H, m, Ar-H); 7.64 (6H, m, Ar-H); 7.76 (9H, m, Ar-H); 31P-NMR 

(CDCl3, 161.98 MHz) δ 23.43. 

 

(4-Chlorobenzyl)triphenylphosphonium chloride, 2.74 

White powder; 55%; mp 295-297 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 5.67 (2H, d, J = 14.8 

Hz, CH2); 7.06 (2H, d, J = 8.4 Hz, Ar-H); 7.13 (2H, d, J = 8.4 Hz, Ar-H); 7.63 (6H, m, Ar-H); 7.77 

(9H, m, Ar-H); 31P-NMR (CDCl3, 161.98 MHz) δ 23.59. 

 

(4-Trifluoromethylbenzyl)triphenylphosphonium bromide, 2.75 

White powder; 96%; mp 247-249 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 5.72 (2H, d, J = 15.2 

Hz, CH2); 7.36 (4H, m, Ar-H); 7.65 (6H, m, Ar-H); 7.80 (9H, m, Ar-H); 31P-NMR (CDCl3, 161.98 

MHz) δ 23.90. 
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(4-Trifluoromethoxybenzyl)triphenylphosphonium bromide, 2.76 

White powder; 100%; mp 233-235 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 5.71 (2H, d, J = 14.4 

Hz, CH2); 6.97 (2H, d, J = 8.8 Hz, Ar-H); 7.26 (2H, d, J = 8.8 Hz, Ar-H); 7.64 (6H, m, Ar-H); 7.79 

(9H, m, Ar-H); 31P-NMR (CDCl3, 161.98 MHz) δ 23.82. 

 

(4-Methoxybenzyl)triphenylphosphonium bromide, 2.77 

White powder; 91%; mp 242-245 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 5.34 (2H, d, J = 13.6 

Hz, CH2); 6.70 (2H, d, J = 8.4 Hz, Ar-H); 7.04 (2H, d, J = 8.4 Hz, Ar-H); 7.66 (6H, m, Ar-H); 7.75 

(9H, m, Ar-H); 31P-NMR (CDCl3, 161.98 MHz) δ 22.37. 

 

(3,5-Dinitrobenzyl)triphenylphosphonium chloride, 2.78 

Dark brown solid; 58%; mp 254-257 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 5.31 (2H, d, J = 

15.2 Hz, CH2); 7.77-7.83 (12H, m, Ar-H); 7.96 (3H, t, J = 7.2 Hz, Ar-H); 8.24 (2H, s, Ar-H); 8.95 

(1H, s, Ar-H); 31P-NMR (CD3OD, 161.98 MHz) δ 23.81. 

 

(2,4-Dinitrobenzyl)triphenylphosphonium chloride, 2.79 

Dark brown gum; 60%; 1H-NMR (CD3OD, 400.13 MHz) δ 5.38 (2H, d, J = 15.0 Hz, CH2); 

7.76-7.78 (13H, m, Ar-H); 7.95 (3H, t, J = 7.2 Hz, Ar-H); 8.50 (1H, dd, J = 8.6 and 2.0 Hz, Ar-H); 

8.84 (1H, d, J = 2.0 Hz, Ar-H); 31P-NMR (CD3OD, 161.98 MHz) δ 24.13. 

 

(2-Nitrobenzyl)triphenylphosphonium chloride, 2.80 

Yellowish solid; 99%; mp 242-244 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 6.11 (2H, d, J = 14.8 

Hz, CH2); 7.50 (1H, tt, J = 7.6 and 2.0 Hz, Ar-H); 7.61-7.73 (13H, m, Ar-H); 7.79-7.83 (3H, m, Ar-

H); 7.95 (1H, d, J = 8.0 Hz, Ar-H); 8.11 (1H, dq, J = 7.2 and 1.2 Hz, Ar-H); 31P-NMR (CDCl3, 

161.98 MHz) δ 24.05. 

 

 

Procedure for the synthesis of methyl 2-formylbenzoate, 2.95 [329] 

2-Formylbenzoic acid (1 molar eq.) was dissolved in acetonitrile (2 mL/mmol). Methyl iodide 

(1 molar eq.) and DBU  (1 molar eq.) were added and the solution stirred in an ice bath for 2 hours, 

after which it was left reacting for 24 hours at room temperature. The solvent was evaporated under 

reduced pressure and the crude product dissolved in chloroform (5 mL/mmol). It was sequentially 

washed with Na2CO3 30% (3×15 mL) and HCl 10% (3×15 mL). The organic layer was dried over 
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Na2SO4 and the solvent evaporated under reduced pressure to afford a yellow oil; 68%; 1H-NMR 

(CDCl3, 60 MHz) δ 4.1 (3H, s, CH3); 7.7-8.4 (4H, m, Ar-H); 10.9 (1H, s, CHO). 

 

 

Procedure for the synthesis of diethylphenylsulfonomethyl phosphonate, 2.100 

Diethyl phenylthiomethyl phosphonate (1 molar eq.) was dissolved in acetic acid (1 mL/mmol). 

The solution was heated to 50 ºC and then hydrogen peroxide 30% (0.33 mL/mmol) was added 

dropwise. The resulting mixture was heated until 95 ºC and left reacting for 3 hours. After cooling 

down to room temperature, ice cold water (4 mL/mmol) was added, and the pH set to 8-9 with 

NaOH 10 N. The crude product was extracted with dichloromethane (5×10 mL). The organic layer 

was washed with sodium bisulfite (3×2 mL) and dried over Na2SO4. The solvent was evaporated 

under reduced pressure to afford a pale yellow oil; 85%; 1H-NMR (CDCl3, 400.13 MHz) δ 1.26 

(6H, t, J = 7.2 Hz, CH3); 3.76 (2H, d, J = 16.8 Hz, PCH2); 4.13 (4H, m, CH3CH2); 7.55 (2H, t, J = 

6.8 Hz, Ar-H); 7.65 (1H, t, J = 6.8 Hz, Ar-H); 7.97 (2H, d, J = 7.2 Hz, Ar-H); IR (film): νmax 3052; 

1613; 1525; 1348; 1307; 1143; 856; 808 cm-1. 

 

 

General procedure for nitrostilbenes and vinylsulfones 

Method A [214, 216] - To a stirred suspension of phosphonium salt (1 molar eq.) in dry benzene (5 

mL/mL) under nitrogen, n-BuLi (1.25 molar eq.) was added. After stirring for 1-2 hours at room 

temperature, distilled or crystallized aldehyde (1.0-1.2 molar eq.) was added. The reaction was run 

at room temperature (4-25 hours) or refluxed (3-7 hours).The resulting precipitate was filtered off 

and the filtrate concentrated under reduced pressure. The crude product was purified by column 

chromatography, hexane : diethyl ether (3:2). 

Method B and B’ [217] - To a stirred suspension of phosphonium salt (1 molar eq.) and distilled 

or crystallized aldehyde (1 molar eq.) in dichloromethane (3 mL/mL), an aqueous solution of NaOH 

0.1-0.5 N (1.2 molar eq.) was added. The biphasic mixture was stirred (1600 rpm) at room 

temperature for 0.5-2 hours, after which the organic phase was separated, concentrated under 

reduced pressure and the crude product purified by column chromatography, hexane : diethyl ether 

(3:2 or 4:1). 

Method C-F - The same proportions as method B were stirred under microwaves (100W) for 3 

minutes, at 30, 50, 70 or 90 ºC. Purifications were carried out as previously indicated. 
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1-Nitro-3-styrylbenzene, 2.81 

Yellowish gum corresponding to an E/Z mixture; 92%. Z isomer: 1H-NMR (CDCl3, 400.13 

MHz) δ 6.63 (1H, d, J = 12.0 Hz, CH); 6.81 (1H, d, J = 12.0 Hz, CH); 7.18-7.24 (2H, m, Ar-H); 

7.27-7.30 (3H, m, Ar-H); 7.39 (1H, t, J = 8.0 Hz, Ar-H); 7.56 (1H, br.d, J = 7.6 Hz, Ar-H); 8.06 

(1H, dd, J = 8.4 and 1.6 Hz, Ar-H); 8.12 (1H, dd, J = 1.6 Hz, Ar-H). E isomer: mp 92-95 ºC. 1H-

NMR (CDCl3, 400.13 MHz) δ 7.16 (1H, d, J = 16.4 Hz, CH); 7.27 (1H, d, J = 16.4 Hz, CH); 7.35 

(1H, d, J = 6.4 Hz, Ar-H); 7.42 (2H, t, J = 7.2 Hz, Ar-H); 7.55 (3H, m, Ar-H); 7.83 (1H, d, J = 8.0 

Hz, Ar-H); 8.13 (1H, d, J = 8.4 Hz, Ar-H); 8.13 (1H, br.s, Ar-H); IR (film): νmax 3093; 1532; 1348; 

846 cm-1. 

 

1-(4-Methoxystyryl)-3-nitrobenzene, 2.82 

Yellowish gum corresponding to an E/Z mixture; 98%. Z isomer: 1H-NMR (CDCl3, 400.13 

MHz) δ 3.79 (1H, s, OCH3); 6.51 (1H, d, J = 12.0 Hz, CH); 6.70 (1H, d, J = 12.0 Hz, CH); 6.79 

(2H, d, J = 8.4 Hz, Ar-H); 7.15 (2H, d, J = 8.4 Hz, Ar-H); 7.37 (1H, t, J = 8.0 Hz, Ar-H); 7.58 (1H, 

t, J = 8.0 Hz, Ar-H); 8.03 (1H, m, Ar-H); 8.13 (1H, s, Ar-H). E isomer: 1H-NMR (CDCl3, 400.13 

MHz) δ 3.85 (1H, s, OCH3); 6.93 (2H, d, J = 8.4 Hz, Ar-H); 6.98 (1H, d, J = 16.0 Hz, CH); 7.02 

(1H, m, Ar-H); 7.50 (3H, m, 2 Ar-H and CH); 7.76 (1H, d, J = 7.6 Hz, Ar-H); 8.03 (1H, m, Ar-H); 

8.32 (1H, s, Ar-H); IR (film): νmax 3416; 1603; 1528; 811 cm-1. 

 

1-(4-Chlorostyryl)-3-nitrobenzene, 2.83 

Yellowish gum corresponding to an E/Z mixture; 94%. Z isomer: 1H-NMR (CDCl3, 400.13 

MHz) δ 6.65 (1H, d, J = 12.0 Hz, CH); 6.73 (1H, d, J = 12.0 Hz, CH); 7.10-7.59 (6H, m, Ar-H); 

8.08 (1H, d, J = 8.8 Hz, Ar-H); 8.11 (1H, s, Ar-H). E isomer; mp 104-107ºC; 1H-NMR (CDCl3, 

400.13 MHz) δ 7.12 (1H, d, J = 16.0 Hz, CH); 7.27 (1H, d, J = 16.0 Hz, CH); 7.10-7.59 (5H, m, Ar-

H); 7.81 (1H, d, J = 7.6 Hz, Ar-H); 8.13 (1H, d, J = 8.8 Hz, Ar-H); 8.39 (1H, s, Ar-H); IR (film): 

νmax 3079; 1586; 1525; 1341; 808 cm-1. 

 

2,4-Dinitro-1-styrylbenzene, 2.84 

Yellow gum corresponding to an E/Z mixture; 34%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) 

δ 6.90 (1H, d, J = 12.0 Hz, CH); 6.99 (1H, d, J = 12.0 Hz, CH); 7.06-7.12 (2H, m, Ar-H); 7.21-7.27 

(3H, m, Ar-H); 7.38-7.51 (1H, m, Ar-H); 8.21 (1H, dd, J = 8.6 and 2.2 Hz, Ar-H); 8.96 (1H, d, J = 

2.2 Hz, Ar-H). E isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 7.32 (1H, d, J = 16.4 Hz, CH); 7.38-
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7.51 (3H, m, Ar-H); 7.61 (2H, d, J = 8.0 Hz, Ar-H); 7.66 (1H, d, J = 16.4 Hz, CH); 8.02 (1H, d, J = 

8.8 Hz, Ar-H); 8.46 (1H, dd, J = 8.8 and 2.2 Hz, Ar-H); 8.86 (1H, d, J = 2.2 Hz, Ar-H). 

 

1-Nitro-2-styrylbenzene, 2.85 

Yellow gum corresponding to an E/Z mixture; 95%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) 

δ 6.80 (1H, d, J = 12.0 Hz, CH); 6.93 (1H, d, J = 12.0 Hz, CH); 7.08 (2H, dd, J = 7.0 and 3.2 Hz, 

Ar-H); 7.30 (1H, d, J = 7.6 Hz, Ar-H); 7.38-7.48 (3H, m, Ar-H); 7.54-7.67 (2H, m, Ar-H); 8.07-

8.15 (1H, m, Ar-H). E isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 7.12 (1H, d, J = 16.4 Hz, CH); 

7.16-7.22 (3H, m, Ar-H); 7.26-7.34 (1H, m, Ar-H); 7.36 (1H, d, J = 7.2 Hz, Ar-H); 7.38-7.48 (2H, 

m, Ar-H); 7.63 (1H, d, J = 16.4 Hz, CH); 7.80 (1H, d, J = 8.0 Hz, Ar-H); 7.99 (1H, d, J = 8.2 Hz, 

Ar-H). IR (film): νmax 3065; 1606; 1525; 1341; 856; 881 cm-1. 

 

1-Nitro-4-styrylbenzene, 2.86 

Yellow gum corresponding to an E/Z mixture; 93%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) 

δ 6.64 (1H, d, J = 12.0 Hz, CH); 6.84 (1H, d, J = 12.0 Hz, CH); 7.23-7.72 (7H, m, Ar-H); 8.09 (2H, 

d, J = 8.4 Hz, Ar-H). E isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 7.17 (1H, d, J = 16.4 Hz, CH); 

7.38 (1H, m, CH); 7.23-7.72 (7H, m, Ar-H); 8.25 (2H, d, J = 8.4 Hz, Ar-H); IR (film): νmax 3067; 

1593; 1525; 1504; 1334; 829; 763 cm-1. 

 

3,5-Dinitro-1-styrylbenzene, 2.87 

Yellow amorphous solid corresponding to an E/Z mixture; 76%; mp 101-105 ºC. Z isomer: 1H-

NMR (CDCl3, 400.13 MHz) δ 6.67 (1H, d, J = 12.0 Hz, CH); 7.02 (1H, d, J = 12.0 Hz, CH) 7.18-

7.25 (2H, m, Ar-H); 7.30-7.37 (3H, m, Ar-H); 8.38 (2H, d, J = 1.8 Hz, Ar-H); 8.85 (1H, t, J = 1.8 

Hz, Ar-H). E isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 7.36-7.50 (5H, m, 2 CH and 3 Ar-H); 7.61 

(2H, d, J = 7.2 Hz, Ar-H); 8.68 (2H, d, J = 2.0 Hz, Ar-H); 8.91 (1H, t, J = 7.2 Hz, Ar-H). 

 

1-Fluoro-2-(3-nitrostyryl)benzene, 2.88 

Yellow gum corresponding to an E/Z mixture; 96%. Z isomer: 1H-NMR (CD3OD, 400.13 MHz) 

δ 6.75 (1H, d, J = 12.4 Hz, CH); 6.81 (1H, d, J = 12.4 Hz, CH); 7.00 (1H, t, J = 7.6 Hz, Ar-H); 7.08 

(1H, t, J = 9.2 Hz, Ar-H); 7.15 (1H, t, J = 7.6 Hz, Ar-H); 7.29 (1H, m, Ar-H); 7.39 (1H, m, Ar-H); 

7.53 (1H, d, J = 7.6 Hz, Ar-H); 8.06 (1H, d, J = 8.6 Hz, Ar-H); 8.09 (1H, s, Ar-H). E isomer 1H-

NMR (CDCl3, 400.13 MHz) δ 7.15-7.30 (4H, m, CH + 3 Ar-H); 7.40 (1H, d, J = 16.0 Hz, CH); 
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7.56 (1H, d, J = 8.2 Hz, Ar-H); 7.63 (1H, t, J = 7.6 Hz, Ar-H); 7.85 (1H, d, J = 7.6 Hz, Ar-H); 8.13 

(1H, d, J = 8.0 Hz, Ar-H); 8.39 (1H, s, Ar-H). 

 

1-Chloro-2-(3-nitrostyryl)benzene, 2.89 

Yellow solid corresponding to an E/Z mixture; 100%; mp 44-50 ºC. Z isomer 1H-NMR (CDCl3, 

400.13 MHz) δ 6.76 (1H, d, J = 12.4 Hz, CH); 6.89 (1H, d, J = 12.4 Hz, CH); 7.08-7.16 (2H, m, Ar-

H); 7.25 (1H, m, Ar-H); 7.36 (1H, t, J = 8.0 Hz, Ar-H); 7.44-7.47 (2H, m, Ar-H); 8.00-8.10 (2H, m, 

Ar-H). E isomer 1H-NMR (CDCl3, 400.13 MHz) δ 7.12 (1H, m, CH); 7.25 (1H, m, Ar-H); 7.36 

(1H, m, Ar-H); 7.45 (1H, m, Ar-H); 7.58 (1H, t, J = 8.0 Hz, Ar-H); 7.66 (1H, d, J = 16.4 Hz, CH); 

7.72 (1H, d, J = 7.6 Hz, Ar-H); 7.89 (1H, d, J = 8.0 Hz, Ar-H); 8.16 (1H, d, J = 8.0 Hz, Ar-H); 8.43 

(1H, s, Ar-H). 

 

1-Fluoro-2-(2-nitrostyryl)benzene, 2.90 

Yellow gum corresponding to an E/Z mixture; 90%. Z isomer: 1H-NMR (CD3OD, 400.13 MHz) 

δ 6.83 (1H, d, J = 12.0 Hz, CH); 6.79-6.96 (2H, m, Ar-H); 7.02 (1H, t, J = 9.2 Hz, Ar-H); 7.05 (1H, 

d, J = 12.0 Hz, CH); 7.15-7.26 (2H, m, Ar-H); 7.36-7.50 (2H, m, Ar-H); 8.13 (1H, m, Ar-H). E 

isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 704 (1H, m, Ar-H); 7.21 (1H, m, Ar-H); 7.27-7.35 (2H, 

m, CH + Ar-H); 7.44 (1H, m, Ar-H); 7.64 (1H, d, J = 16.4 Hz, CH); 7.62-7.72 (2H, m, Ar-H); 7.82 

(1H, d, J = 7.6 Hz, Ar-H); 8.01 (1H, d, J = 8.0 Hz, Ar-H). 

