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Abstract 

The concept of pharmaceutical nanobiotechnology was originated in the 1970s when 

liposomes started to be used as nano-drug delivery systems (NanoDDS) to incorporate 

lipophilic and hydrophilic drugs. Since then liposomes have been the most widely 

investigated nano-carrier system aiming to achieve controlled drug delivery. The 

inability of several conventional therapies to deliver the therapeutic dose of the 

active agents to the diseased tissues at the desired time and concomitantly avoid 

causing severe toxic effects to healthy tissues or organs has brought considerable 

attention to the development and clinical use of NanoDDS. 

In the work developed in this thesis we intended to use liposomes as NanoDDS for 

cytosolic delivery of bioactive agents aiming to target either diseases of the 

Mononuclear Phagocytic System (MPS) or cancer. Simultaneously we explored the 

flexibility and the multifunctional nature of liposomes in different aspects. Special 

attention was given on the potential of liposomes to carry new bioactive agents with 

distinctive physicochemical features: small molecules (anti-parasitic drugs) or 

macromolecules (oligonucleotides) and their ability to target different types of cells, 

such as macrophages (phagocytic cells) and tumour cells (non-phagocytic). In order to 

achieve our aims we chose two disease models: Leishmaniasis and Small Cell Lung 

Cancer (SCLC). 

The development of liposomal formulations of dinitroanilines for the treatment of 

leishmaniasis was addressed in Chapter II. Dinitroanilines have proved in vitro 

anti-leishmanial activity but they are not used in clinical practice as 

chemotherapeutics for the treatment of leishmaniasis. Nevertheless, they hold great 

potential in the treatment of this disease due to a selective mechanism of action 

against parasite tubulins and to the absence of toxicity to mammals. To reach this aim 

we chose two complementary strategies. The first (Part A) consisted in the association 

of one dinitroaniline, trifluralin (TFL) with conventional liposomes. The second 

(Part B) consisted in the incorporation of chemical derivatives of TFL (TFL-D) prepared 

by organic chemistry hemi-synthesis methods, in order to further improve the 

chemical stability and biological activity. Conventional liposomes were used as 

solvents for these hydrophobic and difficult to handle dinitroanilines (either the TFL 

or the TFL-D) and also because they are naturally cleared from the circulation by the 

MPS favouring their choice to target intracellular infections of this system, such as 

leishmaniasis. 
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In Part A, after achieving an efficient incorporation and stabilization of TFL in 

liposomal formulations (stability on storage up to 2 years in lyophilized form) their 

therapeutic activity in appropriated animal models of visceral and cutaneous 

leishmaniasis was evaluated. All TFL liposomal formulations were active against 

different strains of Leishmania, showing significant reduction in the levels of visceral 

and cutaneous infections in mice. A superior activity (at least 2-fold) was observed for 

liposomal TFL as compared to the free drug. A selected TFL liposomal formulation also 

improved the clinical condition of experimentally infected dogs and reduced the 

parasite load. 

In Part B, two new dinitroaniline derivatives were used. This approach was pursued 

mainly to circumvent several disadvantages of TFL such as unfavourable 

physicochemical properties and difficulties on handling. Selected conventional 

liposomes were optimised for the incorporation of these TFL-Ds. The anti-leishmanial 

activity of TFL-D liposomal formulations was evaluated both in vitro and in vivo. The 

in vitro biological evaluation of the TFL-D liposomal formulations has demonstrated 

their activity against Leishmania parasites in culture without revealing signs of 

toxicity. In addition, extensive parasite load inhibition (> 90%) was observed after 

treatment with one of the TFL-D liposomal formulations in a murine model of zoonotic 

visceral leishmaniasis. 

The use of liposomes as NanoDDS in cancer therapy was addressed in Chapter III. The 

association of conventional anti-cancer drugs with liposomes has been particularly 

investigated not only because it increases their concentration in the tumour tissue and 

reduces their negative side effects, but also because of the extensive application of 

gene therapy protocols in the treatment of cancer. In fact, antisense oligonucleotides 

(asODN) or other nucleic acid molecules are considered a new class of anti-cancer 

drugs since they are able to selectively inhibit the expression of a gene. They act by 

binding to a complementary region of the mRNA causing its degradation with the 

consequent down-regulation of the corresponding protein. However, nucleic acids 

molecules need adequate NanoDDS to be efficiently delivered into the cytosol of the 

tumour cells due to their poor stability in physiological fluids, high susceptibility to 

nuclease degradation and limited ability to penetrate through cellular membranes. 

Based on this rationale, Chapter III is focused on the development of a targeted-

liposome delivery system containing an asODN for the treatment of SCLC. For this 

purpose, long circulating (PEG-grafted) cationic liposomes were used for the 

encapsulation of the asODN. The attachment of a targeting ligand for selective 
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cellular delivery, on the outer surface of this long circulating formulation, makes it a 

specific delivery system for SCLC cells. Two different cationic liposomal formulations, 

Coated Cationic Liposomes (CCL) and Stabilized Antisense Lipid Particles (SALP), were 

selected for the encapsulation of an asODN that inhibits the expression of c-myc 

oncogene, associated with SCLC cell proliferation. The hexapeptide antagonist G was 

chosen as the targeting ligand to promote internalization of these formulations. The 

effect of the peptide coupling method, conventional and post-insertion, on the 

loading capacity and size of both formulations was assessed. The post-insertion 

coupling method applied both to CCL and SALP liposomes containing as(c-myc), 

developed in Chapter III resulted in antagonist G-targeted formulations with the 

necessary characteristics for evaluation of in vitro delivery of asODN to SCLC. The 

strategy of using antagonist G as the targeting ligand proved to be successful as it 

increased the uptake of both formulations as compared to the non-targeted 

counterparts, in particular in a variant SCLC cell line characterised by being resistant 

to conventional chemotherapy. The presence of the antagonist G at the surface of 

SALP did not affect the long circulation characteristics of the SALP liposomes as shown 

in pharmacokinetic studies. In addition, the preferential accumulation of this 

formulation in the lungs, substantiate the rationale behind the design of these 

targeted liposomes for in vivo intracellular delivery of nucleic acids. 

 
Overall, the main objectives of this work were reached. Throughout its experimental 

development new and important issues were identified and remain open. These issues 

may be an interesting starting point for future research. 
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Resumo 

O conceito de nanobiotecnologia no campo farmacêutico teve a sua origem na década 

de 1970 quando os lipossomas foram, pela primeira vez, utilizados como sistemas de 

transporte e entrega de fármacos (NanoDDS, do inglês Nano Drug Delivery Systems) 

para a incorporação quer de moléculas hidrófobas quer hidrófilas. Desde essa altura e 

tendo como objectivo a entrega de fármacos de forma controlada, os lipossomas têm 

sido os sistemas de transporte in vivo mais estudados. O desenvolvimento de NanoDDS 

tem sido alvo de grande interesse como alternativa a algumas terapias convencionais 

nos casos em que se demonstra incapacidade de entrega da dose terapêutica de 

fármacos nos seus locais de acção e em tempo útil, sem que se verifiquem, em 

simultâneo efeitos adversos nos tecidos sãos. 

O trabalho aqui desenvolvido refere-se à concepção e desenvolvimento de 

nano-formulações, via incorporação em lipossomas, para transporte intracelular de 

agentes bioactivos não convencionais e de natureza diversa, quer nas suas 

características físico-químicas, quer nos alvos terapêuticos a que se destinam: 

moléculas de baixo peso molecular, comercializadas ou obtidos por hemi-síntese, 

dirigidas a macrófagos infectados por Leishmania e uma macromolécula 

(oligonucleótido) destinada a células do cancro das pequenas células do pulmão (SCLC, 

do inglês Small Cell Lung Cancer). 

O Capítulo II refere-se ao desenvolvimento de formulações lipossomais de 

dinitroanilinas para o tratamento da leishmaniose. As dinitroanilinas são uma nova 

classe de compostos que, embora evidenciem actividade anti-parasitária, não fazem 

parte da prática clínica do tratamento desta doença. No entanto, possuem um 

mecanismo de acção selectivo nas tubulinas dos parasitas que, juntamente com 

ausência de toxicidade para os mamíferos, lhes conferem grande potencial como 

fármacos leishmanicidas. Para atingir este objectivo foram utilizadas duas abordagens 

complementares, a primeira das quais (Parte A) consistiu na incorporação de uma 

dinitroanilina, a trifluralina (TFL), em lipossomas convencionais. A segunda abordagem 

(Parte B) consistiu na incorporação em lipossomas de moléculas hemi-sintéticas 

derivadas da TFL (TFL-D). Esta estratégia teve como objectivo melhorar a estabilidade 

química e a actividade biológica da TFL. Os lipossomas convencionais foram utilizados 

como solventes para as dinitroanilinas (TFL e TFL-D), que são compostos hidrofóbicos 

e de difícil manuseamento. Além disso e uma vez que este tipo de lipossomas é 
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naturalmente eliminado da circulação sanguínea através do sistema fagocitário 

mononuclear (MPS, do inglês Monoculear Phagocytic System) a sua utilização para o 

tratamento de infecções de células e órgãos desse sistema, tal como a leishmaniose, 

parece pertinente. 

Na Parte A deste estudo, foram obtidas formulações lipossomais de TFL com elevada 

estabilidade (até 2 anos na forma liofilizada) e que apresentam parâmetros de 

incorporação apropriados. Estas formulações foram avaliadas em termos da sua 

actividade terapêutica em modelos animais de infecção de leishmaniose visceral e 

cutânea (Leishmania donovani e L. major). Observou-se uma acentuada redução dos 

níveis de infecção nos animais tratados com as formulações lipossomais de TFL, as 

quais demonstraram ser, pelo menos, 2 vezes superiores à do fármaco na forma livre. 

Do mesmo modo, verificou-se uma acentuada melhoria do quadro clínico, devida à 

grande redução da carga parasitária em cães experimentalmente infectados com 

leishmaniose e tratados com uma formulação lipossomal de TFL. 

Na Parte B deste trabalho foram utilizados dois novos derivados da TFL. Esta 

abordagem constitui uma forma de ultrapassar as propriedades físico químicas da TFL, 

tais como a sua baixa solubilidade aquosa e a dificuldade de manuseamento deste 

fármaco. Após optimização das formulações de lipossomas convencionais contendo 

dois TFL-D foi avaliada a sua actividade leishmanicida quer em ensaios in vitro quer 

em modelos animais. A avaliação biológica in vitro das formulações lipossomais de 

TFL-D demonstrou serem activas contra parasitas de Leishmania em cultura, sem 

revelarem sinais de toxicidade em relação a culturas de células de mamífero. Por 

outro lado, em estudos num modelo animal de leishmaniose visceral zoonótica, foi 

observada uma elevada redução (> 90%) da carga parasitária após tratamento com 

estas mesmas formulações. 

A utilização de NanoDDS tem sido investigada com particular interesse no tratamento 

do cancro, com o objectivo de a associação de fármacos anti-tumorais com lipossomas 

possa aumentar a concentração daqueles no tecido tumoral, reduzindo 

simultaneamente, a sua acumulação em tecidos normais. Esta estratégia tem sido 

seguida não só com fármacos anti-tumorais convencionais como também e com maior 

incidência nas últimas décadas, em protocolos de terapia génica. De facto moléculas 

como os oligonucleótidos antisentido (asODN, do inglês antisense oligonucleotides) ou 

outros ácidos nucleicos são considerados uma nova classe de fármacos anti-tumorais 

uma vez que são capazes de inibir a expressão de um gene. Os asODN actuam através 

da ligação a uma região complementar de um determinado mRNA provocando a sua 
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degradação e consequente inibição da expressão da proteína correspondente. No 

entanto, para os ácidos nucleicos atingirem os seus alvos intracelulares necessitam de 

NanoDDS uma vez que são pouco estáveis em fluidos biológicos, apresentam uma 

elevada susceptibilidade à degradação por nucleases e não atravessam facilmente as 

membranas biológicas. Assim o Capítulo III refere-se ao desenvolvimento de 

formulações lipossomais apropriadas para a encapsulação de asODN e direccionadas 

por ligandos acoplados à superfície. Neste sentido, foram utilizados lipossomas 

catiónicos de longo tempo de circulação aos quais foi acoplado um ligando capaz de 

promover a internalização celular selectiva deste sistema por parte das células do 

SCLC. Dois tipos de lipossomas catiónicos designados por CCL (do inglês Coated 

Cationic Liposomes) e SALP (do inglês Stabilized Antisense Lipid Particles) foram 

seleccionados para a encapsulação de um asODN, designado por as(c-myc) que inibe a 

expressão do oncogene c-myc, associado à elevada proliferação celular que 

caracteriza o SCLC. O ligando responsável pelo direccionamento e internalização 

utilizado foi o hexapéptido designado por antagonista G. Dois métodos de 

acoplamento do péptido (convencional e pós-inserção) foram comparados e foi 

avaliado o efeito de cada um em parâmetros como a eficácia de encapsulação e o 

tamanho médio dos lipossomas. Os lipossomas CCL e SALP direccionados com o 

antagonista G possuem as características necessárias para a avaliação da entrega de 

as(c-myc) a células de SCLC em cultura. A estratégia da utilização do antagonista G 

como ligando para a entrega dirigida de as(c-myc) mostrou um aumento da 

internalização de ambas as formulação, em particular no caso de uma linha celular de 

SCLC caracterizada por ser resistente a fármacos convencionais. Por outro lado, a 

presença do antagonista G à superfície dos SALP não afectou negativamente as 

características de longo tempo de circulação no sangue apresentadas por esta 

formulação. Para além disso, a acumulação preferencial desta formulação 

direccionada nos pulmões, sustenta esta estratégia de desenho de sistemas 

especificamente dirigidos para a entrega intracelular de ácidos nucleicos neste órgão. 

 
Dum modo geral, os principais objectivos deste trabalho foram atingidos. Ao longo do 

seu desenvolvimento experimental novas e importantes questões foram identificadas 

que permanecem em aberto e que constituem um ponto de partida interessante para 

trabalhos futuros. 
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Aims and organisation of the thesis 

The aim of the work described here is the development of liposomal formulations as 

NanoDDS for bioactive drugs having different therapeutic targets. One of the NanoDDS 

consists of liposomal formulations containing dinitroanilines for the treatment of 

Leishmaniasis. After intravenous administration conventional liposomes are rapidly 

cleared from the circulation by the MPS where leishmania parasites reside, making 

these NanoDDS appropriate for natural intracellular targeting of MPS infections. 

Another NanoDDS consist of sterically stabilized cationic liposomes for the delivery of 

an antisense oligonucleotide (asODN) complementary to a specific portion of the 

mRNA coding for the c-myc protein. These liposomes are specifically targeted to the 

cells of the Small Cell Lung Cancer (SCLC), via a peptide (antagonist G), covalently 

attached to the liposome surface. 

 

The thesis is organised as follows: 

Chapter I provides a brief overview on the delivery of drugs to cells mediated by 

nano-delivery systems, in particular liposomes. 

Chapter II describes the development of liposomal formulations for the incorporation 

of non-conventional drugs (dinitroanilines) for the treatment of Leishmaniasis. This 

chapter is divided into two parts, Part A and Part B. Part A is focused on the 

development of several conventional liposomal formulations of one dinitroaniline, 

trifluralin (TFL), in order to obtain a NanoDDS suitable for parenteral administration of 

TFL and targeted to the MPS cells. The therapeutic activity of TFL liposomal 

formulations was evaluated in animal models of Leishmania infections. In Part B is 

described a complementary strategy consisting on the chemical modification of the 

TFL molecule to modulate its physical and chemical properties. The resulting 

synthetic TFL-derivatives were formulated in liposomes. Their biological behaviour 

was assessed against Leishmania parasites both through in vitro systems and in vivo 

animal models. 

Chapter III describes the encapsulation of as(c-myc), an asODN molecule, in cationic 

liposomes with long circulation properties and specifically targeted to SCLC cell lines 

via antagonist G covalently attached to their surface. 

Chapter IV offers a general discussion of the results and conclusions. 
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I-1 - Overview 

Nanotechnology is a dynamic field, multidisciplinary in nature, which employs 

knowledge from physics, chemistry, biology, material science and engineering [1]. 

Over the last decades, it was observed an increased application of nanotechnologies in 

different areas, such as optics, electronics, pharmaceutical, food and agriculture [2]. 

In the field of pharmaceutical sciences the application of nanotechnologies for the 

construction of pharmaceutical delivery systems is of particular interest since it had a 

positive impact in the treatment of several diseases, such as cancer, metabolic and 

infectious diseases, inflammation and autoimmune disorders [3]. The concept of 

pharmaceutical nanobiotechnology was originated in the 1970s when liposomes were 

used as Nano-Drug Delivery Systems (NanoDDS) to encapsulate lipophilic and 

hydrophilic drugs. Since then, many noteworthy NanoDDS have been developed as 

platforms for controlled drug delivery in vivo [1]. A multiplicity of NanoDDS are 

available, including micelles, nanoemulsions, different polymeric and metal 

nanoparticles, nanocapsules, nanogels, liposomes, solid lipid nanoparticles, quantum 

dots, dendrimers, lipoproteins, nanotubes, nanofibres, polymer therapeutics and 

nanodevices [4]. Although these NanoDDS are constructed with materials of different 

nature and thus present different specific characteristics, they are all prepared to 

have between 1 and 1000 nm in size making them nanosized DDS, according to the 

nanoscale definition for the pharmaceutical field [5]. 

The considerable interest on the development and use of NanoDDS in clinical medicine 

is due to the inability of several conventional therapies to deliver the therapeutic 

dose of the biologically active molecules (hereinafter referred to as bioactive agents 

or drugs) to the diseased tissues at the desired time and concomitantly avoid causing 

severe toxic effects to healthy tissues or organs [1]. The failure of a significant 

number of new bioactive agents to live up to their potential in the clinic due to poor 
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physicochemical properties such as lack of blood solubility, metabolic stability or 

bioavailability [6, 7] has also lead to their association with NanoDDS. Thus, the main 

goal of a NanoDDS is to carry the bioactive agent specifically and safely from the site 

of administration to the desired therapeutic target in a controlled manner [8]. To 

achieve this goal the NanoDDS can act by different, alternative or complementary 

mechanisms. These can include: modification of the pharmacokinetic and tissue 

distribution profile of the bioactive agent, enhancement of its intracellular 

penetration and protection from degradation [3, 8]. However the design and 

development of NanoDDS able to deliver each particular bioactive agent precisely and 

safely to its target site at the right period of time to have a controlled release and 

achieve the maximum therapeutic effect remains a challenge [9]. 

In the field of drug delivery, nano-liposomes, a type of lipid-based systems represent 

one of the most advanced and promising class of NanoDDS. As therapeutic tools they 

possess great potential to effectively deliver bioactive agents to the site of action and 

to control their release at a predetermined rate and time [3, 10, 11]. 

The expression “nano-liposomes” has recently gained particular attention due to the 

growing importance given to nanotechnologies and nanomedicines, still the term 

“liposomes”, which derives from the Greek words “lipos” meaning fat and “soma” 

meaning body, has been used to designate these vesicles since their discovery in 1965 

[12]. For practical reasons through this dissertation the term liposome will be 

preferably used. 

A number of liposome-based formulations carrying conventional drugs are available in 

the market [13]. Some examples include: Doxil® (Alza Pharmaceuticals, San Bruno, 

CA, USA) approved in the U.S., Caelyx® (Schering-Plough Corporation, Kenilworth, NJ) 

approved in Europe and Myocet® (Elan Pharmaceuticals, Inc., Cedar Knolls, NJ, USA), 

all liposomal formulations of doxorubicin, and Ambisome® (Astellas Pharma US, Inc., 
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Deerfield, IL) a liposomal formulation of the anti-fungal drug Amphotericin-B. Many 

other liposomal formulations are already approved or in advanced clinical trials for 

the treatment of cancer and other life-threatening diseases. 

 

 

I-2 - Liposomes as platforms for drug delivery 

In 1965, Bangham et al. [12] reported that phospholipids in aqueous solutions form 

small closed highly ordered vesicular structures. Three years later Gerald Weissman 

named these structures as liposomes [14]. Liposomes are microscopic vesicular 

colloidal particles composed of self-assembled amphiphilic molecules (phospholipids) 

that are arranged in one or several concentric lipid bilayers surrounding an equal 

numbers of aqueous compartments [15]. The hydrophilic moieties or polar portions 

(head) of the phospholipids are oriented towards the extra-vesicular solution and 

interlamellar aqueous spaces while the hydrophobic chains or nonpolar tails form the 

bilayer [16, 17]. The possibility of incorporating numerous classes of molecules in 

liposomes, irrespective of molecular weight, electric charge or solubility, and the 

structural versatility of liposomes as well as their biocompatible, biodegradable and 

non-immunogenic nature led Gregoriadis et al. [18] in 1972 to first propose their use 

as DDS. Since then, liposomes have been investigated as biocompatible carriers for 

various bioactive agents for pharmaceutical, cosmetic, and other purposes [19]. 

 

I-2.1 – Basic properties of liposomes 

The in vivo behaviour and ultimately the success of liposomes as NanoDDS is strictly 

dependent on physicochemical properties like particle size, lamellarity, surface 

charge, sensitivity to pH changes and bilayer rigidity. These liposomes properties can 

be adjusted throught the controlled preparation of an almost unlimited number of 
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liposomes types [20, 21]. The modulation of structural aspects like the phospholipids 

polar head charge, the saturation and length of their acyl chain, the presence of 

cholesterol, the inclusion of non-lipidic molecules and the ratio of lipid components 

will result in different liposomes with distinct properties (Box 1). 

 

Box 1: Parameters used for the characterisation of liposomes 

 Number of lipidic bilayers (lamellarity): unilamellar, multilamellar; 

 Size (20 nm to 1 µm); and size distribution (P.I.); 

 Surface charge: neutral, positive or negative (determined by the zeta potential); 

 Captured volume: aqueous volume sequestered per amount of lipid; 

 Drug to Lipid ratio: entrapped drug per amount of liposomal lipid; 

 Entrapment efficiency: the quotient between the final and initial liposomal Drug to 
Lipid ratio, expressed in percentage; 

 

Liposomes have the ability to entrap a great variety of bioactive agents. According to 

the physicochemical properties of these bioactive agents, namely their solubility, they 

can be distributed in the different compartments of the liposomes (Box 2) [7]. 

 

Box 2: Drug association and retention in liposomes 

 Hydrophobic drugs (Log Poct > 5) are inserted into the lipid matrix. They are chemically 

stable due to the establishment of van der Walls interactions; the drug “loading” that 

can be achieved is high. They present excellent retention in liposomes. In this case the 

entrapment is called incorporation; 

 Hydrophilic drugs (Log Poct <1.7) are entrapped in the inner and interlamellar aqueous 

spaces during the liposome preparation. They do not establish chemical interactions 

with the liposome; they achieve a smaller “loading” and present a slow release profile 

over a period of hours/days (dependant of the lipid composition). In this case the 

entrapment is called encapsulation; 

 Amphipatic drugs (Log Poct 1.7-5) are partitioned between the lipid matrix and the 

aqueous spaces. Electrostatic and van der Walls interactions are established between 

the drugs and the lipids. This type of drugs shows a fast release from the liposomes. 
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Polar drugs can establish electrostatic interactions with the polar head groups of the 

phospholipids and be adsorbed at the external and internal liposome surface [22]. 

Liposomes as NanoDDS present several advantages over conventional formulation 

therapies. They offer suitable means for delivering bioactive agents combined with 

the potential of improving the therapeutic activity while greatly reducing the side 

effects. In Box 3 are presented the main advantages of liposomes [7, 23, 24, 25]. 

 

Box 3: Main advantages of liposomes 

 Biocompatibility; 

 Modification of the bioavailability of the entrapped drug. Protection from degradation 
by the immune system, enzymes and unfavourable conditions; 

 Modulation of pharmacokinetics and biodistribution of entrapped drugs by masking their 
physicochemical properties; 

 Help in the diffusion of entrapped drugs through biological membranes due to their 
lipophilic nature; 

 Reduction of toxicity of the entrapped drug. Reduction of drug exposure to sensitive 
tissues and organs; 

 Manipulation of drug release rate by a sustained release mechanism. 
 

 

I-2.2 - Liposome Classification 

Liposomes can be classified according to different criteria (Box 4). The most common 

are: based on the preparation methods; according to structural parameters; or 

according to composition and in vivo application (or phylogenetic scheme) 

[26, 27, 28]. Of these classifications, the more adequate to understand the rationale 

behind the choice of appropriated liposomes for use as NanoDDS is the one based on 

the composition and application. This classification accounts for the functional 

characteristics of liposomes that are closely related to their in vivo behaviour. This 

type of liposome classification has been adopted by several authors and will also be 

followed throughout this thesis. 
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Box 4: Liposomes classification 

Structural Parameters (lamellarity and size) [29] 
 Multilamellar large vesicles (MLV); > 0.5 µm 

 Oligolamellar vesicles (OLV); 0.1 - 1 µm 

 Unilamellar vesicles (UV); all size range 

 Small unilamellar vesicles (SUV); 20 - 100 nm 

 Large unilamellar vesicles (LUV); > 100 nm 

 Giant unilamellar vesicles (GUV); > 1 µm 

 Multivesicular vesicles (MVV); usually > 1 µm 

Preparation Method [29] 
 Reverse-phase evaporation (REV) 

 Freeze / thawing (FAT) 

 Extrusion methods (VET) 

 French press (FPV) 

 Fusion (FUV) 

 Dehydration-rehydration (DRV) 

Composition and Application [16] 
 Conventional liposomes (Non-modified Surface) 

 Long-circulating liposomes (Modified Surface; sterically stabilised) 

 Targeted liposomes (Modified Surface; Reactivity to specific sites) 

 Cationic liposomes (Modified Surface) 
 

 

I-2.2.1 - Conventional liposomes 

Conventional liposomes represent the first generation of liposomes used as NanoDDS 

[30]. They are typically composed by mixtures of charged or uncharged naturally 

occurring phospholipids (e.g. egg or soy phosphatidylcholine (PC)) with or without 

cholesterol and charged amphipatic molecules. Although they can be prepared with a 

widely variety of physicochemical properties in order to modulate, to a certain 

extent, their in vivo behaviour (i.e. stability, clearance and distribution), they are 

characterised by a relatively short blood circulation time. In fact, after i.v. 

administration conventional liposomes become covered by plasma proteins (opsonins) 

and are rapidly removed from the blood by phagocytic cells of the mononuclear 
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phagocyte system (MPS), mainly by Kupffer cells from liver and macrophages from 

spleen. These organs with fenestrate endothelium are the major organs of 

accumulation of conventional liposomes. They can act as liposomes reservoirs and 

condition the sustained release of the drug after the liposomal rupture [26, 31]. The 

accumulation of liposomes in those organs is ruled by a dose dependent 

pharmacokinetics, where accumulation increases with dose, until reaching saturation 

[32]. This MPS-directed transport mechanism of conventional liposomes is usually 

called passive targeting. A logical therapeutic benefit of this type of behaviour is the 

use of conventional liposomes as candidate NanoDDS for the treatment of intracellular 

infections of the MPS, like Tuberculosis, M. Avium infections and Leishmaniasis 

[reviewed in: 25, 33, 34, 35]. 

 

I-2.2.2 - Long-circulating liposomes 

Uptake of liposomes into tissues other than liver and spleen increases with increasing 

circulation times of the liposomes [36]. Long-circulating liposomes, capable of 

avoiding capture by the MPS and persisting for prolonged periods of time in the 

bloodstream were developed at the end of the 1980s and led to a renewed interest in 

the use of liposomes as delivery systems. 

The first successful strategies increased the liposomes half-life in the blood from a 

few hours to up to 24 hours. These involved the use of phospholipids with a high phase 

transition temperatures (Tc) like dimyristoylphosphatidylcholine (DMPC), 

dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphocholine (DSPC) prepared 

in small sized vesicles (<100 nm) or the inclusion in the lipid composition of charged 

phospholipids like phosphatidylinositol (PI) or glycolipids like monosialo ganglioside 

(GM1). In the nineties several authors reported that the inclusion of GM1 led to an 
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increase uptake of these liposomes by solid tumours widening the possible therapeutic 

applications of liposomes [37, 38, 39]. 

Later on a different and more popular strategy was developed to easily produce 

long-circulating liposomes. It consisted in coating the outer surface of liposomes with 

the hydrophilic polymer poly(ethylene)glycol (PEG). This is done by using 

PEG-derivatized lipids like distearoylphosphoethanolamine (PEG-DSPE) where the 

polymer is covalently bound to the lipid anchor. These liposomes that have a half-life 

circulation time of more than 24 hours can be easily prepared by any pre-selected 

preparation method. They were first called “Stealth®” (registered trademark of 

Liposome Technology Inc., Menlo Park, CA, USA) because they were not identified by 

the MPS cells and thus escaped their capture. In general, they are more commonly 

referred to as “sterically stabilized” as a result of an enhanced in vivo stabilisation 

and reduction of the interactions with plasma proteins. This stabilisation results from 

the formation of a steric barrier produced by the highly hydrated PEG groups at the 

surface of liposomes that avoids recognition by opsonins, and is responsible for the 

induction of long circulation times (half-life in humans >24 h). The substantial 

increase in the circulation time of these liposomes gives them the opportunity to 

extravasate at body sites like solid tumours, and sites of infection and inflammation 

where the permeability of the vascular wall is increased and where new blood vessels 

are formed (angiogenesis) [29]. In these types of tissues, the accumulation of long-

circulating liposomes occurs through the so called Enhanced Permeability and 

Retention (EPR) mechanism. This mechanism offers the opportunity to design long 

circulating liposomes with appropriate size to cross these fenestrations [31]. 

Due to the fact that long-circulating liposomes are not easily captured by the MPS they 

can also be seen as slow release circulating micro-reservoirs of the entrapped 

bioactive agent. Thus, through the use of PEG-coated liposomes, high concentrations 
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of the drug can be found in the sites of action without the need of concomitant high 

doses of lipids. These liposomes have a dose independent pharmacokinetics in a wide 

variety of concentrations. This allows a prediction of the plasma levels of the drug 

making it easier to determine the correct dosage [37]. 

The versatility in lipid composition, the prolonged circulation half-lifes, the 

pharmacokinetics properties and the lack of MPS saturation are the essential 

advantages of long-circulating liposomes [40]. 

 

I-2.2.3 - Targeted liposomes 

In an attempt to enhance the specificity of the interaction between the liposomes and 

the target cells and to increase the drug accumulation in the desired tissues, the use 

of targeted liposomes has been suggested. These liposomes can be conventional, 

long-circulating or cationic as long as they have, at their surface, targeting moieties 

or ligands capable of recognizing specific cell populations, binding to them, and 

inducing internalization of the entire liposomes or only the encapsulated drugs [24, 

41]. The targeting moieties include antibodies or antibody fragments (in this particular 

case liposomes are referred to as immunoliposomes), glycoproteins, peptides, growth 

factors, carbohydrates, or specific receptor ligands [42, 43, 44]. The success of these 

liposomes as delivery systems is mainly dependent on the selectivity of the targeting 

moiety attached to the liposome surface towards the receptors in the target tissue or 

cell. When choosing the targeting moiety, variables like the degree of receptor 

expression; whether the ligand is internalized or not and the binding affinity of the 

ligand, are of crucial importance and must be considered [6]. In addition, for the 

targeting to occur, the ligands must always be exposed to the liposome exterior. 

Moreover, to allow the establishment of the ligand/receptor interaction is of 

convenience for these liposomes to be long circulating. These two features can be 
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combined through the development of long-circulating targeted liposomes. This type 

of liposomes can be obtained by different methods that allow the attachment of a 

specific targeting moiety at the surface of pre-formed long circulating liposomes 

containing the active drug. The coupling can be accomplished by covalently attaching 

the ligands directly to the terminus of end-functionalized PEG-derivatized 

phospholipids in the pre-formed liposomes. A more flexible method consists in the 

transfer of the targeting moiety coupled to PEG-derivatized phospholipids in a 

micellar phase into the bilayers of pre-formed long-circulating liposomes containing 

the active drug. This method called “post-insertion” allows the preparation of a 

variety of targeted liposomes by a simple mixing procedure from a small number of 

starting products [45]. In fact, any drug already entrapped in long circulating 

liposomes can be further targeted to different tissues according to the specific moiety 

attached at the liposome surface. 

Targeted liposomes offer various advantages over individual drugs targeted by means 

of polymers or antibodies. One of the most compelling advantages is the comparable 

increase in drug amount that can be delivered to the target. Furthermore, the number 

of ligand molecules exposed on the liposome surface can be increased, improving 

ligand avidity and degree of uptake [41]. 

 

I-2.2.4 - Cationic liposomes 

Cationic liposomes represent the youngest generation of the liposome family. They 

consist of lipidic mixtures containing synthetic positively charged lipids and were first 

developed by Felgner et al. [46] to improve the delivery of negatively-charged genetic 

macromolecules or nucleic acids (DNA, siRNA, asODN, plasmid or other) in vitro and in 

vivo [47, 48]. The cationic lipid components interact and neutralize the 
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negative-charges of those macromolecules, thereby condensing them into more 

compact structures [49, 50]. 

The association between cationic liposomes and nucleic acids is usually designated as 

lipoplexes [49]. These lipoplexes, present many types of morphologies, various sizes, 

and several models of association of the nucleic acids have been proposed [reviewed in 

51]. These methodologies of associating cationic liposomes to genetic material can be 

considered as “active” methods of association of those macromolecules that otherwise 

present poor encapsulation efficiency in passive encapsulation strategies using neutral 

liposomes [52, 53]. In association models or encapsulation protocols where the nucleic 

acids are encapsulated inside a bilayer envelope the term “cationic liposomes” can be 

applied to the complex formed (cationic liposome/nucleic acid). These cationic 

liposomal carriers are usually smaller in size and stable in vivo [53, 54, 55]. 

The lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP); N-[1-(2,3-

dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dioleyl-3-

dimethylammonium-propane (DODAP) are typical examples of cationic lipids [16]. The 

modification of the surface of cationic liposomes with the inclusion of PEG-derivatized 

phospholipid is expected to avoid their tendency to form large aggregates. The 

PEG-coating increases the blood circulation of these cationic liposomes upon i.v. 

administration, enhancing their chance of reaching their therapeutic targets [56]. To 

further improve their in vivo targeting, cationic liposomes are usually associated to 

specific ligands. 

In addition to their ability to spontaneously condense negatively charged 

macromolecules, cationic liposomes possess a number of advantages as delivery 

vehicles, including their natural ability to interact with negatively charged cell surface 

membranes and promote cellular uptake, and their ability to partially or fully protect 

associated macromolecules from degradation by serum nucleases [8, 57]. 
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I-2.3 - Routes of administration of liposomes in vivo 

The administration route by which a medicine is administered in vivo plays an 

important role on the success of the treatment. In general it is chosen according to 

the purpose of the treatment, the accessibility of the diseased tissue and the toxicity 

of the injected bioactive agent or of the NanoDDS [58]. Accordingly the route of 

administration by which liposomes are delivered into the body also modulates their 

fate and can contribute to the success of their application in different types of 

treatments, e.g. local or systemic. 

Liposomes can be administered by several routes, such as oral, intravenous, 

intraperitoneal, intramuscular, subcutaneous, dermal, transdermal and aerogenic. The 

parenteral routes have been the most commonly used and among these the i.v. 

administration of liposomes is the more relevant. When injected by this route, 

liposomes are delivered directly into the blood circulation, where they remain 

confined to the blood vessels. Once there, liposomes come into contact with different 

plasma proteins. Opsonins, which absorb to the liposome surface, are recognised by 

macrophages facilitating their uptake of liposomes. High density lipoproteins (HDL) 

are responsible for the degradation of the liposomal bilayer and consequent release of 

liposomal content [59]. The degree or extent of the interaction between these 

proteins and the liposomes depends on the liposomes structure, composition and other 

formulation characteristics as discussed before and plays a critical role in the 

liposomes fate in the blood circulation [59, 60]. This is one of the advantages of 

liposomes, as these characteristic can be modulated according to the final therapeutic 

target and administration route. 

When liposomes are administered by intraperitoneal, intramuscular or subcutaneous 

routes, their access to the blood circulation is not immediate and depends largely on 

their size. In these cases liposomes are injected in the interstitial/extracellular space 
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and subsequently they are cleared by the lymphatic system. Liposomes with diameters 

smaller than 100 nm are able to enter the lymph capillaries and reach the lymph 

nodes where they are taken up by macrophages, only a small fraction is drained into 

blood circulation. Larger liposomes remain in the extracellular space, forming a local 

liposomal depot. From this depot and depending on the lipid composition, the 

incorporated drug can be released more or less slowly. This mechanism, called 

sustained release, has been studied for antigen release aiming at vaccination [60, 61]. 

Non conventional administration routes, such as dermal and transdermal routes are 

currently receiving increasing attention for the local or systemic delivery of liposomal 

associated bioactive agents. A modified liposomal composition (presence of liposomes 

membrane softeners) provides the carrier with the ability to deform and increase skin 

permeability with consequent increase on therapeutic efficacy [62]. 

Similarly, the administration of liposomes by pulmonary route has received an 

increasing interest not only for the treatment of lung diseases, such as asthma, 

chronic obstructive pulmonary diseases, cystic fibrosis or tuberculosis, but also 

because several advantages were observed for systemic delivery [63]. 

 

 

I-3 – Liposome-Cell Interactions and cytosolic delivery 

NanoDDS have been envisaged and developed to deliver bioactive agents with 

therapeutic properties to their site of action. Liposomes in particular are able to 

provide protection and site specific delivery of the encapsulated drug, liposomes may 

also facilitate the cytosolic delivery according to the intended target. To allow a 

liposomal drug to exert its pharmacological activity at an intracellular target several 

biological barriers must be overcome before achieving efficient delivery [64]. These 

barriers include crossing the cell membrane which is naturally impermeable to 
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complexes larger than 1 kDa; and penetrating in the phagolysosomes (e.g. infectious 

diseases); or avoiding lysosomes and find its sub-cellular target site (e.g. the nucleus 

in some cases of gene delivery) [65]. All these barriers oblige liposomes to interact 

with cellular membranes providing several mechanisms for the delivery of their 

contents to cells, including extracellular release, membrane absorption and fusion, 

and endocytosis [66]. The adsorption of liposomes onto the cell surface can be either 

specific or non-specific and liposomes may remain bound to the outer cell membrane 

where they probably destabilize, releasing their entrapped bioactive agent in the 

extracellular matrix. The subsequent diffusion of the bioactive agent over the plasma 

membrane is possible for molecules that are able to cross the plasma membrane via 

micropinocytosis. Alternatively, the surface absorbed liposomes may fuse with cell 

membrane, delivering their contents directly to the cytosol [66]. If this is the desired 

mechanism of drug release, cationic moieties can be introduced in liposomes so that 

electrostatic interactions between liposomes and the negatively charged cell 

membrane are reinforced [23]. However, the main mechanism by which all eukaryotic 

cells actively internalize large molecular complexes, including NanoDDS, and retain 

them in transport vesicles which traffic along the endolysosomal scaffold is called 

endocytosis [67]. Endocytosis consists in the formation of a cell membrane 

invagination that engulfs the extracellular particles with the surrounding fluid, 

forming an intracellular membrane-bound vesicle, or endosome [68]. A number of 

different endocytic pathways can be distinguished, these include: phagocytosis, 

exclusive of specialized cells called phagocytes, which comprise macrophages, 

monocytes, dendritic cells and granulocytes; and pinocytosis, common to all cell 

types. (Figure I.1). Pinocytosis can be further divided into macropinocytosis, 

clathrin-mediated endocytosis, caveolae-mediated endocytosis and clathrin/caveolae-

independent endocytosis [65]. It is believed that such a diversity of mechanisms is 
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used by the cells to accomplish different tasks and might have an effect on the 

intracellular trafficking of the liposomes and thereby on the success of drug delivery 

[67]. 

 

Uptake pathways of Drug Delivery Systems

Pinocytosis
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Phagocytosis

(specialised cells)
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Destabilization

Endocytosis
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Figure I.1 - Different uptake pathways for cytosolic delivery mediated by NanoDDS. Adapted 
from [65] 
 

 

The major and best characterized endocytic pathway is the so called 

clathrin-mediated endocytosis, while the clathrin independent pathway, such as 

caveolae-mediated internalisation has recently gained attention [70]. 

Clathrin-mediated endocytosis serves as the main mechanism of internalization for 

macromolecules including, proteins, pathogens and particles in general (e.g. 

NanoDDS). The first step of internalization is the strong binding of a ligand, attached 

to the internalising particle, to a specific cell surface receptor. Then, through a 

sequence of events that include the formation of clathrin-coated vesicles and their 

fusion into endosomes, the endocytosed NanoDDS will end up mainly in the lysosomal 



Chapter I 

18 

compartment [65, 67, 68]. In caveolae-mediated endocytosis, small, hydrophobic 

membrane micro-domains rich in cholesterol and glycosphingolipids and the protein 

caveolin-1 form flask-shape pits called caveolae. The uptake of extracellular particles 

is also believed to be specifically mediated via receptors in caveolae. 

The specific endocytic mechanism, by which NanoDDS are taken up by the cell, will 

depend on several factors, like the size of the system, the presence and type of 

targeting ligand and cell type [68, 69]. For example, according to Rejman et al. [69], 

particles with a diameter less than 200 nm are preferentially endocytosed via the 

clathrin-mediated mechanism whereas larger particles (250-500 nm) enter the cell 

through caveolae-derived vesicles. Thus understanding the cellular endocytic 

pathways that allow for the intracellular site specific delivery of NanoDDS may 

contribute to the appropriate design of specific systems for each particular target. 

The mechanism of liposomes internalization may be modulated e.g. by targeting them 

into distinct cellular internalization pathways, considering that not every pathway 

may be equally effective in releasing a bioactive agent in the cytosol. 

 

I-3.1 - Liposome interactions with macrophages 

Macrophages are the major differentiating cell of the MPS. These specialized cells 

possess numerous functions in the human body. Among other functions, macrophages 

play an important role in the defence against many pathogens by acting as host cells 

for parasites, bacteria, viruses and other infectious agents. Macrophages recognise 

these pathogens in circulation or in infected tissues as foreign structures and capture 

them by phagocytosis [71]. Most of these pathogens are then killed by mechanisms of 

the macrophage. In some diseases however, the infections agent lives inside the 

macrophage and uses it as a place to multiply and disseminate the infection (e.g. 

Leishmania parasites). 
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Liposomes and other particles with sizes below 5 µm are also captured by 

macrophages and to a much larger amount than other cell types. Studies involving 

macrophages from different anatomical sites have demonstrated that after an initial 

binding step of the liposomes to the macrophage surface, they are internalised and 

delivered to the endosome/lysosome system as intact entities. Once they reach the 

phagolysosomes, liposomes are degraded by enzymes releasing their contents inside 

the cells [72]. The probable co-localisation of the infectious agent and the NanoDDS 

able to bring to the site of action bioactive agents has brought increasing interest in 

the development of macrophage-specific DDS. 

As discussed before, the capture of conventional liposomes by macrophages is an 

illustration of passive targeting [73]. Although no specific liposomal coating is required 

for this type of targeting, the inclusion of negatively charged lipids such as 

phosphatidylglycerol (PG) enhances their phagocytosis [reviewed in 71]. The 

phagocytised liposomes are not immediately located in the same cellular 

compartment as their target parasites and a fraction of the drug-loaded liposomes is 

recycled back to the extracellular matrix. However, the normal intracellular 

trafficking of the endosome carrying the liposomes will lead to the fusion with the 

phagolysosomes and the consequent destabilisation of the liposomal membrane will 

release the drug at its site of action [60]. Conventional liposomes carrying anti-

infectious drugs have been successfully directed to macrophages with a consequent 

improvement of their therapeutic activity. Numerous in vivo animal models have 

shown improvements in the treatment of intracellular infections using liposomal 

formulations of several antibiotics such as clofazimine [74], streptomycin, [75], 

gentamicin [76], amikacin [77], kanamycin [78], rifabutin [79] and primaquine [80]. 
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I-3.2 - Liposome interactions with cancer cells 

The rationale to use liposomes as NanoDDS in cancer chemotherapy is to increase the 

selective toxicity of the anticancer drug towards the tumour tissue and the drug 

concentration in that tissue, thus increasing its therapeutic index. In other words the 

application of liposomes in cancer treatment is aimed at altering the tissue 

distribution and some pharmacokinetic parameters of the drug [81, 82]. In order to 

reach tumour cells, liposomes loaded with the anticancer drug have to avoid capture 

by sensitive tissues and more important increase their longevity in the circulation. In 

fact, an increased circulation time in plasma gives the liposomes an opportunity for 

selective localization and accumulation in solid tumours. For example, StealthTM 

liposomes of about 100 nm in size are able to passively target these tumours upon i.v. 

administration [83, 84] through the EPR mechanism [85]. This increased permeability 

at tumours sites allows extravasation of macromolecules and particles (including 

liposomes carrying anti-cancer drugs) from the leaky blood vessels into the nearby 

tissue. In addition, the lymphatic drainage system malfunctions in tumour tissue, 

causing prolonged retention of the particles in the tumour interstitial space [86]. This 

passive targeting mechanism is thought to result in the sustained release of the 

anticancer drug from liposomes and diffusion throughout the tumour interstitial fluid 

being taken up by tumour cells [43]. This strategy is suitable when the anticancer drug 

is a low molecular weight compound that is able to cross the cell membrane as free 

drug. A good example of passive targeting strategy is the clinically approved 

doxorubicin (DXR) in long-circulating PEG-coated liposomes (Doxil®/Caelyx®). DXR is 

an anthracycline that presents potent anticancer activity in a wide range of human 

cancer including lymphomas, leukaemia and solid tumours [10]. However its use is 

constrained by highly problematic systemic toxicities [87]. The incorporation of DXR in 

PEG-coated liposomes demonstrates the maintenance or enhancement of the 



General Introduction 

21 

anti-tumour activity while reducing non-specific toxicity by limiting exposure to 

critical sites such as the myocardium [87]. 

On the downside, passive targeting is limited because solid tumours often have an 

heterogeneous blood supply mainly confined to peripheral regions. Therefore, it is 

unlikely that liposomes can diffuse to central poorly vascularised regions with high 

interstitial pressure and deliver cytotoxic Ievels of the anticancer drug [86]. Other 

factors like pharmacokinetic properties of the liposomes, their size and the sizes of 

the pores in the blood vessels also influence the level of accumulation of liposomes in 

tumours [86]. 

To further improve cellular specificity, to increase the amount of drug delivered to 

tumour cells and to facilitate cellular uptake of liposomes, recent efforts in the 

liposome field have been focusing on the attachment of specific ligands to the surface 

of liposomes [reviewed in 43, 88]. These ligand-targeted liposomes interact with cells 

by a mechanism known as active targeting. The targeting moieties can be specifically 

selected based on the unique receptors or epitopes that are exclusively expressed or 

overexpressed on the tumour target cells. Factors like the density and the 

homogeneous expression of the target antigen or receptor throughout the tumour 

tissue must be considered [89]. Some examples of receptors overexpressed by cancer 

cells and that can be exploited by actively targeted DDS are the folate receptor [90], 

the transferrin receptor [91] and the epidermal growth factor receptor [92]. Initially, 

the targeting moieties (mainly antibodies) were directly coupled to the phospholipid 

bilayer of conventional liposomes; this strategy resulted in an enhanced uptake of the 

immunoliposomes by the MPS, preventing the targeted liposome to reach their target 

cells [93]. The development of PEG-coated liposomes, made the active targeting of 

liposomes a real possibility for cancer therapy. The combination of liposomes with 

long circulating and targeting properties resulted in the production of various 
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liposomal formulations in which specific ligands were attached to the distal end 

(water exposed) PEG chains [4, 43, 94, 95]. Both in vitro and in vivo results have 

shown that such ligand-targeted Stealth® liposomes increased the therapeutic efficacy 

of encapsulated drugs compared to non targeted liposomes. Iden et al [96] compared 

the in vitro binding and cytotoxicity and the in vivo therapeutic efficacy (murine 

model of human B-lymphoma) of DXR encapsulated both in Stealth® liposomes and in 

Stealth® liposomes targeted with an anti-CD19 monoclonal antibody. The in vitro 

studies revealed a significantly higher uptake and cytotoxicity of the targeted 

liposomes in a CD19-expressing B-cell lymphoma cell line. In the in vivo studies, the 

targeted formulation showed a significant increase in the mean survival time in 

tumour-bearing mice as compared to the non-targeted formulation. Using similar DXR 

Stealth® formulations, Moreira et al. [97, 98] showed that a hexapeptide known as 

antagonist G could be used as a targeting moiety to prepare ligand-targeted Stealth® 

liposomes in human Small Cell Lung Cancer (SCLC). Antagonist G-targeted liposomes 

proved to have a long-circulating profile in blood, they were also internalized to a 

higher extent than the non-targeted formulation with a consequent increase in the 

DXR cytotoxicity mediated by these liposomes. 

The first step in the intracellular delivery of anticancer drugs mediated by targeted-

liposomes involves the specific binding of the ligand attached to the liposome carrier 

to the corresponding receptor at the surface of the target cell. After binding, the drug 

has two possible options to enter the cell. One possibility is the release of the 

bioactive agent from the cell-bound liposomes into the extracellular space, followed 

by subsequent diffusion of the released agent though the plasma membrane, as 

mentioned before for non-targeted liposomes. The other is the internalisation of the 

liposomal package via endocytosis [19]. Receptor-mediated endocytosis is a more 

specific active event where the cytoplasm membrane folds inward to form coated 
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vesicles or pits [67]. When targeted-liposomes are loaded with hydrophilic 

macromolecules like proteins, peptides and nucleic acids, their physiochemical 

properties do not allow them to cross the plasma membrane and the receptor 

mediated endocytosis mechanism is the only option to carry these anticancer drug 

molecules to their target site, which is often intracellular [67]. 

One of the most promising therapeutic applications of targeted-liposomes is as 

NanoDDS for nucleic acid delivery. As discussed above cationic liposomes are able to 

complex with the negatively charged nucleic acid molecules being extensively used as 

NanoDDS. Ligand-targeted cationic liposomes carrying nucleic acid molecules are 

extensively investigated in anticancer therapy. The literature presents many examples 

of such NanoDDS [reviewed in 99]. However, after endocytosis, these systems still 

have to avoid lysosomal degradation and in some cases enter the nucleus. Several 

strategies have been investigated to overcome these obstacles and include the 

incorporation of active lipids and peptides in the liposomes to enhance the endosomal 

release, and nuclear localization signals to enhance nuclear delivery [67]. 

 

 

I-4 - Liposomes therapeutic applications 

Liposomes have been extensively investigated as NanoDDS for application in the 

treatment of a variety of different diseases ranging from cancer chemotherapy, 

enzymatic and antimicrobial therapy to immunization, diagnostics and topical therapy 

[reviewed in 100]. 

In the work developed in this thesis we intended to use liposomes as NanoDDS for 

cytosolic delivery of drugs aiming to target either diseases involving MPS cells or 

cancer. Simultaneously we want to explore the flexibility and the multifunctional 

nature of liposomes in different aspects. The aspects explored were the capability  of 



Chapter I 

24 

liposomes to carry either small molecules (anti-parasitic drugs) or macromolecules 

(oligonucleotides) and their ability to target different types of cells, such as 

macrophages (phagocytic cells) and tumour cells (non phagocytic). In order to achieve 

our aims we have chosen two disease models: Leishmaniasis and SCLC. 

 

I-4.1 - Leishmaniasis 

Leishmaniasis is one of the most important vector-borne diseases of humans. It results 

from infection by various species of Leishmania, a protozoan parasite of the family 

Trypanosomatidae (order Kinetoplastida). In humans, different species of the parasite 

are associated with different forms of the disease. Cutaneous leishmaniasis can be 

caused by many Leishmania spp. and the clinical syndromes include skin ulcers and 

nodules. A few of these pathogens are also responsible for mucocutaneous 

leishmaniasis that affects the mucous membranes, and may cause disfiguring lesions of 

the nasal, oral and pharyngeal cavities. Other species are involved in the severe 

parasitisation of the liver, spleen, and bone marrow causing human visceral 

leishmaniasis. Visceral leishmaniasis is the most overwhelming type of leishmaniasis 

which is associated with the poverty of developing countries and is usually mortal if 

untreated [101, 102]. All forms of leishmaniasis are transmitted to mammals by the 

bite of certain species of female sand fly during blood meal [103]. The promastigote 

form infects the sand fly vector and exists as an extracellular parasite. On the 

contrary, in the mammalian host they infect the mammalian mononuclear phagocytic 

cells and exist as obligate intracellular amastigotes [104, 105]. 

The control of leishmaniasis remains a problem, especially in the case of a zoonotic 

infection. The chemotherapy of leishmaniasis has not changed much in the past 

decades. Pentavalent antimonial drugs are still the first choice for current 

antileishmanial regimes although they possess well-known toxicity. In addition, the 
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emergence of resistant strains in some areas is a major problem. Thus these 

compounds can only be used in regions where the parasites are sensitive. In cases of 

resistance to antimonials, recommended secondary treatment include drugs such as 

Amphotericin B, pentamidine, paromomycin and allopurinol [106]. Regrettably all 

these alternative drugs present serious limitations such as toxicity, the need of long 

term treatments and lack of efficacy in endemic areas [107]. The more recent 

antileishmanial drug, miltefosine, has the advantage of being an oral drug; however 

severe signs of toxicity, e.g. teratogenicity, restrict its use (e.g. in women of 

childbearing age). In addition, parasite resistance to miltefosine seems to be easily 

induced. The most sophisticated treatment available for leishmaniasis consists in lipid-

based formulations of amphotericin B. These include AmBisome® (a liposomal 

formulation), the most widely used; Amphocil™ (a colloidal dispersion); and Abelcet® 

(a lipid complex). All these formulations have minimized the negative side effects of 

the otherwise most effective free drug so far with the highest cure rate reported 

[108]. Although these lipid-based formulations require a shorter course of therapy (3–5 

days), are highly effective, and exhibit lower toxicity when compared with the free 

drug, the cost of these formulations is a barrier to widespread use [109]. 

In spite of the battery of drugs available for treatment of leishmaniasis, there is no 

drug that can conjugate high efficacy, acceptable toxicity, at affordable prices. This 

panorama, and in the absence of an available efficient vaccine, opens room for the 

search of new drugs, and/or new therapeutics that can help combat this disease. 

One proposal for the use of a new class of compounds as antileishmanial agents, 

formulated in nonconventional systems (NanoDDS) will be presented in chapter II of 

this thesis. 
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I-4.2 - Small Cell Lung Cancer 

Lung cancer has become the leading cause of cancer-related death in men and women 

in the last decades [110], accounting for 1.3 million deaths worldwide annually, as of 

2004 [111]. The most common symptoms are shortness of breath, coughing (including 

coughing up blood), and weight loss. A direct association between tobacco smoking 

and various type of lung cancer has been observed [112]. The vast majority of lung 

cancers are carcinomas; malignancies that arise from epithelial cells. These can be 

classified according to their histological type (i.e. size and appearance of the tumour 

cells). The two major histopathological groups of lung carcinoma are Small Cell Lung 

Cancer (SCLC), and Non-Small Cell Lung Cancer (NSCLC), the later accounts for about 

80% of lung cancers and can be subdivided into three major subtypes; 

adenocarcinoma, squamous cell carcinoma, and large cell carcinoma [110, 113]. 

SCLC is a neuroendocrine histological subtype of lung cancer that represents 15% of all 

pulmonary cancers [110]. Clinically, SCLC is particularly aggressive with a rapid 

doubling time, presenting an early and widespread metastatic behaviour as well as a 

rapid development of resistance to cytotoxic agents [114, 115]. Indeed, although a 

newly diagnosed SCLC is chemosensitive and radiosensitive with response rates of up 

to 80%, most patients relapse and eventually die from chemotherapy resistant disease. 

The overall five-year survival rate for SCLC is only 5% [115, 116]. 

Standard treatment of SCLC patients with limited stage disease (defined as a disease 

that is confined to one lung and nearby lymph nodes) consists of platinum-based 

combination chemotherapy, with early, concurrent thoracic irradiation [117]. Surgery 

can also be considered, but only when there is just one tumour that has not spread. 

Chemotherapy or radiation will be needed after surgery. In patients with extensive-

stage disease (defined as a disease that has spread to both sides of the chest and with 

metastasis beyond the chest) or relapsed SCLC only combination chemotherapy and 
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radiation can be considered. The most commonly used chemotherapeutics drugs are 

cisplatin or carboplatin (DNA cross-linking agents) in combination with etoposide 

(topoisomerase II inhibitor) [118, 119]. Patients with extensive-disease frequently 

relapse, and relapsed/refractory SCLC has a poor prognosis (median survival time of 8-

10 months) [117]. In relapse SCLC, several newer chemotherapeutic drugs have been 

investigated as second-line therapy and have shown modest efficacy. These agents 

include the topoisomerase I inhibitors, topotecan (approved by the FDA) and 

irinotecan; the taxanes, paclitaxel and docetaxel; the pyrimidine analogue, 

gemcitabine; the anthracycline antibiotic doxorubicin; and the vinca alkaloids, 

vinorelbine and vincristine. Combination chemotherapy of these agents has also been 

investigated [reviewed in 120]. 

New alternative therapeutic strategies have been focussed on the identification of 

potential tumour-specific molecular targets involved in the pathogenesis and 

proliferation of SCLC. New SCLC targeted therapies make use of new classes of drugs 

that block the growth of cancer cells by interfering with specific molecules needed for 

carcinogenesis and tumour growth. These consist of therapeutic antibodies or small 

molecules and have made treatment more tumour-specific and less toxic to normal 

cells [116]. The identification of the molecular targets that play a key role in cancer 

cell growth and survival is the basis for the development of targeted therapies. 

Proteins involved in cell signalling pathways that govern basic cellular functions such 

as cell division, cellular response to external stimuli and cell death are examples of 

such molecular targets. Blocking the signals that tell cancer cells to grow and divide 

uncontrollably, can help stop cancer progression and may induce cancer cell death. 

Other targeted therapies are focused in cancer cell death, either directly by the 

induction of apoptosis, or indirectly, stimulating the immune system to recognize and 

destroy cancer cells [121]. Targeted therapies are being studied to be used alone, or 
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in combination either with other targeted therapies, or with other cancer treatments, 

such as chemotherapy. Examples of new target agents such as angiogenesis inhibitors 

and regulators of apoptosis, currently undergoing pre-clinical and clinical evaluation 

for treatment of SCLC are reviewed by Abiddin et al. [122]. The FDA-approved 

targeted therapies are also available for consult [121]. 

In chapter III of this thesis will be presented one proposal for the development of a 

nonconventional formulation of an antisense oligonucleotide (asODN) against SCLC and 

their biological evaluation. 
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II – Introduction 

The World Health Organization (WHO) estimates that one sixth of the world's 

population is suffering from neglected tropical diseases (NTDs). The common 

denominator of all the NTDs is that they are invariably the diseases of the poorest in 

low-income countries [1, 2]. Malaria and leishmaniasis are the most prevalent 

neglected diseases caused by protozoan parasites. It is estimate that half of world’s 

population is at risk of malaria while leishmaniasis threatens 350 million people around 

the world [1]. 

Leishmaniasis is the collective name of a broad spectrum of human and animal 

diseases. It represents an immense public health problem in large tropical and 

subtropical areas throughout the world. Currently, it is endemic in 88 countries on 4 

continents. In Europe, the Mediterranean region belongs to the endemic areas of 

leishmaniasis and the disease is recently emerging in the United States [3, 4]. 

Leishmaniasis has a prevalence of at least 12 million infections with about 2 million 

new cases every year. An increased risk of infection among the immunosuppressed 

patients has been reported [3, 4, 5]. Some leishmaniasis is a widespread serious 

zoonotic disease with a great impact on public health. Leishmaniasis is caused by over 

20 different species and subspecies of the protozoan parasite genus Leishmania that 

live as elongated (10-20 µm), flagellate forms called promastigotes in the gut of the 

sand fly vector and as round, non-motile aflagellated forms called amastigotes (3-7 µm 

in diameter) in the macrophages of mammalian hosts. The sand fly vector becomes 

infected when feeding on the blood of an infected individual or an animal reservoir 

host. The infected macrophages are ingested by the fly during the blood-meal and the 

amastigotes are released into the stomach of the insect. The amastigotes transform 

into the motile promastigote form that replicates actively. When the sand fly next 

feeds on a mammalian host, the leishmania promastigotes are transferred to the host 
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along with the saliva. Once in the host the promastigotes are taken up by the 

macrophages where they rapidly revert to the amastigote form and multiply leading to 

the lysis of the macrophages. The released amastigotes are taken up by additional 

macrophages and so the cycle continues. Ultimately all the organs containing 

macrophages are infected, especially the spleen, liver and bone marrow [6, 7]. The 

Leishmania life cycle is shown in Figure II.1. 

 

Figure II.1 - The Leishmania lifecycle. The promastigote form of Leishmania is transmitted 
into the skin by female sandflies. Then the parasites are internalized by macrophages and 
dendritic cells where they lose their flagella, transforming into the amastigote form. After 
multiplication, the amastigotes destroy the host cell and infect other phagocytic cells. The 
amastigotes disseminate through the lymphatic and vascular systems, eventually 
infiltrating the liver, spleen and the bone marrow. Adapted from Chappuis et al. [8]. 
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Female sand flies of the genus Phlebotomus sp or Lutzomyia sp are responsible for the 

transmission to mammals, including humans [9]. The dog is considered the main 

peridomestic reservoir of the strains Leishmania infantum / Leishmania chagasi which 

are the causative agents of zoonotic visceral leishmaniasis in man [9, 10]. Leishmania 

infections can cause a broad spectrum of clinical outcomes, ranging from self-healing 

skin ulcers, to severe, life-threatening manifestations depending on the interactions 

between the species, the virulence of the infecting species and the host’s immune 

response. According to its clinical manifestations leishmaniasis can be classified into: 

cutaneous leishmaniasis (CL); muco-cutaneous leishmaniasis (MCL) (also known as 

espundia) and visceral leishmaniasis (VL) (also known as kala-azar) [3, 8, 11, 12]. The 

CL is characterised by multiple ulcerative lesions that can result in disfiguring scars, 

creating a lifelong aesthetic stigma; MCL is a mutilating disease as it causes extensive 

destruction of the oral, nasal and pharyngeal cavities and VL is a severe, debilitating 

disease, characterized by intermittent fever, weight loss, massive 

hepatosplenomegaly, anaemia and progressive deterioration of the host; is usually fatal 

when untreated [9, 13]. 

Leishmaniasis was selected by the WHO for elimination by 2015, along with other 

neglected tropical diseases [14]. Since there is no approved anti-leishmanial vaccine in 

clinical use, control relies almost exclusively on chemotherapy. Several different 

classes of drugs have been used for the treatment of leishmaniasis. Pentavalent 

antimonials (SbV), administered intravenously in the form of either Sodium 

Stibogluconate or Meglumine Antimoniate, have been the first-line chemotherapy 

agents against leishmaniasis for more than 60 years and are currently still the 

mainstream treatment [5, 15, 16]. However, antimony treatments are accompanied by 

a combination of problems, including: variable efficacy, need of long course 

treatments and severe adverse reactions, such as cardiac and renal toxicity. These side 
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effects and the emergence of several antimony resistant strains are responsible for 

their progressive failure and discontinuation [3, 5, 11, 16, 17]. Second-line treatment 

includes amphotericin B deoxycholate (Fungizone®) and pentamidine, efficient drugs 

also limited by severe side effects and the need for parenteral administration. 

Originally developed as a systemic antifungal, Fungizone® is also an efficient anti-

leishmanial drug, but has the major drawback of being acutely toxic and also requiring 

the need for prolonged hospitalization and close monitoring [5, 16, 18]. Pentamidine 

has been used as a second-line treatment for VL and CL for over 40 years [19]. In India 

it has shown promising activity in the treatment of relapsing VL after antimony 

treatment [17, 20]. Nevertheless the widespread use of this drug was always restricted 

due to low cure rates, considerable toxicity and the appearance of resistant strains. 

Miltefosine (hexadecylphosphocholine), a structural analogue of 

alkyl-lysophospholipids, originally developed as an anticancer drug, is the first efficient 

oral drug for the treatment of leishmaniasis. It was previously approved in India (2002) 

and recently in other countries [1, 11, 21, 22]. There is, however a general concern 

about miltefosine due to severe side effects, including teratogenicity and the easy 

appearance of resistant mutants [11, 17, 23, 24]. A number of other drugs, 

paromomycin, imiquimod and sitamaquine are currently at different stages of 

development as anti-leishmanial drugs [5, 16, 17]. With respect to paromomycin, 

recent Phase 3 clinical trials conducted in India proved an efficacy similar to 

amphotericin B, but higher occurrence of adverse reactions [16]. 

A strategy to improve the pharmaceutical efficacy and lessen the toxicity of some of 

the already existing anti-leishmanial drugs is the development of new, 

non-conventional formulations. These include the use of NanoDDS able to deliver the 

bioactive agents to the sites of infection and the use of nano-formulations as 

alternative to conventional ones. 
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Over the last decades, many attempts have been made to treat leishmaniasis with 

liposomal drugs [25, 26-30]. Despite the low encapsulation efficiencies that 

characterised some of the early liposomal formulations used for this purpose, they are 

claimed to be more efficient therapies than the conventional ones [26]. In general, 

liposomal formulations of anti-leishmanial agents have proved superiority, allowing the 

administration of considerably larger doses without revealing toxicity and reducing the 

dosing schedules [31, 32]. Among the drugs formulated in liposomes are amphotericin 

B; miltefosine and SbV compounds [29]. Of these, AmBisome®, a liposomal formulation 

of amphotericin B, is the safest and most successful formulation until now in curing 

human visceral leishmaniasis. It is considered the first choice treatment for patients 

who are unresponsive to antimonials [29]. AmBisome® can be administered at doses 

(7.5 mg/kg) much higher than amphotericin B free form (1.5 mg/kg) without signs of 

toxicity [33]. Nonetheless, the cost of such a treatment is currently too high hampering 

its use in the poor populations suffering from the disease [1, 5, 27, 34]. Antimonial 

compounds (meglumine antimoniate), efficiently encapsulated in liposomes, proved to 

be hundreds of times more effective than the free drug, while reducing its toxicity, in 

the treatment of canine leishmaniasis [28, 30, 35]. These formulations are, however, 

as the conventional drug formulations, limited by the existence of SbV-resistant strains 

[11, 36]. The latest therapeutic approaches in the treatment of leishmaniasis include 

the combination of SbV-drugs or amphotericin B with liposomes bearing stearylamine 

(SA), itself having leishmanicidal activity [32, 37, 38] or the evaluation of combination 

regimens of currently available drugs. A particular combination therapy regimen tested 

in India, consisting of a single-dose of liposomal AmphB (5 mg/kg) followed by short-

course orally administered Miltefosine (50 mg capsules) presented cure rates > 90% [15, 

39]. Although the results are very promising, the use of drugs with severe limitations 

will, again, confine the application of these therapies. 
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The aforementioned scenario points up that the current conventional chemotherapy for 

leishmaniasis, based on a handful of drugs with serious limitations such as toxicity and 

lack of efficacy in endemic areas, is far from satisfactory. A continuous search for new 

antileishmanial drugs and effective alternative approaches and administration 

strategies are thus urgently needed to reach the WHO goal for this disease. 

Dinitroanilines, a known class of bioactive agents, are tubulin-binding agents that have 

been recognised and extensively used for their herbicidal properties [40]. More 

recently several dinitroanilines have also shown anti-leishmanial properties. Among 

those, trifluralin (TFL) and oryzalin (ORZ), are two well characterised and 

commercially available herbicides that bind to plant tubulins, have proved to be active 

against several protozoan parasites such as Trypanosome, Toxoplasma [41], 

Cryptosporidium [42] and Leishmania [43]. Leishmania sp tubulins have been shown to 

be very similar to plant tubulins. This similarity represents the basis of the anti-

leishmanial activity of dinitroanilines, which have been shown to inhibit promastigote 

proliferation, reduce promastigote to amastigote transformation, interfere with 

amastigote replication and reduce amastigote infectivity [43]. An additional attractive 

feature of these agents is their lack of binding affinity to animal tubulins, meaning that 

they are not toxic to mammals [44]. In vitro studies confirmed TFL efficiency against 

several forms of leishmaniasis, while its in vivo topical administration, formulated as 

an ointment, was reported effective against Leishmania major and Leishmania 

mexicana in a murine model of cutaneous leishmaniasis [43]. However, after oral 

administration of 600 mg/kg TFL in mice, insignificant plasma concentrations were 

reported and this behaviour was related to the treatment failure against malaria [45]. 

Also the use of TFL by parenteral route has not been reported before probably due to 

its low water solubility (0.22 mg/L) and unusual low vapour pressure (0.61 mPa) [46]. 

With these features, and taking into account the in vitro (IC50 values on promastigotes 
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and amastigotes of L. infantum ranging from 20 to 34 µM) [47] and in vivo data 

(50-100 mg TFL/kg/day by oral route showed therapeutic activity against Chagas’s 

disease) [48, 49], large volumes or solvents not compatible with parenteral 

administration would be needed to reach the therapeutic doses. Nonetheless, TFL and 

dinitroanilines in general seem good candidates for the treatment of leishmaniasis due 

to its specific mechanism of action and the consequently low toxicity in mammals [47, 

49]. 

As referred above for conventional drugs, an alternative approach to circumvent the 

unfavourable physicochemical properties of these new anti-leishmanial agents is their 

optimization, through non-conventional approaches. These include their incorporation 

and stabilization in NanoDDS, such as liposomes, enabling the delivery of higher 

concentrations of the bioactive agent and providing sustained release and targeting to 

specific cells or organs [50]. 

The work presented in this Chapter is focused on two complementary strategies to 

overcome the difficulties in handling these agents, as well as to increase their 

therapeutic activity. The first strategy (included in Part A) consists in the association of 

TFL with liposomes and targeting them to the sites of infection. For this purpose 

several parameters that allow an efficient incorporation and stabilization of TFL in 

liposomes were assessed. Liposomal formulations of TFL were stabilized in several 

forms, such as in suspension, lyophilized and frozen form. TFL liposomes were 

reproducibly prepared in a larger scale that makes possible the preparation of the 

quantities required for tests in animal models. Furthermore, in vivo tests suggest that 

liposomal formulations of TFL have activity against L. donovani and L. infantum in mice 

and dogs models, respectively [51, 52]. 

The second strategy (included in Part B) relies on the use of new chemical derivatives 

of TFL (TFL-D) with increased water or lipidic solubility as new improved 
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anti-leishmanial agents. Some synthesised TFL-D, in which the amine group was 

modified with different kind of substituents, showed enhanced in vitro anti-leishmanial 

activity either against the promastigote and/or the intracellular amastigote form [53]. 

Based on this screening two new compounds with potential anti-leishmanial activity 

were selected and incorporated in liposomes. Stable TFL-D liposomal formulations were 

obtained and evaluated in vitro and in vivo against Leishmania parasites. The results 

proved that not only liposomes can be appropriate solvents for TFL-D, but also that the 

correspondent liposomal formulations evidenced enhanced properties as 

antileishmanial drugs [54]. 
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II-A.1 – Abstract 

Leishmaniasis represents an immense public health problem affecting 12 million 

peoples. Trifluralin (TFL), a dinitroaniline, is an anti-microtubule herbicide that is 

commercially available and well characterized. It is also known to be active against 

several protozoan parasites such as Leishmania, Trypanosoma, Toxoplasma and 

Cryptosporidium. Its unfavourable physicochemical properties (low water solubility 

and sublimation) have prevented its systemic administration without the need of toxic 

solvents. In the studies presented here liposomes were developed for the 

incorporation of TFL allowing its application against Leishmania parasites. An efficient 

incorporation and stabilization of TFL in liposomal formulations was achieved after 

appropriate studies involving the lipid composition, presence of Chol, phase transition 

temperature of phospholipids, liposome surface charge and the presence of 

PEG-derivatized lipids. These lipid based formulations resulted in an appropriate 

solvent for TFL in vivo administration and together with a cryoprotectant they form a 

stabilized system for its maintenance/storage during a significant time after 

production. In addition, liposomal formulations containing TFL also acted as carrier 

systems able to transport the drug to the sites of infection. Using appropriate animal 

models we have demonstrated that all the tested liposomal TFL formulations are 

active against different strains of Leishmania in mice with significant reduction of the 

levels of visceral and cutaneous infections. Clinical tests with infected dogs also 

revealed promising results. 
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II-A.2 - Materials and Methods 

II-A.2.1 - Lipids and Chemicals 

Trifluralin was purchased from Riedel-de Haën (Germany). Egg phosphatidylcholine 

(PC), bovine liver phosphatidylinositol (PI), phosphatidylglycerol (PG), stearylamine 

(SA), dioleoylphosphatidylglycerol (DOPG), dimyristoylphosphatidylcholine (DMPC), 

dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) 

were purchased from Sigma (Spain). Hydrogenated phosphatidylcholine (HPC), 

dioleoylphosphatidylcholine (DOPC) and distearoylphosphatidylcholine (DSPC) were 

from Lipid Products (UK). Distearoylphosphatidylethanolamine-poly(ethyleneglycol) 

(2000) (DSPE-PEG) was purchased from Avanti Polar Lipids (USA). All lipids were used 

without further purification. Schneider’s medium, penicillin-streptomycin and foetal 

calf serum (FCS) were from Sigma, (S. Louis, USA). Polycarbonate membranes were 

from Nuclepore (USA). Acetonitrile (HPLC grade) and trehalose di-hydrate were from 

Merck. All other reagents were analytical grade. 

 

II-A.2.2 – Leishmania strains and animals 

Three strains of Leishmania parasites were used in this study: L. donovani 

MHOM/ET/67/HU3 and L. major MHOM/SA/85/JISH118, both kindly provided by the 

London School of Hygiene & Tropical Medicine; and L. infantum MCAN/PT/03/IMT335 

from Instituto de Higiene e Medicina Tropical (IHMT), Lisboa. 

Amastigotes of L. donovani were continuously passed in golden hamsters (Mesocricetus 

auratus) obtained from Charles River-Criffa (Barcelona, Spain). 108 amastigotes were 

administered by intracardiac injection in golden hamsters under anaesthesia. Two to 

three months later, animal was sacrificed and the spleen removed. Smears were made 

for counting, the organ was homogenized and amastigotes isolated by centrifugation. 
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The cycle was repeated for maintenance of the infection or the amastigotes were 

used for therapeutic activity studies in animals. 