 

Methyl 2-(2-nitrostyryl)benzoate, 2.91 

Yellowish oil corresponding to an E/Z mixture; 47%. The ratio was obtained from the OCH3 

peaks, but the aromatic protons could not be attributed with 1D and 2D NMR. 

 

1-Fluoro-2-(4-nitrostyryl)benzene, 2.92 

Yellow oil corresponding to an E/Z mixture; 77%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 

6.67 (1H, d, J = 12.0 Hz, CH); 6.84 (1H, d, J = 12.0 Hz, CH); 7.00 (1H, t, J = 7.6 Hz, Ar-H); 7.04-

7.32 (3H, m, Ar-H); 7.38 (2H, d, J = 8.6 Hz, Ar-H); 8.10 (2H, d, J = 8.6 Hz, Ar-H). E isomer: 1H-

NMR (CDCl3, 400.13 MHz) δ 7.04-7.32 (5H, m, CH + 4 Ar-H); 7.45 (1H, d, J = 16.4 Hz, CH); 

8.68 (2H, d, J = 8.6 Hz, Ar-H); 8.25 (2H, d, J = 8.6 Hz, Ar-H). 
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1-Chloro-2-(4-nitrostyryl)benzene, 2.93 

Yellow oil corresponding to an E/Z mixture; 96%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 

6.67 (1H, d, J = 12.0 Hz, CH); 6.92 (1H, d, J = 12.0 Hz, CH); 7.05-7.13 (2H, m, Ar-H); 7.21-7.37 

(3H, m, Ar-H); 7.46 (1H, d, J = 8.2 Hz, Ar-H); 8.07 (2H, d, J = 8.6 Hz, Ar-H). E isomer: 1H-NMR 

(CDCl3, 400.13 MHz) δ 7.15 (1H, d, J = 16.4 Hz, CH); 7.21-7.37 (2H, m, CH + Ar-H); 7.45 (1H, d, 

J = 8.0 Hz, Ar-H); 7.66-7.76 (4H, m, Ar-H); 8.26 (2H, d, J = 8.6 Hz, Ar-H). 

 

1-Nitro-3-(4-nitrostyryl)benzene, 2.94 

Yellow solid corresponding to the Z isomer only; 61%, mp 71-72 ºC; 1H-NMR (CDCl3, 400.13 

MHz) δ 6.84 (2H, br.d, J = 13.4 Hz, 2 CH); 7.37 (2H, dd, J = 8.8 and 2.4 Hz, Ar-H); 7.44 (1H, td, J 

= 7.6 and 2.8 Hz, Ar-H); 7.50 (1H, m, Ar-H); 8.12 (4H, m, Ar-H); IR (film): νmax 3217; 1580; 1511; 

1402; 1341 cm-1. 

 

1-Nitro-3-(3-phenylprop-1-enyl)benzene, 2.95 

Yellow oil corresponding to an E/Z mixture; 55%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 

3.69 (2H, d, J = 7.4 Hz, CH2); 6.07 (1H, dt, J = 11.4 and 7.6 Hz, CH); 6.64 (1H, d, J = 11.4 Hz, 

CH); 7.23-7.67 (7H, m, 7 Ar-H); 8.14 (1H, d, J = 8.0 Hz, Ar-H); 8.21 (1H, s, Ar-H). E isomer: 1H-

NMR (CDCl3, 400.13 MHz) δ 3.62 (2H, d, J = 5.5 Hz, CH2); 6.52 (1H, m, CH); 6.64 (1H, d, J = 

11.4 Hz, CH); 7.23-7.67 (7H, m, Ar-H); 8.07 (1H, d, J = 8.0 Hz, Ar-H); 8.21 (1H, s, Ar-H); IR 

(film): νmax 3065; 1600; 1531; 1348; 805; 729 cm-1. 

 

3-Nitrophenylvinylsulfone, 2.99  

White amorphous solid corresponding to an E/Z mixture; 84%. E isomer, white needles, mp 

129-131 ºC: 1H-NMR (CDCl3, 400.13 MHz) δ 7.04 (1H, d, J = 15.4 Hz, CH); 7.59-7.71 (4H, m, 

Ar-H); 7.76 (1H, d, J = 15.4 Hz, CH); 7.82 (1H, d, J = 7.6 Hz, Ar-H); 7.99 (2H, d, J = 7.2 Hz, Ar-

H); 8.29 (1H, d, J = 8.0 Hz, Ar-H); 8.37 (1H, br.s, Ar-H); IR (film): νmax 3093; 1620; 1532; 1443; 

1348; 1313; 1143; 856; 805 cm-1. 

 

1-Nitro-3-(4-(trifluromethyl)styryl)benzene, 2.101 

Greenish gum corresponding to an E/Z mixture; 98%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) 

δ 6.76 (1H, d, J = 12.4 Hz, CH); 6.83 (1H, d, J = 12.4 Hz, CH); 7.34 (2H, d, J = 8.0 Hz, Ar-H); 7.42 

(1H, t, J = 8.4 Hz, Ar-H); 7.54 (2H, t, J = 8.0 Hz, Ar-H); 7.65 (1H, m, Ar-H); 8.05-8.13 (2H, m, Ar-

H). E isomer: 1H-NMR (CDCl3, 400.13 MHz) δ 6.97-7.05 (2H, m, CH and Ar-H); 7.27 (2H, m, CH 
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and Ar-H); 7.54 (2H, t, J = 8.0 Hz, Ar-H); 7.59 (1H, d, J = 8.0 Hz, Ar-H); 7.86 (1H, d, J = 8.0 Hz, 

Ar-H); 8.16 (1H, d, J = 8.0 Hz, Ar-H); 8.42 (1H, s, Ar-H); IR (film): νmax 3079; 1620; 1531; 1327; 

1123; 821 cm-1. 

 

1-Nitro-3-(4-(trifluromethyl)styryl)benzene, 2.102 

Yellow gum corresponding to an E/Z mixture; 100%. Z isomer: 1H-NMR (CDCl3, 400.13 MHz) 

δ 6.68 (1H, d, J = 12.2 Hz, CH); 6.77 (1H, d, J = 12.2 Hz, CH); 7.13 (2H, d, J = 7.6, Ar-H); 7.20-

7.29 (3H, m, Ar-H); 7.41 (1H, t, J = 8.0 Hz, Ar-H); 8.04-8.15 (2H, m, Ar-H). E isomer: 1H-NMR 

(CDCl3, 400.13 MHz) δ 6.96-7.04 (2H, m, Ar-H and CH); 7.13 (2H, d, J = 7.6, Ar-H and CH); 

7.50-7.61 (3H, m, Ar-H); 7.82 (1H, t, J = 7.6 Hz, Ar-H); 8.11-8.15 (1H, m, Ar-H); 8.37 (1H, s, Ar-

H); IR (film): νmax 3079; 1531; 1347; 805 cm-1. 

 

 

General procedure for the reduction of nitrostilbenes [223] 

Nitrostilbenes were dissolved in the minimum possible amount of dichloromethane (typically 1 

mL). Neat TES (3-5 molar eq.) was added dropwise, from a pressure-equalizing dropping funnel, to 

the stirred solution of nitrostilbene (1 molar eq.), Pd-C 10% (15% by weight) and MeOH (5 molar 

eq.). When the reaction was complete (TLC), the mixture was filtered off and the solvent was 

removed under reduced pressure. Reactions were typically complete within 30 minutes. The product 

was purified through flash chromatography, hexane : diethyl ether (3:2 or 4:1). 

 

3-(2-Phenylethyl)aniline, 2.103 

White needles; 95%; mp 46-47 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.84-2.96 (4H, m, 

CH2CH2); 3.60 (2H, br.s, NH2); 6.58 (2H, m, Ar-H); 6.64 (1H, d, J = 7.6 Hz, Ar-H); 6.87 (2H, d, J 

= 8.4 Hz, Ar-H); 7.10 (1H, d, J = 7.6 Hz, Ar-H); 7.14 (2H, d, J = 8.4 Hz, Ar-H); 13C-NMR (CDCl3, 

100.61 MHz) δ 37.85; 37.99; 112.99; 115.42; 119.01; 125.91; 128.36; 128.46; 129.31; 141.98; 

143.16; 146.13; IR (film): νmax 3423; 3340; 1613; 1450; 1293; 1170; 1068 cm-1. 

 

3-(2-(4-Methoxyphenyl)ethyl)aniline, 2.104 

White needles; 99%; mp 70-71 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.80-2.90 (4H, m, 

CH2CH2); 3.64 (2H, br.s, NH2); 3.83 (3H, s, CH3); 6.56-6.59 (2H, m, Ar-H); 6.66 (1H, d, J = 7.6 

Hz, Ar-H); 6.87 (2H, d, J = 8.0 Hz, Ar-H); 7.09 (1H, d, J = 7.6 Hz, Ar-H); 7.14 (2H, d, J = 8.0 Hz, 
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Ar-H); 13C-NMR (CDCl3, 100.61 MHz) δ 36.92; 38.26; 55.28; 112.81; 113.74; 115.32; 118.85; 

129.26; 129.34; 134.11; 143.20; 146.39; 157.80. 

 

3-(2-(4-Chlorophenyl)ethyl)aniline, 2.105 

The product was not isolated through the general procedure. 

Method B - Under the same conditions as the general procedure, except it was carried out at -10 

ºC. The product was formed, but a 1:1 mixture of 2.105 and 2.103 was isolated. 

Method C - Under the same conditions as the general procedure, except it was carried out at -65 

ºC. White gum; 78%; 1H-NMR (CD3OD, 400.13 MHz) δ 2.75-2.78 (2H, m, CH2); 2.83-2.87 (2H, 

m, CH2); 6.52 (1H, d, J = 7.6 Hz, Ar-H); 6.56-6.58 (2H, m, Ar-H); 7.00 (1H, t, J = 8.0 Hz, Ar-H); 

7.12 (2H, d, J = 8.4 Hz, Ar-H); 7.22 (2H, d, J = 8.4 Hz, Ar-H). 

 

2-(2-Phenylethyl)aniline, 2.106 

Colourless oil; 94%: 1H-NMR (CD3OD, 400.13 MHz) δ 2.76-2.90 (4H, m, CH2CH2); 6.66 (1H, 

td, J = 7.6 and 1.2 Hz, Ar-H); 6.74 (1H, dd, J = 7.6 and 0.8 Hz, Ar-H); 6.93-7.00 (2H, m, Ar-H); 

7.14-7.20 (5H, m, Ar-H). 

 

4-(2-Phenylethyl)aniline, 2.107 

Orange solid; 87%; mp 35-37 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 2.75-2.86 (4H, m, 

CH2CH2); 6.67 (2H, d, J = 8.4 Hz, Ar-H); 6.92 (2H, d, J = 8.4 Hz, Ar-H); 7.12-7.16 (3H, m, Ar-H); 

7.23 (2H, t, J = 7.2 Hz, Ar-H). 

 

3-(3-Phenylpropyl)aniline, 2.108 

Yellow oil; 95%; 1H-NMR (CDCl3, 400.13 MHz) δ 2.04-2.12 (2H, m, CH2); 2.70 (2H, t, J = 8.0 

Hz, CH2); 2.79 (2H, t, J = 8.0 Hz, CH2); 6.60-6.64 (3H, m, Ar-H); 6.72-6.75 (1H, m, Ar-H); 7.06-

7.16 (1H, m, Ar-H); 7.20-7.26 (2H, m, Ar-H); 7.32 (2H, t, J = 6.4 Hz, Ar-H). 

 

3-(2-(4-Trifluoromethylphenyl)ethyl)aniline, 2.109 

White needles; 100%; mp 66-68 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 2.84 (2H, t, J = 8.0 Hz, 

CH2); 2.99 (2H, t, J = 7.6 Hz, CH2); 3.83 (3H, s, CH3); 6.54-6.60 (3H, m, Ar-H); 7.01 (1H, t, J = 

7.6 Hz, Ar-H); 7.35 (2H, d, J = 8.0 Hz, Ar-H); 7.54 (2H, d, J = 8.0 Hz, Ar-H).  

 

 



Experimental Section 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

173 

3-[2-(4-Trifluoromethoxylphenyl)ethyl]aniline, 2.110 

Yellow oil; 98%; 1H-NMR (CD3OD, 400.13 MHz) δ 2.75-2.90 (4H, m, CH2CH2); 3.83 (3H, s, 

CH3); 6.53 (1H, d, J = 7.6 Hz, Ar-H); 6.56-6.59 (2H, m, Ar-H); 7.01 (1H, t, J = 7.2 Hz, Ar-H); 7.15 

(2H, d, J = 8.0 Hz, Ar-H); 7.20 (2H, d, J = 8.0 Hz, Ar-H); 13C-NMR (CD3OD, 100.61 MHz) δ 

36.76; 37.53; 113.18; 115.52; 118.36; 120.44; 125.64; 128.69; 129.66; 137.39; 141.11; 142.16; 

147.10. 

 

 

General procedure for pyridin-4-amines 

Corresponding anilines (2 molar eq.) and 4-chloropyridines (1 molar eq.) were dissolved in 

ethanol absolute (3.5 mL/mmol). The mixture was heated at reflux temperature for 20-24 hours, 

after which the solvent was evaporated and the crude product purified by flash chromatography. 

 

3-Chloro-N-(3-(2-phenylethyl)phenyl)pyridin-4-amine, 2.111 

Flash chromatography with hexane : ethyl ether (3:2). Yellow oil; 20%; 1H-NMR (CDCl3, 

400.13 MHz) δ 2.98 (4H, br.s, CH2CH2); 6.52 (1H, br.s, NH); 6.78 (1H, d, J = 5.6 Hz, Ar-H5); 7.00 

(1H, br.s, Ar-H); 7.08 (2H, t, J = 7.2 Hz, Ar-H); 7.19-7.37 (6H, m, Ar-H); 8.11 (1H, d, J = 5.6 Hz, 

Ar-H6); 8.38 (1H, s, Ar-H2); 13C-NMR (CDCl3, 100.61 MHz) δ 37.68; 37.73; 107.35; 120.75; 

123.39; 125.66; 126.04; 126.08; 128.44; 128.56; 128.69; 138.19; 141.19; 143.52; 147.07; 148.24; 

148.73. 

 

3-Chloro-N-3-(2-(4-methoxyphenyl)ethyl)phenylpyridin-4-amine, 2.112 

Flash chromatography with CH2Cl2 : hexane (9:1). Brown oil; 80%; 1H-NMR (CDCl3, 400.13 

MHz) δ 2.92 (4H, br.s, CH2CH2); 3.80 (3H, s, OCH3); 6.53 (1H, br.s, NH); 6.77 (1H, d, J = 5.6 Hz, 

Ar-H5); 6.85 (2H, d, J = 6.8 Hz, Ar-H); 6.98 (1H, br.s, Ar-H); 7.04-7.09 (4H, m, Ar-H); 7.34 (1H, t, 

J = 7.6 Hz, Ar-H); 8.11 (1H, d, J = 5.6 Hz, Ar-H6); 8.37 (1H, s, Ar-H2); 13C-NMR (CDCl3, 100.61 

MHz) δ 36.84; 37.94; 55.25; 107.41; 113.79; 117.45; 120.67; 123.40; 125.61; 129.47; 129.64; 

133.24; 138.24; 143.57; 146.95; 148.41; 148.95; 157.93. 

 

 

General procedure for pyridinium triflates [225] 

Corresponding 4-chloropyridines (1 molar eq.) were dissolved or suspended in dry toluene (0.5 

mL/mmol). Ethyl or methyl trifluoromethanesulfonate (1-5 molar eq.) was added and the mixture 
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left reacting at room temperature for 24 hours. The precipitate was filtered off and washed with 

diethyl ether to afford pure triflate salts. 

 

 

3,4-Dichloro-N-methylpyridinium triflate, 2.113 

Yellow amorphous gum; 95%; 1H-NMR (CD3OD, 400.13 MHz) δ 4.40 (3H, s, CH3); 8.36 (1H, 

d, J = 6.4 Hz, Ar-H5); 8.87 (1H, d, J = 6.8 Hz, Ar-H6); 9.39 (1H, s, Ar-H2). 

 

3,4-Dichloro-N-ethylpyridinium triflate, 2.115 

Yellow gum; 100%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.68 (3H, t, J = 7.2 Hz, CH3); 4.40 (2H, 

q, J = 7.2 Hz, CH2); 8.38 (1H, d, J = 6.8 Hz, Ar-H5); 8.97 (1H, d, J = 6.8 Hz, Ar-H6); 9.46 (1H, s, 

Ar-H2). 

 

3,4,5-Trichloro-N-ethylpyridinium triflate, 2.116 

White solid; 97%, mp 241-245 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 1.69 (3H, t, J = 7.2 Hz, 

CH3); 4.67 (2H, q, J = 7.2 Hz, CH2); 9.49 (1H, s, Ar-H2). 

 

3-Amino-4-chloro-N-ethylpyridinium triflate, 2.118 

Brown solid; 95%; mp 56-58 ºC; 1H-NMR (DMSO-d6, 400.13 MHz) δ 1.48 (3H, t, J = 7.2 Hz, 

CH3); 4.46 (2H, q, J = 7.2 Hz, CH2); 6.92 (2H, br.s, NH2); 8.04 (1H, d, J = 6.4 Hz, Ar-H5); 8.20 

(1H, d, J = 6.4 Hz, Ar-H6); 8.25 (1H, s, Ar-H2). 

 

 

4(1H)-Pyridones 

 

3-Nitro-4(1H)-pyridone, 2.110 

4-Chloro-3-nitropyridine hydrochloride (1 molar eq.) was dissolved in NaOH (4 molar eq.). The 

solution stirred at room temperature for 2 hours and then heated at reflux temperature for another 4 

hours. The solvent was evaporated and the sodium chloride crystallized from methanol and 

dichloromethane. The filtrate was evaporated to yield a yellow solid; 100%; mp > 300 ºC; 1H-NMR 

(CD3OD, 400.13 MHz) δ 6.59 (1H, d, J = 6.4 Hz, Ar-H5); 7.87 (1H, d, J = 6.4 Hz, Ar-H6); 8.73 

(1H, s, Ar-H2). 
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4(1H)-Pyridone, 2.121 

4(1H)-Pyridone was synthesized according to a procedure described in the literature [226]. A 

mixture of 4-methoxypyridine (1 molar eq.) and trimethylsilyl iodide (1.1 molar eq.) was diluted in 

acetonitrile (11 mL/mmol). The solution was heated at reflux for 22 hours under nitrogen 

atmosphere to remove methyl iodide generated. The reaction was quenched by adding MeOH (15 

mL), and the solvent evaporated under reduced pressure. The crude product was purified by flash 

chromatography, CH2Cl2 : MeOH (9:1). Brown amorphous solid; 100%; 1H-NMR (CD3OD, 400.13 

MHz) δ 6.90 (2H, d, J = 6.8 Hz, Ar-H3); 8.20 (2H, d, J = 6.8 Hz, Ar-H2). 