L. major amastigotes were harvested from a nodular lesion removed from BALB/c 

female mice and allowed to transform to promastigotes in Schneider’s medium with 

10% heat-inactivated foetal calf serum (FCS) at 24 °C. They were grown in the same 

medium and subcutaneously injected in mice (107 promastigotes/mouse). 

For therapeutic activity experiments BALB/c female mice, (6 to 8 weeks old; 20-25 g) 

were purchased from Gulbenkian Institute of Science (Oeiras, Portugal), and housed at 

INETI animal facilities. The animals were kept under standard hygiene conditions, fed 

with commercial chow and given acidified drinking water ad libitum. All in vivo 

experiments were conducted, under licence, according to the local laboratory animal 

committee guidelines and after approval from competent authorities (DGV). 

Five healthy female beagle dogs, 3 years of age, were purchased from Estação 

Zootécnica Nacional, Santarém, (Portugal), housed at the kennels at the IHMT and 

maintained in compliance with European Union requirements (86/609/EEC), as 

recognised by Portuguese law (DR DL129/92 and Portaria 1005/92). 

 

II-A.2.3 – Preparation of TFL liposomal formulations 

Different phospholipid compositions were studied for the incorporation of TFL in 

liposomes. The formulations studied and respective molar ratios are summarized in 

Table II-A.3.1 and Table II-A.3.2. Liposomes were prepared by the thin lipid 

film-extrusion method. The lipidic components at 10 µmol/mL and TFL at 

335 - 450 µg/mL corresponding to a TFL:lipid molar ratio of 1:10 or 1.3:10 

respectively, were added to a round bottom flask of 25 mL, dissolved in a small 

volume of chloroform and dried under vacuum in a rotavapor, with controlled 

temperature above the lipids phase transition temperature (TC). The temperature 
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used was 25 ºC for all formulations, except for those containing DPPC and DSPC where 

the temperature was 45 ºC and 58 ºC, respectively. Nitrogen was blown over the dried 

lipid film for about 5 min in order to remove traces of the organic solvents. The lipid 

film was subsequently hydrated in three steps with glass beads forming MLV. In a 

typical 2 mL formulation the first hydration step was done using 200 µL (1/10 of the 

final volume) of 154 mM NaCl or a sugar solution while keeping the osmolarity at 300 

mOsm. The round bottom flask was subjected to mechanical and manual external 

stirring until all the film around the walls was hydrated. The suspension was allowed 

to stand for at least 15 min. This step was repeated using 200 µL of a 154 mM NaCl 

solution or of a sugar solution. The hydration was completed with 1600 µL (8/10 of the 

final volume) of 154 mM NaCl or a sugar solution. This liposomal suspension (MLV) was 

down-sized by successive extrusions through progressively smaller pore size (ranging 

from 1 µm down to 0.1 µm) polycarbonate membranes (∅ = 25 mm) in a 10 mL 

extrusion barrel (Lipex Biomembranes Extruder, Canada). Non-incorporated TFL and 

potential TFL/liposome aggregates or precipitates were removed from the liposome 

dispersion by centrifugation at 5000 x g for 10 min (Sigma 202MK laboratory 

centrifuge). Following centrifugation, the supernatant, containing TFL liposomes was 

assayed for TFL and lipid contents, vesicles size and zeta potential. 

 

II-A.2.3.1 – For scale-up studies 

For large laboratory scale preparations (LLS), the initial volume used was 600 mL. The 

lipidic components (6 mmol/600 mL total lipid, corresponding to 10µmol/mL) and TFL 

(1,05 mg/600 mL, corresponding to 335 µg/mL) in a molar ratio of 1:10 (TFL:lipid), 

were weighed and added to a round bottom flask of 1000 mL solubilised in a small 

volume of chloroform and dried under vacuum in a 1 L capacity rotavapor. The dry 

lipidic film containing TFL was kept overnight at 4º C, followed by the removal of the 
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residual organic solvent by a stream of N2. The lipidic film containing TFL was 

hydrated, to a final volume of 600 mL, using the same three steps procedure 

described. The liposomal suspension was down-sized by successive extrusions through 

progressively smaller pore size (ranging from 1 µm down to 0.1 µm) polycarbonate 

membranes (∅ = 47 mm) in a 100 mL extrusion barrel. The removal of non-

incorporated material and liposome characterization was performed as above. 

 

II-A.2.3.2 – For animal studies 

For the liposomal formulations used in animal studies, the lipidic film was hydrated 

using a 300 mM trehalose solution, in the three steps of the procedure. The 

formulations used in the visceral animal model were extruded until 0.2 µm pore 

diameter filters while the formulations used in the cutaneous animal model were 

extruded until 0.05 µm pore diameter filters. After the removal of non-incorporated 

TFL, the obtained liposomal suspensions were concentrated by ultra-centrifugation at 

180,000 x g for 1 h at 20 ºC (L8-60 M ultracentrifuge, Beckman Instruments, U.S.A.) 

and the pellet ressuspended in an appropriate volume of a 300 mM trehalose solution. 

The resulting suspension, containing TFL liposomes, was assayed as described above. 

 

 

II-A.2.4 – Characterization of TFL liposomal formulations 

Liposomal formulations were characterized for phospholipids and TFL concentration, 

mean particle size and zeta potential. The following incorporation parameters were 

determined: Trifluralin Incorporation Efficiency, loading capacity, Lipid and Trifluralin 

retention. Abbreviations and equations used to determine the incorporation 

parameters are as follows: 
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Table II-A.2.1 – Abbreviations and equations of TFL incorporation parameters 

Trifluralin TFL 

Total Lipid Lip 

Initial TFL to Lip ratio (g/mol) [TFL/Lip]i 

Loading capacity (L.C.) (g/mol) [TFL/Lip]f 

TFL retention (%) ([TFL]f/[TFL]i) x 100 

Lipid retention (%) ([Lip]f/[Lip]i) x 100 

Incorporation Efficiency (I.E.) (%) ([TFL/Lip]f)/([TFL/Lip]i) x 100 

 

TFL retention after centrifugation reflects the yield of the drug in liposomes during 

the process (incorporation and stabilization). I.E. is a measure of the efficiency of the 

initial system (TFL + lipid) to incorporate the TFL in the final liposomal form. 

 

II-A.2.4.1 – TFL quantification 

TFL quantification was performed by HPLC. The HPLC system used consisted of a 

System Gold Nouveau, Beckman with a 126 Pump Direct Control and an auto sampler 

Midas, type 830 with a 20 µL sample loop. An analytical column, Bio-Sil C18 HL-90-5 

(150 x 4.6 mm) from Bio-Rad was used. The instrumental settings were: flow rate 

1 mL / min; column temperature 25º C and detection at 220 nm in a diode-array 

Detector Module model 168. The mobile phase consisted of 0.02 M sodium acetate (pH 

6.55): acetonitrile gradient from 46 to 50 % of acetonitrile in 5 min and 50 to 80 % of 

acetonitrile in 15 min. 
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II-A.2.4.2 – Total Lipid quantification 

Phospholipid determinations were performed using the colorimetric method described 

by Rouser and co-workers based on quantification of inorganic phosphorous [55]. The 

inorganic phosphorous is first released from phospholipids by hydrolysis with 

perchloric acid (in a dry bath at 180 ºC). Then, in the presence of ammonium 

molybdate, the inorganic phosphorous is converted into phosphomolybdic acid and 

reduced to a blue complex with ascorbic acid (in a water bath at 100 ºC). The blue 

colour was quantified by spectroscopy at 797 nm. 

 

II-A.2.4.3 – Mean particle size and zeta potential determinations 

Mean particle size (∅) was determined by photon correlation spectroscopy (PCS) at 

25 ºC with a Malvern Zetasizer 3 (Malvern Instruments, Malvern, UK) using a 25 mW 

He-Ne laser under an angle of 90°. As a measure of particle size distribution of the 

dispersion, the system reports the polidispersity index (P.I.) ranging from 0.0 for an 

entirely monodisperse sample up to 1.0 for a polydisperse suspension. All samples 

were diluted to an adequate scattering intensity prior to measurement. 

The liposome surface charge properties were evaluated by measuring the zeta 

potential by Laser Doppler Anemometry, using a Malvern Zetasizer 3 (Malvern 

Instruments, Malvern, UK). The scattering angle was 12º and the electric field 

intensity ranged from 18.5 to 19.6 V/cm. The zeta potential is measured by applying 

an electric field across the dispersion. Particles within the dispersion will migrate 

toward the electrode of opposite charge with a velocity proportional to the magnitude 

of the zeta potential. This velocity is measured using the technique of laser Doppler 

anemometry. The frequency shift or phase shift of an incident laser beam caused by 

these moving particles is measured as the particle mobility, and this mobility is 
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converted to the zeta potential by inputting the dispersant viscosity, and the 

application of the Smoluchowski theories. 

 

 

II-A.2.5 – Stability evaluation of TFL liposomal formulations 

The stability experiments for TFL formulations were performed in different 

conditions: freshly made at 4º C in saline, freeze-dried and frozen at low 

temperatures. The stability of the formulations was characterized by evaluating TFL 

and total lipid retention after separation of destabilised material by centrifugation, as 

described above, and also by variations in mean particle size. 

 

II-A.2.5.1 – Stability of TFL liposomes in suspension 

For stability studies at 4º C, freshly made liposomes were prepared as described in 

section II-A.2.3 using 154 mM NaCl as final hydration medium. At selected time points 

samples were taken and centrifuged at 5000 x g for 10 min (Sigma 202MK laboratory 

centrifuge) to remove lipid aggregates and non-incorporated TFL that crystallizes and 

precipitates. The supernatant containing TFL liposomes was analysed. 

 

II-A.2.5.2 – Stability of TFL liposomes as freeze-dried cakes 

The stability of freeze-dried liposomes was done using different hydration media, with 

or without the use of cryoprotectants/lyoprotectants. The lipidic film was hydrated as 

described in liposome preparation (II-A.2.3). Ultra-centrifuged liposomal pellets were 

suspended either in 154 mM NaCl or in various 300 mM sugar solutions (trehalose, 

glucose, sucrose). The liposomal suspension was divided in 1 mL aliquots in 10 mL 

lyophilisation glass vials and frozen at –70 ºC for, at least, 30 min. The freeze-drying 

process took place overnight (12 – 18 h) at a pressure of about 10 Pa and at an initial 
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temperature of -40 ºC. Vials were sealed under vacuum and stored at room 

temperature. At selected time points, vials were opened and reconstituted with 

water. After rejection of non-incorporated material, as described above, TFL and 

phospholipid recovery and variations in mean particle size were determined to 

evaluate stability. After reconstitution of lyophilized TFL liposomes the resulting 

suspensions were then used to assess the stability of reconstituted freeze-dried 

formulations kept at 4 ºC for a short period. These samples were treated as described 

above for freshly made formulations. 

 

II-A.2.5.3 – Stability of frozen TFL liposomes 

Stability studies at low temperatures were performed with formulations kept at -70 ºC 

for at least 24 h. The ultra-centrifuged liposomal pellets were suspended in 154 mM 

NaCl, divided in 1 mL aliquots in 10 mL glass vials and frozen. At selected time points, 

samples were thawed to room temperature and homogenized. After removal of the 

non-incorporated material, the supernatant was analyzed for TFL and lipid contents 

and particle size was also measured. 

 

 

II-A.2.6 – In vivo studies in animal models of infection 

II-A.2.6.1– Visceral murine model of infection 

A total of 2x107 amastigotes were used to infect (i.v.) female BALB/c mice via the tail 

vein. At one week post-infection (day 7), animals were randomly sorted into groups of 

five and submitted to dosing. 

In a first series of experiments, groups of mice received either free TFL or three 

different formulations of liposomal TFL at 15 mg TFL/kg body weight/day by i.v. route 

for 5 consecutive days (at days 7, 8, 9, 10, 11). Another group of mice received 1 dose 
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of meglumine antimoniate (Glucantime®) (s.c.) at 15 mg SbV/kg at day 8, as a positive 

control. The negative control group received 5 doses of 300 mM trehalose by i.v. 

route. 

In a second set of experiments, each group of infected mice received liposomal TFL at 

2, 5 or 10 mg TFL/kg/dose i.v single dose (day 7), 3 doses (at day 7, 9 and 11) or 5 

doses (days 7, 8, 9, 10 and 11) regimens. Liposomal TFL was concentrated up to 10 

times, in such a way that the required dose could be administered in 200 µL. 

For all the experiments, at day 15 post-infection, animals were sacrificed, the liver 

removed and smears were made. Smears were fixed with methanol and stained with 

Giemsa. Parasite numbers were determined by counting the number of amastigotes 

per 500 nuclei on each smear. The parasite load was calculated according to Stauber’s 

formula: number of amastigotes per 500 nucleated liver cells times the organ weight 

(in milligrams) [56]. The suppression of parasite growth was calculated as the 

percentage inhibition relative to parasite load of negative control animals (animals 

injected with 300 mM trehalose). 

 

II-A.2.6.2– Cutaneous murine model of infection 

Female BALB/c mice (6 to 8 week-old) were infected with 107 L. major 

(MHOM/SA/85/JISH118) first-passage, stationary-phase promastigotes, subcutaneously 

at the base of the tail. At 7 days post-infection, lesions were measured in two 

dimensions and animals were randomly sorted into groups of five and submitted to 

dosing. 

In the first series of experiments, 7 days post-infection, mice with established lesions 

were treated with two different TFL liposomal formulations, at a dose of 6 mg TFL/kg 

of body weight, administered once a day for 6 days either by i.v., i.p. or s.c. (close to 

the lesion) routes of administration. Positive control groups received the same 6 doses 
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of Glucantime® (400 mg SbV/kg) either by i.v., i.p. or s.c. route and the negative 

control mice received 6 doses of 300 mM trehalose by i.v. route (100 µL/dose). 

In a second series of experiments, 7 days post-infection, groups of mice received 10 

doses of TFL liposomes at a concentration of 10 mg TFL/kg of body weight, once a day 

for 10 days, either by i.v., i.p. or s.c. (close to the lesion) routes of administration. 

Mice of the negative control group received 300 mM trehalose every day for 10 days 

(100 µL/dose). 

The evaluation of the antiparasitic effect of the formulations was assessed at days 14 

and 21 post-infection, by changes in the lesion size. The lesions were measured in two 

dimensions and the percentage increase/decrease of lesion size where calculated 

according to the following formula: 

 

(%)  100x)
D

D -D
(

i

if  

 

where Di and Df are the measurements of the mean lesion diameters immediately 

before the first treatment (Di), and 7 or 14 days (Df) after the beginning of treatment, 

respectively. 

 

II-A.2.6.3– Experimental canine model of infection 

The canine model used was described elsewhere [52]. Briefly, dogs were infected 

(i.v.) with 1x106 amastigotes/kg (L. infantum: MCAN/PT/03/IMT335). Six months later 

animals were treated with a daily dose of 10 mg/kg of liposomal TFL during ten days. 

Five months after infection and 1 and 3 months after treatment, bone marrow and 

popliteal lymph node aspirates were collected and used for quantification of viable 

parasites using the limiting dilution assay [57]. 
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II-A.2.7 – Statistical Analysis 

Data presented is expressed as mean ± standard deviation (SD) or standard error of 

the mean (SEM), as mentioned in the legends of figures and tables. Statistical analysis 

was performed using ANOVA single factor. The acceptable probability for a significant 

difference between mean values was p<0.05. 
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II-A.3 - Results 

The incorporation of TFL in liposomes is proposed not only as the inclusion of a 

hydrophobic bioactive agent in a lipid matrix to increase its pharmacological 

properties, but also as a solvent stabilizing system. The TFL liposomal drug delivery 

system is expected to deliver TFL to the targets of Leishmania infection. 

 

II-A.3.1 – Development of trifluralin liposomal formulations. 

II-A.3.1.1 – Effect of lipid composition on the incorporation of TFL in 

liposomes 

The incorporation of TFL in liposomes was studied as a function of lipid composition. 

As a first approach the properties of the liposomes were modulated by the inclusion of 

positively and negatively charged lipids, by varying the Chol content and by shifting 

the membrane fluidity using phospholipids with different phase transition 

temperatures (Tc). The incorporation parameters of the resulting TFL liposomal 

formulations were systematically determined and are presented in Table II-A.3.1. 
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The incorporation parameters (L.C. and I.E.) were found to be highly dependent on 

the lipid composition used. The average L.C. values diverge between 0 and 13 g/mol, 

corresponding to I.E. values below 50 % in 12 out of the 13 formulations studied. The 

liposomal formulations made from fluid lipids and Chol (F2, F12 and F13) were found to 

have the highest incorporation parameters. In contrast, low TFL incorporation 

parameters were obtained for liposomes composed of pure lipids, PC or DMPC, (F1 and 

F4). However, acceptable Lip retention values, 68 and 81%, have been observed for 

both formulations made from PC and DMPC, respectively. 

By varying the fluidity of the liposomal membrane either by the inclusion of Chol in 

the lipidic bilayer or by using phospholipids with different Tc, it was observed that 

both the Tc of the phospholipids and the Chol content affects the incorporation of TFL 

into liposomes. For formulations F1 to F10 the L.C. was significantly higher (p<0.05) in 

liposomes with a fluid membrane (Tc of the major phospholipid below room 

temperature, ± 20º C) and a low Chol content (F2, corresponding to 20 mol %) than in 

liposomes with a fluid membrane at a higher Chol content (F3, corresponding to 33 

mol%) or in liposomes with a rigid membrane at both Chol contents (F5 to F10). 

Lipidic mixtures containing PC, Chol and either positively or negatively charged lipids 

or molecules (PI, PG and SA) were used to study the effect of liposomes surface 

charge on the incorporation of TFL. No significant differences in incorporation 

parameters were observed when comparing neutral and charged formulations with 

similar Chol content (F3 versus F11 to F12). 

Lipid mixtures containing PG were evaluated taking two facts into consideration: the 

results showing that PG promotes acceptable incorporation (F13) and the fact that this 

negatively charged lipid has been described to target organs and cells of the MPS 

where Leishmania parasites reside [59]. In addition, liposomes prepared with mixtures 

containing PEG-derivatized lipids (DSPE-PEG) were also evaluated. These 
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PEG-formulations were tested to determine the influence of prolonged circulation of 

liposomes in the blood stream on the delivery of the bioactive agent to other 

reservoirs of the parasites, such as bone marrow and skin [60]. Data is shown in 

Table II-A.3.2. 

Liposomes with a fluid membrane containing 30 % (mol/mol) of PG (F14, F15) showed 

acceptable TFL incorporation parameters: L.C. higher than 20 g/mol and I.E. around 

85%. These values were consistently reduced when the incorporation was performed 

in liposomes with rigid membrane and prepared with the same PC and PG molar ratios 

(F16 versus F14 and F15) (p<0.01). When DSPE-PEG was added to lipid mixtures based on 

PC with or without PG (F17, F19) the incorporation parameters of the resulting 

liposomes were comparable with those of liposomes with fluid membranes without 

PEG (F14) (p>0.05). Although evidencing similar L.C., the formulation composed of PG 

and DSPE-PEG (F18) presented smaller TFL and lipid retentions. For similar [TFL/Lip]i 

(26-34 g/mol), formulations with up to 27 µg/µmol were obtained (F17 - F19), 

corresponding to a typical preparation of 280 µg TFL/mL. The increase on [TFL/Lip]i 

to around 52 μg/μmol (F20 to F22), significantly increased the L.C. in the PG based 

formulations (F21 versus F17 and F22 versus F18). A concomitant reduction was observed 

in the TFL and Lip retentions and in the I.E. parameter, indicating that saturation was 

not yet reached. The inclusion of Chol in one of these mixtures reduced by 50% the 

incorporation parameters including the L.C. (F23 versus F22). The zeta potential of TFL 

formulations containing PG was about -40 mV. The zeta potential of the formulations 

containing DSPE-PEG was around neutrality due to the shielding effect of PEG, 

meaning that TFL does not interfere with the liposomal charge. 
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The purpose of the lipid composition studies was to obtain one or more formulations 

with high intraliposomal TFL concentration and high TFL retention. Based on that, the 

first selection of TFL liposomal formulations for further studies was F2, F7, F9, F14, F15 

and F19. All the liposomal formulations used hereinafter were prepared with an 

[TFL/Lip]i of 1:10 mol:mol (33.5 g/mol). Under these conditions the liposomal 

membrane is not yet saturated nevertheless this is the best ratio as it maximizes the 

incorporation parameters I.E. and the L.C. 

 

II-A.3.1.2 – Stability of TFL liposomal formulations under different storage 

conditions 

The physical stability of TFL liposomal formulations was studied under different 

conditions: as a liposomal suspension, in the presence of a saline solution; as a 

freeze-dried powder in the presence of sugars; and as a frozen suspension, at low 

temperature. To evaluate the stability of liposomes, the L.C., TFL retention in 

liposomal form and mean vesicle size variation were studied for all storage conditions. 

 

II-A.3.1.2.1 - In suspension 

The short-term stability of several TFL liposomal suspensions was assessed. The 

formulations chosen for this study were: one formulation made with fluid lipid and 

one formulation made with rigid lipid both with Chol (F2 and F9 respectively); two fluid 

formulations containing PG (F14 and F15) and one with PEG (F19). The assayed 

formulations were freshly made, stored in saline at 4º C during 11 days and analysed 

for stability. Data is shown in Figure II-A.3.1. 
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Figure II-A.3.1 - Stability of TFL liposomal formulations as suspensions. TFL retention for 
conventional and long circulating liposomes maintained at 4 ºC during 11 days. The 
composition of the formulations and respective denomination is as in Table II-A.3.1 and 
Table II-A.3.2. [TFL/Lip]i ranges between 26 and 34 µg/µmol. The lipidic film hydrations 
were done with 154 mM NaCl. The diameter of these formulations was 150 ± 15 nm. The 
data points represent the average ± S.D. of three independent experiments. 
 

 

The most stable formulations, for which a 11 days storage at 4 ºC resulted in a 

minimal loss in TFL after centrifugation are conventional liposomes composed of fluid 

lipids without Chol (F14 and F15) and long-circulating liposomes without Chol (F19). 

These formulations presented less than 5% TFL loss while formulations prepared with 

rigid lipids and Chol (F9) showed around 13% TFL loss. Liposomes made with fluid lipids 

and Chol (F2) were much less stable, presenting a substantially greater loss with only 

58 % of TFL retention after only 2 days in suspension. 

 

II-A.3.1.2.2 - Freeze-dried 

Due to its high hydrophobicity and low water solubility, TFL is expected to distribute 

in the lipid bilayer of the liposomes and to remain there during the process of freeze-

drying, as long as appropriate conditions are used [61]. Furthermore, TFL tendency to 
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sublimate [46] makes the stabilization of this drug in the lipid bilayer critical and 

probably difficult to achieve without cryoprotection. 

The protective effect of two different saccharides (a mono and a disaccharide) was 

investigated during freeze-drying procedure of TFL liposomes. After re-hydration of 

the freeze-dried formulation with water, the impact caused by the presence of sugars 

was evaluated through TFL retention, as well as liposome mean vesicle size and zeta 

potential variations as shown in Figure II-A.3.2. The TFL retention in reconstituted 

liposomes was only possible if this process was done in the presence of sugars, with no 

significant differences between the use of glucose or trehalose, in any of the studied 

parameters. No such sugar dependency was found for the lipid content as for all the 

conditions used more than 92% of total lipid was present after liposomes 

reconstitution. However, when liposomes were freeze-dried in water only, TFL 

retention was null and the mean vesicle size of the vesicles changed dramatically with 

increases of almost 120% in diameter. In the presence of sugars, a small reduction in 

size (15 - 18%) was observed after reconstitution, with no significant differences 

between trehalose and glucose. Changes in zeta potential of 15 to 25% were also 

observed. These changes, in mean vesicle size and in zeta potential, are not expected 

to affect the in vivo behaviour of liposomes. 

Trehalose was selected as the cryoprotectant agent for TFL liposomes. Although no 

significant differences were found between this sugar and glucose, the lyophilisation 

cake obtained was more homogeneous and easier to hydrate. 
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Figure II-A.3.2 - Effect of sugars on TFL retention, mean vesicle size and zeta potential 
variation in freeze-dried TFL liposomes. Lipidic films composed of DOPC:DOPG (7:3) and 
containing TFL were hydrated with a 300 mM solution of trehalose or glucose or with 
deionised water in order to afford a suspension containing 10 µmol/mL total lipid and 
1 µmol/mL of TFL. TFL retention (%) is the ratio between TFL before and after 
lyophilisation. Mean vesicle size and zeta potential variation is the increase and/or 
decrease of mean vesicle size and zeta potential before and after lyophilisation as 
percentage of the respective values before lyophilisation. Initial mean vesicle size were 
253 ± 5 nm for trehalose, 216 ± 7 nm for glucose and 227 ± 8 nm for water (P.I. < 0.1). 
Initial zeta potential values were -42 ± 4 mV for trehalose, -50 ± 3 mV for both glucose and 
water. The data represents the average ± S.D. of three independent experiments. 
 

 

Another set of experiments intended to clarify if the localization of trehalose either in 

the inner or the outer medium of liposomes affects TFL retention and other 

characteristics of liposomes such as size. Two of the selected formulations (A.3.1.1) 

were prepared in such a way that the lipid film containing TFL was hydrated either 

with NaCl (154 mM) or with 5% (w/v) or 10% (w/v) trehalose solutions, thus becoming 

the inner medium (internal aqueous space) of liposomes. The liposomal pellet was 

suspended either in 154 mM NaCl or in a 10% (w/v) trehalose solution, thus being this 

the composition of the outer medium. All liposomal formulations were freeze-dried in 

1 mL aliquots and reconstituted with 1 mL of water. The osmolarity was always kept 

constant at 300 mOsm, either with trehalose or NaCl or both. Table II-A.3.3 shows 
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that, TFL recovery in freeze-dried liposomes was not substantially affected by the 

presence of trehalose in the inner space (hydration medium). However its presence on 

the outer space (suspension medium) is crucial for TFL retention and for the 

preservation of liposome size and surface properties. When TFL liposomes were 

freeze-dried in the absence of trehalose there was no TFL recovered after 

rehydration, which could be explained by drug sublimation and/or spun-down drug 

aggregates or precipitates. When trehalose was present only in the inner space, TFL 

recovery was null or very small (up to 8%). However, if trehalose was present in the 

outer space before freeze-drying, TFL recovery in lyophilized/rehydrated liposomes 

varied from 80% to 96%. This finding was independent from either the presence or the 

concentration of trehalose in the inner space and from the lipid compositions studied 

(F14 or F15). The size of liposomes was also preserved by the presence of trehalose 

before freeze-drying. In the absence of trehalose in the outer medium, liposomes 

increased their sizes up to 155% of the initial value. Small reductions (up to 14%) were 

observed when liposomes were freeze-dried in the presence of trehalose in the outer 

medium. 

In this case, sizes were reduced by an average of 18 to 20 nm corresponding to 

variations smaller than 14% irrespectively of the lipid composition and of the presence 

of trehalose in the inner space of liposomes. 

To better understand this behaviour, TFL recovery was also analysed after the ultra-

centrifugation used to change the suspension medium before lyophilisation. At this 

step TFL recovery was not affected by the presence or the concentration of trehalose 

(data not shown). 
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Table II-A.3.3 - Evaluation of the protective effect of trehalose on TFL recovery and size 
variation in freeze-dried liposomes. 

  
TFL retention (%) 

Mean vesicle size 

variation (%) 

Formulation 
Hydration 

Medium 

Suspension medium Suspension medium 

NaCl Trehalose NaCl Trehalose 

F14 

0% 0 96±4 86±8 -3±10 

5% 0 95±3 155±63 -10±1 

10% 8±1 89±10 123±65 -13±1 

F15 

0% 0 90±7 50±13 -12±4 

5% 0 94±1 38±45 -14±3 

10% 0 80±15 76±35 -9±1 

(0%) = 154 mM NaCl; (5%) = 154 mM NaCl and 300 mM trehalose; (10%) = 300 mM trehalose. 
Mean vesicle size variation is the increase and/or decrease of mean vesicle size before and 
after freeze-drying as percentage of the respective value before freeze-drying. The mean 
vesicle size before freeze-drying were 192 ± 7 for F14 and 187 ± 17 nm for F15, and zeta 
potential values before freeze-drying were 40 ± 5 mV and 38 ± 4 mV respectively. The data 
shown are the average ± S.D. from three to nine independent experiments. 
 

 

The stability of lyophilized liposomes prepared in the presence of trehalose, as a 

function of time, was evaluated in two sets of experiments: one experiment with a 

total time span of two weeks and another with a total duration of 12 months. 

Sampling was performed at three month time intervals. 

Three selected TFL liposomal formulations (F14, F15 and F19) were freeze-dried and at 

different times after lyophilisation they were reconstituted with water and 

centrifuged at low speed to reject the potential TFL that leaked out. Figure II-A.3.3 

shows the results obtained for the three TFL liposomal formulations, studied over a 

period of two weeks. 



Chapter II – Part A 

74 

0

20

40

60

80

100

120

1 2 3 7 10 15

TF
L 

re
te

nt
io

n 
(%

)

time (days)

F14 F15 F19

 

Figure II-A.3.3 – Short term stability of freeze-dried TFL liposomal formulations. TFL 
values before freeze-drying corresponding to 100% retention are 266 µg/mL for F14, 
275 µg/mL for F15, and 252 µg/mL for F19. [Lip] = 10 µmol/mL for all formulations. The 
data points represent the average ± S.D. of at least three independent experiments. 

 

 

The most stable formulations were those composed of PC:PG (F14) and DOPC:DOPG 

(F15) showing more than 95 % of TFL still present two weeks after lyophilisation and 

subsequent reconstitution. Lipid retention was also higher than 95% for these lipid 

compositions. Small mean vesicle size changes were observed for both formulations. 

F14 increased their sizes between around 7% of the initial value (97 ± 2 nm) at day one 

to 14% of the initial value at day 15 after lyophilisation. On the contrary, the mean 

vesicle size of F15 decreases up to 24% in diameter compared to the values before 

freeze-drying (144 ± 4 nm). A P.I. smaller than 0.2 was observed for both 

formulations. The third formulation studied, F19 showed an overall lower TFL retention 

and a very irregular behaviour with respect to vesicle mean vesicle size, with 

variations up to 55 % of the initial value (137 ± 5 nm) and with a P.I. higher than 0.2. 
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The stability of freeze-dried liposomes over a longer period of time was studied for 

the most stable TFL formulations. Figure II-A.3.4 shows the results obtained for F14 

and F15 kept lyophilized up to 12 months and reconstituted at various times. 
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Figure II-A.3.4 - Long-term storage stability of freeze-dried TFL liposomes. Liposomal 
formulations composed of PC:PG (F14) and DOPC:DOPG (F15) (1 µmol TFL:10 µmol Lip) were 
suspended in 300 mM trehalose (after ultra-centrifugation), freeze-dried in 1 mL aliquots 
and kept at room temperature. TFL/Lipid ratio before lyophilisation is 31 and 32 µg/µmol 
respectively for F14 and F15. Lipid recoveries were 92 % for F14 and 95 % for F15. Initial 
mean vesicle sizes are 123 ± 4 nm and 140 ± 6 nm respectively for the two formulations. 
The data points represent the average ± S.D. of, at least, three independent experiments. 
 

 

The F15 formulation retained more than 95% of TFL 12 months after lyophilisation. The 

F14 formulation presents a lower amount of TFL after the same period, although more 

than 85% was still incorporated during the first 6 months, decreasing by 10% in the 

following 6. Variations in the mean particle size smaller than 20% for both 

formulations were observed. One year after the mean diameters were below 120 nm 

for both formulations. 
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The stability of the above reconstituted formulations kept for 72 h at 4 ºC was 

studied. Table II-A.3.4 shows the results obtained of TFL retention and size variation 

as a function of time for the two TFL liposomal formulations studied. 

 

Table II-A.3.4 – TFL retention and mean vesicle size stability of reconstituted freeze-dried 
TFL liposomal cakes. 

 24 hours 48 hours 72 hours 

Formulation 

TFL 
retention 

(%) 

Mean 
vesicle size 
variation 

(%) 

TFL 
retention 

(%) 

Mean 
vesicle size 
variation 

(%) 

TFL 
retention 

(%) 

Mean 
vesicle size 
variation 

(%) 

F14 98 ± 10 -4 95 ± 7 -2 90 ± 8 -3 

F15 92 ± 5 +6 87 ± 14 +8 84 ± 5 +8 

At the time of reconstitution (t = 0 h) TFL contents varied between 204 and 300 µg/mL for 
DOPC:DOPG and 237 to 323 µg/mL for PC:PG. Liposomal suspensions were kept at 4 ºC. Final 
TFL content was determined at t = 24, 48 and 72 h after rejection of the potential leaked out 
material by low speed centrifugation. 
Mean vesicle size variation is the increase and/or decrease of size after respectively 24, 48 and 
72 h, as percentage of the value at the time of reconstitution. These values were 106 ± 2 nm 
for PC:PG and 117 ± 8 nm for DOPC:DOPG with a P.I. < 0.2. 
The data shown is an average ± SD from, at least, three independent experiments. 

 

 

After 24 h both formulations kept more than 99% of incorporated TFL and after 72 h 

still maintain 87 to 90% of the drug, with no significant different values for both lipid 

compositions. Size is maintained unchanged during this period of time. 

The maintenance of the liposome properties 3 days after reconstitution will allow 

their safe usage in a number of other experiments, e.g. in vivo studies. 

 

II-A.3.1.2.3 - Frozen at low temperature 

The stability of frozen TFL liposomes, at low temperature, over more than 80 days, 

was studied for F15 and F19. Figure II-A.3.5 shows TFL retention and mean vesicle size 
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variation after thawing and low speed centrifugation of frozen TFL liposomes. No 

significant variation in TFL retention compared to the values before freezing (p>0.05), 

was observed. The mean vesicles size experienced an average increase of 6 and 11% of 

the original values, respectively for DOPC:DOPG (F15) and PC:Chol:DSPE-PEG (F19). For 

the latter lipid composition, the standard deviations were higher and the P.I. varied 

between 0.1 and 0.3. The zeta potential of the vesicles before (-42 mV) and after 

freezing was not statistically different (p>0.05). 
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Figure II-A.3.5 - Stability of TFL liposomes stored at low temperature. Liposomes were 
frozen at -70 ºC and at various times were thawed; allowed to reach room temperature 
and centrifuged at low speed (5000 x g for 10 min) to remove the potential leaked TFL. 
[TFL]i = 190 ± 4 µg/mL for F15 and 236 ± 4 µg/mL for F19. [Lip]i = 10 ± 1 µmol/mL. The data 
shown is an average ± SD from, at least, three independent experiments. 
 

 

The finding that it is possible to keep certain TFL formulations frozen with no further 

treatment after preparation is important due to the convenience and simplicity of this 

procedure. 
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II-A.3.1.3 – Laboratory Large-Scale preparation of TFL liposomal 

formulations 

The previous incorporation studies were done using formulations with small laboratory 

volumes, on average no more than 5 mL per preparation. However, some of the 

therapeutic activity studies used to evaluate the biological effect or in vivo activity of 

any drug incorporated in liposomes usually requires the preparation of high quantities 

of the liposomal drug. The scale-up involved in planning these experiments is, 

sometimes, difficult to overcome. The feasibility to prepare liposomes at a laboratory 

scale and at the same time compatible with experiments involving either mice or dogs 

was assessed. 

The formulation with the best incorporation parameters and stability characteristics 

(F15), was prepared in a volume of 2 to 3 mL herein referred as Small Laboratory Scale 

(SLS) and in a volume 200 to 300 times higher (600 mL) herein referred as Large 

Laboratory Scale (LLS). The incorporation parameters and characteristics of these 

formulations were compared. Both scales were prepared using the same method with 

some adjustments for LLS regarding the size of glassware, in particular a round 

bottom flask for solvent evaporation of acceptable capacity, longer hydration times 

and an extruder device with higher volume capacity. 

The LLS liposomes were prepared in daily batches of 600 mL until the required final 

formulation volume was reached. All batches were individually characterised as well 

as the final formulation resulting from the assemblage. 

According to the results presented in Figure II-A.3.3, no significant differences were 

observed for the I.E. and L.C. parameters and characteristics of liposomes prepared 

by the SLS or by the LLS. The mean diameters of liposomes prepared in both scales 

showed no significant differences ranging from 201 to 236 nm respectively with an 
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average zeta potential of -40.3 ± 2.2 mV. The TFL retention of both scales (55 to 66%) 

was also not statistically different. 
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Figure II-A.3.6 - Incorporation parameters obtained for TFL liposomes, prepared as a SLS 
or as a LLS. The parameters studied for the F15 formulation include TFL retention (dark 
blue bars), I.E. (light blue bars) and L.C.(dark red dots). [TFL]i and [Lip]i for SLS are 
323 ± 30 µg/mL and 10 ± 1 µmol/mL respectively. For LLS, [TFL]i and [Lip]i are 
respectively 320 ± 29 µg/mL and 11 ± 1 µmol/mL. The final size (obtained for LLS 
preparations was 201 ± 39 while for SLS preparations was 236 ± 4 nm. The SLS scale 
corresponds to 2-3 mL preparations; the LLS correspond to 600 mL preparations. The data 
points represent the average ± S.D. of, at least, ten independent experiments. 
 