 

3-Bromo-4(1H)-pyridone, 2.122 

3-Bromo-4(1H)-pyridone was synthesized adapting the procedure described in the literature [19]. 

Compound 2.121 (1 molar eq.) was dissolved in dichloromethane (7.6 mL/mmol) and MeOH (2 

mL/mmol). NBS (1 molar eq.) was added slowly to the stirring solution and kept at room 

temperature for 6 hours. The precipitate was filtered off and recrystallized from water to afford a 

white solid; 19%; mp > 300 ºC; 1H-NMR (DMSO-d6, 400.13 MHz) δ 8.30-8.39 (3H, m, Ar-H); 

12.24 (1H, s, NH). 

 

 

7.4.6 Structure-base designed 4(1H)-pyridonimines 

Method A - Identical to the Mannich-base series of compounds. 4-Pyridinamine (1 molar eq.) 

was dissolved in anhydrous DMF (6.5 mL/mmol) and NaH 80% oil dispersion was added (2 molar 

eq.) The solution was kept stirring at room temperature for 1 hour and then alkyl iodide (2 molar 

eq.) was added. The mixture was left reacting at room temperature for 24 hours. The desired 

product was not isolated. 

Method B - Pyridinium triflate (1 molar eq.) and the corresponding aniline (1.1 molar eq.) were 

dissolved in ethanol absolute (3.5 mL/mmol). TEA (1 molar eq.) was added to the solution that was 

kept under reflux for 20-24 hours. The solvent was evaporated under reduced pressure and the crude 

product was purified by flash chromatography, CH2Cl2 : MeOH (9.5:0.5). 

 

3-Chloro-N-ethyl-N-(3-(4-methyoxyphenethyl)phenyl)pyridine-4-amine, 2.123 

Method A- Yellowish oil; 38%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.17 (3H, t, J = 7.0 Hz, 

CH2CH3); 2.80-2.86 (4H, m, CH2CH2); 3.75 (3H, s, OCH3); 3.83 (2H, q, J = 7.0 Hz, NCH2); 6.63 

(1H, s, Ar-H); 6.73-6.83 (3H, m, Ar-H); 6.91 (1H, d, J = 7.4 Hz, Ar-H); 7.00 (2H, d, J = 8.2 Hz, Ar-
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H); 7.10 (1H, d, J = 4.4 Hz, Ar-H5); 7.20 (1H, t, J = 7.8 Hz, Ar-H); 8.22 (1H, J = 4.4 Hz, Ar-H6); 

8.27 (1H, s, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 11.76; 36.52; 37.57; 44.42; 54.20; 113.23; 

117.26; 120.04; 123.16; 123.90; 124.15; 128.79; 129.20; 133.21; 142.97; 145.57; 147.50; 150.10; 

152.39; 157.93. 

 

(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-3-(4-methoxyphenethyl)aniline 

trifluoromethanesulfonate, 2.124  

Method B - Yellowish oil; 57%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.55 (3H, t, J = 7.2, CH3); 

2.89-2.97 (4H, m, CH2CH2); 3.77 (3H, s, OCH3); 4.30 (2H, q, J = 7.2 Hz, NCH2); 6.70 (1H, d, J = 

7.2 Hz, Ar-H5); 6.82 (2H, d, J = 8.4 Hz, Ar-H); 7.05-7.06 (3H, m, J = 8.4 Hz; Ar-H); 7.16 (1H, d, J 

= 7.6 Hz, Ar-H); 7.29 (1H, d, J = 7.6 Hz, Ar-H); 7.46 (1H, t, J = 7.6 Hz, Ar-H); 8.10 (1H, dd, J = 

7.2 and 2.0 Hz, Ar-H6); 8.71 (1H, d, J = 2.0 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 14.87 

(CH2CH3); 36.37 (CH2CH2); 37.31 (CH2CH2); 53.93 (OCH3); 54.32 (NCH2); 107.50 (CH); 113.43 

(CH); 117.26 (Cq); 122.78 (Cq); 125.62 (CH); 128.26 (CH); 129.30 (CH); 129.78 (CH); 133.11 

(Cq); 135.97 (Cq); 141.42 (CH); 141.48 (CH); 144.14 (CH); 153.27 (Cq); 157.96 (Cq); IR (film): 

νmax 1641; 1566; 1504; 1272; 1170; 1027 cm-1; ESI-MS m/z (abund.): 367.18 [M+H]+ (100); Anal. 

calcd. (C22H23ClN2O • CF3SO3H): C, 53.44; H, 4.68; N, 5.42; S, 6.20%. Found: C, 52.62; H, 4.54; 

N, 5.27; S, 5.81%. 

 

(E)-N-(3-Chloro-1-methylpyridin-4(1H)-ylidene)-3-(4-methoxyphenethyl)aniline 

trifluoromethanesulfonate, 2.125 

Method B - Yellowish oil; 87%; 1H-NMR (CD3OD, 400.13 MHz) δ 2.90-2.99 (4H, m, 

CH2CH2); 3.77 (3H, s, OCH3); 4.03 (3H, s, NCH3); 6.69 (1H, d, J = 7.2 Hz, Ar-H5); 6.82 (2H, d, J 

= 8.4 Hz, Ar-H); 7.05-7.07 (3H, m, J = 8.4 Hz, 2 Ar-H and Ar-H); 7.15 (1H, d, J = 7.6 Hz, Ar-H); 

7.28 (1H, d, J = 8.0 Hz, Ar-H); 7.45 (1H, dd, J = 7.6 and 8.0 Hz, Ar-H); 8.01 (1H, dd, J = 7.2 and 

1.6 Hz, Ar-H6); 8.62 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 36.35 

(CH2CH2); 37.30 (CH2CH2); 44.42 (OCH3); 54.29 (NCH3); 107.18 (CH); 113.41 (CH); 116.96 

(Cq); 122.76 (Cq); 125.60 (CH); 128.25 (CH); 129.29 (CH); 129.77 (CH); 133.08 (Cq); 135.96 

(Cq); 142.60 (CH); 143.69 (CH); 144.14 (CH); 153.09 (Cq); 157.96 (Cq); IR (film): νmax 1647; 

1245; 1150; 1027 cm-1; ESI-MS m/z (abund.): 353.14 [M+H]+ (100); Anal. calcd. (C21H21ClN2O • 

CF3SO3H): C, 52.54; H, 4.41; N, 5.57; S, 6.38%. Found: C, 52.45; H, 4.46; N, 5.54; S, 6.11%. 
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(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-3-phenethylaniline trifluoromethanesulfonate, 

2.126  

Method B - Yellowish oil; 82%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.55 (3H, t, J = 7.2 Hz, 

CH3); 2.97-3.04 (4H, m, CH2CH2); 4.30 (2H, q, J = 7.2 Hz, NCH2); 6.74 (1H, d, J = 7.2 Hz, Ar-

H5); 7.09 (1H, br.s, Ar-H); 7.15-7.32 (7H, m, Ar-H); 7.47 (1H, t, J = 7.6 Hz, Ar-H); 8.14 (1H, dd, J 

= 7.2 and 1.6 Hz, Ar-H6); 8.73 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 

14.94 (CH2CH3); 37.10 (CH2CH2); 37.21 (CH2CH2); 54.01 (CH2CH3); 107.46 (CH); 117.27 (Cq); 

122.82 (CH); 125.53 (CH); 125.64 (CH); 127.98 (CH); 128.25 (CH); 128.31 (CH); 129.79 (CH); 

140.41 (Cq); 141.05 (CH); 141.45 (CH); 144.10 (Cq); 153.33 (Cq); 159.25 (Cq); IR (film): νmax 

1641; 1559; 1484; 1259; 1156; 1027 cm-1; ESI-MS m/z (abund.): 337.19 [M+H]+ (100); Anal. 

calcd. (C21H21ClN2 • CF3SO3H): C, 54.27; H, 4.55; N, 5.75; S, 6.59%. Found: C, 54.38; H, 4.67; N, 

5.77; S, 6.29%. 

 

(E)-N-(3-Chloro-1-methylpyridin-4(1H)-ylidene)-3-phenethylaniline 

trifluoromethanesulfonate, 2.127 

Method B - Yellowish oil; 59%; 1H-NMR (CD3OD, 400.13 MHz) δ 2.96-3.05 (4H, m, 

CH2CH2); 4.03 (3H, s, NCH3); 6.70 (1H, d, J = 7.2 Hz, Ar-H5); 7.08 (1H, d, J = 1.6 Hz, Ar-H); 

7.15-7.44 (7H, m, Ar-H); 7.46 (1H, t, J = 7.6 Hz, Ar-H); 8.05 (1H, dd, J = 7.2 and 1.6 Hz, Ar-H6); 

8.63 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 37.10 (CH2CH2); 37.20 

(CH2CH2); 44.35 (NCH3); 107.13 (CH); 116.96 (Cq); 122.80 (CH); 125.51 (CH); 125.64 (CH); 

127.98 (CH); 128.24 (CH); 128.33 (CH); 129.79 (CH); 136.01 (Cq); 141.05 (Cq); 142.62 (CH); 

142.76 (CH); 144.07 (Cq); 153.09 (Cq); IR (film): νmax 1647; 1566; 1491; 1259; 1150; 1027 cm-1; 

ESI-MS m/z (abund.): 323.18 [M+H]+ (100); Anal. calcd. (C20H19ClN2 • CF3SO3H): C, 53.33; H, 

4.26; N, 5.92; S, 6.78%. Found: C, 53.88; H, 3.98; N, 5.92; S, 6.49%. 

 

(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-3-(4-chlorophenethyl)aniline 

trifluoromethanesulfonate, 2.128  

Method B - Yellow oil; 11%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.55 (3H, t, J = 7.2 Hz, CH3); 

2.95-3.10 (4H, m, CH2CH2); 4.30 (2H, q, J = 7.2 Hz, NCH2); 6.76 (1H, d, J = 7.2 Hz, Ar-H5); 7.08 

(1H, s, Ar-H); 7.09-7.16 (3H, m, Ar-H); 7.26 (2H, d, J = 7.2 Hz, Ar-H); 7.30 (1H, d, J = 7.6 Hz, Ar-

H); 7.47 (1H, t, J = 7.6 Hz, Ar-H); 8.16 (1H, d, J = 7.2 Hz, Ar-H6); 8.73 (1H, s, Ar-H2); 13C-NMR 

(CD3OD, 100.61 MHz) δ 14.90 (CH2CH3); 36.42 (CH2CH2); 36.81 (CH2CH2); 53.91 (NCH2); 

107.44 (CH); 117.26 (Cq); 123.02 (Cq); 125.70 (CH); 128.00 (CH); 128.33 (CH); 129.87 (CH); 
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129.99 (CH); 131.29 (CH); 136.09 (Cq); 139.89 (Cq); 141.46 (Cq); 141.53 (CH); 143.78 (CH); 

153.37 (Cq); IR (film): νmax 1644; 1561; 1485; 1261; 1191; 1025; 737 cm-1; ESI-MS m/z (abund.): 

370.0 [M]+ (100), 371.0 [M+H]+ (27), 371.0 [M+2]+ (69); Anal. calcd. (C21H20Cl2N2 • CF3SO3H): 

C, 50.68; H, 4.06; N, 5.37%. Found: C, 50.85; H, 4.35%; N, 5.64%. 

 

(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-3-(4-(trifluoromethyl)phenethyl)aniline 

trifluoromethanesulfonate, 2.129  

Method B - Colourless oil; 76%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.55 (3H, t, J = 7.2 Hz, 

CH3); 3.07 (4H, br.s, CH2CH2); 4.30 (2H, q, J = 7.2 Hz, NCH2); 6.88 (1H, d, J = 7.2 Hz, Ar-H5); 

7.15 (1H, br.s, Ar-H); 7.20 (1H, d, J = 7.6 Hz, Ar-H); 7.31 (1H, d, J = 7.6 Hz, Ar-H); 7.38 (2H, d, J 

= 8.0 Hz, Ar-H); 7.47 (1H, t, J = 7.6 Hz, Ar-H); 7.57 (2H, d, J = 8.0 Hz, Ar-H); 8.16 (1H, dd, J = 

7.2 and 1.6 Hz, Ar-H6); 8.74 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 14.88 

(CH2CH3); 36.61 (CH2CH2); 36.84 (CH2CH2); 53.92 (NCH2); 107.52 (CH); 117.29 (Cq); 123.10 

(Cq); 124.75 (CH); 124.79 (CH); 124.83 (CH); 125.63 (CH); 128.28 (CH); 128.97 (CH); 129.86 

(CH); 136.22 (Cq); 141.52 (CH); 141.55 (Cq); 143.67 (Cq); 145.84 (Cq); 153.38 (Cq); IR (film): 

νmax 1641; 1566; 1491; 1320; 1252; 1157; 1034 cm-1; ESI-MS m/z (abund.): 405.24 [M]+ (100); 

Anal. calcd. (C22H20ClF3N2 • CF3SO3H): C, 49.78; H, 3.81; N, 5.05; S, 5.78%. Found: C, 49.86; H, 

3.57; N, 4.94; S, 5.50%. 

 

(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-3-(4-(trifluoromethoxy)phenethyl)-aniline 

trifluoromethanesulfonate, 2.130 

Method B - Colourless oil; 76%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.55 (3H, t, J = 7.2 Hz, 

CH3); 3.02 (4H, br.s, CH2CH2); 4.30 (2H, q, J = 7.2 Hz, NCH2); 6.87 (1H, d, J = 7.6 Hz, Ar-H5); 

7.15-7.32 (7H, m, Ar-H); 7.47 (1H, t, J = 8.0 Hz, Ar-H); 8.17 (1H, dd, J = 7.6 and 1.6 Hz, Ar-H6); 

8.74 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 14.88 (CH2CH3); 36.38 

(CH2CH2); 36.90 (CH2CH2); 53.91 (NCH2); 107.51 (CH); 117.29 (CH); 120.58 (Cq); 123.04 (CH); 

125.63 (CH); 128.29 (CH); 129.86 (CH); 136.18 (Cq); 140.49 (Cq); 141.52 (CH); 143.83 (CH); 

146.56 (Cq); 147.38 (CH); 150.73 (Cq); 153.38 (Cq); 155.44 (Cq); IR (film): νmax 1641; 1566; 

1491; 1259; 1157; 1027 cm-1; ESI-MS m/z (abund.): 421.07 [M]+ (100); Anal. calcd. 

(C22H20ClF3N2O • CF3SO3H): C, 48.39; H, 3.71; N, 4.91; S, 5.62%. Found: C, 48.86; H, 3.70; N, 

4.91; S, 5.29%. 
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N-(3,5-Dichloro-1-ethylpyridin-4(1H)-ylidene)-3-(4-(trifluoromethoxy)phenethyl)-aniline 

trifluoromethanesulfonate, 2.131  

Method B - Yellowish oil; 74%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.57 (3H, t, J = 7.2 Hz, 

CH3); 2.99 (4H, br.s, CH2CH2); 4.31 (2H, q, J = 7.2 Hz, NCH2); 7.04-7.07 (2H, m, Ar-H); 7.14-

7.17 (3H, m, Ar-H); 7.26-7.33 (3H, m, Ar-H); 8.63 (2H, s, Ar-H2); 13C-NMR (CD3OD, 100.61 

MHz) δ 14.80 (CH2CH3); 36.36 (CH2CH2); 36.90 (CH2CH2); 54.25 (NCH2); 118.77 (CH); 120.51 

(CH); 121.73 (CH); 122.79 (CH); 125.34 (CH); 127.04 (CH); 128.27 (Cq); 129.84 (Cq); 138.77 

(Cq); 140.55 (Cq); 141.16 (Cq); 142.08 (CH); 147.36 (Cq); 149.49 (Cq); IR (film): νmax 1627; 

1552; 1259; 1163; 1027 cm-1; ESI-MS m/z (abund.): 454.97 [M]+ (100); Anal. calcd. 

(C22H19Cl2F3N2O • CF3SO3H): C, 45.63; H, 3.33; N, 4.63; S, 5.30%. Found: C, 46.70; H, 3.38; N, 

4.71; S, 4.96%. 

 

(E)-1-Ethyl-4-(3-phenethylphenylimino)-1,4-dihydropyridin-3-amine 

trifluoromethanesulfonate, 2.132 

Method B - Yellow oil; 97%; 1H-NMR (CDCl3, 400.13 MHz) δ 1.53 (3H, t, J = 7.2 Hz, CH3); 

2.91 (4H, br.s, CH2CH2); 3.65 (2H, br.s, NH2); 4.13 (2H, q, J = 7.2 Hz, NCH2); 6.71 (1H, d, J = 6.8 

Hz, Ar-H5); 7.06-7.34 (9H, m, 8 Ar-H + Ar-H6); 8.07 (1H, s, Ar-H2); 8.33 (1H, s, Ar-H); 13C-NMR 

(CDCl3, 100.61 MHz) δ 16.20 (CH2CH3); 37.58 (CH2CH2); 46.88 (CH2CH2); 54.30 (NCH2); 

105.74 (CH); 121.45 (Cq); 121.99 (Cq); 124.05 (CH); 125.94 (CH); 126.64 (CH); 128.36 (CH); 

128.60 (CH); 129.65 (CH); 132.73 (CH); 134.17 (Cq); 137.18 (Cq); 141.36 (Cq); 143.49 (CH); 

145.04 (CH); IR (film): νmax 3437; 3354; 1634; 1532; 1491; 1252; 1163; 1027 cm-1; ESI-MS m/z 

(abund.): 318.45 [M+H]+ (100); Anal. calcd. (C21H23N3 • CF3SO3H): C, 56.52; H, 5.17; N, 8.99; S, 

6.86%. Found: C, 55.70; H, 4.98; N, 8.69; S, 6.75%. 