 

For LLS it was also demonstrated a high reproducibility of the properties from batch to 

batch among ten independent experiments. Some these batches were further stored 

frozen at -70 ºC in order to maintain their characteristics. 

When required, several batches were thawed and vigorously mixed before final 

characterisation. The macroscopic and microscopic observations revealed the absence 

of precipitated TFL indicating good stability. The final homogenised formulation 

presented 239 ± 5 µg TFL and 8 ± 3 µmol total lipid per mL. 

The TFL formulation prepared in the LLS has all the appropriated characteristics in 

terms of intraliposomal TFL concentration and vesicle size to be compatible with the 
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requirements of the in vivo experiments. That is, the administration of a 

therapeutically effective dose in a volume no greater than 200 µL per mice, by 

intravenous route. In addition, this formulation can still be concentrated, at least 

10-fold, without signs of precipitation. 

 

 

Selection of TFL liposomal formulations 

According to the incorporation, stability and scale-up studies, the following 

formulations were selected for in vivo studies: F9 (DSPC:Chol); F14 (PC:PG); F15 

(DOPC:DOPG) and F19 (PC:PEG-DSPE). 

 

 

 

II-A.3.2 – Evaluation of the anti-leishmanial activity of TFL 

liposomal formulations in animal models of Leishmania 

sp infections 

The antiparasitic activities of the selected TFL liposomal formulations were evaluated 

in experimental mouse models of visceral (L. donovani) and cutaneous (L. major) 

leishmaniasis and also in a canine model (L. infantum). 

The influence of the lipid composition, the TFL dose effect, the treatment schedule 

and the route of administration, on the reduction of parasite burden, was assessed. 

 

II-A.3.2.1 – Therapeutic activity in a murine visceral model 

The therapeutic activity of TFL liposomes was evaluated in a murine visceral model of 

infection against L. donovani. 
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Effect of the lipid composition of TFL liposome 

TFL incorporated in three different liposomal formulations (F9; F14 and F15) were 

compared to free TFL (in 10% Tween 80) and to Glucantime® (positive control). 

Infected, untreated, animals were used as a negative control. The TFL liposomal 

formulations prepared as described in section II-A.3.1.3 (LLS), were concentrated in 

such a way that the used dose (15 mg TFL/kg body weight) could be administered in 

an appropriated volume (up to 200 µL/mouse). The parasite load in the liver of 

treated and untreated mice was calculated as described in section II-A.2.6.1. Data is 

shown in Figure II-A.3.7. 
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Figure II-A.3.7 - In vivo activity of TFL liposomal formulations, free TFL and Glucantime® 
(SbV) against L. donovani (MHOM/ET/67/L82) infections in the liver of BALB/c mice. TFL 
liposomes: F9 = DSPC:Chol; F14 = PC:PG and F15 = DOPC:DOPG. Mice were treated during 
days 7 to 11 post-infection and the parasite load in the liver was determined at day 14 
post-infection. All treatment groups (5 animals) received a dose of 15 mg TFL/Kg body 
weight/day for 5 days. The negative control group (dark blue dots) received 5 doses of 
300 mM trehalose. The positive control group (SbV) received one dose of 15 mg SbV/kg 
body weight at day 7. Black bars represent the mean value. Results are expressed as the 
number of parasites in the liver ± SEM, from, at least, three independent experiments 
[*]-Significantly different from negative control and from free TFL. 
[**]-Significantly different from SbV. 
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Free TFL induced a therapeutic effect reflected by a 33% inhibition of parasite growth 

as compared to untreated mice. A significant superior antiparasitic effect was 

revealed by all three TFL liposomal formulations as well as by Glucantime®, compared 

to free TFL (p<0.05). The inhibition of parasite growth observed for the three TFL 

liposomal formulations ranged from 55 to 68%, depending on the lipid composition. 

However, the therapeutic activity of the formulations is not statistically dependent on 

the lipid composition; nevertheless, F15 formulation is 2-fold more active than free 

TFL and displayed a similar activity as Glucantime® at similar dose (1 administration). 

On the contrary the PC:PG liposomes (F14) are significantly lower than Glucantime® 

(p<0.05). 

 

Effect of liposomal TFL dose and number of treatments 

The therapeutic effect of the formulation displaying higher activity, F15, prepared in 

three different doses (2, 5 and 10 mg TFL/kg body weight) and administered in 1, 3 or 

5 treatments was explored. The evaluation of the activity of liposomal TFL for all the 

doses and treatments of F15 is shown in Figure II-A.3.8. 

Free TFL administered in Tween 80 at a dose of 10 mg/kg induced a small reduction of 

parasite growth, ranging from 18 to 26% inhibition, compared to the negative control. 

No effect was observed with the increase of the number of treatments. Free TFL was 

significantly less active than the respective liposomal form (p<0.01). 

For mice treated with TFL liposomes, a significant parasite inhibition was observed in 

the liver compared to the untreated control group (p<0.05), irrespectively of the 

treatment regimens and doses used. When increasing the number of treatments and 

the dose, it was observed a tendency to increase the parasite inhibition, ranging from 

36% (single administration of 2 mg TFL/kg) to a maximum of 70% (five administrations, 

10 mg/kg). However, significant differences were only observed between the animal 
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groups treated with a single administration of any of the tested doses of liposomal TFL 

and the group treated with 5 doses at 10 mg TFL/Kg/day (p<0.05). This latter group 

presented a similar antiparasitic activity (70% parasite inhibition) as the group treated 

with Glucantime® (5 mg/kg/day, 5 days). 
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Figure II-A.3.8 – Dose and treatment-response activity of free and liposomal TFL against 
L. donovani infections in the liver of BALB/c mice. Mice (5 animals per group) were 
treated during days 7 to 11 of infection and the inhibition of liver amastigotes was 
determined at day 14 post-infection. The TFL doses incorporated in DOPC:DOPG liposomes 
were 2 (light blue bars), 5 (blue bars) and 10 (dark blue bars) mg/kg/day and the number 
of treatments were one (single dose), three (in alternate days) and five (five consecutive 
days). Free TFL (grey bars) was given at a dose of 10 mg/kg/day. The positive control 
group (Sb(V)) (dark red bars) received 5 doses of 5 mg/kg. Results are expressed as percent 
parasite inhibition ± SEM. 
[*]-significant difference between the values 
[**]-Not significant difference between the values 
 

 

II-A.3.2.2 – Therapeutic activity in a murine cutaneous model 

The therapeutic effect of TFL incorporated into two liposomal formulations was also 

evaluated against L. major in a cutaneous animal model of Leishmania infection. One 

of the selected formulations was the one used before for the visceral model with the 

best results (F15). A second formulation with long circulation characteristics, F19 
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(PC:PEG-DSPE) was also included with the intention of reaching the skin where the 

target cells in this model are located. These two formulations were prepared with a 

final mean particle size of around 80 nm. The therapeutic effect was analysed by 

measuring the size of the skin lesions produced by the L. major infection. 

In one set of in vivo studies the anti-parasitic activities of F15, F19 TFL liposomal 

formulations and Glucantime® administered i.v., i.p. and s.c., against L. major were 

compared. Data is shown in Figure II-A.3.9. In comparison to untreated mice that 

presented an average increase in the lesion size of 40%, both TFL formulations 

significantly reduced lesions size (p<0.001). Glucantime® also had a significant effect 

on lesion size (p<0.001). An interesting result was the observation that the treatment 

with TFL liposomes at 6 mg/kg dose, was able to slow the lesion progression at a 

similarly rate than the same 10 administrations of a 66-fold higher dose of the 

Glucantime® for all the administration routes. 

Regarding the lesion reductions it was observed that they were irrespective of the 

administration route for all treated groups. However the s.c. route (close to the 

lesion) offered the most promising results for all formulations. This route of 

administration presented the most consistent results for the three formulations. On 

the other hand some irregularity of results (high SD values) was observed for the i.p. 

and i.v. routes in F15 and for the i.v. route in F19. 

The therapeutic effect of free TFL was also assessed in 2 independent experiments, 

however results were inconsistent and several animals had to be euthanized before 

the end of the experiment to avoid unnecessary animal suffering (data not shown). 
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Figure II-A.3.9 – Antiparasitic activity of TFL liposomes against L. major 
(MHOM/ET/67/L82) infections in the skin of BALB/c mice. Mice (5 animals per group) were 
treated every day, between days 7 and 12 post-infection with Glucantime® 
(400 mg SbV/kg/day) and TFL incorporated in DOPC:DOPG(F15) and PC:PEG-DSPE (F19) 
liposomes (6 mg/kg/day) either by i.v., i.p. or s.c. (close to the lesion) route. Untreated 
mice (Neg. Control) were given 300 mM trehalose. The lesion sizes were measured 14 days 
post-infection. Results are expressed as the percent increase/decrease in lesion size ± SD 
of two representative experiments. 
[*]- Statistically different from negative control (p< 0.001) 
[**]- Not statistically different between values (p>0.05) 
 

 

In a second set of in vivo experiments and based on the above results, mice with a 

higher L. major infection level were treated with the long circulation TFL formulation 

F19. In this study the activity of 10 doses of F19 (10 mg TFL/kg/day) was compared to 

Glucantime® (400 mg Sb(V)/kg/day), both administered i.v., i.p. and s.c. Data is 

shown in Figure II-A.3.10. The lesion sizes of untreated mice observed 21 days after 

infection increased about 90%. In this study no therapeutic effect was achieved for the 

treated mice groups with the exception of the s.c administrations of F19 liposomes 

with a significant reduction in the rate of lesion development (p<0.01). These results 

demonstrate the superiority of the s.c. administration route close to the lesion for the 

treatment of this model of cutaneous leishmaniasis with TFL liposomes. 
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Figure II-A.3.10 – In vivo activity of TFL liposomes against L. major (MHOM/ET/67/L82) 
infections in the skin of BALB/c mice. Mice (5 animals per group) were treated between 
days 7 and 17 post-infection with TFL incorporated in PC:PEG-DSPE (F19) liposomes 
(10 mg/kg/day) by i.v., i.p. and s.c. routes. Untreated mice (Neg. Control) were given 
300 mM trehalose. The lesion sizes were measured 21 days post-infection. Results are 
expressed as the percent increase in lesion size ± SD. 
[*]- Statistically different from negative control. 
 

 

The lesions size of mice with the lower level of L. major infection (from 

Figure II-A.3.9) were monitored for 7 weeks after the beginning of treatment with the 

intention to evaluate the progression of the disease after the end of treatment. During 

this time animals that presented signs of distress were removed from the experiment. 

Figure II-A.3.11 shows the weekly evolution of the lesion size in all the mice groups. 

Considering that treatment was completed at day 10, it is interesting to notice that a 

negative mean value (-5%) for the lesion size increase was still obtained 21 days from 

the start of the treatment for the TFL liposomes administered s.c. After 28 days the 

lesion size for these animals increases to positive values (25%). However, this value is 

significantly different from the control that is already 70% higher than the initial 

value. The standard drug Glucantime® had a more marked effect in the evolution of 
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this model. In particular, when administered s.c. it was responsible for a negative 

progression of the lesion size up to 1 month from the completion of the treatment. 
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Figure II-A.3.11 – In vivo activity of TFL liposomes against L. major (MHOM/ET/67/L82). 
Mice (5 animals per group) received 10 doses of either TFL incorporated in PC:PEG-DSPE 
(F19) liposomes (10 mg TFL/kg/day) or Glucantime® (Sb(V)) (400 mg/kg/day) by i.v., i.p. 
and s.c. routes. Untreated mice (Neg. Control) were given 300 mM trehalose x 10 doses. 
Treatment was completed at day 10. The lesion sizes were measured once a week. Results 
are expressed as the increase/decrease in lesion size ± SD of two representative 
experiments. 
 

 



Chapter II – Part A 

88 

II-A.3.2.3 – Therapeutic activity in a canine model of L. infantum 

The therapeutic activity of liposomal TFL (F15) was also studied in the treatment of 

dogs experimentally infected with L. infantum. Infected female Beagles were treated 

for 10 days with a daily dose of 10 mg TFL/Kg (i.v.). The therapeutic effect was 

analysed by quantification of viable parasites in the bone marrow and lymph nodes 

and in the evaluation of the clinical condition of the dogs. Figure II-A.3.12 shows some 

of the external clinical signs observed in the dogs five month after infection (a to d) 

and at 1 (e and f) and 3 (g, h and i) months after treatment. It was observed a general 

clinical recovery with remission of symptoms after treatment, namely: conjunctivitis 

and nose dry dermatitis (e and h vs. a); ulcerative lesions of the paws (f and i vs. b) 

and hair loss and desquamation (g vs. c) 
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Figure II-A.3.12 – External clinical signs of leishmaniasis shown by dogs after infection (a 
to d) and general clinical recovery with remission of symptoms observed after treatment 
(e to i). (a) mild conjunctivitis; (b) ulcerative lesions of the paws; (c) hair loss and 
desquamation; (d) onycogryphosis (nail bed changes); (e and h) remission of conjunctivitis 
and nose dry dermatitis; (f and i) nearly and completely healed ulcerations of the paws, 
(g) absence of hair loss and desquamation. Adapted from [52]. 
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Table II-A.3.5 shows the evolution of the number of viable parasites detected in one 

of the dogs before and after treatment with liposomal TFL. 

 

Table II-A.3.5 – Viable L. infantum parasites detected in one of the dogs before and after 
treatment with liposomal TFL (F15). 

Time Line 
Parasites/g of tissue 

Bone Marrow Lymph Nodes 

5 months after infection (*) 1000 6400 

1 month after treatment negative 1600 

3 months after treatment 4000 1600 

(*) before treatment 

 

 

Results show that there was either elimination or a significant reduction in the 

parasite burden at 1 month after treatment, respectively in the bone marrow and in 

the lymph nodes. Nonetheless, 3 months after treatment parasites numbers increased 

in the bone marrow whereas in lymph nodes remained constant and 4-fold lower than 

before treatment. 

The induction of a potential protective immune response due to the increments of 

protective cytokines (IFN-γ and IL-2) in the parasite target organs was detected in the 

dogs following treatment (data not shown). In addition, no variation on 

haematological and biochemical blood parameters (haemogram and leukocytic 

formula) was observed along the course of the experiment (measured at 0, 6 and 10 

months after the start of the study) [52]. 
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II-A.4. Discussion 

Dinitroanilines, in particular TFL, have shown attractive features as potential drugs for 

the treatment of parasite infections since the pioneer work of Chan and co-workers 

[44]. The recent increasing interest in dinitroanilines as selective chemotherapeutic 

agents is documented by chemical modification studies aiming at increasing the 

activity against the tubulins from parasites [62-66]. 

Besides chemical modification, incorporation in liposomes represents another strategy 

to overcome the difficulties of handling and to correctly formulate TFL for in vivo 

administration. The work presented here represents the first attempt to incorporate 

TFL in liposomes, simultaneously providing a solvent, and a stabilizing system for TFL 

and a NanoDDS for its systemic administration targeted towards the Leishmania 

infected organs. 

To achieve an efficient incorporation and stabilization of TFL in liposomal 

formulations, studies involving the effect of lipid composition, presence of Chol, Tc of 

lipids, lipids surface charge and the presence of PEG-derivatized lipids, were 

performed. The reduction in TFL incorporation observed in conventional fluid 

liposomes and in PEG containing liposomes, resulting from the inclusion of Chol in the 

lipid mixture (Table II-A.3.1), can be explained by TFL hydrophobicity and by the 

competition of both molecules for the same domain in the phospholipid bilayer. These 

results are in accordance with previous observations involving other anti-parasitic 

drugs [67, 68]. The low incorporation obtained for formulations composed of lipids 

with higher Tc without Chol, as compared to fluid lipids (Table II-A.3.2), can be 

explained by the difficulty of insertion and stabilization of TFL in ordered bilayers, as 

already observed for other drugs with a high hydrophobicity [67, 69]. A cumulative 

inhibitory effect of high Tc and Chol on drug incorporation seems to be responsible for 

low or no TFL incorporation in rigid lipidic bilayers combined with 30% Chol content 
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(F6, F8 and F10). The presence of a negative surface charge in the liposomal bilayer is 

favourable for the incorporation of TFL in liposomes. As such the best compositions for 

the incorporation of TFL in liposomes are mixtures of phospholipids with low Tc, 

without Chol and with charged polar head groups, in particular PG, with or without 

PEG-derivatized lipids. 

In addition to a successful incorporation, the maintenance of the drug in the liposomes 

is mandatory to allow the performance of long term studies and in vivo experiments. 

This is particularly critical in the case of unstable hydrophobic drugs such as TFL that 

can affect liposomes stability by interacting with the lipid bilayers, as opposed to 

water-soluble drugs [70, 71]. We have reached this goal as the TFL formulations that 

presented the best incorporation parameters can be used safely 10 days after 

preparation as they were also the most stable in saline at 4 ºC. 

When higher amounts of liposomes are needed, their efficient stabilization in 

lyophilized form has been widely used [72]. In addition, freeze-drying is a well-

accepted technique in the pharmaceutical industry. Due to the tendency of TFL to be 

incorporated in the lipid matrix, it would be possible to stabilise this drug during 

freeze-drying without the need for lyoprotection [61]. However, due to the drug’s 

labile nature, protection may be required. Therefore, we have investigated the effect 

of sugars on the stabilization of freeze-dried TFL liposomes. Although it is sustained 

that sugars are required, both in the inner aqueous space and in the medium outside 

the vesicles, to reach optimal lyoprotective effect of either hydrophobic or 

hydrophilic drugs [61, 72, 73], our results did not show such a sugar dependency. 

Regardless of the presence or absence of trehalose inside liposomes, its presence in 

the outside space was crucial for the retention of TFL and for the preservation of 

liposome size and surface properties. When lyophilisation took place in the absence of 

lyoprotectant, changes occurring in the vesicles structure due to the formation of ice 
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crystals [72], and in lipids distribution in the liposomal outer layer may be partially 

responsible for the leakage of TFL. 

When a loss of drug occurred during the lyophilisation process, a discoloration from 

the typical yellow colour of TFL to a white colour of the freeze-dried cake was 

observed. The possible sublimation of TFL during the freeze-drying process may 

account for these observations. In the absence of a lyoprotectant, it is described an 

increase in competing interactions between acyl chains resulting from the drying of 

the bilayers [72]. Under these conditions the association of TFL to the acyl chains of 

the phospholipids is not strong enough to avoid leakage of the drug and sublimation. 

The presence of trehalose, replacing water in the interaction with the phospholipids 

head groups [74], allows the maintenance of the original TFL-acyl chains interaction, 

thus protecting TFL in liposomes by acting as an anti-sublimating agent [75]. In the 

experiments with TFL liposomes made from fluid lipids (F14 and F15), the presence of 

trehalose was crucial to keep liposomes properties during lyophilisation and during 

storage for periods of time of up to one year without significant loss of TFL. 

Furthermore, the presence of trehalose during the preparation of TFL liposomes also 

allowed a better manipulation of the liposomal suspension. In fact, an easier extrusion 

was observed and it prevented the shrinkage of the freeze dried cake assuring a good 

and instantaneous rehydration and homogenization after the addition of water. This 

represents a common feature previously reported for other drugs and other types of 

lyophilised liposomes [76, 77]. These formulations also evidenced other interesting 

pharmaceutical aspects like the conservation of their properties, particularly the 

loading capacity and vesicle size during, at least, 3 days after reconstitution. This 

behaviour will allow a safe usage of reconstituted liposomes in other experiments, 

e. g. in vivo studies. The finding that it is possible to keep certain TFL liposomal 

formulations frozen in the presence of trehalose, for at least 3 months, with no 
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further treatment after preparation, is important due to the convenience of this 

procedure. The slow freezing process used in the present work was already described 

for cationic liposomes, as allowing to maintain smaller size variations than fast 

freezing [61, 78]. 

Another important finding of this work was the possibility to increase 300-fold the 

scale of liposomes preparation, without affecting the incorporation parameters and 

the characteristics of the final TFL liposomes. This indicates that all the critical steps 

for efficient drug incorporation like the formation of the lipid film, its hydration, 

separation of non-incorporated material and sizing [72], defined before, were not 

affected by the modifications in the preparation method and experimental conditions 

attempted. Batch-to-batch reproducibility of liposomes properties was found in a 

significant number of individual 600 mL preparations. Although the scale increase 

tested with TFL liposomes cannot be extrapolated for the large production of 

formulations, it is worthwhile at laboratory scale, allowing the production of the 

needed liposomal volume for the treatment of leishmaniasis in infected mice and 

dogs. 

As a result of the above described systematic evaluation of parameters affecting TFL 

incorporation and stabilization in liposomes, some TFL formulations were selected for 

biological evaluation. These liposomes can act as a stable solvent system for TFL, 

increasing its water concentration at least 10.000 times. 

The second goal of this chapter was to demonstrate if liposomes were appropriate 

NanoDDS to carry TFL to the sites of Leishmania infection. While TFL has been 

described in the literature as an anti-leishmanial agent [79], its biological behaviour 

was characterized mostly based on in vitro tests. The only known results on the use of 

TFL in vivo concern topical application, as an ointment, in a cutaneous animal model 

[43], which is not an appropriate formulation to treat the visceral form of the disease. 
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In addition, TFL is not suitable for oral or systemic administration due to very low 

water solubility and easy sublimation [46] and the large volumes needed to reach the 

therapeutic dose [48, 49]. Through the evaluation of the therapeutic activities of TFL 

liposomal formulations in murine and canine models of Leishmania infections, it was 

evidenced the superiority of the liposomal formulations over the free TFL. In addition, 

all the liposomal formulations have the advantage of not requiring organic solvents to 

be administered as is the case of the free drug. Despite the fact that the TFL 

liposomal formulations assayed in a murine visceral model of L. donovani infection 

have different properties like membrane fluidity and surface charge, no significant 

differences were evidenced in their antileishmanial activity. However, one of the 

formulations made with fluid lipid (DOPC:DOPG), can be pointed out as the best 

formulation developed in this work, as it inhibited up to 67% parasite growth in the 

liver, being two fold more active than the free TFL and presented a similar inhibition 

pattern as Glucantime®. This formulation was used to test different doses and 

treatment schedules with the aim to further improve the parasite growth inhibition in 

mice and dogs. A total dose of 50 mg/kg administered as 5 treatments of 

10 mg/kg/day was responsible for a substantial reduction of the parasite growth 

(around 70%), presenting simultaneously a pattern similar to Glucantime® 

(5 treatments of 5 mg Sb(V)/kg/day) while displaying significantly higher therapeutic 

effect from lower doses (2 and 5 mg/kg/day) at different administrations. This finding 

indicates that to reach the goal of 100% parasite inhibition a further increase on the 

dose and/or number of administration should be the correct direction to follow. The 

dose increase could be safely done, as no signs of toxicity were reported in mice for 

TFL liposomes of the same lipid composition at a dose of at least 60 mg TFL/kg body 

weight (by i.v. or i.p. route) [80]. 
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In the cutaneous model, we had to face a more difficult task for drug delivery, as the 

cellular target for TFL are L. major amastigotes-infected macrophages located in the 

dermis of the skin [81]. For this reason the type of chosen liposomes to deliver the 

drug were long circulating ones and conventional liposomes of smaller mean particle 

size (below 100 nm). Liposomes with these characteristics have been described as 

appropriate to gain access to the dermis where they are able to extravasate through 

the leaky blood vessels caused by local inflammatory responses [81, 82]. The 

therapeutic activity studies proved a significant reduction in the lesion size of treated 

animals compared to control following administration of both TFL formulations 

(Figure II-A.3.9). This observation was not found for free TFL, demonstrating that a 

proper delivery was achieved. The small mean particle size of the administered 

liposomes (around 80 nm) was most probably the cause for the similar activity 

observed for both the conventional and long circulating formulations. Interestingly the 

route of administration seems to have a more relevant influence than that of 

liposomes composition. A superiority of TFL liposomes was found for the s.c. route as 

compared to i.p or i.v. administration in experiments with higher infection levels 

(Figure II-A.3.11). Such a dependence of the effectiveness of liposomal formulations 

from the administration route was observed by other authors [83]. However in studies 

with liposomal amphotericin B the i.v. route was superior for the treatment of 

cutaneous leishmaniasis [81, 82]. The different chemical properties of both 

amphotericin B and TFL molecules and their specific interaction and diffusion in the 

tissues after local administration may explain these discrepancies. In addition, and 

according to biodistribution studies of small liposomes, a fraction remains at the 

injection site following s.c. administration, the percentage depending from the 

anatomical site of injection [84, 85]. The subsequent formation of a s.c. liposomal 

depot at the site of injection and, in this case, close to the lesion may provide a 
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sustained release of TFL increasing the drug concentration and maintaining a higher 

drug level for a longer time in its site of action. This process is not only dependent 

from the ability of small liposomes to migrate through the interstial spaces between 

cells [83], but also from the ability of free molecule to diffuse through lipophilic 

media from the site of injection to the lesion. The contribution of this latter 

mechanism may be crucial for the overall result, closely dependent from the type of 

molecule under study. 

The overall results obtained have demonstrated that not only TFL liposomes are active 

in the treatment of cutaneous leishmaniasis, they also presented a similar therapeutic 

activity to Glucantime® at a high dose (400 mg of Sb(V)/kg). In particular the results 

for the s.c. route, a simpler route for patient self-administration, opens the way for 

new studies where different treatment regimens including higher TFL doses may be 

expected to have a curative effect. 

Our most ambitious aim was to test, at least, one TFL liposomal formulation in dogs 

experimentally and naturally infected (data not shown) with Leishmania parasites. 

This was carried out with formulation F15. The activity of TFL liposomes (DOPC:DOPG) 

and the absence of signs of toxicity were demonstrated in both types of infected dogs. 

Improvement in physical signs including the disappearance of nose dry dermatitis, 

articulary skin oedemas and mild conjunctivitis were observed in a naturally infected 

dog treated with F15 [86]. The therapeutic effects exhibited by experimentally 

infected dogs, after treatment with liposomal TFL included the improvement of the 

animal’s clinical condition, the reduction of parasite load, and the induction of 

protective immune response with the increments of protective cytokines [52]. In 

addition, no variation on haematological and biochemical blood parameters were 

registered [52, 86]. 
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Taking into account the results obtained in the mouse and dog infection models, we 

can conclude that the formulations developed in this study are promising TFL delivery 

systems for the treatment of leishmaniasis. However, further systematic studies are 

needed for a complete knowledge of the usefulness of TFL liposomes to fight this 

infection. 
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II-B.1 – Abstract 

Leishmaniasis treatment failures are becoming a common problem in endemic areas with 

the emergence of resistance towards the traditional first line drugs. Second-line drugs 

such as pentamidine and amphotericin B, which are more toxic and difficult to administer 

and the recent oral agent miltefosine, have failed in providing a clear alternative for the 

treatment of visceral leishmaniasis. The continuous investigation for a thriving vaccine 

together with the search for potentially new bioactive agents and new strategies are 

needed to overcome the increasing incidence of the disease and fight the emergence of 

resistant strains. 

In Part B of Chapter II, new dinitroaniline derivatives prepared by hemi-synthesis methods 

(TFL-D) were incorporated in lipid-based NanoDDS and studies were performed to 

evaluate their anti-leishmanial activity. With the intent of target macrophages, the host 

cells of Leishmania parasites, conventional DMPC:DMPG liposomes were prepared and 

optimised. The TFL-D compounds included in these studies (TFL-A6 and TFL-A3) were 

selected based on their in vitro anti-leishmanial activity. To provide evidence on the 

effectiveness of the liposomal TFL-Ds, the in vitro and in vivo anti-leishmanial activities 

were evaluated using appropriated assays and animal models. The in vitro biological 

evaluation of the free and liposomal TFL-D has demonstrated that they are active against 

Leishmania and more potent than miltefosine. The absence of adverse toxic effects in 

vitro was also established. Extensive parasite load inhibition was observed after 

treatment with liposomal TFL-A3 in a murine model of zoonotic visceral leishmaniasis. 

Overall, the chemical synthesis of potentially effective new bioactive agents together 

with the use of NanoDDS that naturally target the diseased organs can be considered a 

promising new combined strategy to the discovery of novel non-conventional 

anti-leishmanial systems. 
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II-B.2 - Materials and Methods 

 

II-B.2.1 – Lipids and Chemicals 

Trifluralin derivative molecules (TFL-A6 and TFL-A3) were synthesized and were a 

generous gift from the Fuel Cells and Hydrogen Unit of LNEG. The phospholipids 

dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG), 

dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol (DOPG) were 

purchased from Avanti Polar Lipids (USA) and were used without further purification. 

Polycarbonate membranes were from Nuclepore (USA). PD-10 columns were purchased 

from Bio-Rad. Acetonitrile (HPLC grade) was from Merck. RPMI 1640 media (20 mM 

HEPES), Schneider’s Drosophila medium, penicillin-streptomycin, and foetal bovine 

serum (FBS) were purchased from Sigma-Aldrich (USA). Foetal calf serum (FCS) and 

Histopaque 1077 were purchased from Invitrogen (USA). LIVE/DEAD viability kit was 

obtained from Molecular Probes (UK). The BCATM Protein Assay Kit is from Pierce 

(USA). All other reagents were analytical grade. 

 

Synthesis of TFL Derivatives 

The TFL derivatives (TFL-D) were synthesised by Dr. A. Esteves (Fuel Cells and 

Hydrogen Unit, LNEG). The general procedure was described elsewhere [42, 53]. The 

method consisted of reacting chloralin, with primary or secondary amines in the 

presence of triethylamine using ethanol as solvent. Substituent in the amines was aryl 

and alkyl groups. The following TFL-Ds were kindly supplied: 

TFL-A6: 4-(2,6-Dinitro-4-trifluoromethyl-phenylamino)-phenol 

TFL-A3: 2-((2,6-Dinitro-4-trifluoromethyl-phenyl)-butylamino)-ethanol 
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II-B.2.2 - Cell lines, Leishmania strains and mice 

The human monocytic cell line THP-1 was maintained in culture in RPMI 1640 medium, 

supplemented with 10% heat inactivated FBS, L-glutamine, Penicillin 100 U/mL and 

Streptomycin 100 μg/mL, pH 7.4 at 37 ºC, 5% CO2. 

Three different Leishmania strains were used in these studies. For in vitro assays 

Leishmania infantum promastigotes (MHOM/TN/80/IPT1/LEM 235) and Leishmania 

donovani promastigotes (MHOM/IN/80/DD8/LEM 703) were cultured in RPMI 1640 

medium, supplemented with 10% heat inactivated FCS, L-glutamine, and Penicillin 

100 U/mL plus Streptomycin 100 μg/mL, pH 7,4 at 26 ºC. For in vivo studies 

L. infantum MON-1 (MHOM/PT/89/IMT 151) was maintained by passage in Syrian 

golden hamsters and amastigotes were isolated from infected spleens. After in vitro 

transformation, virulent promastigotes collected from the stationary phase of a 

subculture with less than five passages was used for mice inoculation. 

BALB/c mice 6 to 8 weeks old (weight 25-30 g) were purchased from Gulbenkian 

Institute of Science, Portugal, and housed at the INETI animal facilities, fulfilling the 

European Union Council Directive (86/209/CEE), recognised by Portuguese law (DR 

DL129/92 and Portaria 1005/92). The experiments were repeated at least three times. 

 

 

II-B.2.3 – Preparation of TFL-D liposomes 

The incorporation of TFL-D in liposomes was done by the thin film-extrusion method 

described for TFL liposomes in section II-A.2.3. Typically, mixtures of either DMPC and 

DMPG or DOPC and DOPG (16 µmol/mL for TFL-A6 and 20 µmol/mL for TFL-A3, total 

lipid), at different molar ratios, and TFL-D at various initial concentrations were 

dissolved in an organic solution and dried under a nitrogen stream. The hydration of 

the film was performed in two steps; first, was added two-tenth of the total volume of 
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a trehalose-citrate buffer (10 mM Sodium Citrate, 135 mM NaCl, 29 mM Trehalose, pH 

5.5) and the film was allowed to disperse by stirring. The hydration was completed 

with the addition of the appropriated volume (eight tenth) of citrate buffer (10 mM 

Sodium Citrate, 145 mM NaCl, pH 5.5), under stirring. Liposomes containing TFL-D 

were down-sized by extrusion until a final pore size of 200 nm and a polydispersity 

index (P.I.) below 0.2. The non-incorporated TFL-D was removed by gel filtration in 

PD-10 columns. Final liposomal suspensions were obtained after ultra-centrifugation of 

the eluted liposomes at 180,000 x g for 2 h at 20 ºC in a Beckman L8-60M 

ultracentrifuge (Beckman Instruments, Inc., USA). The pellets were suspended in the 

same buffer to their volume before the gel filtration. Liposomes were assayed for 

TFL-D and lipid contents, vesicles size and zeta potential. 

 

II-B.2.3.1 – Freeze-dried TFL-D liposomes 

The ultra-centrifuged TFL-D liposomal pellets prepared above were suspended with 

the trehalose-citrate buffer, divided into 1 mL aliquots and freeze-dried overnight. 

The lyophilized cakes were reconstituted with water to the same volume and the 

potential released TFL-D was removed by gel filtration. 

For the cellular association studies, 1 mol% of Rhodamine-DOPE (Rh-PE) was included 

in the lipid composition. It was added to the lipid mixture in the organic solvent. The 

remaining preparation process was the same as above. 

For the remaining in vitro biological evaluation assays, liposomal TFL-D formulations 

were concentrated 4-fold, after ultra-centrifugation, by suspending the liposomal 

pellets in a smaller volume of the trehalose-citrate buffer. The resulting suspension 

was then freeze-dried overnight in 2 to 3 mL aliquots. Each lyophilized cake was 

reconstituted with 2 to 3 mL of water in order to reach the concentration required in 

each particular assay. 
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The liposomal TFL-D formulations used in animal studies were concentrated around 

6-fold, by suspending the ultra-centrifuged liposomal pellet in a smaller volume of the 

trehalose-citrate buffer. The resulting concentrated suspension was divided into 10 

vials with equal volume (± 1.5 mL) and freeze-dried overnight. A freeze-dried sample 

was reconstituted with water to the same volume and assayed to determine TFL-D 

concentration. The remaining vials were reconstituted with water to ±1.5 mL in order 

to afford 3.7 mg TFL-D/mL. The freeze-dried liposomes were reconstituted daily, a 

few hours before their administration to infected mice. 

 

 

II-B.2.4 – Characterization of TFL-D liposomal formulations 

All liposomal formulations and processes for their preparation were characterized 

throughout the various steps (from initial bulk solution to final liposomal suspension). 

The incorporation parameters used for the characterization of the final formulations, 

their abbreviations and equations are described in Table II-B.2.1. 

An HPLC method was set-up for the quantification of free and liposomal TFL-D. The 

HPLC system used consisted of a Beckman System Gold Nouveau (Beckman Instruments, 

USA) with a 126 Pump Direct Control and a Midas type 830 auto-sampler with a 20 µL 

sample loop. This system is connected to specific computer software (32 Karat, version 

7.0) for the integration of chromatograms. A Nucleosil C18, 5 µm (150 x 4.6 mm) 

analytical column (Supelco, USA) was used. The mobile phase consisted of 0.02 M 

sodium acetate (pH 6.55): acetonitrile (40:60). Samples were extemporaneously 

prepared by dilution in acetonitrile, mixed by vortex and then the appropriate volume 

of 0.02 M sodium acetate (pH 6.55) was added in order to have an acetonitrile:buffer 

ratio of 60:40. Samples were filtered into appropriated HPLC vials. The chromatographic 

run started with a gradient from 60 – 80 % of acetonitrile in 8 min and kept at 80 % of 
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acetonitrile for 5 min. At min 13 a gradient from 80 – 60 % of acetonitrile in 2 min was 

started. The instrumental settings were: flow rate 1 mL/min; column temperature 25º C 

and detection at 280 nm for TFL-A6 and at 360 nm for TFL-A3 in a diode-array Detector 

Module model 168 (Beckman Instruments, USA). 

Phospholipid concentration was determined according to the method by Rouser, et al 

[55] and liposomes mean particle size and surface charge properties were evaluated as 

described for TFL liposomes in section II-A.2.4. 

 

Table II-B.2.1 – Abbreviations and equations of TFL-D incorporation parameters 

Trifluralin synthetic Derivatives TFL-D  (D = A6 or A3)           [TFL-A6 or TFL-A3] 

Total Lipid Lip 

Initial TFL-D to Lip ratio (g/mol) [TFL-D/Lip]i 

Loading Capacity (L.C.) (g/mol) [TFL-D/Lip]f 

TFL-D retention (%) ([TFL-D]f/[TFL-D]i) x 100 

Lipid retention (%) ([Lip]f/[Lip]i) x 100 

Incorporation Efficiency (I.E.) (%) ([TFL-D/Lip]f)/([TFL-D/Lip]i) x 100 

 

 

II-B.2.5 – Evaluation of the in vitro biological behaviour of 

Lip-TFL-D 
 

II-B.2.5.1 – Cellular association studies 

The cellular association studies required the use of Rhodamine-DOPE (Rh-PE) labelled 

liposomes. Empty DMPC:DMPG liposomes or TFL-D containing DMPC:DMPG liposomes 

were prepared with 1 mol% of Rh-PE and incubated in concentrations 0.1, 0.4 and 

0.8 mM phospholipid per well (PL/well) with one million differentiated THP-1 cells. 

The studies were done either at 4 or 37 ºC to distinguish between cell binding and cell 
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internalization. To assess the effect of the incubation time on the degree of cellular 

association, this assay was carried out for 0.5, 1 and 4 h. After the incubation, the 

cells were washed three times with cold phosphate buffered saline (PBS) (1.4 mM 

KH2PO4, 2.7 mM KCl, 8.1 mM Na2HPO4, 137 mM NaCl, pH 7.4) and lysated with 0.1% 

Triton X-100 in PBS (pH 8.0). The Rh-PE fluorescence was measured in the supernatant 

using excitation and emission wavelengths of 560 nm and 590 nm respectively, in a 

SpectraMax Gemini EM plate reader fluorimeter (Molecular Devices, Canada). The 

cellular association of TFL-D liposomes was calculated based on an Rh-PE standard 

curve and normalized to the amount of protein in the lysate determined by the BCATM 

Protein Assay Kit. Data was expressed as nmol of phospholipid per mg of protein (nmol 

PL/mg protein). 

 

II-B.2.5.2 – Anti-leishmanial activity against intracellular L. infantum 

The THP-1 cell line differentiated with 1 mM retinoic acid (3 days at 37 ºC, 5% CO2), 

was used as the host cell line of the parasite. Differentiated THP-1 cells were infected 

with L. infantum (LEM 235) promastigotes by mixing cells and parasites, in cell culture 

flasks, at a ratio 1:4 followed by 24 h incubation at 37 ºC and 5% CO2. The cellular 

suspension was centrifuged at 400 x g for 10 min and the pellet ressuspended in RPMI 

medium. The suspension volume was covered with an equal volume of Histopaque 

1077 and centrifuged at 1000 x g for 20 min to remove the free promastigotes. The 

infected cell layer was washed with PBS (pH 7.4) twice and resuspended in RPMI at 

4 x 105 cells/mL. 

Free and liposomal TFL-Ds, in concentrations ranging from 50 to 0.4 µM, were mixed 

with 200 µL of infected THP-1 cells in a 24 well tissue culture plate (Cellstar, 

Greiner). Incubation proceeded for 48 h at 37 ºC and 5% CO2. After incubation cells 

were smeared onto glass slides in a cytocentrifuge (Cytospin, Japan) at 45 x g for 
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1 min, air-dried, fixed with methanol and stained in Giemsa. The percentage of 

infected THP-1 cells was observed microscopically at 1000 x magnification. The IC50 

values were calculated using sigmoidal regression analysis from the data of three 

independent experiments [87]. 

 

II-B.2.5.3 – Anti-leishmanial activity against promastigote cultures 

For this assay free TFL-D were dissolved in DMSO:ethanol, 50:50 (v:v), and free or 

liposomal TFL-D solutions were prepared to a final concentration of 65 mM TFL. Linear 

5-fold dilutions were prepared in RPMI culture medium ranging from 100 to 0.8 µM. A 

volume of 200 μL of L. donovani promastigote culture was seeded at 2 × 106 cells/mL 

in a 24-well tissue culture plate. An equal volume of the appropriate compound 

concentration was added to the wells and promastigotes were allowed to grow for 

72 h at 26 ºC. After incubation, cultures were washed in PBS, resuspended in 300 μL of 

HEPES buffered solution, and stained with propidium iodide (PI) and SYBR-14 using the 

LIVE/DEAD viability kit according to the manufacturer recommendations. Cell samples 

were analyzed by flow cytometry on an Epics Elite model flow cytometer (Coulter, 

USA) equipped with a 488 nm argon laser. Differential monitoring of the dyes was 

achieved by reading the green fluorescence of SYBR-14 at 545 nm and the red 

fluorescence of PI at 645 nm. At least 10000 cells were analyzed per sample and data 

analysis was performed on fluorescence intensities that excluded cell auto 

fluorescence and cell debris. Results were obtained as percentage of live or dead 

promastigotes in each sample. SYBR-14, a fluorescent nucleic acid stain, binds to the 

DNA of living cells while PI intercalates into double-stranded nucleic acids of dead 

cells only since it cannot penetrate intact membranes of live cells. Calculations of IC50 

values were done as described in section II-B.2.5.2. 

 



Chapter II – Part B 

110 

II-B.2.5.4 – Cytotoxicity on THP1 cell line 

The THP-1 cell line was used to quantitatively estimate the degree of cytotoxicity of 

free and liposomal TFL-D in a macrophage-like cell line. In this assay, THP-1 cell 

cultures were incubated at 1 x 106 cells/mL during 72 h at 37 ºC with free and 

liposomal TFL-D, in concentrations ranging from 50 to 6.25 µM. After incubation, the 

cells were suspended in labelling buffer (10 mM HEPES, 150 mM NaCl, 10% BSA, pH 7.4) 

containing 12 µM of PI and 100 nM of SYBR-14. The cytotoxicity was analysed by flow 

cytometry as described in section II-B.2.5.3. 

 

II-B.2.5.5 – Haemolytic activity on human whole blood 

The haemolytic properties of free and liposomal TFL-D were assessed since it is 

intended to use these formulations as injectable pharmaceuticals. This assay is used 

as a biomarker of a general toxic effect to the cell membrane. Free and liposomal 

TFL-D were diluted with PBS and distributed in a 96 well plate (100 µL/well) in 

concentrations ranging from 250 to 6.25 µM TFL. EDTA-preserved peripheral blood of 

healthy volunteers was centrifuged to remove the serum. The red blood cells (RBCs) 

were resuspended in PBS (pH 7.4) and washed a total of three times. An equal volume 

of the RBCs suspension was added to the 96 well plates where the formulations were 

previously placed. After 1 h incubation at 37 ºC, RBCs were centrifuged at 800 xg for 

10 min. The absorbance of the supernatant was measured at 540 nm with the 

reference filter at 620 nm. The percentage haemolytic activity of each formulation at 

different concentrations was estimated as (A-A0/Amax-A0)x100 where A0 is the 

background haemolysis obtained by the incubation of RBCs with PBS and Amax is the 

100% haemolysis achieved upon incubation of RBCs in distilled water. The HC50, 

concentration that exhibited 50% haemolysis was also determined. 
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II-B.2.6 – In vivo therapeutic activity studies 

Therapeutic efficacy of free and liposomal TFL-D was assessed in a mouse model for 

zoonotic visceral leishmaniasis (L. infantum). The therapeutic efficacy was examined 

in BALB/c mice (6 to 8 weeks old), each infected intraperitoneally (i.p.) with 1 x 107 

virulent promastigotes freshly transformed. After 45 days of infection, the mice were 

randomly assigned to three groups. The first group was injected i.p. (150 µL) with 

trehalose/citrate buffer and used as a control group (not-treated). The second group 

was treated i.p. (150 µL) with free TFL-D (25 mg TFL-D/kg of body weight) dissolved in 

trehalose/citrate buffer containing 5% DMSO. The third group was similarly treated 

with TFL-D liposomes (25 mg TFL-D/kg of body weight) freshly reconstituted from 

freeze-dried cakes. To establish the best experimental conditions, mice from the 

three groups were daily treated for 5 consecutive days. 

In all subsequent studies the treatment followed was a multiple-dose therapy schedule 

where mice received 10 doses for two consecutive weeks with two days interval in-

between. In these studies the free TFL-D were dissolved in trehalose/citrate buffer 

containing 5% Tween 80. Additional control groups were included in these studies, 

sodium stibogluconate (Glucantime®), used as a positive control was administered 

subcutaneously (s.c.) in a dose of 15 mg/kg for 5 consecutive days and empty 

liposomes (20 µmol Lip/mouse/day), also used as control of the lipid vesicle, were 

administered i.p. following the same treatment schedule as the free and liposomal 

TFL-D. In all regimens described mice were sacrificed 3 days post-treatment and 

spleens were aseptically collected and weighted. Viable parasite loads in infected 

(control) and treated animals were estimated by limiting dilution assay [88]. The 

spleen from each mouse was homogenised individually in 1.5 mL Schneider’s 

Drosophila medium supplemented with 10% heat-inactivated FCS. The homogenized 

spleen tissue suspensions were diluted to a total volume of 3 mL with the same 
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medium. An additional 1:2 dilution was made for the spleen suspensions. A volume of 

200 µl of the tissue suspensions was placed into the first well and four-fold serial 

dilutions were distributed in 96 well plates and incubated at 24 ºC. Two weeks after 

incubation a sample of each well was examined under the microscope and labelled as 

positive or negative depending on the presence or absence of promastigotes. The final 

titre was set as the highest dilution for which the well contained at least one parasite 

and the number of parasites per gram of tissue was calculated as follows: 

[(Reciprocal titre of the last positive well * total volume of homogenised 

tissue) / (volume of first well * Dilution Factor)] / Weight (g) of homogenised tissue 

The viable parasitic load was expressed as the number of Leishmania per gram of 

homogenized organ. 

 

II-B.2.7 – Statistical analysis 

Data from in vitro studies are expressed as mean values (±) standard deviation (SD) or 

as mean values (±) standard error (SEM) according to samples in each study. Statistical 

analysis was performed using ANOVA Single Factor. The acceptable probability for a 

significant difference between mean values was p<0.05 or as stated. 

The non-parametric Mann–Whitney U test was used to compare parasite load from 

treated and non-treated infected mice. Differences were considered significant with a 

5% significance level (p<0.05). Statistical analysis was performed with the SPSS 13.0 

for Windows software (SPSS Inc., USA) using values from at least three independent 

experiments. 

 



Liposomal Formulations of Trifluralin synthetic derivatives active against Leishmania infections 

113 

II-B.3 - Results 

Several synthetic TFL-D were prepared starting from a commercially available 

chlorinated precursor, chloralin [53]. Two of these TFL-D, designated TFL-A6 and 

TFL-A3 were selected to be incorporated in liposomes based on their in vitro 

biological evaluation studies [53]. The compound names and chemical structures are 

presented below in Table II-B.3.1. 

 

 

Table II-B.3.1 - Chemical structures of TFL and of the two new synthetic derivatives and 
their solubility in water (a) 

Compound Name 

(abbreviation) 
Chemical Structure 

Water Solubility 

(ppm) 

2,6-Dinitro-N,N-dipropyl-4-

(trifluoromethyl)benzenamine 

(TFL) 
 

0.5 

4-(2,6-Dinitro-4-trifluoromethyl-

phenylamino)-phenol 

(TFL-A6)  

11.4 

2-((2,6-Dinitro-4-trifluoromethyl-phenyl)-

butylamino)-ethanol 

(TFL-A3) 

 

22.6 

(a) Data is from Esteves et al. [53] 
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II-B.3.1 – Incorporation of TFL-D in conventional liposomes 

 

II-B.3.1.1 – Preparation of TFL-A6 liposomes with different lipid 

composition 

The part A of this chapter reported a study for the incorporation of TFL in liposomes. 

The effect of lipidic composition, membrane fluidity, presence of cholesterol and 

charged lipids, on the incorporation parameters was assessed. The liposomal 

formulation selected for TFL was DOPC:DOPG (7:3 molar ratio). 

In part B of this chapter two lipid compositions were selected to study the 

incorporation of the TFL-D. Based on the results obtained for TFL, both formulations 

contain phosphatidylcholine (PC) and phosphatidylglycerol (PG), but differ in lipid 

properties such as membrane fluidity. As discussed in Part A of this Chapter, the 

rational for using PG is the fact that this lipid has been described to target 

macrophages of liver and spleen, organs were Leishmania parasites reside [89]. 

TFL-A6 was incorporated in two different liposomal formulations. Liposomes were 

prepared as described in section II-B.2.3 and used to comparatively study the effect 

of lipid composition on TFL-A6 incorporation. 

As shown in Table II-B.3.2, the compared phospholipids compositions were 

DOPC:DOPG, a mixture with Tc below 0 ºC and DMPC:DMPG with a Tc of about 23 ºC. 

Both liposomal formulations exhibited relevant incorporation parameters, with L.C. 

values of 71 and 56 g/mol for DOPC:DOPG and DMPC:DMPG, respectively, and I.E. of 

93% and 74% respectively for DOPC:DOPG and DMPC:DMPG. However, the more fluid 

at room temperature, DOPC:DOPG formulation allowed a higher TFL-A6 retention 

(82%). The average sizes obtained were as expected for the preparation method used, 

which includes extrusion through pore size membranes of 200 nm pore diameter. In 

addition the final polydispersity index of all the formulations was below 0.2. The zeta 



Liposomal Formulations of Trifluralin synthetic derivatives active against Leishmania infections 

115 

potential values are negative as the phospholipid composition includes negatively 

charged lipids (PG). 

 

Table II-B.3.2 – Characteristics of two liposomal formulations containing TFL-A6. 

Phospholipid 
Composition 

TFL-D 
Retention 

L.C. I.E. 
Mean 

vesicle size 
Zeta 

potential 

(%) (g/mol) (%) (nm) (mV) 

DOPC:DOPG 7:3 82 ± 3 71 ± 3 93 ± 5 188 ± 12 -41 ± 2 

DMPC:DMPG 7:3 63 ± 9 56 ± 5 74 ± 11 178 ± 9 -43 ± 4 

[TFL-A6]i = 3 µmol/mL (approx.1 mg/mL); [Lip]i = 16 µmol/mL 
The data shown is an average ± SD from, at least, three independent experiments. 
Vesicles were sized to a mean diameter below 200 nm with a P.I. < 0.2. 
 

These liposomal formulations were prepared mainly with the purpose of assessing the 

parasitic activity of TFL-D liposomes against leishmanial infections in vivo. The 

experimental design for these studies often requires the preparation of large batches 

of a concentrated liposomal formulation so as to have the TFL-A6 amount and/or 

concentration required for the relevant study. One approach to concentrate the 

formulation is to ressuspend the liposomal pellet (after ultra-centrifugation) in a 

smaller volume of buffer. Freeze-drying the liposomal formulations is also one of the 

techniques used to concentrate the preparation apart from being a form to store 

batches of liposomes during long course animal studies. To evaluate if the 

combination of these two processes affects the properties and stability of TFL-A6 

liposomes, both formulations were concentrated by ultra-centrifugation and then 

freeze-dried in the presence of trehalose, used as a lyoprotectant. The resulting 

lyophilised cake was reconstituted with water to the initial volume. TFL-A6 content 

and liposomes properties, before freeze-drying and after the reconstitution of the 

lyophilised cake, were compared. Results are displayed in Table II B.3.3. 
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Table II-B.3.3 – Evaluation of the freeze-drying process of different TFL-A6 liposomal 
formulations. 

Phospholipid 
Composition 

[TFL-A6] 
(mg/mL) 

Mean vesicle size 
(nm) 

Zeta potential 
(mV) 

Before After (*)Before After Before After 

DOPC:DOPG 7:3 1.3 ± 0.1 1.1 ± 0.1 195 ± 3 > 2000 -41 ± 2 -40 ± 1 

DMPC:DMPG 7:3 1.5 ± 0.2 1.4 ± 0.3 130 ± 12 193 ± 19 -43 ± 4 -42 ± 6 

Liposomes containing TFL-A6 were ultra-centrifuged, the pellets ressuspended in citrate buffer 
containing 29 mM of trehalose, freeze-dried overnight and reconstituted with water to the 
initial volume. 
(*)Vesicles were sized to a mean diameter below 200 nm with a P.I. < 0.2. 
 

 

The mean diameters of the DOPC:DOPG liposomal formulation was the only parameter 

that presents a significant variation. The mean diameter not only increased to values 

a thousand times higher, they also correspond to a non-homogenous population 

(P.I. = 1.0), comparable to the size distribution of a non-extruded formulation. The 

freeze-drying process has clearly caused a massive fusion of the sized homogeneous 

liposomal population. As for the DMPC:DMPG formulation the mean diameter also 

suffered an increase. However the values obtained after the freeze-drying process 

were still acceptable to target MPS cells in vivo. 

Despite the fact that the incorporation parameters were lower for the rigid 

formulation, DMPC:DMPG was chosen for subsequent studies as the parameters are 

acceptable and liposomes prepared with this lipidic mixture can be easily stored. 

 

II-B.3.1.2 – Optimization of TFL-D liposomal formulations 

Liposomal formulations of the selected TFL-D (TFL-A6 and TFL-A3) were prepared as 

described previously in section II-B.2.3 using DMPC:DMPG lipid mixtures. The effect of 

different TFL-D:Lip molar ratios and surface charge characteristics of the vesicles on 

the incorporation parameters and liposome properties were evaluated. Theoretical 
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molar ratios of lipidic components (DMPC:DMPG) of 7:3 and 9:1 as well as TFL-D:Lip of 

1:4; 1:5 and 1:10, were assayed. The results for all the formulations prepared for each 

derivative are shown below in Table II-B.3.4. 

TFL-A6 liposomes present, in general, acceptable incorporation parameters for all the 

experimental conditions used. The L.C. values range between 30 - 77 g/mol and 

35 - 75 g/mol for DMPC:DMPG 7:3 and 9:1, respectively. These variations were for 

both cases closely related with TFL-D:Lip molar ratio and are similar for constant 

ratios. The TFL-A6 retention values were analogous for all studied formulations, 

regardless of TFL-D:Lip or lipidic components molar ratio (determinant of surface 

charge). The corresponding I.E. values were between 68 and 84%, indicating that 

DMPC:DMPG are appropriate lipid mixtures for incorporation of this derivative either 

in the 7:3 or 9:1 molar ratio. The lipid retentions obtained for this derivative range 

between 80 to 95% irrespective of TFL-D:Lip molar ratio or liposomal surface charge. 

The overall results point out that the conditions that allowed higher incorporation of 

TFL-A6 correspond to 1:4 TFL-D:Lip molar ratios regardless of DMPC:DMPG ratios. 

For the TFL-A3 derivative, the incorporation parameters were more dependent from 

the experimental conditions. The liposomal formulation composed of DMPC:DMPG at 

9:1 with a TFL-D:Lip molar ratio of 1:5 was found to have maximized L.C. and I.E. In 

general all DMPC:DMPG mixtures with the same 9:1 molar ratio showed higher 

parameters than the ones observed for the 7:3 ratio. 
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The zeta potential of the DMPC:DMPG liposomes incorporating either TFL-A6 or TFL-A3 

were not significantly affected by the amount of incorporated derivatives (L.C.). This 

parameter is closely related to the percentage of PG in the formulation. For 

DMPC:DMPG 7:3 liposomes, the average zeta potential values were around -44 mV 

while for the 9:1 liposomes this parameter exhibits values of about -33 mV, when 

incorporating either TFL-A6 or TFL-A3. Nevertheless, TFL-A3 shows higher 

incorporation parameters for the less negatively charged formulations containing 10% 

DMPG (DMPC:DMPG 9:1). Conversely, the TFL-A6 shows a preference for more negative 

bilayer structures containing 30% DMPG (DMPC:DMPG 7:3). 

 

II-B.3.1.3 – Effect of initial TFL-D to lipid ratio on incorporation 

parameters 

To determine the possible saturation of the liposomal membrane with the derivatives, 

several experiments were carried out in the presence of increasing amounts of initial 

TFL-D. The dependence of [TFL-D/Lip]f, I.E. and TFL-D retention as a function of the 

initial experimental conditions ([TFL-D/Lip]i) was studied for a selected liposomal 

formulation from each derivative. The resulting saturation profiles are plotted in 

Figure II-B.3.1. 

For TFL-A6 (Figure II-B.3.1, panel A) the selected liposomal formulation was 

DMPC:DMPG with a 7:3 lipid ratio. The L.C. parameter is strongly dependent on the 

[TFL-A6/Lip]i, increasing from 30 to about 80 g/mol with the increase in [TFL-A6/Lip]i 

between 42 and 105 g/mol. The other two incorporation parameters remain constant 

through the range of [TFL-A6/Lip]i used (corresponding to an I.E. of about 72% and a 

TFL-A6 retention around 66%). These results indicate that the lipid membrane, for this 

derivative, is not yet saturated. Further studies, in particular animal experiments, 
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were performed with an [TFL-A6/Lip]i of 105 g/mol as it presents high values for I.E 

and drug retention. 
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Figure II-B.3.1 – Saturation profiles for DMPC:DMPG liposomal formulations containing 
TFL-D. Influence of [TFL-D/Lip]i on the incorporation parameters. Panel A: TFL-A6 
containing DMPC:DMPG (7:3) liposomes. Lipid films (16 µmol/mL total lipid) and TFL-A6 
(1.6; 3.2 and 4 µmol/mL), corresponding to [TFL-A6/Lip]i of 42, 77 and 105 g/mol, were 
prepared as described in section II-B.2.3. Panel B: TFL-A3 containing DMPC:DMPG (9:1) 
liposomes. Lipid films (20 µmol/mL total lipid) and TFL-A3 (2; 4 and 5 µmol/mL), 
corresponding to [TFL-A3/Lip]i of 68, 83 and 151 g/mol, were prepared as described in 
section II-B.2.3. [TFL-D/Lip]i represents the ratio after the hydration of the lipidic film 
and [TFL-D/Lip]f is the same ratio after ultra-centrifugation. 

(B) 

(A) 
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The liposomal formulation selected for TFL-A3 was DMPC:DMPG (9:1) (Figure II-B.3.1, 

panel B) and the saturation of the lipid membrane was reached at an [TFL-A3/Lip]i of 

around 80 g/mol corresponding to a L.C. of about 75 g of TFL-A3 per mol of lipid. For 

higher initial ratios the L.C. remains constant. The I.E. is dependent on the 

[TFL-A3/Lip]i, increasing from 86 to 91% with the increase of [TFL-A3/Lip]i from 68 

and 83 g/mol and then decreasing to 50%. The TFL-A3 retention decreases from 64 to 

32% over the range of [TFL-A3/Lip]i assayed. The results obtained for the later two 

parameters confirm that saturation of the lipidic bilayer was reached for [TFL-A3/Lip]i 

conditions above 83 g/mol. 

The size of the vesicles was found to be independent from the amount of TFL-D 

incorporated in the range studied, showing mean average values of about 185 nm for 

both derivatives. 

 

 

II-B.3.1.4 – Stability of freeze-dried TFL-D formulations 

The stability of freeze-dried TFL-D liposomes of the DMPC:DMPG lipid composition (see 

Table II-B.3.4 formulation details) was studied. By freeze-drying and storing aliquots 

of the TFL-D liposomal formulations, it was possible to prepare the total required 

amount of liposomes with one large batch. These large laboratory scale preparations 

were made for the in vitro and in vivo biological evaluation assays. The results on the 

effect of freeze-drying in TFL-D retention, for all formulations prepared are displayed 

in Figure II B.3.2. 

The TFL-A6 formulations presented similar results, independent of the lipid molar 

ratios (7:3 and 9:1). TFL-A6 retentions were higher than 80% for all preparations which 

is representative of stable liposomes. The best result was observed for the 
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DMPC:DMPG 7:3 formulation with a TFL-A6:Lipid molar ratio of 1:5. This preparation 

lost less than 4% of the incorporated TFL-A6 during freeze-drying. 
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Figure II-B.3.2 – Stability of the TFL-A6 and TFL-A3 liposomal formulations in the 
freeze-drying process. Influence of TFL-D:Lip (1:10; 1:5 and 1:4) and DMPC:DMPG molar 
ratios (7:3 – dark blue bars; 9:1 – light blue bars). TFL-D retention (%) is the ratio between 
the concentration immediately before freeze-drying and after the procedure. The samples 
were reconstituted with water and filtered through a PD 10 column to remove any non-
incorporated/released TFL-D. The mean particle sizes of the reconstituted liposomes 
range between 225 and 250 nm for both derivatives. 
 

 

The results obtained for the TFL-A3 derivative are similar to those observed for 

TFL-A6, with an overall TFL-A3 retention over 80%, with one exception. The 

formulation prepared in a DMPC:DMPG molar ratio of 9:1 and with a TFL-A3:Lip ratio 

of 1:4 presents a lower TFL-A3 retention (68%). Interestingly, this result is in 

accordance with the low TFL-A3 retention (32%), obtained for DMPC:DMPG (9:1) 

liposomes in suspension in the incorporation studies presented in Table-II-B.3.4. This 

suggests that this formulation not only incorporates less TFL-A3, but after the 

incorporation is not stable in freeze-dried form. 

 

Selection of TFL-D liposomal formulations 

The studies presented in the previous paragraphs have demonstrated that it was 

possible to incorporate both TFL-D in liposomes using the same experimental 

(A) – TFL-A6 (B) – TFL-A3 
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conditions and lipid composition (DMPC:DMPG) but changing the phospholipid and TFL-

D/Lip molar ratios. These incorporations resulted in 77 g of TFL-A6 and 75 g of TFL-A3 

per mol of total lipid. According to the results, future assays were performed with the 

following initial conditions: 

∗ For TFL-A6 the liposomes were composed of DMPC:DMPG in a 7:3 molar ratio and 

with a TFL-A6:Lip 1:4 molar ratio. 

∗ For TFL-A3 the liposomes were composed of DMPC:DMPG in a 9:1 molar ratio and 

with a TFL-A3:Lip 1:5 molar ratio. 

 

 

II-B.3.2 – In vitro biological evaluation of TFL-D liposomal 

formulations 

The in vitro biological behaviour of the new synthetic dinitroanilines either free or 

incorporated in liposomal formulations was estimated by several studies: 

∗ Cellular association/uptake studies in human monocytic THP-1 cells. 

∗ Potential adverse effects of the derivatives and their formulations evaluated by 

two models. In one model their effect on apoptosis of THP-1 host cell line was 

assessed by cytotoxicity assays; and in the other model their haemolytic activity on 

human red blood cells was determined. 

∗ Anti-leishmanial activity assessed against promastigote cultures of L donovani and 

intracellular amastigote form of L. infantum in infected human monocytic THP-1 

cells. 

 

II-B.3.2.1 – Cellular association studies 

For the cellular association studies Rh-PE was used as a fluorescent probe. In order to 

estimate if its inclusion in the lipid composition interfered with TFL-D incorporation, 
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liposomal formulations containing TFL-A6 or TFL-A3 with or without 1 mol% Rh-PE 

were prepared. The effect of the presence of the fluorescent probe on the 

incorporation parameters of both TFL-D and on the liposome properties were assessed, 

as shown in Table II-B.3.5. These data refers to reconstituted freeze-dried 

formulations made from DMPC:DMPG liposomes. 

 

Table II-B.3.5 – Effect of the presence of Rh-PE in the incorporation of TFL-A6 and TFL-A3 
in liposomes. 

 [TFL-D/Lip]i 

(g/mol) 

L.C. 

(g/mol) 

I.E. 

(%) 

Mean 

vesicle size 

(nm) 

Zeta Potential 

(mV) 

Rh-PE TFL-A6 TFL-A3 TFL-A6 TFL-A3 TFL-A6 TFL-A3 TFL-A6 TFL-A3 TFL-A6 TFL-A3 

Without 105±3 83±7 77±3 75±9 73±3 91±4 177±10 190±12 -45±5 -31±2 

With 67±5 70±7 54±5 51±6 81±2 73±1 192±9 203±7 -49±4 -35±6 

TFL-A6:Lip molar ratio: 1:4, DMPC:DMPG (7:3). TFL-A3:lip molar ratio: 1:5; DMPC:DMPG (9:1). 
Vesicles were sized to a mean diameter around 200 nm with a P.I. < 0.2. 
Results are mean ± S.D. of three independent experiments 
 

 

Results show comparable incorporation efficiency in the presence or absence of Rh-PE 

in the bilayer for both TFL-D. The reduction of L.C. (around 30% for both TFL-D) is not 

crucial considering the study for which they were prepared and might be due to the 

lower [TFL-D/Lip]i exhibited by the formulation containing Rh-PE for both TFL-D. 

However, the parameter that better describes the influence of a new molecule in the 

system is the I.E. This parameter reflects how the initial experimental conditions 

affect the final outcome of the formulation. Mean vesicle sizes does not show a 

significant increase by the presence of Rh-PE. The zeta potential of both formulations 

presents no changes in the presence of Rh-PE. 
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In general, the presence of Rh-PE does not prevent the incorporation of TFL-D and 

does not change in great extent the properties of the liposomes. So the Rh-PE labelled 

formulations can be used for future tests and stored in lyophilized form. 

The influence of incubation time, temperature and lipid concentration on cellular 

association of TFL-A6 incorporated in DMPC:DMPG liposomes previously selected 

(section II-B.3.1) was assessed in differentiated THP-1 cells. To determine the 

potential interference of TFL-A6 on liposomal cellular association, DMPC:DMPG empty 

liposomes were also evaluated. The cellular association levels were determined by 

measuring the Rh-PE fluorescence in the cell lysate. The values were expressed in 

terms of total liposomal lipid per cell content protein. 

Figure II-B.3.3 presents the cellular association of empty DMPC:DMPG liposomes with 

THP-1 cells at 4 ºC, a temperature that is non-permissive for endocytosis, and 37 ºC 

where endocytosis-mediated internalization can occur. The level of cellular 

association of these liposomes increases, for both temperatures, with the initial 

concentration of lipid and also with the incubation time. It has to be noted that no 

saturation is reached for any of the lipid concentrations used (0.1 mM to 0.8 mM) in all 

the incubation times assayed. 

At 4 ºC, the maximum association level observed was around 80 nmol Lip/mg protein, 

obtained for 0.8 mM lipid. Increasing the temperature to 37 ºC produced a significant 

increase in the association levels. After 0.5 h incubation the association levels ranged 

from 32 to 163 nmol Lip/mg protein for 0.1 and 0.8 mM Lip, respectively. However, 

the maximum level of association, 290 ± 70 nmol Lip/mg protein, was obtained after 

4 h incubation (0.8 mM). Therefore, the increase in the levels of association as the 

temperature is raised from 4 ºC to 37 ºC suggests that liposomes are being 

internalized. Nevertheless, to have a more clear understanding of internalization, the 
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difference between the association levels at 37 ºC and 4 ºC, after 1 h incubation, were 

calculated as an example, and results range from 41 ± 2 and 144 ± 32 nmol Lip/mg 

protein respectively for 0.1 mM and 0.8 mM. It is clear that the internalization 

increases with initial lipid concentration. 
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Figure II-B.3.3 - Cellular association of empty DMPC:DMPG (7:3) liposomes with THP-1 
cells as a function of lipid concentration and incubation time. Empty Rh-PE-labelled 
liposomes (0.1, 0.4 and 0.8 mM Lip/well), were incubated with one million differentiated 
THP-1 cells at 37 ºC for various incubation periods (0.5; 1 and 4 h) and at 4 ºC for 1 h. 
After incubation cells were washed, Iysed, and assayed to determine the Rh-PE levels of 
fluorescence. Data is expressed as nmol of lipid (Lip)/mg protein, and are the mean ± S.D. 
of six values in two independent experiments, each done in triplicate. 
 

 

In Figure II-B.3.4 it is shown the cellular association profiles for TFL-A6 containing 

DMPC:DMPG (7:3) liposomes, in the same conditions as described before, for one hour 

incubation time. The level of cellular association observed for TFL-A6 liposomes in 

THP-1 cells increases as the lipid concentration raises from 0.1 to 0.4 mM where a 

level of 157 ± 37 nmol Lip/mg protein is reached. For the highest concentration tested 

the level of association is maintained at 158 ± 21 nmol Lip/mg protein, suggesting 
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saturation. It as to be noted that, at 4 ºC, the levels of cellular association were in the 

same range as the values observed for the empty liposomes (Figure II-B.3.3.). 

When temperature was raised from 4 ºC to 37 ºC a 3.5-fold increase in the levels of 

association (corresponding to around 115 nmol Lip/mg protein) was observed for the 

highest concentrations used, suggesting that the TFL-A6 containing liposomes were 

being internalized in these particular experimental conditions. 
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Figure II-B.3.4 - Cellular association of TFL-A6 containing DMPC:DMPG (7:3) liposomal 
formulations by THP-1 cells as a function of temperature and lipid concentration. 
Rh-PE-labelled TFL-A6 liposomes were incubated with one million differentiated THP-1 
cells at 4 ºC and at 37 ºC for 1 h incubation period. After the incubation, Rh-PE 
fluorescence levels were assayed by spectrofluorometry. Data is expressed as nmol of lipid 
(Lip)/mg protein, and are the mean ± S.D. of six values in two independent experiments, 
each done in triplicate. 
 

 

II-B.3.2.2 – Cytotoxicity assays of TFL-D liposomes 

The assessment of the in vitro cytotoxicity was performed after incubation of 

increasing concentrations of the TFL-D liposomal formulations and free derivatives 

with human monocytic THP-1 cells given that these cells were used to evaluate the 

anti-leishmania potency of the formulations against the intracellular stages of the 
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parasite. Results plotted in Figure II-B.3.5 show that both TFL-A6 and TFL-A3 

liposomal formulations as well as free TFL-A3 are non-cytotoxic in the range of tested 

concentrations, exhibiting IC50 values higher than 50 µM. 

On the opposite free TFL-A6 presents a cytotoxic potential, with an IC50 value of 40 µM 

(Table II-B.3.6). 
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Figure II-B.3.5 - Cytotoxic activity of free and liposomal TFL-D. Percentage of live THP-1 
cells in the presence of different concentrations of both free and liposomal TFL-A6 and 
TFL-A3 formulations. THP-1 cells were double-stained with PI and SYBR-14, and dead/alive 
cells were sorted by flow cytometry. The control represents non-treated THP-1 cells. 
 

 

II-B.3.2.3 – Haemolytic activity of TFL-D liposomes 

The haemolytic activity of the free and liposomal TFL-D was estimated against human 

RBCs. As Figure II-B.3.6 shows, for concentrations up to 250 μM, both TFL-D liposomal 

formulations and the free derivatives, did not exhibit any relevant haemolytic activity 

as the obtained HC50 values were higher than 250 µM. 

These results show that for TFL-D concentrations lower than 100 µM the haemolysis is 

lower than 4% and the values are similar for both the free derivative and the liposomal 

TFL-D. For higher drug concentrations (125 - 250 µM) the haemolysis values increase. 
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For liposomal TFL-D, the high drug concentrations correspond to high lipid 

concentrations which may also contribute to the haemolysis of RBCs. 
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Figure II-B.3.6 – Haemolytic activity induced by free and liposomal TFL-D in RBCs. 
Different concentrations of free and liposomal TFL-A6 and TFL-A3 were incubated with 
RBCs for 1 h at 37 ºC. The haemolysis was calculated by measuring the absorbance at 540 
nm. The 100% haemolysis was induced upon incubation of the RBCs with water. 
 

 

II-B.3.2.4 – Activity of TFL-D liposomes in vitro against the intracellular 

amastigote form of L. infantum 

To study the anti-leishmanial potency of the free and liposomal TFL-D against the 

intracellular form of Leishmania parasites, the THP-1 cell line was infected with 

L. infantum LEM 235 strain and incubated with the derivatives. Results were plotted 

as concentration-effect curves (Figure II-B.3.7) and show that no significant 

differences (p<0.05) were obtained when comparing all the formulations and 

derivatives involved in the assay. In addition, the intracellular activity of both TFL-A6 

and TFL-A3 liposomal formulations presents an analogous profile. None of the 

derivatives achieved a complete clearance of the parasite. 
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Figure II-B.3.7 – Anti-leishmanial activity of free and liposomal TFL-D against intracellular 
L. infantum amastigotes in THP-1 infected cells. Percentage of infected THP-1 cells in the 
presence of different concentrations of free and liposomal TFL-A6 and TFL-A3. The control 
represents non-treated THP-1 infected cells. 
 

 

 

Table II-B.3.6 summarizes the results of all the assays performed for the evaluation of 

the in vitro behaviour of the TFL-D and their formulations providing a general analysis 

and also a comparative evaluation with the non-modified TFL and a standard drug 

Miltefosine. It is also presented the results of a preliminary screening of the 

anti-leishmanial activity of free and liposomal TFL-A6 against the free-living 

promastigote form of L. donovani. We observed that, in contrast to TFL, both the free 

and liposomal TFL-A6 are active against free-living promastigote, while significantly 

lower than that of miltefosine. 
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Table II-B.3.6 - In vitro cytotoxicity, haemolytic activity and anti-leishmanial activity of 
free and liposomal TFL-D. 

Formulation Cytotoxicity 

IC50 (μM) 

Haemolysis 

HC50 (μM) 

Intracellular 

amastigotes 

L. infantum 

IC50 (μM) 

Promastigotes 

L. donovani 

IC50 (μM) 

Miltefosine(a) 28.6±2.5 38.3±2.8 2.7 8.7±0.7 

TFL(a) >50 >100 >50 >100 

TFL-A6 40 >500 1.8±1.3 22.4 

L-TFL-A6 >50 >500 3.2±0.9 77.8 

TFL-A3 >50 >500 1.2±0.4 ND 

L-TFL-A3 >50 >500 1.4±0.2 ND 

The cytotoxicity was evaluated in the THP-1 cell line and the haemolytic activity in human 
RBCs. The anti-parasitic activity was evaluated against intracellular amastigotes of 
L. infantum. The promastigotes viability was measured (by flow cytometry) after incubation 
with different concentrations of the formulations. 
TFL-A6 and TFL-A3 = free derivatives; L-TFL-A6 = DMPC:DMPG (7:3), TFL-A6:Lip (1:4). 
L-TFL-A3 = DMPC:DMPG (9:1), TFL-A3:Lip (1:5). ND = non determined. 
The data are means ± SEM of three separate experiments.  
(a) Data for Miltefosine and TFL is from Esteves et al. [53] 
 

 

Overall, results show that both free and liposomal formulations of TFL-A6 and TFL-A3 

are active against the intracellular form of the parasite with IC50 values ranging 

between 1.2 ± 0.4 and 3.2 ± 0.9 µM. In addition, all are more active than TFL 

(IC50 >50) and miltefosine (IC50 of 2.7 µM) with the exception of liposomal TFL-A6. 