 

(E)-1-Methyl-4-(3-phenethylphenylimino)-1,4-dihydropyridin-3-amine hydroiodide, 2.133 

Method B - Yellowish oil; 50%; 1H-NMR (CD3OD, 400.13 MHz) δ 2.97 (4H, br.s, CH2CH2); 

4.00 (3H, s, NCH3); 6.69 (1H, d, J = 6.8 Hz, Ar-H5); 7.04 (1H, br.s, Ar-H); 7.11-7.28 (7H, m, Ar-

H); 7.40 (1H, t, J = 7.6 Hz, Ar-H); 7.69 (1H, dd, J = 6.8 and 1.6 Hz, Ar-H6); 7.77 (1H, d, J = 1.6 

Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 37.23 (CH2CH2), 37.31 (CH2CH2); 44.73 (NCH3); 

105.19 (CH); 121.35 (Cq); 124.09 (CH); 125.64 (CH); 125.91 (CH); 126.64 (CH); 128.00 (CH); 

128.36 (CH); 129.60 (Cq); 133.96 (CH); 135.30 (Cq); 137.35 (Cq); 141.14 (Cq); 143.69 (CH); 

144.75 (CH); IR (film): νmax 3423; 3341; 1634; 1538; 1491; 1340; 1252; 1184; 1027 cm-1; ESI-MS 
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m/z (abund.): 304.12 [M+H]+ (100); Anal. calcd. (C20H21N3 • HI): C, 55.69; H, 5.14; N, 9.74%. 

Found: C, 55.14; H, 5.17; N, 9.56%. 

 

(E)-1-Ethyl-4-(3-(4-(trifluoromethoxy)phenethyl)phenylimino)-1,4-dihydropyridin-3-amine 

trifluoromethanesulfonate, 2.134 

Method B - Yellow oil; 70%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.53 (3H, t, J = 7.2 Hz, CH3); 

2.99 (4H, br.s, CH2CH2); 4.23 (2H, q, J = 7.2 Hz, NCH2); 6.85 (1H, d, J = 6.8 Hz, Ar-H5); 7.10 

(1H, s, Ar H); 7.15-7.19 (4H, m, Ar-H); 7.27 (2H, d, J = 7.6 Hz, Ar-H); 7.41 (1H, t, J = 7.6 Hz, Ar-

H); 7.78 (1H, d, J = 7.2 Hz, Ar-H6); 7.82 (1H, s, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) δ 15.13 

(CH2CH3); 36.47 (CH2CH2); 37.00 (CH2CH2); 53.85 (NCH2); 105.39 (CH); 120.55 (Cq); 121.57 

(Cq); 122.01 (Cq); 124.14 (CH); 124.67 (CH); 126.68 (CH); 129.62 (CH); 129.86 (CH); 134.00 

(CH); 134.20 (Cq); 137.54 (Cq); 140.58 (Cq); 143.47 (CH); 145.05 (CH); 147.36 (Cq); IR (film): 

νmax 3382; 3272; 1627; 1545; 1259; 1163; 1027 cm-1; ESI-MS m/z (abund.): 402.53 [M+H]+ (100); 

Anal. calcd. (C22H22F3N3O • CF3SO3H): C, 50.09; H, 4.20; N, 7.62; S, 5.81%. Found: C, 50.34; H, 

4.26; N, 7.66; S, 5.86%. 

 

(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-2-phenethylaniline trifluoromethanesulfonate, 

2.135 

Method B - Yellowish oil; 59%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.54 (3H, t, J = 7.2 Hz, 

CH3); 2.87-2.96 (4H, m, CH2CH2); 4.28 (2H, q, J = 7.2 Hz, NCH2); 6.37 (1H, d, J = 7.2 Hz, Ar-

H5); 7.03-7.16 (5H, m, Ar-H); 7.25 (1H, dd, J = 7.6 and 1.2 Hz, Ar-H); 7.40 (1H, td, J = 7.6 and 1.6 

Hz, Ar-H); 7.46 (1H, td, J = 7.6 and 1.2 Hz, Ar-H); 7.53 (1H, dd, J = 7.6 and 1.6 Hz, Ar-H); 8.05 

(1H, dd, J = 7.2 and 1.6 Hz, Ar-H6); 8.69 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 

MHz) δ 14.94 (CH2CH3); 32.83 (CH2CH2); 36.58 (CH2CH2); 53.86 (NCH2); 107.22 (CH); 121.99 

(Cq); 125.70 (CH); 127.24 (CH); 127.72 (CH); 128.03 (CH); 128.15 (CH); 128.95 (CH); 131.10 

(CH); 134.36 (Cq); 139.10 (Cq); 141.04 (Cq); 141.25 (CH); 141.57 (CH); 153.70 (Cq); IR (film): 

νmax 1641; 1559; 1491; 1266; 1191; 1020 cm-1; ESI-MS m/z (abund.): 337.32 [M+H]+ (100). Anal. 

calcd. (C21H21ClN2 • CF3SO3H): C, 54.27; H, 4.55; N, 5.75; S, 6.59%. Found: C, 54.53; H, 4.55; N, 

5.77; S, 6.27%. 
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(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-4-phenethylaniline trifluoromethanesulfonate, 

2.136 

Method B - Yellowish oil; 53%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.54 (3H, t, J = 7.6 Hz, 

CH3); 2.94-3.04 (4H, m, CH2CH2); 4.29 (2H, q, J = 7.6 Hz, NCH2); 6.96 (1H, d, J = 7.6 Hz, Ar-

H5); 7.16-7.20 (3H, m, Ar-H); 7.24-7.31 (4H, m, Ar-H); 7.36 (2H, d, J = 8.4 Hz, Ar-H); 8.20 (1H, 

dd, J = 7.6 and 1.6 Hz, Ar-H6); 8.72 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CD3OD, 100.61 MHz) 

δ 14.91 (CH2CH3); 37.11 (CH2CH2); 37.37 (CH2CH2); 53.89 (NCH2); 107.44 (CH); 117.26 (Cq); 

125.27 (CH); 125.63 (CH); 127.95 (CH); 128.21 (CH); 130.03 (CH); 134.01 (Cq); 141.19 (Cq); 

141.45 (CH); 141.60 (CH); 142.15 (Cq); 153.41 (Cq); IR (film): νmax 1648; 1559; 1396; 1273; 

1150; 1027 cm-1; ESI-MS m/z (abund.): 337.32 [M+H]+ (100). Anal. calcd. (C21H21ClN2 • 

CF3SO3H): C, 54.27; H, 4.55; N, 5.75; S, 6.59%. Found: C, 53.79; H, 4.53; N, 5.70; S, 6.25%. 

 

(E)-N-(3-Chloro-1-ethylpyridin-4(1H)-ylidene)-3-(3-phenylpropyl)aniline 

trifluoromethanesulfonate, 2.137 

Method B - Colourless oil; 33%; 1H-NMR (CDCl3, 400.13 MHz) δ 1.53 (3H, t, J = 7.2 Hz, 

CH3); 1.94-1.97 (2H, m, CH2CH2CH2); 2.65-2.69 (4H, m, CH2CH2CH2); 4.36 (2H, q, J = 7.2 Hz, 

NCH2); 7.16 (1H, d, J = 7.2 Hz, Ar-H5); 7.12-7.40 (9H, m, 8 Ar-H + Ar-H6); 8.18 (1H, d, J = 7.2 

Hz, Ar-H); 8.45 (1H, s, Ar-H2); 13C-NMR (CDCl3, 100.61 MHz) δ 16.28 (CH2CH3); 32.71 

(CH2CH2CH2); 35.14 (CH2CH2CH2); 35.40 (CH2CH2CH2); 54.65 (NCH2); 107.97 (CH); 118.41 

(Cq); 122.95 (CH); 124.92 (CH); 125.86 (CH); 128.37 (CH); 128.44 (CH); 130.00 (CH); 130.11 

(CH); 135.24 (Cq); 140.59 (Cq); 141.17 (CH); 141.97 (CH); 145.08 (Cq); 152.66 (Cq); IR (film): 

νmax 3217; 2914; 2364; 1641; 1561; 1484; 1266; 1150; 1027 cm-1; ESI-MS m/z (abund.): 351.15 

[M+H]+ (100). Anal. calcd. (C22H23ClN2 • CF3SO3H): C, 55.14; H, 4.83; N, 5.59%. Found: C, 

55.57; H, 5.02; N, 5.74%. 

 

 

General procedure for pyridine N-oxides [330] 

To a stirred solution of 4-chloropyridine (1 molar eq.) in dry chloroform (8.5 mL/mmol), 3-

chloroperoxybenzoic acid (1.2 molar eq.) was added in small portions, and the mixture was heated 

under reflux for 6 hours. The mixture was cooled and extracted with NaOH 10% (3×20 mL); the 

organic layer dried over Na2SO4 and the solvent evaporated under reduced pressure. The crude 

product was purified by flash chromatography, CH2Cl2 : MeOH (9.5:0.5). 
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(E)-3-Chloro-4-(3-phenethylphenylimino)pyridin-1(4H)-ol, 2.138 

Brown gum; 31%; 1H-NMR (CDCl3, 400.13 MHz) δ 2.97 (4H, br.s, CH2CH2); 6.50 (1H, br.s, 

NOH); 6.59 (1H, d, J = 7.6 Hz, Ar-H5); 6.88 (1H, s, Ar-H); 7.01 (1H, d, J = 8.0 Hz, Ar-H); 7.10-

7.15 (3H, m, Ar-H); 7.24-7.38 (3H, m, Ar-H); 7.36 (1H, t, J = 8.0 Hz, Ar-H); 7.87 (1H, dd, J = 7.6 

and 1.6 Hz, Ar-H6); 8.21 (1H, d, J = 1.6 Hz, Ar-H2); 13C-NMR (CDCl3, 100.61 MHz) δ 37.55 

(CH2CH2); 37.64 (CH2CH2); 108.17 (CH); 117.30 (Cq); 120.65 (Cq); 123.29 (CH); 126.07 (CH); 

126.17 (CH); 128.44 (CH); 128.64 (CH); 129.99 (CH); 137.59 (Cq); 138.31 (Cq); 138.56 (CH); 

140.93 (CH); 140.98 (CH); 143.70 (Cq); IR (film): νmax 3423; 1634 cm-1; ESI-MS m/z (abund.): 

325.21 [M+H]+ (100); Anal. calcd. (C19H17ClN2O • MeOH • 0.1 CH2Cl2): C, 66.08; H, 5.85; N, 

7.67%. Found: C, 66.01; H, 5.93; N, 7.67%. 

 

3,4,5-Trichloropyridine-N-oxide, 2.139 

White solid; 73%; mp 131-135 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 8.25 (2H, s). 

 

 

7.4.7 Intermediates of 4(1H)-quinolonimines 

 

7-Chloro-2-methyl-4(1H)-quinolone, 3.2 

Ethyl acetoacetate (1 molar eq.) was added to PPA (1 mL/0.1 mmol). The viscous and 

transparent mixture was heated up to 100 ºC, when it became progressively translucid. 3-

Chloroaniline was then added and the temperature allowed to rise up to 150 ºC. At this point the 

reaction was complete (TLC). The mixture was cooled down to room temperature and water was 

added. The mixture was treated with NaOH until pH 5. The precipitate was filtered off and the 

aqueous phase extracted with ethyl acetate (3×50 mL). A yellowish oil was obtained, corresponding 

to a mixture of 3.2 and its 5-chloro isomer, 3.3; 87%; 1H-NMR (CD3OD, 400.13 MHz) δ 2.42 (3H, 

s, CH3); 2.48 (3H, s, CH3); 6.14 (1H, s, Ar-H3); 6.21 (1H, s, Ar-H3); 7.33 (1H, d, J = 7.6 Hz, Ar-

H); 7.38 (1H, d, J = 9.0 Hz, Ar-H); 7.45 (1H, d, J = 8.0 Hz, Ar-H); 7.50-7.60 (2H, m, Ar-H); 8.18 

(1H, d, J = 9.0 Hz, Ar-H). 

 

 

General procedure for quinolinium triflates 

The corresponding 4-chloroquinolines (1 molar eq.) were dissolved in dry toluene (0.5 

mL/mmol). Ethyl or methyl trifluoromethanesulfonate (1-5 molar eq.) was added and the mixture 
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left reacting at room temperature for 24 hours. The precipitate was filtered off and washed with 

diethyl ether to afford pure triflate salts. 

 

4,7-Dichloro-N-ethylquinolinium triflate, 3.4 

White solid; 92%; mp 92-93 ºC; 1H-NMR (DMSO-d6, 400.13 MHz) δ 1.74 (3H, t, J = 7.2 Hz, 

CH3); 5.11 (2H, q, J = 7.2 Hz, CH2); 8.18 (1H, dd, J = 9.2 and 1.6 Hz, Ar-H); 8.33 (1H, d, J = 6.4 

Hz, Ar-H3); 8.72 (1H, d, J = 9.2 Hz, Ar-H); 8.80 (1H, d, J = 1.6 Hz, Ar-H); 9.41 (1H, d, J = 6.4 Hz, 

Ar-H2). 

 

4-Chloro-N-ethyl-7-(trifluoromethyl)quinolinium triflate, 3.5 

White solid; 95%; mp 134-136 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 1.77 (3H, t, J = 7.2 Hz, 

CH3); 5.24 (2H, q, J = 7.2 Hz, CH2); 8.42 (1H, dd, J = 9.2 and 1.6 Hz, Ar-H); 8.51 (1H, d, J = 6.4 

Hz, Ar-H3); 8.94-8.96 (2H, m, Ar-H); 9.56 (1H, d, J = 6.4 Hz, Ar-H2). 

 

4-Chloro-N-methyl-7-(trifluoromethyl)quinolinium triflate, 3.6 

White solid; 65%; mp 105-106 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 4.65 (3H, s, CH3); 8.19 

(1H, d, J = 9.2 Hz, Ar-H); 8.32 (1H, d, J = 6.0 Hz, Ar-H3); 8.70-8.72 (2H, m, Ar-H); 9.35 (1H, d, J 

= 6.0 Hz, Ar-H2). 

 

 

General procedure for nitrophenoxybenzenes 

Phenol (1 molar eq.), 1-fluoro-4-nitrobenzene (2 molar eq.), Na2CO3 (2 molar eq.), and CuI (2 

molar eq.) were suspended in DMF (3.5 mL) and heated. The reaction was followed by TLC, 

hexane : diethyl ether (9:1), and after completion (approximately 3-6 h), the desired product was 

extracted with dichloromethane (3×50 mL). The crude product was purified by flash 

chromatography, hexane : diethyl ether (100:1). 

 

1-Nitro-4-(4-(trifluoromethoxy)phenoxy)benzene, 3.8 

Yellow oil; 73%; 1H-NMR (CDCl3, 400.13 MHz) δ  7.06 (2H, d, J = 8.8 Hz, Ar-H); 7.14 (2H, 

d, J = 7.2 Hz, Ar-H); 7.30 (2H, d, J = 7.2 Hz, Ar-H); 8.24 (2H, d, J = 8.8 Hz, Ar-H); IR (film): νmax 

1606; 1555; 1485; 1294; 1077; 971;875; 814 cm-1. 
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1-Nitro-4-(phenoxy)benzene, 3.9 

Yellow oil; 65%; 1H-NMR (CD3OD, 400.13 MHz) δ  7.07 (2H, d, J = 9.2 Hz, Ar-H); 7.13 (2H, 

d, J = 8.0 Hz, Ar-H); 7.30 (1H, t, J = 7.2 Hz, Ar-H); 7.48 (2H, d, J = 8.0 Hz, Ar-H); 8.23 (2H, d, J = 

9.2 Hz, Ar-H); IR (film): νmax 3113; 1581 1517; 1479; 1345; 1243; 872; 846; 791; 747 cm-1. 

 

1-Nitro-4-(3-(trifluoromethoxy)phenoxy)benzene, 3.10 

Yellow oil; 81%; 1H-NMR (CD3OD, 400.13 MHz) δ  7.09-7.22 (5H, m, Ar-H); 7.56 (1H, m, 

Ar-H); 8.28 (2H, d, J = 9.2 Hz, Ar-H). 

 

1-Nitro-4-(4-(trifluoromethyl)phenoxy)benzene, 3.11 

Transparent oil; 71%; 1H-NMR (CD3OD, 400.13 MHz) δ  7.19 (2H, d, J = 9.2 Hz, Ar-H); 7.30 

(2H, d, J = 8.8 Hz, Ar-H); 7.78 (2H, d, J = 8.8 Hz, Ar-H); 8.30 (2H, d, J = 9.2 Hz, Ar-H). 

 

1-Nitro-4-(4-chlorophenoxy)benzene, 3.12  

White needles; 75%; mp 64-65 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  7.12-7.16 (4H, m, Ar-

H); 7.47 (2H, d, J = 7.2 Hz, Ar-H); 8.37 (2H, d, J = 9.6 Hz, Ar-H); IR (film): νmax 1523; 1478; 

1338; 1236 cm-1. 

 

1-Nitro-3-(4-(trifluoromethoxy)phenoxy)benzene, 3.13 

Yellowish oil; 30%; 1H-NMR (CDCl3, 400.13 MHz) δ  7.53-7.60 (2H, m, Ar-H); 7.65-7.70 (2H, 

m, Ar-H); 8.00 (2H, dd, J = 8.8 and 2.0 Hz, Ar-H); 8.09 (2H, d, J = 8.0 Hz, Ar-H). 

 

 

General procedure for phenoxyanilines 

Same procedure to the one described for the reduction of nitrostilbenes. 

 

4-(4-(Trifluoromethoxy)phenoxy)benzenamine, 3.14 

Yellow oil; 68%; 1H-NMR (CDCl3, 400.13 MHz) δ  3.36 (2H, br.s, NH2); 6.72 (2H, d, J = 8.8 

Hz, Ar-H); 6.90 (2H, d, J = 8.8 Hz, Ar-H); 6.93 (2H, d, J = 9.2 Hz, Ar-H); 7.15 (2H, d, J = 9.2 Hz, 

Ar-H). 
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4-Phenoxybenzenamine, 3.15  

Transparent oil; 75%; 1H-NMR (CD3OD, 400.13 MHz) δ  6.70-6.98 (4H, m, Ar-H); 6.88 (2H, 

d, J = 8.2 Hz, Ar-H); 7.00 (1H, t, J = 7.6 Hz, Ar-H); 7.27 (2H, t, J = 8.0 Hz, Ar-H). 

 

4-(3-(Trifluoromethoxy)phenoxy)benzenamine, 3.16  

Yellow oil; 85%; 1H-NMR (CD3OD, 400.13 MHz) δ  6.74-6.91 (7H, m, Ar-H); 7.35 (1H, m, 

Ar-H). 