The compounds and formulations under study together with TFL displayed irrelevant 

haemolytic activity as compared to miltefosine. 
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II-B.3.3 – Evaluation of the therapeutic effect of free and 

liposomal TFL-D in a model of visceral leishmaniasis 

The therapeutic efficacy of free and liposomal TFL-D was evaluated in a rodent model 

for zoonotic visceral leishmaniasis (L. infantum) through the determination of the 

parasite load reduction in the spleen. These activities were compared to that of the 

first line drug for treatment of leishmaniasis, Glucantime® (meglumine antimoniate) 

and, in order to establish the possible effect of the lipid carrier, the activity of empty 

liposomes was also assessed. 

The first objective was to establish the best experimental conditions (e. g. treatment 

schedule) to evaluate the therapeutic activity of our formulations. For that purpose 3 

groups of infected mice were treated daily for 5 consecutive days. Group 1 was 

treated with 25 mg/kg of liposomal TFL-A6, Group 2 with the same dose of free 

TFL-A6 diluted in a solution containing 5% (v/v) DMSO and Group 3 was used as control 

(untreated). The mice in Group 2 died during treatment probably caused by the DMSO. 

In addition, no reduction of the parasite load in the spleen of mice treated with 

liposomal TLF-A6 (Group 1) was observed when compared to the control. Thus changes 

were made to the experimental design. The treatment schedule was increased to 10 

doses in 10 consecutive days, while the TFL-D dose administered per mouse was 

maintained at 25 mg/kg as well as the administration route. 

The in vivo i.p. administration of 25 mg of TFL-D/kg for 10 days proved to inhibit 

parasite growth in the spleen of mice as is displayed in Figure II-B.3.8. In particular, 

liposomal TFL-A3 was significantly (p< 0.01) more active than the free drug. An almost 

complete removal of the parasites from the spleen with a 93% inhibition of parasite 

load was achieved as compared to the 48% inhibition obtained for the free drug. 
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Figure II-B.3.8 - In vivo anti-leishmanial activity of free and DMPC:DMPG liposomal TFL-D 
preparations against L. infantum MON-1 (MHOM/PT/89/IMT151) amastigotes in the spleen 
of BALB/c mice. Mice were treated during days 45 to 56 post-infection with 25 mg/kg/day 
of the respective free or liposomal derivative (TFL-A3, L-TFL-A3 and L-TFL-A6), by i.p. 
route. The control group received the same 10 daily doses of only the vehicle 
(Citrate/trehalose buffer). The parasite load in the spleen was determined at day 60 
post-infection by the limiting dilution assay. Results are expressed as the inhibition (%) of 
spleen amastigotes growth relative to numbers in untreated controls. Each point is the 
mean ± SD of three to four independent experiments. 
 

 

The reduction of spleen amastigotes obtained for liposomal TFL-A6 (77% inhibition) 

was not significantly different (p<0.05) from that obtained for liposomal TFL-A3. The 

treatment with free TFL-A6 displayed very irregular results, inducing either no 

reduction in the number of viable parasite or an accentuated inhibition in Leishmania 

growth (91%) (data not shown). In an attempt to improve these results, the activity of 

TFL-A6 incorporated in fluid liposomes (DOPC:DOPG 7:3 molar ratio) was also 

evaluated using the same experimental conditions as in the above studies. However, 

no reduction in the number of viable parasites was observed for this formulation when 

compared with non-treated animals, indicating that the liposomes prepared with more 

rigid lipids were, nonetheless, more appropriate (data not shown). 
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In order to evaluate the effect of the liposomal carrier on the therapeutic activity of 

the TFL-A3 liposomal formulation, empty liposomes with the same lipid composition 

were assayed. In these studies Glucantime® was also included as an anti-leishmanial 

standard drug. The therapeutic activity of these formulations was estimated by 

comparing the parasite loads in infected spleens of treated animals with those of 

untreated mice. As shown in Figure II-B.3.9, treatment with Glucantime caused a 

reduction of parasite load about 2.5 fold lower compared to the inhibition induced by 

liposomal TFL-A3 (96%). In contrast, treatment with empty liposomes had little effect 

on Leishmania growth, generating only 15% of parasite load inhibition. These results 

confirm the therapeutic activity of the liposomal TLF-A3 formulations and the absence 

of effect of empty liposome in zoonotic visceral leishmaniasis. 
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Figure II-B.3.9 - In vivo therapeutic effect of glucantime (SbV), empty and TFL-A3 
DMPC:DMPG liposomes against L. infantum in comparison to untreated mice in the spleen 
of BALB/c mice. Mice infected with L. infantum MON-1 (MHOM/PT/89/IMT 151) received 
10 doses (i.p.) of 25 mg TFL/kg of L-TFL-A3 or 20 µmol Lip/mouse of empty liposomes. 
Glucantime (Sbv) was administered s.c., 15 mg Sbv/kg, 5 doses. Negative control group 
received 10 doses of the vehicle (Citrate/trehalose buffer). The parasite load in the spleen 
was determined by the limiting dilution assay. Numbers in brackets correspond to the % of 
parasite load inhibition. Results are expressed as the number of viable parasites per 
gram (g) of homogenized spleen. Data represent mean values ± SEM derived from four 
mice per group in one representative experiment. 
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II-B.4 – Discussion 

In Part A of this chapter it was described the incorporation of one dinitroaniline, TFL, 

in conventional and long-circulating liposomes, their in vitro and in vivo behaviour. 

Moreover, therapeutic activity assays in animal models have demonstrated that 

liposomal TFL is active against different strains of Leishmania infecting both mice and 

dogs. Despite the good therapeutic results, no complete elimination of parasites was 

reached [51, 52]. 

The search for new effective dinitroaniline compounds, driven by both the need to 

improve the properties of TFL formulations and anti-leishmanial activity, has led to the 

synthesis of new TFL derivatives (TFL-D) [53]. There was also the need to construct 

tailor made liposomes with properties that enable the delivery of the new active TFL-D 

to the sites of Leishmania infection. The work performed in Part B, represents a step 

further in the search for alternative strategies for the treatment of leishmaniasis, by 

using liposomal formulations of novel dinitroanilines. 

The pharmaceutical optimisation of liposomal TFL-D through the study of critical 

incorporation parameters was one of the objectives of this chapter. The study of the in 

vitro and in vivo behaviour of the optimised formulations was another objective. Thus, 

the first approach was to incorporate, in these liposomes, two chemically synthesized 

TFL-D molecules, with proven in vitro anti-leishmanial activity [53]. To fulfil this 

objective, the effect of the lipid composition, surface charge properties, TFL-D to lipid 

ratios and lyophilisation on TFL-D incorporation in macrophage directed conventional 

liposomes was studied [90, 91]. Taking advantage from the successful incorporation of 

TFL (Part A), a similar lipid composition was chosen for the incorporation of TFL-D in 

liposomes. The selection of a second lipid composition, presenting higher Tc was based 

on previous work by Gaspar et al. [92]. They reported using rigid lipids containing the 

negatively charged PG moiety with the aim to achieve a more stable formulation for 
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in vivo administration of rifabutin. With similar objectives, the use of rigid lipids was 

also adopted by others [93], namely to immobilise the antifungal hydrophobic drug 

Amphotericin B, also active against Leishmania [94, 95]. 

Accordingly, we have compared the formulation properties of one of the derivatives 

incorporated in fluid (DOPC:DOPG) and rigid (DMPC:DMPG) liposomes and have 

observed that, in general, both formulations present good incorporation parameters. 

The hydrophobic nature of TFL-A6 anticipated a high interaction between this molecule 

and the hydrophobic domain of the liposomal bilayer. The greater the order of the lipid 

acyl chains, the lower L.C. and TFL-A6 retention was observed. These results are in 

agreement with the incorporation of hydrophobic drugs like rifampicin [96], rifabutin 

[67] and paclitaxel [69]. However, the exclusion of any of the formulations from 

further in vitro and in vivo studies can not be based only on the lower incorporation 

parameters. It is well known that the in vivo behaviour of liposomal formulations is 

significantly influenced by the mean diameter, the fluidity and the charge of the 

membrane, among other factors [67]. These characteristics are also responsible for the 

release rate of the incorporated substance from liposomes [97]. The maintenance of 

the liposome properties after freeze-drying and reconstitution of the formulations was 

an additional and very important factor to select the lipid composition of the 

formulations. This procedure allowed us to prepare and store the necessary amount of 

liposomes either for the in vitro or in vivo studies. The freeze-drying process of the 

TFL-A6 formulations was done in the presence of trehalose acting as a lyoprotectant 

[51, 61]. These studies allowed to select the DMPC:DMPG lipid composition over the 

DOPC:DOPG as this later formulation, although retaining TFL-A6 after the freeze-

drying/rehydration cycle, suffered a drastic increase in the vesicle mean size 

suggesting massive liposome fusion and/or aggregation. This different behaviour might 

be due to significant interactions between trehalose and saturated lipids, like DMPC, 
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that are markedly reduced in the DOPC based liposomes [98]. In the present studies, 1% 

(w/v) trehalose was adequate to lyoprotect the DMPC:DMPG formulation incorporating 

TFL-D. This represents a technological advantage as it allows for an easier and 

straightforward manipulation of the formulations. Opposed to the need for 10% 

trehalose for DOPC:DOPG liposomes incorporating TFL, which were more viscous and 

difficult to manipulate [51]. Apart from the different percentage of trehalose used for 

both lipids, these results suggest that the type of derivative incorporated seems to play 

a role in the stabilisation of the formulation during freeze-drying and so for each 

molecule different conditions are needed. 

The DMPC:DMPG lipid composition was selected for the remaining incorporation studies 

with TFL-D, that is the optimisation of the molar ratios of the phospholipids and the 

incorporation studies. These studies suggested that each molecule had a preferred 

TFL-D:Lip molar ratio and liposome surface charge properties to achieve maximal 

incorporation: TFL-A6 (containing a phenol group as the substituent) required a lower 

TFL-D:Lip molar ratio and a more negative liposomal surface charge, while TFL-A3 

(containing an alcohol group as the substituent) preferred a less negative liposomal 

charge but needed a higher TFL-A3 to lipid molar ratio. 

The incorporation profiles of both TFL-D in liposomes as a function of the [TFL-D/lip]i 

(Figure II-B.3.1), followed the common behaviour consistently observed either for 

hydrophilic [99] or hydrophobic molecules [100]. However, the experimental conditions 

required to reach saturation were also dependent from each TFL-D, indicating a 

different interaction of the molecules with the phospholipid matrix. Another important 

fact was the observed independency of the zeta potential from the amount of both 

TFL-D incorporated in liposomes, indicating that these molecules are inserted in the 

lipidic matrix and do not expose any charged portion to the external medium. 
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These observations allow concluding that there is no ‘uniform rule’ for the efficient 

incorporation of a bioactive agent in a liposomal formulation which might be 

experimentally established. It relies on two main features: the parameters that 

influence liposome properties, (e. g. preparation method, liposome size, surface 

charge and bilayer rigidity) and the characteristics of the molecule being incorporated 

[101]. The overall studies have established that the use of DMPC:DMPG lipid mixture 

for the incorporation of both TFL-D molecules resulted in liposomes that accommodate 

the desired pharmacological characteristics, including high TFL-D loadings and 

acceptable homogeneous sizes (below 200 nm) required for their in vitro and in vivo 

use. The option of freeze-dry these liposomes adds yet another advantage to this 

formulation as this technique is well accepted for long-term storage of liposomes [61]. 

The in vitro biological evaluation of the selected TFL-D liposomal formulations was 

focused on cellular association, potential toxic effects and evaluation of 

anti-leishmanial activity. To study the cellular association of the liposomal 

formulations, assays, well accepted in the literature, were performed [102, 103]. In 

our studies, based on the differences obtained between the non-specific cell binding 

and the cellular internalization of liposomes it was concluded that empty DMPC:DMPG 

liposomes were internalised by THP-1 cells in culture in an incubation time and 

phospholipid concentration dependent manner (Figure II-B.3.3). However, the 

association profile for this formulation containing TFL-A6 did not follow the exact same 

behaviour. Although a reasonable level of cellular association was observed, the 

absolute values were lower and saturation was reached. These observations may 

indicate that TFL-A6 interferes with the internalization of DMPC:DMPG liposomes by 

THP-1 cells. This interference might be due to modifications of the fluidity and/or the 

liposomes surface properties related to the intercalation of TFL-A6 within the 
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phospholipids acyl chains. There are no data in literature on similar effects on 

liposomes internalisation due to incorporation of hydrophobic drugs. 

Regarding the elucidation of possible adverse effects of free and liposomal TFL-D, 

these were assayed through the estimation of the cytotoxicity and the haemolytic 

activity. The incorporation of TFL-A6 in liposomes represents an advantage over the 

free derivative documented by the increase of the IC50 of the liposomal formulation 

over the free derivative revealing absence of cytotoxicity against differentiated THP-1 

cells within the range of concentrations used (IC50 > 50 µM). The neglectable 

haemolytic activity in RBCs (< 10% at 500 µM) demonstrated by all TFL-D liposomal 

formulations, can be considered as an additional important advantage in regard to the 

standard and commercial drug miltefosine which lyses 96% RBCs at 100 µM [53]. 

To assess the in vitro anti-leishmanial activity of the free and liposomal TFL-D the 

intracellular amastigote form of L. infantum was chosen as this form is considered the 

more relevant parasitic stage for compound biological evaluation [104]. Both liposomal 

TFL-Ds proved to be active with liposomal TFL-A3 being more potent than miltefosine 

whereas liposomal TFL-A6 appears to have similar activity as the commercial drug [53]. 

In addition, these studies have also confirmed that these molecules retain their activity 

against L. infantum infecting THP-1 cells when incorporated in the liposomes. 

Considering that the final aim of this chapter (part B) was to deliver TFL-D to infected 

MPS cells, we have studied the anti-leishmanial activity of free and liposomal TFL-A6 

and TFL-A3 in a murine model of zoonotic visceral leishmaniasis where the infection is 

predominantly found in the liver and spleen. We intended to investigate whether the in 

vitro biological behaviour of TFL-D can be translated into in vivo activity against 

L. infantum infections and whether the incorporation of these derivatives into 

conventional liposomes has any therapeutic advantage. 
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The selected liposomal formulation encloses the main features needed to deliver TFL-D 

to the target organs: conventional liposomes prepared with rigid lipids and containing 

PG moieties. Liposomes, containing this phospholipid head group have been described 

to deliver antibiotics to MPS cells [105, 106]. 

The in vivo studies have proven that treatment of L. infantum infection with the new 

synthetic TFL-Ds reduces the parasite load in the spleen of treated mice. The higher 

efficacy, demonstrated by the TFL-D molecules when incorporated in conventional 

liposomes as compared to the free derivatives, represents a therapeutic advantage in 

delivering these compounds. The observed therapeutic effect was not due to the 

phospholipids constituents of the liposomes, as empty liposomes did not induce any 

noticeable therapeutic activity, but rather to their role as specific NanoDDS to the sites 

of infection. In addition both TFL-D liposomal formulations were more active than the 

standard drug Glucantime®. Nevertheless, an interesting liposomal constituent to be 

explored in the future is stearylamine (SA) as it is described that, alone or in 

combination with anti-leishmanial drugs (e. g. amphotericin B or sodium antimony 

gluconate), is active against Leishmania and other protozoan parasites in vitro and in 

vivo, without causing any adverse effect on the host [32, 37, 38, 107]. 

The in vivo activity of both TFL-Ds is in accordance with the IC50 values obtained 

against the intracellular amastigote form of L. infantum (Table II-B.3.6) with a superior 

in vivo activity offered by the TFL-A3 molecule over TFL-A6. The TFL-A3, after being 

incorporated in liposomes, was responsible for more than 95% reduction of parasite 

growth in the spleen in treated mice. This result confirms not only the role of 

liposomes as delivery systems, but also the potential of TFL-A3 as an anti-parasitic 

drug. Regarding TFL-A6, the incorporation in liposomes represents the best option to 

assess the anti-leishmanial activity of this molecule, since the activity of the free 

compound was not reproducible revealing a very irregular behaviour, probably due to 
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solubility problems. The in vivo results for liposomal TFL-A6 revealed a lower activity 

than TFL-A3 in addition to some lack of reproducibility. Further studies are required to 

improve the therapeutic efficacy of TFL-A6 liposomal formulations. These may include 

different lipid compositions, different doses, treatment schedules and routes of 

administration. 

The different in vivo behaviour observed for both TFL-D tested, enhances the close 

relation between the substituent introduced in the TFL molecule (phenol in TFL-A6 or 

alcohol in TFL-A3) and its therapeutic activity. However to establish a 

structure/activity relationship, a systematic study of a series of related compounds 

would be needed. 

 
In conclusion, these studies reinforce the idea that liposomes contribute to the 

efficient intracellular delivery of active TFL-D compounds with a subsequent reduction 

of their potential negative side effects relative to the free molecules (i.e. TFL-A6). In 

addition, the findings reported here have established that the design and synthesis of 

chemical compounds, derived from classes of bioactive agents with proven 

anti-leishmanial activity, is an alternative approach for the search of new active 

formulations for the treatment of Leishmania infections. The important reduction of 

viable parasites induced by the treatment with TLF-A3 incorporated into liposomes in 

this mouse model indicates that this compound can be valuable to treat zoonotic 

visceral leishmaniasis. It is worth mentioning that the liposomal formulations 

containing the TFL-D have also eliminated the need for the detergent used for the 

solubilisation of the free derivatives. To fully explore the anti-parasitic potential of the 

more active TFL-D further studies should include their incorporation in liposomes with 

other lipidic composition, namely the inclusion of SA in the formulation, different types 

of nanoparticles and the treatment of zoonotic visceral leishmaniasis in a canine 

model. 
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III-1 – Introduction 

A particularly aggressive neuroendocrine histological subtype of lung cancer is the 

SCLC, which accounts for 15% of all pulmonary cancers. It is characterized by early 

and widespread metastasis and by rapid development of resistance to cytotoxic agents 

[1]. The high rate of SCLC patients that relapse from chemotherapy resistant disease 

is not exclusive of this type of cancer. In fact, most anticancer agents used in current 

conventional chemotherapeutic treatments lack specificity to tumour cells limiting 

the use of high-dose intensity therapy, due to severe systemic and organ toxicities [2] 

(see Chapter I). These limitations have lead to the need of novel and more selective 

types of anticancer agents with less side effects for the normal tissues. 

Advances in molecular biology have created the concept of treating various human 

diseases such as cancer, infections, inflammations and genetic disorders by 

gene-based therapies [3, 4]. Gene silencing-based therapeutics, like antisense 

oligonucleotides (asODN) or small interfering RNA (siRNA) are examples of such a new 

class of anticancer agents that can prevent the initiation or progression of specific 

human cancers when targeted to appropriate molecular targets [5, 6, 7]. 

In cancer, malignant cells exhibit a different pattern of gene expression as compared 

to normal cells. These identified genetic differences, for example activated 

oncogenes and inactivated tumour suppressor genes, can be considered as possible 

targets for these new antitumor therapies [7, 8]. One of the genetic alterations 

observed in SCLC, which is correlated with poor prognosis, is amplification and 

over-expression of the c-myc oncogene [9]. The c-myc protein is important in many 

cellular processes such as proliferation, differentiation, and apoptosis and also in the 

response to antitumor agents [9]. The down-regulation of the expression of c-myc in 

cancer cells is associated with an inhibition of cell proliferation [10]. Based on these 
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features, the c-myc oncogene appears to be a good target for the treatment of SCLC, 

providing that, for example, appropriate asODN that target c-myc are available. 

The asODNs are single-stranded DNA molecules that work by hybridisation to 

corresponding RNA inhibiting the translation of the mRNA of the target gene, through 

several possible mechanisms [11, 12, 13]. This results in down-modulation of gene 

expression at the transcriptional stage [2]. Therapeutic benefits from the use of 

asODNs that target c-myc, either alone or in combination with other drugs, have been 

reported in the literature in recent years [14, 15, 16, 17, 18]. Their use as therapeutic 

agents is however limited due to poor stability in physiological fluids, high 

susceptibility to nuclease degradation, unfavourable pharmacokinetics, lack of target 

cell recognition and limited ability to penetrate through cellular membranes [3, 19, 

20, 21]. Approaches involving the chemical modification of the asODN have been used 

to address the instability issues. However, natural and modified asODN molecules can 

not cross membranes by passive diffusion and their access to the intracellular 

compartment is limited [22, 23]. A possible strategy to attend to this difficulty is 

through the engineering of appropriate asODN NanoDDS, which effectively and 

selectively deliver the asODN-based drugs into the target cells, upon systemic 

administration [24, 25, 26]. 

In general, the main desired benefits of the use of appropriated NanoDDS are an 

enhanced plasma circulation lifetime and an increased delivery to sites of the disease 

[27]. In addition, delivery systems for asODN-based drugs should also act as a 

protective enclosed space that needs to be inert and stable while in circulation. Once 

the tumour site is reached the carrier systems, together with the asODN, needs to be 

efficiently internalized by the tumour cells [28]. To reach these goals a number of 

different non-viral NanoDDS have been developed [reviewed in 3, 4, 13, 27]. 
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Cationic lipid-based systems, namely cationic liposomes, have become one of the most 

representative non-viral NanoDDS for the intracellular delivery of nucleic acids to cells 

in culture and in vivo [29, 30]. These positively charged liposomes, most often 

composed of a synthetic lipid bearing a cationic head-group formulated with other 

neutral lipids, form spontaneously complexes with the asODN molecules due to the 

electrostatic interaction between negative charges of oligonucleotides and positive 

charges of lipids [12, 25, 31, 32]. The modification of their outer lipid membrane with 

the incorporation of PEG-modified lipids stabilizes and prolongs the circulation 

lifetime of the asODN-containing liposomes, and enhances the accumulation at the 

disease site [31, 33, 34]. In particular, various sorts of cationic liposomes have been 

developed that significantly enhance the intracellular delivery of ODN [reviewed in 29, 

30, 35]. 

Two of the most promising PEG-grafted cationic lipid-based NanoDDS are coated 

cationic liposomes (CCL), developed by Stuart et al. [11, 36] and stabilized antisense 

lipid particles (SALP), developed by Semple et al. [24]. Both formulations have crucial 

requirements like long-circulation half-lifes, good stability in plasma, to properly 

deliver asODN. However, for systemic asODN delivery systems to be efficient in cancer 

therapy they ought to specifically target and deliver the nucleic acids to tumour cells 

and/or to multi-located tumour sites, i.e. metastasis [28 ,37]. 

The covalent coupling, onto the surface of these systems, of specific internalizing 

targeting ligands, can lead to a therapeutic advantage over non-targeted liposomes. It 

was described that anticancer drugs loaded into ligand-targeted liposomes show an 

increased cytotoxicity to tumour cells thus improving their therapeutic efficacy [38]. 

To covalently attach specific ligands to the reactive terminus of a hydrophilic polymer 

such as PEG grafted onto liposomes, several methods have been described [39, 40, 

41]. One of the most simple and flexible method, termed the post-insertion 
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technique, was developed by Ishida et al. [42]. It involves the coupling of ligands 

(including antibodies, antibody fragments, peptides, carbohydrates, etc.) to the 

terminal of PEG-derivatized lipids in a micellar phase resulting in ligand-PEG 

conjugates. These conjugates can be easily transferred, in a simple incubation step, 

onto the outer layer of pre-formed, drug-loaded liposomes. This technique allows the 

preparation of tailor-made targeted liposomes, irrespective of the incorporated drug. 

Thus, to meet a successful treatment of SCLC, lipid-based systems should be 

constructed from the association of antisense oligodeoxynucleotides against c-myc 

(as(c-myc)) with small cationic liposomes sterically stabilized with PEG. This system 

could be further improved by the addition of a targeting ligand for selective cellular 

delivery to SCLC cells. The choice of the specific targeting ligand is very important to 

maximize the therapeutic effect of the active agent (as(c-myc)). It should take into 

account the fact that SCLC cells secrete multiple neuropeptides growth factors whose 

receptor-mediated actions can be inhibited by several peptide antagonists [43, 44]. 

The mechanism of action is not yet clear, but studies suggest that antagonist G 

(H-Arg-DTrp-NmePhe-DTrp-Leu-Met-NH2

 

) competitively inhibits the binding of 

neuropeptides to their receptors in the cell membrane [45]. This characteristic and 

the fact that it binds to a broad range of structurally unrelated neuropeptide 

receptors, makes antagonist G a good choice as a targeting device to be attached to 

the surface of liposomal formulations to improve treatment of this disease [46]. 

Moreira et al. [46, 47, 48, 49] reported the use of antagonist G, as a targeting agent 

for sterically stabilized liposomes containing doxorubicin in the treatment of human 

SCLC. 

The aim of this part of the work was to construct and optimize liposomes with 

antagonist G as a ligand to specifically target and internalize liposomal formulations 
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containing an as(c-myc) by SCLC cells. With this intention we have selected two 

liposomal formulations (CCL and SALP) for the encapsulation of asODN, assessed their 

characteristics (comparatively), and have evaluated whether the post-insertion 

coupling method could be applied without harming liposome’s properties. The 

potential of the antagonist G-targeted formulation was further assessed in terms of its 

cellular association towards the target cells and its biodistribution in healthy mice. 
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III-2 - Materials and Methods 

III-2.1 – Reagents and Materials 

Hydrogenated soy L-α-phosphatidylcholine, (HSPC), 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(poly(ethylene glycol)-2000] (PEG-DSPE); 1 1,2-

dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP); cholesterol (CHOL), 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] 

(Mal-PEG-DSPE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC); 1,2-dioleoyl-3-

dimethylammonium-propane (DODAP); N-palmitoyl-sphingosine-1-

{succinyl[methoxy(polyethylene glycol)2000]} (PEG-CerC16) were purchase from 

Avanti Polar Lipids (Alabaster, USA). 2-Iminothiolane.HCl (Traut’s reagent) was 

purchase from Fluka (Buchs, Switzerland). Sephadex G-50 and Sepharose CL-4B were 

purchased from Pharmacia (Uppsala, Sweden), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 2-(N-morpholino)-ethanesulfonic acid (MES), 

RPMI 1640; penicillin-streptomycin and foetal bovine serum (FBS) were purchased 

from Sigma Chemical Co. (St. Louis, MO, USA). The CHOD-POD enzymatic colorimetric 

assay for the determination of cholesterol was purchase from Spinreact (Sant Esteve 

de Bas, Spain). [1α,2α(n)-3H]Cholesteryl hexadecyl ether, 1.48-2.22 TBq/mmol 

([3

 

H]CHE) was purchased from Perkin-Elmer, Inc. (Walthman, USA). All other 

chemicals were of analytical grade. 

The hexapeptide antagonist G (H-Arg-D-Trp-NmePhe-D-Trp-Leu-Met-NH2) was 

synthesized by Alberta Peptide Institute (Edmonton, AB, Canada) with a purity >95%. A 

stock solution was prepared in water to a concentration of 5 mM. The 16-mer full 

phosphorothioate oligodeoxynucleotide against c-myc, referred to hereafter as 

as(c-myc) (5’-TAACGTTGAGGGGCAT-3’) was synthesized by TriLink BioTechnologies, 
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Inc. (San Diego, USA). Purity was > 95% by high-performance liquid chromatography 

analysis. The as(c-myc) is complementary to the translation region of human c-myc 

mRNA. A stock solution was prepared by the hydration of the freeze-dried powder 

with filtered sterile water to a concentration of 10 mg/mL. The solution was aliquoted 

and frozen at -70 ºC until needed. 

 

III-2.2 – Cell lines and mice 

The human classical SCLC cell line NCI-H69 (ATCC HTB-119) and the human variant 

SCLC cell line NCI-H82 (ATCC HTB-175) were from American Type Culture Collection. 

Both cell lines were cultured in RPMI 1640 supplemented with 10% (v/v) 

heat-inactivated FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, 1 mM sodium 

pyruvate, 1.5 g/L sodium bicarbonate, 2.5 g/L glucose and 25 mM HEPES for H69 or 

10 mM HEPES for H82, pH 7.4 (full medium). Cell lines were maintained in the 

logarithmic phase of growth at 37 ºC in 75 cm2 plastic culture flasks in a humidified 

incubator (90% humidity) containing 5% CO2

BALB/c mice, 6 to 8 weeks old, were purchased from Gulbenkian Institute of Science 

(Oeiras, Portugal), and housed at FFUL animal facilities fulfilling the European Union 

Council Directive (86/209/CEE), recognised by Portuguese law (DR DL129/92 and 

Portaria 1005/92). The animals were kept under standard hygiene conditions, fed 

commercial chow and given acidified drinking water ad libitum. All experiments were 

conducted, under licence, according to the local laboratory animal committee 

guidelines and after approval from competent authorities (DGV). 

. 
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III-2.3 – Preparation of asODN-containing liposomes 

III-2.3.1 - Coated cationic liposomes 

Coated Cationic Liposomes (CCL), composed of HSPC:CHOL:DOTAP:mPEG-DSPE, in a 

3:2:1:0.2 molar ratio, and containing the as(c-myc) were prepared in accordance with 

the procedure from Stuart et al. [36]. This method is based on the use of a reverse 

evaporation procedure where an outer monolayer of neutral lipids coats the exterior 

of the as(c-myc):DOTAP particles. All the lipids used were first dissolved in chloroform 

to a final concentration of 10 mM. According to this method, liposomes are prepared 

in two steps following the process described below. A 500 µg aliquot of as(c-myc) 

(± 0.1 µmol) was dissolved in 250 µL of water. In a separate tube 510 µL of methanol 

were added to 1.52 µmol of DOTAP in 250 µL of CHCl3

HSPC, Chol, and PEG-DSPE were added to the ODN:DOTAP inverted micelles emulsion 

to give a molar ratio of HSPC to Chol to DOTAP to PEG-DSPE of 3:2:1:0.2. 

Subsequently, 400 µL of water were added to give a lipid concentration of 20–30 mM. 

The mixture was vortexed and emulsified by sonication for 1 min. The organic phase 

was then removed under vacuum (45 ºC, ~500 mmHg) on a rotary evaporator until a 

. The as(c-myc) aqueous solution 

was added to this mixture and vortex mixed to form a Bligh-Dyer monophase [50] 

where ODN:DOTAP inverted micelles were formed. After 30 min incubation at room 

temperature, 250 µL of water and 250 µL of chloroform were added, vortexed and 

centrifuged (800 x g, 8 min) to separate into two phases. The upper aqueous methanol 

phase was removed and the absorbance measured at λ = 260 nm to determine the 

amount of as(c-myc) extracted. Under these conditions 90%–95% of the as(c-myc) 

complexed with DOTAP was recovered. The asODN:DOTAP complexes present a 1:15 

molar ratio and a corresponding charge ratio of 1:1 (-/+) (each ODN molecule has 15 

negative charges). 
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gel phase was reached. Then 500 µL of water were added and additional evaporation 

lead to the inversion of the system from a gel to a liquid phase, which was vigorously 

vortex mixed and liposomes were formed. To prevent contamination with residual 

chloroform the milky liposomal suspension was further evaporated. 

The CCL formed by this procedure were reduced to a mean size of approximately 

100 nm by a sequential extrusion process through Nucleopore (Pleasanton, USA) 

polycarbonate filters, with pore mean size ranging from 400 to 100 nm, using a Lipex 

extruder (Lipex Biomembranes, Vancouver, Canada) heated at 65 ºC. 

Free as(c-myc) was removed from CCL by filtration down a Sepharose CL-4B column 

equilibrated with HEPES buffer, pH 7.4 (25 mM HEPES, 140 mM NaCl). 

 

III-2.3.2 – Stabilized antisense lipid particles 

Stabilized antisense lipid particles (SALP), composed of DSPC:CHOL:DODAP:PEG-DSPE 

or of DSPC:CHOL:DODAP:PEG-CerC16 in a 20:45:25:10 molar ratio, were prepared 

according to Semple et al. [24]. Lipid stock solutions were prepared in 100% ethanol to 

a 20 mg/mL concentration. The PEG-CerC16 ethanolic solution was prepared at 

50 mg/mL. Typically, a mixture of the appropriate amounts of lipids from stock 

solutions was added to a glass tube in order to have approximately 10 mg/mL 

(13 µmol) total lipid. In a separate glass tube, 2 mg of the as(c-myc) stock solution 

was diluted in 0.6 mL of filtered 300 mM citrate buffer, pH 4.0. Both tubes were 

heated at 65 ºC for 2 min and the lipids were added, drop by drop, to the as(c-myc) 

(with the help of a Pasteur pipette), while mixing constantly with vortex. The 

resulting emulsion composed of ~13 µmol of total lipid and 2 mg of as(c-myc) was 

sequentially extruded through polycarbonate membranes with a pore diameter of 

0.2 (once) and 0.1 µm (ten times). This step was performed at 65 ºC and the resulting 

vesicles presented an average diameter of 100 - 120 nm. The liposomal suspension was 
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dialyzed (12-14 kDa cut-off) against 300 mM citrate buffer, pH 4.0 for 2 h to remove 

excess ethanol, leading to formation of multilamellar vesicles [24]. DODAP was 

neutralized by the removal of the citrate buffer from the preparation through a 

further overnight dialysis against HBS buffer (20 mM HEPES, 145 mM NaCl, pH 7.6). 

This procedure also releases any asODN associated with the outer surface of the 

liposomes. The non-encapsulated as(c-myc) was then removed by ultracentrifugation 

(180 000 x g for 2 h in a Beckman L8-60M ultracentrifuge (Beckman Instruments, 

Fullerton, USA). 

 

 

III-2.4 – Antagonist G-targeted CCL and SALP 

The CCL and SALP developed formulations were coupled with a growth factor 

antagonist, known as antagonist G (H-Arg-DTrp-N-mePhe-DTrp-Leu-Met-NH2

Regardless the coupling procedure, an appropriate volume of a 5 mM solution of 

antagonist G in water was thiolated at the N-terminus by 2-iminothiolane (20 mM), at 

a iminothiolane:antagonist G molar ratio of 4:1, for reactivity toward the maleimide. 

This reaction occurred in HEPES buffer, pH 8.0, for 1 h at room temperature with 

occasional mixing. The activation and coupling of antagonist G to liposomes took place 

in silicon-coated glassware (Sigmacote, Sigma). 

). Two 

methods were developed for the coupling of antagonist G to CCL and SALP. In both 

methods the antagonist G was covalently linked to the PEG terminus using the Mal-PEG 

coupling method [51]. 

 

III-2.4.1 – Conventional coupling method to prepare antagonist G-targeted 

CCL and SALP 

The thiolated antagonist G was added to the CCL or SALP liposomes at an antagonist 

G/lipid molar ratio of 1:100 and the vial sealed under N2 stream. The reaction took 
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place for 12 to 18 h at room temperature. Maleimide groups that remained free after 

the incubation with the antagonist G were quenched upon reaction with 

2-mercaptoethanol dissolved in HEPES buffer, pH 6.5, at a 

Mal-PEG-DSPE/2-mercaptoethanol molar ratio of 1:5. This reaction took place at room 

temperature for 30 min. The G-CCL and G-SALP formulations were separated from 

non-coupled antagonist G by ultracentrifugation (184000 x g, 2 h). The pellets were 

suspended in HEPES buffer, pH 7.4. 

 

III-2.4.2 – Post-Insertion method to prepare antagonist G-targeted CCL and 

SALP 

Micelles composed of Mal-PEG-DSPE were prepared as previously described [47] by the 

lipid film hydration method. Lipid films containing Mal-PEG-DSPE were hydrated at a 

concentration of 0.5 mM in HEPES/MES buffer (25 mM HEPES, 25 mM MES, 140 mM 

NaCl, pH 6.5). The micelles suspension was added to the thiolated antagonist G at a 

2:1 Mal-PEG-DSPE/antagonist G molar ratio. The coupling reaction was performed 

overnight at room temperature, in an inert N2

 

 atmosphere. Free maleimide groups 

were neutralized as described above. 

The antagonist G-targeted liposomes (either CCL or SALP) prepared by the 

post-insertion method (PI(G-CCL)) resulted from the insertion of antagonist G-PEG-

DSPE conjugates onto preformed liposomes, upon incubation of G-coupled PEG-DSPE 

micelles with non-targeted liposomes (either CCL or SALP), at 60 ºC for 1 h. The 

resulting targeted vesicles were separated by gel filtration through a Sepharose CL-4B 

column (Pharmacia, Sweden) equilibrated with HEPES buffer, pH 7.4. 