 

4-(4-(Trifluoromethyl)phenoxy)benzenamine, 3.17 

White solid; 93%; mp 73-74 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  6.80 (2H, d, J = 8.8 Hz, 

Ar-H); 6.87 (2H, d, J = 8.8 Hz, Ar-H); 7.01 (2H, d, J = 8.4 Hz, Ar-H); 7.59 (2H, d, J = 8.4 Hz, Ar-

H); IR (film): νmax 3203; 3191; 1511; 1414; 1332; 1102; 836 cm-1. 

 

4-(4-Chlorophenoxy)benzenamine, 3.18 

1-Nitro-4-(4-chlorophenoxy)benzene (1 molar eq.) and tin 10-40 mesh (11.5 molar eq.) were 

suspended in ethanol (3.5 mL/mmol). Fuming HCl (0.9 mL/2.3 mL water) was added and the 

mixture stirred at reflux temperature for 1 hour. The reaction mixture was treated with NaOH 1N 

until pH ∼ 5 and the product extracted with CH2Cl2 (200 mL). The solvent was evaporated under 

reduced pressure affording a white oil; 85%; 1H-NMR (CD3OD, 400.13 MHz) δ  6.88-6.90 (6H, m, 

Ar-H); 7.28 (2H, d, J = 8.8 Hz, Ar-H). 

 

3-(4-(Trifluoromethoxy)phenoxy)benzenamine, 3.19 

Translucid oil; 85%, 1H-NMR (CDCl3, 400.13 MHz) δ  3.77 (2H, br.s., NH2); 6.38-6.49 (6H, m, 

Ar-H); 7.09 (1H, d, J = 8.0 Hz, Ar-H); 7.12 (1H, d, J = 8.0 Hz, Ar-H). 

 

 

7.4.8 4(1H)-Quinolonimines 

Same procedure as the one described for the structure-base designed 4-pyridonimines. 

 

(E)-N-(7-Chloro-1-ethylquinolin-4(1H)-ylidene)-3-(4-(trifluomethoxy)phenetyl)aniline 

trifluoromethanesulfonate, 3.20 

Yellow gum; 76%; 1H-NMR (CDCl3, 400.13 MHz) δ  1.57 (3H, t, J = 7.2 Hz, CH3); 2.89 (4H, 

br.s, CH2CH2); 4.48 (2H, q, J = 7.2 Hz, CH2); 6.66 (1H, d, J = 7.6 Hz, Ar-H3); 7.10-7.18 (7H, m, 
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Ar-H); 7.30 (1H, m, Ar-H); 7.59 (1H, d, J = 9.2 Hz, Ar-H); 7.74 (1H, s, Ar-H); 8.17 (2H, d, J = 7.6 

Hz, Ar-H2); 8.84 (1H, d, J = 8.8 Hz, Ar-H); 13C-NMR (CDCl3, 100.61 MHz) δ 14.59 (CH2CH3); 

36.70 (CH2CH2); 37.36 (CH2CH2); 50.26 (NCH2); 100.94 (CH); 116.32 (Cq); 117.36 (CH); 120.87 

(CH); 122.48 (CH); 125.03 (CH); 127.54 (CH); 127.82 (CH); 128.09 (CH); 128.21 (CH); 129.88 

(CH); 136.62 (Cq); 138.54 (Cq); 140.01 (Cq); 141.50 (Cq); 143.41 (Cq); 145.60 (CH); 147.42 (Cq); 

148.23 (Cq); 155.10 (Cq); IR (film): νmax 1613; 1552; 1450; 1395; 1259; 1156; 1034 cm-1; ESI-MS 

m/z (abund.): 471.31 [M+H]+ (100); 296.03 (98). Anal. Calcd. (C26H22ClF3N2O • CF3SO3H): C, 

52.22; H, 3.73; N, 4.51%. Found: C, 52.25; H, 3.75; N, 4.58%. 

 

E)-N-(1-Ethyl-7-(trifluoromethyl)quinolin-4(1H)-ylidene)-3-(4-(trifluoromethoxy) 

phenethyl)aniline trifluoromethanesulfonate, 3.21 

Brown gum; 81%; 1H-NMR (CD3OD, 400.13 MHz) δ  1.54 (3H, t, J = 6.8 Hz, CH3); 3.00 (4H, 

br.s, CH2CH2); 4.56 (2H, q, J = 6.8 Hz, CH2); 6.50 (1H, d, J = 7.2 Hz, Ar-H3); 7.06 (1H, s, Ar-H); 

7.11-7.28 (6H, m, Ar-H); 7.43 (1H, t, J = 7.6 Hz, Ar-H); 7.92 (1H, d, J = 8.4 Hz, Ar-H); 8.16 (1H, 

d, J = 7.2 Hz, Ar-H2); 8.26 (1H, s, Ar-H); 8.73 (1H, d, J = 8.4 Hz, Ar-H); 13C-NMR (CD3OD, 

100.61 MHz) δ 13.34 (CH2CH3); 36.51 (CH2CH2); 37.06 (CH2CH2); 49.06 (NCH2); 101.39 (CH); 

114.59 (Cq); 120.55 (Cq); 121.37 (CH); 121.62 (CH); 121.98 (CH); 122.77 (CH); 124.18 (CH); 

126.12 (CH); 126.72 (CH); 129.71 (CH); 129.85 (CH); 134.11 (Cq); 134.44 (Cq); 138.24 (Cq); 

140.61 (Cq); 141.43 (Cq); 143.51 (Cq); 145.18 (CH); 147.33 (Cq); 155.62 (Cq); IR (film): νmax 

1619; 1402; 1262; 1166 cm-1; ESI-MS m/z (abund.): 505.09 [M+H]+ (100); Anal. Calcd. 

(C27H22F6N2O • 0.65 CF3SO3H): C, 55.16; H, 3.79; N, 4.65%. Found: C, 55.17; H, 3.83; N, 4.66%. 

 

(E)-N-(7-Chloro-1-ethylquinolin-4(1H)-ylidene)biphenyl-4-amine trifluoromethanesulfonate, 

3.22 

Yellow solid; 100%; mp 94-96 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  1.58 (3H, t, J = 7.2 Hz, 

CH3); 4.63 (2H, q, J = 7.2 Hz, CH2); 6.95 (1H, d, J = 7.6 Hz, Ar-H3); 7.40 (1H, m, Ar-H); 7.50 

(2H, t, J = 7.6 Hz, Ar-H); 7.55 (2H, d, J = 8.4 Hz, Ar-H); 7.70 (2H, d, J = 7.6 Hz, Ar-H); 7.84-7.88 

(3H, m, Ar-H); 8.31 (1H, d, J = 1.6 Hz, Ar-H); 8.47 (1H, d, J = 7.6 Hz, Ar-H2); 8.64 (1H, d, J = 9.0 

Hz, Ar-H); 13C-NMR (CD3OD, 100.61 MHz) δ 13.54 (CH2CH3); 50.00 (NCH2); 100.85 (CH); 

117.49 (CH); 118.80 (CH); 125.40 (CH); 125.69 (CH); 126.58 (CH); 127.52 (CH); 128.29 (CH); 

128.68 (CH); 135.76 (Cq); 136.41 (Cq); 139.10 (Cq); 139.71 (Cq); 140.85 (Cq); 141.93 (Cq); 

146.62 (CH); 155.42 (Cq); IR (film): νmax 1620; 1545; 1491; 1395; 1252; 1157; 1034 cm-1; ESI-MS 
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m/z (abund.): 358.97 [M+H]+ (100); Anal. Calcd. (C23H19ClN2 • 1.1 CF3SO3H • H2O): C, 53.23; H, 

4.13; N, 5.15%. Found: C, 53.87; H, 4.07; N, 5.09%. 

 

(E)-N-(1-Ethyl-7-(trifluoromethyl)quinolin-4(1H)-ylidene)biphenyl-4-amine 

trifluoromethanesulfonate, 3.23  

Orange solid; 98%; mp 138-140 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 1.51 (3H, t, J = 6.8 Hz, 

CH3); 4.17 (2H, q, J = 6.8 Hz, CH2); 6.57 (1H, d, J = 7.2 Hz, Ar-H3); 7.30-7.38 (3H, m, Ar-H); 

7.45 (2H, t, J = 7.6 Hz, Ar-H); 7.67 (2H, d, J = 7.6 Hz, Ar-H); 7.75 (2H, d, J = 7.6 Hz, Ar-H); 7.86 

(1H, d, J = 8.8 Hz, Ar-H); 8.02 (1H, d, J = 7.2 Hz, Ar-H2); 8.16 (1H, s, Ar-H); 8.75 (1H, d, J = 8.8 

Hz, Ar-H); 13C-NMR (CD3OD, 100.61 MHz) δ 13.28 (CH2CH3); 48.24 (NCH2); 101.46 (CH); 

111.12 (Cq); 114.12 (Cq); 121.02 (CH); 123.66 (CH); 123.92 (CH); 126.28 (CH); 126.41 (CH); 

127.08 (CH); 128.04 (CH); 128.58 (CH); 138.38 (Cq); 140.19 (Cq); 142.51 (Cq); 144.49 (CH); 

151.77 (Cq); 152.95 (Cq); 155.64 (Cq); IR (film): νmax 1614; 1556; 1459; 1222; 1119 cm-1; ESI-MS 

m/z (abund.): 393 [M+H]+ (100); Anal. Calcd. (C24H19F3N2 • 0.4 CF3SO3H): C, 64.63; H, 4.36; N, 

6.15%. Found: C, 64.77; H, 4.32; N, 6.19%. 

 

(E)-4-Benzyl-N-(7-chloro-1-ethylquinolin-4(1H)-ylidene)aniline trifluoromethanesulfonate, 

3.24  

Yellow oil; 86%; mp 56-58 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  1.56 (3H, t, J = 7.2 Hz, 

CH3); 4.07 (2H, s, CH2); 4.62 (2H, q, J = 7.2 Hz, CH2); 6.83 (1H, d, J = 7.6 Hz, Ar-H3); 7.20-7.33 

(5H, m, Ar-H); 7.38 (2H, d, J = 8.4 Hz, Ar-H); 7.44 (2H, d, J = 8.4 Hz, Ar-H); 7.83 (1H, d, J = 8.8 

Hz, Ar-H); 8.29 (1H, s, Ar-H); 8.42 (1H, d, J = 7.6 Hz, Ar-H2); 8.60 (1H, d, J = 9.2 Hz, Ar-H); 13C-

NMR (CD3OD, 100.61 MHz) δ 13.52 (CH2CH3); 40.96 (CH2); 49.96 (NCH2); 100.69 (CH); 117.27 

(Cq); 117.57 (Cq); 125.37 (CH); 125.62 (CH); 125.94 (CH); 127.62 (CH); 128.24 (CH); 128.33 

(CH); 130.26 (CH); 134.95 (CH); 139.03 (Cq); 140.74 (Cq); 140.83 (Cq); 141.93 (Cq); 146.59 

(CH); 155.53 (Cq); IR (film): νmax 1619; 1542; 1440; 1389; 1255; 1160; 1032 cm-1; ESI-MS m/z 

(abund.): 373.02 [M+H]+ (100); Anal. Calcd. (C24H21ClN2 • 0.9 CF3SO3H): C, 58.88; H, 4.35; N, 

5.51%. Found: C, 58.28; H, 4.45; N, 5.27%. 

 

(E)-N-(7-Chloro-1-ethylquinolin-4(1H)-ylidene)-4-phenoxyaniline trifluoromethanesulfonate, 

3.25 

Yellow oil; 92%; mp 52-54 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  1.56 (3H, t, J = 7.2 Hz, 

CH3); 4.62 (2H, q, J = 7.2 Hz, CH2); 6.82 (1H, d, J = 7.6 Hz, Ar-H3); 7.10 (2H, d, J = 7.6 Hz, Ar-
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H); 7.16-7.22 (3H, m, Ar-H); 7.42-7.47.45 (4H, m, Ar-H); 7.83 (1H, d, J = 9.2 Hz, Ar-H); 8.28 (1H, 

s, Ar-H); 8.42 (1H, d, J = 7.6 Hz, Ar-H2); 8.60 (1H, d, J = 9.2 Hz, Ar-H); 13C-NMR (CD3OD, 

100.61 MHz) δ 13.51 (CH2CH3); 49.86 (NCH2); 100.64 (CH); 117.43 (Cq); 117.49 (Cq); 119.04 

(CH); 119.39 (CH); 123.80 (CH); 125.65 (CH); 126.87 (CH); 127.50 (CH); 129.75 (CH); 132.32 

(CH); 139.05 (Cq); 140.72 (Cq); 146.41 (CH); 155.79 (Cq); 156.57 (Cq); 157.21 (Cq); IR (film): 

νmax 1620; 1552; 1491; 1436; 1245; 1164; 1027 cm-1; ESI-MS m/z (abund.): 375.08 [M+H]+ (100); 

Anal. Calcd. (C26H22Cl4N2O • CF3SO3H): C, 54.91; H, 3.84; N, 5.34%. Found: C, 55.25; H, 3.95; 

N, 5.24%. 

 

(E)-N-(7-Chloro-1-ethylquinolin-4(1H)-ylidene)-4-(4-chlorophenoxy)aniline 

trifluoromethanesulfonate, 3.26  

Yellow oil; 83%; mp 61-63 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  1.56 (3H, t, J = 7.2 Hz, 

CH3); 4.62 (2H, q, J = 7.2 Hz, CH2); 6.82 (1H, d, J = 7.6 Hz, Ar-H3); 7.08 (2H, d, J = 8.8 Hz, Ar-

H); 7.20 (2H, d, J = 8.8 Hz, Ar-H); 7.40-7.46 (4H, m, Ar-H); 7.82 (1H, d, J = 9.2 Hz, Ar-H); 8.27 

(1H, s, Ar-H); 8.42 (1H, d, J = 7.6 Hz, Ar-H2); 8.60 (1H, d, J = 9.2 Hz, Ar-H); 13C-NMR (CD3OD, 

100.61 MHz) δ 13.52 (CH2CH3); 49.87 (NCH2); 100.68 (CH); 117.48 (Cq); 117.50 (Cq); 119.73 

(Cq); 120.29 (CH); 125.67 (CH); 126.96 (CH); 127.50 (CH); 127.82 (CH); 128.53 (CH); 128.64 

(CH); 132.97 (Cq); 139.06 (Cq); 140.72 (Cq); 146.40 (CH); 155.52 (Cq); 156.64 (Cq); IR (film): 

νmax 1620; 1552; 1477; 1239; 1157; 1034 cm-1; ESI-MS m/z (abund.): 408.94 [M+H]+ (100); Anal. 

Calcd. (C23H18Cl2N2O • CF3SO3H): C, 51.53; H, 3.42; N, 5.01%. Found: C, 52.36; H, 3.43; N, 

4.93%. 

 

(E)-N-(7-Chloro-1-ethylquinolin-4(1H)-ylidene)-4-(4-(trifluoromethoxy)phenoxy)aniline 

trifluoromethanesulfonate, 3.27 

Yellow solid; 75%; mp 78-81 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  1.57 (3H, t, J = 6.8 Hz, 

CH3); 4.63 (2H, q, J = 6.8 Hz, CH2); 6.84 (1H, d, J = 7.6 Hz, Ar-H3); 7.18 (2H, d, J = 8.8. Hz, Ar-

H); 7.23 (2H, d, J = 7.2 Hz, Ar-H); 7.35 (2H, d, J = 8.8 Hz, Ar-H); 7.46 (2H, d, J = 7.2 Hz, Ar-H); 

7.84 (1H, d, J = 8.4 Hz, Ar-H); 8.30 (1H, s, Ar-H); 8.44 (1H, d, J = 7.6 Hz, Ar-H2); 8.60 (1H, d, J = 

8.4 Hz, Ar-H); 13C-NMR (CD3OD, 100.61 MHz) δ 13.51 (CH2CH3); 49.90 (NCH2); 100.67 (CH); 

117.44 (Cq); 117.54 (Cq); 119.90 (Cq); 120.00 (CH); 122.69 (CH); 125.64 (CH); 127.06 (CH); 

127.57 (CH); 132.95 (CH); 139.07 (CH); 140.79 (Cq); 141.75 (Cq); 145.03 (Cq); 146.48 (CH); 

155.57 (Cq); 155.77 (Cq); 156.55 (Cq); IR (film): νmax 1614; 1552; 1491; 1245; 1157; 1034 cm-1; 
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ESI-MS m/z (abund.): 458.96 [M+H]+ (100); Anal. Calcd. (C26H22ClF3N2O • CF3SO3H): C, 49.31; 

H, 3.14; N, 4.60%. Found: C, 49.90; H, 3.26; N, 4.59%. 

 

(E)-N-(7-Chloro-1-ethylquinolin-4(1H)-ylidene)-4-(4-(trifluoromethyl)phenoxy)aniline 

trifluoromethanesulfonate, 3.28 

Yellow solid; 99%; mp 156-158 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ  1.56 (3H, t, J = 7.2 Hz, 

CH3); 4.59 (2H, q, J = 7.2 Hz, CH2); 6.79 (1H, d, J = 7.2 Hz, Ar-H3); 7.22 (2H, d, J = 8.8 Hz, Ar-

H); 7.28 (2H, d, J = 8.8 Hz, Ar-H); 7.46 (2H, d, J = 8.8 Hz, Ar-H); 7.72 (2H, d, J = 8.8 Hz, Ar-H); 

7.80 (1H, d, J = 8.4 Hz, Ar-H); 8.23 (1H, s, Ar-H); 8.42 (1H, d, J = 7.6 Hz, Ar-H2); 8.59 (1H, d, J = 

8.4 Hz, Ar-H); 13C-NMR (CDCl3, 100.61 MHz) δ 18.45 (CH2CH3); 53.96 (NCH2); 104.95 (CH); 

120.36 (Cq); 121.82 (Cq); 122.27 (Cq); 124.78 (CH); 130.54 (CH); 130.75 (CH); 131.05 (CH); 

131.19 (CH); 131.30 (CH); 131.82 (CH); 142.65 (Cq); 145.08 (Cq); 149.23 (Cq); 149.30 (CH); 

158.91 (Cq); 159.37 (Cq); 163.65 (Cq); IR (film): νmax 1607; 1552; 1491; 1327; 1245; 1163; 1027 

cm-1; ESI-MS m/z (abund.): 442.96 [M+H]+ (100); Anal. Calcd. (C24H18ClF3N2O • 0.85 CF3SO3H): 

C, 52.32; H, 3.33; N, 4.91%. Found: C, 52.07; H, 3.53; N, 4.85%. 