 



Antagonist G-targeted cationic liposomes for the delivery of c-myc antisense 
oligodeoxynucleotide to small cell lung cancer cells 

165 

III-2.5 – Characterization of CCL and SALP formulations 

III-2.5.1 - asODN quantification 

Due to their molecular structures, nucleic acids maximal absorption occurs at 

λ = 260 nm. A linear relationship exists between the absorption of light and a wide 

range of nucleic acid concentrations. According to the manufacturer data by entering 

the extinction coefficients into the Beer-Lambert equation, an absorbance (A) of 1.0 

(at λ = 260 nm) corresponds to 30.7 µg/mL for phosphorothioate 

oligodeoxynucleotides. Thus the amount of asODN encapsulated in both formulations 

was determined by spectrophotometry in a Shimadzu UV-160A spectrophotometer 

(Shimadzu Corporation, Kyoto, Japan). Before quantification, CCL or SALP samples 

were disrupted to release all the encapsulated asODN. The method used consists on 

the following procedure: 

 

1. take 10 - 50 µL of CCL or SALP sample; 

2. add water up to 250 µL; 

3. add 750 µL of chloroform:methanol (1:2.1, vol/vol); 

4. add 100 µL of methanol; 

5. vortex. 

The absorbance of this mixture, a clear single phase, was immediately measured at 

λ = 260 nm against a similar blank containing 250 µL of water instead of sample. The 

asODN concentration was calculated according to the following equation: 

 

[asODN] (µg/mL) = A260

 

 x 30.7 µg/mL x 1.1 mL/sample volume (µL) 
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III-2.5.2 – Total lipid quantification 

The total lipid quantification was carried out using a commercial kit (Spinreact, Spain) 

for an enzymatic-colorimetric determination of cholesterol (CHOD-POD) present in the 

samples. This method is based on the formation of a coloured complex. The intensity 

of the colour formed is proportional to the cholesterol concentration in the sample. 

The amount of total lipid is calculated from the value obtained for cholesterol using 

the theoretical initial molar ratios of all the lipid components for each type of 

formulation (CCL and SALP). 

In some studies, particularly in cellular association and biodistribution studies, CCL 

and SALP formulations were labelled with the non-metabolizable, non-exchangeable 

radioactive tracer, [3H]CHE, during their preparation. In these cases the total lipid 

concentration was determined from the specific activity counts of the [3

 

H]CHE tracer 

in a Beckman LS-6800 Scintillation counter (Beckman Instruments, Fullerton, USA). 

III-2.5.3 – Vesicle size determinations 

The mean particle diameter was measured by photon correlation spectroscopy (PCS) 

with a Malvern Zetasizer 3 (Malvern, UK). As a measure of the particle size distribution 

the polydispersity index (P.I.) was used, ranging from 0 (monodisperse) to 1.0 

(polydisperse). Liposomal samples (20-50 µL) were diluted to 1.0 mL with the 

respective buffer prior to the determinations. 

 

III-2.5.4 – Zeta potential determinations 

Zeta potential was determined by Laser Doppler Anemometry, using a Malvern 

Zetasizer 3 (Malvern, UK). Liposomal samples were prepared with their filtered 

suspension buffer in order to have 3 mL of a 3 mM total lipid concentration.  
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III-2.5.5 – Antagonist G quantification 

The amount of antagonist G coupled to the liposomes was determined by fluorimetry 

at λex = 288 nm and λem

 

 = 330 nm in a Hitachi F-3000 Fluorescence Spectrophotometer 

(Hitachi High-Technologies Corporation, Tokyo, Japan) and was based on the 

quantification of the tryptophan residue present in the peptide. 

III-2.5.6 – Encapsulation parameters 

The encapsulation parameters used to characterize all the formulations tested in this 

work were the Loading Capacity (L.C.), the Encapsulation Efficiency (E.E.) and the 

Insertion Capacity (I.C.) (when applied). 

The Loading Capacity (L.C.) (g/mol) was defined as the ratio between the amount of 

encapsulated asODN (expressed in g) and the amount of Lip(expressed in mol of total 

lipid) in the final CCL and SALP preparations. The L.C. can be expressed by the 

following equation: 

 

[ ]
[ ] (g/mol)
Lip

asODN
=L.C.

f

f
 

 

The Encapsulation Efficiency (E.E.) was expressed as the percentage of the quotient 

between the L.C. and the initial asODN to Lip ratio. The following equation was used 

to determine this parameter: 

 

[ ] [ ] (%)  100x
LipasODN

.C.L
=E.E.

ii
 

 

This parameter is a measure of the capability of the initial system (ODN and lipid) to 

efficiently encapsulate asODN in liposomal form. 
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The Insertion Capacity (I.C.), defined as the amount (in grams) of antagonist G, per 

mol of Lip determined after preparation, was used to characterize the antagonist 

G-targeted formulations. The following equation was used to determine this 

parameter: 

 

[ ]
[ ] (g/mol)

Lipid Total
G Antagonist

=I.C.
f

f
 

 

Abbreviations and other equations used are as follows: 

Antisense oligonucleotides asODN 

Total Lipid Lip 

Initial asODN to Lip ratio (g/mol) [asODN/Lip]

asODN retention (%) 

i 

([asODN]f/[asODN]i

Lipid retention (%) 

) x 100 

([Lip]f/[Lip]i

 

) x 100 

 

III-2.6 – Cellular Association Studies 

Several CCL and SALP liposomal formulations were used, including non-targeted CCL 

and SALP formulations, and antagonist G-targeted formulations, prepared by 

conventional coupling technique (G-CCL) and by the post-insertion method (PI(G-CCL) 

and PI(G-SALP)). All of these formulations contained as(c-myc) and were prepared 

with 55.5 kBq of [3

The SCLC cell lines H69 and H82 were plated at 1 x 10

H]CHE per µmol of total lipid. The lipid concentration was 

determined by the specific activity (cpm/µmol TL) from β-counts using a LS-6800 

counter (Beckman Instruments, Fullerton, USA). 

6 cells/well (100 µL) in 48-well 

plates. An equal volume of the above-mentioned liposomal formulations was added at 
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concentrations ranging from 0.1 to 0.8 mM. Incubation took place either at 4 ºC or 

37 ºC, for 1 h in a humidified atmosphere containing 5% CO2

In competition experiments, sterically stabilised liposomes with or without coupled 

antagonist G (G-SL and SL, respectively) composed of DSPC:CHOL:PEG-CerC16:Mal-

PEG-DSPE in a 2:1:0.08:0.02, were prepared by the lipid film hydration method and 

downsized by extrusion to a mean vesicle size below 120 nm as previously described 

[46]. H82 cells were pre-incubated either with G-SL, corresponding to 0.6 µg 

antagonist G/well or with SL liposomes (at lipid concentration that matched the one 

for G-SL), for 30 min at 37 ºC. In experiments with endocytosis inhibitors H82 cells 

were pre-incubated for 30 min at 37 ºC with 0.45 M sucrose/well. After the pre-

incubation period, SALP and PI(G-SALP) formulations were added and the incubation 

proceeded at 37 ºC in a humidified atmosphere containing 5% CO

. 

2

After incubation, 750 µL of cold (kept at 4°C) PBS buffer, pH 7.4 (137 mM NaCl, 

2.68 mM KCl, 8.10 mM Na

 in air for 1 h. 

2HPO4, 1.47 mM KH2PO4) was added to each well and the 

plates were centrifuged at 1000 rpm for 10-12 min. The supernatant was aspirated and 

an additional 1 mL of the same buffer was added. This procedure was repeated once 

more, for a total of three washes, and the cells were resuspended in 0.5 mL PBS, 

pH 7.4. The cellular suspension of each well was then transferred to scintillation vials 

with 5 mL of aqueous counting scintillant (ACS). Cellular association of liposomes was 

calculated from the specific activity of the lipid label [3H]CHE in liposomes and was 

expressed as nmol of total lipid (TL)/106

 

 cells. 

III-2.7 – Tissue Distribution Studies 

Male BALB/c mice, (20-25 g) received injections via tail vein (i.v.) of a single dose of 

SALP liposomes (targeted or non-targeted), in a total volume of 0.2 mL (1 µmol 

Lip/mouse). At selected time points (30 min, 2, 6 and 24 h post-injection) groups of 
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four mice per liposomal formulation were anesthetized and sacrificed by cervical 

dislocation. A blood sample was withdrawn from the retro orbital sinus before 

sacrifice, and the liver, spleen and lungs were excised. The blood (50 µL) and organ 

(50 µg) samples were discoloured with 0.2 mL of hydrogen peroxide and 0.1 mL of 

perchloric acid overnight in an oven at 50 ºC. Samples were then neutralized with 

0.1 mL of acetic acid and transferred to 10 mL Hionic Fluor scintillation fluid. Total 

radioactivity was measured using a Beckman LS-6800 Scintillation beta counter 

(Beckman Instruments, Fullerton, USA). Aliquots of the injected liposomes (10 µL) 

before and after being subjected to the same treatment as the samples were 

simultaneously counted to correct the physical decay. The results were expressed as 

percentage of the injected dose per mL of blood or gram of tissue. 
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III-3 – Results 

Ligand-targeted liposomes have the potential to increase the therapeutic efficacy of 

anti-cancer drugs. As such, one of the aims of this work was the development of a 

targeted liposomal formulation formed by cationic lipids, sterically stabilized with 

poly(ethylene glycol)-derivatized lipids and encapsulating an as(c-myc) 

oligonucleotide, to selectively target SCLC cell lines and with adequate features for 

systemic administration. 

 

III-3.1 – Physicochemical characterisation of non-targeted and 

antagonist G-targeted CCL and SALP liposomes 

With the intent of establishing whether antagonist G could be coupled to the surface 

of liposomes we have adapted and prepared the previously described CCL and SALP 

liposomal formulations containing an as(c-myc) oligonucleotide. The preparation of 

the antagonist G-targeted CCL and SALP liposomes was assayed using either 

conventional coupling techniques, or the post-insertion approach. The influence of the 

coupling method on the targeting efficiency of the resulting formulations to SCLC cell 

lines was assessed. 

To ensure a valid evaluation of all liposomal formulations, the encapsulation 

parameters, already used in the previous chapter, L.C. and E.E., the mean diameter 

and zeta potential properties of the final preparations were systematically 

determined. Particular attention was paid in keeping the mean size of the particles 

around 100 to 150 nm, while achieving a maximization of the encapsulation 

parameters, specially the L.C. 

The encapsulation parameters and properties of non-targeted CCL and SALP and the 

antagonist G-targeted CCL and SALP formulations, prepared either by the conventional 
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(G-CCL and G-SALP) or the post-insertion (PI(G-CCL) and (PI(G-SALP)) coupling 

methods, are displayed in Table III.3.1. 

 

Table III.3.1 – Encapsulation parameters for non-targeted and antagonist G-targeted CCL 
and SALP liposomes. 

Formulation L.C. E.E. I.C.  Particle Size 
 (g/mol) (%) (g/mol) (nm) 

CCL 78 ± 13 87 ± 15 n.a. 140 ± 12 

G-CCL 27 ± 4 33 ± 5 3 ± 1 177 ± 16 

PI(G-CCL) 56 ± 10 68 ± 9 4 ± 0.1 189 ± 23 

SALP 125 ± 34 71± 22 n.a. 106 ± 10 

G-SALP 48 ± 6 31 ± 4 2.4 ± 1 89 ± 17 

PI(G-SALP) 58 ± 8 53 ± 5 1.7 ± 0.5 118 ± 8 

Non targeted: CCL [HSPC:DOTAP:CHOL:PEG-DSPE (30:10:20:2)]; SALP [DSPC:CHOL:DODAP:PEG-
CerC16 (20:45:25:10)]; Targeted

n.a. – not applicable. 

: CCL [HSPC:CHOL:DOTAP:PEG-DSPE:Mal-PEG-DSPE 
(30:20:10:1.6:0.4); SALP [DSPC:CHOL:DODAP:PEG:DSPE:Mal-PEG-DSPE] (20:45:25:8:2). Both 
formulations were coupled at a 1:100 antagonist G/Lip molar ratio. 

 

 

The non-targeted CCL and SALP formulations show an intraliposomal concentration of 

the asODN higher than 75 g of as(c-myc) per mol of total lipid. Both formulations 

present suitable particle size and a membrane charge characteristic of a neutral 

formulation. 

The coupling of antagonist G to both CCL and SALP formulations led to a reduction of 

the encapsulation parameters. This reduction was higher when the targeted 

formulations were prepared by the conventional method. In particular for G-CCL, the 

L.C. and E.E. decreased by 65% and 62% respectively, as compared to the 

non-targeted formulation. The sizes of the targeted vesicles prepared by both 

coupling methods suffered an increase of 40 to 50 nm. When antagonist G-targeted 
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SALP liposomes were prepared by either coupling methods, a reduction in the L.C. and 

E.E. was also obtained as compared with the non-targeted SALP. The highest 

reductions were observed for G-SALP formulation with a 62% reduction in the L.C. and 

56% for the E.E. parameter. For the PI(G-SALP) an average reduction of 54% was 

obtained for the L.C. The average size of the liposomes remained in the same range. 

The I.C. values obtained for antagonist G-targeted CCL prepared either by 

conventional or post-insertion methods were comparable corresponding to an average 

of 3.5 g of antagonist G/mol of lipid. As for the SALP formulation these values were 

lower, specially in the case of PI(G-SALP). 

Based on the above results among the CCL targeted formulations studied, we selected 

the PI(G-CCL) formulation as a candidate for in vitro studies with SCLC cells, as 

evidencing the highest incorporation parameters. 

In respect to the targeted SALP formulation, as there was a significant reduction in 

the encapsulation characteristics, additional studies were performed before testing 

these formulations with SCLC cell lines. 

 

III-3.2 – Optimisation of the PI(G-SALP) formulation 

Several studies were conducted in order to optimise the PI(G-SALP) formulation to 

carry the as(c-myc) to the SCLC cells. These studies are described below. 

 

III-3.2.1 – Effect of the preparation method on the as(c-myc) encapsulation 

parameters 

In a first stage the insertion of the antagonist G-PEG-DSPE conjugates was attempted 

in different steps of the SALP preparation process (Table III.3.2). In addition, these 

formulations were compared with G-SALP. 
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Table III.3.2 – Characterization parameters of PI(G-SALP) containing as(c-myc) prepared 
by modifications of the original SALP procedure in comparison with G-SALP. 

Formulation 
Insertion of  

G-PEG-DSPE conjugates 
L.C. 

(g/mol) 
E.E. 
(%) 

I.C. 
(g/mol) 

Particle 
Size 
(nm) 

PI(G-SALP)1 
After extrusion 

(Citrate buffer, pH 4.0) 
84 ± 11 72 ± 17 3.2 ± 0.3 97 ± 10 

PI(G-SALP)2 
After dialysis against 

Citrate buffer, pH 4.0 
63 ± 3 51 ± 8 2.9 ± 0.5 96 ±14 

PI(G-SALP)3 
After dialysis against  

HBS buffer, pH 7.5 
33 ± 5 23 ± 6 1.2 ± 0.8 81 ± 10 

G-SALP Conventional coupling 48 ± 6 31 ± 4 2.4 ± 1.0 89 ± 17 

Antagonist G:Mal-PEG-DSPE = 1:2 molar ratio; antagonist G:Lip = 1:100 molar ratio 
I.C. = Insertion Capacity = amount (gram) of antagonist G per mol of Lipid 
[Lip]i = 13 µmol/mL; [as(c-myc)]i

 
 = 2 mg/mL 

 

As shown above the transfer of antagonist G-PEG-DSPE conjugates to SALP after 

extrusion (PI(G-SALP)1) resulted in the highest encapsulation parameters for as(c-myc) 

and the best I.C. for antagonist G. On the other hand the PI(G-SALP)3 formulation 

presented the lowest encapsulation parameters with an E.E. of 23% and a L.C. of only 

33 g of as(c-myc) per mol of lipid and also a I.C. value of 1.2 g of antagonist G per mol 

of lipid. These values were also lower than the ones obtained for the G-SALP 

formulation. The mean sizes of these liposomes were not affected either by the 

preparation or coupling methods. 

 

III-3.2.2 – Effect of PEG-DSPE versus PEG-CerC

The following experiments were conceived to elucidate the effect of two 

PEG-derivatized lipids on the encapsulation parameters of the PI(G-SALP) liposomes 

containing as(c-myc). The two PEG-derivatized lipids involved in this study were the 

PEG-DSPE having a negative charge on the phosphate moiety at physiological pH and a 

16 
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neutrally charged PEG-lipid in which the PEG moiety is linked to a ceramide 

(PEG-CerC16). Table III.3.3 presents the results for both the PI(G-SALP) formulations 

composed either by DSPC:CHOL:DODAP:PEG-DSPE or DSPC:CHOL:DODAP:PEG-CerC16

 

 and 

named PI(G-SALP)[DSPE] and PI(G-SALP)[Cer], respectively. These formulations were 

prepared by inserting the G-PEG-DSPE conjugates after the liposome extrusion (as in 

PI(G-SALP)1, from Table III.3.2). The PI(G-SALP)[Cer] presented higher L.C., with similar 

E.E. and I.C., than liposomes containing PEG-DSPE, and comparable vesicle sizes. 

Table III.3.3 – Characterization parameters of PI(G-SALP) prepared with two different 
PEG-derivatized lipids (PEG-DSPE and PEG-CerC16

Formulation 

). 

L.C. 
(g/mol) 

E.E. 
(%) 

I.C. 
(g/mol) 

Particle Size 
(nm) 

PI(G-SALP)[DSPE] 65 ± 15 38 ± 17 2.2 ± 0.2 113 ± 7 

PI(G-SALP)[Cer] 90 ± 3 49 ± 13 2.6 ± 0.4 109 ± 6 

[Lip]i

 

 = 13 µmol/mL; [as(c-myc)]I = 2 mg/mL. Antagonist G was coupled in a peptide/total lipid 
molar ratio of 1:100. 

 

III-3.2.3 – Effect of the ratio between PEG-CerC16

The effect of the concomitant variation of PEG-CerC

 and Mal-PEG on the 

as(c-myc) encapsulation 

16 and Mal-PEG-DSPE on the 

encapsulation parameters of antagonist G-targeted SALP liposomes was assessed. For 

these experiments five PI(G-SALP) formulations were prepared with different amounts 

and molar ratios of total PEG-derivatized lipids. The formulations were labelled 

according to the molar ratio of the two different PEG-derivatized lipid included in the 

bilayer (Table III.3.4). The PEG-CerC16:Mal-PEG-DSPE molar ratio varied between 

0.66:1 and 4:1. For these formulations the molar ratio between the Mal-PEG-DSPE and 

the antagonist G was kept constant at 2:1. Consequently, the more Mal-PEG-DSPE was 
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included in the SALP formulation, the more antagonist G was initially present during 

the coupling procedure. 

 

Table III.3.4 - Characterization parameters of PI(G-SALP) liposomes prepared with 
different amounts of PEG-derivatized lipids (mol% PEG-CerC16

PEG-CerC

 : mol% Mal-PEG-DSPE). 

16

Mal-PEG-DSPE 
: 

(molar ratio) 

Total PEG 

(mol% Lip) 

L.C. 

(g/mol) 

E.E. 

(%) 

I.C. 

(g/mol) 

(8:6) 14 37 ± 8 34 ± 2 8 ± 3 

(8:4) 12 46 ± 7 42 ± 3 7 ± 2 

(8:2) 10 61 ± 11 56 ± 12 8 ± 3 

(6:4) 10 66 ± 7 62 ± 9 9 ± 2 

(4:6) 10 48 ± 8 45 ± 6 5 ± 2 

As(c-myc) was encapsulated in SALP liposomes composed of DSPC:CHOL:DODAP:PEG 
(20:45:25:X molar ratio), where X= 10, 12 or 14 mol% of total PEG (PEG-CerC16

 

 + Mal-PEG-
DSPE). Antagonist G was coupled in peptide/Lip molar ratio of 1:100. The mean particle sizes 
of all the resulting liposomes ranged from 100 – 120 nm. 

 

The (8:2) and (6:4) formulations presented the highest encapsulation parameters, 

both with a total of 10 mol% of PEG-derivatized lipids. In this case the reduction of 

the amount of the pre-existing PEG-CerC16 had no influence on the physical 

parameters of the liposomes. This may denote that the SALP structure remains stable 

with less pre-existing PEG-CerC16 (6 mol%) during the post-insertion procedure, 

allowing the insertion of antagonist G-PEG-DSPE conjugates without an increase in 

asODN leakage. The L.C. values of the remaining PI(G-SALP) formulations were one 

third lower suggesting the occurrence of some asODN leakage. The I.C. parameter 

presented similar values for all the PI(G-SALP) formulations. Antagonist G-targeted 

SALP formulations prepared by the post-insertion method with the inclusion of 
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between 4 and 8 mol% PEG-CerC16

 

 present good physicochemical characteristics for its 

application as a target system. 

 

The results from all the studies described above have demonstrated that the 

post-insertion coupling method applied both to CCL and SALP liposomes containing 

as(c-myc), results in antagonist G-targeted formulations with the necessary 

characteristics to be evaluated in in vitro studies for the delivery of asODN to SCLC. 

 

 

III-3.3 – Cellular association of antagonist G-targeted liposomes 

Cellular association experiments were carried out to determine whether the presence 

of the antagonist G, covalently attached to the terminus of PEG, at the surface of 

both CCL and SALP liposomal formulations containing as(c-myc) would increase the in 

vitro internalization of these liposomes into H69 and H82 SCLC cell lines. 

 

III-3.3.1 – Effect of total PEG on the extent of cellular association to SCLC 

cell lines 

This set of experiments aimed at establishing whether different PEG-CerC16 to 

Mal-PEG-DSPE ratios and/or total amount of PEG present in the liposomal surface 

affects the cellular association of PI(G-SALP). Formulations described in Table III.3.4 

(section III.3.2.3) were radiolabeled with [3

Results in Figure III.3.1 show that the cellular association levels of PI(G-SALP) 

liposomes decreased when the amount of total PEG-derivatized lipids increases from 

10 to 14 mol%, at the expenses of increasing amounts of Mal-PEG-DSPE. In particular, 

H]CHE during their preparation and 

incubated with the H82 cell line at appropriated conditions. 
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the inclusion of 6 mol% of antagonist G-Mal-PEG-DSPE micelles into formulations 

containing 8 mol% PEG-Cer-C16 reduced approximately by half, the association as 

compared to the others. In contrast, no PEG coating effect was observed when 

different PEG-CerC16

 

 to Mal-PEG-DSPE molar ratios were tested, while keeping 

constant the amount of total PEG-derivatized lipids at 10 mol%. 
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Figure III.3.1 – Cellular association of [3H]CHE-labelled PI(G-SALP) formulations with SCLC 
H82 cells. Antagonist G-targeted SALP liposomal formulations were prepared with 
different amounts of total PEG-lipid derivatives (PEG-CerC16:Mal-PEG-DSPE) at 
0.8 mM Lip/well and incubated with 1 x 106 H82 cells for 1 h at 37 ºC. Data was expressed 
as nmol of Lip/106

 

 cells. Each point is the mean of three samples, ± SD, from one 
representative experiment. 

 

The association results are in agreement with the similar I.C. values (Table III.3.4) 

obtained for all the PI(G-SALP) formulations assayed. The only exception is the 

formulation with 14 mol% total PEG, which has a low association level and an I.C. 

value of 8 g/mol, the same as PI(8:2) with high binding. In this particular case the high 

amount of total PEG in the PI(8:6) formulation, may partially shield the antagonist G 

in the outer surface so that it is not available for binding. 
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III-3.3.2 – Effect of the presence of antagonist G on the extent of cellular 

association of CCL and SALP liposomes 

The cellular association of PI(G-CCL) and PI(G-SALP) liposomes, containing as(c-myc), 

were assessed in a classical (H69) and a variant (H82) human SCLC cell lines  

respectively, and compared to non-targeted liposomes of similar composition. All 

formulations (with or without antagonist G) were labelled with [3

 

H]CHE and incubated 

with the SCLC cells  at various concentrations and at two different temperatures (4 ºC 

and 37 ºC). The former temperature is non-permissive to endocytosis and thus 

provides an estimate of the specific and non-specific binding to the cell surface. On 

the other hand, at 37 ºC endocytosis mechanisms are active and internalization of 

liposomes is possible. Hence, this temperature gives a measure of cell surface binding 

and internalization of bound liposomes [46]. Data is shown in Figure III.3.2 for CCL and 

in Figure III.3.3 for SALP formulations. 

The significant increase in the extent of cellular association observed for PI(G-CCL) 

and PI(G-SALP) liposomes compared to the corresponding non-targeted formulations 

demonstrated the ability of the coupled antagonist G to improve the cellular 

association of targeted liposomes to the tested SCLC cell lines, in a lipid dose-

dependent manner. The higher cellular association levels obtained for targeted 

formulations in the experiments carried out at 37 ºC when compared to those 

achieved at 4 ºC, strongly suggest that antagonist G-targeted liposomes were being 

actively internalized by SCLC cells. 
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Figure III.3.2 – Cellular association of PI(G-CCL) and non-targeted CCL liposomes to 
SCLC cells. (A) Classical SCLC H69 cells or (B) Variant SCLC H82 cells. CCL liposomes 
were composed of HSPC:CHOL:DOTAP:mPEG-DSPE:Mal-PEG-DSPE at 30:20:10:1.6:0.4 
molar ratio. Both cell lines (1 x 106 cells/well) were incubated with increasing 
concentrations (0.1 to 1.6 mM well) of [3

 

H]CHE-labelled PI(G-CCL) or CCL liposomes 
either at 37 ºC or 4 ºC for 1 h. Data are expressed as nmol Lip per million cells. Results 
are the mean of 4 samples ± standard deviation, from one representative experiment. 

 

Results for PI(G-CCL) liposomes in the H69 cell line (Figure III.3.2 (A)) showed a 

maximum level of association of 6.2 nmol Lip/106 cells at 1.6 mM lipid (37 ºC). The 

extent of PI(G-CCL) associated at 4 ºC was 5.3 nmol lipid per million cells for the same 

lipid concentration. These results indicate that the level of internalization was low, 

nevertheless the binding of these liposomes was 15-fold greater than non-targeted 
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CCL implying that the antagonist G mediated cell binding but liposomes were not 

internalised. Results obtained for this same formulation in H82 cells (Figure III.3.2 (B)) 

showed a level of association that was more than two-fold higher 

(15 nmol Lip/106 cells) compared to H69. For the H82 cell line the presence of 

antagonist G increases the liposomes uptake 18-fold over CCL for the highest lipid 

concentration tested. Also, based on the results at 4 ºC, it may be inferred that the 

internalization ranges between 0.1 and 7.9 nmol Lip/106

Cellular association results for PI(G-SALP) liposomes (Figure III.3.3) followed the same 

general profile as the ones described above for PI(G-CCL). However, the extent of 

association of the targeted SALP liposomes was higher than for the CCL, for both cell 

lines, with a maximum of 18.8 and 19.1 nmol Lip/10

 cells within the range of lipid 

concentrations used. 

6

 

 cells for H69 and H82 

respectively, at 1.6 mM Lip. At this concentration the uptake of PI(G-SALP) was 

around 17-fold greater than for non-targeted SALP, for both cell lines (Figure III.3.3 

(A) and (B)). Again, this increased uptake suggested that the peptide mediated 

internalization. At 4 ºC, an average 2.1-fold decrease in the cellular association of 

PI(G-SALP) was observed in both cell lines. This difference indicates that a part of the 

cell-liposome association observed at 37 ºC corresponds to liposome internalization by 

the tumour cells. 
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Figure III.3.3 - Cellular association of PI(G-SALP) and non-targeted SALP formulations 
to SCLC cells. (A) Classical SCLC H69 cells or (B) Variant SCLC H82 cells. SALP 
formulations were composed of DSPC:CHOL:DODAP:PEG-CerC16:Mal-PEG-DSPE at 
20:45:25:8:2. Both cell lines (1 x 106

 

 cells/well) were incubated with increasing 
concentrations (0.1 to 1.6 mM/well) of [3H]CHE-labelled PI(G-SALP) or SALP liposomes 
either at 37 ºC or 4 ºC for 1 h. Data are expressed as nmol Lip per million cells. Results 
are the mean of 4 samples ± standard deviation, from one representative experiment. 

 

In an attempt to shed light on the mechanism of internalization of PI(G-SALP) 

liposomes, H82 cells were pre-treated with 0.45 M sucrose, known to selectively 

inhibit clathrin-mediated endocytosis by blocking clathrin-coated pit formation [52]. 

Furthermore, to confirm the peptide specificity of the cellular association, 

competition experiments were performed in these SCLC cells with non-radiolabeled 
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sterically stabilized liposomes (SL) and antagonist G-coupled sterically stabilized 

liposomes (G-SL). In all these experiments, before the addition of PI(G-SALP) 

liposomes, H82 cells were incubated with the various compounds and formulations. 

Data is shown in Figure III.3.4. 
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Figure III.3.4 – Effect of pre-treatment with an endocytosis inhibitor and competitive 
inhibition of the cellular association of [3H]CHE labelled PI(G-SALP) with SCLC H82 cells. 
H82 cells (1x106 cells) were pre-incubated at 37 ºC for 30 min with either 0.45 M 
sucrose/well or 0.56 µg of antagonist G coupled to non-radiolabeled SL (G-SL) and also 
non-targeted SL (5 mM/well). Inhibition was determined by adding [3H]CHE-PI(G-SALP) 
(0.8 mM Lip/well), at 37 ºC for 1 h. Cellular association of liposomes was expressed as 
nmol of Lipid/106

 

 cells. Each point is the mean of four samples, ± standard deviation, 
from one representative experiment. 

 

A decrease of 47% in the cellular association level of PI(G-SALP) was observed when 

H82 cells were treated with sucrose, as compared to the absence of endocytosis 

inhibitor. This result suggests that the liposomes were internalized by 

receptor-mediated endocytosis. 

In competition experiments the SL liposomes without coupled antagonist G did not 

interfere with the association of PI(G-SALP) to SCLC cells. This result was expected as 
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SL are neutral liposomes with unmodified surface. On the contrary, the association of 

PI(G-SALP) with H82 cells was competitively inhibited when cells were pre-incubated 

with non-radiolabeled G-SL. This formulation was responsible for a 43% inhibition, and 

is a clear indication that internalization of antagonist G-targeted liposomes is 

receptor-mediated. 

Competition experiments where free antagonist G (5 µg/well) was pre-incubated for 

30 min did not competitively inhibit the binding of [3

 

H]CHE-PI(G-SALP) (0.4 mM lip), at 

37 ºC (data not shown). The amount of the free peptide added was 20 times higher 

than the amount of antagonist G present at the surface of PI(G-SALP) and almost 10 

fold higher than the amount on the surface of G-SL. 

III-3.4 – Biodistribution studies of targeted and non-targeted SALP 

liposomes 

The aim of these studies was to evaluate the biodistribution of PI(G-SALP) and 

non-targeted SALP containing as(c-myc). The major characteristics of the liposomes 

used in these experiments are shown in Table III.3.5. The experiments were carried 

out in BALB/c mice with [3

 

H]CHE-labelled formulations administered as a single bolus 

dose of 1.5 µmol of Lip. 

Table III.3.5 – Characteristics of the [3

Formulation 

H]CHE-labelled PI(G-SALP) and SALP liposomes 

L.C. 
(g/mol) 

E.E. 
(%) 

I.C. 

(g/mol) 

Particle Size 
(nm) 

PI(G-SALP) 45 ± 8 60 ± 9 7 ± 2 130 ± 3 

SALP 55 ± 7 71 ± 5 n.a. 140 ± 3 

Targeted and non-targeted SALP liposomes composed of DSPC:CHOL:DODAP:PEG-CerC16

 

:Mal-
PEG-DSPE at 20:45:25:8:2 molar ratio were prepared with 1 mg of as(c-myc) per 13 µmol 
(10 mg) of total lipid. 
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The blood clearance of PI(G-SALP) after i.v. injection into mice was compared with 

that of SALP (Figure III.3.5). An increased initial clearance, especially for the first 6 h 

after infection, was observed for the non-targeted SALP, with less than 15% of the 

injected dose at this time point, in comparison with the 40% still present for the 

PI(G-SALP), after the same period of time. After this time point, the rate of clearance 

decreased for both formulations, but at different pace. At 24 h post-injection, blood 

levels were still quantifiable with around 12% of the injected dose for PI(G-SALP) and 

only about 2% for the SALP formulation. These results demonstrate that the presence 

of the antagonist G at the surface of SALP does not affect the long-circulation 

characteristics of the SALP liposomes. 
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Figure III.3.5 – Blood clearance of PI(G-SALP) and SALP, in naïve BALB/c mice. SALP 
liposomes composed of DSPC:CHOL:DODAP:PEG-CerC16:Mal-PEG-DSPE at 20:45:25:8:2 
molar ratio, with or without coupled antagonist G labelled with [3H]CHE were injected 
i.v. in the tail vein at a single bolus dose. At different post-injection times blood was 
collected and digested. The resulting samples were counted for 3

 

H. Data are the mean 
± standard deviation of 4 animals/time point and are expressed as the percentage of 
injected dose per mL of blood. 
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Figure III.3.6 – Tissue distribution of PI(G-SALP) and SALP, in naïve BALB/c mice. SALP 
liposomes composed of DSPC:CHOL:DODAP:PEG-CerC16:Mal-PEG-DSPE at 20:45:25:8:2 
molar ratio, with or without coupled antagonist G labelled with [3H]CHE were injected i.v. 
in the tail vein at a single bolus dose. At different post-injection times liver, spleen and 
lungs were collected and digested. The resulting samples were counted for 3

 

H. Data are 
the mean ± standard deviation of 4 animals/time point and are expressed as the 
percentage of injected dose per gram of tissue. 

 

The tissue distribution of SALP and PI(G-SALP) formulations in the liver, spleen and 

lungs at different times is reported in Figure III.3.6. The pattern of biodistribution of 

these formulations in the examined tissues showed a preferential accumulation of 

SALP liposomes in the liver whereas the PI(G-SALP) formulation presents a tendency to 

accumulate in the spleen. In fact the amount of PI(G-SALP) accumulated in the 

spleen, 24 h post-injection is 2.5-fold higher than that of SALP. As for the lung, our 

organ of interest, a preferential accumulation of PI(G-SALP) as compared to SALP was 

observed for all time points and at 24 h is still around 3-fold higher, showing the 

possible interest in the use of this formulation in vivo. 
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III-4 - Discussion 

Several studies have established that the covalent attachment of appropriated 

targeting ligands to the surface of liposomes significantly increases the site specific 

delivery and internalization of these drug delivery systems into their target cells [39, 

53]. 

In the work presented in this chapter, we have comparatively developed antagonist 

G-targeted CCL (adapted from Stuart et al. [11]) and antagonist G-targeted SALP 

(adapted from Semple et al. [24]) liposomes, tailored to promote specific targeting 

and efficient intracellular delivery of an as(c-myc) to SCLC cells. A similar CCL 

formulation was previously used with success for the incorporation of an asODN 

against a multidrug-resistant human B-lymphoma cell line causing a reduction in the 

expression of the P-glycoprotein in vitro [36]. As well, SALP type formulations were 

used as lipid-based systems for the incorporation of different nucleic acid molecules 

[24, 54, 55, 56]. 

Our choice for the targeting moiety was a growth factor antagonist, named antagonist 

G. Our strategy, similar to that described by Moreira et al. [46], consisted in the 

covalent attachment of antagonist G to the surface of as(c-myc) containing CCL and 

SALP formulations. The literature describes different coupling methods for attaching 

ligands to the surface of liposomes [57, 58]. We have selected and compared two of 

them: a so called conventional coupling technique previously used to couple different 

targeting ligands (i.e. anti-GD2 mAb and anti-CD19 mAb) to the surface of CCL 

containing similar asODN [8, 10, 36, 59], and the post-insertion technique developed 

by Ishida et al. [42] for stealth liposomes (SL) containing anti-cancer drugs [38, 42, 

47]. Considering the attachment of antagonist G to the CCL formulation, the 

characterization parameters obtained for G-CCL suggested liposomal destabilization 

and as(c-myc) leakage during the conventional coupling procedure. On the other hand 
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the net increase in the particle size (~40 nm) obtained by the post-insertion technique 

(PI(G-CCL)) when compared to the CCL formulation, could be an indication that 

antagonist G-PEG-DSPE conjugates were inserted into the lipid bilayer. A similar size 

increase was observed by other authors after the transfer of IgG-PEG-DSPE into SL 

liposomes [42]. A considerable amount of antagonist G was present at the surface of 

the PI(G-CCL). This fact together with the high encapsulation parameters, made this 

system suitable to be tested in vitro, in cellular association studies with SCLC cell 

lines. 

Another lipid based system that was tested was SALP and along with its development 

several innovative features were found. The work reported here is one of the few 

studies on the attachment of a targeting device to the surface of SALP liposomes and 

one of the first to study the features of the SALP formulation and aspects of the 

preparation method that might affect the insertion of ligand-PEG-DSPE conjugates by 

the post-insertion method [60]. Similar work on the use of antagonist G-targeted SALP 

type formulations was also reported by Santos et al. [49] and Mendonça et al. [61]. 

The target of the SALP formulations, by both coupling methods done in pre-formed 

SALP, suggested that the reduction of the encapsulation parameters observed for both 

the G-SALP and PI(G-SALP) formulations (Table III.3.1) was caused by a destabilization 

in the SALP bilayer structure leading to the leakage of the encapsulated as(c-myc). 

This destabilization was most probably caused either by the long (12 to 18 h) 

incubation time (at room temperature) of SALP with antagonist G in the conventional 

coupling method; or by the 1 h incubation time at a high temperature (60 ºC) of SALP 

with antagonist G-PEG-DSPE conjugates in the post-insertion method. As both these 

reactions occurred at physiological pH, the ionisable cationic lipid DODAP is neutral 

(pKa 6.6 [62]). Thus, at this point, the electrostatic interactions between the 

as(c-myc) and DODAP were no longer present to retain the asODN molecules inside the 
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liposomes. In a parallel study by other authors differing only in the asODN molecule 

[49], the same conclusion was drawn for equivalent results. To overcome this problem 

the authors replaced the ionisable aminolipid DODAP with DOTAP (1,2-dioleoyl-sn-

glycero-3-trimethylammonium propane), allowing them to work at a pH closer to 

neutrality (pH 6) and still having the cationic lipid completely protonated during post-

insertion. In another example, Zhou et al. [25] added the pre-formed folate-PEG-DSPE 

conjugate together with the other lipids, in the 100% ethanol solution, before mixing 

it all with the asODN. Our strategy was to include the “targeting step” in the SALP 

preparation procedure consisting on the insertion of the antagonist G-PEG-DSPE 

conjugate into the SALP after the extrusion. This method seems to be valuable as it 

led to a significant retention of the encapsulated as(c-myc) (approx. 70%), maintaining 

the original SALP characteristics. At this stage of the SALP preparation, the 

DODAP/asODN complexes together with the neutral and PEG-derivatized lipids are still 

able to form the final vesicles that occur after the dialysis. This way, the addition of a 

new component or step does not create significant destabilisation of the structure in 

formation. 

Based on the above, the optimised post-insertion method was selected as the coupling 

procedure for the preparation of the targeted CCL and SALP formulations. In the case 

of the PI(G-CCL) liposomes, the insertion of the antagonist G-PEG-DSPE conjugate at 

the end of the CCL preparation had no effect on the physicochemical characteristics 

obtained as compared to the corresponding non-targeted formulation. As for the SALP 

liposomes, the proper inclusion of the targeting step during the preparation procedure 

also led to the preparation of a targeted formulation with similar characteristics as 

the non-targeted. 

Other modifications involving the PEG-coating were assayed in the PI(G-SALP) 

formulation. One modification resulted in the substitution of the pre-existing PEG-
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DSPE lipid with an exchangeable PEG-derivatized lipid in which the PEG is linked to a 

ceramide anchor containing a palmitoyl acyl group.  The advantages of the presence 

of a PEG-coating on the outer surface of liposomes include an extended circulation 

lifetime in blood resulting in increased delivery to target sites [62, 63]. In the case of 

SALP formulations, the incorporation of PEG is also described as a requisite to stabilize 

the particles preventing aggregation and assisting in the formation of uniform, small 

mono-disperse particles [24, 64]. It has however been reported that the stable steric 

barrier produced by the use of PEG-DSPE may lower the liposomal-cell membrane 

interaction [31, 56, 65] slowing down the endosomal release of antisense to the 

cytoplasm [34]. Thus, steric stabilization has to be transient for efficient transfection 

to occur [31]. It has been shown that the PEG-ceramide exchange out of the cationic 

liposome at a rate that is mainly determined by the size of the ceramide acyl chain, 

with small chains exchanging faster [31, 63, 66, 67, 68, 69]. Wheeler et al. [63] tested 

the effect of the PEG-ceramide acyl chain length in SPLP formulations (similar to 

SALP). Their findings showed that SPLP containing PEG-ceramide conjugated with 

CerC8 and CerC14 chains were released from the liposomes in a matter of minutes 

(1.2 min and 70 min, respectively), while the same SPLP with PEG-CerC20 stayed 

attached to the bilayer for up to 13 days. Transfection efficiencies in vitro were also 

dependent on the length of the ceramide acyl with higher transfection level for SPLP 

containing PEG-CerC8 and lower for PEG-CerC20 (tested in various cell lines). In 

addition pharmacokinetics studies [67] showed that SPLP containing either PEG-CerC8 

or PEG-CerC14 were cleared in less than 1 h while SPLP containing PEG-CerC20 

remained in the circulation for hours. Accordingly, in this work all the PI(G-SALP) 

formulations used in the cellular association and tissue distribution studies were 

prepared with PEG-CerC16. 
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Another modification consisted in the establishment of the more accurate PEG-CerC16 

to Mal-PEG-DSPE (antagonist G-PEG-DSPE conjugates) molar ratios in a SALP 

formulation containing PEG-lipids, since it is expected that the presence of PEG-

CerC16

We have demonstrated that the post-insertion technology could be successfully 

applied to the preparation of PI(G-CCL) and PI(G-SALP) liposomes. With this work we 

have also established that the post-insertion is a simple and flexible methodology, in 

accordance to previous work [53], and appropriated for the rapid preparation of 

targeted-liposomes for eventual clinical applications. Then we investigated whether 

these systems expressed the features required to become efficient delivery systems 

for the systemic administration of nucleic acids. For this purpose we have compared 

the cellular association of as(c-myc) encapsulated in PI(G-CCL) and PI(G-SALP) to the 

corresponding non-targeted liposomes. Both antagonist G-targeted formulations were 

found to promote an increase in cellular uptake, in the two cell lines, when compared 

to the non-targeted liposomes demonstrating that the presence of antagonist G at the 

surface of these liposomal formulations mediate the in vitro specific recognition and 

internalization of liposomes into H69 and the H82 SCLC cell lines. The differences in 

cellular association in the experiments carried out at 4º and 37ºC is additional 

evidence that antagonist G-targeted liposomes were being internalized by both cell 

lines. Results from the competition experiments where antagonist G coupled to SL 

 in the preformed SALP might reduce the transfer of additional antagonist G-

PEG-DSPE into the liposomes [42]. However, except at the highest molar ratio of both 

PEG-lipids (8:6), adequate transfer of antagonist G onto the preformed liposomes 

occurred resulting in PI(G-SALP) formulations with high cellular association levels. The 

fact that the “targeting step” was introduced in an initial stage of the SALP 

procedure, when particles were still forming, may reduce the inhibition of the 

insertion of antagonist G-PEG-DSPE onto the liposomes. 
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inhibited the binding of PI(G-SALP), provided yet further support that internalization 

of PI(G-SALP) was receptor mediated. This conclusion is in agreement with previous 

reports [46, 47, 48] that demonstrated that antagonist G coupled to SL either by a 

conventional technique (SLG), or by the post-insertion approach (PLG), lead to an 

increased binding and internalization of antagonist G-targeted SL into human SCLC cell 

lines, on a peptide- and cell-specific manner, to deliver an anti-cancer drug. 

It is accepted that for targeted-cationic liposomes to gain access to tumour sites and 

deliver their entrapped nucleic acids in vivo, long circulation times are required [53]. 

For this reason we have developed PI(G-SALP) formulations with blood clearance 

profiles of long-circulating formulations [70]. 

From the biodistribution studies we can conclude that both targeted and non-targeted 

SALP formulations have comparable profiles, however the main organs of 

accumulation are different, the liver for SALP and spleen the for PI(G-SALP). The lung 

also presents a reasonable value, in particular for the targeted formulation. An 

interesting result was the preferred spleen uptake of PI(G-SALP). The cause for this 

observation is not known, but some specific binding of the antagonist G may be 

occurring in this organ. In effect, Moreira et al. [46] have suggested that antagonist G 

may stimulate vasopressin receptor-mediated splenic uptake of antagonist G-targeted 

liposomes. Knowing that vasopressin receptors are expressed in the spleen [71], the 

observed higher PI(G-SALP) uptake is consistent with the hypothesis of an enhanced 

vasopressin receptor-mediated endocytosis of this formulation in the spleen. 

Nevertheless what was more remarkable to observe in these studies was the superior 

accumulation of the PI(G-SALP) in the lung, our organ of interest as compared to the 

SALP. The possibility of achieving a considerable accumulation in the target organ, as 

demonstrated by our results, points to the need of evaluating the biodistribution 

studies in appropriated SCLC tumour-bearing mice. In fact in diseased animals with 
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enhanced vascular permeability and angiogenesis, it is expected further accumulation 

in the tumour tissue, by the EPR mechanism. 

 

In conclusion, it was demonstrated that the post-insertion technique can be applied to 

different types of pre-formed liposomes generating ligand-targeted lipid particles that 

showed high loading efficiency, high extent of in vitro cell internalization, and 

characteristics of long-circulating profiles in vivo. As a consequence, our results 

advocate that PI(G-CCL) and PI(G-SALP) liposomes are valid candidates to selectively 

deliver as(c-myc) to SCLC cells, and in general as proved by others [49, 61], to deliver 

to tumour cells, any nucleic acid molecule against cancer-related genes. There is 

however, the need to determine the actual fate of the nucleic acids after their 

release in the cell cytoplasm and the role these systems may have inside the cell to 

mediate the down-regulation of the protein expression. 





Antagonist G-targeted cationic liposomes for the delivery of c-myc antisense 
oligodeoxynucleotide to small cell lung cancer cells 

195 

Chapter III - Reference List 

1. Van Waardenburg, R.C., Prins, J., Meijer, C., Uges, D.R., De Vries, E.G., Mulder, 
N.H., Effects of c-myc oncogene modulation on drug resistance in human small cell 
lung carcinoma cell lines. Anticancer Res, 1996, 16, 1963-1970. 

2. Brignole, C., Pagnan, G., Marimpietri, D., Cosimo, E., Allen, T.M., Ponzoni, M., 
Pastorino, F., Targeted delivery system for antisense oligonucleotides: a novel 
experimental strategy for neuroblastoma treatment. Cancer Lett, 2003, 197, 231-
235. 

3. Maurer, N., Mori, A., Palmer, L., Monck, M.A., Mok, K.W.C., Mui, B., Akhong, Q.F., 
Cullis, P.R., Lipid based systems for the intracellular delivery of genetic drugs. Mol 
Membr Biol, 1999, 16(1), 129-140. 

4. Juliano, R., Alam, M.R., Dixit, V., Kang, H., Mechanisms and strategies for effective 
delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res, 2008, 36, 4158-
4171. 

5. Baker, B.F., Monia, B.P., Novel mechanisms for antisense-mediated regulation of 
gene expression. BBA-Gene Struct Expr, 1999, 1489, 3-18. 

6. Crooke, S.T., Vickers, T., Lima, W., Wu, H., Mechanisms of Antisense Drug Action, 
and Introduction. In: Antisense Drug Technology: principles, strategies, and 
applications, S.T. Crooke (Ed.), 2007, CRC Press, 5-46. 

7. Moreira, J.N., Santos, A., Moura, V., de Lima, M.C.P., Simoes, S. Non-viral lipid-based 
nanoparticles for targeted cancer systemic gene silencing. J Nanosci Nanotechnol, 
2008, 8, 2187-2204. 

8. Pastorino, F., Brignole, C., Marimpietri, D., Pagnan, G., Morando, A., Ribatti, D., 
Semple, S.C., Gambini, C., Allen, T.M., Ponzoni, M., Targeted liposomal c-myc 
antisense oligodeoxynucleotides induce apoptosis and inhibit tumour growth and 
metastases in human melanoma models. Clin. Cancer Res, 2003, 9, 4595-4605. 

9. Van Waardenburg, R.C.A.M., Meijer, C., Pinto-Sietsma, S.J., De Vries, E.G.E., Timens, 
W., Mulder, N.M., Effects of c-myc oncogene modulation on differentiation of human 
small cell lung carcinoma cell lines. Anticancer Res, 1998, 18, 91-95. 

10. Pagnan, G., Stuart, D.D., Pastorino, F., Raffaghello, L., Montaldo P.G., Allen, T.M., 
Calabretta B., Ponzoni, M., Delivery of c-myb antisense oligodeoxynucleotides to 
human neuroblastoma cells via disialoganglioside GD2-targeted immunoliposomes: 
antitumor effects. J Natl Cancer Inst, 2000, 92, 253-261. 

11. Stuart, D.D., Allen, T.M., A new liposomal formulation for antisense 
oligodeoxynucleotides with small size, high incorporation efficiency and good 
stability. Biochim Biophy. Acta, 2000, 1463, 219-229. 

12. Zelphati, O., Szoka, F.C., Liposomes as a carrier for intracellular delivery of 
antisense oligonucleotides: A real or magic bullet? J Control Release, 1996, 41, 99-
199. 



Chapter III 

196 

13. Zhao, X.B., Pan, F., Holt, C.M., Lewis, A.L., Lu, J.R., Controlled delivery of antisense 
oligonucleotides: a brief review of current strategies. Expert Opin. Drug Del., 2009, 
6, 673-686. 

14. Akie, K., Dosaka-Akita, H., Murakami, A., Kawakami, Y., A combination treatment of 
c-myc antisense DNA with all-trans-retinoic acid inhibits cell proliferation by 
down-regulating c-myc expression in small cell lung cancer. Antisense Nucleic Acid 
Drug Dev, 2000, 10, 243-249. 

15. Ruan, F., Liu, S.Y., Combination antigene therapy targeting c-myc and c-erbB2 in the 
ovarian cancer COC1

16. Leonetti, C., D'Agnano, I., Lozupone, F., Valentini, A., Geiser, T., Zon, G., 
Calabretta, B., Citro, G., Zupi, G., Antitumor effect of c-myc antisense 
phosphorothioate oligodeoxynucleotides on human melanoma cells in vitro and in 
mice. J Natl Cancer Inst, 1996, 88, 419-429. 

 cell line. Gynecol Oncol, 2002, 85, 40-44. 

17. Zhang, S.Q., Ding, B., Guo, Z.G., Li, Y.X., Inhibitory effect of antisense 
oligodeoxynucleotide to p44/p42 MAPK on angiotensin II-induced hypertrophic 
response in cultured neonatal rat cardiac myocyte. Acta Pharmacol Sin, 2004, 25, 41-
46. 

18. Leonetti, C., Biroccio, A., D'Angelo, C., Semple, S.C., Scarsella, M., Zupi, G., 
Therapeutic integration of c-myc and bcl-2 antisense molecules with docetaxel in a 
preclinical model of hormone-refractory prostate cancer. Prostate, 2007, 67, 1475-
1485. 

19. Rojanasakul, Y.Y., Antisense oligonucleotide therapeutics: Drug delivery and 
targeting. Adv Drug Deliver Rev, 1996, 18, 115-131. 

20. Li, S.D., Huang, L., Targeted delivery of antisense oligodeoxynucleotide and small 
interference RNA into lung cancer cells. Mol Pharm, 2006, 3, 579-588. 

21. Pastorino, F., Mumbengegwi, D.R., Ribatti, D., Allen, T.M., Ponzoni, M., Increase of 
therapeutic effects by treating melanoma with targeted combinations of c-myc 
antisense and doxorubicin. J Control Rel, 2008, 126, 85-94. 

22. Hughes, M.D., Hussain, M., Nawaz, Q., Sayyed, P., Akhtar, S., The cellular delivery of 
antisense oligonucleotides and ribozymes. Drug Discov Today, 2001, 6, 303-315. 

23. Hope, M.J., Mui, B., Ansell, S., Ahkong, Q.F., Cationic lipids, 
phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-
based drugs., Mol Membr Biol, 1998, 15, 1-14. 

24. Semple, S.C., Klimuk, S.K., Harasym, T.O., Dos, S., Ansell, S.M., Wong, K.F., Maurer, 
N., Stark, H., Cullis, P.R., Hope, M.J., Scherrer, P., Efficient encapsulation of 
antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of 
novel small multilamellar vesicle structures. BBA-Biomembranes, 2001, 1510, 152-
166. 

25. Zhou, W., Yuan, X., Wilson, A., Yang, L.J., Mokotoff, M., Pitt, B., Li, S., Efficient 
intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid 
vesicles. Bioconjugate Chem, 2002, 13, 1220-1225. 



Antagonist G-targeted cationic liposomes for the delivery of c-myc antisense 
oligodeoxynucleotide to small cell lung cancer cells 

197 

26. Sandhu, A.P., Lam, A.M.I., Fenske, D.B., Palmer, L.R., Johnston, M., Cullis, P.R., 
Calcium enhances the transfection potency of stabilized plasmid-lipid particles. Anal 
Biochem, 2005, 341, 156-164. 

27. Semple, S.C., Klimuk, S.K., Harasym, T.O., Hope, M.J., Lipid-based formulations of 
antisense oligonucleotides for systemic delivery applications. Method Enzymol, 2000, 
313, 322-341. 

28. Schatzlein, A.G., Non-viral vectors in cancer gene therapy: principles and progress. 
Anti-Cancer Drugs, 2001, 12, 275-304. 

29. de Lima, M.C.P., Neves S., Filipe, A., Duzgunes, N., Simoes, S., Cationic Liposomes 
for Gene Delivery: From Biophysics to Biological Applications. Curr Med Chem, 2003, 
10, 1221-1231. 

30. Dass, C.R., Choong, P.F.M., Selective gene delivery for cancer therapy using cationic 
liposomes: In vivo proof of applicability. J Control Rel, 2006, 113, 155-163. 

31. Shi, F.X., Wasungu, L., Nomden, A., Stuart, M.C.A., Polushkin, E., Engberts, J.B. F. 
N., Hoekstra, D., Interference of poly(ethylene glycol)-lipid analogues with cationic-
lipmediated delivery of oligonucleotides; role of lipid exchangeability and non-
lamellar transitions. Biochem J, 2002, 366, 333-341. 

32. Lonez, C., Vandenbranden, M., Ruysschaert, J.M., Cationic liposomal lipids: From 
gene carriers to cell signalling. Prog Lipid Res, 2008, 47, 340-347. 

33. Meyer, O., Kirpotin, D., Hong, K.L., Sternberg, B., Park, J.W., Woodle, M.C., 
Papahadjopoulos, D., Cationic liposomes coated with polyethylene glycol as carriers 
for oligonucleotides. J Biol Chem, 1998, 273, 15621-15627. 

34. Song, L.Y., Ahkong, Q.F., Rong, Q., Wang, Z., Ansell, S., Hope, M.J., Mui, B., 
Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular 
delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. BBA-
Biomembranes, 2002, 1558, 1-13. 

35. Dass, C.R., Lipoplex-mediated delivery of nucleic acids: factors affecting in vivo 
transfection. J Mol Med, 2004, 82, 579-591. 

36. Stuart, D.D., Kao, G.Y., Allen, T.M., A novel, long-circulating, and functional 
liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1. 
Cancer Gene Ther, 2000, 7, 466-475. 

37. Morille, M., Passirani, C., Vonarbourg, A., Clavreul, A., Benoit, J.P., Progress in 
developing cationic vectors for non-viral systemic gene therapy against cancer. 
Biomaterials, 2008, 29, 3477-3496. 

38. Iden, D.L., Allen, T.M., In vitro and in vivo comparison of immunoliposomes made by 
conventional coupling techniques with those made by a new post-insertion approach. 
BBA-Biomembranes, 2001, 1513, 207-216. 

39. Allen, T.M., Moase, E.H., Therapeutic opportunities for targeted liposomal drug 
delivery. Adv Drug Deliver Rev, 1996, 21, 117-133. 

40. Zalipsky, S., Hansen, C.B., de Menezes, D.E.L., Allen, T.M., Long-circulating, 
polyethylene glycol-grafted immunoliposomes. J Control Rel, 1996, 39, 153-161. 



Chapter III 

198 

41. Allen, T.M., Hansen, C.B., Stuart, D.D., Targeted sterically stabilized liposomal drug 
delivery. In: Medical Applications of Liposomes, Lasic,D.D.; Papahadjopoulos,D. 
(Eds.), Elsevier, Amsterdam, 1998, 4.6, 297-323. 

42. Ishida, T., Iden, D.L., Allen, T.M., A combinatorial approach to producing sterically 
stabilized (Stealth) immunoliposomal drugs. FEBS Lett, 1999, 460, 129-133. 

43. Langdon, S.P., Sethi, T., Ritchie, A., Muir, M., Smyth, J.F., Rozengurt, E., Broad 
spectrum neuropeptide antagonist inhibits the growth of small cell lung cancer in 
vivo. Cancer Res, 1992, 52, 4554-4557. 

44. Sethi, T., Langdon, S.P., Smyth, J.F., Rozengurt, E., Growth of Small Cell Lung 
Cancer Cells: Stimulation by Multiple Neuropeptides and Inhibition by Broad 
Spectrum Antagonists in vitro and in vivo. Cancer Res, 1992, 52S, 2737-2742. 

45. MacKinnon, A.C., Armstrong, R.A., Waters, C.M., Cummings, J., Smyth, J.F., Haslett, 
C., Sethi, T., [Arg(6),D-Trp(7,9),N(me)Phe(8)]-substance P (6-11) activates JNK and 
induces apoptosis in small cell lung cancer cells via an oxidant-dependent 
mechanism. Brit J Cancer, 1999, 80, 1026-1034. 

46. Moreira, J.N., Hansen, C.B., Gaspar, R., Allen, T.M., A growth factor antagonist as a 
targeting agent for sterically stabilized liposomes in human small cell lung cancer. 
BBA-Biomembranes, 2001, 1514, 303-317. 

47. Moreira, J.N., Ishida, T., Gaspar, R., Allen, T.M., Use of the post-insertion technique 
to insert peptide ligands into pre-formed stealth liposomes with retention of binding 
activity and cytotoxicity. Pharm Res, 2002, 19, 265-269. 

48. Moreira, J.N. Gaspar, R., Antagonist G-mediated targeting and cytotoxicity of 
liposomal doxorubicin in NCI-H82 variant small cell lung cancer. Braz J Med Biol Res, 
2004, 37, 1185-1192. 

49. Santos, A.O., Gomes da Silva, L.C., Bimbo, L.M., Pedroso de Lima, M.C., Simões, S., 
Moreira, J.N., Design of peptide-targeted liposomes containing nucleic acids. Biochim 
Biophys Acta, 2010, 1798, 433-441. 

50. Bligh, E.G. Dyer, W.J., A rapid method of total lipid extraction and purification. Can 
J Biochem Physiol, 1959, 37, 911-917. 

51. Kirpotin, D., Park, J.W., Hong, K., Zalipsky, S., Li, W.-L., Carter, P., Benz, C.C., 
Papahadjopoulos, D., Sterically stabilized anti-HER2 immunoliposomes: design and 
targeting to human breast cancer cells in vitro. Biochemistry, 1997, 36, 66-75. 

52. Heuser, J.E. Anderson, R.G.W., Hypertonic Media Inhibit Receptor-Mediated 
Endocytosis by Blocking Clathrin-Coated Pit Formation. J Cell Biol, 1989, 108, 389-
400. 

53. Allen, T.M., Sapra, P., Moase, E., Moreira, J., Iden, D., Adventures in targeting. J. 
Liposome Res, 2002, 12, 5-12. 

54. Leonetti, C., Biroccio, A., Benassi, B., Stringaro, A., Stoppacciaro, A., Semple, S. C., 
Zupi, G., Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles 
improves anti-tumoral efficacy in vivo in a human melanoma line. Cancer Gene Ther, 
2001, 8, 459-468. 



Antagonist G-targeted cationic liposomes for the delivery of c-myc antisense 
oligodeoxynucleotide to small cell lung cancer cells 

199 

55. Bartsch, M., Weeke-Klimp, A.H., Morselt, H.W.M., Kimpfler, A., Asgeirsdottir, S. A., 
Schubert, R., Meijer, D.K.F., Scherphof, G.L., Kamps, J.A.A.M., Optimized targeting 
of polyethylene glycol-stabilized anti-intercellular adhesion molecule 1 
oligonucleotide/lipid particles to liver sinusoidal endothelial cells. Mol Pharmacol, 
2004, 67, 883-890. 

56. Takasaki, J., Raney, S.G., Chikh, G., Sekirov, L., Brodsky, I., Tam, Y., Ansell, S.M., 
Methods for the preparation of protein-oligonucleotide-lipid constructs. Bioconjugate 
Chem, 2006, 17, 451-458. 

57. Noble, C. O., Kirpotin, D. B., Hayes, M. E., Mamot, C., Hong, K., Park, J. W., Benz, C. 
C., Marks, J. D., and Drummond, D. C., Development of ligand-targeted liposomes for 
cancer therapy. Expert Opin Ther Targets, 2004, 8(4), 335-353. 

58. Hansen, C.B., Kao, G.Y., Moase, E.H., Zalipsky, S., Allen, T.M., Attachment of 
antibodies to sterically stabilized liposomes - evaluation, comparison and 
optimization of coupling procedures. BBA-Biomembranes, 1995, 1239, 133-144. 

59. Brignole, C., Pastorino, F., Marimpietri, D., Pagnan, G., Pistorio, A., Allen, T.M., 
Pistoia, V., Ponzoni, M., Immune cell-mediated antitumor activities of GD2

60. Carvalheiro, M.C., Moreira, J.N., Simões, S., Cruz, M.E.M., Antagonist G 
targeted-stabilized antisense-lipid particles (SALP-G): a novel vector for delivery of 
antisense oligonucleotides to Small Cell Lung Cancer. Proceedings of the VII 
Spanish-Portuguese Conf Controlled Drug Delivery, 2006, 41. 

-targeted 
liposomal c-myb antisense oligonucleotides containing CpG motifs. J Natl Cancer Inst, 
2004, 96, 1171-1180. 

61. Mendonca, L.S., Firmino, F., Moreira, J.N., de Lima, M.C.P., Simoes, S., Transferrin 
receptor-targeted liposomes encapsulating anti-BCR-ABL siRNA or asODN for chronic 
myeloid leukemia treatment. Bioconjugate Chem, 2010, 21, 157-168. 

62. Maurer, N., Wong, K.F., Stark, H., Louie, L., McIntosh, D., Wong, T., Scherrer, P., 
Semple, S.C., Cullis, P.R., Spontaneous entrapment of polynucleotides upon 
electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J, 
2001, 80, 2310-2326. 

63. Wheeler, J.J., Palmer, L., Ossanlou, M., MacLachlan, I., Graham, R.W., Zhang, Y. P., 
Hope, M.J., Scherrer, P., Cullis, P.R., Stabilized plasmid-lipid particles: construction 
and characterization. Gene Ther, 1999, 6, 271-281. 

64. Heyes, J., Hall, K., Tailor, V., Lenz, R., MacLachlan, I., Synthesis and 
characterization of novel poly(ethylene glycol)-lipid conjugates suitable for use in 
drug delivery. J Control Rel, 2006, 112, 280-290. 

65. Miller, C.R., Bondurant, B., Mclean, S.D., McGovern, K.A., O'Brien, D.F., Liposome-
cell interactions in vitro: Effect of liposome surface charge on the binding and 
endocytosis of conventional and sterically stabilized liposomes. Biochemistry, 1998, 
37, 12875-12883. 

66. Webb, M.S., Saxon, D., Wong, F.M.P., Lim, H.J., Wang, Z., Bally, M.B., Choi, J.S., 
Cullis, P.R., Mayer, L.D., Comparison of different hydrophobic anchors conjugated to 
poly(ethylene glycol): effects on the pharmacokinetics of liposomal vincristine. 
Biochim Biophys Acta, 1998, 1372, 272-282. 



Chapter III 

200 

67. Monck, M.A., Mori, A., Lee, D., Tam, P., Wheeler, J.J., Cullis, P.R., Scherrer, P., 
Stabilized plasmid lipid particles: Pharmacokinetics and plasmid delivery to distal 
tumours following intravenous injection. J Drug Target, 2000, 7, 439-452. 

68. Mok, K.W.C., Lam, A.M.I., Cullis, P.R., Stabilized plasmid lipid particles: factors 
influencing plasmid entrapment and transfection properties. BBA-Biomembranes, 
1999, 1419, 137-150. 

69. Zhang, Y.P., Sekirov, L., Saravolac, E.G., Wheeler, J.J., Tardi, P., Clow, K., Leng, E., 
Sun, R., Cullis, P.R., Scherrer, P., Stabilized plasmid lipid particles for regional gene 
therapy: formulation and transfection properties. Gene Ther, 1999, 6, 1438-1447. 

70. Allen, T.M. Hansen, C., Pharmacokinetics of Stealth versus conventional liposomes-
Effect of dose. Biochim Biophys Acta, 1991, 1068, 133-141. 

71. Elands, J., Resink, A., De Kloet, E.R., Neurohypophyseal hormone receptors in the rat 
thymus, spleen, and lymphocytes. Endocrinology, 1990, 126, 2703-2710. 



 

CHAPTER IV 

Conclusions and Prospects 

 

 

 

 

 

 

 

 

 
 

 

 

 

ht
tp

:/
/w

w
w

.t
ou

ch
br

ie
fi

ng
s.

co
m

/p
df

/1
7/

pt
03

1_
p_

cr
om

m
el

in
.p

df
 



Conclusions and Prospects 

203 

IV - Conclusions and Prospects 

The design of efficient NanoDDS to transport and deliver bioactive agents to their 

therapeutic targets in vivo has been widely investigated as an innovative strategy in 

drug discovery and development. Liposomes, the most frequently employed NanoDDS, 

have improved the pharmacological and therapeutic properties of many bioactive 

agents. The design of tailor-made liposomes able to accumulate at the disease sites, 

to be specifically recognised by the target cells or tissues and, above all, to provide an 

efficient intracellular delivery, are currently the most challenging goals in drug 

targeting as part of a therapeutic approach. 

The work described here confirms the versatility of liposomes as NanoDDS to 

accommodate very different types of bioactive agents and their relevant use in the 

treatment of two diseases with distinct characteristics. In leishmaniasis, one of the 

selected diseases, macrophages are the main cellular targets, while in SCLC, an 

aggressive form of lung cancer, malignant cells are the targets. Although it was 

obvious that different bioactive agents with different pharmacological actions would 

have to be employed, our challenge was to use the same type of strategy to stabilise, 

transport and deliver the various drugs. To reach this goal we designed and developed 

two types of liposomes: conventional and ligand-targeted sterically stabilised, with 

appropriated characteristics for the incorporation and in vivo delivery of either low 

molecular weight molecules or macromolecules. 

 

In Chapter II our aim was to evaluate the validity of dinitroanilines, a 

non-conventional class of compounds, as anti-leishmanial agents and the efficiency of 

liposomes as macrophages directed systems for their in vivo delivery. As described in 

that chapter, conventional liposomes were used to generate delivery systems for 

commercial (TFL) and hemi-synthetic (TFL-D) dinitroanilines. These low molecular 
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weight hydrophobic molecules were successfully incorporated with high encapsulation 

efficiencies and loading capacities. After a systematic study of the effect of 

formulation factors we were able to efficiently incorporate TFL in liposomes 

composed by phospholipids of low Tc, with charged polar head groups (PG) and 

without cholesterol. With the addition of a cryoprotectant it was possible to produce a 

stable TFL liposomal system for its maintenance/storage during a significant time 

after production [1]. Moreover, these systems kept their properties upon scale-up. 

The evaluation of the therapeutic activity of liposomal TFL in a visceral model of 

Leishmania infection led us to the conclusion that their activity was dependent on the 

lipid composition, dose and number of administrations, reaching 70% parasite load 

inhibition [2]. In a very aggressive type of cutaneous leishmaniasis model, around 

60-fold smaller dose of liposomal TFL than the standard drug, Glucantime® reduced up 

to 2-fold the size of lesions. Liposomal TFL also improved the clinical condition of 

naturally and experimental infected dogs, reduced their parasite load and promoted 

the induction of protective immune response with the increment of protective 

cytokines [3]. 

With the aim to further increase TFL activity as an anti-parasitic agent, new synthetic 

TFL-D molecules, with in vitro anti-leishmanial activity, were selected and efficiently 

incorporated in selected conventional liposomes. These formulations conjugated in 

vitro high anti-leishmanial activity against promastigotes (L. infantum and 

L. donovani) in culture and against the intracellular form of Leishmania with 

irrelevant cytotoxicity and haemolytic activity. These findings are of particular 

relevance when compared with the performance of the standard drug miltefosine that 

evidenced signs of both negative side effects. Of the liposomal TFL-D tested in a 

murine model of zoonotic visceral leishmaniasis, treatment with the one containing 

TFL-A3 reduced significantly (97%) the number of viable parasites in the spleen of 
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infected mice. When used in the free form, this derivative, apart from displaying a 

lower activity (44% parasite load inhibition), also presented the inconvenience of 

needing detergent dissolution to be administrated. 

The conclusions drawn from these studies are that conventional liposomes are a 

powerful NanoDDS to overcome the difficulties of handling and administering 

problematic drugs and to efficient delivery to MPS cells in different tissues. The use of 

liposomes has contributed to a dramatic increase in the water solubility of these drugs 

allowing the systemic administration of therapeutic doses with no signs of toxicity and 

without the use of organic solvents. These observations together with their preferential 

uptake by macrophages resulted in an enhancement of their anti-leishmanial activity as 

compared to the free drugs. The conjugation of the two strategies used: design and 

hemi-synthesis of specific new TFL-D and their association to macrophage-targeted 

liposomes, represented an innovative approach for the treatment of Leishmania 

infections. 

For NanoDDS to be a commercially viable alternative tool in the treatment of poverty 

associated disease, like leishmaniasis, they must increase the treatment efficacy and 

tolerance, reduce treatment duration and cost, limit the emergence of drug resistance, 

and prove to be superior to current treatment modalities. Thus to fully explore the 

potential of TFL and in particular the more active TFL-D in the treatment of 

Leishmania infections, the incorporation of these molecules in more cost-effective 

lipid-based systems should be comparatively studied. The use of Solid Lipid 

Nanoparticles (SLN) is one of the most attractive alternatives to liposomes, which 

should be exploited in the future [4]. 

Independent of the NanoDDS used, the design of bioactive agents that target 

exclusively Leishmania parasites is of crucial importance to combat this infectious 

disease. In this work, bioactive agents were successfully used to target the parasite 
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tubulins. However, going a step further, it is intended to take advantage on the 

availability of the complete DNA sequence of the Leishmania genome. This approach, 

consisting on the delivery of an asODN complementary to the β-tubulin mRNA is 

expected to result in the inhibition of β-tubulin synthesis leading to the arrest of the 

multiplication of intracellular parasites [5]. This new strategy appears to be a very 

interesting perspective for future research. 

 

In Chapter III we aimed to use a gene silencing strategy, based on the molecular 

differences or abnormalities observed in cancer cells relatively to normal cells, for the 

treatment of SCLC. The identification and characterization of these differences has 

strongly contributed to the emergence of new molecular targets for cancer therapy. 

Once the molecular targets have been defined, bioactive agents that specifically 

modulate their activity can be designed. An example of such a class of bioactive agents 

is asODNs when used as gene silencing agents. The use of NanoDDS is crucial to 

promote the efficient intracellular delivery of the associated asODNs to cancer cells. As 

described in this chapter, antagonist G targeted liposomal formulations were used to 

generate a NanoDDS to deliver an as(c-myc) to the cytosol of SCLC cells. After a 

comparative study between two coupling methods and two types of long circulating 

liposomes, we selected the post-insertion as the method to prepare the targeted 

formulations and the SALP as the liposomal system. The encapsulation of as(c-myc) in 

antagonist G-targeted SALP liposomes produced a system with high encapsulation 

efficiency and loading capacity, while keeping an appropriated small particle size. The 

antagonist G was capable of promoting the internalisation of this system allowing the 

intracellular accumulation of the encapsulated as(c-myc). To take full advantage of 

this targeting strategy, we had to prepare a NanoDDS that, when in vivo, circulates 

long enough to give ligands the opportunity to bind to the cancer cell surface. This 
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role was played by the PEG-coating and by the small particle size (up to 150 nm) that 

characterises our PI(G-SALP) formulation. These liposomes, apart from accumulating 

in the liver and spleen, they also accumulate in the lung, the organ of interest, with a 

reasonable percentage of the injected dose (15%) still present 24 h after injection. 

Interestingly the PI(G-SALP) accumulate in this organ in a higher extent than the 

non-targeted liposomes, indicating that the presence of the antagonist G did not alter 

the long circulation characteristics of these liposomes. 

With the results obtained from this work, the observed cellular internalisation and the 

blood circulation profile of the PI(G-SALP), it is possible to conclude that the use of 

targeted sterically stabilised liposomes can contribute, with a targeting approach, for 

the delivery of asODN to cancer cells. However for PI(G-SALP) to be considered as a 

therapeutic tool in the treatment of SCLC it needs to be validated. This validation 

implies demonstrating the down-regulation of the c-myc protein expression and 

parallel decrease in SCLC cellular viability, after treatment with PI(G-SALP) containing 

the as(c-myc). Because there is some controversy in the literature about the 

therapeutic value of some molecular targets (e.g. Bcl-2) in SCLC [6, 7], it is pertinent 

to evaluate the down-regulation of the c-myc protein mediated by the use of an 

as(c-myc) and establishing whether this protein is a valid target. Carrying out such 

studies represents an interesting challenge for future research. It will be also 

interesting to examine if the observed cellular internalisation of the PI(G-SALP) shows 

a correlation with the reduction in the protein expression or if some of the problems 

encountered by other authors are partially due to an inadequate release of the nucleic 

acids from the liposomes after receptor-mediated endocytosis. In this case, some 

improvements in the delivery system must be considered. 

Overall it appears that the main aims of this work were fulfilled, and several 

challenging questions were arisen that will be addressed in future work. 
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