 

(E)-N-(7-Chloro-1-methylquinolin-4(1H)-ylidene)-4-(4-(trifluoromethyl)phenoxy)aniline 

trifluoromethanesulfonate, 3.29 

Yellow solid; 73%; mp 181-183 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 4.17 (3H, s, CH3); 6.77 

(1H, d, J = 7.6 Hz, Ar-H3); 7.22 (2H, d, J = 8.4 Hz, Ar-H); 7.27 (2H, d, J = 8.4 Hz, Ar-H); 7.47 

(2H, d, J = 8.4 Hz, Ar-H); 7.71 (2H, d, J = 8.4 Hz, Ar-H); 7.81 (1H, d, J = 8.8 Hz, Ar-H); 8.16 (1H, 

s, Ar-H); 8.30 (1H, d, J = 7.6 Hz, Ar-H2); 8.69 (1H, d, J = 8.8 Hz, Ar-H); 13C-NMR (CD3OD, 

100.61 MHz) δ 41.45 (NCH3); 100.29 (CH); 117.52 (Cq); 117.71 (Cq); 118.04 (Cq); 120.96 (Cq); 

125.49 (CH); 126.77 (CH); 127.01 (CH); 127.05 (CH); 127.08 (CH); 127.12 (CH); 127.25 (CH); 

135.16 (Cq); 140.24 (Cq); 140.32 (Cq); 154.88 (CH); 155.83 (Cq); 160.37 (Cq); IR (film): νmax 

1620; 1402; 1327; 1245; 1156; 1061 cm-1; ESI-MS m/z (abund.): 428.97 [M+H]+ (100); Anal. 

Calcd. (C24H18ClF3N2O • 0.85 CF3SO3H): C, 51.48; H, 3.05; N, 5.03%. Found: C, 51.94; H, 2.97; 

N, 4.93%. 

 

(E)-N-(7-Chloro-1-ethylquinolin-4(1H)-ylidene)-4-(3-(trifluoromethoxy)phenoxy)aniline 

trifluoromethanesulfonate, 3.30 

Yellow oil; 85%; 1H-NMR (CD3OD, 400.13 MHz) δ  1.56 (3H, t, J = 7.2 Hz, CH3); 4.61 (2H, q, 

J = 7.2 Hz, CH2); 6.81 (1H, d, J = 7.2 Hz, Ar-H3); 6.99 (1H, br.s, Ar-H); 7.10 (2H, m, Ar-H); 7.25 
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(2H, d, J = 9.2 Hz, Ar-H); 7.46 (2H, d, J = 9.2 Hz, Ar-H); 7.51 (1H, t, J = 9.2 Hz, Ar-H); 7.82 (1H, 

dd, J = 8.8 and 1.6 Hz, Ar-H); 8.26 (1H, s, Ar-H); 8.38 (1H, d, J = 7.6 Hz, Ar-H2); 8.60 (1H, d, J = 

8.8 Hz, Ar-H); 13C-NMR (CD3OD, 100.61 MHz) δ 13.48 (CH2CH3); 49.72 (NCH2); 100.69 (CH); 

111.22 (CH); 115.52 (Cq); 116.89 (CH); 117.37 (CH); 120.44 (CH); 125.74 (CH); 126.89 (CH); 

127.17 (CH); 127.33 (CH); 130.92 (CH); 139.11 (Cq); 140.58 (Cq); 146.13 (CH); 150.08 (Cq); 

152.20 (Cq); 154.09 (Cq); 155.55 (Cq); 155.80 (Cq); 158.32 (Cq); IR (film): νmax 1613; 1555; 

1504; 1440; 1248; 1160; 1025 cm-1; ESI-MS m/z (abund.): 458.95 [M+H]+ (100); Anal. Calcd. 

(C26H22ClF3N2O • 0.8 CF3SO3H): C, 51.45; H, 3.27; N, 4.84%. Found: C, 51.23; H, 3.39; N, 4.79%. 

 

(E)-N-(1-Ethyl-7-(trifluoromethyl)quinolin-4(1H)-ylidene)-4-(3-(trifluoromethoxy) 

phenoxy)aniline trifluoromethanesulfonate, 3.31 

Yellow oil; 97%; 1H-NMR (CD3OD, 400.13 MHz) δ 1.47 (3H, t, J = 7.2 Hz, CH3); 4.36 (2H, q, 

J = 7.2 Hz, CH2); 6.33 (1H, d, J = 7.6 Hz, Ar-H3); 6.89 (1H, s, Ar-H); 6.99-7.01 (2H, m, Ar-H); 

7.11-7.7.16 (4H, m, Ar-H); 7.43 (1H, t, J = 8.4 Hz, Ar-H); 7.73 (1H, d, J = 8.4 Hz, Ar-H); 7.78 (1H, 

d, J = 7.6 Hz, Ar-H2); 8.00 (1H, s, Ar-H); 8.69 (1H, d, J = 8.4 Hz, Ar-H); 13C-NMR (CD3OD, 

100.61 MHz) δ 13.10 (CH2CH3); 47.85 (NCH2); 101.22 (CH); 110.34 (CH); 113.43 (Cq); 114.66 

(Cq); 116.02 (Cq); 119.17 (CH); 120.06 (CH); 120.75 (CH); 121.72 (CH); 122.33 (CH); 124.35 

(CH); 125.10 (CH); 126.50 (CH); 130.66 (Cq); 138.49 (Cq); 142.92 (Cq); 143.51 (CH); 150.01 

(Cq); 152.76 (Cq); 156.01 (Cq); 159.27 (Cq); IR (film): νmax 1614; 1562; 1489; 1259; 1215; 1156; 

1022; 875 cm-1; ESI-MS m/z (abund.): 493 [M+H]+ (100); Anal. Calcd. (C25H18F6N2O2 • 0.3 

CF3SO3H): C, 56.54; H, 3.43; N, 5.21%. Found: C, 56.00; H, 3.11; N, 5.37%. 

 

 (E)-N-(2-(Benzylthio)-1-ethyl-7-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-ylidene)-[1,1’-

biphenyl]-4-amine, 3.33 

Benzylthiol (2 molar eq.) was diluted in methanol (5 mL/mmol) and TEA (3 molar eq.) was 

added. The solution was stirred at 0 ºC for five minutes, before adding 3.23 (1 molar eq.), and 

allowed to warm up to room temperature. The mixture was stirred for 24 hours, the solvent was 

evaporated under reduced pressure, and the crude product was purified by flash chromatography, 

CH2Cl2 : MeOH (9:1). Only the starting material 3.23 was recovered (97%). 
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7.4.9 Intermediates of flavones 

 

General procedure for 4-phenoxybenzonitriles 

Method A - Same procedure as for the synthesis of 1-nitrophenoxybenzenes. 

Method B - Alcohol (1 molar eq.), 4-fluorobenzonitrile (1 molar eq.) and Na2CO3 (2 molar eq.) 

were suspended in DMF (3.5 mL/mmol) and heated. The reaction was followed by TLC, hexane : 

diethyl ether (9:1), and after completion (approximately 24 h), the desired product was extracted 

with dichloromethane (3×50 mL). The crude product was purified by flash chromatography, using 

hexane : diethyl ether (100:1) as eluent. 

 

4-(4-Chlorophenoxy)benzonitrile, 4.1 

White solid; 100%; mp 67-68 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 7.01-7.04 (4H, m, Ar-H); 

7.40 (2H, d, J = 6.8 Hz, Ar-H); 7.63 (2H, d, J = 6.8 Hz, Ar-H); IR (film): νmax 2241; 1581; 1485; 

1402; 1242; 840 cm-1. 

 

4-(4-(Trifluoromethoxy)phenoxy)benzonitrile, 4.2 

Yellow oil; 100%; 1H-NMR (CDCl3, 400.13 MHz) δ 7.04 (2H, d, J = 9.0 Hz, Ar-H); 7.11 (2H, 

d, J = 9.0 Hz, Ar-H); 7.28 (2H, d, J = 9.0 Hz, Ar-H); 7.64 (2H, d, J = 9.0 Hz, Ar-H). 

 

4-(4,4,4-Trifluorobutoxy)benzonitrile, 4.3 

Transparent oil; 94%; 1H-NMR (CDCl3, 400.13 MHz) δ 2.12 (2H, m, CH2CH2CH2); 2.35 (2H, 

m, CH2CH2CF3); 4.09 (2H, t, J = 6.0 Hz, CH2CH2CH2CF3); 6.96 (2H, d, J = 8.4 Hz, Ar-H); 7.62 

(2H, d, J = 8.4 Hz, Ar-H). 

 

4-(3-(Trifluoromethoxy)phenoxy)benzonitrile, 4.4 

Yellow oil; 100%; 1H NMR (CDCl3, 400.13 MHz) δ 6.97 (1H, br.s, Ar-H); 7.02 (1H, dd, J = 

8.6 and 2.0 Hz, Ar-H); 7.05-7.14 (3H, m, Ar-H); 7.45 (1H, t, J = 8.2 Hz, Ar-H); 7.67 (2H, d, J = 9.0 

Hz, Ar-H). 

 

 

General procedure for 4-phenoxybenzoic acids 

Method A - Benzonitrile (1 molar eq.) was suspended in HCl 6N (10 mL/mmol) and heated to 

reflux temperature. The reaction was kept for 24 hours. The solvent was coevaporated with EtOH 
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under reduced pressure, and the crude product was purified by flash chromatography, CH2Cl2 : 

MeOH (9:1). No reaction occurred. 

Method B - Benzonitrile (1 molar eq.) was suspended in water (2.5 mL/mmol), and H2SO4 (7.5 

mL/mmol). After heating to reflux for 2 hours, the solvent was coevaporated with EtOH, under 

reduced pressure. The crude product was purified by flash chromatography, CH2Cl2 : MeOH (9:1). 

Hydrolysis to the amide occurred (ca. 1/3). 

Method C - Benzonitrile (1 molar eq.) was suspended in NaOH 10% (10 mL/mmol). After 

heating to reflux for 6 hours, the reaction mixture was acidified with HCl and the white solid 

extracted with CH2Cl2 (3×15 mL). A mixture of starting material and its amide was isolated. 

Method D [286] - Benzonitrile (1 molar eq.) and KOH in pellets (18 molar eq.) were suspended in 

MeOH (0.6 mL/mmol), and EtOH (2.6 mL/mmol). H2O2 30% (1.0 mL/mmol) was added dropwise 

to avoid rapid heating and effervescence. After heating to reflux for 4 hours, the reaction mixture 

was acidified with concentrated HCl, and the solid extracted with CH2Cl2 (3×20 mL) to afford the 

required compound. 

 

4-(4-Chlorophenoxy)benzoic acid, 4.5 

White solid; 100%; mp 150-152%; 1H-NMR (CDCl3, 400.13 MHz) δ 7.02-7.06 (4H, m, Ar-H); 

7.39 (2H, d, J = 6.8 Hz, Ar-H); 8.10 (2H, d, J = 6.8 Hz, Ar-H); IR (film) νmax 3409, 1675 cm-1. 

 

4-(4-(Trifluoromethoxy)phenoxy)benzoic acid, 4.6 

White needles; 98%; mp 141-143 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 7.05 (2H, d, J = 6.8 Hz, 

Ar-H); 7.12 (2H, d, J = 6.8 Hz, Ar-H); 7.28 (2H, d, J = 6.8 Hz, Ar-H); 8.12 (2H, d, J = 6.8 Hz, Ar-

H). 

 

4-(4,4,4-Trifluorobutoxy)benzoic acid, 4.7 

Pinkish solid; 95%; mp 97-99 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.12 (2H, m, CH2CH2CH2); 

2.35 (2H, m, CH2CH2CF3); 4.09 (2H, t, J = 6.0 Hz, CH2CH2CH2CF3); 6.96 (2H, d, J = 8.4 Hz, Ar-

H); 7.62 (2H, d, J = 8.4 Hz, Ar-H). 

 

4-(3-(Trifluoromethoxy)phenoxy)benzoic acid, 4.8 

Yellow gum; 96%; 1H-NMR (CDCl3, 400.13 MHz) δ 6.98 (1H, br.s, Ar-H); 7.03 (1H, dd, J = 

8.2 and 2.0 Hz, Ar-H); 7.04-7.10 (3H, m, Ar-H); 7.43 (1H, t, J = 8.2 Hz, Ar-H); 8.13 (2H, d, J = 9.0 

Hz, Ar-H). 
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Procedure for the synthesis of 2-acetylphenyl-3-(trifluoromethyl)benzoate, 4.10 [261] 

1-(3-Trifluoromethyl)phenyl)ethanone (1 molar eq.) was dissolved in dry pyridine (2 mL/mol). 

2-Hydroxyacetophenone (1 molar eq.) was added, and the mixture was stirred at room temperature 

for 3 hours. The mixture was acidified with HCl and extracted with ethyl acetate (3×20 mL). The 

crude product was purified by flash chromatography, CH2Cl2 : hexane (2:3) and CH2Cl2 : MeOH 

(4:1). A transparent oil was obtained; 30%; 1H-NMR (CDCl3, 400.13 MHz) δ 2.57 (3H, s, CH3); 

7.27 (1H, d, J = 8.0 Hz, Ar-H); 7.42 (1H, td, J = 7.8 and 1.2 Hz, Ar-H); 7.64 (1H, td, J = 7.8 and 

1.6 Hz, Ar-H); 7.70 (1H, t, J = 7.8 Hz, Ar-H); 7.88-7.95 (2H, m, Ar-H); 8.42 (1H, d, J = 7.8 Hz, Ar-

H); 8.50 (1H, s, Ar-H). 

 

 

Procedure for the synthesis of 1-(3-Amino-5-chloro-2-hydroxyphenyl)ethanone, 4.26 

Nitroacetophenone (1 molar eq.) and Sn 10-40 mesh (15 molar eq.) were suspended in EtOH (5 

mL/mmol). HCl 30% (v/v) was added to the suspension and heated at reflux temperature for 1 hour. 

The mixture was cooled and diluted with water (20 mL/mmol). CH2Cl2 was added, and the aqueous 

phase basified up to pH 10. The aqueous phase was extracted with CH2Cl2 (4×50 mL), the 

combined extracts were dried over Na2CO3 and the solvent evaporated under reduced pressure. An 

orange solid was obtained; 94%; mp 84-85 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.62 (3H, s, CH3); 

4.05 (2H, br.s, NH2); 6.86 (1H, d, J = 2.4 Hz, Ar-H); 7.10 (1H, d, J = 2.4 Hz, Ar-H); 12.43 (1H, s, 

OH); IR (film) νmax 3501; 3398; 1632; 1460; 1306 cm-1. 

 

 

Procedure for the synthesis of N-(3-acetyl-5-chloro-2-hydroxyphenyl)acetamide, 4.27 

2-Hydroxyacetophenone 4.26 (1 molar eq.) was dissolved in dry pyridine (3 mL/mmol) and 

anhydride acetic was added (1.1 molar eq.). The mixture was refluxed for 6 hours, cooled to room 

temperature and acidified with concentrated HCl until pH 1. The aqueous phase was extracted with 

CH2Cl2 (3×50 mL), the combined extracts were dried (Na2SO4), and evaporated under reduced 

pressure. The crude product was purified by flash chromatography, hexane : ethyl acetate (4:1). 

Yellow solid; 74%; mp 125-127 ºC; 1H-NMR (CD3OD, 400.13 MHz) δ 2.22 (3H, s, CH3); 2.67 

(3H, s, CH3); 4.65 (1H, s, NH); 7.68 (1H, d, J = 2.4 Hz, Ar-H); 8.39 (1H, d, J = 2.4 Hz, Ar-H); IR 

(film) νmax 3370; 1638; 1606; 1465; 1363; 1313; 1166; 856; 791 cm-1. 
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Procedure for the synthesis of 1-(4-(bromomethyl)-5-chloro-2-hydroxyphenyl)ethanone, 4.29 

Method A - Acetophenone (1 molar eq.), NBS (1.1 molar eq.) and a catalytic amount of AIBN 

were dissolved in benzene (20 mL/mmol). The mixture was refluxed for 2 hours and cooled to room 

temperature. The reaction mixture was poured into a saturated solution of Na2CO3, and was 

extracted with ethyl acetate (50 mL). The crude product was purified by flash chromatography, 

hexane : ethyl acetate (9:1). A 1:1 mixture of 4.29 and acetophenone was recovered; 1H-NMR 

(CDCl3, 400.13 MHz) δ 2.65 (3H, s, CH3); 4.51 (2H, s, CH2); 7.11 (1H, s, Ar-H); 7.76 (1H, s, Ar-

H); 12.10 (1H, s, OH). 

Method B – Identical to method A, except for: NBS was used in greater excess (1.5 molar eq.) 

and reflux was carried out for 24 hours. An untractable mixture was obtained. 

 

 

Procedure for the synthesis of N-methoxy-N-methyl-4-(4-(trifluoromethoxy)phenoxy) 

benzamide, 4.38 

Compound 4.6 (1 molar eq.) was dissolved in TEA (1 molar eq.) and TBTU (1.1 molar eq.), and 

stirred at room temperature for 30 minutes. N,O-dimethylhydroxylamine (1.2 molar eq.) in TEA 

(1.2 molar eq.) were added, and the final mixture kept stirring at room temperature for 24 hours. 

CH2Cl2 (50 mL/mmol) was poured, and the organic phase washed in sequence with HCl 3N, 

Na2CO3 and brine. The organic phase was dried (Na2SO4), and the solvent evaporated under 

reduced pressure. Yellow oil; 100%; 1H-NMR (CDCl3, 400.13 MHz) δ 3.37 (3H, s, CH3); 3.53 (3H, 

s, OCH3); 7.00 (2H, d, J = 8.0 Hz, Ar-H); 7.06 (2H, d, J = 8.4 Hz, Ar-H); 7.23 (2H, d, J = 8.4 Hz, 

Ar-H); 7.74 (2H, d, J = 8.0 Hz, Ar-H). 

 

 

Procedure for the synthesis of 4-(4-(trifluoromethoxy)phenoxy)benzaldehyde, 4.39 

Compound 4.40 (1 molar eq.) was dissolved in dry THF (20 mL/mmol), and LiAlH4 (1.2 molar 

eq.) added slowly. The mixture was stirred for 1 hour at -5 ºC, after which it was diluted with 

CH2Cl2 (50 mL/mmol), and washed in sequence with solutions of KHSO4 1N (20 mL), HCl 3N (20 

mL), saturated solution of NaHSO4 (20 mL) and brine (20 mL). The organic phase was dried 

(Na2SO4) and the solvent evaporated under reduced pressure. Transparent oil; 97%; 1H-NMR 

(CDCl3, 400.13 MHz) δ 7.08-7.14 (4H, m, Ar-H); 7.29 (2H, d, J = 8.4 Hz, Ar-H); 7.89 (2H, d, J = 

8.4 Hz, Ar-H); 9.96 (1H, s, CHO). 
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Chalcones 

 

General procedure 

Method A - 8-Nitroacetophenone (1 molar eq.) and benzaldehyde (1 molar eq.) were dispersed 

in ethanol (20 mL/mmol). NaOH 1N (2 molar eq.) was added, and the mixture refluxed for 40 

minutes. After cooling to room temperature, concentrated HCl was poured dropwise until pH 1. The 

resulting precipitate was filtered off and washed with ice-cold water. The crude product was 

crystallized from EtOH. 

Method B - Identical to method A except NaOH was added in greater excess (6 molar eq.), and 

the reaction carried out at room temperature for 24 hours.  

 

(E)-1-(5-Chloro-2-hydroxy-3-nitrophenyl)-3-phenylprop-2-en-1-one, 4.34 

From method B - Yellow solid; 100%, mp 165-168 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 7.42-

7.50 (3H, m, Ar-H); 7.53 (1H, d, J = 15.6 Hz, CH); 7.68; (2H, d, J = 6.0 Hz, Ar-H); 7.94 (1H, d, J = 

15.6 Hz, CH); 8.10 (1H, d, J = 2.4 Hz, Ar-H); 8.20 (1H, d, J = 2.4 Hz, Ar-H). 

 

(E)-1-(5-Chloro-2-hydroxy-3-nitrophenyl)-3-(4-(4-(trifluoromethoxy)phenoxy)phenyl)prop-2-

en-1-one, 4.37 

From method B - Orange needles; 89%; mp 125-126 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 7.07 

(2H, d, J = 8.0 Hz, Ar-H); 7.11 (2H, d, J = 8.8 Hz, Ar-H); 7.28 (2H, d, J = 8.8 Hz, Ar-H); 7.46 (1H, 

d, J = 15.4 Hz, CH); 7.70 (2H, d, J = 8.0 Hz, Ar-H); 7.97 (1H, d, J = 15.4 Hz, CH); 8.12 (1H, s, Ar-

H); 8.23 (1H, s, Ar-H); 13.33 (1H, s, OH); 13C-NMR (CDCl3, 100.61 MHz) δ 118.56 (CH); 119.17 

(CH); 120.90 (CH); 122.89 (CH); 123.59 (Cq); 125.80 (Cq); 126.71 (Cq); 128.05 (Cq); 129.05 

(Cq); 130.35 (CH); 131.13 (CH); 135.39 (CH); 137.60 (Cq); 147.17 (CH); 154.12 (Cq); 156.06 

(Cq); 160.33 (Cq); 190.99 (C=O); IR (film): νmax 3409; 1645; 1562; 1492; 1453; 1352; 1248; 1217; 

1172; 1063 cm-1; ESI-MS m/z (abund.): 480 [M+H]+ (100); Anal. Calcd. For (C22H13ClF3NO6): C, 

55.07; H, 2.73%. Found: C, 56.24; H, 2.82%. 

 

7.4.10 Flavones 

 

General procedure 

Method A [288] - DBU (2.2 molar eq.) was added to a solution of 2-hydroxyacetophenone (1 

molar eq.) and benzoyl chloride (1.1 molar eq.) in dry pyridine (4 mL/mmol). The mixture was 
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stirred for 6 hours at reflux, cooled to room temperature and poured into HCl 1N (20-25 mL) 

containing ice. The solution was extracted with dichloromethane (3×50 mL) and the combined 

extracts were dried upon Na2SO4 and evaporated to dryness under reduced pressure. The crude 

product was purified by flash chromatography eluting with hexane : ethyl acetate (9:1). 

Method B - Benzoic acid (1 molar eq.) was dissolved in SOCl2 (8 mL/mmol) and heated at 

reflux temperature for 24 hours. The solvent was evaporated and the crude product used as such in 

the following step. DBU (2.2 molar eq.) was added to a solution of the 2-hydroxyacetophenone (1.5 

molar eq.) and benzoyl chloride (1.0 molar eq.) in dry pyridine (4 mL/mmol). The mixture was 

stirred for 6 hours at reflux, cooled to room temperature and poured into HCl 1N (20-25 mL) 

containing ice. The solution was extracted with dichloromethane (3×50 mL), the combined extracts 

were dried (Na2CO3) and evaporated to dryness under reduced pressure. The crude product was 

purified by flash chromatography, hexane : ethyl acetate (9:1). 

Method C - Equal to method B, but with 2-hydroxyacetophenone in greater excess (2 molar eq.) 

Method D - Equal to method B, but with MW-assisted heating, i.e. potency of 100W to a 

maximum of 150 ºC for 40 minutes. 

 

2-((3-Trifluoromethyl)phenyl)-4H-chromen-4-one, 4.11 

From method A - Pale yellow solid; 32%; mp 145-147; 1H-NMR (CDCl3, 400.13 MHz) δ 6.92 

(1H, s, Ar-H3); 7.48 (1H, t, J = 7.2 Hz, Ar-H); 7.65 (1H, d, J = 8.0 Hz, Ar-H); 7.71 (1H, t, J = 8.0 

Hz, Ar-H); 7.77 (1H, m, Ar-H); 8.83 (1H, d, J = 7.6 Hz, Ar-H); 8.13 (1H, d, J = 7.6 Hz, Ar-H); 8.23 

(1H, s, Ar-H); 8.27 (1H, dd, J = 1.6 and 8.0 Hz, Ar-H).  

 

2-(4-(4-Chlorophenoxy)phenyl)-4H-chromen-4-one, 4.12 

From method B - Pale yellow solid; 30%; mp 132-133 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 

6.80 (1H, s, Ar-H3); 7.07 (2H, d, J = 8.8 Hz, Ar-H); 7.31 (2H, d, J = 8.8 Hz, Ar-H); 7.40 (2H, d, J = 

8.8 Hz, Ar-H); 7.45 (1H, t, J = 7.2 Hz, Ar-H); 7.59 (1H, d, J = 7.2 Hz, Ar-H); 7.73 (1H, t, J = 7.2 

Hz, Ar-H); 7.93 (2H, d, J = 8.8 Hz, Ar-H); 8.27 (1H, d, J = 7.2 Hz, Ar-H); 13C-NMR (CDCl3, 

100.61 MHz) δ 106.94 (CH); 118.02 (CH); 118.31 (CH); 121.22 (Cq); 123.93 (Cq); 125.27 (CH); 

125.74 (CH); 126.51 (CH); 128.24 (CH); 129.67 (Cq); 130.12 (CH); 133.77 (CH); 154.37 (Cq); 

156.21 (Cq); 160.34 (Cq); 162.86 (Cq); 178.38 (C=O); IR (film): νmax 1638; 1472; 1402; 1364; 

1243 cm-1; ESI-MS m/z (abund.): 349 [M+H]+ (100); Anal. Calcd. (C21H13ClO3 • 0.1 AcOEt): C, 

71.88; H, 3.89%. Found: C, 72.14; H, 3.76%. 
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6-Chloro-2-(4-(4-chlorophenoxy)phenyl)-4H-chromen-4-one, 4.13 

From method C - Pale yellow solid; 15%; mp 165-167 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 

6.78 (1H, s, Ar-H3); 7.05 (2H, d, J = 8.8 Hz, Ar-H); 7.11 (2H, d, J = 8.8 Hz, Ar-H); 7.39 (2H, d, J = 

8.8 Hz, Ar-H); 7.55 (1H, d, J = 8.8 Hz, Ar-H); 7.67 (1H, dd, J = 8.8 and 2.4 Hz, Ar-H); 7.91 (2H, d, 

J = 8.8 Hz, Ar-H); 8.21 (1H, d, J = 2.4 Hz, Ar-H); 13C-NMR (CDCl3, 100.61 MHz) δ 106.77 (CH); 

118.28 (Cq); 119.74 (Cq); 121.30 (CH); 124.88 (CH); 125.21 (CH); 126.03 (CH); 128.29 (CH); 

129.79 (Cq); 130.15 (CH); 131.22 (Cq); 133.94 (CH); 154.22 (Cq); 154.51 (Cq); 160.59 (Cq); 

163.15 (Cq); 177.11 (C=O); IR (film): νmax 1625; 1479; 1434; 1351; 1236; 824 cm-1; ESI-MS m/z 

(abund.): 383 [M+H]+ (100); Anal. Calcd. (C21H12Cl2O3): C, 65.82; H, 3.16%. Found: C, 66.17; H, 

3.07%. 

 

7-Chloro-2-(4-(4-chlorophenoxy)phenyl)-4H-chromen-4-one, 4.14 

From method C - Yellow solid; 32%; mp 179-181 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 6.75 

(1H, s, Ar-H3); 7.06 (2H, d, J =7.2, Ar-H); 7.12 (2H, d, J = 8.0, Ar-H); 7.40 (2H, d, J = 7.2, Ar-H); 

7.41 (1H, dd, J = 8.4 and 2.0 Hz, Ar-H); 8.62 (1H, d, J = 2.0, Ar-H); 7.91 (2H, d, J = 8.0 Hz, Ar-H); 

8.19 (1H, d, J = 8.4 Hz, Ar-H); 13C-NMR (CDCl3, 100.13 MHz) δ 107.07 (CH); 118.14 (Cq); 

118.29 (CH); 121.31 (CH); 122.47 (CH); 126.01 (CH); 126.12 (CH); 127.12 (CH); 128.25 (CH); 

129.80 (Cq); 130.15 (Cq); 139.75 (Cq); 154.33 (Cq); 156.29(Cq); 160.59 (Cq); 163.18 (Cq); 177.48 

(C=O); IR (film): νmax 1645; 1479; 1415; 1364; 1242 cm-1; ESI-MS m/z (abund.): 383 [M+H]+ 

(100); Anal. Calcd. (C21H12Cl2O3): C, 65.82; H, 3.16%. Found: C, 65.56; H, 3.09%. 

 

2-(4-(4-Chlorophenoxy)phenyl)-7-methyl-4H-chromen-4-one, 4.15 

From method C - White solid; 11%; mp 138-139 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.54 

(3H, s, CH3); 6.76 (1H, s, Ar-H3); 7.06 (2H, d, J = 7.2 Hz, Ar-H); 7.11 (2H, d, J = 7.2 Hz, Ar-H); 

7.26 (1H, dd, J = 8.0 and 1.2 Hz, Ar-H); 7.38-7.40 (3H, m, Ar-H); 7.91 (2H, d, J = 7.2 Hz, Ar-H); 

8.13 (1H, d, J = 8.0 Hz, Ar-H); 13C-NMR (CDCl3, 100.61 MHz) δ 21.88 (CH3); 106.85 (CH); 

117.80 (CH); 118.30 (CH); 121.20 (Cq); 121.66 (CH); 125.45 (CH); 126.64 (CH); 126.74 (CH); 

128.15 (CH); 129.62 (Cq); 130.10 (Cq); 145.10 (Cq); 154.40 (Cq); 156.34 (Cq); 160.21 (Cq); 

162.56 (Cq); 178.33 (C=O); IR (film): νmax 1632; 1485; 1421; 1370; 1243; 827 cm-1; ESI-MS m/z 

(abund.): 363 [M+H]+ (100); Anal. Calcd. (C22H15ClO3): C, 72.83; H, 4.17%. Found: C, 72.59; H, 

4.16%. 
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6-Chloro-2-(4-(4-chlorophenoxy)phenyl)-7-methyl-4H-chromen-4-one, 4.16 

From method C - Yellow solid; 21%; mp 185-187 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.54 

(3H, s, CH3); 6.76 (1H, s, Ar-H3); 7.06 (2H, d, J = 7.2 Hz, Ar-H); 7.10 (2H, d, J = 7.2 Hz, Ar-H); 

7.39 (2H, d, J = 7.2 Hz, Ar-H); 7.48 (1H, s, Ar-H); 7.90 (2H, d, J = 7.2 Hz, Ar-H); 8.20 (1H, s, Ar-

H); 13C-NMR (CDCl3, 100.61 MHz) δ 20.88 (CH3); 106.69 (CH); 118.28 (CH); 119.87 (CH); 

121.26 (CH); 122.98 (CH); 125.42 (CH); 126.24 (Cq); 128.22 (CH); 129.74 (Cq); 130.14 (Cq); 

131.93 (Cq); 142.98 (Cq); 154.29 (Cq); 154.45 (Cq); 160.45 (Cq); 162.88 (Cq); 177.18 (C=O); IR 

(film): νmax 1630; 1481; 1400; 1237; 1163; 827 cm-1; ESI-MS m/z (abund.): 397 [M+H]+ (100); 

Anal. Calcd. (C22H14Cl2O3): C, 66.52; H, 3.55%. Found: C, 65.72; H, 3.50%. 

 

6-Chloro-7-methyl-2-(4-(4-trifluoromethoxy)phenoxy)phenyl-4H-chromen-4-one, 4.17 

From method C - Pinkish solid; 40%; mp 171-173 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.55 

(3H, s, CH3); 6.76 (1H, s, Ar-H3); 7.12-7-14 (4H, m, Ar-H); 7.28 (2H, d, J = 8.0 Hz, Ar-H); 7.48 

(1H, s, Ar-H8); 7.91 (2H, d, J = 7.2 Hz, Ar-H); 8.20 (1H, s, Ar-H5); 13C-NMR (CDCl3, 100.13 

MHz) δ 20.89 (CH3); 106.75 (CH); 118.45 (CH); 119.87 (CH); 120.92 (CH); 122.85 (Cq); 122.91 

(CH); 122.95 (Cq); 122.99 (Cq); 125.43 (CH); 126.43 (Cq); 128.25 (CH); 131.95 (Cq); 143.00 

(Cq); 145.45 (Cq); 154.19 (Cq); 160.30 (Cq); 162.84 (Cq); 177.17 (C=O); IR (film): νmax 1630; 

1503; 1251; 1163; 1037; 904; 830 cm-1; ESI-MS m/z (abund.): 447 [M+H]+ (100); Anal. Calcd. 

(C23H14ClF3O4): C, 61.83; H, 3.16%. Found: C, 61.86; H, 3.10%. 

 

2-([1,1’-Biphenyl]-4-yl)-6-chloro-7-methyl-4H-chromen-4-one, 4.18 

From method C - Yellow solid; 27%; mp 197-199 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.56 

(3H, s, CH3); 6.87 (1H, s, Ar-H3); 7.44 (1H, tt, J = 1.2 and 7.2 Hz, Ar-H); 7.50-7.54 (3H, m, Ar-H 

and Ar-H8); 7.68 (2H, d, J = 8.0 Hz, Ar-H); 7.78 (2H, d, J = 6.8 Hz, Ar-H); 8.01 (2H, d, J = 6.8 Hz, 

Ar-H); 8.22 (1H, s, Ar-H5); 13C-NMR (CDCl3, 100.13 MHz) δ 20.91 (CH3); 107.24 (CH); 119.97 

(CH); 123.09 (Cq); 125.44 (CH); 126.76 (CH); 127.18 (CH); 127.72 (CH); 128.29 (Cq); 129.04 

(CH); 129.07 (CH); 130.30 (Cq); 131.96 (Cq); 139.69 (Cq); 143.05 (Cq); 144.55 (Cq); 154.54 (Cq); 

177.29 (C=O); IR (film): νmax 1630; 1451; 1407; 1244; 1051; 908; 827 cm-1; ESI-MS m/z (abund.): 

347 [M+H]+ (100); Anal. Calcd. (C22H15ClO2 • 0.2 CH2Cl2): C, 73.29; H, 4.27%. Found: C, 73.66; 

H, 4.31%. 
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2-([1,1’-Biphenyl]-4-yl)-6-chloro-8-nitro-4H-chromen-4-one, 4.19 

From method D - 1H-NMR (CDCl3, 400.13 MHz) δ  7.00 (1H, s, Ar-H3); 7.45 (1H, t, J = 7.2 

Hz, Ar-H); 7.53 (2H, t, J = 7.2 Hz, Ar-H); 7.69 (2H, d, J = 8.0 Hz, Ar-H); 7.82 (2H, d, J = 8.0 Hz, 

Ar-H); 8.11 (2H, d, J = 8.0 Hz, Ar-H); 8.41 (1H, s, Ar-H); 8.52 (1H, s, Ar-H). 

 

6-Chloro-7-methyl-2-(4-(4,4,4-trifluorobutoxy)phenyl)-4H-chromen-4-one, 4.20 

From method C - Yellow solid; 15%; mp 161-162 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 2.13 

(2H, m, CH2CH2CH2); 2.36 (2H, m, CH2CH2CF3); 2.54 (3H, s, CH3); 4.13 (2H, t, J = 6.0 Hz, 

CH2CH2CH2CF3); 6.74 (1H, s, Ar-H3); 7.03 (2H, d, J = 8.6 Hz, Ar-H); 7.48 (1H, s, Ar-H8); 7.88 

(2H, d, J = 8.6 Hz, Ar-H); 8.19 (1H, s, Ar-H5); 13C-NMR (CDCl3, 100.13 MHz) δ 20.87 (CH3); 

22.09 (CH2); 29.82 (CH2); 30.52 (CH2); 66.27 (CF3); 106.08 (CH); 114.91 (Cq); 119.85 (CH); 

123.00 (CH); 124.16 (Cq); 125.40 (CH); 128.08 (CH); 131.80 (Cq); 142.81 (Cq); 154.45 (Cq); 

161.44 (Cq); 163.34 (Cq); 177.24 (C=O); IR (film): νmax 1638; 1504; 1408; 1243; 1019 cm-1; ESI-

MS m/z (abund.): 397 [M+H]+ (100); Anal. Calcd. (C20H16ClF3O3): C, 60.54; H, 4.06%. Found: C, 

60.49; H, 3.93%. 

 

2-(4-(3-(Trifluoromethoxy)phenoxy)phenyl)-4H-chromen-4-one, 4.21 

From method C - Yellow solid; 37%; mp 86-87%; 1H-NMR (CDCl3, 400.13 MHz) δ 6.81 (1H, 

s, Ar-H3); 6.99-7.10 (3H, m, Ar-H); 7.18 (2H, d, J = 8.8, Ar-H); 7.41-7.48 (2H, m, Ar-H); 7.59 

(1H, d, J = 7.6 Hz, Ar-H); 7.73 (1H, ddd, J = 8.6, 7.2 and 1.6 Hz, Ar-H); 7.96 (2H, d, J = 8.8 Hz, 

Ar-H); 8.26 (1H, dd, J = 7.6 and 1.6 Hz, Ar-H); 13C-NMR (CDCl3, 100.13 MHz) δ 107.09 (CH); 

112.58 (CH); 116.45 (CH); 117.67 (CH); 118.03 (Cq); 118.39 (CH); 118.89 (CH); 123.93 (Cq); 

125.30 (CH); 125.76 (CH); 127.08 (Cq); 128.33 (CH); 130.61 (CH); 130.85 (Cq); 133.81 (CH); 

156.22 (Cq); 157.02 (Cq); 159.58 (Cq); 162.77 (Cq); 178.40 (C=O); IR (film): νmax 1632; 1587; 

1478; 1370; 1262; 1172 cm-1; ESI-MS m/z (abund.): 399 [M+H]+ (100); Anal. Calcd. (C22H13F3O4): 

C, 66.34; H, 3.29%. Found: C, 66.40; H, 3.22%. 

 

2-([1,1’-Biphenyl]-4-yl)-3-bromo-7-bromomethyl-6-chloro-4H-chromen-4-one, 4.31 

Compound 4.18 (1 molar eq.), NBS (1.2 molar eq.) and benzoyl peroxide (0.1 molar eq.) were 

suspended in CCl4 (5 mL/mmol). The mixture was heated to reflux for 24 hours and then cooled to 

room temperature. The organic phase was washed with water and evaporated to dryness under 

reduced pressure. The crude product was purified by flash chromatography, hexane: ethyl acetate 

(9:1). Yellow solid; 27%; mp 262-265 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 4.67 (2H, s, CH2); 
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7.45 (1H, t, J = 7.0 Hz, Ar-H); 7.53 (2H, t, J = 7.4 Hz, Ar-H); 7.69-7.71 (3H, m, Ar-H); 7.79 (2H, d, 

J = 8.6 Hz, Ar-H); 7.99 (2H, d, J = 8.6 Hz, Ar-H); 8.34 (1H, s, Ar-H); 13C-NMR (CDCl3, 100.13 

MHz) δ 29.00 (CH2); 109.14 (Cq); 120.61 (CH); 122.43 (Cq); 127.07 (CH); 127.27 (CH); 127.36 

(CH); 128.31 (CH); 129.04 (CH); 129.88 (CH); 131.04 (Cq); 131.46 (Cq); 139.72 (Cq); 141.76 

(Cq); 144.34 (Cq); 153.85 (Cq); 162.21 (Cq); 171.90 (C=O); IR (film): νmax 1651; 1613; 1549; 

1453; 1409; 1332; 1076 cm-1; ESI-MS m/z (abund.): 505 [M+H]+ (100); Anal. Calcd. 

(C22H13Br2ClO2): C, 52.37; H, 2.60%. Found: C, 52.01; H, 2.51%. 

 

2-([1,1’-Biphenyl]-4-yl)-3-bromo-6-chloro-7-methyl-4H-chromen-4-one, 4.32 [290] 

Compound 4.18 (1 molar eq.), NBS (1.2 molar eq.) and ZrCl4 (0.1 molar eq.) were suspended in 

CH2Cl2 (4 mL/mmol). The suspension was stirred at room temperature for 24 hours and water was 

added. The aqueous phase was extracted with CH2Cl2 (4×50 mL), and the combined extracts were 

evaporated to dryness under reduced pressure. The crude product was purified by flash 

chromatography, hexane : ethyl acetate (9:1). Yellow solid; 10%; mp 190-192 ºC; 1H-NMR 

(CDCl3, 400.13 MHz) δ 2.55 (3H, s, CH3); 7.41-7.48 (2H, m, Ar-H); 7.52 (2H, t, J = 7.6 Hz, Ar-H); 

7.66-7.72 (2H, m, Ar-H); 7.78 (2H, d, J = 8.6 Hz, Ar-H); 7.97 (2H, d, J = 8.6 Hz, Ar-H); 8.28 (1H, 

s, Ar-H); 13C-NMR (CDCl3, 100.13 MHz) δ 20.98 (CH3); 109.02 (Cq); 119.67 (CH); 120.78 (Cq); 

126.04 (CH); 126.97 (CH); 127.26 (CH); 128.24 (CH); 129.02 (CH); 129.87 (CH); 131.35 (Cq); 

132.46 (Cq); 139.80 (Cq); 143.66 (Cq); 144.12 (Cq); 153.92 (Cq); 161.66 (Cq); 172.06 (C=O); IR 

(film): νmax 1651; 1606; 1542; 1409 cm-1; HRMS calc. (C22H14BrClO2): 423.9866 / 425.9845. 

Found: 423.9861 / 425.9839. 

 

 

7.4.11 Intermediates for isoflavones 

 

Procedure for the synthesis of 3-iodo-4H-chromen-4-one, 4.40 [296] 

2-Hydroxyacetophenone (1 molar eq.) was diluted in DMF-DMA (1.5 molar eq.) and the 

resulting mixture was stirred at 95 ºC for 3 hours. After evaporation of the solvent, the obtained 

solid was dissolved in CHCl3 (4 mL/mmol) and successively treated with pyridine (1 molar eq.) and 

I2 (2 molar eq.). The resulting mixture was stirred at room temperature for 24 hours. The reaction 

was treated with saturated aqueous Na2S2O3 solution and stirred for 30 minutes at room 

temperature. The aqueous phase was extracted with CH2Cl2 (4×30 mL). The collected organic 

extracts were dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product 
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was purified by flash chromatography, hexane : ethyl acetate (9.5:0.5). White needles; 97%; mp 76-

77 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 7.45-7.50 (2H, m, Ar-H); 7.73 (1H, m, Ar-H); 8.26 (1H, 

dd, J = 8.6 and 1.6 Hz, Ar-H); 8.32 (1H, s, Ar-H2); IR (film) νmax 3061; 1651; 1555; 1460; 1318; 

1064; 862; 759 cm-1. 

 

 

Procedure for the synthesis of 3-(4-fluorophenyl)-4H-chromen-4-one, 4.42 [296] 

Na2CO3 (3 molar eq.) boronic acid (1.2 molar eq.) and Pd-C 10% w/w (5 mol% of the limiting 

reagent) were added to a solution of 4.40 (1 molar eq.) in DME (3 mL/mmol) and H2O (3 

mL/mmol). The resulting mixture was stirred for 1 hour at 45 ºC and then the catalyst was filtered 

off, washed with water and CH2Cl2. The aqueous phase was estracted with CH2Cl2 (4×25 mL) and 

the combined extracts were dried (Na2SO4), filtered and concentrated under reduced pressure. 

Orange solid; 93%; mp 191-193 ºC; 1H-NMR (CDCl3, 400.13 MHz) δ 7.14-7.19 (2H, m, Ar-H); 

7.47 (1H, ddd, J = 8.0, 7.6, and 0.8 Hz, Ar-H); 7.52 (1H, dd, J = 8.0 and 0.8 Hz, Ar-H); 7.57 (2H, 

m, Ar-H); 7.73 (1H, ddd, J = 7.6, 7.2 and 1.6 Hz, Ar-H); 8.04 (1H, s, Ar-H2); 8.34 (1H, dd, J = 8.0 

and 1.6 Hz, Ar-H); IR (film) νmax 1638; 1460; 1230 cm-1. 

 

 

Procedure for the synthesis of 1-(4-bromophenoxy)-3-(trifluoromethoxy)benzene, 4.45 

Identical to the procedure reported for SNAr reactions with reflux for 48 hours. Yellow oil; 38%; 
1H-NMR (CDCl3, 400.13 MHz) δ 6.85 (1H, br.s, Ar-H); 6.90 (1H, ddd, J = 8.2, 2.4 and 0.8 Hz, Ar-

H); 6.96 (1H, m, Ar-H); 7.01-7.13 (4H, m, Ar-H); 7.34 (1H, t, J = 8.2 Hz, Ar-H). 

 

 

7.5 Computational Approach 
 

7.5.1 Quantum mechanical calculations 

Each structure was drawn with GaussView 3.0 [331] and fully optimized in vacuo without 

imposing any constraints. All calculations were performed with the Gaussian 03 package [332]. 

Geometry optimizations were first carried out at the semi-empirical level of theory, AM1 [333]. A 

more refined minimization was then achieved at a quantum mechanical level, using DFT [334] with 

the hybrid B3LYP functional, which is a combination of Becke’s three parameter (B3) exchange 

functional [335] with the Lee, Yang, and Parr (LYP) correlation functional [336] and the 6-31G(d,p) 
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basis set, which adds polarized functions to both heavy atoms and hydrogen atoms. This hybrid 

functional and basis set has been described to calculate accurate energies [173]. The resulting 

geometries were found to be local minima on their potential energy by calculating harmonic 

frequencies. Molecular frontier orbitals, HOMO and LUMO, and MEPs of all optimized structures 

were visualized with Molekel 4.3 [337]. These MEP outlines provide a measure of the overall size of 

the molecule and the colour-coded surface gives location of the negative and positive electrostatic 

potentials, as a function of attraction or repulsion of a positively-charged test probe, respectively. 

MEP isoenergy contours were generated in the range of -0.15 and +0.15 e/au3. 

 

 

7.5.2 Molecular docking and virtual screening 

 

Protein preparation and molecular docking 

The cytochrome bc1 from the baker’s yeast (PDB code 1KYO) [43] was used. This presents the 

dimeric and functional protein with the iron-sulfur cluster in close contact with cytochrome b, 

which is crucial for electron transfer. The protein preparation was carried out using UCSF Chimera 
[338]. Hydrogens were added to aminoacid residues, partial charges were assigned with Antechamber 
[339], the energy was minimized and the output saved as mol2 file. Histidine 181 at the Qo site was 

kept protonated, as good evidence of such state is available for stigmatellin binding [63]. Docking 

was performed with the GOLD 3.02 or 4.01 [192] packages that search the best ligand interaction 

pose, inside the binding pocket, using a genetic algorithm. Docked ligands were ranked with the 

GoldScore [193] scoring function included in the software, and defined by the following components: 

protein-ligand hydrogen bond energy, protein-ligand van der Waals energy, ligand internal van der 

Waals energy and ligand torsional strain energy. This fitness function has been optimized to predict 

the ligand binding position and conformation of the ligands. Default settings were used and 10,000 

docking runs performed for each ligand:  

a) Population settings 

    Maxops  87000 

    Popsiz  100 

    select_pressure  100 

    n_islands  5 

    niche_siz  2 

 

b) GA settings  
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     pt_crosswt  95 

     allele_mutatewt  95 

     migratewt  10 

 

c) Search settings 

    start_vdw_linear_cutoff  4.000 

    initial_virtual_pt_match_max  3.000 

 

Database filtration 

The ZINC database contains over 8.5 million compounds and was used in this study. Database 

filtration was performed to collect only drug-like compounds for the docking studies, by applying 

the Lipinski rule of five [319]. The database was further reduced using a 90% diversity set, which 

afforded 136,966 compounds for virtual screening.  

As for the MOE database, only the drug-like subset, comprising over 600,000 compounds was 

used. 

 

Pharmacophore modeling and screening 

The pharmacophore was generated from the bioactive pose of GW844520, using the unified 

scheme in MOE to identify the pharmacophoric features. The algorithm uses active compounds to 

derive the pharmacophore without taking their biological data into account. Two different models 

were constructed and validated including the following features: hydrophobic centroid, amoratic 

centre, hydrogen-bond acceptor and its projection, hydrogen-bond donor and its projection. The 

radius of each feature was varied until a good selection of active molecules within a training set of 

14 compounds was achieved. In order to fully validate the models, it was sought that the RMSD 

values would rank accordingly to the IC50s against the T9-96 strain [19]. 

A conformational search using MOE was carried out to generate conformers for all compounds 

of the databases. In brief, this algorithm employs a parallelized fragment-based approach, in which 

molecules are divided into overlapping fragments. Each fragment is then submitted to a stochastic 

conformational search. The resulting fragment conformers are minimized and then assembled by 

superimposing common atoms. 250 conformations were generated for each compound, using the 

MMFF94x forcefield and a strain limit of 4 kcal/mol was employed to limit redundant conformers. 

No other input filters were applied. Virtual screening was then carried out for the two databases and 

only the lowest RMSD result for each hit was saved to advance to the docking studies. 
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Receptor-based screening and docking 

In the first stage of the screen, 500 runs on a 7-8 times speed up setting were conducted for each 

of the ca. 2000 compounds that matched the pharmacophore query. The top 100 results (10%) from 

each database were selected for the second phase of the receptor-based screen. This was performed 

with 250 runs under default settings. For both screening rounds only the top 5 poses of each 

compound were stored and the results from the second phase of screening were visually inspected 

with PyMol [46] based on the following criteria: (i) hydrogen bond with histidine 181 and glutamate 

272; (ii) hydrophobic interactions and complementarity between ligand and binding pocket.  

The active compounds from the in vitro tests were subjected to the third docking round, 

consisting of 10,000 runs in default settings, in order to better predict the molecular interactions 

within the Qo site of cytochrome bc1. 

 

 

7.6 Hematin binding studies 
Titration of hematin was carried out in buffered 40% DMSO at apparent pH 5.5. Chloroquine, 

clopidol and compounds 3.20-31 were prepared in the following way: stock solutions were obtained 

by dissolving accurately weighed hematin, chloroquine, clopidol and 3.20-31, in UV-spectroscopy 

grade DMSO, to a concentration of 1-5 mM, and stored in the fridge and dark. A buffered 40%  

(v/v) DMSO solution was prepared in 250 mL volumetric flasks using DMSO (100 ml), aqueous 

HEPES 1M (5 ml) and completing up to the mark with deionized water. Aqueous buffered DMSO 

40% (v/v) solutions of hematin, chloroquine, clopidol and 3.20-31 were prepared daily by mixing 

an accurately measured sample of the stock solution ca. 500 μL (via microsyringe) and diluting to 1 

mL with buffered 40% (v/v) DMSO solution. Hematin solutions of 10 μM were prepared with 

buffered 40% (v/v) DMSO solution, and transferred to the titration and reference cells. Solutions of 

chloroquine, clopidol and 3.20-31 were initially added to the cuvette in amounts as small as 2 μL, 

gradually increasing the volume in subsequent additions, until the final concentrations were higher 

than the hematin concentration, which is given by a plateau. After each addition the cuvette was 

stirred for one minute before the absorbance was taken. UV-Visible titrations were performed in a 

thermostated (20 ºC) cell holder. Scans were run between 300 nm and 500 nm to incorporate the 

Soret band of the porphyrin. The UV-Visible spectra obtained after each titrated addition was 

analyzed and stacked against the corresponding absorbances. Dissociation constants of the ligands, 

complexed with the FPIX-OH, were determined by fitting the experimental data to the appropriate 

equation models [245], using least squares nonlinear regression analysis with GraphPad Prism 
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computer program (GraphPad software, Version 5.00, San Diego, CA). Models were analyzed by χ2 

parameters. Association constants were calculated from dissociation constants. 
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Appendix 1 
 

Appendix 1.1 Energy-minimized structures  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A1.1 Energy-minimized strutures of atovaquone, clopidol and compounds 2.1-17. 

Atovaquone 
Clopidol 

2.1 2.2 

2.5 2.6 
2.4 2.3 

2.7 2.8 2.9 2.10 

2.11 
2.12 2.13 2.14 
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Figure A1.1 (cont.) Energy-minimized strutures of atovaquone, clopidol and compounds 2.1-17. 
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Appendix 1.2 Docking pose of the synthesized Mannich-base 4-pyridonimines 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure A1.2 Docking poses of 2.4, 2.6-8. 
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Appendix 1.3 X-Ray data for compound 2.8 
 

Crystal data 

2 • C21H34N4O3S2
+ • 4I- • 5H2O a = 12.7930(5) Å 

Mr = 1442.86    b = 13.5539(6) Å 

Triclinic, P1    c = 16.8386(7) Å 

α = 96.670(2)º   Mo Kα radiation 

β = 97.667(2)º    μ = 2.33 mm-1 

γ = 98.224(1)º    T = 100(2) K 

V = 2836.5(2) Å3   0.35 × 0.2 × 0.08 mm 

Z = 2 

 

Data collection 

Bruker APEXII CCD   49577 measured reflections 

     diffractometer   11468 independent reflections 

Absorption correction: multi-scan 8753 reflections with I > 2 σ(I) 

     (SADABS; Bruker, 2005)  Rint = 0.050 

     Tmin = 0.575, Tmax = 0.830 

 

Refinement 

R[F2 > 2σ(F2)] = 0.043  H atoms treated by a mixture of 

wR(F2) = 0.116       independent and constrained 

S = 1.00        refinement 

11468 reflections   Δρmax = 2.07 e Å-3 

654 parameters   Δρmin = -1.42 e Å-3 

17 restraints 
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Appendix 2 
 

Appendix 2.1 X-Ray data for compound 3.22 
 

Crystal data 

C23H19ClN2    a = 13.3804(4) Å 

Mr = 358.85    b = 9.1438(4) Å 

Monoclinic, P21/c   c = 15.6064(5) Å 

α = 90º    Mo Kα radiation 

β = 113.239(2)º   μ = 0.23 mm-1 

γ = 90º     T = 100(2) K 

V = 1754.49(10) Å3   0.32 × 0.1 × 0.06 mm 

Z = 4 

 

Data collection 

Bruker APEXII CCD   52897 measured reflections 

     diffractometer   5115 independent reflections 

Absorption correction: multi-scan 3814 reflections with I > 2 σ(I) 

     (SADABS; Bruker, 2005)  Rint = 0.059 

     Tmin = 0.908, Tmax = 0.986 

 

Refinement 

R[F2 > 2σ(F2)] = 0.040  H atoms parameters constrained 

wR(F2) = 0.097   Δρmax = 0.38 e Å-3 

S = 1.00    Δρmin = -0.33 e Å-3  

5115 reflections    

236 parameters    
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Appendix 2.2 Hematin titration with 4-quinolonimines 
 

Titration of hematin with increasing concentrations of 4-quinolonimines (20 ºC, apparent pH 

5.5, HEPES buffer with 40% DMSO). The variation of absorbance of hematin at 400 nm is 

represented as a function of the compound concentration. The solid line represents the best fit curve 

for the 1:1 stoichiometry model. The curves were corrected for dilution and absorbance of the 

ligand at 400 nm. 
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Appendix 3 
 

Appendix 3.1 Pharmacophore model validation, RMSD 
Compound Strucutre IC50 (nM) RMSD 
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Appendix 3.2 MOE database: top 100 ligands 
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Appendix 3.3 ZINC database: top 100 ligands 
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